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Abstract

Xinyan Zhang, PhD

University of Nebraska Medical Center, 2016

Advisor: Sorin Luca, PhD.

Staphylococcus  aureus cid/lrg operons  regulate  the  formation  of  S.aureus biofilm

formation and programmed cell death based on previous in vivo work done in Dr. Bayles's lab.

cid operon, which encodes CidA/CidB/CidC proteins, has been shown to be an effector in leading

to the lysis and death of the S.aureus; While lrg operon, encoding LrgA and LrgB proteins, is an

inhibitor of the lysis and death. Recent studies suggest that CidA behaves like holin proteins from

bacterial phage, by increasing the murein hydrolysis activity under aerobic culturing conditions.

LrgA, together with LrgB, appears to inhibit this function. Another important studies on S.aureus

under carbon-overflow condition indicates that CidC plays a critical function in the autolysis of

the bacteria by producing acetic acid, and finally lead to the death of the bacteria.

Based on these findings, we further characterize these proteins in this project with in vitro

high concentration of purified proteins. Our result indicates that CidA/LrgA causes the leakage of

smaller fluorescent dyes, but not large proteins, from the artificial membrane. And CidA showed a

more rapid leakage compare to LrgA at the same concentration. This result may indicate that the

function  of  CidA is  penetrating  the  bacterial  membrane  and  may  induce  the  formation  of

nanometer level pores. 

CidC is also overexpressed and purified. The assay has conclusively proved that CidC is

a  pyruvate  oxidoreductase  and  binds  to  the  biological  membrane,  It  passes  the  electron  to
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menaquinone in vivo and produces acetate instead of hydrogen peroxide. The activity of CidC is

strongly pH dependent and replies on the cofactor thiamine pyrophsophate and Mg2+ ion.

In my last project, the effect of GC-rich sequence on the stability of thrombin-binding

aptamer G-quadruplex was investigated. Two complementary GC-rich single strands are attached

to the aptamer separately or both at the same time. The results showed that one single strand has a

deleterious effect on the formation of the G-quadruplex but the other single strand has little effect

on it, when both attached, they form a duplex on top of the G-quadruplex. The study has great

indication on the mechanism of how the flanking sequence affects the stability of the thrombin-

binding aptamer as well as the in vivo telomeric G-quadruplex.
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        Chapter 1

Introduction

Methicillin-resistant  Staphylococcus  aureus  (MRSA)  refers  to  strains  of

Staphylococcus aureus (S. aureus) that are resistant to the antibiotic methicillin (including

other beta-lactam antibiotics) and a host of other drugs used to treat infection. MRSA has

been recently responsible for 11,000 deaths and 80,000 invasive infections per year in the

U.S.1 The MRSA virulence has been associated with the capacity of S. aureus to form biofilm,

which is a bacterial conglomeration embedded in a self-produced and protective matrix. 2,3

Apoptosis is usually associated with complex eukaryotes, where the genetically well-

controlled  elimination  of  a  damaged  (in  diseased  tissues)  or  unnecessary  (during

development) subpopulation of cells benefits the organism as a whole. Interestingly, bacterial

biofilm also consists of complex and well organized cellular subpopulations structures, which

is similar to multicellular organisms and significantly distinct from the planktonic bacteria

that live in isolation. Because of the multicellular nature of biofilm, selective pressure exists

to eliminate damaged and/or malfunctional individual cells, thus enhancing the survival of the

remaining  healthy population.  The death of  the  subpopulation may not  only increase the

availability of external nutrients to the entire community, but also release cellular DNA which

is an essential structural component of the biofilm matrix4–6. Dr. Bayles proposed that there

could  even  be  a  subtle  and  genetically  well-programmed  mechanism  behind  the  above

hypothesis. More specifically, the Cid/Lrg system has been proposed to relate to the control of

cell death and lysis in the context of a developing biofilm within S. aureus7–10
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1.1 Eukaryotic programmed cell death

Regulated  cell  proliferation  and  death  are  common  phenomena  observed  in

multicellular  organisms,  keeping  a  balanced  life-and-death  cycle  has  a  vital  rule  in  the

survival  of  individuals11.  The  programmed  cell  death  (PCD  or  apoptosis)  of  the  cell  is

accompanied by a series morphological changes and biochemical events, including blebbing,

cell  shrinkage,  nuclear  fragmentation,  chromatin  condensation,  chromosomal  DNA

fragmentation, and global mRNA decay. Between 50 and 70 billion cells die each day due to

apoptosis in an average human adult. For an average child between the ages of 8 and 14,

approximately 20 billion to 30 billion cells die a day. Excessive apoptosis causes atrophy,

whereas insufficient amount of apoptosis results in uncontrolled cell  proliferation, such as

cancer.

Unlike necrosis, which is a form of traumatic cell death as a result of acute cell injury,

apotosis is  a highly gene regulated and controlled process which confers advantage to an

organism.  A well-known example  of  apoptosis  is  the  separation  of  fingers  and toes  in  a

developing human embryo, because cells between the digits undergo apoptosis.

The mechanism of apoptosis in mammalian cells has been well studied since early

1990s. Apoptosis can be initiated through one of two pathways. In the intrinsic pathway the

cell kills itself because it senses cell stress, whereas in the extrinsic pathway the cell kills

itself  because  of  signals  from other  cells.  Both  pathways  induce  cell  death  by activating

cysteine-aspartic  proteases  (caspases).  The  two  pathways  both  activate  initiator  caspases,

which  then  activate  executioner  caspases,  which  then  kill  the  cell  by degrading  proteins

indiscriminately. Once apoptosis has begun, there is no going back for the cells.
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1.1.1 Intrinsic pathway

The  intrinsic  pathway,  also  as  known  as  mitochondria  pathway,  of  apoptosis  is

activated by intracellular signals generated when cells are stressed and it's dependent on the

release of proteins from the intermembrane space of mitochondria12. Many apoptotic proteins

initiate and mediate the intrinsic pathway by targeting mitochondria, they may cause swelling

of the mitochondria though formation of pores and lead to the ceasing of aerobic respiration,

or they may increase the permeability and cause the leakage of apoptotic effector proteins

such as SMACs (second mitochondria-derived activator of caspases) and cytochrome c (see

Figure 1.1). Once released, SMAC and cytochrome c triggers the caspase cascade and the

down stream morphological changes that are associated with cellular disassembly13,14. 

At the heart of apoptosis is B cell  lymphoma 2 (Bcl-2) family of proteins, which

includes pro-apoptotic proteins Bax, Bak and Bok; BH-3 domain only protein, BID, BIM,

BAD, etc. and anti-apoptotic proteins such as Bcl-2, Bcl-X, Bcl-W, etc15. Studies has shown

that  the apoptotic  process  in mitochondria  is  initiated by the oligomerization of  Bax/Bak

proteins  in  the  mitochondria  outer  membrane  (MOM)15,  these  proteins  interact  with,  and

increase the opening of mitochondria voltage-dependent anion channel (VDAC) and lead to

the loss of membrane potential and the release of cytochrome c, more recent findings suggest

that Bax and Bak directly involve in the release of cytochrome c by inducing pore formation

on MOM16.  On the other  hand,  the  anti-apoptotic  proteins  act  as  inhibitors  of  the  above

process by interacting with Bax and Bak (Figure 1.1). The entire intrinsic pathway is under

tight control by eukaryotic genome, for example, the expression of Bax protein is regulated by

p53 gene, which is one of the most important tumor suppressor genes17.

1.1.2 Extrinsic pathway

The extrinsic pathway of apoptosis is activated by extracellular ligands binding to
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cell-surface death receptors, which are members of tumor necrosis factor (TNF) receptor gene

superfamily18.  Members of the TNF receptor family share similar cyteine-rich extracellular

domains and have a cytoplasmic domain of about 80 amino acids called the “death domain”

19.  This death domain plays  a critical  role in death signal  transduction.  To date,  the best-

characterized ligands and corresponding death receptors are FasL/FasR and TNF-α/TNFR1

(see Figure 1.1). 

In the  FasL/FasR and TNF-α/TNFR1 models,  there is  clustering of receptors  and

binding  with  the  homologous  trimeric  ligand.  Upon  ligand  binding,  cytoplasmic  adapter

proteins are recruited and exhibit corresponding death domains that bind with the receptors.

The binding of Fas ligand to Fas receptor results in the binding of the adapter protein FADD

and the binding of TNF ligand to TNF receptor results in the binding of the adapter protein

TRADD with recruitment of FADD and RIP20–22. FADD then associates with procaspase-8 via

dimerization of the death effector domain. At this point, a death-inducing signaling complex

(DISC) is formed, resulting in the auto-catalytic activation of procaspase-823.

Once  caspase-8 is  activated,  the  execution phase of  apoptosis  is  triggered.  Death

receptor mediated apoptosis can be inhibited by a protein called c-FLIP which will bind to

FADD and caspase-8,  rendering them ineffective24,25.  Another  point  of  potential  apoptosis

regulation  involves  a  protein  called  Toso,  which  has  been  shown  to  block  Fas-induced

apoptosis in T cells via inhibition of caspase-8 processing26.
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Figure  1.1. Simplified  Apoptosis  Intrinsic  and  Extrinsic  pathway.  Intrinsic  pathway  is

initiated  by  intracellular  signal  like  DNA  damage,  Extrinsic  pathway  is  induced  by

extracellular  ligands  (e.g.  FasL).  Bcl-2  family  proteins  play  a  critical  role  in  regulating

apoptosis by targeting mitochondria.
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1.2 Biofilm, bacterial programmed cell death and cid/lrg operon

The  tolerance  of  bacteria  to  common antibiotics  has  been  causing  serious  health

problems in hospitals, prisons, and nursing homes, where patients with open wounds, invasive

devices, and weak immune systems are at greater risk of nosocomial infections. Methicillin-

resistant  S. aureus (MRSA) is particularly responsible in the U.S. for at least 11,000 deaths

and 80,000 invasive infections per year27 with associated costs of $3.2 to 4.2 billions28. The

virulence  of  MRSA has  been  shown to  depend  on  the  formation  of  biofilm,  which  is  a

bacterial colony embedded in a self-produced and protective matrix2,3.

Biofilm can be formed by both gram-positive and gram negative bacteria when they

stick  to  a  non-biological  or  biological  surface29.  Biofilm  is  composed  of  proteins,

polysaccharides and extracellular DNA, which are released by a subpopulation of bacteria as

a result of their autolysis. Recent findings have suggested that bacterial autolysis within the

biofilm is a strictly gene-regulated process. Many systems have been reported to control the

autolysis in different bacteria6,10,30–32.

There are evidences suggesting that bacteria autolysis in many ways resembles the

eukaryotic apoptosis process.  Since the autolysis in many bacteria possesses hallmarks  of

apoptosis,  like DNA fragmentation,  elevated caspase-like protein activity,  increasing ROS

production and respiratory dysfunction, etc9,33. In  S.aureus and many other biofilm-forming

bacteria,  cid/lrg  operon has  been  shown  to  regulate  the  bacterial  PCD  by  sensing  the

membrane  potential  and  abnormality  of  carbon  metabolism  under  carbon-overflow

conditions, thus greatly affecting the formation of biofilm34,35.

This part of the introduction will  review the known facts of biofilm and bacterial

programmed cell death with emphasis on cid/lrg operon, it will help to better understand the

mechanism of S.aureus biofilm formation and the role played by cid/lrg operon and their gene
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products.

1.2.1 Biofilm Development

As mentioned before, biofilm is a sessile community formed by a group of bacteria

sticking  to  a  solid  surface.  The  microbial  cells  growing  in  a  biofilm are  physiologically

distinct from planktonic cells of the same organism, which, by contrast, are single-cells that

may float  or  swim in a liquid medium.  Also,  the gene expression pattern of  the  bacteria

growing in the biofilm is much different than the planktonic bacteria. The unique features of

bacteria existing in biofilm enabled them to have extraordinary resistance to conventional

biocides, antimicrobial treatments and the immune defense responses of the host, thus making

biofilm formation the root of many persistent and chronic bacterial infections including the

ones that are caused by MRSA32,36. 

Formation of a biofilm begins with the attachment of free-floating microorganisms to

a  surface  (see  Figure  1.2).  The  first  stage  of  bacteria  attachment  to  a  surface  is  weak,

reversible  adhesion  via  van  der  Waals  forces.  For  some  motile  bacteria,  if  they are  not

immediately separated from the surface, they can anchor themselves more tightly using cell

adhesion structures such as flagella and pili in the case of Escherichia coli (E.coli) biofilm37. 

Once irreversible attachment happens, the biofilm start to enter the maturation stage,

surface contact triggers gene expression changes and upregulating factors favoring sessility of

the  biofilm29,36.  In  this  stage,  bacteria  start  to  secret  polysaccharides,  protein  to  form

extracellular matrix, in particular a subpopulation of the bacteria even conduct autolysis to

release  their  intracellular  contents  including  their  chromosomal  DNA (later  known  as

extracellular DNA, eDNA), acting as a stabilizing scaffold of the biofilm31. The substances in

the extracellular matrix are known as extracellular polymeric substances, which accounts for

90% of the biomass of the biofilm and bring nutrients and structural support to the bacterial
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community within the biofilm29,32.

As  the  biofilm  matures,  the  bacteria  in  the  biofilm  actively  communicate  and

exchange and share products, which play pivotal roles in maintaining the architecture of the

biofilm and providing a favorable environment for the bacteria. Following the maturation of

biofilm,  dispersal  of  the  bacteria  may occur.  Bacteria  have evolved ways  to  perceive the

changes in the environment and gauge whether to remain in the biofilm or resume a plantonic

form,  biofilm dispersal  can  be  the  result  of  several  cues,  such  as  alterations  in  nutrient

availability,  oxygen  fluctuations  and  increase  of  toxic  products,  or  other  stress-inducing

conditions. Bacteria have systems that can sense those stress and alter their gene expression

accordingly, promoting their disposal29,31.
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Figure 1.2. Biofilm development. Biofilm forms by planktonic bacteria sticking to a solid

biological/non-biological surface. There are four stages in the biofilm development process,

(1) Attachment, (2) Cell-to-cell adhesion, (3) Proliferation, (4) Maturation.
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1.2.2 Benefits of the biofilm

By adopting this sessile mode of life, biofilm-embedded bacteria benefit from many

advantages  over  their  planktonic  counterparts.  The  extracellular  matrix  is  capable  of

sequestering  and  concentrating  environmental  nutrients  such  as  carbon,  nitrogen  and

phosphate38.  An  additional  benefit  of  biofilm  is  the  ability  to  evade  multiple  clearance

mechanisms  produced  by  host  and  synthetic  sources.  Examples  of  ineffective  clearance

strategies  include  antimicrobiotics,  physical  disruption,  host  phagocytic  and  host  radical

elimination and protease digestion. Resistance to antimicrobial factors is mediated through a

dormant  phenotype  as  a  result  of  adaptation  to  a  low  oxygen  environment  and  nutrient

deprivation, and results in low metabolic and cell division rates. This stressed environment

produces many slow growing cells that are tolerant to high levels of antibiotics but also a

proportion of persister cells, which shut down the antimicrobial targets or the cellular need for

those  targets  by  maintaining  a  metabolically  quiescent  state,  instead  of  preventing  the

antibiotics from hitting its target, as it's the case with many antibiotic resistant bacteria 39,40.

Due to the unique features of persister cells, antibiotics or effectors of host immune system

can't clear out these population41. Once these treatment regime is halted, these persisters are

able  to  spontaneously  shift  out  of  their  quiescent  state  and  produce  a  reactivation  of

infection41.

Another  hard-to-eliminate  benefit  for  the  biofilm-embedded  bacteria  may  be  the

capability of  biofilms to act  as a diffusion barrier  to slow down the penetration of  some

antimicrobial agents42. A recent study suggested several antibiotics (oxacillin, cefotaxime and

vancomycin) had reduced penetration throughout S. aureus and S. epidermidis biofilms43.

The  final  benefit  to  the  biofilm  development  is  the  potential  for  dispersal  and
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detachment. As mentioned previously, after the mature of biofilm, bacteria has the option of

dispersal. Micro-colonies may detach under the direction of fluid shear forces or through a

genetically  programmed  response  that  mediates  the  dispersal  process44.  The  detached

microcolonies migrate from the original biofilm to uninfected regions of the host or other

surfaces, attach and promote nascent biofilm formation. 

In summary, formation of biofilm becomes the root for many persistent, chronic and

recurrent bacterial infections. The bacteria within the biofilm possess quite different features

compared to their planktonic counterparts. Due to the physiological and genetic heterogeneity,

the biofilm-embedded bacteria has the ability to escape from host or synthetic elimination.

The structure  of  biofilm can protect  the  bacteria  from many antibiotic  drugs.  And lastly,

detachment of the bacteria from mature biofilm enable them to evade environmental stress

and form nascent biofilms.

1.2.3 Bacteria programmed cell death

During the past two decades, people start to realize that bacteria are not just some

primitive  single  cellular  organisms  which  can  hardly  do  much  more  than  growing  and

dividing. Many astonishing facts of bacteria has been discovered, such as quorum sensing,

which allows the bacteria to sense the existence of each other based on the secretion of small

signal  molecules  and  synchronize  their  gene  expression  pattern,  thus  behave  like  a

multicellular  organism  and  is  involved  in  several  bacterial  processes  such  as  biofilm,

sporulation, production of virulence factors, and competence for DNA uptake45,46. 

Another interesting subject is the controlled autolysis, also known as bacterial PCD,

which is one of the fundamental group behaviors conducted by bacteria. The importance of

bacterial cell death and lysis was underestimated. It was traditionally thought of as the results

of “unbalanced growth” or the passive end stage of the bacterial life cycle that occurs after all
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the  nutrients  have  been  depleted  or  all  physiological  processes  have  run  their  course.

However, several studies suggested that these processes are highly gene-regulated and are

much  more  complex  than  previously conceived,  processes  that  might  be  fundamental  to

bacterial  physiology  and  essential  to  our  understanding  of  how  bacteria  develop  within

complex  communities  (e.g.,  biofilms),  just  as  knowledge  of  PCD  is  essential  to  an

understanding of the development of more sophisticated eukaryotic organisms. 

There are several systems that were reported to regulate bacterial PCD. Many of them

so far are found to be specific for certain bacteria species, however, there are also conserved

molecular modules that can regulate most bacterial PCD, such systems include TA system and

holin-endolysin system.

1.2.3.1 TA system

A common mechanism to realize PCD in bacteria is through toxin–antitoxin (TA)

modules, which exists in almost all bacteria and archaea species that have been sequenced 47. A

TA module typically is composed of genes encoding a stable toxin protein and an unstable

antitoxin (a  protein or  an RNA) that  prevents  the  toxicity of  the  toxin by either  directly

interaction  or  translational  inhibition  of  the  toxin.  Under  certain  stressed  conditions,

antitoxins are quickly degraded thus releasing toxins to exert  their  poisoning effects.  The

targets of toxins include DNA replication, translation, cell division, and cell wall synthesis48.

One of the most studied TA systems is the  mazEF system, which was first identified on  E.

coli chromosomal DNA and later in other bacterial genome49. mazF codes for a toxin protein

MazF, an endoribonuclease that cleaves mRNAs; mazE codes for an antitoxin MazE, which

can be rapidly degraded by the ClpPA serine protease49. The mazEF system is activated under

various  stressful  conditions,  including  DNA  damage,  antibiotic  treatment,  amino  acid

starvation and oxidative stress50,51. Once induced, it causes PCD in most of the population by

increasing the synthesis of ‘death proteins’, while allowing survival of a small sub-population
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by  increasing  the  synthesis  of  'survival  proteins’52.  Moreover,  mazEF-regulated  death  is

mediated by a small peptide called extracellular death factor  that is secreted by bacteria 53,

suggesting fine tuning of PCD through population density and thus a role of quorum sensing. 

1.2.3.2 Holin system

Another  well-characterized  system  that  regulate  the  bacterial  PCD  is  the  holin-

endolysin system that origins from bacteriophage. The system controls the timing of bacterial

lysis to make sure that the release of bacteriophage particles from the infected bacteria is at a

time that maximize the reproductive potential of the bacteriophage population54. The timing of

cell lysis is dictated by the holin proteins, which are small membrane proteins. They control

the activity of the endolysin (murein hydrolase) and the regulation is achieved by one of two

proposed mechanisms.  The first  mechanism,  which is  mainly used by holins  encoded by

lambda- and T4-like bacteriophages, involves the control of murein hydrolase transport across

the  membrane  to  the  cell  wall  (see  Figure  1.3),  where  it  has  access  to  its  substrate,

peptidoglycan.   Although the  mechanism by which  these  holins  mediate  the  transport  of

murein hydrolases is unclear,   it is thought that holins oligomerize in the membrane and

eventually lead  to  the  disruption  of  the  membrane,  which  passively allowing the  murein

hydrolase to cross into the periplasm55,56. The other mechanism, used by bacteriophage P1,

involves bacteriophage-encoded murein hydrolases containing “signal-arrest-release” (SAR)

domains57. Like signal sequences, SAR domains target their cargo to the Sec machinery but

anchor the protein in the outer  face of the membrane as an inactive form until  the holin

releases it. Later the production of active murein hydrolases are later achieved by a disulfide

isomerization event, upon released by holins58.

How does the holin achieve the precise releasing timing of murein hydrolase? The

answer seems to lie in their structures. The primary sequences of holins are diverse, most

contain distinct structural features, including a relatively small size (60 to 145 amino acids),
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two or more putative membrane-spanning domains often separated by a predicted beta-turn

linker  region,  a  hydrophilic  N-terminus,  and  a  highly  polar,  charged  C-terminus59.

