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BASAL AND EXPERIENCE DEPENDENT AMPAR AND SYNAPSE DYNAMICS: 

ALTERATIONS IN A MOUSE MODEL OF FRAGILE X SYNDROME 

Anand Suresh 

University of Nebraska Medical Center, 2016 

 

Advisor: Anna Dunaevsky, Ph.D. 

Dendritic spines are the principal sites of excitatory synapses in the neurons of 

mammalian central nervous system. Spine are plastic, undergoing structural and 

functional changes under basal and experience dependent conditions. Spine properties 

are altered in a number of neurodevelopmental disorders including the Fragile X syndrome 

(FXS) which is the most common inherited form of intellectual disability. The structural 

reorganization of dendritic spines is thought to be associated with synaptic plasticity 

mechanisms that are deficient in FXS. A number of synaptic plasticity mechanisms involve 

modulation of synaptic strength via insertion or removal of α-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid receptors (AMPAR). However, the link between synaptic 

behavior and AMPAR dynamics has not been previously studied in vivo. 

To investigate the role of AMPAR in spine dynamics in vivo we expressed AMPAR subunit 

GluA2 tagged to superecliptic phluorin (SEP), a pH sensitive GFP variant, in layer 2/3 

neurons of the primary motor cortex (M1).  Dendritic spines and sGluA2 were imaged in 

vivo using two-photon light microscopy over a period of ten days in both wild type and the 

fmr1 knock out (KO) mice, a mouse model of FXS. Repeated in vivo imaging revealed that 

in the fmr1 KO mouse dendritic spines were denser, smaller, contained less sGluA2 and 

had higher turnover rates compared to littermate controls (WT). Our data confirmed the 

relationship between synaptic strength and synaptic stability, with greater AMPAR 

containing spines being more stable in both WT and the KO mice. Additionally, we 

observed that AMPAR levels were dynamic in most stable spines, fluctuating over 10 days 

with larger proportion of spines showing multiple dynamic events of AMPAR in the KO. 
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Directional changes in sGluA2 were also observed in subpopulation of spines, with new 

small spines gradually accumulating sGluA2. Moreover, sGluA2 levels dropped just prior 

to spine elimination with greater loss observed in the KO spines. To further investigate the 

role of AMPAR in experience dependent plasticity, we trained KO mice in a forelimb task 

and monitored behavioral learning and biochemically measured synaptic AMPAR levels. 

KO mice had mild motor deficits in a single forelimb reaching task compared to WT 

controls. Furthermore, after one day of motor skill training WT mice had a gradual increase 

in synaptic sGluA1 which was delayed in the KO. Thus we conclude that AMPAR levels 

within spines are continuously dynamic and are predictive of spine behavior. These 

dynamics are further modulated upon learning with impairments under basal and 

experience dependent conditions in the fmr1 KO mouse. 
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Chapter 1 

 

1.1 Introduction 

The central nervous system (CNS) consisting of the brain and spinal cord, controls every 

conscious and unconscious momentary function in the life of a living being.  The central 

nervous system is complex and structured, consisting of millions of cells of which the 

principal components are neurons and glia. Neurons are electrically charged and highly 

polarized cells consisting of a cell body and two structurally and functionally distinct 

processes; dendrites and axons. The electrically excitable nature of a neuron allows it to 

transmit information through electrical and chemical signals across the cell. Classically, 

the flow of electrical signals across neurons is directional, with dendrites conducting 

impulses towards and axons conducting impulses away from the soma. Neurons are 

arrayed in complex interconnected networks and communicate with each other through 

transfer of electrical impulses across special junctions called synapses. Synapses are 

highly specialized compartments of neurons with thousands of proteins on both pre- and 

postsynaptic side working in a highly coordinated manner to maintain synaptic structure 

and to mediate synaptic transmission. At a chemical synapse, neurotransmitter released 

by the presynaptic axon terminal binds to a receptor on a dendrite of another neuron. At 

an excitatory synapse, synaptic transmission results in depolarization, which if strong 

enough can generate an action potential which propagates along its axons causing 

neurotransmitter release in subsequent synapses. Synaptic transmission within neuronal 

circuits forms the basis of information transfer in the CNS.  

The flow of information through neuronal circuits can be modulated by multiple 

mechanisms including changing the synaptic properties of neurons. This process of 

synaptic plasticity occurs by either regulating the number of synapses (through formation 

or elimination of synapses) or through modification of the transmission at preexisting 
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synapses and are thought to be the fundamental process by which the brain stores and 

processes information. Impairments in the formation of neuronal circuits and synaptic 

structure and function are thought to underlie many neuropsychiatric disorders. 

Specifically, impairments in glutamatergic synapses, which form the vast majority of 

excitatory synapses and are located on specialized dendritic compartments called 

dendritic spines, have been implicated in many neurodevelopmental disorders. 

Understanding basic biological mechanisms of synaptic plasticity in shaping neuronal 

circuits involved in various behavioral and cognitive states will be critical for understanding 

the impairments underlying neurodevelopmental disorders such as ASD and the 

development of therapies for treatment of patients.  

In my thesis, the main focus has been to monitor synaptic proteins as a measure of 

synaptic function and understand how functional changes shape synaptic fate both in 

normal and diseased conditions. Towards this end I focused on tracking α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), a type of glutamate 

receptor in synapses in vivo and over time.  I monitored AMPAR levels within synapses 

both under basal conditions and with learning in normal (wild type) and fmr1 KO mice, a 

mouse model for Fragile X syndrome. Fragile X syndrome is the most commonly inherited 

form of intellectual disability and is an extensively studied model of neurodevelopmental 

disorders.   In the following introduction, I am going to briefly review the important aspects 

of synapses focusing on architecture, function and change of synapses under normal and 

in Fragile X syndrome. 
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1.2 Dendritic Spines  

Dendritic spines (spines) are small (0.5-2 microns) membranous protrusions that project 

from the dendritic shaft. Spines were first described by Santiago Ramón y Cajal (Ramon 

y Cajal, 1888) in the late 19th century using golgi staining. Extensive research over 

decades have confirmed that spines form the postsynaptic compartment of an excitatory 

glutamatergic synapse (J. N. Bourne & Harris, 2008).Spines are known to be present in 

neurons across many organisms from annelids to primates (DeFelipe, Alonso-Nanclares, 

& Arellano, 2002). Spines are present on several cell types in the CNS including cerebellar 

Purkinje cells and pyramidal neurons(Nimchinsky, Oberlander, & Svoboda, 2001). 

Pyramidal neurons form the majority of neurons in the cortex and hippocampus and 

research focusing on synaptic properties in these neurons will be the primary focus in the 

following sections.  

The unique architecture and prevalence of spines on dendrites have been postulated to 

confer many advantages to neuronal function (R Yuste & Denk, 1995). The distribution 

and arrangement of spines and axons in an almost helical manner upon a dendrite 

increases surface area hence optimizing neuronal connectivity (R. Yuste, 2011). This also 

increases the diversity of presynaptic partners thus making the neuronal circuitry more 

distributed which has advantages in terms of anatomical organization (R. Yuste, 2011) 

and computational function (Hopfield, 1982). Secondly, it is postulated that the narrow 

spine neck increases electrical and diffusional resistance between the dendrite and the 

spine thus isolating synaptic inputs (Tonnesen, Katona, Rozsa, & Nagerl, 2014; Tonnesen 

& Nagerl, 2016; R. Yuste, 2013; R. Yuste & Urban, 2004). This would avoid electric 

interference and shunting between neighboring spines and make input specific plasticity 

possible by restricting the diffusional flow of signaling molecules (Lee, Soares, & Beique, 

2012; Tonnesen & Nagerl, 2016). Thus the unique structural geometry of a spine, confers 
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upon it distinct biophysical properties making a spine not just a reception site but the 

smallest processing unit of the brain (Bellot et al., 2014). 

According to present theories of memory and learning, information is stored in the brain 

through modifications in neuronal connectivity (Malenka & Bear, 2004). Modification in 

synaptic strength is known as functional plasticity whereas elimination or formation and 

expansion or shrinkage of spines is called structural plasticity (Kasai, Matsuzaki, Noguchi, 

Yasumatsu, & Nakahara, 2003; Sala & Segal, 2014; R. Yuste & Bonhoeffer, 2001).The 

proper functioning of these unique attributes of the synaptic plasticity are critical for normal 

function and are targets for dysfunction in neurological disorders (Bellot et al., 2014; Fiala, 

Allwardt, & Harris, 2002; Penzes, Cahill, Jones, VanLeeuwen, & Woolfrey, 2011; Svitkina 

et al., 2010).Relevant to this thesis neurodevelopmental disorders such as Fragile X 

syndrome have documented dysfunction in synaptic properties(Contractor, Klyachko, & 

Portera-Cailliau, 2015; S.A.  Irwin, Galvez, & Greenough, 2000) and thus provide unique 

windows into understanding basic synaptic behavior and identifying targets for therapy 

(Darnell & Klann, 2013; Krueger & Bear). 
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1.2a Structure of spines 

Dendritic Spines as discussed earlier are uniquely specialized for synaptic transmission. 

Directly opposing the presynaptic bouton and crowning the surface of a spine are a varied 

array of membrane bound neurotransmitter receptors, adhesion, scaffolding and signaling 

proteins which are essential for synaptic function and plasticity (Nimchinsky, Sabatini, & 

Svoboda, 2002; Sala & Segal, 2014).. Holding these proteins in place is a large 

specialized electron rich structure called post synaptic density (PSD)(Sheng & 

Hoogenraad, 2007).  PSD is attached to the postsynaptic plasma membrane and is held 

together by actin filaments. The PSD is dynamic with levels of PSD proteins directly 

correlated with synaptic strength (Cane, Maco, Knott, & Holtmaat, 2014; Gray, Weimer, 

Bureau, & Svoboda, 2006). Among the PSD protein, the most abundant are PSD-95 which 

binds to guanylate kinase-associated protein (GKAP) which in turn binds to SHANK and 

HOMER to form the scaffolding structure of the PSD.  Mass spectroscopy analysis of 

purified PSD have identified nearly a thousand proteins associated with the PSD (J. Peng 

et al., 2004; Walikonis et al., 2000).  

Apart for the PSD the spine is composed of a network of actin cytoskeleton and a number 

of organelles including smooth endoplasmic reticulum (SER) (Nimchinsky et al., 2002; 

Spacek, 1985), polyribosomes (Steward & Levy, 1982), proteasomes (Bingol & Schuman, 

2006) and vesicular components . Smooth endoplasmic reticulum are membranous 

tubules which form a continuum of the nuclear membrane and involved in the synthesis of 

lipids, metabolism of nutrients, calcium homeostasis and detoxification (Phillips & Voeltz, 

2016). SER are found in mature spines and play an important in calcium regulation and 

homeostasis during synaptic plasticity (Nimchinsky et al., 2002; Spacek & Harris, 1997) 

and synapse stabilization (Czarnecki, Haas, Bas Orth, Deller, & Frotscher, 2005; Vlachos 

et al., 2009). Unique to mature spines is a spine apparatus (SA) which is thought to be a 



8 
 

specialized continuum of the SER present in large synapses and important in protein 

delivery and calcium homeostasis (E. G. Gray, 1959; Segal, Vlachos, & Korkotian, 2010).   

 Polyribosomes are found in almost all spines in the hippocampus(A. Peters & Kaiserman-

Abramof, 1970) and are involved in local protein translation. During synaptic plasticity local 

translation is essential and unsurprisingly polyribosomes are actively recruited into a spine 

upon plasticity induction. (K. M. Harris, Fiala, & Ostroff, 2003; Ostroff, Fiala, Allwardt, & 

Harris, 2002). Finally, other organelles present in spines are proteasomes (Bingol & 

Sheng, 2011), which degrade proteins in situ, vesicular components including endosomes 

and clathrin-coated vesicles involved in protein trafficking, spine remodeling and spine 

growth (J. N. Bourne & Harris, 2008)  
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1.2b Glutamate receptors 

Glutamate is a primary neurotransmitter in brain and in neurons binds to three families of 

ionotropic and metabotropic receptors. Ionotropic receptors are ligand gated ion channels 

and include N-methyl-D-aspartate receptor (NMDAR), α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor (AMPAR) and kianate receptor. AMPAR and NMDAR 

are the primary receptors involved in synaptic plasticity and will be further discussed later.  

Metabotropic glutamate receptors (mGluR) are G-protein coupled receptors (GPCR) and 

are slower acting exerting their effects indirectly due to gene repression or protein 

translation. There are three broad families of mGluR with distinct pharmacological and 

signal transduction properties. Group1 mGluRs (include mGluR1 & 5) are the best studied 

with Gq receptors acting through PLC-PKC pathway and playing a key role in induction of 

some forms of synaptic plasticity. 

NMDAR: are voltage dependent glutamate-gated cation channels permeable to sodium, 

potassium and calcium. NMDAR are high affinity glutamate receptors which at normal 

resting potentials are blocked by the presence of Mg2+ within the channel pore. Under 

special conditions when there is both depolarization within the synapse and glutamate 

within the synaptic cleft the Mg2+ block is released leading to opening of NMDAR receptors. 

This allows the flow of Ca2+ which triggers a series signal transduction pathways important 

in functional plasticity as discussed later. 

AMPAR: are the workhorses of a glutamatergic synapse and mediate the bulk of fast 

excitatory transmission within the CNS. Neurons shuttle AMPAR in and out of synapses 

in an activity dependent manner to modulate the strength of synapses. Changes in 

AMPAR numbers, composition, phosphorylation state, and accessory proteins can all 

regulate AMPAR dynamics and thus modify synaptic strength (Huganir & Nicoll, 2013; 

Malenka & Bear, 2004).  Alterations in synaptic strength play crucial roles in memory and 
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learning (Matsuo, Reijmers, & Mayford, 2008; Rumpel, LeDoux, Zador, & Malinow, 2005; 

T. Takahashi, Svoboda, & Malinow, 2003).Furthermore, dysregulation of AMPAR 

plasticity has been implicated in various neurological conditions especially 

neurodevelopmental disorders (Penzes et al., 2011) and is an active area of biomedical 

research.   

AMPARs are tetrameric, cation-permeable ionotropic glutamate receptors, and are 

expressed throughout the brain (Beneyto & Meador-Woodruff, 2004). AMPAR consist of 

four AMPAR subunits (GluA1–GluA4) are encoded by the genes GRIA1-GRIA4. The four 

subunits are highly homologous (70% homology) with conserved transmembrane and 

extracellular domains but variable c-terminus across the subunits (Shepherd & Huganir, 

2007). These are assembled as dimers-of-dimers to form the hetero-tetrameric receptors 

(Hollmann & Heinemann, 1994; Traynelis et al., 2010), although homo-tetrameric 

receptors have been reported (W. Lu et al., 2009; Wenthold, Petralia, Blahos, & 

Niedzielski, 1996). Binding of glutamate opens the channel pore allowing influx of Na+ ions 

(and K+ efflux) leading to depolarization of the postsynaptic compartment. However, 

depending on sub unit composition and RNA editing, AMPAR can also permit entry of 

Ca2+ which could then trigger Ca2+ dependent signaling pathways which are important in 

synaptic plasticity. Most GluA2 units in adult brains undergo RNA editing whereby 

glutamine is replaced by arginine in the pore-region of GluA2 which prevents Ca2+ influx. 

Thus in the adult brain majority of GluA2 containing AMPAR’s are Ca2+ impermeable with 

lower single channel conductance and longer decay times. GluA2 lacking AMPAR’s are 

calcium permeable. These include GluA1-GluA3 heteromers and GluA1-GluA1 

homomers. However, role of Ca2+ permeable AMPARs in LTP is hotly debated. (Adesnik 

& Nicoll, 2007) 
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AMPAR trafficking: AMPAR exocytosis is still unclear with multiple mechanisms 

suggested such as insertion directly into soma (Adesnik, Nicoll, & England, 2005), 

insertion into dendrites adjacent to spines (Makino & Malinow, 2009; M. A. Patterson, 

Szatmari, & Yasuda, 2010), or directly into spines (Ehlers, Heine, Groc, Lee, & Choquet, 

2007). At present the consensus is that AMPAR receptors are inserted in a three step 

process (Opazo & Choquet, 2011) which is modulated by synaptic activity. The first step 

is insertion of fully functional AMPAR into the extrasynaptic regions on the dendrite. After 

this AMPARs diffuse into the spine and  are then trapped by the PSD through interaction 

with TARP such as stargazin (Opazo & Choquet, 2011) 
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1.2c Synaptic plasticity  

Synaptic plasticity describes number of pre or postsynaptic phenomenon affecting 

synaptic strength. Among the postsynaptic mechanisms described, majority involve the 

insertion or removal of AMPAR to modulate synaptic strength. Among the best described 

mechanisms are Long term potentiation (LTP), long term depression (LTD) and 

homeostatic plasticity.  

Long Term Potentiation 

LTP is an umbrella term to describe phenomenon whereby long lasting experience-

dependent increase in synaptic transmission induced by a variety of electrical, 

pharmacological and behavioral paradigms. LTP was originally described in 1973 by Bliss 

and Lomo (Bliss and Lomo 1973) where they showed that repetitive stimulation of the 

perforant pathway caused potentiation of responses within the dentate gyrus in rabbits. 

This classical LTP was long lasting and stable for months (Bliss and Collingridge 1993) 

and presumably a similar mechanism is at work in humans. A key change in LTP is an 

increase in number of AMPAR at a subset of spines thereby increasing synaptic response 

to neurotransmitter release. Although presynaptic mechanisms (Kullmann, Erdemli et al. 

1996) can be involved in this process, for the purpose of the thesis I will focus on post 

synaptic mechanisms in the following sections. LTP involves coincident depolarization of 

the postsynaptic structure and subsequent activation of NMDAR leading to influx of Ca2+ 

which sets off a cascade of phosphorylation events leading to potentiation of synaptic 

transmission (Nicoll, Kauer et al. 1988, Malenka and Nicoll 1999, Lynch 2004). LTP is an 

attractive model for memory due to several of its properties. LTP is (1) input specific 

whereby LTP does not spread to non-potentiated spines; (2) associative and cooperative 

whereby LTP on one synapse decreases the threshold for the induction of LTP on 
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adjacent synapses and (3) persistent as LTP is stable for prolonged periods of time (Lynch 

2004).  

At the molecular level, calcium influx into the post synaptic compartment binds to calcium 

binding messenger protein calmodulin (Stevens 1983) in a stoichiometry of 1:4 (Chin and 

Means 2000). Calmodulin serves as a calcium sensor (Faas, Raghavachari et al. 2011) 

which then transiently activates (about 1min) Ca2+/calmodulin-dependent protein kinase 

II (CAMKII) by autophosphorylating at T286A (Lee, Escobedo-Lozoya et al. 2009, Lisman, 

Yasuda et al. 2012). CAMKII is a serine threonine kinase which after activation, 

translocates into the spine (Shen and Meyer 1999, Otmakhov, Tao-Cheng et al. 2004) 

and binds to NMDAR subunit NR2B within the PSD. The bound CAMKII activates a 

number of signaling pathways including RAS-Extracellular regulated kinase (ERK) (Zhu, 

Qin et al. 2002, Patterson, Szatmari et al. 2010) and potentially targets small Rho-

GTPases (Patterson and Yasuda 2011). Triggering of these pathways leads to 

phosphorylation of AMPAR subunit GluA1 at multiple sites such as Ser845 by Protein 

kinase A (Banke, Bowie et al. 2000), Ser831 by Protein Kinase C or CAMKII (Roche, 

O'Brien et al. 1996) and Ser818 by PKC (Boehm, Kang et al. 2006). These 

phosphorylation tags both increase single channel conductance (Barria, Muller et al. 1997, 

Kristensen, Jenkins et al. 2011) and AMPAR exocytosis into extrasynaptic membrane. 

Both these mechanisms need CAMKII activation. Phosphorylation at Ser831 is important 

for increased AMPAR conductance by increasing the transition of high conductance states 

by glutamate binding (Kristensen, Jenkins et al. 2011). For synaptic exocytosis, vesicles 

containing AMPAR are rapidly inserted into extrasynaptic plasma membrane (Makino and 

Malinow 2009, Patterson, Szatmari et al. 2010) providing a pool of AMPAR to be then 

inserted into the synapse. AMPAR binding onto the synapse requires AMPAR binding 

protein stargazin (Chen, Chetkovich et al. 2000). Stargazin is a transmembrane AMPAR 

regulatory protein (TARP) which upon phosphorylation (Tomita, Stein et al. 2005) interacts 



14 
 

with PSD95 and AMPAR (Opazo, Labrecque et al. 2010) and thus locks AMPAR to the 

synapse. Locking of AMPAR to the synapse, increases AMPAR content within the spines 

thereby increasing synaptic response to neurotransmitter release. Thus monitoring 

AMPAR content has been used as a means to track synaptic potentiation within spines 

(Makino and Malinow 2011, Padmashri, Reiner et al. 2013, Zhang, Cudmore et al. 2015). 

