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ABSTRACT 

 As the fourth leading cause of cancer-related deaths, pancreatic cancer is one of the most 

lethal forms of cancers in the United States. Lymphatic vessel invasion and subsequent metastasis 

to the lymph nodes are early and significant events observed during pancreatic cancer progression 

and are used to determine patient prognosis and therapy selection. Although clinicians and 

researchers recognize the importance of lymph node involvement for patient prognosis and 

therapy selection, the biological mechanisms that govern lymphatic invasion and metastasis and 

the contributions of the pancreatic tumor microenvironment to these processes remain poorly 

understood. In this dissertation, we characterize the interactions of lymphatic endothelial cells 

with pancreatic tumor cells and pancreatic fibroblasts, showing that while both cell types 

accelerate lymphangiogenesis, pancreatic fibroblasts are the major recruiters of lymphatic 

endothelial cells. Additionally, we evaluated pancreatic tumor cell invasion of lymphatics and 

demonstrated that adhesion protein E-selectin regulates pancreatic tumor adhesion to and 

transendothelial migration across a lymphatic endothelium. Blockade of E-selectin using a novel 

glycomimetic inhibitor, GMI-1271, significantly impaired these processes if pancreatic tumor 

cells expressed the proper E-selectin ligands. E-selectin blockade in vivo significantly impaired 

pancreatic tumor metastasis to a number of organs sites including the lymph nodes. This 
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impairment of metastasis through the lymphatic vasculature by GMI-1271 was not due to changes 

in lymphatic vessel density, but rather tumor cell interactions with the lymphatic endothelium.  

 Chemokine receptor CXCR4 and its ligand CXCL12 have also been implicated in 

facilitating pancreatic tumor progression and metastasis. Using a novel small molecule inhibitor 

of both CXCR4 and E-selectin, we demonstrated that CXCR4 blockade significantly impairs 

pancreatic tumor cell adhesion and transendothelial migration across a lymphatic endothelium 

independent of tumor cell expression of E-selectin ligands. In vivo blockade of both CXCR4 and 

E-selectin moderately impaired pancreatic tumor metastasis. However, this inhibition of 

metastasis through GMI-1359 administration did not prolong animal survival even when 

administered in combination with chemotherapy and immunotherapy. Examination of pancreatic 

tumor microenvironment following GMI-1359 treatment revealed significant changes to the cell 

cellular composition: drastically reduced desmoplasia and lymphatic vascular densities. Further 

studies are ongoing to evaluate GMI-1359 efficacy in combination with immunotherapy in 

spontaneous mouse models of pancreatic cancer. Altogether, our data demonstrates that 

lymphatic biology and function is affected by both pancreatic tumor cells and pancreatic 

fibroblasts, and that factors expressed by the lymphatic endothelium ((E-selectin and CXCR4) 

may be targetable for the treatment of pancreatic cancer.  
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CHAPTER 1: 

Introduction 

 

 

 

 

 

 

 

 

Excerpts from this chapter have been edited from:  

Fink, DM1, Steele, MM1, and Hollingsworth, MA (2015). The lymphatic system and pancreatic 

cancer. Cancer Lett; ePublished.  

1Authors contributed equally to this publication 

Selected sections from this chapter authored by Maria Steele (in “The lymphatic system and 

pancreatic cancer” review) were also previously used (with the permission of Maria Steele) in the 

dissertation of Darci Fink (entitled "Inflammation- and cancer-associated neurolymphatic 

remodeling and cachexia in pancreatic ductal adenocarcinoma).  These sections are indicated in 

this chapter by quotation marks.  
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I. Pancreatic Cancer Background 

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related 

deaths in the United States (1) and results in over 330,000 deaths annually worldwide (2). 

Unfortunately, the 5-year survival rate for patients with pancreatic cancer is a dismal 6% and the 

median survival time is only 6 months (3). Unlike the stable or decreasing trends of incidence and 

death rates for other cancers, the incidence of PDAC continues to rise. It is predicted that by 2030 

PDAC will become the second leading cause of cancer-related deaths in the United States (4). 

Current therapies for the treatment of PDAC are inadequate. The only curative option is surgical 

resection, but only 15% of patients present with localized, resectable disease (5, 6). Standard of 

care chemotherapy, gemcitabine, does little to extend the survival of patients with metastatic 

disease (7, 8). Combinatorial treatment of gemcitabine with other drugs such as cisplatin (9), 

capecitabine (10), and nab-paclitaxel (11) have also proven unsatisfactory. A newly developed drug 

regimen, FOLFIRINOX, has improved median survival from 6 months to 11 months; however 

severe side effects limits which patients can endure this therapy (12). These dismal facts regarding 

PDAC and PDAC therapy underscore the critical need for a better understanding of PDAC biology 

in order to develop new and effective therapies.  