Interestingly, holin genes often contain a “dual-start motif” that produces two different protein

products. The shorter form of the protein functions as the holin, while the longer version,

which is often different by additional few more amino acids at the N-terminus, functions as

the  antiholin60,61.  Despite  the  minor  difference,  holin  and  anti-holin  has  the  completely

opposite functions. As the holins accumulate within the membrane, a gradual dissipation of

the proton gradient occurs, once it reaches a point when the N terminus of the antiholin flips

to the periplasmic face of the membrane, the antiholin functions as a holin, and the complete

and rapid de-energization of the bacterial membrane is achieved61.  Thus, two mechanisms

seem to control  the “lysis  clock”:  one that  is  programmed into the structure  of the  holin

protein, probably affecting the rate of proton leakage, and the other that involves changes in

the ratio between the holin and antiholin. Once the holin timer has gone off, exactly how it

mediates the transport of the endolysin is unclear. 
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Figure 1.3. Holin-endolysin system. Holins are small membrane proteins and oligomerize in

the  bacterial  inner  membrane,  they regulate  the  bacteria  lysis  by  controlling  the  murein

hydrolase activity.
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1.2.4 cid/lrg regulatory system

Studies have suggested that  regulated bacterial  cell  death is important  for biofilm

development,  especially in the maturation and dispersal stage. Following the cell  death,  a

subpopulation of dead bacteria lyse and release their genomic DNA (later known as eDNA),

which increase the intercellular adhesion and biofilm stability6,30.  During this process, lytSR

and cidR operon has been suggested to play an important role. 

The discovery and characterization of the cid and lrg operons evolved from the initial

identification  of  a  novel  two-component  (two  related  transcriptional  factors)  regulatory

system from S. aureus, termed LytSR, that affected murein hydrolase activity and autolysis 62.

LytSR mutant lead to increased autolysis and altered murein hydrolase activity compared to

wild type in the liquid culture of  S.aureus62. LytS protein has a GAF DNA-binding domain

and a membrane bound histidine kinase domain which intercepts an environmental cue and

through an act of auto-phosphorylation transduces the signal intracellularly, LytS has been

reported to sense disruption of membrane potential  and lead to the transcription of lytSR

downstream gene63. LytR is a transcription factor that falls into a novel family of proteins that

contain non-helix-turn-helix DNA binding domains, also known as LytTRs. LytR regulates

the expression of downstream gene in response to carbohydrate metabolism (e.g. excess of

glucose)63,64.

The  downstream  genes  of  lytSR are  lrgA and  lrgB,  lrgA encodes  a  16.3  kDa

membrane protein and lrgB encodes a 25.1 kDa membrane protein. The LrgA protein contains

four putative membrane-spanning domains, two potential linker regions, and a charged rich

amino-terminal domain. It was hypothesized that lrgA is an antiholin-like protein (see Figure

1.4A), which was proved by the fact that an  lrgAB mutation resulted in increased murein



17

hydrolase activity produced by the bacteria65.  The function of  lrgB was also addressed by

generating an lrgB mutant and examining its phenotypic characteristics. Although no effect of

this  mutation  on  growth  or  autolysis  was  observed,  zymographic  analysis  of  this  strain

revealed the absence of a 25 to 30kDa murein hydrolase, leading to the speculation that it

encodes either a murein hydrolase or a regulator of murein hydrolase activity62.  Based on

these results,  it  was hypothesized that  the  lrgAB operon encodes an antiholin,  although a

detailed analysis of the individual genes remains to be conducted. Furthermore, due to the

absence of a dual-start motif within the lrgA and/or lrgB gene, it was predicted that the holin

protein component of this system would be encoded by another gene within the  S. aureus

chromosome10.

Later  this  prediction  was  supported  by  discovery  and  characterization  of  lrgAB

homologues that were designated cidA and cidB66. The cidA gene product (CidA) shares 23%

amino acid sequence identity with LrgA, whereas the cidB product (CidB) shares 31% amino

acid sequence identity with LrgB. The putative CidA protein contains 131 amino acids and

has a deduced molecular mass of 14.7 kDa, while CidB contains 229 amino acids and has a

molecular  mass  of 25.0 kDa.  Like LrgA and LrgB,  the  CidA and CidB proteins  are  also

membrane proteins containing several predicted membrane-spanning domains.  cidA mutant

produced decreased murein hydrolase activity relative to that of its parental strain, the biofilm

produced by the cidA mutant is more loosely compacted and is less adherent to the substrate

and cidA mutant biofilm has much less lysis and eDNA compared to wild-type5,67, these facts

demonstrated that the function of the  cid operon is an effector of murein hydrolase activity.

Furthermore, this mutation was also shown to confer tolerance to various antibiotics including

penicillin,  rifampin,  and  vancomycin67,68.  Overall,  these  results  are  consistent  with  the

hypothesis that the cid operon encodes a holin and the lrg operon encodes an antiholin. Based

on  the  putative  functions  of  the  cidA and  lrgA gene  products  as  holins  and  antiholins,

respectively, a model for their roles in murein hydrolase regulation is proposed. The effect of
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membrane  depolarization  would  result  in  the  release  of  murein  hydrolase  activity.  The

activation of the CidA proteins via a holin-like mechanism is hypothesized to dissipate the

membrane  potential,  thus  triggering murein  hydrolase  activity and lysis.  The presence of

LrgA is thought to inhibit the activity of the CidA holin in a way analogous to the inhibitory

effect of an antiholin (see Figure 1.4B)8,69. 

Another major advance in the study of the  cid and  lrg operons was the finding and

characterization of a third gene on  cid operon, cidC,  encoding a pyruvate oxidoreductase

homologue9,70. Furthermore, cells containing a cidC mutation maintained a much higher level

of cell viability in stationary phase than did the parental strain when grown in the presence of

excess glucose. CidC was proved to produce acetate from pyruvate under carbon overflow

(excess  of  glucose)  condition,  thus  become  a  suicidal  marker  for  S.aureus by  causing

acidification.  Another  two  enzymes  alsSD,  produce  acetoin  (a  neutral  molecule),  out  of

pyruvate. Together, CidC and alsSD, apart from CidA/LrgA, are proposed to become another

sub-system that regulate the life and death of S.aureus and biofilm formation70.

In fact, transcription of both  cidABC and  lrgAB was induced by acetic acid in the

presence of excess glucose. This had led to the identification of CidR, a putative regulator of

both cid and alsSD operon34,71,72. CidR is a LysR-type transcriptional regulator (LTTR), which

is a highly structurally conserved transcriptional factor family in bacteria, LTTRs all have an

N-terminal helix-turn-helix DNA binding domain and a C-terminal cofactor binding domain73.

The function of CidR has been recently described as primarily promoting the cell survival by

co-expressing CidA and alsSD to counteract the activities of CidB (proved to promote CidC

activity, exact function unknown) and CidC proteins (see Figure 1.4A).
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A

B

Figure 1.4. Cid/Lrg system. (A) Schematic figure of the regulation network of  cid/lrg; (B)

Proposed mechanism of cell lysis regulated by CidA and LrgA, with CidA being a holin and

LrgA being an anti-holin.
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1.2.5 Apoptosis in plants and Programmed cell death paradox

Previously we have discussed PCD in mammalians, bacteria and vira system. Not

surprisingly, PCD also played an important role in plant development. Although the function

of the mitochondria in plant PCD has been demonstrated74,75, it appears that chloroplasts also

have a prominent role as illustrated by the following examples. First, reactive oxygen species

(ROS) are involved in various types of PCD, and chloroplasts are the major site of  ROS

production in plants76,77. Many chloroplast expressed genes that are related to plant PCD have

been identified.  

Interestingly,  Bcl-2 family proteins,  which are  a dominant  class of  PCD proteins,

have not been identified in plant mitochondria. Despite the absence of Bcl-2 paralogs, several

studies have demonstrated that the expression of animal Bcl-2 family of proteins in plant cells

can  both  promote  and  inhibit  PCD.  For  example,  overexpression  of  Bcl-xL  and  the

Caenorhabditis  elegans homolog  Ced-9,  suppresses  plant  cell  death78,  whereas

overexpression of animal Bax promotes rapid cell death79. Moreover, when members of the

mitochondria-associated Bcl-2 family of proteins were ectopically expressed in transgenic

tobacco (Nicotiana tabacum), the Bcl-2 proteins were found to be localized in the chloroplasts

as well as the mitochondria, and to regulate PCD induced by chloroplast-targeted herbicides80.

Thus, although Bcl-2-family proteins have not been identified in plants, these studies suggest

that proteins with similar functions to those of the Bcl-2 family exist in plants. 

1.2.5.1 AtLrgB and plant programmed cell death

The recent demonstration that a Cid/Lrg ortholog exists in plants suggests that the

holin model may apply to these organisms as well. As described above, Bcl-2 family proteins

have not been conclusively discovered in plants. However, proteomic studies of Arabidopsis
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chloroplast envelope membranes have demonstrated the existence of putative bacterial Cid

and Lrg orthologs, suggesting that these novel proteins may have a role in plant PCD81–83. In a

recent study, the newly discovered protein AtLrgB, was predicted to have a chloroplast transit

peptide of 13 amino-acids, and 12 transmembrane helices, five in the N-terminal region and

seven in the C-terminal LrgB domain83. Sequence analysis suggested that the plant lrgB gene

may have  evolved from a gene  fusion  of  lrgA and  lrgB from bacteria83.  The  subcellular

localization of the AtLrgB protein was demonstrated by the fusion of AtLrgB and EGFP.

Confirmed by confocal microscopy and protease sensitivity assays, the location of the fusion

protein was in the chloroplast inner envelope membrane83.

AtLrgB  mutant  generated  the  phenotype  of  interveinal  chlorotic  and  premature

necrotic leaves, consistent with a role for this gene in plant PCD, as well as changes in carbon

partitioning.  These  leaves  also  contained  large  regions  of  dead  cells.  Furthermore,

overexpression of full-length AtLrgB produced plants exhibiting veinal chlorosis and delayed

greening.  Also,  consistent  with  the  putative  membrane-damaging function  of  the  Cid/Lrg

protein family as holins/antiholins. (see Figure 1.5) AtLrgB could augment nystatin-induced

membrane  permeability  in  yeast  cells.  At  this  point,  however,  we  cannot  exclude  the

possibility that the effect of the AtLrgB on PCD is indirect, for example, as a result of its

potential role in carbohydrate metabolism83,84. 
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Figure 1.5. Proposed mechanism of apoptosis regulation by AtLrgB in plants.
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1.2.5.2 Programmed cell death paradox

It  was  first  proposed  in  2003  that  the  Bcl-2  and  holin  family  of  proteins  are

evolutionarily  related  functional  paralogs85.  The  hypothesis  was  based  on  the  striking

molecular and functional similarities shared by these proteins4,85. Both families include small,

membrane-associated  proteins  that  oligomerize  to  form  channels  or  pores  that  cause

permeabilization of biological membrane, and both include structurally similar proteins with

opposing functions.

Remarkably,  evidence  that  supports  this  hypothesis  was  recently  found  by

demonstrating that the Bcl-2 proteins are able to functionally replace holin system to promote

bacterial lysis86. These studies not only revealed the oligomerization-dependent lytic activity

of Bax/Bak, but also exhibited negative and positive regulation of this activity by Bcl-xL and

tBid,  respectively,  demonstrating  that  the  Bcl-2  family  of  proteins  are  functional

holins/antiholins and that many molecular components of the apoptotic regulatory machinery

might be functionally recapitulated in bacteria.

Also,  as  discussed  previously,  Cid/Lrg  protein  analogs in  both  bacteria  and  plant

chloroplasts also possess the strikingly similar structural and functional features to Bcl-2 and

holins, especially for CidA/LrgA. And they have already been proved to play a critical role in

regulating bacterial and plant PCD, respectively. Thus, based on all the evidences, we are are

able to expand our hypothesis as bacterial Cid/Lrg, AtLrgB and Bcl-2 together with phage

holins belongs to a holin functional superfamily, and their evolutionary origins all come from

ancestral bacteria, to function as lysis regulator and release the subsequent signal molecules.

Bcl-2 and  AtLrgB genes  are  hypothesized  to  have  been  transferred  to  mitochondria  and

chloroplast, respectively, during the endosymbiotic process more than a billion years ago.
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Apart from membrane-damaging holin-like proteins, PCD, or at least the early events

of PCD, have been hypothesized to be caused by abnormality in the carbon metabolism and

cellular acidification, the studies on putative pyruvate oxidoreductase CidC in S.aureus have

shed light on the molecular mechanism of the PCD induced by acetic acid.

1.3 Enzyme, electron transport chain and flavoproteins

Enzymes are a group of macromolecules that  catalyzes chemical  reactions,  which

otherwise  will  not  happen  or  happen  very  slowly  under  physiological  conditions.  Most

enzymes are  proteins,  although a few are  catalytic  RNA molecules.  Chemically,  like  any

catalyst, enzymes are not consumed during the reaction, nor do they change the equilibrium of

the  reaction.  According  to  different  catalytic  mechanisms,  enzymes  are  classified  into  6

catergories:  Oxidoreductases,  Transferases,  Hydrolases,  Lyases,  Isomerases  and  Ligases.

These sections are subdivided by other features such as the substrate, products, and chemical

mechanism. Enzymes' specificity comes from their unique three-dimensional structures. They

differ from most other catalysts by being much more specific. Enzyme activity can be affected

by other molecules: inhibitors are molecules that decrease enzyme activity, and activators are

molecules that increase activity. Many drugs and poisons are enzyme inhibitors. Enzymes are

evolutionarily designed for certain biological processes, thus each enzyme adapts to its own

unique  physiological  environment,  an  enzyme's  activity  decreases  markedly  outside  its

optimal temperature and pH. 

ETC is a series of peptides and enzymes or enzyme complexes that transfer electrons

from electron donors  to  electron acceptors  via  redox reactions,  and couples  this  electron

transfer with the transfer of protons (H+ ions) across a membrane.  Driven by the Gibbs free

energy  of  the  reactants  and  products,  each  electron  donor  passes  electrons  to  a  more

electronegative acceptor, which in turn donates these electrons to another acceptor, a process

that continues down the series until electrons are passed to oxygen, the most electronegative
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and terminal electron acceptor in the chain. This process creates an electrochemical proton

gradient that either drives the synthesis of adenosine triphosphate (ATP) by ATP synthase,

which is  highly conserved among all  domains of lives,  or  enable mechanical  work if the

proton flows back through the membrane. 

Flavoproteins  are  proteins  that  contain a nucleic acid derivative of riboflavin:  the

flavin  adenine  dinucleotide  (FAD)  or  flavin  mononucleotide  (FMN).  Flavoproteins  are

involved  in  a  wide  range  of  biological  processes  including,  but  not  limited  to,

bioluminescence, removal of the radicals, DNA repair, energy production (electron transport

chain) and apoptosis. 

1.3.1 Enzyme and cofactor

Enzymes are usually much larger than their substrates. Thus only a small portion of

the  enzyme,  known  as  catalytic  site,  is  involved  in  the  catalysis.  The  catalytic  site  and

substrate-binding site together are called the active site. Other parts of the enzyme help to

maintain the precise orientation and dynamics of the active site. Enzyme structures may also

contain allosteric sites where the binding of small molecules causes a conformational change

that increases or decreases activity. For some enzymes, no amino acids are directly involved

in catalysis; instead, the enzyme contains sites to bind and orient catalytic cofactors. 

Cofactors  or  coenzymes  are  non-protein  chemical  compounds  that  acts  as  helper

molecules during biochemical transformations, especially for enzymatic reactions. Cofactors

can be subdivided into inorganic ions, such as the metal ions Mg2+, Cu+, Mn2+, or iron-sulfur

clusters,  and organic compounds,  such as flavin or heme. And in some sources the name

“coenzyme” is  only for  organic  compounds.  A cofactor that  is  tightly or even covalently

bound to an enzyme is called a “prosthetic group”. An inactive enzyme without its cofactor is

called “apoenzyme”,  while the complete enzyme with its cofactor is called “holoenzyme”. 
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Many  natural  cofactors  are  soluble  vitamin  derivatives  by  phosphorylation.  For

examples, Nicotinamide adenine dinucleotide (NAD+) and Nicotinamide adenine dinucleotide

phosphate  (NADP+)  are  the  phosphorylated  products  of  Vitamin  B3,  flavin  adenine

dinuleotide (FAD) and  flavin mononucleotide (FMN) are the phosphorylated products of

vitamin  B2,  thiamine  pyrophosphate  is  the  phosphorylated  product  of  vitamin  B1.  The

vitamin  derived  cofactors  are  actively  involved  in  the  chemical  reactions  that  related  to

biological  energy  production,  they  primarily  serve  as  electron  shuttles  between  enzyme

complexes in the electron transport chain (ETC). 

1.3.2 Electron Transport Chain

Most eukaryotic cells have mitochondria, which produce ATP from products of the

citric  acid  cycle,  fatty  acid  oxidation,  and  amino  acid  oxidation.  ETC is  located  at  the

mitochondria inner membrane, it comprises of multiple enzyme complexes that facilitate the

passage of electrons from NADH and succinate to oxygen, which is  then  reduced to water

(Figure 1.6). During the process, protons are pumped through complex I, III and IV to the

mitochondria intermembrane space, those protons are then transported back to mitochondria

matrix by ATP synthase, which uses this proton gradient to make ATP via phosphorylation of

ADP. 

In prokaryotes, ETCs are more complicated, since there are many different sources of

electron donors and acceptors. Individual bacteria often use multiple electron transport chains

simultaneously. Bacteria can use a number of different electron donors, a number of different

dehydrogenases, a number of different oxidases and reductases, and a number of different

electron  acceptors.  For  example,  E.  coli (when  growing  aerobically  using  glucose  as  an

energy source) uses two different NADH dehydrogenases and two different quinol oxidases,

for a total of four different electron transport chains operating simultaneously.
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Figure 1.6. The eukaryotes electron transport chain
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1.3.3 Flavoprotein and Pyruvate Oxidoreductase

Flavoproteins  are  proteins  that  contain a nucleic acid derivative of riboflavin:  the

flavin  adenine  dinucleotide  (FAD)  or  flavin  mononucleotide  (FMN).  Flavoproteins  are

involved  in  a  wide  range  of  biological  processes  including,  but  not  limited  to,

bioluminescence, removal of the radicals, DNA repair, energy production and apoptosis. Due

to  the  specific  spectrum of  flavin  cofactors,  flavoprotein  becomes  a  natural  reporter  for

changes during chemical reactions, which also makes flavoproteins one of the most studied

enzyme families. 

Compared to FMN, FAD has an extra adenine monophophate (AMP) group attached

to FMN  bridged via phosphate groups (Figure 1.7). They both function as prosthetic group

of various oxidoreductases,  During the catalytic cycle,  a reversible interconversion of the

(oxidized)  quinone  form  (FMN,  FAD),  semiquinone  (FMNH•,  FADH•)  and  (reduced)

hydroquinone (FMNH2, FADH2) forms occurs in the various oxidoreductases.  FMN/FAD is

an  aromatic  ring  system,  whereas  FMNH2  /FADH2 is  not.  This  means  that  FADH2 is

significantly higher in energy, without the stabilization through resonance that the aromatic

structure  provides,  the  change  in  the  redox  state  of  flavin  also  has  great  impact  on  the

structure and function of these FMN/FAD binding proteins.  Based on the oxidation state,

flavins take specific colors in aqueous solution, take FAD as an example,  FAD is yellow,

FADH• is blue and FADH2  is colorless. The specific spectroscopic properties of FMN/FAD

and their variants allows the monitoring of the flavoprotein concentration and the catalyzed

reactions using UV-Vis spectroscopy (two peaks at 380nm and 450nm) and fluorescence (Ex

450nm/Em 510-520nm). 
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Figure 1.7. Chemical structure of FAD （by Marvin Sketch)
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A lot of enzymes which involves in carbon metabolism and energy production utilize

FMN/FAD as cofactors. One such well-characterized example is the pyruvate oxidase (POX)

from E.coli (EcPOX), which catalyzes the decarboxylation of pyruvate to produce acetate and

CO2
87,88. EcPOX noncovalently binds to FAD and thiamine pyrophosphate (TPP) and it has a

homotetrameric structure consisting of 62 kDa subunits (572 residues), and when reduced,

POX switches from a soluble cytosolic protein to a peripheral membrane-bound ubiquinone

oxidoreductase89–91. Even though EcPOX is called a pyruvate ‘‘oxidase’’, it is well established

that the physiological electron acceptor is membrane-bound ubiquinone-891–93. Therefore, this

enzyme has been more accurately referred to as a pyruvate:quinone oxidoreductase (PQO)94.

In contrast, other prokaryotic POX enzymes readily use O2 as the electron acceptor and are

thus true oxidases generating H2O2 during every catalytic cycle94. One well-studied example

is POX from Lactobacillus plantarum (LpPOX)95, which is a comstitutively active pyruvate

oxidase.  LpPOX not  only differs  from  EcPOX in  oxygen  reactivity,  but  also  uses  Pi  to

produce acetylphosphate95.

To summarize the activation mechanism of  EcPOX, the TPP cofactor of  EcPOX is

first reduced by pyruvate with subsequent electron transfer to the FAD cofactor. Reduction of

the flavin cofactor then triggers the release of the C-terminal  membrane binding domain,

thereby opening up the active site which allows for Phe465 to swing into a position that

facilities electron transfer from TPP to FAD in subsequent catalytic cycles. This activated

conformation of Phe465 in EcPOX is thought to mimic Phe479 in LpPOX, explaining similar

turnover  numbers  between  the  activated  form  of  EcPOX  and  the  constitutively  active

LpPOX96.