Long Term Depression 

LTD Is a long-lasting decrease in the synaptic response of neurons to stimulation of their 

afferents following a long patterned stimulus (Collingridge, Peineau, Howland, & Wang, 

2010). LTD was first described in the Purkinje cells of the cerebellum and involves the 

coincident depolarization of parallel fibers and climbing fibers (Ito, Sakurai, & Tongroach, 

1982). In the cerebellum the stimulation of climbing fibers leads to a large rise in 

intracellular calcium within Purkinje cells and activation of postsynaptic group 1 mGluR., 

which triggers a series of mechanisms which finally lead to AMPAR internalization and 

thus LTD.  

However, research within other brain regions have led to identification of multiple routes 

of LTD induction which engage different mechanisms of AMPAR internalization. In the 

hippocampus two well studied models are NMDAR- and mGluR-dependent LTD 

mechanisms. A well-used model of NMDAR LTD involves the activation of 

calcium/calmodulin dependent phosphatase calcineuirn and protein phosphatase 1 (PP1) 

(Lisman, 1989). Calcineurin’s affinity to calcium/calmodulin is very high and would be 

activated even with modest increases in calcium in contrast to CAMKII which requires 

much higher calcium concentrations (Lisman, 1989). Consistent with this, both calcineurin 

(Mulkey, Endo, Shenolikar, & Malenka, 1994) and PP1 (Mulkey, Herron, & Malenka, 1993) 

are known to be important for LTD (Carroll, Beattie, von Zastrow, & Malenka, 2001). 

Activation of phosphatases presumably dephosphorylates and internalizes AMPAR which 
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are then degraded via proteasomal and lysosomal pathways (Li et al., 2010; Luscher & 

Malenka, 2012).  

Unlike NMDAR dependent LTD, mGluR dependent LTD is mechanistically different. 

mGluR LTD requires rapid translation of preexisting mRNA (Huber, Kayser, & Bear, 

2000) and occurs even when dendrites are severed from the cell body. mGluR is also 

usually considered irreversible with loss of AMPAR from the post synaptic compartment 

and may prelude synapse elimination (Bastrikova, Gardner, Reece, Jeromin, & Dudek, 

2008; Snyder et al., 2001). From a signaling standpoint, mGluR LTD in CA1 does not act 

through canonical mGluR Gq pathways. Instead CA1 LTD depends on tyrosine 

dephosphorylation and tyrosine phosphatase STEP (striatal-enriched tyrosine 

phosphatase) which dephosphorylates the AMPAR subunit sGluA2 (Cho et al., 2008; 

Moult et al., 2006; Moult, Schnabel, Kilpatrick, Bashir, & Collingridge, 2002; Zhang et al., 

2008) acting via TNFα signaling pathway.  Although general outlines of the process are 

being developed, what is clear is the complexity of the signaling cascades involved and 

the multiple mechanisms of LTD. 
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1.2d Structural plasticity of synapses 

Plasticity in relation to the brain refers to either functional or structural changes that occur 

within the neuronal circuits adjusting to changes in external or internal environments 

(Luscher, Nicoll, Malenka, & Muller, 2000). So far in this introduction the focus has been 

on functional changes associated with stimuli. In more recent times, the role and 

emergence of structural changes has been extensively studied and appreciated (A. 

Holtmaat & Svoboda, 2009). Structural changes have been characterized during 

development, experience and pathological conditions (A. Holtmaat & Svoboda, 2009; 

Penzes et al., 2011). Spines are a heterogeneous population of structures with diverse 

shapes and behavior. Extensive electron microscopy studies have categorized dendritic 

spines based on the relative proportions of spine head and neck and into four main 

categories:  mushroom, thin, stubby and filapodial spines (K.M. Harris, Jensen, & Tsao, 

1992; A. Peters & Kaiserman-Abramhof, 1970). Filapodial, stubby and thin spines 

considered immature forms of spines as they have shorter lifespans, are more dynamic 

and more motile. With stimuli these spines are thought to mature into a mushroom shaped 

spine which are more stable. This has led some investigators to call thin spines as 

‘learning spines’ and mushroom spines as “memory spines” (J. Bourne & Harris, 2007; 

Kasai et al., 2003). These morphological features of spines are shaped both during 

development and experience and will be discussed subsequently. 

Structural dynamics during development: The morphology of dendritic spines is highly 

plastic in shape, numbers and fate which evolves dramatically during the life time of an 

organism (Penzes et al., 2011). Early in development in humans is a period of 

synaptogenesis where higher densities of spines are observed which then gradually 

decreases over time. Transgenic mice models expressing fluorescent protein in subsets 

of neurons have allowed investigators to track spines in vivo over long periods of time(G. 
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Feng et al., 2000). Similar to humans, mice also show a development evolution in spines 

dynamics. At birth dendrites are sparsely studded with spines followed by a period of 

synaptogenesis lasting between two to four weeks after birth with high density of immature 

looking spines having higher rates of formation and elimination (Coiro et al., 2015; Cruz-

Martin, Crespo, & Portera-Cailliau, 2010; A. J. Holtmaat et al., 2005). Transition from 

adolescence to adulthood is a period of synaptic pruning with reduced spine formation, 

increased spine elimination and increase in spine stability. For example, at P16 in apical 

tufts of layer 5 neurons in the somatosensory cortex at P16 overall spine stability was 35% 

whereas at 6 months’ stability was 73% over 8 days (A. J. Holtmaat et al., 2005). A point 

to note is that although spine properties are dependent of brain region and cell type studied 

(Cruz-Martin et al., 2010; A. J. Holtmaat et al., 2005; Trachtenberg et al., 2002; Zuo, Lin, 

Chang, & Gan, 2005) in general all brain region show a similar trajectory in spine behavior. 

Experience dependent synaptic plasticity: Modulation of synapses structurally and 

functionally is believed to be the basis of learning and memory (Hayashi-Takagi et al., 

2015). Over the years a number of studies have observed structural changes in animals 

with various behavioral protocols in various brain regions. In the motor cortex, which is the 

focus of this study, various motor training protocols have shown to affect structural 

plasticity of dendritic spines and across different populations of neurons. Rats trained on 

an acrobatic motor task when Golgi stained to visualize spines were shown to have 

increased synaptic density in layer 2/3 neurons in the motor cortex compared to untrained 

mice (Kleim, Lussnig, Schwarz, Comery, & Greenough, 1996). Later on it was 

demonstrated that rats trained on a single forelimb reaching task had a transient increase 

in dendritic spine size in the motor cortex suggesting synaptic strengthening 

accompanying learning (Harms, Rioult-Pedotti, Carter, & Dunaevsky, 2008). Recent in 

vivo studies have confirmed these earlier findings. The first report of such plasticity was in 
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2009, where Xu and others observed rapid (within 2 hours) formation of spines in layer 1 

apical dendrites of  layer 5 neurons in the motor cortex (Xu et al., 2009b). The same group 

later showed that these spines were not randomly occurring on the dendrite but formed in 

clusters (M. Fu & Zuo, 2011). Similar findings were observed using an accelerating rotorod 

assay with dendrites in both layer 2/3 and layer 5 showing increases in spines following 

the training (Ma et al., 2016; G. Yang, Pan, & Gan, 2009). Interestingly in these studies 

the newly formed spines were preferentially stabilized with elimination of preexisting 

structures thus maintaining normal dendritic density. These experiments illustrate the 

structural remodeling of dendrites during learning. Similar results were observed in mice 

trained in a lever press task (S. X. Chen, Kim, Peters, & Komiyama, 2015; A. J. Peters, 

Chen, & Komiyama, 2014)  with increased spine formation in layer 2/3 neurons.  

Apart from the motor cortex other brain regions have also been shown to undergo 

structural plasticity. These include the somatosensory cortex with studies performing 

sensory deprivation by whisker trimming or sensory task discrimination (A. Holtmaat, 

Wilbrecht, Knott, Welker, & Svoboda, 2006; Kuhlman, O'Connor, Fox, & Svoboda, 2014; 

Wilbrecht, Holtmaat, Wright, Fox, & Svoboda, 2010) visual cortex with binocular or 

monocular deprivation (Oray, Majewska, & Sur, 2004), prefrontal cortex with fear 

conditioning (Lai, Franke, & Gan, 2012) and auditory cortex during memory recall 

(Moczulska et al., 2013). These results have also been observed across species in zebra 

finch further strengthening the notion of a broadly conserved mechanism of learning and 

memory (Roberts, Tschida, Klein, & Mooney, 2010). 
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1.2e Relationship between structural and functional plasticity  

Structure and organization of a dendritic spine is critical for synaptic function and in 

principle is the foundations of memory, learning and cognitive process. However, the 

importance of structure vs. function and their cross relationship with each other is not 

always clear. Over the years, a number of studies have tried to shed light on the impact 

of functional or structural plasticity on each other either in in vitro preparations or in 

behaving animals and these will be summarized here. 

Functional plasticity in spine formation and elimination: Spine geometry and functional 

strength of a spine are positively correlated with large mushroom spines having large 

AMPAR content and immature spines having less to none (K.M. Harris & Stevens, 1989; 

Matsuzaki et al., 2001). These structure function correlations are preserved even during 

functional plasticity such as LTP where induction of LTP upon a spine induces almost 

instantaneous increase in spine size followed by a slightly delayed increase in AMPAR 

content (Buchs & Muller, 1996; Gustafsson & Wigstrom, 1990; Kopec, Li, Wei, Boehm, & 

Malinow, 2006; Matsuzaki, Honkura, Ellis-Davies, & Kasai, 2004). Along with 

morphological changes LTP induction has a lasting increase in synaptogenesis and basal 

turnover within dendrites (De Roo, Klauser, & Muller, 2008; Engert & Bonhoeffer, 1999b; 

Nagerl, Eberhorn, Cambridge, & Bonhoeffer, 2004) with elimination of inactive synapses 

and stabilization of active synapses (De Roo et al., 2008; Hill & Zito, 2013; Y. Yang, Wang, 

Frerking, & Zhou, 2008). In contrast to LTP, both NMDAR and mGluR dependent LTD are 

associated with spine retraction and elimination. These changes involve endocytosis of 

synaptic machinery through complex cellular mechanisms 

Synaptic clustering: Apart from functional perturbations within a synapse affecting its 

behavior, there is a growing appreciation that that local micro-circuitry influences synaptic 

behavior. Given the complexity of a neuron a variety of factors ranging from geometrical 
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and biophysical morphology of a dendrite, to diffusible extracellular signaling molecules 

and local plasticity mechanisms have all been implicated in modulation of synapse 

behavior. To account for these complex mechanisms involved in memory storage, a 

clustered memory storage hypothesis has been proposed (Govindarajan, Kelleher, & 

Tonegawa, 2006). According to the model, groups of neighboring spines within a local 

cluster on a neuron encode related memories (Govindarajan et al., 2006). This model is 

in sharp contrast to previous distributed  memory storage hypothesis (R. Yuste & Urban, 

2004) where synapse relevant to a memory are distributed randomly across the dendrites 

of a neuron. The clustered storage model offers a number of functional, biochemical and 

computational advantages to neuronal function and synaptic transmission (Govindarajan 

et al., 2006; Kastellakis, Cai, Mednick, Silva, & Poirazi, 2015). 

Functionally, a clustered arrangement would make it easier to reactivate memory engrams 

and allow the neuron to differentiate multiple patterns of activity compared to a distributed 

arrangement. This is because clustered spines depolarized by similar inputs would make 

it easier to achieve an action potential (AP) especially since depolarization of a single 

spine is not necessarily sufficient to trigger one (Govindarajan et al., 2006). This would 

also mean lesser synapses are needed for storage of a memory. Additionally, since the 

summation of relevant inputs in a clustered system is supralinear, this allows multiple 

clusters of spines to store separate units of memory and thus allowing a single neuron to 

recognize a larger repertoire of activity. Finally, since later stages off long term potentiation 

requires protein synthesis and translocation of synaptic material from the nucleus to the 

potentiated spines, transport of synaptic material would be biochemically more efficient in 

a clustered system as the cargo targets are close by (Redondo & Morris, 2011).   

There is accumulating evidence for a clustered model of memory storage. Computational 

modelling of patterns of synaptic activity in biophysically detailed models show that 
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clustered synapses lead to supralinear responses as proposed (Poirazi, Brannon, & Mel, 

2003a, 2003b). There is also experimental evidence for the model where appropriately 

timed and patterned activity leads to supralinear responses (Losonczy & Magee, 2006; 

Polsky, Mel, & Schiller, 2004).  

Clustering at an anatomical level has been shown across multiple paradigms and model 

systems. The first evidence of clustering came from studies in barn owl where owls 

exposed to abnormal vision through a prismatic lens developed clustered synapses in the 

adaptive zone developed in response to the behavior (McBride, Rodriguez-Contreras, 

Trinh, Bailey, & Debello, 2008). Similarly, both in primates and rodents there is evidence 

for anatomical clusters. Yadav et. al. observed that spines within apical dendrites in the 

primate prefrontal cortical neurons were more likely to occur together than by chance 

(Yadav et al., 2012). In mice trained on a forelimb reaching task, Fu et. al. identified that 

newly formed spines developing in response to the behavior were more likely to occur 

close to each other (< 5 µm) and close to neighboring preexisting spine than control 

untrained conditions(M. Fu, Yu, Lu, & Zuo, 2012). Makino and Malinow, showed that with 

whisker stimulation, coordinated translocation of AMPAR subunit GluA1 occurred in 

neighboring spines within the dendritic tree in the somatosensory cortex. In sensory 

deprived (whisker trimmed mice) this clustering was not observed (Makino & Malinow, 

2011). Clustering has also been observed during development where neurons in the CA1-

CA3 hippocampus sharing similar times of neurogenesis were 5 times more likely to 

connect with each other than predicted by random clustering (Druckmann et al., 2014)).  

Functional clustering of adjacent spines that are active together has also been reported. 

In hippocampal organotypic slices spines located close together had more correlated 

activity as measured by changes in [Ca2+] indicating that synapses tended to activate in 

clusters (Kleindienst, Winnubst, Roth-Alpermann, Bonhoeffer, & Lohmann, 2011). In the 

barrel cortex of mice, functional mapping of active synapses found that active spines 
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formed functional clusters which were synchronized in activity and locally confined. These 

clusters consisted of 2-12 co-active spines within 10 µm of each other and tended to be 

innervated by locally convergent axons (N. Takahashi et al., 2012). 

Mechanistically, the formation of these clusters could be a product of LTP like 

mechanisms. LTP induction triggers a cascade of signaling pathways which promote co-

operatively of synaptic potentiation. One such pathway is the MAPK (mitogen-activated 

protein kinase) pathway which is known to be active several minutes after LTP (Wu, 

Deisseroth, & Tsien, 2001). Ras GTPase (Harvey, Yasuda, Zhong, & Svoboda, 2008) and 

Rho GTPase (Murakoshi, Wang, & Yasuda, 2011), members of this signaling cascade, 

has been shown diffuse within 10 micron stretches of a stimulated spine and invade 

neighboring spines and may be the molecular basis for reduced thresholds in LTP 

induction and selective stabilization of nearby synapses (De Roo et al., 2008; 

McNaughton, 2003; M. Patterson & Yasuda, 2011; Roggenhofer, Fidzinski, Shor, & Behr, 

2013).  
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1.3 Fragile X Syndrome 

1.3a Clinical classification and diagnosis 

Fragile X syndrome (FXS) also known as Martin-Bell syndrome(J. P. Martin & Bell, 1943), 

is an X-linked condition caused by mutation of the fmr1 gene and is the leading cause of 

inherited intellectual disability (ID) (Penagarikano, Mulle, & Warren, 2007; Warren & 

Nelson, 1994). FXS affects 1 in 4000 male children and 1 in 8000 females. The fmr1 gene 

is located on the X chromosomes at the loci Xq27.3 (Hirst et al., 1993)and the gene 

product formed is Fragile X mental retardation protein (FMRP). FMR1 gene is 

characterized by a trinucleotide CGG repeat sequence in the 5’ untranslated region (Y. H. 

Fu et al., 1991; Hirst et al., 1993). Under normal conditions the gene has 5-44 nucleotide 

(Y. H. Fu et al., 1991) repeats which under diseased conditions expands to more than 

1000 repeats. According to the American College of Medical Genomics and Genomics 

classification, 45-54 repeats is a borderline, 54-200 is a permutation and greater 200 is a 

full mutation of the FMR1 gene (American.College.of.Medical.Genetics, 1994; Sherman, 

Pletcher, & Driscoll, 2005). Individuals with a borderline case exhibit no clinical symptoms 

and are not considered carriers for the disease. However, there is a small chance that the 

FMR1 gene maybe at unstable and may affect future progeny. Premutations affects an 

individual based on their sex. Premutation gene alleles are unstable and there is a 

possibility of the mother transmitting a full blown mutation which is dependent on number 

of repeats(Sherman et al., 2005).  About 25% of women with premutations also suffer from 

Fragile X associated primary ovarian insufficiency characterized by ovarian dysfunction, 

irregular periods, early menopause, hot flushes and infertility(Sherman et al., 2005). 

Women are also at risk from depression (Lachiewicz et al., 2010; Rodriguez-Revenga, 

Madrigal, Alegret, Santos, & Mila, 2008) with reports of general anxiety and shyness. In a 

recent study, 70% of patients (both sexes) with a permutation met at least one criteria for 
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anxiety (Cordeiro, Abucayan, Hagerman, Tassone, & Hessl, 2015). Male permutation 

individuals are at further risk of FragileX tremors/ataxia syndrome (FXTAS) which is a 

neurodegenerative disorder associated with ataxia, tremors, numbness, loss of intellectual 

ability and Parkinsonism. Males with premutations act as carriers and pass on the 

mutation to their daughters(R. Hagerman & Hagerman, 2013).The full blown mutation is 

when there are anywhere between 200-1000 repeats and causes silencing of the gene 

product FMRP. The cause of the gene silencing is due to complex epigenetic 

mechanisms. In a normal allele the fmr1 promoter undergoes some methylation. However, 

in a FXS allele the expanded CGG repeats leads to hypermethylation upstream of the 

CGG repeats by a still unknown mechanism thus causing silencing to the gene product(R. 

Hagerman & Hagerman, 2013). Deacetylation and demethylation of histones at the fmr1 

gene loci have also been reported which prevent binding of transcription factors leading 

to gene silencing (Tabolacci et al., 2008). Modern southern blot and PCR screening test 

are highly accurate and provide accurate diagnosis. Risk factors include familial history of 

FXS (parents are diagnosed carriers) or family history of autism and intellectual disability. 