CidC,  as  predicted  by  the  in  vivo  studies,  is  a  POX  (or  PQO).  The  sequence

homology between  CidC and  EcPox  is  31.72%.  for  LpPOX,  the  value  is  33.28%.  The
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sequence  alignment  of  the  three  homologous  pyruvate  oxidase  is  shown  in  Figure  1.8.

Whether CidC is activated by binding to it's substrate and/or cofactors, or it's a constitutively

active enzyme, is of great interest to our study.
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CidC  -MAKIKANEALVKALQAWDIDHLYGIPGDSIDAVVDSLRTVRDQFKFYHVRHEEVASLAA 59

EcPOX --MKQTVAAYIAKTLESAGVKRIWGVTGDSLNGLSDSLNR-MGTIEWMSTRHEEVAAFAA 57

LpPOX MMTKMIAGQALVKVLEAWGVDHIYGIPGGSINHTVEGLYLEKADIDYIQVRHEEVGALAA 60

         *  .   :.*.*::  :.:::*: * *::   :.*      :.:  .*****.::**

CidC  AGYTKLTGKIGVALSIGGPGLIHLLNGMYDAKMDNVPQLILSGQTNSTALGTKAFQETNL 119

EcPOX GAEAQLSGELAVCAGSCGPGNLHLINGLFDCHRNHVPVLAIAAHIPSSEIGSGYFQETHP 117

LpPOX SADAKFTGKIGVSFGSAGPGATHLFNGLYDAKMDHVPVLALVGQVPQATMNTNYFQEMDE 120

      .. ::::*::.*. .  ***  **:**::*.: :.** * : .:  .: : :  *** . 

CidC  QKLCEDVAVYNHQIEKGDNVFEIVNEAIRTAYEQKGVAVVICPNDLLTEKIKDTTNKPVD 179

EcPOX QELFRECSHYCELVSSPEQIPQVLAIAMRKAVLNRGVSVVVLPGDVALKPAPEGATTHWY 177

LpPOX TPMFSDVAVYNRTVTTAGQLPYVINQAIREAYRQKGPAVVIIPENLSAEEIDYQPVSTPN 180

        :  : : * . : .  ::  ::  *:* *  ::* :**: * ::  :       .   

CidC  T-SRPTVVSPKYKDIKKAVKLINKSKKPVMLIGVGAKHAKDELREFIEMAKIPVIHSLPA 238

EcPOX H-APQPVVTPEEEELRKLAQLLRYSSNIALMCGSGCAGAHKELVEFAGKIKAPIVHALRG 236

LpPOX TVSDTFEQRVDPQAITATLKMLKAAKHPLVYAGRGLLGAKADLVKFSEQFNIPVMNTVPA 240

        :       . : :    :::. :..  :  * *   *: :* :*    : *::.:: .

CidC  KTILPDDHPYSIGNLGKIGTKTSYQTMQEADLLIMVGTNYPYVDYLPKKNIKAIQIDTNP 298

EcPOX KEHVEYDNPYDVGMTGLIGFSSGFHTMMNADTLVLLGTQFPYRAFYPT-DAKIIQIDINP 295

LpPOX TGVIPTSHPNAIGTFGRLGSKSGFEALQHADLILFLGSEFPFASFWPK-GIKIIQVNNNS 299

      .  :  ..*  :*  * :* .:.:.:: .** ::::*:::*:  : *.   * **:: * 

CidC  KNIGHRFNINVGIVGDSKIALHQLTENIKHVAERPFLNKTLERKAVWDKWMEQDKNNNSK 358

EcPOX ASIGAHSKVDMALVGDIKSTLRALLPLVEEKADRKFLDKALEDYRDARKGLDDLAKPSEK 355

LpPOX FDIGKMVPIDYAVISDAQAYLQAMIATGETLPETAWLTTNRQNKRNWDKWLQQLAADDHD 359

       .**    :: .::.* :  *: :    :   :  :* .  :      * :::    . .

CidC  PLRPERLMASINKFIKDDAVISADVGTATVWSTRYLNLGVNNKFIISSWLGTMGCGLPGA 418

EcPOX AIHPQYLAQQISHFAADDAIFTCDVGTPTVWAARYLKMNGKRRLLGSFNHGSMANAMPQA 415

LpPOX GLAPEAVMHKVASMVGPRDTYGVDTGNVSEWAVRGLPMDQEQRFALSGLFATMGFGLPAG 419

       : *: :  .:  :         *.*. : *:.* * :  :.::  *   .:*. .:* .

CidC  IASKIAYPNRQAIAIAGDGAFQMVMQDFATAVQYDLPLTVFVLNNKQLAFIKYEQQAAGE 478

EcPOX LGAQATEPERQVVAMCGDGGFSMLMGDFLSVVQMKLPVKIVVFNNSVLGFVAMEMKAGGY 475

LpPOX MAGALSVPDSQAWSFSGDGGFAMVAPDIITEARYGLPVINVIFSNQRFGFIYREQVDTKQ 479

      :..  : *: *. ::.***.* *:  *: : .:  **:  .::.*. :.*:  *      

CidC  LEYAVDFSDMDHAKFAEAAGGKGYTIKSASEVDAIVEEALAQD-----VPTIVDVYVDPN 533

EcPOX LTDGTELHDTNFARIAEACGITGIRVEKASEVDEALQRAFSID-----GPVLVDVVVAKE 530

LpPOX HLYGVDLTDADWAKVADGLGGIGFTVQNNQEVETVFDQIKALQAKGNKRPIVVNAVI-KN 538

         ..:: * : *:.*:. *  *  ::. .**:  .:.  : :      * :*:. :  :

CidC  AAPLPGKIVNEEALGYGKWAFRSITEDKHLDLDQIPPISVAAKRFL--- 579

EcPOX ELAIPPQIKLEQAKGFSLYMLRAIISGRGDEVIELAKTNWLR------- 572

LpPOX DDPIGTAYMPLDPELYGQAEVDAYAKANHIDIKEQPSLGALLRAQGDQL 587

         :       :   :.   . :  . .  :: :               

Figure 1.8 Sequence alignment of CidC,  EcPOX and LpPOX. * indicate the identity (same

amino acids)
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1.3 Thrombin-binding aptamer G-quadruplex

G-quadruplexes constitute a unique class of highlyordered nucleic acids structures

with various folding topologies and molecularities. They are present in naturally occurring

nucleic acids, telomere and promoter region, and play important regulatory functions in many

biological  processes97–100.  The  occurrence  of  quadruplex  structures  in  genomes  of  diverse

organisms suggested the possibility to design potential drug components targeted towards G-

quadruplexes or based on RNA or DNA G-quartets.  The 15-mer DNA oligonucleotide 5'-

GGTTGGTGTGGTTGG-3' is a thrombin binding aptamer (TBA), which was discovered in

1992  by  in  vitro  selection  and  found  to  inhibit  fibrin-clot  formation  by  binding  to  the

thrombin protein exocite I and II with high selectivity and affinity101–103.  NMR and X-ray

structural studies showed that TBA forms an intramolecular, antiparallel G-quadruplex with a

chair-like conformation102,104. The core of the quadruplex consists of two G-quartets connected

by three edge-wise loops: a central TGT loop and two TT loops (Figure 1.9). The aptamer

interacts  with  two thrombin  molecules  but  inactivates  only one of  them102.  X-ray studies

indicated that inhibition of fibrinogen-clotting is a consequence of specific blocking of the

thrombin anion exosite I conducted by the central TGT loop. In the same studies it was also

further reported that the two TT loops are involved in ionic interactions with the positive-

charged  heparin  binding  site  of  a  second  thrombin  molecule  to  compensate  the  residual

negative charge of the aptamer. 

TBA G-quadruplex  adopts  a  antiparallel  conformation  in  the  presence  of  cation

including K+, Rb+, NH4
+, Ba2+, and Sr2+, however, other cations like Li+, Na+, Cs+, Mg2+, and

Ca2+ do not work as efficient in stabilizing the quadruplex. Since the cations are coordinated

to guanine O6 carbonyl groups between the planes of neighboring guanine quartets, it has

been observed that only metal ions with ionic radii in the range 1.3-1.5 Å fit well within the

two G-quartets of the complex105,106.
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Although several efforts have been deployed to improve the binding properties of

TBA to thrombin107,108,  there is still  room for improvement to aim for a better therapeutic

strategy. The awareness to fully understand the thermostability of the molecule, is essential

for  understanding  its  biological  activity  and  useful  in  the  future  development  of

oligonucleotide-based therapeutics or drug design. 
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5'-GGTTGGTGTGGTTGG-3'

 

Figure 1.9 Schematic figure of G2 quadruplex
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1.4 Objective of the study 

The goal of the CidA/LrgA/CidC project to structurally and functionally characterize

Cid/Lrg  proteins  with  biochemical  and  biophysical  methods  in  the  context  of  purified

proteins, with focus on CidA/LrgA and CidC. Regarding CidA/LrgA, it is hypothesized that

CidA/LrgA form nanometer-size pores and thus leading to the membrane permeabilization of

small  molecules.  To  test  this  hypothesis,  CidA/LrgA  are  successfully  purified  and

reconstituted into the lipid membrane, then entrap several fluorescent dyes/proteins into the

liposome  to  gauge  the  size  of  the  pores  that  CidA/LrgA form.  In  terms  of  CidC,  the

hypothesis  is  that  CidC  converts  pyruvate  to  acetic  acid  in  vitro  and  it  is  a  peripheral

membrane enzyme, and it participate in a specific electron transport chain in S.aureus. To test

the hypothesis, CidC was also purified and the purified enzyme was applied to subsequent

biochemical and biophysical tests.

The  goal  of  the  thrombin  binding  aptamer  G-quadruplex  project  is  to  study the

conformation and thermostability changes under the condition when two single strands are

attached to the 5' and 3' ends of the G-quadruplex, this could provide valuable indications on

how the flanking sequence affects the stability of a G-quadruplex. The hypothesis is that one

of the single strand has a deleterious effect on the formation of G-quadruplex, whereas its

complementary strand will rescue the G-quadruplex when both of them are attached.
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Chapter 2

Methods and Materials

2.1 Materials

2.1.1 Protein Expression

2.1.1.1 Plasmid

DNA genes  optimized  for  the  bacterial  expression  of  the  131  amino  acids  long

S.aureus CidA and 147 amino acids long LrgA were gifts  kindly offered by Dr.  Kenneth

Bayles's Lab. These genes were cloned into pET24b vector (Novagen), generating C-terminal

6X His tag fusions. cidA and lrgA were amplified using forward primers containing an NdeI

restriction  site  and  reverse  primers  containing  an  XhoI  site.  For  protein  production,  the

resulting plasmids were transferred into E. coli strain C43, a mutant derivative of BL21(DE3)

selected for optimal overproduction of membrane proteins8,109.

2.1.1.2 Cell culture media

2 x TY medium was prepared as following: 12 g typtone, 7.5 g yeast extract, 3.75 g

NaCl  were dissolved in 750ml H2O. The medium was then sterilized by autoclaving and

cooled  down  to  room  temperature  before  use.  All  chemicals  and  isopropyl  β-D-1-

thiogalactopyranoside (IPTG) were purchased from Fisher Scientific. 
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2.1.2 Protein Purification

2.1.2.1 Detergents

SDS and Triton  X-100 were  purchased  from Fisher  Scientific.  Empigen BB was

purchased  from  Sigma  Aldrich.  Β-octyl-glucoside  (OG),  DDM  were  purchased  from

Anatrace.

2.1.2.2 Chromatography Columns

HisPrepTM  FF16/10,  a  ready-to-use  column,  prepacked  with  precharged  Ni

Sepharose 6 Fast Flow was purchased from GE Healthcare. Superdex 200 Increase 10/300 GL

(prepacked gel filtration columns) was purchased from GE Healthcare. 

2.1.2.2 Chemicals

The  Penta-His  Antibody  from  Thermo  Scientific  (Waltham,  MA)  was  used  for

western blot detection. Glucose oxidase from Aspergillus niger (160 kDa) and human serum

albumin (66.5 kDa) were purchased from Sigma Aldrich. Tris(hydroxymethyl)aminomethane

(Tris), urea, imidazole, ethylenediaminetetraacetic acid (EDTA), formic acid, acetonitrile and

methanol and all other chemicals were all purchased from Fisher Scientific. 

2.1.3 Membrane Reconstitution

2.1.3.1 Lipids

All the lipids were purchased from Avanti  Polar  Lipids.  The name and molecular

structures of the lipids were listed in Table 2.1. Lipids were dissolved in chloroform and kept

in -20ºC.
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2.1.3.2 Other

Standard regenerated cellulose dialysis membrane tubing with cutoff of 10KD was

purchased from Spectrum Labs. 5nm Ni-NTA-Nanogold for labeling of protein and NanoVan

for negative staining were purchased from Nanoprobes.
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2.2 Methods

2.2.1 Overexpression of Recombinant Protein

Proteins  has  essential  roles  in  all  kinds  of  forms  of  lives  by  playing  roles  like

transporters, enzymes, transcriptional factors, receptors, etc110,111. The funtions and structures

of a protein can be related by various techniques in vivo and in vitro. In vivo experiments

provide information about the biological role of a protein in the context of a cell, tissue, organ

or  even  whole  organism and can be performed by manipulating the expression level  or

mutating protein112,113. To perform in vitro functional or structural studies, proteins need to be

isolated away from other  cellular  components  and prepared in  relatively large quantities.

Some proteins such as human growth hormone, monoclonal antibodies and insulin have very

important  therapeutic  applications  and  are  widely  used  for  clinical  treatment.  Thus,

overexpression of these proteins in vitro is of critical significance to both the biotechnology

and medicine114.

Recombinant DNA is a form of artificial DNA that is created by combining two or

more  DNA sequences  via  engineering  methods.  Generally,  overexpression  of  the  target

protein is achieved by inserting genes encoding proteins of interest into special vectors to

produce large amount of the desired protein. Overexpression can be achieved in several host

expression  system:  bacterial,  yeast,  insects  and  mammalian  cells115–117.  An  appropriate

expression  system  is  selected  based  on  the  features  and  intended  applications  of  the

recombinant protein. The cost and expression level of the expression system should also be

taken into consideration.

Gram-negative  bacterium  E.coli remains  to  be  one  of  the  most  efficient  systems

available for heterologous protein production due to several  advantages:  (a)  the ability to

grow  rapidly  and  at  high  density  on  cheap  substrates,  (b)  well-characterized  genome



41

(proteome) and (c) increasingly large number of available cloning vectors and mutant host

strains. pET system is a series of commercially available vector for the production of proteins

fused with ketosteroid isomerase (KSI) and a 6x histidine tag in E.coli. After cloning of the

gene of interest, they are transformed into a host bearing the T7 RNA polymerase gene such

as BL21 (DE3)  E.coli for expression. The expression of T7 polymerase in the host cell is

controlled by lac promoter. Addition of IPTG releases the lac repressor, thereby allowing the

transcription of T7 polymerase. T7 polymerase is selective and active that almost all of the

cell's resources are converted to the overexpression of the target gene118,119.
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2.2.2 Protein Purification

Currently, a number of protein purification techniques are frequently used based on

the properties of a protein such as solubility, size, charge, hydrophobicity and affinity towards

specific ligands.

2.2.2.1 Affinity Chromatography (AC)

Recombinant protein is usually expressed with a fusion tag located either on the C- or

N-terminus. The tags include glutathione s-transferase (GST), FLAG peptide, or a hexa-his

peptide which each has high binding affinity for a specific ligand112,120,121. For example, GST

binds strongly to glutathione and the hexa-his peptide strongly chelate with metal ions like

nickel and cobalt. The protein purification is accomplished by loading the clarified cell lysate

onto a column prepacked with resins conjugated with the corresponding ligand. Proteins with

the correct fusion tag bind to the ligand and other proteins are washed away. At most times,

the binding is dependent on the binding buffer. The target protein can be eluted by competing

ligands such as salt or imidazole. If necessary, the tags can be removed by some proteases

after expression if cleavage sites have been engineered along with the fusion proteins122.

2.2.2.2 Gel Filtration Chromatography (GFC)

GF separates molecules according to their sizes. GF columns are usually packed with

porous beads in the form of spherical particles that have been chosen due their chemical and

physical stability, and inertness (low reactivity and absorption). When the sample is applied

onto the column, molecules diffuse in and out of the pores of the beads matrix. Molecules that

are larger than the pores are unable to diffuse inside of the pores and thus pass through the

column fast, whereas smaller molecules move further inside the matrix and thus are delayed

in  their  passage  down the  column.  Thus,  separation  of  molecules  based  on  their  size  is

accomplished.  Compared with other purification techniques, GFC is less dependent on the
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buffer conditions123,124.

2.2.3 Protein characterization

Purity,  mass,  and  amino  acid  N-terminal  sequencing  of  the  target  protein  are

characterized using techniques listed below.

2.2.3.1 SDS-PAGE

SDS-PAGE is profoundly used to separate biological macromolecules like proteins

and nucleic acids, based on their electrophoretic mobility which is a complex function of the

size and conformation of the molecules. It can be used to test the composition of a protein

sample by staining the gel with non-selective dyes such as Coomassie blue or silver. SDS-

PAGE is also the first separation/purification step for other experiments such as western blot

and mass spectrometry.

Generally, to make a SDS-PAGE sample, proteins are dissolved firstly in a loading

buffer containing Tris-Hcl, glycerol, SDS and bromophenolblue. Sometimes, dithiothreitol or

beta-mercaptoethanol is added to break the disulfide bonds. Boiling the sample also helps to

break large oligomers. SDS linearizes proteins and imparts negative charges to the unfolded

proteins. In most proteins, the stoichiometric binding of SDS molecules to the polypeptide

chain  imparts  an  even  distribution  of  negative  charges  per  unit  mass,  and  leads  to  a

fractionation of the proteins according to molecular weight.  For some membrane proteins

which are resistant to SDS denaturation, the results of SDS-PAGE should be treated carefully

due to the variability in the ratio of bound SDS.

The gel typically is prepared by cross-linking acrylamide and bisacrylamide in a SDS

buffer at certain pH. Free radicals and stabilizer, such as ammonium persulfate, TEMED is

then  added  to  initiate  the  polymerization.  Bisacrylamide  crosslinks  linear  polymers  of
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polyacrylamide concentration of the gel, generally in the range between 5% and 25%. Lower

percentae  gels  with  larger  pores  are  better  for  resolving  high  molecules,  while  higher

percentages gel with smaller pores is required to resolve smaller proteins.

An electric field voltage is applied and the negatively charged proteins migrate across

the gel. The rate of migration is mainly dependent on their sizes. Small molecules move more

quickly, whereas larger ones tend to be delayed. Biomolecules are therefore separated roughly

according to size, which depends mainly on molecular weight under denaturing conditions,

and conformation under native conditions.

2.2.3.2 Western blot

After the proteins are separated on the gel, western blot is another method besides

staining which can also be used to “visualize” the proteins.  Staining the protein gel  with

Commassie blue or other dyes is not selective and all  the proteins in the mixture will  be

stained. However, by using a western blot, we are able to identify specific proteins from a

complex mixture of proteins with specific antibodies. To achieve this, after SDS-PAGE, the

proteins  are  firstly  transferred  to  a  nitrocellulose  or  polyvinylidene  fluoride  (PVDF)

membrane via an electrical current. The membrane is then blocked with non-fat milk or BSA

(Cohn fraction V) in order to prevent non-specific background binding.  The membrane is

subjected to staining with primary antibodies specific to the protein of interest under gentle

agitation. Some of the antibodies will bind with specific proteins and unbound antibodies will

be  washed away.  Secondary antibodies  linked to  biotin  or  to  a  reporter  enzyme  such as

alkaline  phosphatase  or  horseradish  peroxidase  (HRP)  is  applied  to  target  the  primary

antibodies for further detection125,126.

We used in our experiment anti-His antibodies directly conjugated to HRP to identify

the proteins with 6x His tag. To detect the HRP, a mixture of 4-chloro-1-naphthol (CN) and
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3,3'-diaminobenzidine (DAB) is used. HRP converts CN to a purple-colored precipitate on the

blot that is readily visible to the eye. HRP also reacts with DAB to form a visible insoluble

product.  The  combination  of  DAB  and  CN  has  a  synergistic  effect  resulting  in  greater

sensitivity than either reagent alone.

2.2.3.3 N-terminal protein sequencing

Edman degradation is performed to determine the exact sequence of amino acids at

the N terminus of the protein and was developed by Pehr Edman. The principle is depicted

below in  Figure 2.1.  Generally speaking, uncharged terminal amino group is reacted with

phenylisothiocyanate  under  basic  conditions,  leading  to  the  formation  of  a  cyclical

phenylthiocarbamoyl derivative. The amino acid is cleaved off in trifluoroacetic acid, as its

nilinothialinone  derivative  which  is  selectively  extracted  into  an  organic  solvent  and

converted to a more stable phenylthiohydantoin derivative (PTH-amino acid) when treated

with  25%  TFA/water.  The  PTH-amino  acid  is  subjected  to  HPLC  for  analysis  and

quantification. A mixture of 19 PTH-amino acids is also injected onto the column and the

resultant chromatogram provides standard retention time of each amino acid. The amino acid

for  the  particular  residue  is  determined  by  comparing  each  Edman  degradation  cycle

chromatogram with the standard one. The procedure is repeated to provide the N-terminal

sequence of the protein/peptide.
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Figure 2.1 Edman degradation of a peptide. Phenylisothiocyanate first reacts with the amino

acid  residue  at  the  N-terminaus  at  pH  8.0,  forming  a  phenylthiocarbamyl  derivative.