However, for individuals with no risk factors, diagnosis is done symptomatically. Early 

diagnosis is made on children at about 3 years of age with behavioral deficits such as 

delayed motor milestones, hand flapping, poor eye contact, irritability, lack of muscle tone 

(hypotonia) and social and language disorders. These usually leads to a diagnosis of 

autism spectrum disorder (ASD) before the diagnosis of FXS. About 30% of FXS diagnosis 

meet the criteria for ASD(R. Hagerman & Hagerman, 2013). Usually, after a diagnosis of 

FXS, a subsequent testing of family members is performed to identify other potential 

affected relatives. Physically infants with FXS are not born with any characteristic physical 

features. However, after puberty children develop features typical to FXS such as narrow 

face, large head, large ears, hyper flexible joints, prominent forehead and macroorchidism 

(enlarged testes)(R. Hagerman & Hagerman, 2013; Sherman et al., 2005).  
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Adult males with complete methylation have an IQ between 40-85 which is considered 

moderate to mild mental retardation(Gross, Berry-Kravis, & Bassell, 2012; R. J. Hagerman 

et al., 2009). Interestingly, IQ in females with FXS is much less affected with borderline 

normal IQ(Gross et al., 2012). Patients also exhibit learning disabilities including language 

processing problems such as speech impairments, inability to understand nonverbal ques, 

reduced working and short-term memory, attention deficits and impaired mathematical 

and visuospatial ability(R. J. Hagerman et al., 2009). Behaviorally patients show sexual 

dysmorphism in symptoms with male FXS patients being hyperactive, impulsive, moody, 

attention deficits and with general phobias making them anxious. Patients also exhibit 

autistic behavior including repetitive behavior, shyness, avoiding eye contact and having 

perseverative choice of words, sentences and topics (R. Hagerman, Lauterborn, Au, & 

Berry-Kravis, 2012). Interestingly, FXS individuals although socially curious but are 

restricted by social anxiety. Females generally have only a subset of these symptoms 

including anxiety, social awkwardness, shyness and selective mutism. Patients also are 

bothered by bright lights and loud noises which may cause them to display inappropriate 

behavior and are susceptible to audiogenic seizures.  
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1.3b Structural human brain studies  

Postmortem analysis of brains from human patients with FXS show no gross abnormalities 

in weight, morphology or number of neurons (Hinton, Brown, Wisniewski, & Rudelli, 1991; 

S. A. Irwin et al., 2001; Wisniewski et al., 1985). However, more recent functional and 

structural magnetic resonance imaging have revealed abnormalities in specific brain 

structures(Luo, Wu, & Duan, 2016).  A consistent finding in these studies is a significantly 

enlarged caudate nuclei (CN) which is part of the basal ganglia and plays a key role in 

frontal subcortical circuits(Grahn, Parkinson, & Owen, 2008; Villablanca, 2010). CN along 

with the putamen form the input nuclei of the basal ganglia and is innervated from a range 

of  frontal subcortical circuits and are important for maintaining and shifting attention, 

executive function, motor programming and oculomotor functions (Grahn et al., 2008), all 

of which are disrupted in FXS (R. J. Hagerman et al., 2009). Another consistent finding in 

both FXS patients of both sexes have smaller posterior cerebellar vermis, a structure that 

is important for processing sensory stimuli and performing sensorimotor integration.(Hoeft 

et al., 2010; S. H. Mostofsky et al., 1998; D. X. Peng et al., 2014). Moreover, size of the 

posterior vermis and caudate nuclei correlate with FMR1 expression (S.H. Mostofsky et 

al., 1998), suggesting that FMRP may cause the observed changes. Studies reporting 

reduced volumes of the insular nuclei, an important sensory integration region associated 

with anxiety may also be linked to prominent hyperarousal and gaze aversion in FXS 

patients (Cohen, Nichols, Brignone, Hall, & Reiss, 2011). In children with FXS, the 

hippocampus was found to be transiently enlarged with size recovering by adulthood 

(Kates, Abrams, Kaufmann, Breiter, & Reiss, 1997; Reiss, Lee, & Freund, 1994). Children 

with FXS have demonstrated increased ventricular cerebral spinal fluid volumes (Kaplan 

et al., 1997) and reductions in the size of the amygdala (Eliez, Blasey, Freund, Hastie, & 

Reiss, 2001).  However, what is unclear with the human studies is whether the anatomical 
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changes are causative or the result of the neurological deficits seen in FXS 

patients(O'Donnell & Warren, 2002). Hence, the development of animal models for FXS 

are essential in delineating the cause-effect mechanisms in FXS. The earliest reports of 

synaptic deficits in FXS observed long, thin dendritic spines with prominent heads in the 

parieto-occipital cortex from one individual (Rudelli et al., 1985). Subsequent analysis 

reported similar results in layer 2/3 and layer 5 neurons in three other individuals with 

FXS(Hinton et al., 1991). A quantitative comparison with age matched controls from 

human postmortem studies identified increased density in layer 5 pyramidal neurons in 

visual and temporal cortex(S. A. Irwin et al., 2001). The study also confirmed the presence 

of long, thin spines as the mean length and proportion of spines with immature morphology 

was higher in FXS samples. Taken together this suggests that patients with FXS have 

deficits in dendritic spine morphology which could be causative cause of the behavioral 

deficits reported in these patients. 
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1.3c Molecular basis of Fragile X syndrome 

Fragile X mental retardation protein (FMRP) FMRP was first identified and cloned in 

1991(Verkerk et al., 1991). Over the last 25 years the role of FMRP in synaptic plasticity 

and function has been gradually uncovered. FMRP is localized at postsynaptic sites 

within dendritic spines and regulated synaptic plasticity and strength in a complex 

manner (Darnell & Klann, 2013). FMRP represses translation of select targeted mRNA 

which then leads to increased synthesis of other key synaptic proteins. A number of 

target protein involved in synaptic plasticity have been uncovered. However, the 

molecular mechanism that FMRP and signaling pathways involved in regulating FMRP 

function are still to be discovered.  

FMRP expression in human’s tissue starts very during development. The first expression 

of FMRP was observed as early as 3 weeks with broad expression in many fetal tissue 

including brain, liver, kidneys and lungs (Agulhon et al., 1999; Tamanini et al., 1997). 

However, later in adulthood expression is more restricted with high expression across 

various brain regions with small expression in other tissue (Agulhon et al., 1999; Tamanini 

et al., 1997). Early in development expression in neuronal cells is mainly cytoplasmic 

whereas in adulthood expression is much broader with strong expression in cytoplasm 

and within dendrites(Agulhon et al., 1999). 

Similar to humans, in mice which are used as an animal model for FXS research, FMRP 

expression starts early in development with expression seen as early as embryonic age 

10 although no expression was observed before this age(Hinds et al., 1993). Expression 

is hetrogenous with high expression in brain and testis but low expression in skeletal 

muscles, pancreas and liver. Interestingly, expression profiles in general wane during 

development(Hinds et al., 1993). At adulthood expression is high within the brain, testis, 
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spleen, ovaries and eye but not in heart, lungs, liver, pancreas and muscles(Hinds et al., 

1993). 

Multiple splice isoforms of FMRP exist in humans and mice and the isoforms may have 

difference in function (C. T. Ashley et al., 1993). The main isoform of FMRP is a 71 kDa 

protein(Santoro, Bray, & Warren, 2012) which has a number of functional domains. These 

include three RNA-binding motifs, a nuclear export signal (NES) and a nuclear localization 

signal (NLS). The three RNA binding motifs include two K homology domains, an arginine 

and glycine (RGG) box  and two tandem Agenet domain at its N terminus (Santoro et al., 

2012). The KH domain is critically important for FMRP function as clinically documented 

by a patient with a denovo single nucleotide 1304N  mutation in within the KH motif 

expressed severe symptoms of FMRP(De Boulle et al., 1993). Agenet domains are known 

to interact with trimethylated histones (Adams-Cioaba et al., 2010)whereas methylation of 

arginines in the RGG box (Blackwell, Zhang, & Ceman, 2010) has been suggested to 

regulate FMRP’s affinity for certain RNA’s. Although FMRP is cytoplasmic it can shuttle in 

and out of the nucleus as expected by presence of NLS and NES domains (Y. Feng et al., 

1997). It is believed that FMRP binds to mRNA targets which both facilitate FMRP export 

and FMRP serves as a mRNA chaperone (Eberhart, Malter, Feng, & Warren, 1996; M. 

Kim, Bellini, & Ceman, 2009). 

More recently, a novel role of FMRP in DNA stability during replication was identified. 

Alpatov et.al identified that cells lacking FMRP when exposed to treatment which induced 

single strand breaks, fail to initiate DNA damage repair mechanisms (Alpatov et al., 2014). 

This was due to a failure in phosphorylation of γH2A.X and recruitment of BRCA1 to the 

damaged DNA in a chromatin dependent manner most likely due to binding to methylated 

histone H3 (Alpatov et al., 2014). These findings are in line with other reports of a 

protective role of FMRP to cellular damage(Jeon et al., 2012; Jeon et al., 2011) and these 
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protective mechanisms are thought to be independent of mRNA translation(Santoro et al., 

2012). 

FMRP was initially characterized as a polysome-associated protein (Eberhart et al., 1996; 

Khandjian, Corbin, Woerly, & Rousseau, 1996) and is a selective RNA-binding protein 

binding  to about 4% of the mRNA in the mammalian brain (Ashley, Wilkinson, Reines, & 

Warren, 1993). Screening studies for putative FMPR mRNA targets have identified 

anywhere between 400 to 842 targets (Dolzhanskaya, Sung, Conti, Currie, & Denman, 

2003; Miyashiro et al., 2003; Zou et al., 2008). A more recent screening using a High-

throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITs-CLIP) 

approach identified 842 targets of which 32% were PSD associated proteins, 34% were 

proteins in the NMDAR proteome and 62% of the metabotropic glutamate receptor 

proteome. A substantial number of targets were also presynaptic proteins. This suggests 

a broad spectrum of synaptic and synaptic associated protein regulated by FMRP. An 

ingenuity analysis on FMRP targets identified by the study linked FMRP to a number of 

synaptic signaling pathways involving: synaptic long term potentiation, glutamate receptor 

signaling, neuropathic pain signaling, GABA receptor signaling, synaptic LTD, and CREB 

signaling.(Darnell et al., 2011). Interestingly, the study also identified a number of autism 

and intellectual disability related protein being regulated by FMPR suggesting conserved 

mechanism across wide spectrum of neurodevelopmental disorders (Darnell et al., 2011).  
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1.3d Mouse models of Fragile X syndrome 

 Since the first identification of the fmr1 gene in 1991 several attempts have been made 

to generate mouse models for the fmr1 expansion mutation since humans and mice share  

95% to 97% homology between nucleotide and amino acid sequence identity (C. T. 

Ashley, Jr. et al., 1993). Apart from sequence homology, both timing and tissue specificity 

of FMRP expression is similar between mice and humans (Hinds et al., 1993). However, 

no naturally occurring repeat expansion in the 5’ UTR in mice has ever been observed.  

Two main approaches in design of the model has been to a) knock out of the fmr1 gene 

b) recapitulate the expanded repeat sequence. 

The first attempts at generating a FXS mouse was to knock out the fmr1 gene using a 

targeted deletion of exon 5 in the mouse fmr1 gene(Consortium, 1994). This mouse 

model, the fmr1 KO (KO) mouse, has been extensively studied over the years (Contractor 

et al., 2015; C. X. He & Portera-Cailliau, 2013) and is the model used in this thesis. The 

mouse does recapitulate behavioral, physiological and cellular abnormalities seen in 

humans and will be reviewed in the next section.  

More recently to recapitulate the expanded repeat sequences two separate mice line have 

been generated. The first of the mice lines expressed an expanded human 98 CGG repeat 

sequence replacing the endogenous 8 CGG repeat mouse sequence in the fmr1 promoter 

(Bontekoe et al., 2001). This mouse showed only moderate instability of the gene both by 

female and male transmission with both expansion and contraction of the fmr1 gene 

(Bontekoe et al., 2001). These transgenic mice have been bred over multiple generations 

to express over 300 repeats within the fmr1 loci.  Although this length is within the range 

of full human mutations, no abnormal methylation was seen. However, these mice do 

show increased fmr1 mRNA, decreased FMRP protein and motor and spatial deficits 

(Berman & Willemsen, 2009; Bontekoe et al., 2001). 
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A more recent line generated at National Institute of Health (NIH) using a different cloning 

strategy as the above mouse had an expanded 118 CGG repeats (Entezam, Biacsi et al. 

2007,Hoffman, Le et al. 2012). The mouse retains the translational TAA stop codon just 

upstream of the CGG118 repeat that is present in the endogenous murine gene but not 

the human gene. This mouse also shows elevated fmr1 mRNA levels, decreased FMRP 

levels, moderate intergenerational expansions and no methylation (even when repeat 

numbers were >300) (Entezam et al., 2007).  

Surprisingly, neither model reliably shows large expansions in the CGG repeat tract seen 

with maternal transmission in FXS and neither has methylation or silencing of fmr1 gene. 

More research is ongoing in characterizing these expanded repeat models of FXS and 

may provide new avenues in FXS research (Berman et al., 2014). 

 

Behavioral deficits in the fmr1 KO mice  As mentioned earlier the most widely studied 

animal model in FXS research is the fmr1 KO (KO) mouse where the gene is knocked out 

by deletion of exon 1(Consortium, 1994) . Over the years a number of behavioral deficits 

have been reported in the KO mice from hyperactivity and anxiety behavior, social 

interaction deficits, sensory perception, motor deficits and seizures (Santos, 

Kanellopoulos, & Bagni, 2014). 

Individuals with FXS are hyperaroused and anxious (Berry-Kravis 2014). A numbers of 

studies have tested for hyperactivity and anxiety in the KO and have reported mixed 

results.  Mice tested in an open field test had increased hyperactivity (Olmos-Serrano, 

Corbin, & Burns, 2011; Peier et al., 2000; Restivo et al., 2005) and increased anxiety 

(Restivo et al., 2005). Further support for hyper anxiety in the KO was in a mirrored 

chamber test where KO mice had increased anxiety to their own reflection(Spencer, 

Alekseyenko, Serysheva, Yuva-Paylor, & Paylor, 2005). However, in contrast to this, KO 

mice tested on a two chambered box reported lower anxiety behaviors (Peier et al., 2000; 
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Veeraragavan et al., 2012). Similarly, in an elevated plus maze, the KO mouse was seen 

to be less anxious with less time spent in the open arm (Yuskaitis et al., 2010). These 

contradicting results may partly be due to age and strain of mice used and may also 

inherently reflect the difficulty in quantifying anxiety in mice due to confounding variables 

during behavior. 

Social interaction in the FXS mouse was tested using a classical three chambered 

apparatus where in phase 1 the test mouse is given a choice between an empty box and 

a novel mouse. In the second phase the empty box is replaced by a new mouse and the 

test mouse is allowed to interact with either the stranger or now familiar mouse.  The 

numbers of approaches and the time spent in proximity with each is scored during both 

phases (Moy et al., 2004). The KO mice exhibited no difference in social preference 

(phase 1) but did score low in novel social discrimination (Bhattacharya et al., 2012; Mines, 

Yuskaitis, King, Beurel, & Jope, 2010). Similarly, the KO mouse spent less time with a 

novel female mouse (Mineur, Huynh, & Crusio, 2006) as well as impaired social 

dominance with a novel male mouse (Spencer et al., 2005). These results could either be 

a consequence of increased anxiety or lack of novelty seeking (Bhattacharya et al., 2012; 

Busquets-Garcia et al., 2013; Ventura, Pascucci, Catania, Musumeci, & Puglisi-Allegra, 

2004). 

Since problems in communication and speech are symptomatic of FXS (Bagni, Tassone, 

Neri, & Hagerman, 2012; R. Hagerman et al., 2012) KO mice tested for patterns of 

ultrasonic vocalization (USV) to stimuli had significantly altered vocalization patterns 

(Santos et al., 2014). After maternal separation, the types and duration of USV in 8 day 

old pups were different from controls(Roy, Watkins, & Heck, 2012). A similar 

communicational deficit was observed when male KO mice were paired with females with 

reduced USV’s per second in response to the female (Rotschafer, Trujillo, Dansie, Ethell, 

& Razak, 2012). 
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Learning deficits Studies of spatial learning using a Morris water maze task, wherein a 

mouse is placed in a darkened pool and has to remember to find its way to a hidden 

platform, the KO mouse performed as well as the controls. Memory retrieval and 

consolidation were also not affected as the time spent in the quadrant with the platform 

was similar (Bakker & Oostra, 2003; Kooy et al., 1996; Paradee et al., 1999). However, 

when the KO mice were tested on the Barnes maze where the mouse has to learn to find 

an escape hole given environmental cues to find the hole, the KO mice displayed 

significant deficits in retrieval and memory consolidation compared to controls (Yan, 

Rammal, Tranfaglia, & Bauchwitz, 2005). Similarly, in a radial arm maze, the KO 

performed worse indicating that deletion of FMRP affected spatial and memory recall (Guo 

et al., 2012). 

Studies of associative learning in the fmr1 KO mouse have also produced mixed results. 

In a passive avoidance task wherein the mouse has to avoid a location where they 

received a noxious stimulus, the KO performed normally (Baker et al., 2010; Dolen et al., 

2007). However, when tested for a associative learning in a five-choice serial reaction time 

task the KO had a deficit in performance (Krueger, Osterweil, Chen, Tye, & Bear, 2011). 

Additionally, the KO had deficits in freezing behavior during cued and contextual fear 

learning (Guo et al., 2012; Olmos-Serrano et al., 2011; Paradee et al., 1999). 

To test for sensory perception, the acoustic startle task which measures a mouse’s 

sensory processing ability, reported mixed results with some reports showing a deficit 

(Baker et al., 2010; Frankland et al., 2004; Olmos-Serrano et al., 2011; Veeraragavan et 

al., 2012) and others reporting no difference (Peier et al., 2000; Yan, Asafo-Adjei, Arnold, 

Brown, & Bauchwitz, 2004). However, the KO mouse did show a consistent propensity to 

audiogenic seizures reminiscent of humans FXS patients (Baker et al., 2010; Peier et al., 

2000; Veeraragavan et al., 2012; Yan et al., 2004) 
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Patients with FXS have both delays in motor development and deficits in fine motor 

movement (Sabaratnam, Murthy, Wijeratne, Buckingham, & Payne, 2003; Zingerevich et 

al., 2009). The KO mice did not show any gross defects in motor function in a rotorod task 

(Wang et al., 2008). However, in an associative motor learning task on an Erasmus ladder 

the KO mouse showed deficits in motor learning (Vinueza Veloz et al., 2012).However, 

whether any deficit in motor learning during development is still unknown. 

 

Dendritic spine deficit in the fmr1 KO mice Early studies in the fmr1 KO using Golgi staining 

identified increased density in layer 5 pyramidal neurons of the visual and somatosensory 

cortex in adult mice (Comery et al., 1997; Galvez & Greenough, 2005; McKinney, 

Grossman, Elisseou, & Greenough, 2005). Similar results were reported in layer 2/3 

pyramidal neurons in adult mice (Dolen et al., 2007; Hayashi et al., 2007; Liu, Chuang, & 

Smith, 2011). Golgi stained sections also showed a developmental increase in spine 

density from the somatosensory cortex across 1 to 8 weeks of age (Su et al., 2011). Apart 

from increased density, human FXS studies also indicate that dendritic spines in FXS are 

immature looking with spines being longer and having narrower spine heads(S. A. Irwin 

et al., 2001). Studies in the KO have had brain specific alterations with increased length 

of spines in the prefrontal cortex (Liu et al., 2011; Meredith, Holmgren, Weidum, 

Burnashev, & Mansvelder, 2007) but not in the temporal cortex(Hayashi et al., 2007). 

Majority of live imaging studies of spines either in vivo with two-photon light scanning 

microscopy (2PLSM) or in vitro have failed to pick up differences in density of spines 

(Cruz-Martin et al., 2010; Meredith et al., 2007; Padmashri, Reiner, Suresh, Spartz, & 

Dunaevsky, 2013; Pan, Aldridge, Greenough, & Gan, 2010) although increased density 

was seen in older mice (Jennifer L. Hodges, 2016).Additionally, length of spines was also 

not different in the KO mice in number of in vivo studies (Cruz-Martin et al., 2010; Jennifer 

L. Hodges, 2016; Pan et al., 2010). However, almost all in vivo studies have picked up 
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increased basal turnover in spines across multiple layers. Cruz-Martin and group found a 

developmental delay in turnover rates in layer 2/3 neurons during the first two postnatal 

days in the somatosensory cortex (Cruz-Martin et al., 2010). This increased turnover was 

also observed over days to weeks in apical dendrites of layer 5 neurons in the 

somatosensory cortex in older mice (Pan et al., 2010). Interestingly, the same group 

observed that the spines in the KO were insensitive to sensory modulations by whisker 

trimming. Unlike normal WT controls where whisker trimming increased spine turnover 

rates, the KO mice were insensitive to modulations and did not show the corresponding 

increasing turnover. This suggests that deletion of FMRP although increases synaptic 

dynamics it adversely makes synapses insensitive to modulation (Pan et al., 2010). This 

is with consistent another study wherein synapses in the KO needed more stimulation to 

show similar levels of plasticity as controls and maybe a general underlying theme in FXS 

research (Meredith et al., 2007). 
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1.3e Synaptic plasticity in the fmr1 KO mouse 

LTP in the fmr1 KO have been varied and region specific. Early LTP studies in the KO 

were unable to identify any changes in the hippocampus, which the most well studied 

system in LTP studies. (Godfraind et al., 1996; Paradee et al., 1999; Zhang et al., 2012). 

However, a more recent study using a different chemical LTP protocol did pick up deficits 

(Shang et al., 2009). Interestingly, this chemical LTP was partially rescued by use of a 

mGluR antagonist DL-AP3 suggesting FMRP only plays a role in mGluR-LTP (Shang et 

al., 2009).  

However, unlike the hippocampus, deficits in LTP have been reported in other brain 

regions. In the amygdala, the brain region associated with emotions, deficits in LTP and 

decrease in surface AMPAR in the fmr1 KO have been observed (Suvrathan, Hoeffer, 

Wong, Klann, & Chattarji, 2010) along with presynaptic deficits including decrease in the 

frequency of spontaneous miniature excitatory postsynaptic currents (mEPSCs) and 

increased paired-pulse ratio. Although the postsynaptic deficits were not rescued by a 

mGluR antagonist the presynaptic deficits were(Suvrathan et al., 2010). 

Anterior cingulate cortex (ACC), a brain region associated with higher-level behavior such 

as reward anticipation, decision making and emotions (Stevens, Hurley, & Taber, 2011) 

had deficits in late-LTP. Late LTP is dependent on protein synthesis and this effect was 

rescued by a mGluR antagonist (T. Chen et al., 2014; Koga et al., 2015). Similarly, in the 

somatosensory cortex, the main receptive site of sensory information in the brain deficits 

in LTP have also been observed which were linked with aberrant RAS, a small GTPase 

important in signal transduction (Hu et al., 2008).  

Apart from the above mentioned brain regions, deficits in LTP have been reported in the 

auditory cortex (H. Kim, Gibboni, Kirkhart, & Bao, 2013; S. Yang, Yang, Park, Kirkwood, 

& Bao, 2014), prefrontal cortex (H. G. Martin, Lassalle, Brown, & Manzoni, 2016; Wang et 

al., 2008) and piriform cortex (Gocel & Larson, 2012) in the FMR1 KO. Along with deficits 
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in LTP, deficient maturation of synapses including delayed GABA switch have been 

identified (Q. He, Nomura, Xu, & Contractor, 2014). The consistent rescue of the LTP 

using mGluR antagonist led to the famous mGluR hypothesis to treat both deficient LTP 

and exaggerate LTD as will described in the next section (Bear, Huber, & Warren, 2004). 

LTD as described earlier is a form of synaptic plasticity involving reduction of synaptic 

strength by decreasing synaptic AMPAR content. In the hippocampus there are two 

distinct forms of LTD, classical NMDAR dependent LTD and mGluR dependent LTD (Oliet, 

Malenka, & Nicoll, 1997) of which mGluR LTD is specifically exaggerated in the fmr1 KO 

mouse (Huber, Gallagher, Warren, & Bear, 2002). mGluR LTD is most commonly 

triggered by activating mGluR receptors using either a paired pulse low frequency 

stimulation (Huber et al., 2000) or using a selective agonist (S)-3,5 dihydrophenoxyglycine 

(DHPG) and is mechanistically distinct from NMDAR LTD (Huber, Roder, & Bear, 2001; 

Palmer, Irving, Seabrook, Jane, & Collingridge, 1997). This form of LTD is protein 

synthesis dependent and interestingly a number of proteins translated during LTD are also 

regulated by FMRP including PSD 95 (Todd, Mack, & Malter, 2003; Tsai et al., 2012), 

Amyloid precursor protein (APP) (Westmark & Malter, 2007), microtubule associated 

protein 1B (MAP1B) (Hou et al., 2006) and activity regulated cytoskeleton protein (ARC) 

(Park et al., 2008). Based on these results FMRP is thought of as a repressor of proteins 

involved in LTD. In fmr1 KO mice where FMRP is lacking, these LTD proteins are already 

readily available and hence bypassing the need for protein translation during LTD (Hou et 

al., 2006; Ronesi & Huber, 2008). It is interesting to note however, that the mere presence 

of increased LTD protein does not cause increased AMPAR internalization, but the 

process must be triggered by LTD induction (Waung, Pfeiffer, Nosyreva, Ronesi, & Huber, 

2008). This has led to the hypothesis that FMRP through still unknown LTD proteins acts 

by regulating AMPAR endocytosis upon LTD induction (Guo et al., 2015; Waung & Huber, 

2009).  
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A few potential candidates for LTD proteins include ARC, STEP (striatal enriched protein 

tyrosine phosphatase) and MAP1B.  ARC protein is an activity induced early gene which 

is transcribed upon activity and it’s mRNA transported into the dendrite where the protein 

accumulates within active spines (Link et al., 1995; Lyford et al., 1995) and causes 

internalization of AMPAR through its interaction with endophilin 2/3 and dynamin 

(Chowdhury et al., 2006). These results prompted the idea that local translation of Arc at 

synapses may mediate LTD. This was supported by the reports that mGluR activation 

triggered rapid translation of ARC in dendrites and ARC-knock out mice had no mGluR 

LTD and internalization of AMPAR (Waung et al., 2008). Furthermore, in the fmr1 KO 

neurons, basal and dendritic Arc protein levels are increased along with enhanced mGluR-

LTD but mGluR-triggered Arc synthesis was found absent (Waung et al., 2008). Rescue 

by wild-type FMRP in fmr1 KO neurons suppresses basal dendritic Arc levels and mGluR-

LTD, and restores rapid mGluR-triggered Arc synthesis. These effects were dependent 

on dephosphorylation of FMRP and suggested a model whereby phosphorylated FMRP 

functions to suppress steady-state translation of Arc and LTD. Upon mGluR activation 

FMRP is rapidly dephosphorylated, which contributes to rapid new synthesis of Arc and 

mGluR-LTD (Niere, Wilkerson, & Huber, 2012). 

Another protein identified to regulate mGluR-driven AMPAR endocytosis is STEP. STEP 

levels increases in hippocampal synaptoneurosomes within minutes after DHPG 

treatment and this required protein translation. Deletion of STEP increases AMPAR 

surface expression and blocks mGluR LTD dependent AMPAR endocytosis (Zhang et al., 

2008). Further experiments to establish whether STEP mRNA is found in dendrites and 

interacts with FMRP are needed.  

A third candidate ‘LTD protein’ is microtubule-associated protein 1B (MAP1B). MAP1B 

mRNA is a known FMRP target and plays a role in mGluR mediated LTD wherein DHPG 

treatment increases MAP1B levels in dendrites and knockdown of MAP1B prevents DHPG 
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LTD (Davidkova & Carroll, 2007; R. Lu et al., 2004). One potential mechanism for MAP1B 

internalization could be through MAP1B’s interaction with GRIP1. GRIP1 stabilizes 

AMPAR and MAP1B may sequester GRIP1 causing AMPAR internalization (Seog, 2004).  

These data suggest that mGluRs stimulate a coordinated synthesis of multiple proteins 

that together mediate persistent decreases in surfaces AMPARs and LTD. Further 

research into mechanisms and signaling pathways regulating these process and how 

these mechanisms affect behavioral and synaptic level changes in FXS are still needed 

(Waung & Huber, 2009).  
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1.4 Organization of the motor system 

In chapter 3 we studied the effects of motor learning using a single forelimb-reaching 

task on AMPAR dynamics in primary motor cortex (M1). This motor training task has 

been shown previously to induce specific plasticity with trained hemisphere contralateral 

to the trained forelimb and not in the untrained hemisphere which is ipsilateral to the 

trained forelimb. This training paradigm has been used to study learning induced 

synaptic plasticity in vivo (Harms et al., 2008; Rioult-Pedotti, Friedman, & Donoghue, 

2000; Rioult-Pedotti, Friedman, Hess, & Donoghue, 1998; Xu et al., 2009a). 

The motor cortex in humans is located directly adjacent to the rostral portion of the central 

sulcus and is made up of three brain regions including primary motor cortex (M1), 

supplementary motor cortex and premotor cortex (Purves, 2008). The primary motor 

cortex is the principal site for the control of voluntary and involuntary movement and 

corresponds to Brodmann’s area 4. Experiments in the late 30’s identified that the M1 

cortex is somatotopically organized and electrical stimulation of the cortex elicits 

movement is the contralateral side of the body (Penfield, 1937). Electrical stimulation of 

the M1 elicits responses from different body parts and moving medial to lateral, stimulation 

elicits responses from the torso, arm, hand and face. Additionally, the representations of 

brain regions that perform delicate movements are disproportionally large compared to 

representation that perform coarse movements like the trunk and legs (Purves, 2008). 

The motor cortex receives three primary inputs including inputs from the premotor cortical 

areas, the somatosensory cortex and the thalamus. These inputs converge upon the 

motor cortex which is able to integrate and act upon it (Purves, 2008). The premotor 

cortical areas include the supplementary motor cortex and premotor cortex. The 

supplementary motor cortex is located on the medial surface of Brodmann area 6 and 
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receives input from the basal ganglia and thalamus. The premotor cortex is located on the 

lateral portion of Brodmann area 6 and its primary input is from the cerebellum and 

thalamus and is thought to be important for movements directed by sensory stimulations 

including vision. Projections from the somatosensory cortex allow for direct integration of 

sensory information whereas the inputs from the thalamus provide relay information from 

the ascending tracts into the motor cortex. These also provide sites for the cerebellum and 

basal ganglia to modulate motor information. 

In terms of efferents, the motor cortex exerts influence over muscles by a variety of 

descending tracts. The primary motor output from layer 5 pyramidal neurons of the M1 is 

direct cortical innervation of alpha motor neurons via the corticospinal tract (Purves, 2008). 

Apart from the corticospinal tract the motor cortex modulates other motor pathways. These 

include the corticorubral, corticotectal and rubrospinal tracts. The corticorubral tract allows 

the cortex to modulate the rubrospinal tract which is a projection from the red nuclei to the 

spinal cord and is responsible for voluntary movements. Next, the corticotectal tract allows 

M1 cortex to modulate the tectospinal tract which is a projection from the midbrain tectum 

to the spinal cord and modulates hand and eye movement. Finally, the last motor tract 

regulated by the primary cortex is the reticulospinal tract.  The reticulospinnal tract 

descends from the reticular formation and acts on the motor neurons supplying trunk and 

proximal limb muscles and is involved in locomotion and postural control (Purves, 2008).  

A similar cortical motor organization is also evident in mice with well characterized 

organizational maps available. We used the stereotaxic coordinates of the forelimb 

representation as described by Tennent et.al in the thesis (Tennant et al., 2011). 
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1.5 Goals of the study 

Although there is much interest in synaptic AMPAR as a determinant of synaptic strength, 

it is not known how dynamic AMPAR are in synapses and how their dynamic properties 

relate to structural synaptic plasticity. The goal of the study is to understand the 

relationship between AMPAR and synaptic dynamics in vivo and determine if this 

relationship was altered in Fragile X syndrome. To do this we developed a surgical and 

imaging approach to visualize AMPAR and spines in vivo in normal and in the fmr1 KO 

mouse, a mouse model for FXS.  Using this approach we were successfully able to 

visualize AMPAR and dendritic spines and repeatedly image these structures over 

multiple days. Using this approach in chapter 2, under basal conditions, we elucidated the 

relationship between AMPAR and synaptic behavior in WT mice and further identified 

altered AMPAR, spine dynamics in the fmr1 KO mouse in the motor cortex. To better 

understand these relationships under experience dependent conditions, in chapter 3, we 

trained normal and fmr1 KO mice on a motor forelimb reaching task and biochemically 

measured synaptic AMPAR content. We identified that with motor training there is a 

transient increase in AMPAR subunit GluA1 upon training. In the fmr1 KO mouse, which 

has a deficit in motor learning, this increase in synaptic AMPAR content is delayed. Since 

levels of AMPAR correspond to functional strength of a synapse our results identify an 

altered structure-function relationship of synapses of the motor cortex in the fmr1 KO 

mouse. 
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Chapter 2 Relationship between AMPAR and Synapse dynamics 

in vivo; alterations in a mouse model of Fragile X syndrome. 

2.1 Introduction 

Dendritic spines are the principal sites of excitatory synapses in the neurons of 

mammalian central nervous system (Cajal, 1888; E.G. Gray, 1959). Spines are plastic and 

undergo structural and functional changes under basal and experience dependent 

conditions (M. Fu & Zuo, 2011; A. Holtmaat & Svoboda, 2009). Structural dynamics 

involves spine formation, elimination as well as change in size of the spine (Alvarez & 

Sabatini, 2007; Bosch & Hayashi, 2012; Dunaevsky, Tashiro, Majewska, Mason, & Yuste, 

1999; Trachtenberg et al., 2002). The structural reorganization of dendritic spines is 

thought to be associated with synaptic plasticity mechanisms that involve modulation of 

synaptic strength via insertion or removal of α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor (AMPAR) (Malenka & Bear, 2004; Turrigiano, 2012). 

Indeed, under in vitro conditions both long term potentiation (LTP) (Engert & Bonhoeffer, 

1999a) and long term depression (LTD) (Hasegawa, Sakuragi, Tominaga-Yoshino, & 

Ogura, 2015), paradigms of synaptic plasticity, have shown to induce spine formation and 

elimination respectively. These changes are thought to bring about functional 

reorganization of the neuronal circuits and are critical for learning and memory (Hayashi-

Takagi et al., 2015; Hofer & Bonhoeffer, 2010). However, the link between synaptic 

stabilization and AMPAR insertion has not been previously studied in vivo. 

Dendritic spines are altered in number of neurodevelopmental disorders (Penzes et al., 

2011) including the Fragile X syndrome (FXS) which is the most common inherited form 

of intellectual disability (Penagarikano et al., 2007). Moreover, in a mouse model of FXS, 

there is impaired structural and functional plasticity with increased spine turnover, reduced 
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LTP and impaired experience dependent plasticity of spines (Contractor et al., 2015; Cruz-

Martin et al., 2010; Padmashri et al., 2013; Pan et al., 2010). Here we therefore also 

investigated the relationship between AMPAR insertion and dendritic spine dynamics in 

an FXS mouse model.  

To investigate the role of AMPAR in spine fate and dynamics in vivo we expressed AMPAR 

subunit GluA2 tagged to superecliptic phluorin (SEP), a pH sensitive GFP variant 

(Miesenbock, De Angelis, & Rothman, 1998), in layer 2/3 neurons of the primary motor 

cortex (M1). Since the majority of AMPAR contain the GluA2 subunit (W. Lu et al., 2009) 

we used SEP-GluA2 (sGluA2) levels in spines as a proxy for synaptic AMPAR.  Dendritic 

spines and sGluA2 were imaged in vivo using two-photon microscopy over a period of ten 

days in wild type mice and in the FXS mouse model, the fmr1 knock out (KO) mice. 

Repeated in vivo imaging revealed that in the fmr1 KO mouse dendritic spines were 

denser, smaller, contained less sGluA2 and had higher turnover rates compared to 

littermate controls (WT). Our data confirmed the relationship between synaptic strength 

and synaptic stability, with greater AMPAR containing spines being more stable in both 

WT and the KO mice. Additionally, we observed that AMPAR levels were dynamic in most 

stable spines, fluctuating over 10 days with larger proportion of spines showing multiple 

dynamic events of AMPAR in the KO. Directional changes in sGluA2 were also observed 

in subpopulation of spines, with new small spines gradually accumulating sGluA2. Finally, 

sGluA2 levels dropped just prior to spine elimination with greater loss observed in the KO 

spines. Thus we conclude that AMPAR levels within spines are continuously dynamic but 

are also predictive of spine behavior, with impairments observed in the fmr1 KO mice. 
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2.2 Materials and Methods 

2.2a Mice 

 Mice were cared for in accordance with NIH guidelines for laboratory animal welfare. All 

experiments were approved by the University of Nebraska Medical Center Institutional 

Animal Care and Use Committee. Female C57BL/6 fmr1 heterozygous (HET) mice were 

crossed with male C57BL/6 fmr1 KO mice and used for in utero electroporation. Because 

FXS is more common among boys, male WT littermates and fmr1 KO pups were used for 

all experiments.  

 

2.2b DNA Constructs 

We used a FUGW pUB-SEP-GluA2-WPRE and pCAG-tdTom constructs for our 

experiments. FUGW pUB-SEP-GluA2-WPRE was a generous gift from the lab of Noam 

Ziv (Zeidan & Ziv, 2012). First, Superecliptic phluorin (SEP), a pH sensitive GFP variant 

(Miesenbock et al., 1998) was tagged to the 5’ UTR of GluA2 and the SEP-GluA2 (sGluA2) 

was cloned under the ubiquitin promoter in a FUGW lentiviral construct. For the 

morphological tracer, we used pCAG-tdTomato construct where the td-Tomato (tdTom) 

was cloned under a CAG promoter. 

 

2.2c In utero electroporation 

 Timed pregnant female C57BL/6 fmr1 HET mice were in-utero electroporated as 

described previously (Saito & Nakatsuji, 2001)(Figure 1a). Briefly, embryonic (E) 15.5 

timed pregnant C57BL/6 fmr1 HET mice were anaesthetized using an isoflurane-oxygen 

mixture (induction: 5% Isoflurane/2 liter/min O2, maintenance: 2%  isoflurane/2 

liter/min O2 ). A small incision was made within the abdominal walls and uterine horns 

were exposed. 0.5 µl of 4µg/µl DNA solution of pCAG-tdTomato and pUb-SEP-GluA2-
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WPRE was injected into the cerebral ventricles of E15.5 mouse embryo using Parker 

Picospritzer III microinjection system. The head was then placed between tweezer 

electrodes so as to target the motor cortex. Electroporation was achieved using 5 square 

pulses (duration 5 millisecond frequency = 1 Hz, 35 mV). Embryos were returned back 

into the abdominal cavity and dams were revived and allowed to deliver normally.  

 

2.2d Tissue preparation and immunohistochemistry 

 Mice were perfused with 4% paraformaldehyde at postnatal day 30 and brain sections 

(100 microns) containing the motor cortex were selected for analysis.  Sections were 

incubated in 10% normal goat serum (NGS) and 0.3% Triton X-100 for 3 min, then washed 

three times with PBS 1×, pre-incubated 1 h in 5% NGS and then immunostained with 

primary antibodies against GluA2 (polyclonal 1:500, Millipore) overnight at 4 °C. The 

secondary antibodies were Alexa 647 coupled anti-guinea pig (1:500 Invitrogen), in 1% 

NGS and 0.3% Triton X-100, for 90 min at RT. 

 

2.2e Cranial window 

 At postnatal day 28-30 mice were anesthetized with Tribromoethanol (Avertin®) (0.25 

mg/g body weight). A 5 mm cranial windows were implanted over the motor cortex (Figure 

1c. Briefly, half an hour before the surgery, dexamethasone (∼2 μg/g body weight) and 

carpofen (5 µg/g body weight) was injected intraperitoneally to reduce cerebral edema 

and inflammation during the craniotomy. A 5mm craniotomy centered on bregma, was 

made across the sutures, above the primary motor cortex. After the craniotomy, the 

exposed surgery site was rinsed with an enrofloxacin antibiotic solution (0.5 µg/ml) and 

covered with a 5-mm-diameter cover glass, which was permanently glued to the skull 

using dental acrylic cement. The dura remained intact in this procedure. Mice were treated 

with antibiotic enrofloxacin (5 µg/ml) twice daily for 6 days after surgery to prevent bacterial 
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infection. Mice were also injected daily with carpofen (5µg/ml) for three weeks following 

surgery to reduce inflammation. Mice were allowed three weeks to recover from the 

surgery. 