Trifluoroacetic acid then cleaves off the first amino acid as its anilinothialinone derivative.

The ATZ-amino acid is then converted to a phenylthiohydantoin derivative (PTH-amino acid)

with 25% TFA/water.
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2.2.4 Membrane Reconsititution

Purified membrane protein or synthesized hydrophobic peptides obtained from above

procedures are functional only when they are inserted into biological lipid membranes. The

reincorporation of membrane protein into an artificial membrane system facilitates the studies

of  both  function  and  conformation  of  the  proteins.  The  useof  membrane  with  different

phospholipid  composition  allow  us  to  understand  the  significance  of  the  specific  lipids

environment on protein function and structure. Several methods used for the reconstitution of

full length membrane proteins and small peptides in this project are described below.

2.2.4.1 Detergent dialysis

As described in the introduction part, solubilization of cell membrane by detergents is

accomplished  via  a  three-stage  model.  It  is  generally  accepted  that  detergent-mediated

reconstitution of membrane protein into liposomes is the reversal process of the solubilization

process.  Initially,  lipid  and  protein  dissolved  in  detergents  are  fully  mixed,  allowing  the

formation of lipid protein-detergent micelles. Detergents are then removed via direct dilution,

membrane dialysis or gel filtration. At a certain point (below the CMC of the detergents), the

lipids self-assemble into liposomes with proteins incorporated into it. Residual detergents are

further  removed  via  dialysis,  gel  filtration  chromatography,  etc.  Mild  detergents  such  as

nonionic detergents which do not denature the proteins are mostly used in this method.

2.2.4.2 Solvent injection

Solvent injection is a novel technique demonstrated to reintroduce membrane protein

into liposomes. However, due to the denaturing effect of organic solvents to proteins, this

method is mostly applied in the studies of small peptides representing the membrane part of

membrane  proteins.  Several  kinds  of  solvent  such  as  acetone,  ethanol,  isopropanol  and

methanol can be used in the method and the choice is largely dependent on the solubility of
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the peptides and lipids. The liposomes are prepared by rapidly injecting into water the mixture

of  lipids  and  peptides  solubilized  in  water-miscible  solvents.  The  size  of  the  resultant

liposomes can be controlled by adjusting the preparation conditions including: (I) injected

amount of solvent; (ii) lipid concentration; (iii) emulsifier concentration in the aqueous phase.

2.2.5 Proteoliposomes characterization

The conformation of the protein, the phase behavior of lipid bilayer, and size as well

as the morphology of the liposomes will be characterized using the technique listed below.

2.2.5.1 Circular dichroism (CD) spectroscopy

CD  has  been  increasingly  recognized  as  valuable  technique  for  examining  the

structure  of  proteins  in  solution.  The principle  and basis  of  CD approach is  summarized

below.

Circularly polarized light occurs when the direction of the electric field vector rotates

about its propagation direction while the vector retains constant magnitude, the electric field

vector can either rotate counter-clockwise (left  handed, L) or clockwise (right handed R).

Chiral molecules such as proteins absorb the two components differently when the light goes

through the molecules. Circular dichroism is defined as the difference in absorbance of left-

handed and right-handed circularly polarized light, as follows:

CD = AL-AR; (Equation 2.1)

in which CD represents the circular dichroism signal or the delta absorbance; AL and

AR are the absorbance of left-handed and right-handed circularly polarized light, respectively.

The CD signal  can be further  converted to  ellipticity (the  arc-tangent  of  the  ratio  of  the

mninor eaxis to the major axis of the elliptical polarized light) which can be calculated from

CD using the following equation: 
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θ= 2.303 * CD * 180/4π (Equation 2.2).

CD  spectra  is  then  obtained  by  measuring  circular  dichroism  as  a  function  of

wavelength. These spectra allow us to determine the conformation of the peptides or protein.

Typical far UV CD spectra associated with various types of structure are shown in Figure 2.2.

Figure 2.2 Typical CD spectra of protein and B-DNA secondary structures
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2.2.5.2 Transmission Electron Microscopy (TEM)

TEM is an imaging technique which utilizes electrons as source rather than light.

According  to  Rayleigh  criterion,  the  resolution  of  a  light  microscope  is  limited  by  the

wavelength of light source. The much lower wavelength electrons enables TEM resolutions

which are a thousand times better than with a light microscope127.

Generally, electrons emitted at the top of the microscope are focused into a very thin

beam by electromagnetic lenses. The electron beam then hits a very thin specimen which has

been deposited on a supporting grid.  According to the density and nature of the material

present in different region of the grid, the electrons which pass through the specimen hit a

fluorescent screen, generating a “shadow image” of the specimen. The image can then be

directly recorded with a camera equipped with a special sensor.

Two types of staining are commonly used to improve the contrast in TEM: positive

and negative staining. Positive stains have affinity for the material itself while in negative

stains, the biological object is surrounded or embed object in a suitable electrondense material

which provides high contrast and appear brighter against the dark background. Commonly

used  stains  include  uranyl  acetate  (positive  stain),  sodium  (potassium)  phospotungstate

(negative stain), NanoVan (negative stain), etc127.

2.2.6 Enzymatic activity and binding assay

2.2.6.1 Enzymatic activity

Enzyme  activity  =  moles  of  substrate  converted  per  unit  time  =  rate  ×  reaction

volume. Enzyme activity is a measure of the quantity of active enzyme present and is thus

dependent on conditions, which should be specified. The SI unit is the katal, 1 katal = 1 mol



51

s−1, but this is an excessively large unit. A more practical and commonly used value is enzyme

unit (U) = 1 μmol min−1. 1 U corresponds to 16.67 nanokatals.

The specific activity of an enzyme is another common unit. This is the activity of an

enzyme per milligram of total protein (expressed in U/mg). Specific activity is a measure of

enzyme activity as well as purity in the mixture. It is the moles of product produced by an

enzyme in a given period of time (minutes) under given conditions per milligram of total

proteins.  Specific  activity  is  a  measure  of  enzyme  processivity,  at  a  specific  (usually

saturating) substrate concentration, and is usually constant for a pure enzyme. 

An increased amount of substrate [S] will increase the rate of reaction with enzymes,

however once past a certain point, the rate of reaction (v) will level out because the amount of

active sites available has been saturated by the substrate, as shown in Figure 2.3.

                

Figure 2.3 This is a plot of the Michaelis-Menten equation predicted reaction velocity as a

function of substrate concentration, with the significance of the kinetic parameters Vmax and

KM graphically depicted.
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 In biochemistry, the best known models of enzymatic kinetics which relates v to [S]

is called Michaelis-Menten (MM) Equation128. Typically, in a first order enzymatic reaction

(single substrate), the following situation is thought to occur:

                          E+S ↔ES → E+P                                                 Equation 2.1

In  Equation 2.1,  E stands  for  the  enzyme,  S  stands  for  the  substrate,  ES is  the

enzyme-sustrate complex and P is the product,  for each reaction. This equation includes the

assumption that during the early stages of the reaction, so little product is formed that the

reverse reaction (product combining with enzyme and re-forming substrate) can be ignored

(hence the unidirectional  arrow to E+P).  Another  assumption is  that  the  concentration of

substrate is much greater than that of total enzyme ([S] >> [Et]), so [S] can essentially be

treated as a constant.

Another  important  assumption  of  the  MM equation  is  that  the  initial  rate  of  the

formation of [ES] is equals to that of the break down of [ES]. And [ES] is always equal to the

total  enzyme  [Et]  substracted  by  the  free  enzyme  [E].  Through  a  serial  mathematical

derivation, we have: 

                                                      Equation 2.2  

Here,  v stands for  the  rate  of  the  reaction.  Vmax represents  the  maximum velocity

achieved by the system, at maximum (saturating) substrate concentrations. KM (the Michaelis

constant;  sometimes represented as KS instead) is the substrate concentration at which the

reaction velocity is 50% of the Vmax (see Figure 2.3). [S] is the concentration of the substrate

S.
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Another two important parameters that can be derived from MM equation are K cat and

Kcat/Km. Kcat is the "turnover number" and can be calculated as Vmax/[E t] and its units are

1/seconds. It basically describes how much substrate is converted to product in one second. 

Kcat/Km is the specificity constant. It is a measure of "catalytic efficiency" which means how

fast  in  M/seconds  the  enzyme  reacts  with  the  substrate  once  it  encounters  the  substrate.

Usually, the upper limit of Kcat/Km is diffusion because the substrate has to diffuse and collide

with the enzyme and fit into the active site before it can be converted into product.               

2.2.6.2 Isothermal titration calorimetry (ITC)

A complete  set  of  thermodynamic  binding  profiles  (ΔG,  ΔH,  ΔS)  as  well  as  the

stoichiometry (n) and binding affinity (Kb) that characterizes the interaction between a ligand

and  a  macromolecular  can  be  obtained  using  ITC129.  An  Omega  isothermal  titration

calorimeter  from Microcal  (Northamptorn,  MA),  consisting  of  two cells  (a  sample  and a

reference cell) enclosed in an adiabatic compartment, and a titrating syringe that is inserted

into the sample cell was used for all ITC experiments (Figure 2.4).

In a typical  ITC experiment,  the instrument is  calibrated by means of a series of

known standard electrical pulses that produce a given heat in microcalories for each pulse.

After calibration of the instrument, 250 μl of substrate solution are placed in the reaction cell.

This  solution  is  titrated  with  a  protein  solution,  placed  in  a  40  μl  syringe,  at  a  certain

concentration. Typically, a computer-controlled stepper motor makes several injections of the

syringe  solution,  at  a  temperature  where  the  protein  is  stable.  Complete  mixing  is

accomplished  by stirring  the  syringe  at  750 rpm.  The  heat  absorbed or  released  in  each

injection is measured by a thermoelectric device connected to a preamplifier. By observing

the pattern of the injection generated heat, we can obtain a qualitative profile of the binding of

the protein to its ligand. (As mentioned, ITC is mostly used as a quantitative technique which
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we use to calculate the enthalpy and binding affinity, however, due to the stability issue of

some protein/peptide, such complete binding profile can not be easily obtained).

Figure 2.4 The typical set up of ITC experiment
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2.2.7 DNA thermostability assays

2.2.7.1 Temperature-dependent UV spectroscopy

Absorbance  versus  temperature  profiles  (melting  curves)  for  the  helix  to  coil

transition of DNA complexes were measured with a thermoelectrically controlled Aviv 14-DS

spectrophotometer  (Lakewood,  NJ),  or  Lambda  10  Perkin-Elmer  spectrophotometer,  each

interfaced  to  a  PC  computer  for  acquisition  and  analysis  of  experimental  data.  Water

condensation on the exterior of the cuvette, at low temperatures, was removed by flushing the

chamber with a constant stream of dry nitrogen gas. Nucleotide bases of DNA absorb light in

the far UV region, and the absorbance was monitored at 260 nm and 295 nm, depending on

the sequence of the oligonucleotide, while the temperature was increased at a constant rate of

0.5 ºC/min. The structure of G-quadruplex, or the DNA double helical structure, is such that

its aromatic bases are stacked while the sugar phsphate backbone is exposed to the solvent.

Upon folding, the nucleotide bases are exposed to the solvent, yielding a hyperchromic effect,

i.e., increase in absorbance at 260 nm, or a hyperchromic effect at 295nm for G-quadruplex.

Therefore,  these melting curves allow us to directly monitor the helix-coil  transition of a

given G-quadruplex or oligonucleotide. 

The melting curve begins at low temperature, where the oligomer is in a helical state,

i.e.,  the  bases  are  away  from  the  solvent  and  therefore  the  absorbance  is  low.  As  the

temperature  is  increased,  the  nucleotide  bases  are  exposed  to  the  solvent  resulting  in  a

hyperchromic effect for a typical duplex DNA. As we reach higher temperatures, the oligomer

transitions to the random coil state i.e., all nucleotide bases are exposed to the solvent and

thus a plateau in absorbance is observed at 295 nm, so the UV melting curve begins at a

higher absorbance and decreases until the random coil state is reached. Additionally, it is not
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uncommon for a slight increase in the absorbance as temperature is increased beyond the coil

state, due to a shift in the UV spectrum at high temperatures. From these experiments we can

obtain standard thermodynamic parameters such as, the thermo stability or TM,  as well as

model dependent parameters (van't Hoff enthalpy, free energy and entropy).  

2.2.7.2 Differential Scanning Calorimetry

The total heat  of the helix → coil  transition of each G-quadruplex was measured

directly  with  a  Microcal  VP-DSC  (Northampton,  MA)  differential  scanning  calorimeter

(DSC).  In  general,  the  DSC  measures  the  aprent  molar  heat  capacity  of  a  given

macromolecule as a function of temperature130.  A typical  DSC instrument consists  of  two

cells: the sample cell, containing the matching buffer solution. Both cells are enclosed in an

adiabatic compartment and heated at a constant rate (typically 60  ºC per hour),  while the

differential  temperature between the reference and the sample cells  is maintained at zero.

When  a  temperature  induced  process  takes  place  in  the  sample  cell,  the  instrument

compensates by adding or substracting electrical power (depending on whether the process is

endothermic or exothermic) to the sample cell in order to maintain a differential temperature

of zero. The instrument records this electric power difference, which is proportional to the

difference in the apparent heat capacity between the sample and reference cells (ΔCp
a), i.e. the

changes in heat capacity that occur during a helix → coil transition. The resulting  ΔCp
a  is

plotted as a function of temperature and normalized for the heating rate. A buffer  versus

buffer scan is then substracted from the sample versus buffer scan, resulting in a typical bell

shaped curve from which model-independent thermodynamics profiles are obtained. The TM

is obtained from the peak of the calorimetric curve and the enthalpy and entropy of unfolding

are obtained from the area under the curve.  ΔS is obtained from the area under the curve of

plots of ΔCp/T verus T. The resulting ΔH and ΔS are calculated at the TM according to the

following equations:
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                                                                    Equation 2.3

                                                                     Equation 2.4

We can extrapolate  these  parameters  to  the  temperature  of  interest  (T)  using  the

following equations:

ΔHT  = ΔHTM  + ΔCp (T-TM)                                                                          Equation 2.5

 ΔST  = ΔSTM  + ΔCp ln(
T
TM

)                                                                  Equation 2.6

In  these  equations  ΔCp is  the  heat  capacity  change  characterizing  the  unfolding

process and can be calculated by substracting the heat capacity of the folded state, Cf, from

that of the unfolded state, Cu:

ΔCp = Cu-ΔCf                                                                                                                                                                   Equation 2.7

Cu and Cf can be obtained directly from the DSC plots, by measuring the ΔCp values

of the baseline at high and low temperature, respectively. Conversely, by measuring Tm and

ΔHcal under multiple buffer conditions a plot of ΔHcal versus Tm can be constructed. The slope

of this plot can indirectly determine ΔCp, of the oligonucleotide in question.

The free energy, ΔGT, is calculated using the Gibbs equation :

ΔGT = ΔHT – TΔST        Equation 2.8

However, the unfolding of many nucleic acids is accomplished by small heat capacity

changes and they can be ignored without compromising the overall results. Thus, Δhcal and
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Δscal   can be considered independent of temperature and can be calculated directly from

equations 2. and 2., when no heat capacity effects are involved.

For monomolecular transitions, ΔG and ΔS can also be calculated according to the

following derivation. For the following equilibrium:

Helix↔Coil

At T = TM, the fraction of random cold (1-α) is equal the fraction of helical molecules

( α). Thus:

KT=TM = (1-α)/ α =1   Equation 2.9

ΔG = -RTM ln KT=TM = 0  Equation 3.0

ΔGT = ΔH– TΔS  = 0 and ΔS = ΔH/TM   Equation 3.1

In addition, shape analysis of the DSC curves allows for the calculation of the model

dependent  van't  Hoff  enthalpies,  which  can  be  obtained  from the  full  width  at  half  the

maximum height according to the relationship:

ΔHvH = A/((1/T1)- (1/T2))                 Equation 3.2

Where A is a constant that depends on the molecularity of the transition (A is equal to

7 and 10.14 for monomolecular and bimolecular transitions, respectively). T1 and T2 are the

lower and upper temperatures that correspond to one half of the maximum height of Δcpa,

respectively.

Comparison between the calorimetric and van't Hoff enthalpies is used to evaluate the

nature of each transitions, or its cooperativity; whether the transition takes place in a two state

manner  (ΔHvH/ΔHcal =  1)  or  through  the  formation  of  intermediates  (ΔHvH/ΔHcal ≠  1).  A
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ΔHvH/ΔHcal ratio smaller than one indicates an aggregation of the oligonucleotide. A special

case is observed in the melting of polynucleotides, where the ΔHvH/ΔHcal ratio is greater than

one.  In  the  case,  the  ΔHcal is  determined  per  mole  of  base-pairs,  and  the  value  of  the

ΔHvH/ΔHcal ratio yields the size of the cooperative unit, or the number of base-pairs melting

simultaneously.

2.2.7.3 Temperature-dependent CD spectroscopy

CD  melting  curves,  ellipticity  versus  temperature  profiles,  for  the  helix  to  coil

transition of DNA or G-quadruplex complexes can also be measured to obtain TM and ΔHvH

values using standard procedures outlined above. Temperature dependent CD spectroscopy

can also provide information about the unfolding temperature of a particular conformation in

a solution that contains an oligonucleotide in multiple conformations.
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Chapter 3

Recombinant CidA/LrgA Induces Leakage of Small

Fluorescent Dyes, but not Proteins

3.1. Summary

Holins  are  a  large  family  of  membrane  proteins  that  control  the  activity  of

bacteriophage-encoded murein  hydrolases  by regulating  their  access  to  the  peptidoglycan

substrate55,131.  The  two  S.  aureus membrane  proteins  CidA and  LrgA exhibit  holin  and,

respectively,  anti-holin like properties8.  They are believed to play an important role in the

formation of biofilm by controling bacterial cell lysis during a novel mechanism of bacterial

programmed  cell  death.  This  resembles  the  behavior  of  apoptotic  (e.g.  Bax/Bak)  and

antiapoptotic  (e.g.  Bcl-2/Bcl-xL)  proteins  in  the  outermembrane  of  mitochondria  of

eukaryotes14. Our hypothesis is that CidA can form nanoscale pores which allow the passage

of  small  molecules.  To  test  the  hypothesized  CidA  function  of  pore  formation,  pure

preparations of recombinant CidA were functionally reconstituted into synthetic lipid vesicles,

as  confirmed  by  circular  dichroism  spectroscopy  and  transmission  electron  microscopy.

Fluorescent markers were entrapped into the protein reconstituted vesicles. A new method

was developed to study the protein-induced leakage from vesicles  since the conventional

leakage assay could not be applied to CidA/LrgA. Our initial study has revealed that CidA

induces leakage of small fluorescent dyes in a dose dependent manner, which is in agreement

with our hypothesis.

3.2. Introduction

cid/lrg operon have been shown to regulate the autolysis/programmed cell death of
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S.aureus.  Two  homologous  small  membrane  proteins  CidA and  LrgA are  of  essential

functions in this system5,8,34,67,68. CidA is the effector of cell lysis by regulating the murein

hydrolase  activity,  as  is  indicated by the facts that  cidA mutant  S.aureus is  more loosely

compacted and is less adherent to the substrate and cidA mutant biofilm has much less lysis

and eDNA compared to wild-type. However,  lrgAB mutation resulted in increased murein

hydrolase activity produced by the bacteria (LrgA function seems to rely on LrgB)5. Based on

the above findings, it was hypothesized that CidA and LrgA encodes holin-like and anti-holin

protein, respectively.

To dissect the in vitro function of CidA/LrgA, these proteins were expressed in E.coli

using pET plasmid system with C-terminal 6 x histidine tag. Miligram level of pure protein

was achieved through two-step chromatography purification, first step is the Ni-NTA column

due to the  affinity of  the  tag to  Ni2+ ion,  then the second step was  using size  exclusion

chromatography.  Purified proteins were then labeled with nanogold and reconstituted into

artificial liposomes, their  membrane localization were verified by TEM.

In order to confirm the hypothesis that CidA penetrate the membrane and LrgA inhibit

it's  function,  a  novel  protocol  was  developed  to  entrap  small  fluorescent  dyes

(Carboxyfluorescein and Ethidium Bromide) into the liposome with CidA/LrgA inserted into

the membrane, the liposomes are then separated from the free dyes and then the amount of the

entrapped  dye  can  thus  be  quantified,  by  comparing  the  control  and  protein  group  we

understand the effect of those proteins. The result of experiment showed that CidA caused the

maximum leakage (100% of the entrapped dye) at a relatively low concentration compared to

LrgA, LrgA showed little inhibitory effect when present together with CidA.

We  also  gauze  the  size  of  pores  by  entrapping  larger  molecules  like  Green

Fluorescent  Protein (GFP) and Cytochrome c  into the liposome.  The result  indicates  that

neither  CidA nor  LrgA allow the passage of  proteins  like  GFP and cytochrome c  at  the
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concentration at which small fluorescent dye.

In summary, under our experimental conditions, CidA and LrgA directly form small

pores  in  the  membrane  and allow the  passage  of  small  molecules  around  1  nm but  not

molecules bigger than 2nm. It is possible that CidA induces the leakage of small molecules

and ions to gradually change the osmotic pressure, pH and/or membrane potential to cause the

disruption of S.aureus membrane and thus the death of the bacteria. 

3.3 Materials and Methods

Materials. For protein purification chromatographic columns and an AKTA Purifer 10 from

GE  Healthcare  (Pittsburgh,  PA),  as  well  as  rotors  and  an  Allegra  25R  centrifuge  from

Beckman Coulter (Indianapolis, IN) were employed. The noctyl-β-D-glucopyranoside (OG)

and n-Dodecyl β-D-maltoside (DDM) detergent were from Anatrace (Maumee, OH). All other

chemicals and reagents were from Fisher Scientific (Waltham, MA).