 

2.2f Imaging 

 All imaging was performed with a multiphoton microscope (Moving Objective Microscope, 

MOM; Sutter), using a Ti:Sapphire laser (Chameleon Vision II, Coherent) tuned to 925 

nm. Mice were anaesthetized with a ketamine/dexdormitor mixture (100 mg/ml and 0.5 

mg/ml respectively, 2.5 ml/Kg). Images were collected with a Nikon water-immersion 

objective (60X, 1.0 NA). Excitation power measured at the back aperture of the objective 

was typically ∼20 mW and was adjusted to achieve near identical levels of fluorescence 

for each imaged region using a Pockels cell. Two-channel imaging was achieved by using 

a 565 nm dichroic mirror and two external photomultiplier tubes. A 535/50 bandpass filter 

was used to detect sGluA2 emission and a 610/75 bandpass filter was used to detect 

tdTom. For imaging, we used ScanImage software written in MATLAB (MathWorks) 

(Pologruto, Sabatini, & Svoboda, 2003). During an imaging session, six to ten regions of 

interest (ROIs) per animal were selected along the dendritic tufts of tdTom and sGluA2 

expressing layer 2/3 pyramidal neurons (Figure 1d). All imaged dendrites were in layer 1 

(within the first 100 μm below the dura matter) within the forelimb M1, as determined by 

stereotaxic measurements (between 750µm-2000µm lateral to the midline and between 

1000µm rostral and 250µm caudal from bregma) (Tennant et al., 2011). Each ROI 

consisted of a stack of images (20–80 optical sections, separated axially by 1 μm). The 

coordinates of each ROI were recorded using the XYZ motor on the MOM for subsequent 

imaging days. After imaging, mice were revived from anesthesia with Antisedan 

(atipamezole hydrochloride 5.0 mg/ml).    
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2.2g Image analysis 

Spine identification: All images were corrected for tdTom bleed-through into sGluA2 

(green) channel by quantifying percent bleed-through on a tdTom only expressing mouse 

and subsequently subtracting out the bleed-through from images of the sGluA2 (green) 

channel images. A custom written imaging program written in python was used to track 

dendritic spines and sGluA2 levels over imaging sessions. Dendritic segments of 30-80 

microns were chosen in three dimensional stacks and dendritic spines were identified and 

marked in tdTom image channel on 0 hour images (Figure S1a). Unless mentioned, 0 

hour images were considered as baseline for all analysis. For spine dynamics, images 

were compared to baseline images and categorized as stable if they were present in both 

images, eliminated if they appeared in the previous image but not in the image being 

analyzed and newly formed when they appeared in the image being analyzed but not in 

the baseline image. Spine formation and elimination was calculated as a percentage of 

new or eliminated spines of the total number of spines at baseline. Turnover rates were 

calculated as ratio of sum of spines formed and eliminated to twice the total number at 

baseline (A. J. Holtmaat et al., 2005).  

sGluA2 and spine intensity measurement: To mark a spine, a region of interest (ROI) was 

placed manually over the spine with care being taken not to include the dendrite (Figure 

S1a). To correct for background, a similar sized ROI was placed adjacent to the spine but 

away from the dendrite. To normalize across imaging sessions, we used tdTom dendrite 

intensity values as these were stable across sessions (Figure S1b). For normalization two 

16 pixel rectangular ROI were marked on either side of the spine and average dendritic 

shaft tdTom value was measured and a normalization factor derived by comparing to 

baseline tdTom dendrite values. Care was taken to place the dendrite ROI on a stretch of 

dendrite that did not have a spine protruding in the z plane. To quantify sGluA2 and spine 

intensity, the sum of total integrated pixel intensity within the spine ROI across the three 
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brightest optical frames of the spine was calculated for each channel, individually 

corrected for background and normalized. Since spine brightness is correlated with spine 

volume, we used spine intensity as a measure of spine size. Additionally, care was taken 

to make sure that no protruding structures contaminated the readings. Spines were re-

identified on subsequent sessions and intensity values measured as above. For new 

spines appearing during imaging sessions, spines were marked and sGluA2 and spine 

intensity were quantified and normalized to time of identification. For presentation 

purposes, all images were de-speckled and smoothened. Crisscrossing axons traversing 

the field of view were removed from some frames and 3-5 frames were maximally 

projected. All analysis was done blinded to mouse genotype on unprocessed images 

except for the bleed through correction described above. 

 

2.2h Spine grouping   

Percentile spine grouping: sGluA2 intensity for all spines within a dendrite (50-100 

microns) at baseline, were arranged in an ascending order and percentile rank for every 

spine calculated. Spines were divided into four percentile groups (bin width of 25) with 

progressively increasing levels of sGluA2. Within each mouse the fraction of stabile spines 

(Fig 4b) and sGluA2 percentage changes (Figure 5d) were quantified.  For the k-means 

cluster analysis we used two-partition k-means on MATLAB to separate out High and Low 

GluA2 containing spines per dendrite. Fraction of stable spines per group and proportion 

of clusters per genotype were calculated (Figure S3). Unless indicated otherwise the 

averages were calculated per mouse.  

Local dendrite ranking: Similar sGluA2 containing spines (“target spines”, minimally 10 

microns apart) with opposing fates were identified on a baseline image. sGluA2 within 

spines in 5 micron stretches on either side of the target spine (cluster) were quantified and 

arranged in an ascending order. These were then ranked in steps calculated by 10/ (total 



51 
 

number of spines in a cluster – 1) with the smallest spine given a rank of zero, the next 

spine a rank of zero + step size and with the largest a rank of 10. To calculate dendrite 

rank, total number of spines within the entire dendrite was used to calculate step sizes 

and a similar procedure as above was followed.  

New spines grouping: For both genotypes, spines within dendrites imaged at 40 and 64 

hours were pooled based on sGluA2 levels as described above. Group proportion and 

fraction of stable spines of all newly formed spines within these sessions were calculated 

per mouse and compared across groups and genotypes.  

sGluA2 spine dynamic grouping: sGluA2 dynamics was quantified as percentage change 

of sGluA2 at all time points compared to baseline. We defined change as ± 2 standard 

deviation of 24 hour percentage change in WT which set a threshold of ± 30% (Zhang, 

Cudmore, Lin, Linden, & Huganir, 2015). Spines were classified as “no change” if sGluA2 

intensity did not cross the threshold on any day, “persistent” if it crossed only once and 

did not return to baseline, “transient” if it crossed the threshold  and returned back to 

baseline or “recurrent change” if it crossed the threshold multiple times.  Group proportions 

were calculated per mouse and compared within groups and across genotypes. 

 

2.2h Statistics  

Analysis was done either on GraphPad prism or Proc GLIMMIX from SAS/STAT Software 

and error bars represent Standard error means (SEM). To test for statistical significance 

an unpaired student t.test (Figure 2a, 2e, 4d-g), multiple t.test with Bonferroni correction 

(Figures 2b-d), one-way ANOVA with post hoc Bonferroni correction (Figures 5c, 5e), two-

way ANOVA with post hoc Bonferroni correction (Figures 5d, 6c, 7d), Kolmogorov-

Smirnov test (Figure 3a-b) and a generalized linear mixed models for the percent 

eliminated data. Multiple comparisons of differences in means were adjusted with the 
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simulation technique, the recommended approach for random effect models (Peter 

Westfall, 2011) (Figures 4b). 

 

2.3 Results  

2.3a Repeated in vivo imaging of dendritic spines and SEP-GluA2 

To track spine and AMPAR dynamics in layer 2/3 pyramidal neurons of M1 cortex, E15.5 

mouse embryos were in utero electroporated with AMPAR subunit GluA2 tagged to 

superecliptic phluorin (sGluA2) and morphological tracer td-Tomato (tdTom) (Figure 1). 

For repeated in vivo imaging, a cranial window (A. Holtmaat et al., 2009) was implanted 

over the primary motor cortex using previously published coordinates (Figure 1c)(Tennant 

et al., 2011). Following recovery, mice were imaged and dendrites expressing bright signal 

across both channels were chosen for imaging (Figure 1d). Stable images were obtained 

over a ten-day period with no evidence of photo-bleaching (Figure 1e and Figure S1b). 

While tdTom had uniform expression throughout the cells, sGluA2 had a more punctate 

appearance with relatively low expression in the dendritic shaft and negligible expression 

within axons, as would be expected from a postsynaptic protein (Figure 1e, S2a)(Zhang 

et al., 2015). Moreover, sGluA2 expression was detected even within immature filopodia-

like structures (Zito, Scheuss, Knott, Hill, & Svoboda, 2009) giving us further confidence 

in our ability to track AMPAR in vivo (Figure S2b).  The use of sGluA2 tagged to 

superecliptic pHluorin, allowed to track only the surface bound GluA2 which are the 

functionally relevant pools of GluA2 (Kopec et al., 2006). Immunostaining of sections from 

transfected mouse brains with an antibody against GluA2 indicated about a 50% 

overexpression of sGluA2 at postnatal day 30 (Figure S1c). To test whether sGluA2 

overexpression affected spine morphogenesis and dynamics, we compared spine density 

in layer 1 apical dendrites of layer 2/3 neurons of WT mice transfected with sGluA2/tdTom 
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to mice transfected with tdTom alone (Figure S1d). We observed no difference in spine 

density between the groups (WTsGluA2/tdTom: 0.69±0.01spines/micron n=5mice, WT 

tdTom: 0.68±0.02 spines/micron n=3 mice p>0.05). Similarly, spine dynamics was also 

not altered with overexpression of sGluA2 compared to previous reports  (Percentage 

formation and elimination-6% over 24 hours) day) (Ma et al., 2016) (Figure 2b-d). Thus 

with the in utero electroporation and cranial window strategy, we were able to repeatedly 

image and track both dendritic spines and spine AMPAR in apical dendrites of layer 2/3 

pyramidal neurons of the motor cortex over multiple days. 
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Figure 1: Repeated in vivo imaging of doubly transfected layer 2/3 neurons of M1 

cortex. (a) Experimental time course. (b) Embryos from E15.5 timed pregnant C57Bl6 

fmr1 Het mice were injected with a mixture of pUB-SEP-GluA2-WPRE and pCAG-tdTom 

DNA constructs into the lateral ventricles and neurons were transfected using an electrode 

tweezer. (c) A cranial glass window over the motor cortex. Scale bar: 1 mm. (d) 2PLSM 

in vivo images of transfected region of cortex showing overlap of tdTom (magenta) and 

sGluA2 (white) along with 3D projection of a Z of the same region. Scale bar: 100 microns. 

(e) Repeated in vivo images of apical dendrites of layer 2/3 neurons in M1 cortex showing 

stable expression of tdTom and sGluA2 over the experimental duration.  Scale bar: 5 

microns. 



55 
 

2.3b Altered spine density, size, and dynamics in the primary motor cortex of fmr1 KO 

mice 

 

Reports of altered dendritic spine density and dynamics in the KO mice have been variable 

with spine properties depending on brain region, age and layer of neurons investigated 

(C. X. He & Portera-Cailliau, 2013). As no previous studies had investigated spine 

properties in layer 2/3 in the motor cortex at 8 weeks of age, we first investigated spine 

density in the M1 cortex (figure 2a). Unlike in layer 5 neurons (Padmashri et al., 2013), we 

observed an 11% increase in dendritic spine density of layer 2/3 pyramidal neurons in the 

KO mice as compared to tdTom/sGluA2 expressing WT mice (Figure 2a, p=0.017). To 

investigate spine dynamics in layer 2/3 neurons, we quantified spine formation and 

elimination over short (24 hours), intermediate (60 hours) and long (240 hours) durations 

and compared WT and KO mice. We observed higher rates of formation at all intervals 

(Figure 2b, p<0.02 for all comparisons) but increased elimination only at intermediate and 

longer time points (Figure 2c, 64hrs: p=0.049, 240hrs: p=0.03). This increased formation 

and elimination also translated to higher turnover rates (TOR) calculated at all intervals 

(Figure 2d, 24hrs: p=0.01, 64hrs: p=0.006 and 240hrs: p=0.001). The high rates of 

formation resulted in a trend towards an increase in total number of spines over 10 days 

in the fmr1 KO (Figure 2e, p=0.08). Thus our data suggest that at two months KO mice 

have increased spine densities and higher rates of spine dynamics in apical dendrites of 

layer 2/3 neurons in the M1 cortex.  
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Figure 2: Altered dendritic spine properties in the fmr1 KO mice. (a) Representative 
images of dendrites from layer 2/3 pyramidal neurons expressing tdTomato and SGluA2 
in WT and KO mice. (b) Spine densities were significantly higher in the KO mice compared 
to WT mice (WT: 0.69 ± 0.01 spines/micron, KO: 0.76 ± 0.02 spines/micron, n=4 mice, 
n=5, t.test, p=0.017) Scale bar: 10 microns. (b) KO mice had increased spine formation 
compared to WT over short (24 hr: WT 6.121± 0.5%, KO 14.5 ± 2.17%, p = 0.02), 
intermediate (64 hr: WT 9.834 ± 1.53%, KO: 23.41 ± 3.5%, p=0.02) and long time intervals 
(240 hr: WT 20.16 ± 3.3%, KO: 39.38 ± 2.3%, p=0.004, n=5 mice, multiple t.test with 
Bonferroni-Sidak correction). (c) KO mice had increased spine elimination compared to 
WT over intermediate (64hr: WT 13.96 ± 1.46%, KO 23.22 ± 2.71%,p=0.049) and long 
time intervals (240 hr: WT 22.81 ± 2.35%, KO 35.15± 3.9%, p= 0.03) but not over short 
intervals (24hr: WT 6.99 ± 0.75%, KO 10.9 ± 2.03%, p 0.29, n=5 mice, multiple t.test with 
Bonferroni-Sidak correction). (d) Turnover rates (TOR) were elevated in the fmr1 KO mice 
(24 hours: WT 0.07 ± 0.01, KO 0.14 ± 0.01, p=0.01, 64hr: WT 0.135 ± 0.01, KO 0.24 ± 
0.02, p= 0.006, 240hrs: WT 0.24 ± 0.02, KO 0.38 ± 0.01, p=0.001, n=5 mice, multiple t.test 
with Bonferroni-Sidak correction respectively). (e) In the KO there was a trend toward 
increase in total number of spines over 10 days (Total spines 240 hours: WT: 96.14  ± 
4.098 %, KO: 107 ± 3.484 %, n=5 mice, unpaired t.test, p=0.08). Data represented as 
Mean ± SEM. 
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Reports from humans with FXS (Hinton et al., 1991; S. A. Irwin et al., 2001) and fmr1 KO 

mice (C. X. He & Portera-Cailliau, 2013) have described preponderance of small immature 

looking spines. We observed a significant shift in the distribution of both sGluA2 intensity 

and spine intensity (p<0.001), which is an approximation of spine volume (A. J. Holtmaat 

et al., 2005), suggesting smaller spines in layer 2/3 neurons in the KO (Figure 3a, b).  This 

was also evident in a frequency distribution for sGluA2 with increased fraction of spines 

with lower levels of sGluA2 in the KO (Figure 3c).  Spine size and AMPAR levels are 

known to be strongly correlated (Zhang et al., 2015) (Noguchi et al., 2011) and we 

observed the same in the WT (Pearson r=0.75, p< 0.001). Although these correlations 

were similar in the KO (Pearson r=0.78, p <0.001) surprisingly the slope of sGluA2 vs. 

spine intensity linear regression line was smaller compared to the WT (Figure 3d, 

p<0.0001). This suggests altered structure function relationship in the KO with less sGluA2 

per spine. Altogether, our results suggest a larger pool of small spines in layer 2/3 

pyramidal neurons and altered AMPAR-spine size correlation in the M1 cortex of the fmr1 

KO mice. 
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Figure 3: Altered spine size and GluA2 content in the fmr1 KO mice. (a, b) Cumulative 
frequency plots of spine intensity and sGluA2 intensity at 0 hours. Spine and sGluA2 
intensities were smaller in the fmr1 KO mice compared to WT mice (WT: n=480 spines, 
KO: n=478 spines, Kolmogorov-Smirnov test, p <0.001 for both spine intensity and sGluA2 
intensity). (c) Frequency histogram of sGluA2 intensity at 0 hours shows that fmr1 KO 
mice had a larger fraction of spines with low sGluA2. (d) Linear correlation between spine 
intensity and  sGluA2 in WT and KO mice (WT: R=0.75, n=480 spines, p<0.001, KO: 
R=0.78, n=470 spines, p<0.001). The slope of the KO linear regression was significantly 
lower (WT slope: 3.74 ± 0.12, n=480 spines, KO slope: 3.03 ± 0.14, n=478 spines, Fixed 
effect regression analysis, p=0.0001). 

 

 

 

 

 

b 
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2.3c Spine fates and AMPAR levels 

Strength of synaptic tranmission at an excitatory synapse is mediated by the levels of 

AMPA receptors within the synapse (Matsuzaki et al., 2004). Large synapses have been 

shown to have stronger synaptic tranmission and to be more stable (A. J. Holtmaat et al.; 

Matsuzaki et al., 2004).  Yet the direct relationship between levels of AMPAR and spine 

stability has not been investigated in vivo. We therefore next investigated whether sGluA2 

levels within a spine correlated with spine fates and whether this relationship was altered 

in the KO mice. A total of 640 and 680 spines were quantified from 19 and 20 dendrites 

from 4 mice in WT and KO respectively over a period of 10 days measuring synaptic 

sGluA2 levels, spine intensity levels and noting spine fate. We ranked spines based on 

sGluA2 levels at Day 0 and divided them into 4  equal sized groups with increasing levels 

of sGluA2 (Figure 4a).  Proportion of stable vs eliminated spines per group was then 

determined for every mouse and compared across genotypes. 

We found that in the WT mice the stability of dendritic spines increased progressively with 

increasing  levels of sGluA2 (Figure 4b). Thus, the spines with lowest amounts of sGluA2 

(group 1) had average stability of 36% wheras spines with the highest amount of sGluA2 

(group 4) were almost all stable. The remaining spines in groups 2 and 3 had  intermediary 

spine stability of 75% and 92% respectively. Although the trend of increased spine stability 

with higher sGluA2 levels was maintained in the KO, this relationship was altered with 

approximately 20% and 26% reduction in stability within groups 2 and 3 respectively (WT 

vs. KO p=0.002 and p<0.001 respectively) but no difference in the groups with the lowest 

and highest sGluA2  levels. Similar results were obtained when the data were clustered 

into High and Low sGluA2 groups, using a k means partition analysis (Fig S3a). Spines of 

the High sGluA2 group were  highly stable while spines of the Low sGluA2 had decreased 

stability.  Interestingly, in the KO the propotion of spines with high levels of sGluA2 was 
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significantly smaller which is consistent with the finding of a larger population of smaller 

spines in the KO (Figure S3b).   
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Figure 4: sGluA2 levels predict spine fate. (a) A representative image of a dendritic 
branch with spines assigned to one of 4 groups based on increasing percentile rank of 
sGluA2 intensity. scale: 2.5 microns. (b) The fraction of stable spines (dark bars) and 
eliminated spines (light bars) was plotted per sGluA2 level groups in the WT and KO mice. 
A random effect ANOVA was used to compare within groups and across genotypes. There 
was a main effect of group, F(3, 1296), p<0.001 and genotype, F(1, 6), p<0.0189 along 
with significant interaction, F(3,1296), p <0.007. For stable WT spines,  1: 0.36 ± 0.04,  2: 
0.75 ± 0.038,  3: 0.92 ± 0.02 and  4: 99.5 ± 00.5, n=5 mice.  For stable KO spines, 1: 0.34 
± 0.04, 2: 0.55 ± 0.042, 3: 0.74 ± 0.04, and 4: 0.97 ± 0.01, n=4 mice. Post hoc analysis 
suggested significantly reduced stability in the KO within groups 2 (p=0.002) and 3 
(p<0.001). (c) sGluA2 spine rank within a local cluster determines spine fate. Top: A 
dendrite containing two clusters centered around similarly sized spines with opposing fate. 
Scale bar: 10 microns. Below: Magnified images of boxed areas. Numbers represent 
ranking of spines within a cluster, a 10 micron stretch centered around the target spine 
(dotted orange circle). The target spines had similar sGluA2 intensity but opposing fates. 
Note that their local ranking was different with the higher rank spine (right) persisting 48 
hr later while the spine with the lower rank (left) disappearing. Scale bar: 2.5 microns. (d-
g) The properties of clusters of eliminated and persisting target spines were similar. No 
difference was observed in number of spines per cluster (eliminated: 5.9 ± 0.32 spines, 
stable: 6.2 ± 0.31 spines, p>0.05), target spine intensity intensity (eliminated: 637±116.5 
a.u., stable: 562± 96.5 a.u., p>0.5), target spine sGluA2 intensity (eliminated: 117.2±11.91 
a.u., stable: 114.3±11.92 a.u., p>0.5), or in target dendrite rank (eliminated: 
4.216±0.27rank, stable: 4.06±0.31 rank, p>0.5). (h) Mean cluster rank of similar sGluA2 
containing spines was significantly higher in stable spines (stable: 5.66±0.57, eliminated: 
2.95±0.36, p<0.001). Eliminated target spines (or clusters) n=30, Stable target spines (or 
clusters) n=34. unpaired t.tests, All data represented as Mean ± SEM. 
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Although spines with more sGluA2 were generally more stable we observed many spines 

with very similar levels of sGluA2 showing opposite fates. Since spines are not uniformly 

distributed along the dendrite and local synaptic activity (Oh, Parajuli, & Zito, 2015) and 

synaptic competition (Fonseca, Nagerl, & Bonhoeffer, 2006) for resources are linked to 

shaping structural changes we hypothesized that the local ranking of a spine within its 

immediate vicinity would be a stronger determinant of spine fate than global dendrite 

ranking. To test this hypothesis, we identified spines of similar sGluA2 levels but opposing 

fates which were at least 10 microns apart (Figure  4c). We then computed the rank of the 

target spine within the 10 micron dendrite stretch surrounding it. We quantified 64 spines 

from 12 dendrites and identified 34 stable and 30 eliminated spines. The properties of 

clusters of eliminated and persisting target spines were similar; no difference was 

observed in number of spines per cluster, in target spine intensity, target spine sGluA2 

intensity or its overall dendrite rank (Figure 4d-f). Yet, the average local rank of stable 

spines was 93% higher than those of the eliminated spines (Figure 4h, p<0.001). This 

relationship was however siginficant only within spines of intermediate sizes (p<0.001) 

and not true for the smallest spines (bottom 25% of spines) which are generally unstable 