Plasmid. The  CidA/LrgA containing  pET 24b  plasmids  were  provided  as  gift  from our

collaborator  Dr.  Bayles's  lab.  The  plasmids  were  kept  in  DH5α E.coli strain  and  later

transferred  into  C43  BL21  (DE3)  cells  for  expression  following  standard  manufacturer's

procedure. The sequences and secondary structures of CidA/LrgA are shown in Figure 3.1.
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CidA and LrgA sequence alignment (17.69% identity)

CidA -----MHKVQLIIKLLLQLGIIIVITYIGTEIQKIFHLPLAGSIVGLFLFYLLLQFKIVP 55

LrgA MVVKQQKDASKPAHFFHQVIVIALVLFVSKIIESFMPIPMPASVIGLVLLFVLLCTGAVK 60

           :...   ::: *: :* :: ::.. *:.:: :*: .*::**.*:::**    * 

CidA LTWVEDGANFLLKTMVFFFIPSVVGIMDVASEITLNYILFFAVIIIGTCIVALSSGYIAE 115

LrgA LGEVEKVGTTLTNNIGLLFVPAGISVVNSLGVISQAPFLIIGLIIVSTILLLICTGYVTQ 120

     *  **. .. * :.: ::*:*: :.:::  . *:   :*::.:**:.* :: :.:**:::

CidA KMSVKHKHRKGVDAYE----------- 131

LrgA IIMKVTSRSKGDKVTKKIKIEEAQAHD 147

             :    .: ** .. :           

                CidA                                  LrgA

Figure  3.1 Sequence  alignment  (done  via  CLUSTAL,  *  indicate  identity)  and  secondary

structures of CidA and LrgA (picture credit to Protter)
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Protein expression. The CidA/LrgA protein were expressed in E.coli BL21 (DE3). Fresh 2X

TY medium was seeded with glycerol stock of the bacterial and incubated at 37ºC in the

presence of Kanamycin (0.1mg/mL), shaking at 200RPM in a Excella E24 incubator shaker

(Eppendorf).  The growth of  bacterial  was monitored by measuring the UV absorbance at

600nm  (OD600)  with  NanoDrop  2000c  UV-Vis  Spectrophotometer  (Thermo  Scientific).

When OD600  reached 3.0,  these  cultures  were  cooled  down to  27ºC for  an  hour  in  the

incubator. 1mM isopropyl β-D-1-thiogalactopyranoside (IPTG) was then added to the culture

to induce the expression. The expression was continued for another 4 hours and the OD600

reached between 5.0 to 6.0. The E. coli cells were centrifuged in a Backman S-5.1 rotor at

5000rpm for  10  minutes  at  4ºC  and  stored  at  -20ºC.  2X  TY medium was  prepared  as

described. 16g tryptone, 10g yeast extract and 5g sodium chloride were codissolved in 1L of

water and autoclaved.

Protein purification. Frozen cells were thawed and chemically lysed by adding 0.1% Triton

X-100,  0.8M  Urea,  0.25mg/ml  lyzozyme  and  Pierce  universal  nuclease  (Thermo  Fisher

Scientific)  and  incubating  with  stirring  at  room temperature  for  1  hour.  Total  membrane

solubilization was achieved by the addition of 1.75% empigen BB detergent (Sigma Aldrich)

and further incubation at room temperature for 1 hour. Insoluble material was removed by

centrifugation at 7500 g and 4ºC for 1 hour.

Protein purification was accomplished using an AKTA Purifer 10 (GE Healthcare) system via

a two-step strategy. Firstly, the total cell solubilized material was loaded onto a 20ml HisPrep

FF 16/10 column (GE Healthcare)  pre-equilibrated with 20mM Tris,  0.7% Empigen,  3M

Urea, 500mM NaCl and 60mM Imidazole buffer, pH 8.0. The column was then washed with

200ml of the same buffer and then 20mM Tris, 0.1% DDM and 60mM Imidazole, pH 8.0.

Secondly, CidA/LrgA was eluted from the Ni resin using 20mM Tris, 0.1% DDM and 500mM
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Imidazole, pH 8.0 and directly applied onto a 25ml 200 increase 10/300 Superdex column

(GE healthcare) for a second-step purification in 20mM Tris, 0.1% DDM pH 8.0. Purified

protein was stored at -20ºC in the presence of 20% glycerol.

Protein  characterization. Purified  CidA/LrgA  were  analyzed  by  SDS-PAGE  using

Coomassie  blue  staining  and  by  western  blotting  using  an  anti-pentahistidine  antibody

conjugated with horseradish peroxidase. Samples were boiled at 95ºC for 10 minutes before

loading.   

Separation of monomeric, unfolded CidA/LrgA was accomplished first by precipitation of the

OG-solubilized protein with methanol/chloroform and re-solubilization in neat formic acid.

The sample was then diluted with FMA (20% each of formic acid, methanol and acetonitrile

in water)  and separated by size-exclusion  chromtography on  a  Superdex 75  column (GE

Healthcare) in FMA at the flow rate of 1ml/min. The fraction corresponding to monomeric

CidA/LrgA were collected and used immediately.  This sample was used to determine the

CidA/LrgA molecular weight by direct injection into a eletro ionization quadrupole time-of

flight (ESI-Q-TOF) mass spectrometer (Waters) and the CidA/LrgA N-terminal amino acid

sequence  by lyophillization  and subsequent  Edman degradation on a  Procise  494 protein

sequencer (Applied Biosystems) at the UNMC proteomics facility.

Membrane  reconstitution  (dialysis). In  our  project,  CidA/LrgA purified  in  DDM  was

reconstituted into a membrane system of phospholipid composition POPG/POPC = 7:3 by

detergent dialysis. Lipids were dissolved in chloroform and stored at -20ºC. Required aliguots

were mixed and chloroform was then removed under  low vacuum followed by overnight

lyphillization. The dried lipid mixture were then dissolved in 20mM Tris, 60mM OG, pH 8.0

at  a  final  concentration  of  2.5mg/ml  and  vortexed  until  clear.  OG-solubilized  lipids  and

CidA/LrgA were then combined and incubated at room temperature for 30 minutes. After the

incubation, the mixture was dialyzed using a 10 kDa cutoff membrane against 20mM Tris,
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50mM NaCl, 2mM EDTA for 24 hours.

Carboxyfluorescein Liposome leakage assay. The newly-developed liposome leakage assay

was based on the self-quenching property of carboxyfluorescein (CF, a negatively charged

fluorescent dye). The POPG/POPC (7:3) lipids were dried and dissolved in 60mM OG as

described above in the dialysis based membrane reconstitution method. The liposomes were

combined with small amount of DDM dissolved CidA/LrgA protein in certain ratio and the

mixture was directly injected into 50mM CF (self-quenches at  this  concentration),  20mM

Tris, 50mM NaCl and 2mM EDTA solution, the proteo-liposomes with detergent molecules

are  formed upon dilution since the detergent  concentration will  be  below critical  micelle

concentration  (CMC,  for  CMCOG=  15-17mM,  CMCDDM~0.2mM),  meanwhile  the  newly-

formed  liposomes  will  each  trap  small  amount  of  50mM  CF.  Free  dye  and  the

proteoliposomes are separated by PD-10 columns and the collected liposomes are subjected to

10ul of 10% Triton X-100 and water, respectively. Upon lysis by Triton X-100, the 50mM CF

entrapped inside the liposomes are immediately diluted and emits stronger fluorescent signal.

Fluorescent signal is measured by spectrometer at endpoint excitation wavelength 492nm and

emission wavelength 517nm. The signal is calculated as: 

ΔFL = FLTriton X-100-FLwater (Equation 3.1)

ΔFL represents the difference in fluorescent signal,  FLTriton X-100respresents the signal obtained

from Triton X-100 added liposomes (lysed) and Flwater stands for water added lipsomes (not

lysed).  A negative control  was made by using plain DDM detergent  without  proteins.  By

comparing the ΔFL of CidA/LrgA proteo-liposome and the control liposome, the information

on the effect of proteins (extent of leakage) can be obtained (see Figure 3.2).
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Figure 3.2 Schematic figure of the design of the liposome leakage assay
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Transmission Electron Microscopy. Samples were incubated with 5 nm Ni-NTA-Nanogold

(Nanoprobes, Yaphank, NY) to label CidA/LrgA for 30 minutes. 10 μL of the sample was

then placed on thin carbon films on holey grids and allowed to absorb for 2 minutes, after

which the grid was washed with 10 μL of deionized water twice and negatively stained with

methylamine vanadate (Nanoprobes). Imaging was carried out with a Tecnai G2 transmission

electron microscope (FEI) operated at 80 kV.

Circular Dichroism Spectroscopy. The secondary structure of CidA/LrgA in 60mM OG and

in the lipid bilayer was obtained using a Model 202SF circular dichroism spectrometer (Aviv

Biomedical). Spectra were obtained from 250 to 190nm in 1nm increments at 25ºC and the

reported spectra correspond to the average of at least three wavelength scans. The data was

analyzed using K2D3 software. 

3.4 Results and discussion

Protein production. Large-scale preparations of recombinant Cid/Lrg proteins are routinely

needed for  the  subsequent  experiments.  These requirements  are  non-trivial  for  membrane

proteins.  All  aspects  of  E.  coli  expression  have  been  optimized,  as  well  as  detergent

solubilization and purification, as mentioned in the protocol. Typically, 2-3 mg of CidA/LrgA

are currently purified per liter of culture. The proteins are purified in 0.1% DDM on size

exclusion chromatography column, CidA peak mainly appears in 13ml and LrgA peak in

23ml, which suggest CidA under the experimental condition is in a oligomeric state whereas

LrgA is more likely to be a monomer (see  Figure 3.3). Monomeric Recombinant CidA (16

kDa) and LrgA (17 kDa) are also characterized by SDS-PAGE and Western-blot (see Figure

3.3).  If  samples  are  not  treated with reducing  agent,  there  will  be  oligomers  and dimers

(appear at 32kDa and 36kDa for CidA and LrgA, respectively), indicating that CidA and LrgA
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are prone to dimerize or  oligomerize.  N-terminal  sequencing and Mass spectrometry was

employed to confirm that the N-termina of these proteins were intact (except for cleavage of

the first Methionine). 
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Figure 3.3 Purification of CidA/LrgA (A) CidA and LrgA chromatograpy, the arrows indicate

the  majority  of  the  protein.  (B)  SDS-PAGE  of  purified  CidA/LrgA (C)  Western-blot  of

CidA/LrgA/CidC.
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Membrane reconstitution. For dialysis based reconstitution, CidA/LrgA were reconstituted

into a mixture of POPG/POPC (7:3), (all lipids from Avanti Polar Lipids) synthetic bilayers

via detergent dialysis. 60mM OG-solubilized lipids were mixed with 0.1% DDM solubilized

CidA/LrgA at room temperature at pH 8.0 for 30 min to allow the equilibration of the mixed

micelles.  Detergent  was then extensively dialyzed out  which resulted in the  formation of

CidA/LrgA-containing liposomes. To visualize the proteins, CidA/LrgA were labeled by 5nm

nanogold, as the protein C-terminal histidine tag binds to the Ni2+ on the surface of nanogolds.

By  TEM,  it  was  conclusively  found  that  CidA/LrgA locate  in  the  lipid  membrane  as

transmembrane proteins, as indicated by the positions of the nanogold (see  Figure 3.4A).

Since there was no controlling the orientation of the proteins when they were inserted to the

membrane,  CidA/LrgA locate  at  both  sides  of  the  lipid  membrane.  When  the  protein

concentration is low, they can be homogeneously distributed. Whereas in the high protein to

lipid  ratio  group,  those  proteins  can  form clusters  and  cause  some  changes  to  the  local

membrane morphology.  The secondary structures of CidA/LrgA are measured by CD, the

results showed that CidA consists of 51.03% α-helix and 8.95% β-sheet and LrgA contains

67.4% α-helix and 2.2% β-sheet (by K2D2 software), which is in good agreement with the

predicted secondary structure (Figure 3.4B).
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Figure  3.4 Membrane  reconstitution  of  CidA/LrgA (A)  TEM  image  of  CidA and  LrgA

reconstituted on POPG/POPC (7:3) lipid membrane. (B) CD spectra of purified CidA/LrgA
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Liposome  Leakage  assay.  Liposome  leakage  assay is  a  common assay for  studying  the

membrane disruption, penetration and pore-formation properties of membrane proteins and

peptides,  most  assays  are  based  on  the  entrapping  of  signal  (Fluorescent/UV-

Vis/chemiluminescent,  etc) molecules into preformed liposome, then the protein/peptide is

added to  the  liposomes  and the  signal  change  can  then  be  recorded132,133.  However,  high

concentration of membrane proteins must be first solubilized by detergent and the detergent

concentration must be controlled so that the membranes are not disrupted due to the detergent.

In our  protocol,  the  major  advantage is  the  simultaneous  membrane  incorporation  of  the

membrane proteins CidA/LrgA and the entrapping of fluorescent dyes, and with the use of

PD-10  column,  liposomes  and  free  dyes  can  be  separated  very  fast,  multiple  groups  of

experiments with different  membrane protein concentrations can be prepared in a 96-well

plate within 1-2 hours. 

To validate the protocol, we have first done experiments on Heme molecules and Influenza

M2 ion channel  transmembrane peptides.  Heme has been shown to disrupt  the biological

membrane and thus can serve as a positive control, whereas Influenza M2 ion channel only

allows  the passage of  protons (but  not  bigger  chemicals  like  carboxyfluorecein)  and is  a

negative control for the study. It's shown in Figure 3.5 that heme causes extensive liposome

leakage whereas Infuenza M2 does not induce leakage even at a relatively high concentration,

as expected. 
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          Influenza M2                                                                            Heme

Figure 3.5 Liposome leakage assay of CF in the presence of Influenza M2 and Heme
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In the case of CidA/LrgA, both CidA and LrgA can cause the leakage of CF, however,

it was found that CidA induces the leakage at a relatively low concentration compared to

LrgA, which is in agreement with the hypothesis that both holin and anti-holin can induce

leakage and holin function is more effective and direct (Figure 3.6). When LrgA is mixed

with CidA and both incorporated into the membrane, no apparent inhibitory effect of LrgA is

seen (data not shown), indicating that either LrgA function is dependent on other proteins like

LrgB or LrgA is likely to function under other experimental conditions (pH, buffer, chemicals,

etc), which need to be further tested. 

Figure 3.6 Liposome leakage assay of CF in the presence of CidA and LrgA
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To further gauge whether CidA/LrgA cause leakage via membrane disruption or pore

formation, larger cargoes like cytochrome c and GFP are used in the liposome leakage assay

instead of CF and to better separate the liposomes and free cargoes, size-exclusion column is

used  instead of PD-10, liposomes were eluted in the void volume (before 10ml) and the free

proteins appear in 14ml (GFP) and 17ml (cytochrome c), thus they are separated. The result

showed  that  cytochrome  c  and  GFP does  not  come  out  of  liposome  in  the  presence  of

CidA/LrgA at  the concentration when CF is  leaked (1:8 protein to lipid weight  ratio,  see

Figure 3.7), though cytochrome c does leakage out a little more than GFP. It suggests that

CidA/LrgA form pores in the membrane instead of causing massive membrane disruption,

CidA/LrgA may mainly cause the leakage of small chemicals instead out larger proteins so

the size of the pores that they form are 0.8 to 1.5nm.
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F

igure 3.7 Liposome leakage assay of cytochrome c and GFP in the presence of CidA and

LrgA
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3.5 Conclusions

Consistent with the model that the CidA and LrgA proteins are holin-like proteins, the

data indicate that they regulate membrane permeability by forming pores. The goal here is to

confirm this function at the protein level and to characterize the protein-induced membrane

pores. Leakage assays, which monitor the release of fluorescent molecules and proteins from

liposomes, is the method of choice to study such phenomena. We have therefore entrapped

small  fluorescent  dyes  (carboxyfluorescein,  CF)  and  Cytochrome  c/GFP into  CidA-  and

LrgA-liposomes and quantified their release as a function of the CidA/LrgA concentration by

separating liposomes from small molecules via gel filtration chromatography. The CF leakage

from both CidA- and LrgA-liposomes is shown in Figure 3.6 and demonstrates that CidA, but

not  LrgA,  induces  the  formation  of  nanometer-size  pores  at  biologically relevant  protein

concentrations (the hydrodynamic radius of CF is 0.8 nm). Similar results were obtained with

EB (same hydrodynamic radius, but positively charged unlike the negatively-charged CF, data

not shown), while the much larger cytochrome c and GFP protein (hydrodynamic radius of

3.6 nm) did not leak out of CidA-liposomes (in Figure 3.7). These results suggest that CidA

induces nanometer-scale pores into the membranes, while LrgA does not. It is possible that

LrgA induces the formation of much smaller angstrom-scale channels which will be further

investigated. We note that a number of positive (using hemin as a membrane permeabilizing

agent) and negative (using the M2 proton channel peptide) controls have been conducted to

validate our liposome leakage approach.
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Chapter 4

Characterization of the Staphylococcus aureus CidC

pyruvate:menaquinone oxidoreductase

4.1. Summary

Recent studies have revealed an important role for the Staphylococcus aureus CidC

enzyme  in  cell  death  during  the  stationary phase  and in  biofilm development,  and  have

contributed to our understanding of the metabolic processes important  in the induction of

bacterial programmed cell death (PCD). To gain more insight into the characteristics of this

enzyme we performed an in-depth biochemical analysis of its catalytic properties. In vitro

experiments show that this flavoprotein catalyzes the oxidative decarboxylation of pyruvate to

acetate  and  carbon  dioxide.  CidC  can  reduce  cytochrome  c  via  menaquinone,  but  not

ubiquinone, suggesting participation in the bacterial aerobic respiratory chain. CidC functions

as a monomer with no evidence for oligomerization,  binds to artificial  membranes which

increases enzymatic activity,  and does not  appear to be activated by amphiphiles such as

phospholipids  and  charged  detergents.  In  addition,  only reduced  CidC  is  protected  from

proteolytic cleavage by chymotrypsin, and, unlike its homologues, protease treatment does

not increase enzymatic activity. Finally, CidC activity is strongly pH-dependent with maximal

activity observed at pH 5.5 to 6 and negligible activity at pH 7 to 8. The results of this study

are  consistent  with  a  model  in  which  the  activity  of  the  CidC  pyruvate:menaquinone

oxidoreductase  is  induced  at  the  cellular  membrane  during  cytoplasmic  acidification,

conditions that were previously shown to be important to the induction of bacterial PCD.
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4.2. Introduction

Studies of the cidABC and lrgAB operons from Staphylococcus aureus have revealed

a  complex  network  of  membrane-associated  proteins  and  metabolic  enzymes  with  a

significant role in the regulation of bacterial viability. CidA and LrgA are functionally similar

to  members  of  the  Bcl-2  family  of  proteins  that  control  apoptosis  in  eukaryotic

organisms86 and cidA and lrgA mutations are associated with cell death phenotypes5,66. It has

been  therefore  proposed  that  the  widely conserved  cid and  lrg operons  control  bacterial

PCD10,69 which most dramatically manifests within the complex, multicellular environment of

the biofilm5,67.

The Cid and Lrg system has been shown to rely on the activities of two opposing

membrane  proteins  that  function in  a  manner  that  is  analogous to  bacteriophage-encoded

holins, known to be required for the control of cell death and lysis during the lytic cycle of a

bacteriophage infection134. Similar to holins, the CidA and LrgA proteins are small, membrane

proteins that form high molecular weight oligomers8. In addition, CidA and LrgA appear to

have opposing functions (analogous to holins and anti-holins, respectively) in the control of

cell  death and lysis,  with  CidA functioning as  an  effector  of  these  processes67 and LrgA

functioning as an inhibitor5,135. These striking functional and biochemical properties of CidA

and LrgA have laid the foundation for the model that these bacterial proteins represent the

progenitors of the regulatory control of apoptosis in more complex eukaryotic organisms136.

Our  laboratory  has  recently  demonstrated  that  the  cidC  gene,  which  encodes  a

pyruvate enzyme, also plays a major role in the control of bacterial PCD by potentiating cell

death70.  This process was shown to involve the CidC-mediated conversion of intracellular

pyruvate to acetate, which leads to cytoplasmic acidification and respiratory inhibition and

suggests  that  CidC  is  a  pyruvate  enzyme9.  Pyruvate  is  an  important  intermediate  in
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carbohydrate metabolism that is directly metabolized by two types of flavoenzymes137. These

enzymes are differentiated by the Enzyme Commission (EC) according to their immediate

electron acceptor: pyruvate oxidases or pyruvate:oxygen 2-oxidoreductases (EC 1.2.3.3) pass

the electron to oxygen, while pyruvate dehydrogenases or pyruvate:quinone oxidoreductases

(EC 1.2.5.1)  pass  the  electron  to  a  quinone.  The  former  enzyme  requires  phosphate  and

produces acetyl phosphate, while the latter requires water and generates acetate with the full

reactions shown in Equation 1. These enzymes have been studied extensively and well-known

examples  include  the  pyruvate:oxygen  2-oxidoreductase  SpxB  from  Streptococcus

pneumoniae138 and the pyruvate:ubiquinone oxidoreductase PoxB from Escherichia coli139.

Equation 1

pyruvate + phosphate + O2 → acetyl phosphate + CO2 + H2O2

pyruvate + H2O + quinone → acetate + CO2 + quinol

Pyruvate:oxygen  2-oxidoreductases  consume  oxygen  and  participate  in  cellular

signaling via the generation of acetyl  phosphate140 and in cell  death via the production of

H2O2
141. Pyruvate:quinone oxidoreductases directly feed electrons from the cytoplasm into the

membrane  respiratory  chain.  PoxB  has  been  extensively  characterized  because  it  is  an

interesting membrane-activated enzyme: its enzymatic activity and kinetics are well known

and its protein structure was determined142,143. The recently identified CidC shares about 33%

identity in the  amino acid sequence with either  of  SpxB and PoxB and previous in vivo

studies suggest that it is an enzyme responsible for the conversion of pyruvate to acetate 9. The

current  study  focused  on  elucidating  the  basic  biochemical  properties  of  CidC  and  has

conclusively  demonstrated  its  activity  as  a  pyruvate:quinone  oxidoreductase  which  uses

menaquinone as a direct  electron acceptor.  In addition,  these studies demonstrate that  the

optimal pH range for CidC activity is between 5.5 and 6.0, consistent with a role for this
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enzyme during cytoplasmic acidification and the potentiation of bacterial PCD.

4.3. Materials and Methods

Materials. For protein purification chromatographic columns and an AKTA Purifer

10 from GE Healthcare (Pittsburgh, PA), as well as rotors and an Allegra 25R centrifuge from

Beckman Coulter (Indianapolis, IN) were employed. The Penta-His Antibody from Thermo

Scientific  (Waltham,  MA)  was  used  for  western  blot  detection.  Glucose  oxidase  from

Aspergillus niger (160 kDa)  and human serum albumin (66.5 kDa)  were purchased from

Sigma Aldrich (St. Louis, MO). The noctyl-β-D-glucopyranoside (OG) detergent was from

Anatrace  (Maumee,  OH).  All  other  chemicals  and  reagents  were  from Fisher  Scientific

(Waltham, MA).

Protein  expression. The  CidC  protein  was  expressed  in  Escherichia  coli  BL21

(DE3). Fresh 2X TY medium was seeded with glycerol stock of the bacterial and incubated at

37ºC  in  the  presence  of  Kanamycin  (0.1mg/mL),  shaking  at  200RPM  in  a  Excella  E24

incubator shaker (Eppendorf) . The growth of bacterial was monitored by measuring the UV

absorbance at 600nm (OD600) with NanoDrop 2000c UV-Vis Spectrophotometer (Thermo

Scientific). When OD600 reached 3.0, 1mM isopropyl β-D-1-thiogalactopyranoside (IPTG)

was added to the culture to induce the expression. The expression was continued for another 4

hours and the OD600 reached 6.0. The E. coli cells were centrifuged in a Backman S-5.1 rotor

at  5000rpm for  10 minutes at  4ºC and stored at  -20ºC.  2X TY medium was prepared as

described. 16g tryptone, 10g yeast extract and 5g sodium chloride were codissolved in 1L of

water and autoclaved.

Protein Purification. Frozen cells were resuspended in 20mM Tris, 500mM NaCl,

pH 8.0 (Volume of buffer = 50ml/750ml cell culture).  Lysozyme (0.25mg/mL), benzonase

(5mg/ml), Triton X-100 (1%) and 1mM PMSF were added. The cell lysis was stirred and
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incubated at room temperature for 30 minutes, followed by sonication with four 30-s burst on

ice. Insoluble material was pelleted by centrifugation at 7500rpm at 4 °C for 30 minutes in

Beckman A-14 rotor. The supernatant was recovered and stored at 4ºC. Protein purification

was accomplished using AKTA purifier system via a two-step purification strategy. Firstly,

recovered supernatant was loaded onto 25mL Ni-NTA affinity column (GE healthcare). The

column was then washed with  10 bed  volumes  of  washing-1  buffer  (20mM Tris,  20mM

Imidazole, 0.5M NaCl, pH 8.0). His-tagged protein was then eluted from the column with

elution buffer (20mM Tris, 300mM Imidazole, 0.5M NaCl, pH 8.0). Secondly, eluted protein

was applied onto a 25ml 200 increase 10/300 Superdex column (GE healthcare) for a second-

step purification in 200mM sodium phosphate pH 7. Purified protein was stored at -20ºC in

the presence of 20% glycerol.

Liposome preparation. Small  phospholipid vesicles  were formulated using a  7:3

w/w mixture of 1-palmitoyl-2-oleoylsn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) and 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine  (POPC)  lipids  (Avanti  Polar  Lipids,

Alabaster, AL). The lipids were weighted and thoroughly dissolved in NaP7 buffer containing

60 mM OG detergent  by incubating for 15 minutes  at  37°C until  the solution was clear.

Liposomes were then formed via 10x dilution of the above lipid-detergent solution into NaP7

buffer while mixing vigorously, followed by detergent removal via overnight dialysis against

NaP7  buffer  using  Spectra/Por  6  dialysis  membranes  with  a  10  kDa  cutoff  (Spectrum

Laboratories,  Rancho  Dominguez,  CA).  The  liposomes  were  finally  extruded  11  times

through 400 nm Whatman nuclepore track-etched membranes (GE Healthcare,  Pittsburgh,

PA) using a Mini-Extruder (Avanti Polar Lipids, Alabaster, AL) and used immediately.

Ferricyanide assay for CidC activity. 2 μM CidC (with urea, Triton X-100, OG,

citrate or liposomes added as indicated) was first incubated with 20 mM pyruvate, 10 μM TPP

and 1 mM Mg2+ in NaP6.0 buffer for 20 min. 8 mM ferricyanide was then added and its
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reduction was immediately visible as it lost its color. Consequently, the CidC activity was

measured as a decrease in absorption at 450 nm over time. The pH-dependent CidC activity

was similarly tested in 200 mM sodium acetate over pH 5.0 to 5.6 and 200 mM sodium

phosphate buffer over pH 5.6 to 8.0. The enzyme activity was identical at pH 5.6 in both

sodium acetate and sodium phosphate. One unit (1U) of pyruvate oxidase activity is defined

as the amount of enzyme required to consume 1 μmole of pyruvate in one minute. The CidC

specific activity was estimated accordingly within one minute of the ferricyanide addition,

taking into account that  (i)  two equivalents of  ferricyanide are  reduced per equivalent  of

decarboxylated pyruvate and (ii) the extinction coefficient of ferricyanide at 450 nm is 0.218

mM-1 cm-1.

Acetate  quantification. The  “acetic  acid  test  kit”  (R-Biopharm  AG,  Darmstadt,

Germany) was used with the provided instructions to measure acetate concentrations. Protein

samples  with  2  μM  CidC  (and  optionally  0.05%  Triton  X-100  or  3M  urea)  were  first

incubated with 20 mM pyruvate, 10 μM TPP and 1 mM Mg2+ in NaPh6.0 buffer for 20 min.

8 mM sodium ferricyanide was then added and the acetate levels were measured in triplicate

after 30 min when the reaction was completed. The urea-containing sample was used as a

negative control, while a 5 mM acetate solution was used as a positive control.

H2O2 quantification. Peroxidase  catalyzes  the  reaction  of  H2O2  with  4-

aminoantipyrine and phenol  to form 4-(pbenzoquinone-monoimino)-phenazone with a 510

nm  absorbance  proportional  to  the  initial  H2O2  concentration8–10.  This  reaction  was

calibrated for H2O2 quantification in the 1 to 10 mM range (R2=0.99). 20 mM pyruvate, 10

μM TPP, 1 mM Mg2+ were incubated with 2 μM CidC (and optionally 0.05% w/w Triton X-

100) in NaP6.0 buffer for 20 min when 35 mM phenol, 10 mM 4-aminoantipyrine and 1 μM

horseradish peroxidase were added. The activity of glucose oxidase was used as a positive

control since it converts glucose to gluconolactone and H2O2.
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CidC quinone electron transport assay. These experiments were conducted as the

ferricyanide assay, except that the 8 mM ferricyanide was replaced by 250 μM quinone (the

headgroup of either menaquinone or ubiquinone from a dimethylsulfoxide (DMSO) stock)

and 80 μM cytochrome c. The cytochrome reduction was followed spectroscopically at 550

nm.

TEM imaging. Samples were incubated with 5 nm Ni-NTA-Nanogold (Nanoprobes,

Yaphank, NY) to label CidC for 30 minutes. 10 μL of the sample was then placed on thin

carbon films on holey grids and allowed to absorb for 2 minutes, after which the grid was

washed  with  10  μL of  deionized  water  twice  and  negatively  stained  with  methylamine

vanadate. Imaging was carried out with a Tecnai G2 transmission electron microscope (FEI)

operated at 80 kV.

Isothermal titration calorimetry (ITC). ITC was carried out on a MicroCal iTC200

(Malvern Instruments Ltd, Worcestershire, UK). 40 μl of 100 μM CidC in NaP7 buffer was

injected into 250 μl NaPh6 buffer containing various ingredients as specified. A total of 20

injections (2 μL each, spaced by 5 minutes) were performed at room temperature. Data was

analyzed using the Origin software (OriginLab Corporation, Northampton, MA).

Protease treatment. 2 μM CidC in NaP6 or NaP7 buffer containing either of 20 mM

pyruvate,  10  μM TPP or  1  mM  Mg2+ was  incubated  for  30  minutes.  1  μM trypsin  or

chymotrypsin was then added and proteolytic cleavage was conducted for 30 minutes. The

solution was immediately tested for activity using the ferricyanide assay or was immediately

precipitated  using  methanol:chloroform  (4:1  v/v)  and  studied  201  by  SDS-PAGE

electrophoresis.
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4.4 Results and Discussion

CidC preparation.  To study the  S.  aureus CidC enzyme,  a previously developed

expression plasmid9 was exploited to generate milligram amounts of purified protein. Initial

screening using western blot analysis of the C-terminal histidine tag of CidC showed that the

enzyme  over-expresses  very  well  in  E.  coli BL21(DE3)  cells.  A  first-step  affinity

chromatography  employing  Ni-NTA resin  resulted  in  pure  and  stable  protein  in  pH 8

phosphate  buffer  containing 500 mM NaCl  (Figure 4.1A).  As  expected for  flavoproteins,

CidC exhibited  characteristic  UV-VIS  absorption  at  380 and 450 nm and fluorescence  at

530 nm (with 450 nm excitation) as shown in Figure 4.1B144,145. This finding suggests that the

enzyme maintains its FAD-bound state throughout cell lysis and purification, and no attempts

were made here to supplement FAD to the protein (although it is possible that a small enzyme

population is not active because it lost its FAD cofactor). The intrinsic fluorescence of CidC

was observed at 340 nm (with 280 nm excitation), also shown in  Figure 4.1B145. The CidC

molecular weight  (calculated average of 64,806 Da) was qualitatively confirmed by SDS-

PAGE (Figure 4.1A) and quantitatively by mass-spectroscopy to within a few Da (data not

shown).  The first  six  amino acids (Met,  Ala,  Lys,  Ile,  Lys  and Ala)  were verified by N-

terminal sequencing (data not shown) strongly confirming the identity of the purified protein.

The protein solution was made 15% glycerol  and stored at  -20°C until  experiments were

performed.

As  shown below,  the  CidC protein is  only active below pH 6.5,  however  it  also

precipitates quite rapidly under these conditions. The addition of high concentrations of NaCl

delays this protein self-aggregation, but also inhibits its enzymatic activity. A NaCl-free and

acidic solution is therefore required for an active CidC preparation and a second purification

step was implemented to bring CidC from pH 8 to an intermediate pH 7 phosphate buffer

without any NaCl by gel filtration chromatography. The sample was then immediately diluted
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to or titrated into pH 6 phosphate buffer and activity assays were performed. This protein

formulation  provided  consistent  results  among  different  protein  batches  while  also

minimizing the extent of self-aggregation.
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Figure  4.1. CidC purification  and optical  characterization.  (A)  SDS-PAGE gel  (left)  and

western blot (right) of purified CidC in the presence (lanes 1A, 2A) or absence (lanes 1B, 2B)

of β-mercaptoethanol. Relevant bands in the marker lanes (M) are identified by their MW in

kDa. (B) UV-VIS and fluorescence with excitation at 280 (FL 280) and 450 nm (FL 450)

spectra of CidC at pH7.
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CidC oligomerization and aggregation.  All previously studied bacterial pyruvate

oxidoreductases were shown to be homo-tetramers in their functional form142,143,145–148. CidC

oligomerization was studied here by gel filtration chromatography in pH 6 phosphate buffer

(Figure  4.2A).  Most  CidC eluted  under  these  conditions  very closely to  serum albumin

(which has 98% of the molecular weight of the CidC monomer), strongly suggesting that

CidC exists almost exclusively in a monomeric form. A remaining and very small amount of

CidC eluted as a dimer, which was confirmed by (i) the disappearance of this peak under

reducing conditions (when using 0.1% v/v 2-mercaptoethanol, data not shown) and (ii) its

elution profile being very similar to that of glucose oxidase (which has 117% of the molecular

weight  of  the  CidC  dimer).  Any  other  CidC  oligomers  (trimers,  tetramers  or  larger

assemblies) would elute in the void volume between 8 and 10 mL when using the column

employed here. Since very little A280 signal was detected in this region, only traces of such

larger oligomers could exist, reinforcing the idea that CidC is predominantly monomeric at

pH 6. No protein was trapped on the column during the purification as judged by comparison

of the A280 signal between the injected and eluted protein.

Although CidC was rapidly eluted (within 15 minutes) as a monomer while the pH

was exchanged from 7 to 6 (the sample was injected at pH 7 and purified in pH 6 buffer), the

protein completely precipitates at  pH 6 within approximately 30 minutes after  purification

(the protein concentration being 2-3 mg/mL).  However,  it  was found that  the  addition of

500 mM NaCl to purified CidC in pH 6 delays its precipitation by several hours. CidC was

also shown to be monomeric at pH 7 and 8 (both with and without 500 mM NaCl) using the

same gel filtration assay (data not shown). These experiments show that CidC is monomeric

and, although it appears stable at pH 7 to 8, it rapidly aggregates at high protein concentration

and below pH 6.5. This CidC self-aggregation can be largely suppressed by the addition of

high concentrations of NaCl.
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Enzyme self-aggregation at pH 6 was also investigated by TEM. CidC was incubated

for 1 hour in pH 6 phosphate buffer without (Figure 4.3A-C) and with 500 mM NaCl (Figure

4.3D) and then immediately imaged. Large protein aggregates were observed in the absence

of  NaCl,  while  only  non-aggregated,  randomly  distributed  protein  was  observed  in  the

presence  of  NaCl,  confirming  that  at  high  concentrations  NaCl  prevents  CidC  self-

aggregation.
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Figure  4.2.  Purification  of  proteins  and/or  liposomes  by gel  filtration.  (A)  CidC,  human

serum albumin (HSA) and glucose oxidase (GO) were each separately purified. The asterisk

denotes CidC dimers. (B) CidC, liposomes (LIP) and their mixture were purified. The asterisk

denotes a minute amount of monomeric CidC eluting from the CidC-LIP mixture. (C) As in

(B), except that 500 mM NaCl was used during purification. The asterisk denotes the elution

of small molecules (e.g. salts, residual detergents, etc.). The inclusion of high salt slightly

changes the physical properties of the column, e.g. the void volume and monomeric CidC

elution are shifted when compared to (A-B). Data was scaled relative to the protein A280 in

all cases.
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CidC  interaction  with  phospholipid  membranes.  The  bacterial  pyruvate

oxidoreductases studied to date exist in a soluble, inactive form within the cytoplasm and

localize at the cellular membrane to become active18,26–29. To study the interaction of CidC

with membranes, liposomes prepared with a simple mixture of POPG:POPC (7:3 w/w) were

used  here  to  mimic  the  membrane  lipid  composition  of  S.  aureus30–33.  Three  samples

containing (i) CidC, (ii) liposomes and (iii) CidC-liposomes mixture were subjected to the

same gel filtration procedure described above in pH6 phosphate buffer (Figure 4.2B). Due to

their large dimensions, the liposomes elute in the void volume and also scatter light which

translates  into  an  apparent  absorption  at  280nm.  The  peak  corresponding  to  the  CidC

monomer disappears completely when the CidC-liposomes mixture is analyzed, suggesting

that CidC binds to the membranes and co-elutes with the liposomes. The sum of the A280

signals from the separately-injected liposomes and CidC samples is significantly larger than

the signal obtained when their mixture is injected. This implies that some of the sample is lost

during the purification and suggests that CidC not only binds to the membranes, but also

induces aggregation of the liposomes into much larger assemblies that are trapped within the

column and do not elute at all.  To test this,  the CidC membrane-binding experiment was

repeated with 500 mM NaCl added to the running buffer as shown in Figure 4.2C. Under

these conditions,  CidC elutes  independently from the liposomes when the CidC-liposome

mixture  is  injected.  Moreover,  the  chromatograph  corresponding  to  the  CidC-liposome

mixture is quantitatively equal to the sum of the peaks obtained when CidC and liposomes are

injected separately. These results support the notion that CidC induces liposome aggregation

and that high concentrations of NaCl are able to completely suppress this interaction.

The CidC interaction with the membranes was further probed by TEM. In the absence

of NaCl, co-localization of the nanogold-labeled CidC and the negatively-stained liposomes
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was consistently observed (Figure 4.3A1, A2). Liposomes were in excess in these studies

therefore many protein-free vesicles were observed. However, CidC was always found bound

to clustered vesicles.  Very large structures  were  observed most  likely representing CidC-

liposome aggregates in agreement with the gel filtration data above (data not shown). When

the  CidC cofactors  TPP/Mg2+ where  added to  the  sample,  the  same  co-localization  was

thoroughly observed (Figure 4.3B1, B2). Combined, the data above demonstrates that CidC

spontaneously binds to membranes and that this interaction is mostly electrostatic in nature.
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Figure 4.3. TEM characterization of CidC. TEM images showing CidC as labeled by 5 nm

nanogold particles and liposomes by negative staining.  Binding of CidC to membranes is

demonstrated in mixtures of CidC and liposomes at pH 6 (A1, A2) without and (B1, B2) with

the co-factors TPP/Mg2+. CidC self-aggregation is characterized by incubating the protein for

1 hour at pH 6 (C) without and (D) with 500 mM NaCl.
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CidC converts pyruvate to acetate. Two possible enzymatic reactions are catalyzed

by  pyruvate  oxidoreductases  as  detailed  above:  one  converts  pyruvate  to  acetate/carbon

dioxide and the other to acetyl  phosphate/hydrogen peroxide.  The reactions can be easily

identified by detecting acetate and, respectively, hydrogen peroxide in the end products. The

production  of  both  acetate  (via  a  commercial  kit)  and  hydrogen  peroxide  (via  a  well-

established  assay)  was  investigated  here  to  determine  which  of  these  two  reactions  is

facilitated by recombinant CidC in vitro. A note is made that the acetate pathway requires a

quinone  which  was  substituted  with  ferricyanide  and  that  the  acetyl  phosphate  pathway

requires phosphate and oxygen which were present in the sodium phosphate buffer. Previous

studies have shown that other pyruvate oxidoreductases are barely active in the absence of

amphiphiles  such as  the  Triton X-100 detergent  or  phospholipids149–151.  Triton X-100 was

incorporated in some assays to possibly activate CidC. Tests were initially performed at pH 6

which provides a good compromise between CidC activity and self-aggregation,  however

some pyruvate oxidoreductases exhibit a strong pH-dependent activity147. In order to ensure

that CidC does not produce hydrogen peroxide at a different pH, a screening was conducted

over a wide pH range.