(Figure S3c). Our results suggest that local sGluA2 level rank and thus relative strength 

of synapses within their local environment influences spine stability.  
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2.3d sGluA2 dynamics within stable spines 

Synaptic transmission at dendritic spines is mediated through AMPAR. Although, 

synapses in the brain are continuously modified by experience, the dynamic properties of 

synaptic AMPAR levels over days in vivo are not known. To determine AMPAR dynamics 

we identified stable spines (350 spines per genotype) and quantified sGluA2 and spine 

intensity. We observed that although total synaptic sGluA2 content within a dendrite did 

not vary over days (Figure S4a), sGluA2 levels within individual stable spines fluctuated 

from one imaging day to another in both WT and KO mice (Figure 5a). We categorized 

spines based on sGluA2 intensity changes over days (Figure 5b). In both WT and KO 

spines only 10% of spines showed no change (defined as change of <30%) (WT and KO: 

p<0.05 for all comparision) over 10 days (Figure 5c). In the WT majority of spines had a 

change in sGluA2 with almost equal proportion of spines showing persistent, transient or 

recurrent changes (Figure 5c). On average, stable WT spines had a gradual accumuation 

of sGluA2 of 20% by 240 hours (Figure 5d, p=0.015). Interestingly, in the KO the 

percentage of both transient and recurrent spines was larger than persistent spines 

(persistent vs. recurrent p=0.008, persistent vs. transient p=0.002) suggesting more 

dynamic sGluA2 in spines. Similar to the WT, stable spines in the KO had an increase of 

sGluA2 of 20% in 240 hours (Figure 5d,  KO: p=0.01). Next, to determine if a specific 

population of spines drove the increases in sGluA2,  we grouped spines based on levels 

of sGluA2 (Figure 5e). We found that most of the increases within the stable population of 

spines in both WT and KO were  driven by small spines that contained the lowest levels 

of sGluA2, which grew over time (Figure 5e, WT and KO p<0.05 all comparisons). Unlike 

sGluA2 changes, average spine intensity changes were smaller over 240 hours and were 

not significantly different from baseline (Figure S4b). Thus, we observed that majority of 

spines had dynamic AMPAR levels with the KO having a higher percentage of spines with 
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more sGluA2 dynamic events over days. On average, wheras average spine intensity 

levels did not change over time, both genotypes had a modest  increase in sGluA2 levels 

in the persistent popluation of spines over 10 days which was mainly driven by small 

spines growing larger.  
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Figure 5: sGluA2 is dynamic within stable spines. (a) Representative time-lapse in 
vivo 2PLSM images of apical dendrites of layer 2/3 pyramidal neurons from WT and KO 
mice. Note the increased spine formation (yellow arrows) spine elimination (blue arrows) 
in the KO.  White arrows point to spines which show fluctuations in sGluA2. Examples of 
spines exhibiting different types of sGluA2 dynamics are marked (1-no change, 2-transeint 
change, 3- persistent change and 4-recurrent change (scale bar: 2 microns). (b) Traces 
of percentage change in sGluA2 intensity of spines 1-4 representing different sGluA2 
dynamic groups. Red dotted lines indicate cut offs used  for grouping (±30%). (c) Fraction 
of spines belonging to the four sGluA2 dynamic  groups (NC- no change, PR-persistent 
change, RC- recurrent change, TC- Transient change) from WT (black) and KO (blue) 
mice were plotted.  A one way ANOVA was performed to compare percentage of groups 
within WT and KO mice separately with Bonferroni method for post hoc multiple 
comparisons.  In WT mice the fraction of No change was significantly lesser than 
Persistent, Recurrent or Transient change groups (No change: 0.14±0.02, Persistent: 
0.26±0.02, Recurrent: 0.31±0.02, Transient: 0.27±0.03, n=5 mice, One way ANOVA, No 
change vs. Persistent p=0.019, No change vs. Recurrent p=0.008, No change vs. 
Transient p=0.009). There was no difference between Persistent, Recurrent and Transient 
change spines. In KO mice No change and Persistent spines were also significantly lesser 
than Recurrent or Transient change groups (No change: 0.12±0.02, Persistent change: 
0.26±0.024, Recurrent change: 0.32±0.016, Transient change: 0.27±0.03, n=5 mice, 
Oneway ANOVA. No change vs. Persistent p=0.0031, No change vs. Recurrent p<0.0001, 
No change vs. Transient p<0.0001). Howerver in the KO the Persistent group was smaller 
than both Recurrent and Tranasient spines (Persistent vs. Recurrent p=0.008, Persistent 
vs. Transient p=0.0017). Data presented as Mean±SEM. (d) Percent change of GluA2 
and spine intensity (WT- Black lines, KO- Blue lines) for every time point was calculated 
by comparing intensity to 0 hour intensity and plotted. A two way repeated measure 
ANOVA was used to compare percentage change within the time points and across 
genotypes for both sGluA2 and spine intensity. For sGluA2 there was a main effect for 
time F(5,40)=5.224, p=0.0009 but not for genotype F(1,8)=0.0015,p>0.05 and no 
interaction F(5,40)=1.32, p>0.05. Post hoc analysis with Bonferroni comparison identified 
significant  increases in sGluA2 intensity at 240 hours in the WT (20.2±5.3%, n=5 mice, 
p=0.014) and in the KO (20.2±5.2%, n=5 mice, p=0.012).  (e) Mean percentage change 
of sGluA2 intensity for each sGluA2 intensity group (group 4- red lines, group 3- green 
lines, group 2-orange lines, group 1-blue lines). A one way ANOVA comparing group 4 
percentage change at day 10 to all other groups for both WT and KO mice with Bonferroni 
method for post hoc multiple comparisons was performed. In both WT and KO mice group 
4 percentage change was significantly different from group 1 and 2. (WT: Group 1: 10.1± 
11.7%, Group 2: 13.5±6.03%, Group 3: 34.3±8.36%, Group 4: 61±12.3%, n =5 mice, One 
way ANOVA, p= 0.0068 for Group 4 vs Group 1, p = 0.013 Group 4 vs Group 2, KO: Group 
1: 8.47± 4.3%, Group 2: 4.98± 6.5%, Group 3: 36.74± 21.6%, Group 4- 59.3± 13.87%, n 
= 5 mice, One way ANOVA, p<0.05 for Group 4 vs Group 1 and Group 2. Data presented 
as Mean ± S.E.M 
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2.3e sGluA2 in newly formed and eliminated spines 

Finally we characterized AMPAR and spine relationship in newly formed and eliminated 

spine populations in the WT and KO mice. First to characterize newly formed spines, we 

followed spines formed within the first 40 hours of the experiment (Figure 6). Although the 

fmr1 KO has increased rate of new spine formation (Figure 2b), the overall stability of the 

newly formed strucutures was similar between the WT and the KO (Figure S5a). As 

expected soon after formation, the majority of newly formed spines were small and 

occupied the lowest ranks within their dendrites in both WT and KO (Figure S5b). Unlike 

in the preexising spine population (Figure 4b), spine stability of newly formed spines did 

not change with increasing initial levels of sGluA2 in either genotype (Figure S5c), 

suggesting that a certain threshold level of sGluA2 has to be reached for it to be a 

determinant of spine stabilization. Within 16-24 hours after  formation, sGluA2 levels 

increased by 49% and 43% in WT and KO respectively and continued to increase to 109% 

in WT (p=0.02) and 91% in KO (p=0.04) by 200 hours post formation. We didn’t observe 

a difference between the genotypes in sGluA2 accumulation in newly formed spines 

(Figure 6a-c).  Although the size of the spines also increased by about 40% in both WT 

and KO after 200 hours, these changes did not reach significance (Figure 6c). Thus newly 

formed spines are small and have low levels of sGluA2 soon after formation. Additionally, 

there is a gradual increase of AMPAR in both WT and KO with sGluA2 increases outpacing 

the spine size changes. 
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Figure 6: Newly formed spines gradually accumulated sGluA2 over time. (a) 
Representative time-lapse 2PLSM images of apical dendrites from WT and KO mice 
showing formation of new spine (marked in white dotted circle) in WT (spine 1) and KO 
(spine 2) with corresponding sGluA2 and spine intensity traces shown in (b). Note the 
gradual accumulation of sGluA2 within these spines. Scale Bar: 1 micron (c) Percentage 
change of sGluA2 and spine intensity in stable new spines stable. A two-way repeated 
measure ANOVA was used to compare percentage change within the time points and 
across genotypes for both sGluA2 and spine intensity separately.  For sGluA2 there was 
a main effect of time (F(2, 76)=6.08, p=0.004) but not of genotype (F(1, 38)=0.1264, 
p=0.72) and no interaction (F(2, 76)=0.0399, p=0.96). Post hoc analysis with Bonferroni 
correction identified increased sGluA2 at 200-216 hours in both WT and KO (WT sGluA2: 
16-24 hrs 48.71±25.21%, p=0.4, 200-2016 hrs 109±27.31%, p=0.02, n=19 spines, KO 
sGluA2: 16-24 hrs 43.19±15.58, p=0.53, 200-2016 hrs 91.23±53.81 p=0.04, n=22 spines). 
Percentage change in spine intensity showed no effect for time F (2,80)=2.66 p=0.07, 
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genotype F(1,40)=0.045 p=0.83 and no interaction F(2, 80)=0.0167, p=0.98. Data 
presented as Mean % ± SEM 
 

Lastly, to study eliminated spines, we pooled changes in sGluA2 and spine intensity of 

structures eliminated between 40 and 64 hours of the experiment (Figure 7a-d). We 

observed a significant decrease (Figure 7b,d) in sGluA2 (-28%, p<0.001) and spine 

intensity (-17, p<0.001 in  WT mice in the imaging session prior to elimination (16-24 

hours) that was not observed in the stable spines of the same dendrites (Figure 7c). 

Interestingly, in the KO  for both sGluA2 (-38%, p<0.001) and spine intensity (-38.4%, 

p<0.001) the decreases were significantly sharper in the KO (p=0.02, p<0.001 

respectively) suggesting that the spine complex was being disassembled more rapidly in 

the KO. Thus we conclude that in both WT and KO spines shrink and loose AMPAR before 

elimination and this decrease is steeper in the fmr1 KO spines.   
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Figure 7: Eliminated spines have decrease in sGluA2 immediately before 
elimination. (a) Representative images of eliminated spines (1 and 4, circled) in WT and 
KO mice. (b) Individual traces of sGluA2 and spine intensity of eliminated spines 1 and 4. 
Note the gradual loss of sGluA2 and spine size before elimination in both genotypes. (c) 
Spines 2, 3 and 5 show relatively little change in sGluA2 or spine intensity while spine 6 
shows an increase in both sGluA2 and spine intensity. (d) Percent change of sGluA2 and 
spine intensity of eliminated spines 16-24 hours prior to elimination was plotted for both 
KO and WT.  A two way ANOVA was used to compare percentage change between the 
last two time points before elimination and across genotype for sGluA2 and spine intensity 
separately.  There was a main effect of time, genotype and significant interaction for both 
sGluA2 (Time: F(1,331)= 2973 p <0.0001, Genotype: F(1,331)=5.387, p=0.021, 
Interaction F(1.331)=5387, p=0.021, 2 way ANOVA, n=91 spines) and spine intensity 
(Time: F(1,331)=1479, p=0.001, Genotype F(1,331)=10.48, p<0.001, Interaction 
F(1,331)=10.48, 2way ANOVA, n=91 spines). Post hoc analysis with Bonferroni correction 
identified significant decreases in both sGluA2 and spine intensity in KO mice (sGluA2: 
WT -28.01 ± 3.46%, KO: sGluA2 -39.1 ± 4.19% (WT vs. KO) p=0.013, Spine intensity: WT 
-16.94± 4.6%, KO -38.44± 5.53%  (WT vs. KO) p<0.001, n=91 spines). Data presented as 
Mean % ± SEM 

2.4 Discussion  
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Here we report the first in vivo study that quantified changes in AMPAR in dendritic spines 

over multiple days. Using this approach, we characterized the relationship between 

AMPAR and spine stability in layer 2/3 pyramidal neurons in both WT and fmr1 KO mice. 

We found that sGluA2 levels within spines correlated with synaptic fate, with the largest 

spines being extremely stable (Figure 4a,b). Consistent with this correlation, before 

elimination spines both shrunk in size and lost sGluA2 (Figure 7a-d) wheras stable new 

spines gradually accumulated sGluA2 (Figure 6a-c). sGluA2 content within persistent 

spines was dynamic (Figure 5a-c) with majority of spines showing at least one dynamic 

event during the 10 day imaging period. Imaging of sGluA2 in spines of the fmr1 KO mice 

revealed several deficits. Dendritic spines in the KO were smaller (Figure 3a), denser 

(Figure 2a) and more dynamic (Figure 2b-d) as well as had reduced sGluA2 to spine size 

correlation (Figure 3d). In the KO, a greater proportion of spines exhibited the most 

dynamic behaviors (Figure 5c). Finally, before elimination, spines in the KO shrunk and 

lost sGluA2 faster as compared to the WT (Figure 7d). In summary, we find that while 

levels of AMPAR within spines are dynamic, they are predicitve of spine fates. Moreover, 

loss of FMRP impacts sGluA2 content in spines, thus affecting their dynamics. 

  

2.4a AMPAR and spine dynamics  

AMPAR are glutamate-gated cation channels that regulate majority of fast synaptic 

transmission in the brain (Anggono & Huganir, 2012). AMPAR’s are heteromeric tetramers 

composed of multiple subunits GluA1-4 (Anggono & Huganir, 2012). Since majority of 

AMPAR are of GluA1-GluA2 heteromers (W. Lu et al., 2009), sGluA2 within spines is a 

good measure of functional synaptic AMPAR content (Makino & Malinow, 2011; Zhang et 

al., 2015). As long-term dynamic correlation between AMPAR and spine behavior has not 

been previously investigated in vivo, this was the primary goal of the study. 

Overexpression of sGluA2 construct in vivo did not alter synaptic properties such as 
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density and turnover rates (Ma et al., 2016) in apical dendrites of Layer 2/3 pyramidal 

neurons (Figure S2d, Figure 2b-d). Similarly, as expected from a postsynpatic protein 

sGluA2 expression was punctate and expressed primarily in dendrites with substantial 

localization in dendritic spines and no expression in axonal boutons (Figure S2a). Lack of 

aberant expression of sGluA2, suggests that synaptic incorporation of AMPAR is a tightly 

regulated process (Kessels, Kopec, Klein, & Malinow, 2009). All spines imaged in the 

study, including thin filopodial looking spines expressed some amount of sGluA2 (Figure 

S2b), suggesting that silent synapses may not be present at this stage. Levels of synaptic 

AMPAR determine the strength of a synapse  (Matsuzaki et al., 2001) and have been 

associated with synaptic stability (Grutzendler, Kasthuri, & Gan, 2002; A. J. Holtmaat et 

al., 2005; Trachtenberg et al., 2002).  Consistent with this, we observe progressive stability 

of spines with increasing AMPAR levels (Figure 4b). Large spines with highest levels of 

AMPAR were almost always persistent over 10 days wheras spines with least AMPAR 

had only 35% stability (Figure 4b). Morover, we observed that the relative AMPAR levels 

within the local dendritic synaptic cluster correlated with synaptic stability. Similar sGluA2 

containing spines were more likely to be stabilized when surrounded by lower vs. higher 

sGluA2 containing spines (Figure 4c, h). Unlike previous in vitro studies that linked 

neigbouring synapse activity with synaptic fate (Fonseca, Nagerl, Morris, & Bonhoeffer, 

2004; Oh et al., 2015), here we observed how local rank based on synaptic AMPAR 

content alone correlates with spine fate. This suggests a potential competition between 

synapses for local stabilizing factors and likely involves similar biochemical signalling 

molecules and pathways regulating spatial organiztion of local dendritic microcircuits 

(Nishiyama & Yasuda, 2015).  We also observed spines hours prior to elimination to both 

lose AMPAR and shrink (Figure 7a-d). This is consistent with results of activity dependent 

structural plasticity where induction of LTD in slices resulted in shrinkage and even 

elimination of spines (Bastrikova et al., 2008; Fonseca et al., 2004; Zhou, Homma, & Poo, 
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2004). In contrast new spines which survived over many days,  gradually accumulated 

AMPAR to about 100% over 200 hours (Figure 6). Surprisingly, spine size did not keep up 

with AMPAR changes and only increased by 40% (Figure 6). This breakdown in AMPAR 

and spine size correlation was also seen in persistent spines which accumulated AMPAR 

over time but did not have a similar increase in spine size. The increase in AMPAR in the 

persistent spines was mainly driven by small spines growing over time. The small spines 

could have been recently formed spines which then had similar profiles as newly formed 

spines suggesting that functional changes precede the structural change in growing 

spines. Supporting this notion in a recent in vivo study using whisker stimulation to 

stimulate spines, there was a similar increase in sGluA1 but not spine size (Zhang et al., 

2015). This is inconsistent with in vitro studies where spine size usually precedes AMPAR 

increases (Kopec, Real, Kessels, & Malinow, 2007) suggesting a different spine behavior 

in vivo.  Lastly, we also observed AMPAR levels to be dynamic over days (Figure 5c). 

Almost 90% of spines showed a 30% increase or decrease of AMPAR over time with 

nearly a third of spines showing multiple events (Figure 5c). Although surprising since 

decreases in synaptic strength is thought to be detrimental to spine fate, this result is 

consistent with more recent in vivo studies where variable synaptic properties were 

observed even in stable spine populations (Cane et al., 2014; Villa et al., 2016). Also since 

many persistent spines show large decreases in sGluA2 (Figure 5a) but still do not get 

eliminated, it might suggest that it’s not the percentage decrease that determines spine 

fate but rather a threshold level beneath which a spine is eliminated.  

 

2.4b Fragile X spine and AMPAR dynamics 

Synaptic deficits in patients with FXS have been described with presence of dense 

dendrites and long immature spines ((S.A.  Irwin et al., 2000). Spine deficits in Fmr1 KO 

mice, an animal model of FXS, have varied depending on brain region, age and population 
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of neurons investigated (C. X. He & Portera-Cailliau, 2013). In this study we observed in 

layer 2/3 neurons of the motor cortex higher turnover rates (Figures 2b-d), increased spine 

density (Figures 2a) and smaller spines (Figure 3a) in the KO. High turnover rates in the 

KO have been described previously in several in vivo studies (Cruz-Martin et al., 2010; 

Nagaoka et al., 2016; Padmashri et al., 2013; Pan et al., 2010) at different ages and 

population of neurons and our results are consistent with these findings.   Reports of higher 

spine densities in the KO (Dolen et al., 2007; S. A. Irwin et al., 2001) however, are more 

variable. In this study we find a small (11%) but significant increase in spine density (Figure 

2a). Morover, since spine formation is higher than elimination in these population of 

neurons (Formation 40% vs Elimination 37% over 10 days) it would be expected to 

observe higher density. We also observed a significant population of small spines in the 

KO mice (Figure 3a-c). Smaller spines in the KO are reminescent of the human studies 

(Hinton et al., 1991; S. A. Irwin et al., 2001; Rudelli et al., 1985) and thought to represent 

a more immature phenotype of spines. Smaller spines are also more dynamic (Figure 4b) 

and this supports our data of higher turnover rate in the KO. Unexpectidly, spine-AMPAR 

correlation was altered in the KO with less AMPAR per spine (Figure 3d). Previous studies 

in the KO have not identified deficits in synaptic AMPAR content or function under basal 

conditions in the cortex (Gocel & Larson, 2012; H. G. Martin et al., 2016; Padmashri et al., 

2013), although reduced AMPAR have been observed in the amygdala (Suvrathan et al., 

2010). Since, our study focused on specific subpopulation of synapses in apical dendrities 

of layer 2/3 neurons, these may represent a previously unappreciated defict in the KO 

mouse and further studies are required.  

Similar to the WT, spine stability increased with higher sGluA2 content in the KO (Figure 

4b) with the  spines with the least and the most sGluA2 having similar stability to the WT. 