CidC was incubated for 1 hour with the pyruvate substrate, the TPP/Mg2+ cofactor

and the artificial electron acceptor ferricyanide in phosphate buffer pH 6 to allow complete

enzymatic conversion of pyruvate by CidC. Initial tests showed that the reaction completes

within several  minutes under the employed conditions and that  longer incubations do not

change the enzymatic  outcome.  This  solution was immediately tested for  the  presence of

acetate and hydrogen peroxide. Acetate was quantitatively confirmed in the CidC enzymatic

end products (Figure 4.4A). Two equivalents of ferricyanide are reduced per equivalent of

decarboxylated pyruvate by pyruvate oxidases149.  In this case, 20 mM pyruvate and 8 mM
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ferricyanide were used, making ferricyanide the reaction-limiting ingredient. If all pyruvate is

converted to acetate, the final acetate concentration is expected to be half that of ferricyanide

(or about 4 mM). An average value of 4.4 mM acetate was indeed measured suggesting that

CidC efficiently converted all  pyruvate to acetate under these conditions. Inclusion of 1%

w/w Triton X-100 did not significantly change the reaction outcome, while inclusion of 3 M

urea severely limited the reaction most likely by denaturing the enzyme. Hydrogen peroxide

was however absent from the end products of the CidC enzyme (Figure 4.4B), even when 1%

w/w Triton X-100 was added to the reaction. The above CidC catalytic reaction was also

conducted at pH 5 to 8 in steps of 0.25, however hydrogen peroxide could not be detected in

any of them.
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Figure 4.4. Products of the CidC enzyme. The production of either (A) acetate or (B) H2O2 by

CidC was measured. (A) 5 mM acetate was used as a positive control. Acetate production was

then  measured  as  catalyzed  by  CidC,  CidC  with  Triton  X-100  (CidC+TX),  lysozyme

(negative  control)  and  3 M  urea-denatured  CidC  (CidC+urea).  (B)  H2O2 production  as

catalyzed by glucose oxidase (positive control), lysozyme (negative control), CidC, CidC with

Triton X-100 (CidC+TX). A range of pH values from 5 to 8 in steps of 0.25 was investigated

for CidC, but no H2O2 levels were detected and the data is shown in aggregate as an average

and labeled CidC (pH 5-8).
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CidC  couples  to  the  respiratory  chain  via  menaquinone.  The  other  bacterial

pyruvate:quinone oxidoreductases transfer electrons directly into the electron transport chain

via  a  quinone  such  as  ubiqionone  (Q)  in  E.  coli92,152.  Similarly,  CidC  should  utilize

menaquinone (MK) which is produced by  S. aureus. Although the electron transport chain

occurs  predominantly within membranes,  it  is  preferable  to  conduct  these experiments  in

solution, avoiding the problems associated with the membrane-induced CidC aggregation. For

this reason, the reduction by CidC of the cytochrome c via the headgroups of ubiquinone (Q0)

and  menaquinone  (MK0  or  menadione)  were  investigated  in  aqueous  solutions.  This  is

possible because only the quinone headgroups participate in the redox reactions, while their

hydrophobic  chains  mainly  function  as  membrane  anchors.  Strikingly,  very  fast  electron

transfer was observed via MK0 (cytochrome c was completely reduced within 10 minutes of

the start of the reaction), while very little transfer was observed via Q0 or in the absence of

any quinone (e.g. directly to the cytochrome c) as indicated in Figure 4.5. It is important to

note here that the time-scale for the cytochrome c reduction in the presence of MK0 (which is

about 10 minutes) is identical to the reduction of the ferricyanide described below (Figure

4.6A). This implies that the electron transfer by CidC via MK0 to cytochrome c or directly to

ferricyanide are equivalent, reinforcing that menaquinone is an efficient, biologically relevant

electron carrier  for CidC. This results  demonstrate that CidC participates in the  S.  aureus

respiratory chain via menaquinone.
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Figure 4.5. Quinone reduction by CidC.  Electron transport  by CidC to cytochrome c via

MN0, CoQ0 or DMSO (control) was investigated. The oxidation state of cytochrome c was

measured via A550 and is plotted as the change from its oxidized state.
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Modulators  of  CidC  enzymatic  activity. Previously  studied  bacterial  pyruvate

oxidoreductases are activated by amphiphiles and barely active in their absence 149–151, however

the experiments above demonstrate that this is not the case for CidC. More specifically, Triton

X-100  has  no  effect  on  the  end-point  acetate  or  hydrogen  peroxide  production  by CidC

(Figure 4), e.g. the same total amount of acetate and no hydrogen peroxide are produced with

or without Triton X-100. The CidC enzyme kinetics may however be different in the presence

of Triton X-100 or other previously identified modulators of pyruvate oxidoreductase activity

such as  phospholipids.  The effects  of  the  Triton X-100 and OG detergents,  POPG:POPC

liposomes and NaCl on the CidC catalysis were therefore investigated.

CidC was incubated with pyruvate,  TPP/Mg2+ and several  activity modulators  (as

shown in  Figure 4.6A). The enzymatic reaction was started by the addition of ferricyanide

and monitored by the ferricyanide reduction via its change in color at 450 nm. No changes in

enzyme kinetics could be detected when Triton X-100 was present at different concentrations,

while  OG  induced  only  a  minute  decline  in  the  kinetics.  Interestingly,  the  presence  of

POPG:POPC liposomes which are instantaneously precipitated by CidC induces a significant

increase  in  the  enzyme  kinetics.  Under  the  employed  conditions  CidC alone  completely

reduces ferricyanide in about 10 minutes, however the addition of liposomes accelerates this

reaction resulting in complete reduction in about 4 minutes. As expected, the presence of 3 M

urea completely abolished the enzymatic activity of CidC and stoichiometric substitution of

CidC with lysozyme in this experiment resulted in a complete loss of ferricyanide reduction.

Since NaCl was found above to influence CidC self-aggregation and interaction with

membranes, its effect on CidC catalysis was also investigated and is shown in Figure 4.6B.

Interestingly,  even  at  small  concentrations  NaCl  was  able  to  inhibit  CidC  activity.  For

example, 50 mM NaCl extends the complete reduction of ferricyanide from about 10.0 to
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11.7 minutes. At higher concentrations the effect is much bigger, e.g. at 100 mM NaCl the

reduction is complete in about 20 minutes and at 500 mM only about 85% of the ferricyanide

is reduced in 20 minutes. The effects of NaCl must be entirely due to the Cl- ion, because Na+

was present in the buffer at 200 mM.
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Figure 4.6. Modulators of CidC activity.  The influence of several compounds on the CidC

enzymatic activity was tested via the ferricyanide assay. (A) CidC alone and in the presence

of 0.05% and 1.0% w/w Triton X-100 (TX), 5 mM OG, 0.5 mg/mL POPG:POPC liposomes

and 3 M urea. A control was performed were CidC was stoichiometrically substituted with

lysozyme. (B) CidC alone and in the presence of 50, 100, 250 and 500 mM NaCl.
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CidC  activity  is  strongly  pH-dependent. The  Lactobacillus  plantarum (L.

plantarum) pyruvate:oxygen 2-oxidoreductase displays maximal activity at acidic pH (5 to 6),

while retaining about half of its maximal activity at neutral pH (7 to 8)147. To study the effect

of pH on CidC activity, we varied the pH of the reaction buffer between 5 and 8 (Figure 4.7).

The buffers used were 200 mM sodium phosphate between pH 5 and 7 and 200 mM Tris

between pH 7 and 8. Both buffers were employed at pH 7 and identical results were obtained

suggesting that sodium phosphate and Tris buffers do not affect CidC activity.  Figure 4.7A

shows  selected  enzymatic  kinetic  profiles  for  CidC  which  demonstrate  a  strong  pH

dependence. In particular, very little CidC activity is observed above pH 7, while the fastest

kinetics was observed at pH 6. A more quantitative analysis was performed by measuring

CidC specific activity at the beginning of these reactions as plotted in Figure 4.7B. It should

be noted that CidC self-aggregates as the pH drops below pH 6, especially below pH 5.5,

resulting in reduced experimental reproducibility (hence the more acidic the buffer, the larger

the error bars in Figure 4.7B). CidC specific activity is observed to peak between pH 5.5 and

6.0  (similar  to  the  pyruvate:oxygen  2-oxidoreductase  from L.  plantarum)  with  a  specific

activity of around 8 U/mg. However, the CidC activity is almost completely abolished above

pH 7  with  specific  activity values  below 0.5 U/mg.  In stark contrast  to  the  L.  plantarum

pyruvate:oxygen 2-oxidoreductase which maintains significant activity at neutral pH, CidC is

barely active at pH 7 to 8.
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Figure 4.7. pH-dependence of CidC activity. The kinetic profile of CidC catalysis at different

pHs as monitored by the ferricyanide assay. Note that twice the CidC concentration as in Fig.

6 was used to speed up the slow kinetics at neutral pH. (A) The kinetics at pH 5.0, 6.0, 6.5,

7.0 and 8.0 as indicated. (B) The calculated CidC specific activity as a function of pH 5 to 8.

(C) CidC Km for pyruvate under different pH with and without liposome (D)  CidC k cat for

pyruvate under different pH with and without liposome.
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The kinetics of CidC is pH dependent and changed dramatically upon binding to

liposome. To better understand the mechanism of the pH dependent activity of CidC, we have

also measured the two important enzymatic parameter Km and kcat (turnover number) for

substrate pyruvate of CidC under different pH, with and without the liposome (see in Figure

4.7 right panel). Based on the results, the Km of CidC reached it’s minimum at acidic pH

around 5.6 (Figure 4.7C), which means CidC has the highest affinity for it’s substrate under

acidic pH. On the other hand, the kcat value reaches the maximum under pH 5.6, indicating

that CidC is most efficient under acidic pH as well. 

When the liposomes are included in the substrate buffer, CidC activity is raised up by

about 3 folds, as Figure 4.7 shows. Based on the Km and kcat value under different pH, it’s

obvious that Km is not changed dramatically in the presence of liposome except for neutral

pH. However, the kcat value was increased the most under acidic pH. Thus the kcat/km value

also peaked at pH 5.6, suggesting that not only the enzyme itself reaches the maximum, but

also the binding of liposomes greatly enhances the enzymatic kinetics under acidic pH. 
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CidC only binds its TPP/Mg2+ cofactor at acidic pH. ITC experiments (Figure 4.8)

were performed in an attempt to investigate the CidC inactivity at pH 7 to 8. The interaction

between CidC and TPP/Mg2+ was specifically measured at both pH 6 and 7. To minimize self-

aggregation, CidC in pH 7 phosphate buffer was loaded into the ITC syringe and titrated into

pH 6 or pH 7 phosphate buffer  containing either of TPP, TPP/Mg2+ or  pyruvate.  A strong

interaction between CidC and TPP/Mg2+ was observed in pH 6, but was very weak in pH 7

suggesting that CidC is inactive at neutral pH because it does not bind its TPP/Mg2+ cofactor.

Unfortunately, the self-aggregation inherent to the current CidC formulation prohibits a full

thermodynamic analysis of the binding between CidC and the TPP/Mg2+ cofactor.

Two controls were performed by injecting CidC in pH 6 phosphate buffer (Figure.

4.8A) and pH 7 phosphate buffer (Figure. 4.8E). In pH 6 control CidC undergoes a pH-jump

with an exothermic structural change corresponding to about -50 kCal/mole of CidC. In pH 7

control CidC is simply diluted in the same buffer and, correspondingly, no significant energies

are measured. When CidC is titrated into TPP alone, an endothermic binding is observed with

about 100 kCal/mole of CidC in the first injections (Figure. 4.8B). Titration into TPP/Mg2+

reveals an even stronger interaction with between 200 to 250 kCal/mole of CidC in the first

injections (Figure 4.8C). These data demonstrate that CidC binds in pH 6 its TPP cofactor and

that  Mg2+ greatly enhances the CidC/TPP interaction.  Interestingly,  the CidC titration into

pyruvate in pH 6 phosphate buffer (Figure. 4.8D) was identical to the protein dilution into the

same buffer (Figure. 4.8A), suggesting that either CidC does not bind pyruvate in the absence

of the TPP/Mg2+ cofactor or that negligible energies are associated with this binding. Titration

of CidC into TPP (data not shown) or TPP/Mg2+ (Figure 4.8F) at pH 7 was, however, very

different as no endothermic binding was observed. This finding strongly suggests that CidC

may not be able to bind its TPP/Mg2+ cofactor at neutral pH, resulting in enzyme inactivity.
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Figure 4.8. ITC studies of the TPP/Mg2+ binding to CidC.  CidC in (A-D) NaPh6 or (E-F)

NaPh7 buffer was injected into NaPh7 buffer containing (A, E) nothing else, (B) TPP, (C)

TPP/Mg2+, (D) pyruvate and (F) TPP/Mg2+. Each panel contains (top) the raw ITC data and

(bottom) the integrated ITC data. The x-axis is labeled as both the timing of the injection and

the CidC concentration in the ITC cell.
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Citrate inhibits CidC activity. When testing the pH dependence of CidC activity,

citrate-based buffers were initially found to have a concentration-dependent effect on CidC

activity. Further analysis using the ferricyanide assay (Figure 4.9A) demonstrated that citrate

actually inhibits the CidC enzyme with an IC50 of about 10 mM and complete inhibition at

100 mM. ITC experiments similar to those presented above indicate that citrate directly binds

to CidC at pH 6 (in the absence of pyruvate and TPP/Mg2+). When CidC is titrated into pH 6

phosphate buffer an exothermic protein structural change of about -50 kCal/mole of CidC is

observed (Figure 4.9B),  as shown in Figure 4.8A. However titration into pH 6 phosphate

buffer  supplemented  with  10 mM  citrate  reveals  a  reaction  with  approximately

-200 kCal/mole of CidC (in the first injections,  Figure 4.9C), most likely due to binding of

citrate to CidC in addition to the pH-induced CidC conformational change.
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Figure 4.9. Citrate  inhibition of CidC.  (A)  The CidC specific activity in  the  presence of

citrate in NaPh6 buffer was measured by the ferricyanide assay. (B-C) ITC experiments as in

Figure 4.8, except that CidC was titrated into (B) NaPh6 buffer and (C) 10 mM citrate, NaPh6

buffer.
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CidC  proteolysis  maintains  enzymatic  activity. Other  bacterial  pyruvate

oxidoreductases were shown to be activated by proteolytic treatment with chymotrypsin87,142.

The effects of both trypsin and chymotrypsin were therefore investigated here at both pH 6

when CidC is active and at pH 7 when CidC is mostly inactive. The results for trypsin are

shown in Figure 4.10 noting that identical results were obtained for chymotrypsin (data not

shown). Similar to previous results for other pyruvate oxidoreductases, CidC was protected

from proteolytic cleavage only if pyruvate and TPP/Mg2+ were all available to the enzyme,

e.g. the enzyme was fully reduced. However, the protection is very efficient only at pH 6 and

is completely absent at pH 7 in the case of CidC. During 30 minutes of cleavage at pH 6, only

a minute fraction of CidC cleaved to a product labeled as CidC a, while at pH 7 most of the

enzyme  is  converted  to  CidCa and  CidCb.  CidCa and  CidCb are  only  a  few  kDa  and,

respectively,  about  20 kDa  smaller  than  CidC  and  resemble  the  58  and  51 kDa  species

obtained by proteolysis of the E. coli PoxB previously reported153. No further attempts were

made to characterize these truncated proteins at the amino acid sequence level.

When either  of  (i)  pyruvate,  (ii)  TPP/Mg2+,  or  (iii)  Mg2+ were  provided to  CidC,

trypsin was very effective in cleaving CidC at  both pH 6 and 7 (Figure 4.10).  This data

suggests that CidC is protected from trypsin only when it is active (at pH 6) and when both

the pyruvate substrate and the TPP/Mg2+ cofactor are present. The activity of the CidCa and

CidCb proteins was also investigated by the ferricyanide assay and were found to be as active

as their CidC parent at pH 6, however no measurable activity could be detected at pH 7 (data

not shown).
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Figure 4.10. Proteolysis  of  CidC.  SDS-PAGE showing the  CidC cleavage  products  after

30 minutes  incubation  with  trypsin  at  pH 6  (lanes  1-4)  and  pH 7  (lanes  6-9).  Before

proteolysis, CidC was incubated with (lanes 1, 6) pyruvate, TPP and Mg2+, (lanes 2, 7) TPP

and Mg2+, (lanes 3, 8) pyruvate, (lanes 4, 9) Mg2+. CidC products are shown on the left with

CidC1 and CidC2 being several kDa and, respectively, about 20 kDa smaller than CidC, while

CidCp indicates small peptides. Several bands from the marker (lane M) are labeled on the

right.



112

4.5 Conclusions

The  extensively  studied  PoxB  pyruvate:ubiquinone  oxidoreductase  from  E.  coli

directly  shuffles  electrons  from  the  cytoplasm  to  the  membrane-bound  mobile  carrier

ubiquinone  of  the  electron  transport  chain when it  converts  pyruvate  to  acetate.  PoxB is

inactive within the cytoplasm where the C-terminus sterically hinders the active site from

both the pyruvate substrate and the ubiquinone electron acceptor93,154,155. PoxB becomes active

in  vivo by  binding  to  the  membrane  via  this  C-terminus  which  undergoes  a  structural

rearrangement exposing the active binding site to the solvent and activating the enzyme by

two orders of magnitude (affecting both turnover and pyruvate affinity). This behavior can be

reproduced in vitro by binding to artificial phospholipid membranes and detergent micelles, or

by proteolytic cleavage of the C-terminus142. This current in vitro study reveals novel insights

into the CidC pyruvate:menaquinone oxidoreductase from  S. aureus which turns out to be

quite  different  from PoxB.  CidC  is  also  a  membrane-bound  protein,  however  it  is  only

modestly activated by binding to artificial membranes or by proteolytic cleavage when the

activity increases by only a factor of about two. This behavior may be explained by a slightly

different CidC structure where the C-terminus may not inhibit solvent access to the active site

in the membrane-free form of the protein. Another important conformational difference of

CidC resides  in  its  inability to  oligomerize,  unlike  the  tetrameric  PoxB found in  several

organisms142,143,146,148. CidC is able to efficiently pass electrons to menaquinone, the quinone

found within the  S. aureus membranes which are lacking ubiquinone, and thus appears to

actively participate in the electron transport chain. CidC is active under conditions slightly

more acidic than pH 6.5 and is largely inactive at pH 7 to 8 most likely due to its inability to

bind the TPP cofactor at neutral pH. This contrasts to PoxB which retains about 50% and 20%

of its activity at pH 7 and, respectively, pH 8147.  CidC therefore appears to be intrinsically

“activated” only when the cytoplasm becomes sufficiently acidic, at which point it further
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contributes to intracellular acidification by generating acetate.

Our  laboratory  has  recently  demonstrated  the  role  of  cidC and  cytoplasmic

acidification in bacterial cell  death:  stationary phase death was found to be dependent  on

CidC-generated acetate and, respectively, extracellular acetic acid which, in the protonated

and  uncharged  form,  freely  passes  across  the  cytoplasmic  membrane  where  it  then

disassociates and acidifies the cytoplasm70. As in eukaryotic cells undergoing apoptosis156,157,

death in S. aureus under these conditions was shown to be associated with the accumulation

of  reactive  oxygen  species  (ROS)  and diminished when the  production  of  these  reactive

molecules  was  limited70.  It  was  also  demonstrated  that  the  physiological  features  that

accompany the metabolic activation of cell death are strikingly similar to the hallmarks of

eukaryotic apoptosis, including ROS generation and DNA fragmentation. Although the cidC

gene is co-expressed with cidA, previously shown to be involved in the control of PCD in S.

aureus, there is currently limited information about the potential interactions between these

proteins. Recent experiments conducted in our laboratory indicate that the association of CidC

protein with the membrane, as well as CidC-induced acetate generation, can be modulated by

the CidA and CidB proteins (manuscript in preparation). The functions of these proteins in

PCD  may  therefore  be  interdependent  and  current  investigations  in  our  laboratory  are

investigating this possibility.

Another important finding of this study was that CidC converts pyruvate exclusively

to acetate transferring electrons directly to menaquinone during this process. These results are

consistent with previous studies in our laboratory9 and indicate that CidC should be described

as a pyruvate:menaquinone oxidoreductase, rather than a pyruvate oxidase as was previously

presumed  based  on  the  close  sequence  alignment  of  these  two  classes  of  enzymes9.

Interestingly, pyruvate:oxygen 2-oxidoreductases have also been shown to be involved in cell

death  in  the  organisms  that  produce  them.  For  example,  the  well-described  death  of
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Streptococcus  pneumoniae in  stationary  phase  has  been  shown  to  be  dependent  on  the

expression of the  spxA gene encoding a pyruvate:oxygen 2-oxidoreductase which generates

hydrogen  peroxide  and  induces  cell  death141.  Thus,  despite  catalyzing  distinct  enzymatic

reactions with different metabolic end-products, both enzymes appear to play major roles in

the induction of bacterial  cell  death. In summary,  the results  of  the current  study provide

critical new details of the activity of the CidC enzyme previously shown to be important for

the generation of acetate and the potentiation of PCD. This will be particularly important as

we explore the possible interactions of CidC with CidA and/or CidB and will be critical as we

dissect the molecular mechanisms underlying bacterial cell death.
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Chapter 5 

Attachment of GC-rich single strand/duplex to thrombin

binding aptamer G-quadruplex 

5.1. Summary

The  thrombin  binding  aptamer  (TBA,  5'-GGTTGGTGTGGTTGG-3')  is  a  well

characterized chair-like, antiparallel quadruplex structure that binds specifically to thrombin

at nanomolar concentrations and therefore it has interesting anticoagulant properties. In this

article  we attached either  of  the two complementary GC-rich single  strands separately or

duplex (formed by the single strands) to the 5' and/or 3' end of TBA, we observed different

effects of the single strands/duplex on the stability of the G-quadruplex by using UV/CD/DSC

techniques.  Based  on  the  results,  5'  attached  single  strand  A (5'-GCACCACT-3')  has  a

deleterious effect on quadruplex formation by base pairing with 5 nucleotides of the TBA,

thus destabilizing the G-quadruplex. Whereas 3' attached single strand B (5'-AGTGGTGC-3')

has no significant effect on G-quadruplex stability. When both single strands A and B are

attached to the 5' and 3' of TBA, they form a duplex that destabilize the G-quadruplex, but the

duplex was greatly stabilized.

5.2. Introduction

Aptamers  are  oligonucleotides  that  were  generated  by  an  in  vitro selection  and

polymerase  chain  reaction  process  known as  SELEX (systematic  evolution of  ligands  by

exponential enrichment)101,158,159 which selects them based on their specific and tight binding

affinity to a target from a protein library. Through this approach, a large amount of aptamers

with  moderate  or  high  affinity  have  been  chosen  for  diagnostics,  therapeutics  and  other
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technical applications159. 

α-Thrombin is a serine protease which has multiple functions in homeostasis, and it is

the  only  protein  that  catalyzes  the  cleavage  of  fibrinogen  to  produce  fibrin  clot160.  The

multiple functions of α-thrombin in hemostasis involve the procoagulant, anticoagulant, and

fibrinolytic pathways with large amount of substrates161. 

Excessive  coagulation  results  in  dissemination  of  the  clot  in  undamaged  tissues,

which will cause thrombosis. Achieving the ability to specifically inhibit thrombin  in vivo

with synthetic compounds to prevent thrombosis is an important goal in the pharmaceutical

field. In 1992, a potent inhibitor of thrombin was selected by Bock et al. from a pool of

synthetic  oligonucleotides  based  on  a  single-stranded  15-mer  DNA with  the  sequence

5'GGTTGGTGTGGTTGG3' (thrombin binding aptamer, TBA)103. TBA forms a unimolecular

G-quadruplex  in  solution,  arranged in  a  chair-like  structure,  consisting  of  two G-quartets

connected by two TT loops and one TGT loop. The crystal structure revealed that TBA may

interact with both exosites I and II of thrombin. The three dimensional structures of thrombin

and TBA are  preserved in the  complex,  and specific  interactions  are found involving the

exosites and the loops of the aptamer102,104.