However, consistent with altered distribution of spine sizes, the interemediate percentile 

groups of spines had reduced stability in the KO (Figure 4b). Interestingly, the KO mice 
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had exaggerated decreases in both AMPAR and spine sizes before elimination (Figure 

7d). Exaggerated internalization of AMPAR through elevated LTD (Bear et al., 2004; 

Huber et al., 2002) has been described in the KO and since LTD has been linked to 

synapse elimination (Bastrikova et al., 2008; Nagerl et al., 2004) it may explain the 

enhanced elimination in the KO. It is important to point out that, most elimination events 

described in vitro were on the time scale of minutes wheras in this study changes over 

hours are observed suggesting protracted AMPAR decreases before elimination in vivo.   

Unlike elimination, newly formed spines had similar stability, as well as AMPAR and spine 

changes (Figure 6a-d) as the WT , suggesting loss of FMRP does not affect growth and 

stabilization of synapses. This is consistent with previous studies that demonstrate that 

stability of new spines formed following experience is unaffected in the KO (Pan et al., 

2010; Reiner & Dunaevsky, 2015).  Interestingly, a larger percentage of KO spines 

showed more dynamic events over days suggesting less stable synaptic strength in KO 

which further could impact the function of neuronal circuits in FXS.  

 

 

 

 

 

 

 

 

 

 

2.5 Supplementary figures 
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Figure S1: Experimental approach to measure sGluA2 and spine intensity. 
(a) Images were stable over the entire experimental duration with no evidence of 
bleaching.             (b) tdTom intensity values were calculated for all dendrites (WT=29 
dendrites, KO = 27 dendrites). One way ANOVA was performed comparing total intensity 
across time points to 0 hours within WT and KO mice separately with Bonferroni method 
for post hoc multiple comparisons.  In both WT and KO, there was no significant difference 
across all time points (WT: 0hr 2839±144,24hr 2713±178,40hr 2730±182,64hr 
2599±226,240hr 2768±180,n=5mice, Oneway ANOVA, p >0.05 for all comparisons, KO:  
0hr 2899±308,24hr 2762±334,40hr 2930±377,64hr 2693±288,144hr 2713±241,240hr 
2752±259) 
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Figure S2: sGluA2 overexpression does not alter spine density or GluA2 expression 
profile. (a) GluA2 is overexpressed by about 50% in transfected neurons. Coronal 
sections of electroporated wild type animals were immunostained for GluA2 and 
transfected cells (White circle right panel) were identified by presence of GFP within the 
cell body. Levels of GluA2 was measured by applying an ROI over the cell body and 
measuring signal intensity which was then compared between transfected and non-
transfected cells (red circles). Mean intensity is represented as a percent intensity of non-
transfected cells. Untransfected cells 100 ± 0% , n= 53 cells; Transfected cell intensity 150 
± 4.46%, n = 53 cells, t.test,p < 0.001.(b) sGluA2 overexpression did not cause aberrant 
localization of sGluA2. sGluA2 was restricted to dendrites and no expression was seen in 
axonal boutons. Note the axonal bouton marked by a circle with no expression of sGluA2. 
Scale bar: 5 microns (c) sGluA2 expression is seen even in thin immature filapodia like 
structures (arrow). Scale bar: 2 microns (d) sGluA2 overexpression did not alter spine 
density. Dendrites of  sGluA2\tdTom transfected WT mice had similar spine density when 
compared with WT mice transfected with only tdTom (tdTom: 0.68±0.022 spine/micron n 
= 3 mice; tdTom/GluA2 0.69 ± 0.013 spines/micron, n = 5 mice, unpaired t.test p = 0.67, 
scale bar: 10 microns) 
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Figure S3: sGluA2 content predicts spine fate in k-means analysis and local rank 
predicts fate for all but the smallest spines. (a) Spines were clustered using the k-
means test into the ”High sGluA2” or “Low sGluA2” groups and fraction of stable (dark 
bars) and eliminated spines (light bars) were calculated for each group. A random effect 
ANOVA was used to compare fraction stable spines within groups and across genotypes. 
There was a main effect of groups F(1,1307 =37.34, p<0.001) but not of genotype F(1, 
6)=2.44, p=0.17 and no interaction F(1,1307)=0.75, p=0.39 (WT: High sGluA2 99.3±0.01 
%, Low GluA2 0.69± 0.02 spines, KO: High sGluA2 0.97±0.023 spines, Low sGluA2 
0.60±0.02 spines, n=4 mice per group). (b) Significantly smaller fraction of spines 
classified as High sGluA2 were found in the KO (WT: High 0.21± 0.074, Low 0.79±0.074, 
KO: High 0.14 ± 0.07, Low 0.85±0.07, n=4 mice per group, unpaired t.test, p=0.002). (c) 
Similar sGluA2 level spines were further grouped into two groups with Group 1 containing 
spines which ranked at bottom quarter of their respective dendrite and the remaining 
spines of intermediate size ranked into group 2/3. A similar rank comparison was 
performed as Figure 4F. The main effect of enhanced rank in stable spines was mainly 
seen in spines of Group 2-3 and not for Group 1 (Group 1: eliminated spines 10.76 ± 7 
rank, n=7 spines, stable spines 25.54±9 rank, n=11 spines, Group 2/3: eliminated spines 
34.19±3.67 rank, n=23 spines, stable spines 71.48±5 rank, n=23 spines, multiple t.test, 
group 1 eliminated vs. stable p>0.05 , group 2/3 eliminated vs. stable p<0.001)  
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Figure S4: total sGluA2 levels and mean spine intensity do not change over time. 
(a)Total GluA2 content with spines in a dendrite are not different between 0 and 240 hours 
and across genotypes (WT: 240hr 1.03±0.083, multiple t.test, p > 0.05, n = 5 mice, KO: 
240hr: 1.05±0.045, multiple t.test p > 0.05, n =5 mice) (b) Percent change of spine intensity 
(WT- Black lines, KO- Blue lines) for every time point was calculated by comparing 
intensity to 0hour intensity and plotted. A two way repeated measure ANOVA comparing 
percentage change within time points and across genotypes had no effect of time 
F(5,20)=0.54, p = 0.7 and genotype F(1,4), p =0.49. Data presented as Mean±SEM. 
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Figure S5 New spines are small and initial sGluA2 content does not predict spine 
fate with no difference across genotypes.                                                                                        (a) 
Overall stability of newly formed spines between WT and KO was not different (WT: 0.4314 
± 0.04369, n=5 mice ,KO: 0.4824 ± 0.0351, n=4 mice, t.test, p >0.05) (b) Majority of newly 
formed spines are small and appear at the lower end of the dendrite ranks (90% of spines 
occur in rank 1 and 2) in both WT and KO. Ranks were calculated on newly spines formed 
at 24 and 40 hours irrespective of future fate. (1: WT Group 1: 0.27±0.074, Group 2: 0.14, 
Group 3, Group 4 and KO: Group 1: 0.33±0.08, Group 2: 0.267±0.07, Group 3: 
0.323±0.07, Group 4: 0.24±0.07, n = 5 mice) (c) Newly formed spines were arranged in 
an ascending order of sGluA2 content and were grouped into 4 groups with the highest 
group containing most sGluA2.  To test within groups and across genotypes we performed 
a random effect ANOVA for fraction stability. There was no main effect of groups F(3,309) 
= 0.97, p > 0.5 or genotype F( 1, 8) = 1.71, p > 0.5 and no interaction F(3,309)=0.44,p=0.7.  
(WT group 1: 28.8±0.67 %, WT group 2: 26.15±0.4%, WT group 3: 27.42±0.83%, WT 
group 4: 23±0.62%, n =5 mice, KO group 1: 32.9±0.49, KO group 23.7±0.42%, KO group 
3: 17.71±0.5, KO group 4: 21.1±0.205, n= 5 mice, random effect ANOVA) 
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Chapter 3 Altered functional plasticity of synaptic GluA1 with 
motor learning in the Fragile X mouse. 

 

3.1 Introduction 

Fragile X syndrome (FXS) is the most common inherited form of an intellectual disability 

with a prevalence rate of >1:4000. FXS results from a mutation that causes silencing of 

the FMR1 gene, which encodes the fragile X mental retardation protein (FMRP). FMRP is 

an RNA-binding protein that is involved in regulating the translation of neuronal proteins 

and is thought to be important for some forms of synaptic plasticity (Darnell et al., 2011; 

Pfeiffer & Huber, 2009). Patients with FXS exhibit a range of neurological deficits, 

including cognitive impairments, social anxiety, seizures, sleep disorders, and motor skill 

deficits (Koekkoek et al., 2005; Van der Molen et al., 2010; Zingerevich et al., 2009). 

Although less attention has been given to studying these motor impairments, motor skills 

are integral to exploration, imitation (Vanvuchelen, Roeyers, & De Weerdt, 2007), 

communication (Gernsbacher, Sauer, Geye, Schweigert, & Hill Goldsmith, 2008), and 

other skills with which children with FXS struggle. Therefore, interventions targeted at 

motor impairments may be important in addressing the core areas of impairment in this 

neurodevelopmental disorder. 

Motor skill learning requires the involvement of multiple brain regions, such as the 

cerebellum, basal ganglia, and the motor cortex (Shmuelof & Krakauer, 2011). Synaptic 

plasticity in the primary motor cortex (M1) has been shown to be particularly important. 

Previous experiments support this by demonstrating that motor skill learning: (1) enhances 

the synaptic responses of intracortical connections in the M1 (Rioult-Pedotti et al., 1998), 

(Hodgson et al., 2005)); (2) occludes long-term potentiation (LTP) in these connections 

(Hodgson et al., 2005; Rioult-Pedotti, Donoghue, & Dunaevsky, 2007; Rioult-Pedotti et al., 
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2000) a leading candidate mechanism for persistent changes in synaptic strength; and (3) 

induces structural modification of M1 dendritic spines, sites of excitatory synaptic input (M. 

Fu & Zuo, 2011; Harms et al., 2008; Xu et al., 2009b) 

The fmr1 knock-out (KO) mouse recapitulates several behavioral and physical 

characteristics observed in FXS (Comery et al., 1997; Consortium, 1994; Koekkoek et al., 

2005; Vinueza Veloz et al., 2012), including deficits in associative motor learning (Vinueza 

Veloz et al., 2012), yet the accompanying synaptic changes have not yet been analyzed 

in this mouse. To gain a better understanding of how FMRP contributes to regulation of 

synaptic plasticity in the M1, we trained fmr1 KO mice and wild-type (WT) littermate control 

mice on a single forelimb reaching motor task and analyzed structural and functional 

synaptic plasticity. We report that the fmr1 KO mice display a motor skill learning deficit. 

Although motor skill training induces a transient increase of synaptic AMPA-type 

glutamate receptor subunit 1 (GluA1), in the trained hemisphere of WT mice, in 

the fmr1 KO mice there is a temporal dysregulation of synaptic GluA1 translocation with 

training.  

 

 

 

 

 

 

 



84 
 

3.2 Materials and methods 

3.2a Mice 

Mice were cared for in accordance with NIH guidelines for laboratory animal welfare. All 

experiments were approved by the University of Nebraska Medical Center Institutional 

Animal Care and Use Committee. Male C57BL/6 fmr1 KO and littermate control mice 

were used for behavioral and biochemical experiments. Animals were housed in the 

animal facility at UNMC and raised on a 12 hours light/dark cycle and were given food 

and water ad libitum (except where noted otherwise). 

 

3.2b Motor skill training 

Apparatus: A custom made training box was used for motor sill training on a single forelimb 

reaching task. The training box measured 9.2 cm wide, 22.1 cm long and 20.8 cm long 

(Figure 8a). A small slit in the cage allowed the mouse to reach out and retrieve small 

pellets of food (#F0163, Bioserv). Pellets were placed on the interchangeable platforms in 

the front of the box. Two platforms were used for this behavior- a paw determination 

platform and a training platform as seen in the image. (Figure 8B and 8C) 

Training- 5 to 6-week-old mice were food-restricted (85% of their free-feeding weight). 

Training was divided into two sessions 1) paw determination and 2) training.  On the 1st 

day of training (Day 0) paw preference for mice was determined. Mice were placed in the 

cage with platform for paw determination. This platform had no gap between slit and pellet. 

Mice could use either of their paws for food retrieval. Mice were allowed about 10 attempts 

to retrieve the pellet. The paw with most retrieves was considered preferred and recorded 

for subsequent training. 
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Figure 8: Motor skill training apparatus.                                                                                    

(a) Image of a custom mouse training box for the single forelimb reaching task. b) Image 
of platform used for forelimb preference determination. c) Image of training platform. 
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For training, mice were placed in the cage and trained with the training platform. The 

training platform was designed so as to be accessible only to the preferred paw. A 4 mm 

gap between the pellet and the slit ensured that the mouse had to grasp the pellet to 

retrieve it and could not slide it in. Mice had one training session per day over a period 5 

days. Each session lasted 30 min or 100 reaches. Motor skill performance was 

quantified by the success rate (percentage of successful retrievals). The trained 

hemisphere (tr) is contralateral to the trained forelimb and the untrained hemisphere 

(utr), acts as an internal control. 

Mice were always allowed access to ad libitum water. After Day 0 mice were fed about 0.8 

to 1.2 grams of food pellet to maintain weight ad prevent catastrophic weight loss. The 

exact weight of food provided varied depending on the weight of the mouse on the day of 

training so as to maintain weight within the desired range. Mice were monitored twice 

every day and drastic weight loss or lethargy were considered terminal end points. 

Additionally, for the biochemistry experiments, mice were sacrificed 18hrs after the last 

session of training.  

3.2c Preparation of Synaptosomes from the Motor Cortex (Suresh & Dunaevsky, 2015) 

 

Materials and Reagents   

1. C57BL6 mouse (Mus musculus) 

2. Isoflurane (Isothesia) (Butler animal supplies) 

3. Sodium chloride (NaCl) (Thermo Fisher Scientific, catalog number: S-271) 

4. Potassium chloride (KCl) (Thermo Fisher Scientific, catalog number: P217-500) 

5. Sodium bicarbonate (NaHCO3) (Thermo Fisher Scientific, catalog number: S233-

500) 

6. Monosodium phosphate (NaH2PO4) (Thermo Fisher Scientific, catalog number: 

S369-500) 

7. Magnesium sulphate heptahydrate (MgSO4
.7H2O) (Thermo Fisher Scientific, 

catalog number: MG63-500)   
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8. Calcium chloride (CaCl2) (Thermo Fisher Scientific, catalog number: C79-500) 

9. Dextrose (Thermo Fisher Scientific, catalog number: D16-500) 

10. Sucrose (Thermo Fisher Scientific, catalog number: S5-3) 

11. Radio immunoprecipitation assay (RIPA) lysis buffer (see Recipes)  

12. Roche cOmplete protease inhibitor cocktail pellets (Roche Diagnostics, catalog 

number: 11697498 001) 

13. Protease inhibitor (Sigma-Aldrich, catalog number: p8340) 

14. Phosphatase inhibitor (Sigma-Aldrich, catalog number: 3 p0044) 

15. Krazy glue 

16. Millipore anti GluA1 antibody(Millipore, catalog number: ab1504) 

17. Cell signaling anti-rabbit HRP antibody (Cell Signaling Technology, catalog 

number: 7074S) 

18. Agar powder (Alfa Aesar, catalog number: A10752) 

19. Artificial cerebrospinal fluid (ASCF) (see Recipes) 

20. High magnesium ACSF (see Recipes) 

21. Agar block (see Recipes) 

22. Sucrose media (see Recipes) 

Equipment 

1) Leica vibratome S1000 

2) Scissors (one large and one small) 

3) Forceps 

4) Sharp blade 

5) Vibratome injector blade (Leica) 

6) 1.5 ml Eppendorf tube 

7) Pellet pestle motor hand held homogenizer (Kontes, catalog number: 749540-

0000) 

8) 4 ºC table top centrifuge 

9) Ruler 

10) Aerobic air mixture (Lindweld Alloy, model: MAA140) 

11)  Square petri dish with Grid- (Thermo Fisher Scientific FB0875711A)  

12)  Sonicator (Thermo Fisher Scientific) 

 

Procedure 

A. Synaptosome preparation 
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1. Prepare fresh artificial cerebrospinal fluid (1x ACSF) and bubble with aerobic air 

mixture at room temperature for at least 15 min. 

2. Prepare a 4 mM MgSO4 ACSF (high Mg2+ ACSF) and keep in an ice bath with 

constant bubbling.  

3. Anesthetize the animal using isoflurane gas and euthanize by decapitation. 

4. Make a sharp incision through the skin on top of the skull. Separate the skin from 

the bone. 

5. Make a straight incision from the Foramen Magna to the top of the skull. Separate 

out the two sections of the skull to expose the brain. 

6. Wash the brain with about 1 ml cold High Mg2+ ACSF. 

7. Isolate the brain and lay out transversely (Figure 9C). Cut off the cerebellum and 

the olfactory bulb (Figure 9D).  Stand the brain on the caudal side and cut out the 

ventral portion of the brain (Figure 9E).  

8. Glue the caudal portion of the brain on the vibratome plate using a rectangle piece 

of agar as support (Figure 9F). Make sure the brain is submerged under ice cold 

High Mg2+ ACSF during slicing (Figure 9G). High Mg2+ ACSF is used as this 

prevents excitotoxicty to neurons by blocking N-methyl-D-aspartate receptor 

(NMDAR).  

9. Make thin coronal sections until the corpus callosum from the two hemispheres 

join (Fig. 9H). Then make two 750 micrometer coronal sections which now contain 

the primary motor cortex M1 (1 mm anterior and 0.5 mm posterior to the bregma 

and 0.75 to 2.5 mm lateral). 

10. Incubate the slices in a submersion chamber in ACSF at room temperature for 1 h 

with constant bubbling. 

11. After incubation, place the brain slice on a petri dish under ASCF and constant 

bubbling at room temperature. Use a blade to isolate the forelimb region of primary 
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motor cortex by making cuts 0.75 and 2.5 mm lateral to the midline and a ventral 

cut to remove deeper non cortical structures (Figure 9I). 

12. Place the brain tissue into a 1.5 ml Eppendorf tube containing 300 µl of 0.32M 

sucrose media 1 (see Recipes) containing protease inhibitor (1 tablet in 50 ml of 

media). 

13. Homogenize with a hand held homogenizer for one minute with up and down 

movements.  

14. Spin down the homogenized sample at 1,500 rpm for 10 min at 4 ºC. The pellet 

obtained contains nuclear and cellular debris and is discarded 

15. Collect the supernatant which contains suspended synaptosomes and spin at 

13,500 rpm at 4 °C for 20 min.  

16. The pellet obtained is the required synaptosomal preparation.  

Note: The preparation obtained is an approximately 70% enriched preparation of 

synaptosomes. The preparation has contamination with mitochondria and debris 

from endoplasmic reticulum organelles. To prepare a more purified form of 

synaptosomes this preparation will have to be passed through a sucrose or percoll 

gradient and has not been described in this protocol. 
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Figure 9. Preparation of brain slices on a vibratome.  

 

Figure 10: Electron microscopy image of a synaptosome with pre and 

postsynaptic component. Image obtained from the protocol described (scale bar 1 

micrometer) 

 

To evaluate synaptic GluA1 changes 

17. Aspirate out the supernatant from step A14. 

18. Re-suspend the pellet in 200 µl of RIPA lysis buffer. 

A	 B	

C	 D	 E	 F	

I	H	G	

Postsynaptic Density (PSD) 
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19. Lyse the preparation by sonication on ice. (no post lysis spin required as the 

cellular debris is insignificant) 

20. Estimate the protein levels by relevant protein estimation protocols (BCA assay 

from Pierce). 

21. Run the protein lysates using a standard western blotting technique. We have run 

20 microgram of protein for our experiments.  

22. To immunoblot use Millipore anti GluA1 at 1:1,500 dilution as primary antibody 

and Cell signaling anti-rabbit HRP as secondary antibody at 1:5,000 dilution. 

Note: We have evaluated other proteins such as mTOR, ERK, PSD-95, GLuA2, MAP2 

from these preparations.  

 

Recipes 

1. Artificial cerebrospinal fluid (ASCF) 

Ingredients:  Sodium chloride (NaCl) 126mM, Potassium chloride (KCl) 3mM,  

Monosodium phosphate (NaH2PO4) 1.25mM, Sodium bicarbonate (NaHCO3) 

26mM 

Magnesium sulphate heptahydrate (MgSO4.7H2O) 1mM, Calcium chloride 

dihydrate 

(CaCl2.2H2O) 2mM, Dextrose 10mM, Water  

pH 7.4 

Tonicity 300 mmoles/kg 

Note: We prepare a 10x stock of ACSF excluding MgSO4, CaCl2 and dextrose and 

store at 4 °C. Before the experiment a 1x ACSF is prepared and Dextrose, 

magnesium and calcium salts are added. Both MgSO4 and CaCl2 are prepared and 

stored as 1 M stocks which are then added in required volume to the 1x ACSF. A 

point to note is that 1x ACSF is vigorously bubbled for at least 15 min prior to 

adding the CaCl2 to prevent calcium precipitation. Another alternative is to add the 

CaCl2  in small volumes with vigorous stirring on a stir plate. 

2. High magnesium ACSF 

ACSF 1X solution, Magnesium sulphate heptahydrate (MgSO4
.7H2O) 4mM 
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Note: High Magnesium ACSF is used to block NMDA receptors channels and 

prevent cell death due to excitotoxicty. The Mg2+ is prepared as a 1 M stock and 

0.15ml of 1 M MgSO4 stock is added to 50 ml of previously prepared 1x ACSF to 

obtain a final concentration of 4mM of Mg2+.  

3. Agar block 

Agar powder 33.2g, Sodium chloride 9g, water 1L 

Disperse the NaCl and Agar powder in water. Heat in a microwave oven until all 

the agar dissolves and a clear solution is obtained. Pour into a square petri dish 

and allow to cool to get agar blocks. Make small rectangles from the block and 

stick the breadth of the rectangle on the vibratome plate. 

4. Sucrose media 1 

2.5 M sucrose 

0.5 M HEPES (pH 7.5) 

0.5 M EDTA (pH 8.0) 

Sucrose media is stored at -20 °C. Roche Protease inhibitor cocktail tablet is 

added to the media before use. (1 tablet in 50 ml) 

5. RIPA lysis buffer Tris.HCl 0.3 g, Sodium chloride 0.44 g, Sodium 

dodecylsulphate 0.05 g, Sodium deoxycholate 0.125 g,Triton X 100 0.1 ml,0.5 M 

EDTA 0.05 ml, Water Make up to 50 ml,pH 7.4 

 

3.2d Surface biotinylation assay  

 

Surface protein expression in synaptosomal samples was detected through a biotinylation 

assay, followed by a Western blot analysis with antibodies directed against GluA1. 

Synaptosomal preparations were washed and incubated in Sulfo-NHS-SS biotin (0.5 

mg/ml in ACSF, Pierce) for 1 h at 4°C. Surface biotinylation was stopped by removing the 

solution, followed by quenching of unbound biotin with cold 100 mM glycine in ACSF for 5 

min, three times. Synaptosomes were lysed in RIPA buffer (50 mM Tris.HCl, 25 mM NaCl, 

0.1% SDS, 0.5% Na deoxycholate, 1% Triton X-100, and 0.5 M EDTA). Biotinylated 

proteins (400 μg) were precipitated with 200 μl of neutravidin beads (Pierce) overnight at 

4°C. The beads were washed (3×) and bound protein was eluted by boiling in Lammeli 
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buffer for 10 min. The eluate was separated on 4–15% Biorad Mini-Protean TGX Precast 

SDS-PAGE gels, and transferred to polyvinyl difluoride membranes. The membranes 

were probed with anti-GluA1 (1:1500, Millipore) and anti-GAPDH (1:4000, Cell Signaling 

Technology). The membranes were incubated with horseradish peroxidase-conjugated 

secondary antibodies (anti-rabbit 1:5000), and bands were visualized using a Cell 

Biosciences FluroChem HD2 system. Because we used a crude synaptosomal 

preparation, GAPDH was abundant in the biotinylated samples. Hence, we used GAPDH 

as a loading control 

 

3.2e Statistics 

 

Data are reported as mean ± SEM. Normal distribution was tested using Kolmogorov–

Smirnov test and variance was compared. Analysis was done either using two-sided 

unpaired Student's ttest or with one- or two-way ANOVA with the Bonferonni method 

for post hoc multiple comparisons. Data were analyzed using the GraphPad Prism. 

 

3.3 Results 

3.3a fmr1 KO mice have a motor learning deficit in a single forelimb reaching task 

Five-week-old male fmr1 KO (n = 38) and littermate WT mice (n = 36) were trained to 

reach through a small slit and grasp a food pellet using their preferred forelimb (Figure 

11a). Although the success rate, defined as proportion of successful retrieves from total 

reaches, of both the KO and WT mice increased over subsequent days of training, the 

KO mice achieved a lower success rate (Figure 11b).  

http://www.jneurosci.org/content/33/50/19715.long#F1
http://www.jneurosci.org/content/33/50/19715.long#F1
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Figure 11: Impaired motor skill learning in the fmr1 KO mouse. (a) An illustration of 

the training box with a mouse reaching out for a food pellet through a narrow slit. The 

trained forelimb and the contralateral-trained hemisphere are marked. (b) Average 

success rates during training for WT controls (black, n = 36) and fmr1 KO (blue, n = 38) 

mice. Both genotype and days of training affect success rate (p < 0.01, two-way repeated-

measures ANOVA). (c) There was no difference in the number of reaches performed by 

the KO and WT mice at any of the training days. mean ± SEM. *p < 0.05, **p < 0.01 

 

Both genotype and days of training affect success rate (p < 0.01, two-way repeated-

measures ANOVA). Significant differences were observed on day 3 (WT, 0.44 ± 0.02; KO, 

0.35 ± 0.02, p = 0.002), and day 5 (WT, 0.46 ± 0.01; KO, 0.39 ± 0.02, p = 0.034; Figure 

11b). Additional training days did not lead to increased success rate in the KO mice (Day 

6, 0.36 ± 0.03; Day 7, 0.38 ± 0.03; Day 8 KO, 0.39 ± 0.03, n = 7). The success rate on the 

first day of training (WT, 0.28 ± 0.02; KO, 0.25 ± 0.02, p > 0.99) as well as total number of 

reaching attempts made each day (Figure 11c), were not significantly different between 

the WT and KO mice. These data indicate that the fmr1 KO mice display a motor skill 

learning impairment that is not due to a basic motor function deficit. 

 

 

http://www.jneurosci.org/content/33/50/19715.long#F1
http://www.jneurosci.org/content/33/50/19715.long#F1
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3.3b Motor skill training-induced synaptic delivery of GluA1 is impaired in fmr1 KO mice 

Synaptic delivery of AMPA-type glutamate receptors is thought to be a major contributor 

to LTP (Granger & Nicoll, 2014; Malinow & Malenka, 2002). We therefore tested whether 

motor skill training induces translocation of AMPA receptor subunit GluA1 into synapses 

in the trained hemisphere and if it is impaired in the fmr1 KO mouse. We first determined 

whether there was a difference in levels of synaptic GluA1 between the hemispheres 

before motor skill training. We determined paw preference without further training. Crude 

synaptosomal preparations were isolated from the preferred (pr) and unpreferred (upr) M1 

forelimb regions of untrained mice and synaptic GluA1 levels were determined using 

Western blot analysis (Figure 12a). In the untrained WT mice (nonlittermate controls), 

there was no difference in synaptic GluA1 between the hemispheres (pr: 0.78 ± 0.1; upr: 

0.94 ± 0.11; n = 8, unpaired t test, p = 0.3). This suggests that before training there is no 

increased synaptic GluA1 in the M1 forelimb region of the preferred hemisphere. This is 

consistent with no difference in synaptic strength between hemispheres before training 

(Padmashri et al 2013). We next trained the mice and isolated synaptosomes from the 

trained and untrained M1 forelimb regions at different times after training and determined 

the levels of synaptic GluA1. Although 2 hrs after training there was no difference in the 

interhemisphere ratio (trained/untrained) compared with untrained mice (Figure 12b, 

pr/unpr; utr: 1 ± 0.12, n = 10; 2 h tr: 1.29 ± 0.19, n = 7, p = 1, two-way ANOVA), 1 d after 

training the interhemisphere ratio of synaptic GluA1 was significantly higher (Figure 12b, 

1 d tr: 2.19 ± 0.28, n = 14, p < 0.001, two-way ANOVA). No difference was found between 

littermate controls and WT mice (data not shown); therefore, we combined these groups. 

These data suggest that motor skill training drives GluA1 to synapses. Because GluA1 

translocation into synapses is transient with LTP and experience (Matsuo et al., 2008; Shi 

et al., 1999) we next examined synaptic GluA1 after 2 and 5 d of training. There was a 
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gradual decrease in the interhemisphere ratio of synaptic levels of GluA1 (2 d tr: 1.9 ± 

0.19, n = 7 mice, p= 0.028, two-way ANOVA) with no interhemisphere difference detected 

after five days of training (Figure 12b, 5 d tr: 1.01 ± 0.15 n = 8 mice, two-way ANOVA, p = 

1,Figure 13b). Similar results were found when surface, rather than total synaptic levels 

of GluA1 were measured using a biotinylation method (utr: 1 ± 0.11, n = 7; 1 d tr: 2 ± 

0.34, n = 7, t test, p = 0.02, Figure 13a). These results suggest that motor skill training 

leads to a transient translocation of GluA1 into synapses. 

In cortical neuronal cultures from fmr1 KO mice, there is a deficit in GluA1 trafficking with 

LTP (Hu et al., 2008). Whether experience and learning in the fmr1 KO mouse result in 

impaired translocation of GluA1 into synapses in vivo is not known. We first compared 

basal synaptic levels of GluA1 in WT and KO untrained mice. No difference in levels of 

synaptic GluA1 were found between the genotypes of untrained mice (WT, 0.92 ± 

0.15, n = 11; KO, 0.86 ± 0.09, n = 8; p = 0.78, unpaired t test). As in the WT, no increase 

in GluA1 was observed 2 h after motor skill training (utr KO, 1 ± 0.07, n = 15 mice; 2 h KO, 

0.98 ± 0.14, n = 7 mice; p = 1, two-way ANOVA,). Surprisingly, unlike in the WT mice, 1 d 

of motor skill training did not lead to increased synaptic expression of GluA1 in the trained 

hemisphere of the fmr1 KO mice (1 d KO, 1.09 ± 0.2, n = 8, p = 1, 2-way ANOVA; Figure 

12b). We next examined whether there was a delay in synaptic translocation of GluA1 in 

the fmr1 KO mice. In mice trained for 2 d, we observed an increase in levels of synaptic 

GluA1 in the trained hemisphere compared with untrained KO mice (2 d KO, 2.12 ± 

0.35, n = 9, p < 0.001, two-way ANOVA). Similar to WT mice, the increase in synaptic 

GluA1, albeit delayed, was transient as no increase was observed in the trained 

hemisphere after 5 d of training (5 d KO, 1.21 ± 0.1, n = 7, p = 1, two-way ANOVA; Figure 

12b). These results suggest that in the fmr1 KO mouse, there is a temporal impairment in 

the motor skill training-induced translocation of GluA1 into synapses that might contribute 

to the reduced learning in these mice. 
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Figure 12: Learning induces a transient increase in synaptic GluA1 that is delayed 
in the fmr1 KO mouse. (a) Western blots of synaptic GluA1 from forelimb M1 regions of 
preferred (pr) and unpreferred (upr) hemispheres from untrained (Utr) mice or from trained 
(tr) and untrained (utr) hemispheres of trained WT and fmr1 KO mice.(b) Untrained WT 
mice (n = 10) were compared with trained WT mice after 2 h (n = 7), 1 d (n = 14), 2 d (n = 
7), or 5 d (n = 8) of training. Untrained KO mice (n = 15) were compared with trained KO 
mice after 2 h (n = 7), 1 d (n = 8), 2 d (n = 9), or 5 d (n = 7) of training. For quantification, 
protein levels were normalized to GAPDH and interhemisphere ratios were normalized to 
untrained WT or KO mice. Mean ± SEM. The interaction between genotype and training 
on GluA1 interhemisphere ratio was significant (p = 0.013, two-way ANOVA); *p < 0.05, 
***p < 0.001 
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Figure 13: Learning induces a transient increase in surface GluA1 with no basal 
differences in synaptic GluA1 levels in the KO. (a) Above: Western blots of surface 
GluA1 from forelimb M1 regions of preferred (pr) and unpreferred (upr) hemispheres from 
untrained (Utr) mice or from trained (tr) and untrained (utr) hemispheres of trained WT. 
Below Untrained WT mice (n = 8mice) were compared with trained WT mice after 18 h (n 
= 9mice) or 5 d (n = 4mice) of training. For quantification, protein levels were normalized 
to GAPDH and interhemisphere ratios were normalized to untrained WT mice (p = 0.023, 
one way ANOVA with Bonferroni correction); *p < 0.05 , Mean ± SEM. (b) Above: Western 
blots of synaptic GluA1 from forelimb M1 regions of preferred (pr) and unpreferred (upr) 
hemispheres from untrained (Utr)  WT and KO mice:  Below No difference in absolute 
synaptic levels of GluA1 between either preferred hemispheres and unpreferred 
hemispheres in both WT (n = 5mice) and KO (n = 6mice) genotypes (p>0.05, two way 
ANOVA with Bonferroni correction) 
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3.4 Discussion  

Here we report that motor-skill training induces synaptic changes in the primary motor 

cortex and that in the fmr1 KO mice, there are deficits in both motor-skill learning and in 

synaptic AMPAR insertion. 

 In normal WT mice, analysis of motor-skill training-induced synaptic changes 

demonstrated increased synaptic GluA1 after just one day of training. Synaptic insertion 

of GluA1 is a characteristic of long term potentiation. Since there is evidence of LTP-like 

mechanisms in this learning paradigm (Rioult-Pedotti et al., 2000), the increased levels of 

synaptic GluA1 could be  mirroring expression of LTP-like plasticity within M1 cortex. The 

increase in synaptic GluA1 was gradual, with a 20% increase immediately (2 hours) after 

training which subsequently increased two fold about 16hrs later. Considering the time 

scales involved in the learning paradigm, this points to a relatively rapid expression of 

LTP-like plasticity within the motor cortex. Interestingly, the increase in GluA1 was 

transient and started to wane by the second day of training and dropped back to baseline 

at the end of five days. Since extrinsic LTP expression is known to be occluded after 5 

days of motor-skill training, one explanation for the occlusion is saturation of plasticity 

mechanisms to the earlier round of LTP.   

Another feature of this learning paradigm is rapid structural plasticity with new spines 

observed as early as 2 hours following motor training (Xu et al., 2009a). Since, LTP 

expression is known to induce synaptogenesis (in slices) it has been thought that the 

structural plasticity is a consequence of LTP-like plasticity within neurons during learning. 

However, since GluA1 levels peak about 16 hours later this suggests the functional 

plasticity lags structural changes. One possible explanation is that LTP-like mechanism is 

being triggered in a few synapses in response to the behavior which then causes 

synaptogenesis in surrounding regions. Later on these newly formed synapses 

accumulate AMPAR leading to further increase in total synaptic GluA1 which is large 
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enough to be detected biochemically. Since LTP is known to selectively stabilize spines 

(Hill & Zito, 2013) and the learning-induced newly formed spines are preferentially 

stabilized, this lends further support to the hypothesis.  

Additionally, we identified that the fmr1 KO mouse had deficits in motor-skill learning and 

a delay in learning induced GluA1 insertion. The motor-skill learning deficit reported here 

is consistent with mild behavioral impairments reported for the fmr1 KO mice (Consortium, 

1994; D'Hooge et al., 1997; Krueger et al., 2011; Vinueza Veloz et al., 2012). We cannot 

exclude the possibility that other impairments in the fmr1 KO mice, such as altered anxiety 

and activity levels, might affect motor skill learning. Nevertheless, reduced motor skill 

learning is not likely to be due to reduced motor performance or motivation because we 

observed a similar initial success rate as well as total number of reaching attempts made 

by the KO and WT mice. The absence of impairments in basic motor function in 

the fmr1 KO has also been previously reported (Vinueza Veloz et al., 2012; Wang et al., 

2008) and the impairment in motor-skill learning we report here might be related to the 

motor-skill impairments reported in FXS patients (Van der Molen et al., 2010; Zingerevich 

et al., 2009).  

In this same study we also identified deficits in LTP in the motor cortex of fmr1 KO mouse 

(Padmashri et al., 2013).  This fits in well with the current finding of delay in GluA1 insertion 

with training and is line with studies suggesting that synapses in the fmr1 KO mice are 

less sensitive to potentiation (Meredith et al., 2007; Pan et al., 2010). Consistent with the 

above cited studies, motor-skill training did not induce rapid synaptic formation in the fmr1 

KO as would be expected from deficient LTP induction following learning. 

The described biochemical studies have limitations regarding the information they provide 

on the spatiotemporal dynamics of AMPAR insertion following motor training. Since, the 

biochemical assay samples the entire forelimb representation area with the primary motor 

cortex, any laminar differences would be lost in this analysis. Since spine properties vary 
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according to the layer of neurons (A. J. Holtmaat et al., 2005; Zuo et al., 2005), our results 

do not rule out laminar differences in synaptic plasticity following motor learning. Similarly, 

as discussed earlier dendritic spines are heterogeneous, with morphology correlated with 

long term synaptic fate. The exact population of spines undergoing AMPAR insertion could 

be important for understanding the mechanisms of memory storage. Furthermore, insight 

into how functional plasticity influences local micro-circuitry as discussed under the cluster 

memory storage hypothesis, are also unclear from these biochemical results. Finally, how 

basal alterations in AMPAR-spine relationship in the fmr1 KO mouse as discussed in 

Chapter 2 affect learning induced synaptic plasticity is also unclear. To answer these 

questions, one needs to combine in vivo two photon imaging techniques with motor 

training to monitor the AMPAR and spines. In ongoing experiments we are interested to 

examine the population and consequences of AMPAR insertion within spines during 

learning and how these are altered in the fmr1 KO mouse. 

In this body of work we monitored different AMPAR subunits wherein GluA2 was tracked 

in the basal studies (chapter 2) and GluA1 with learning (chapter 3). When we started this 

project the overarching consensus in the field was that GluA1 was trafficked into synapses 

in an activity dependent manner (Shi et al., 1999) and was then replaced by GluA2 

containing AMPAR in a constitutive regulatory mode (Derkach, Oh, Guire, & Soderling, 

2007). Hence, overall strength of synapse was maintained by GluA2 trafficking but activity 

induced potentiation was through GluA1. However, more recent studies, have challenged 

this model of differential subunit based AMPAR trafficking (Nicoll & Roche, 2013). This 

was in part due to the finding that 95% of functional synaptic AMPAR were composed of 

GluA2 with the predominant composition being GluA2/GluA1 heteromers (W. Lu et al., 

2009). Further, the Nicoll group demonstrated using a genetic deletion approach that 

GluA2 and GluA1 were equally likely to be inserted into synapses upon potentiation 

(Granger, Shi, Lu, Cerpas, & Nicoll, 2013). The only prerequisite to potentiation was 
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presence of a pool of extrasynaptic AMPAR. This model suggests that both GluA1 and 

GluA2 would have identical temporal dynamics with learning induced synaptic 

potentiation.  
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Chapter 4 Appendices 

Appendix A: Abbreviations. 

ACC: Anterior Cingulate cortex 

ACSF: Artificial cerebrospinal fluid 

AMPAR: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 

AP: Action potential 

ARC: Activity regulated cytoskeleton associated protein 

BRCA1:  Breast cancer gene 1 

CAMKII: Ca2+/calmodulin-dependent protein kinase II  

CD: Caudate nuclei 

CNS: Central nervous system 

ERK: Extracellular regulated kinase 

FXS: Fragile X syndrome 

FXTAS: Fragile X tremor/ataxia syndrome 

GKAP: Guanylate kinase-associated protein 

GPCR: G protein coupled receptor 

HITS-CLIP: High-throughput sequencing of RNA isolated by crosslinking 

immunoprecipitation  

ID: Intellectual disability 

IQ: Intelligence quotient 

LTD: Long term depression 

LTP: Long term potentiation 

MAPK: Mitogen activated protein kinase 

mGluR: Metabotropic glutamate receptor 

NES: Nuclear export signal 

NLS: Nuclear localization signal 

NMDA: N-methyl-D-aspartate receptor 

PP1: Protein phosphatase 1 

PSD: Post synaptic density 
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SER: Smooth endoplasmic reticulum 

STEP: Striatal enriched protein tyrosine phosphotase  

TARP: Transmembrane AMPAR receptor regulatory protein 

TPLM- Two photon light microscopy 
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