Although several efforts have been deployed to improve the binding properties of

TBA to thrombin100,107,159, there is still room for improvement to aim for a better therapeutic

strategy.  Full  understanding  of  the  thermostability  of  the  molecule  is  essential  for

understanding its biological activity and useful for the future development of oligonucleotide-

based therapeutics or drug design. 

In this work, we report by CD/UV/DSC methods the study on the stability of TBA in

the presence of 5' and/or 3' GC-rich single strands, which helps us better understanding the

important effects of different junction sequences on the thermostability of TBA. Also, since
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G-quadruplex  structures  are  found  throughout  genomic  DNA sequence,  especially  in  the

telomere and promoter regions, the current study will have great implication on how flanking

sequences affects the folding and unfolding of G-quadruplex.

5.3. Materials and Methods

Materials. The 5’-3’ sequences of oligonucleotides (ODNs) and designations (Figure

5.1.):  d(GGTTGGTGTGGTTGG),  G2;  d(GCACCACT),  A;  d(AGTGGTGC),  B;

d(GCACCACTGGTTGGTGTGGTTGG),  AG2;  d(GGTTGGTGTGGTTGGAGTGGTGC),

G2B;  d(GCACCACTGGTTGGTGTGGTTGGAGTGGTGC),  AG2B  were  purchased  from

Eurofins  MWG  Operon  LLC  (Huntsville,  AL).  The  ODN  were  dissolved  in  water  and

desalted  on  G-50  Sephadex  column,  and  lyophilized  to  dryness.  The  experiments  were

conducted in a 10 mM HEPES-K 100 mM KCl buffer at pH 7.5. The concentrations of the

ODN solutions  were determined at  260 nm and 90 °C using a  Perkin-Elmer  Lambda-10

spectrophotometer. and the following molar extinction coefficients for the single strands (mM -

1cm-1):  116 (G2),  52 (A),  60 (B),  213 (AG2),  203 (G2B),  292 (AG2B).  These values were

obtained by extrapolation of the tabulated values for dimers and monomeric bases at 25°C162–

164to higher temperatures using procedures reported previously165. Inorganic salts from Sigma

were reagent grade, and used without further purification. Different concentration of ODNs

were used for different experiments, as mentioned in the following parts.

Temperature-Dependent  UV  (UV  melting).  Absorbances  versus  temperature

profiles (UV melting curves) were obtained at 295 nm and 260 nm for all molecules, using a

thermoelectrically controlled Aviv 14DS spectrophotometer (Lakewood, NJ). The temperature

was scanned from 5 °C to 100 °C at a heating rate of ~0.5°C/min. Shape analysis of the

melting  curves  yielded  TM and  ΔHvH’s  using  standard  procedures165,166.  The  transition

molecularity for the unfolding of a particular complex was obtained by monitoring the TM as a

function of the strand concentration. Intramolecular complexes show a TM-independence on
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strand  concentration  while  the  TM of  intermolecular  complexes  does  depend  on  strand

concentration. The concentration of each ODN is adjusted to an absorbance of ~0.6 at 260nm

(90°C). The data was normalized and smoothed using Originlab software.

Circular Dichroism (CD) Spectroscopy.  The CD spectra of each ODN, from 200

nm to 320 nm, were obtained at 25 °C and 90 °C using an Aviv Model-202SF spectrometer

(Lakewood, NJ), equipped with a peltier system for temperature control. This allowed us to

determine the conformation of each ODN. From simple inspection of their CD spectra at low

temperatures, and to select appropriate wavelengths for their temperature-induced unfolding.

Ellipticity versus temperature profiles (CD melting curves) were obtained at 260nm and 295

nm for all molecules. The temperature was scanned from 5 °C to 90 °C at a heating rate of ~1

°C/min, and the cell compartment was flushed with nitrogen to prevent water condensation.

The  concentration  was  adjusted to  50μM for  single  ODN and 50  +  50μM for  the  ODN

mixture (e.g. AmixG2B means that A and G2B are in 50μM:50μM mixture). The data was

normalized and smoothed using Originlab software.

Differential Scanning Calorimetry (DSC). The total heat required for the unfolding

of each ODN was measured with a VP-DSC differential scanning calorimeter from Microcal

(Northampton,  MA).  Standard thermodynamic profiles  and TMs are  obtained from a DSC

experiment using the following relationships: ΔHcal = ∫ ΔCp(T) dT; ΔScal = ∫ ΔCp(T)/T dT, and

the Gibbs equation, ΔGº5 = ΔHcal – TΔScal; where ΔCp is the anomalous heat capacity of the

ODN solution  during  the  unfolding  process,  ΔHcal is  the  unfolding  enthalpy,  ΔScal is  the

entropy of  unfolding;  both  latter  terms  are  temperature-dependent  i.e.,  the  heat  capacity

difference  between  the  initial  and  final  states  is  non-zero.  Alternatively,  ΔGº T can  be

calculated  using  the  equation  ΔGº(T)  =  ΔHcal (1-  T/TM)  which  is  implicitly  correct  for

intramolecular transitions such as these G-quadruplexes. The ΔHvH terms are also obtained

from the DSC profiles using the temperatures at the half-width height of the experimental
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curve.  The ΔHvH/ΔHcal ratio can tell  us about  the nature of the transition.  For a two-state

transition ΔHvH = ΔHcal, while for a non-two-state ΔHvH ≠ ΔHcal. The concentration is adjusted

to 50μM for single ODN and 50 + 50 μM for the ODN mixture (e.g. AmixG2B means that A

and  G2B  are  in  50  μM:50  μM  mixture).  The  data  was  normalized  and  smoothed  using

Originlab software.
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Figure 5.1 Schematic figures of the ODNs containing G-quadruplex sequence in the study

(from 5' to 3') 

G2:  GGTTGGTGTGGTTGG; 

G2B:  GGTTGGTGTGGTTGGAGTGGTGC; 

AG2: GCACCACTGGTTGGTGTGGTTGG;

AG2B: GCACCACTGGTTGGTGTGGTTGGAGTGGTGC.
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5.4. Results and Discussion

CD  spectroscopy. The  conformation  of  ODNs  can  be  obtained  using  CD

spectroscopy.  CD spectra  are  taken  at  different  temperature  to  determine  the  preferential

conformation of the cation-aptamer helical complex at lower temperature (25 °C) and of the

random coil state at higher temperatures (90 °C). 100 mM K+ serves to stabilize the DNA

ODNs containing runs of guanine.

Representative spectra of each ODN in 10 mM K-HEPES, pH = 7.5, at 100 mM K+

and 25 °C, are shown in Figure 5.2. The spectrum of the TBA, also designated as G2, has a

large positive band centered at 292 nm, a smaller negative band at 264 nm, and a smaller

positive  band at  246 nm105,167.  The  GC rich  (62.5% G+C)  duplex  AB,  has  a  broad  peak

centered at 280nm, indicating the adoption of a B-DNA conformation (see Figure 5.2A top).

When the duplex AB is attached to G2 (AG2B), the G-quadruplex structure is preserved since

the peak at ~292nm is maintained and shifted to lower wavelength as a consequence of the

attachment.  However,  the  intensity of  the  peak is  larger  than the sum of  original  the  G-

quadruplex  and  duplex  (see  Figure  5.2A bottom),  indicating  a  possible  slight  twisting,

leading to a more open conformation in the guanine quartet plane due to the formation of the

duplex, which has an apparent effect on the junction part. 

When only the single  strand B is  attached to the  3'  end of  G2,  the G-quadruplex

conformation  remains  stable,  as  indicated  by  Figure  5.2B top (G2B red line).  When the

complementary strand A is mixed with G2B, A prefers to form a duplex with B but has little

interaction with the quadruplex,  as the sum of A and G2B spectra is  equal  to that  of  the

mixture of A and G2B (see  Figure 5.2B bottom). Interestingly,  upon the attachment of A

single strand to the 5' of G2, the G-quadruplex formation is almost abolished (see Figure 5.2C

top). The addition of B is not able to rescue the quadruplex, indicating that the interaction 
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Figure  5.2 CD  spectra  of  three  groups  of

junctions (A) upper: AG2B, G2 and AB, lower:

sum  of  the  spectra  of  AB  and  G2 (AB+G2),

AG2B; (B) upper: A,  G2B and AmixG2B, lower:

sum  of  the  spectra  of  A and  G2B  (A+G2B),

AmixG2B;  (C)  upper:  B,  AG2 and  AG2mixB,

lower:  sum  of  the  spectra  of  B  and  AG2

(AG2+B), AG2mixB.
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between A and the G2 is  dominant  since it's  an intramolecular interaction,  which is  more

favorable than the intermolecular interaction between the complementary strands A and B. 

In  addition,  the  random coil  state  of  G2 at  high  temperatures  (≥  90  °C)  has  no

distinctive positive or negative peaks, while the random coil states of all other junctions show

similar  CD  spectra  (data  not  shown).  To  summarize  this  part,  the  formation  of  the  G-

quadruplex structure is evident by CD spectroscopy when G2 is attached to the AB duplex or

single  strand  B.  However,  the  single  strand  A has  a  deleterious  effect  on  G-quadruplex

formation, possibly by interaction and base pairing with part of the G2 sequence.

UV and CD melting. Typical UV melting curves and CD melting curves at 295 nm

are shown in Figure 5.3, which mainly monitors the unfolding of the G-quadruplex in each

junction. The curves are sigmoidal and show a hypochromic effect at the wavelengths. The

UV melts yielded hypochromicities (only for those which form a G-quadruplex) of 25% (G 2),

23% (G2B) A+G2B mixture (19%) and 45% (AG2B), while the CD melts yielded changes of

31% (G2), 49% (G2B) A+G2B mixture (51%) and 25% (AG2B). 
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Figure 5.3 CD and UV melting at 295nm.  (A)

upper: CD melting of AG2B, G2 and AB, lower:

UV melting of  AG2B, G2 and AB;  (B)  upper:

CD melting of A, G2B and AmixG2B, lower: UV

melting of A, G2B and AmixG2B; (B) upper: CD

melting of  B,  AG2 and AG2mixB,  lower:  UV

melting of B, AG2 and AG2mixB.



125

Shape analysis  of  these melting curves165 yielded transition temperatures,  TM,  and

van’t  Hoff  enthalpies,  HvH,  see  Table  5.1. The  Tms  in  the  UV melts  at  295nm have  the

following order: AG2B (47.1°C) ~ G2B (49.0°C)< A+G2B (50.1°C, A and G2B 1:1 mixture) G2

(52.2°C), while the TM for the unfolding of the unattached AB duplex is 46 °C. The order of

the TMs in the CD melts is as follows: G2B (46.4°C) ~ AG2B (47.9°C) < A+G2B (48.9°C)< G2

(51.6°C), which are in fair agreement with those obtained from UV-melts. For AG2+B and

AG2, since they have no clear transition at 295nm, their TM can not be determined.

The UV and CD melting data strongly confirms the CD spectra and provide even

more  information  on  the  stability  of  ODNs.  G2,  G2B,  AG2B  and  A+G2B  all  form a  G-

quadruplex, whereas AG2 and AG2+B don't. However, the attachment of the B strand appear

to destabilize the G-quadruplex,  but not much, as indicated by a slightly lower TM (2-4 °C).

Moreover, the addition of A to G2B seems to bring the TM higher and closer to that of the

original G2, suggesting that A interacts with B and may form a duplex which hangs out of the

G-quadruplex. On the other hand, when both A and B are attached to the ends of G 2 (AG2B),

the stability of G2 is decreased, which is probably due to the formation of the intramolecular

duplex and its effect on the junction.

Figure 5.4 shows the UV melting curves for the ODNs at 260nm, monitoring the

unfolding of the duplex portion (if  there is  any).  The G2 itself  displayed hypochromicity,

however,  AG2B produced a  totally different  unfolding profile,  which is  similar  to  that  of

duplex AB. Furthermore, the TM for AG2B at 260nm (60 °C) is 7.3 °C larger than that of G2,

strongly indicating  that  new base  pairs  or  specific  DNA local  structure  form during  the

unfolding of the G-quadruplex. Together with the melting curve at 295nm (Figure 5.3), we

conclude that the unfolding of AG2B is of two stages, first the unfolding of G-quadruplex and

then the unfolding of the rest of sequence.
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Meanwhile, as is the case of unfolding at 295nm, the TM at 260nm of A+G2B (48 °C)

is also similar to that of G2B (48 °C) (Figure 5.4B). Considering the TM  of A+G2B is the

average of the TM of duplex AB (46.1 °C) and G2  (52.7 °C), the profile of A+G2B is the

equivalent of the sum of duplex AB and G2. Single strand A forms a duplex hanging on the

side of the G-quadruplex in the folded state and the unfolding of the duplex part  and G-

quadruplex almost proceed simultaneously.

AG2 does not form a G-quadruplex as previously discussed, however, it seems to form

a partial duplex and the addition of single strand B has little effect on the stability of the

duplex, as indicated by similar TM (both ~60 °C) shown in  Figure 5.4C. Interestingly, AG2

and AG2+B also have a similar TM to that of AG2B. This may suggest that the latter stage of

unfolding of AG2B is also the equivalent of the unfolding of AG2. Single strand B, whether it's

attached to the G-quadruplex or mixed with it, can't interact with A since the temperature is

too high for them to base pair. 
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Table 5.1 Transition temperatures and van’t Hoff Enthalpies from Shape Analysis of UV and

CD melting curves at 295nm.
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Figure 5.4 UV melting at 260nm. (A) UV 

melting of AG2B, G2 and AB; (B) UV 

melting of A, G2B and AmixG2B; (B) UV 

melting of B, AG2 and AG2mixB.
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DSC  Unfolding.  Typical  DSC  melting  curves  for  each  oligonucleotide  and  G-

quadruplex are shown in Figure 5.5. All DSC thermograms were reproducible and the transitions

of all the ODNs were monophasic. Furthermore, the initial and final states of all transitions have

similar heat capacity values, indicating negligible heat capacity effects accompany each transition.

The  DSC curves  show that  G2 has  a  single  transition  with  a  TM of  52.7  °C,  with  a

negligible difference between the UV and CD melt. G2B has a single transition of 48.7 °C with a

similar unfolding enthalpy (ΔHcal) value (-30.2 kcal/mol). This indicates that the attachment of

single  strand  B results  in  a  less  thermally stable  G-quadruplex  possibly as  a  result  of  minor

interactions, but B does not change the unfolding profile of the G-quadruplex, as shown in Figure

5.5, Table 5.2 and Table 5.3. The AG2B junction unfolds into a large asymmetric transition with

TM of  59.9  °C,  which  can  be  explained  by  the  unfolding  of  both  duplex  and  G-quadruplex

portions. The explanation is also supported by the fact that the unfolding enthalpy (-65.3 kcal/mol)

is  almost  equal  to  that  of  the  sum of  duplex  AB (-44.3  kcal/mol)  and  G2 (-24.9  kcal/mol).

Furthermore, the unfolding of the equamolar mixture of single strand A and G 2B showed a similar

TM (48.7 °C) to G2B, but a much bigger unfolding enthalpy (-65.1 kcal/mol), and is similar to that

of AG2B, strongly supporting the formation of both duplex and G-quadruplex in the equamolar

mixture of A and G2B.

However, in the case of AG2 and AG2+B, both the TM (59.63 °C and 60.53 °C) and ΔHcal (-

28.1 and -30.9 kcal/mol) are close, proving that B has no effect on AG2.  Their TMs are simlar to

that of AG2B but the unfolding enthalpy is much lower, in agreement with the fact that there is no

G-quadruplex formation but A strongly favors the intramolecular base pairing with part of the G-

quadruplex sequence.
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Figure 5.5 Unfolding profile of the ODNs

by DSC. (A) DSC curves of AB, G2, AG2B;

(B) DSC curves of G2B, G2, and AmixG2B;

(C) DSC curves of AG2 and AG2mixB.
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Table 5.2 Folding Thermodynamic profiles for all molecules at 5 °C
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Table 5.3 Folding Thermodynamic profiles for all molecules at 5  °C according to different

origins of ODNs
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5.5 Conclusions

Attachment and mixing of GC-rich single strand A and B have quite different and

interesting effects on the thermostability of the TBA G-quadruplex, as indicated in the CD

spectroscopy, UV/CD melting and DSC unfolding studies. Six scenarios were analysed in the

studies and they are shown in schematic representation in Figure 5.6. When single strand A is

attached to the 5' end of G2, G-quadruplex formation is abolished because A probably base

pairs with the 5 ' end of the G-quadruplex. This leads to the destruction of the quartets and the

formation of an intramolecular duplex, and the unfolding process of AG 2 is accompanied by

substantial communication between the melting domains. Meanwhile, the addition of B strand

does  not  rescue  the  quadruplex  since  the  intramolecular  base  pairing  is  more

thermodynamically favorable than intermolecular base pairing. In another senario, when B

strand is attached to the 3' end of G-quadruplex, the entropy of the system is reduced and A

and B strands are  within one molecule,  and A favors  base pairing with B instead of  the

quadruplex because the AB duplex has three more base pairs than A-G2. The thermostability

of the AB duplex is increased by the attachment to G2 as shown by increased TM in UV-

melting at 260nm. As an energetic compensation, the thermostability of G2 is decreased.  The

unfolding  for  AG2B  starts  at  the  G2 portion  and  then  the  duplex  as  indicated  by  the

unsymmetrical DSC unfolding profile. The reason for the destabilization of the G-quadruplex

by the duplex is because the first GC-base pair of the duplex is stacked into the nearby G

quartet, thus causing the instability between the stacking of the two quartet planes. However,

the stacking between the duplex (first base pair) and the G-quadruplex in turn greatly stabilize

the  duplex,  and  upon  unfolding,  the  unfolded  quadruplex  probably  forms  a  hairpin-like

structure together with the duplex, stabilizing the duplex even more.

In  conclusion,  we  have  comprehensively  studied  the  intramolecular  and

intermolecular interaction between two GC-rich complementary single strands with the G2
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quadruplex,  gaining  valuable  information  about  how  the  flanking  sequence  affects  the

quadruplex  thermostability.  This  gives  great  indication  on  the  design  of  TBA aptamer

quadruplex  drugs  as  well  as  the  in  vivo folding-unfolding  mechanism  of  telomeric  or

promoter region G-quadruplex.
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Figure 5.6 Unfolding profile of each ODN/ODN mixture in the study. 
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Chapter 6

Conclusions and Future Studies

6.1 Summary

Recombinant CidA and Lrg were purified through two step-purification via Ni-NTA

and gel-filtration chromatography, the purified protein was applied to various biochemical and

biophysical studies. The localization of CidA/LrgA in the membrane was confirmed by TEM

and the secondary structure of the proteins is mainly composed of α-helices, as indicated by

CD spectra. A newly developed liposome leakage assay has proved that CidA induced the

formation of nanometer-size pores and lead to the passage of small fluorescent dyes other

than bigger cargoes like GFP and cytochrome c. LrgA is less capable of inducing the leakage

of fluorescent dyes. Our experiments are in good agreement of previous proposed model that

CidA is  a  holin-like  protein,  whereas  LrgA might  act  as  an  anti-holin  under  some  other

conditions or with the help of other protein partners like LrgB.

The  third  gene  product  of  cid  operon CidC,  was  also  purified  and  the  detailed

function mechanism was studied. The assay has conclusively proved that CidC is a pyruvate

oxidoreductase and binds to the biological membrane only in acidic pH, CidC passes the

electron  to  menaquinone  in  vivo  and  converts  pyruvate  to  acetate  instead  of  hydrogen

peroxide. The activity of CidC is only functional in pH 5.6 to 5.8 and replies on the cofactor

thiamine pyrophsophate and Mg2+ ion. The protein showed a dramatic conformational change

upon binding to pyruvate, TPP and Mg2+ (reduced state), as proved by the trypsination assay.

The goal of the third project was to study the unfolding profile and thermodynamics

of G2-quadruplex upon the attachment of two complementary GC-rich single strands. The

result has undoubtedly indicated that single strand A has a deleterious effect on the formation
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of quadruplex whereas single strand B is able to rescue it, but only through intramolecular

interaction. 

6.2 Future study

Given that CidA/B/C are adjacent gene product on the same operon, it makes intuitive

sense to test the interactions between them. In fact, recent in vivo work done in Dr. Bayles's

Lab showed that CidA and CidB are related to the activity and membrane localization of CidC

,  which  might  have  indicated  the  interactions  between  CidA/B/C.  To  test  the  interaction

between  these  proteins,  isothermal  calorimetry  titration  (ITC)  will  be  applied.  DDM

solubilized CidA and CidB will  be dialyzed against  the same buffer  (with 0.05% DDM),

whereas CidC will be dialyzed against the same buffer except for the absence of the detergent.

The binding affinity of each pair of proteins will be measured by ITC under different pH (6

and 8) and with or without pyruvate and TPP. Similar experiments will also be done in the

conditions when CidA/B/C are reconstituted into/onto the POPG/POPC membrane.

It will be also very interesting to study if CidA induced leakage under different pH

and whether it's dependent on the lipid components of the membrane. Also, the regulatory

mechanism of the transcriptional factor CidR on cid operon remains to be thoroughly studied

via biophysical and biochemical methods like is mentioned in the thesis.
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