  As previously mentioned, the only curative option for PDAC is surgery, but for more than 

85% of newly diagnosed patients, surgery is not an option as the disease has already spread to 

regional (i.e. lymph nodes) or distant locations (i.e. liver, lung, bone marrow) (1). The ability to 

diagnosis PDAC at early stages has proven to be quite difficult. Patients with early stage PDAC do 

not present with any obvious symptoms. Even at late stage disease, PDAC symptoms are very 

similar to those of other more common gastrointestinal maladies such as weight loss, fatigue, 

nausea, appetite loss, and abdominal/back pain; this confounds proper diagnoses (5). Multiple 

imaging modalities are used to diagnosis PDAC including endoscopic ultrasound (EUS), magnetic 

resonance imaging (MRI), computed cosmography (CT), and fluorodeoxyglucose-positron 

emission tomography (FDG-PET); however, by the time imaging is performed PDAC has already 
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metastasized (13). Many researchers are evaluating potential biomarkers within the blood and 

urine, but currently none consistently and accurately indicate the presence of PDAC especially at 

early stages (14). Even when PDAC is diagnosed at localized stages, many of these patients still 

succumb to recurrent disease suggesting that the identification of metastatic disease at diagnosis 

also requires improvement (15). Deeper examination of PDAC progression and biology will 

ultimately lead to the development of better biomarkers and imaging modalities for the early 

detection of PDAC.  

 Histological examination of PDAC progression has revealed that noninvasive precursor 

lesions known as pancreatic intra-epithelial neoplasias (PanINs) arise from the ductal epithelium 

of the pancreas. As PanIN lesions progress from benign PanIN 1 to more concerning PanIN 3 

lesions, the ductal epithelium displays increasing cellular atypia and hyperplasia (3). Genetic 

studies have demonstrated that there are accompanying genetic aberrations that drive PanIN 

progression and development of PDAC. The most common genetic aberration found in PDAC 

patients is an activating mutation within the Kras gene (16-20). This mutation is found in early, 

low grade PanIN lesions and promotes the accumulation of other genetic aberrations necessary for 

PDAC development (21-23). These Kras-accompanying mutations are often inactivation mutations 

in tumor suppressor genes p16INK4a/CDKN2A, p53, or SMAD4/DPC4, all of which are frequently 

found in PDAC patient samples (16, 24-30). Similar to mutant Kras expression, these inactivated 

tumor suppressor genes can also found in precursor PanINs and cooperate with Kras mutations to 

induce PanIN transformation and PDAC development (26, 31, 32). 

II. Lymphatic System and Pancreatic Cancer   

“Cancer metastasis into and through the lymphatic vasculature and lymph nodes occurs 

frequently (>70%) in PDAC patients (5, 28, 33) and is strongly correlated with poor prognosis (34-

37). Evaluating lymph node status has proven to be a significant factor when determining therapy 

selection for cancer patients (38-40). Furthermore, lymph nodes are often the first site of metastatic 
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growth, suggesting the importance of these organs in tumor progression (41). The lymphatic 

vasculature offers the most direct route from the primary tumor to these frequently-invaded 

draining lymph nodes during PDAC dissemination. Although lymph node involvement is a crucial 

determinant of PDAC prognosis and therapy, the role of the lymphatic system in PDAC progression 

is often overlooked. A better understanding the processes of lymphatic invasion and lymph node 

metastasis in PDAC will significantly contribute to our overall understanding of this deadly disease 

and provide the groundwork for the development of novel efficacious therapies.” 

i. Normal Lymphatic Structure and Biology  

 “The lymphatic system is responsible for maintenance of tissue fluid homeostasis, 

absorption of dietary fat, and leukocyte and antigen transport from tissues to lymph nodes for the 

initiation of immune responses (42-44). Originating in nearly all vascularized tissues, blind-ended 

lymphatic capillaries, or initial lymphatics, are specialized for the uptake of interstitial fluids, 

macromolecules, antigens, and leukocytes. They are composed of a single layer of lymphatic 

endothelial cells (LECs) with discontinuous intercellular junctions and lack a basement membrane 

(45, 46). The endothelial membrane of the initial lymphatics is attached to the extracellular matrix 

(ECM) via anchoring filaments, which facilitate the opening of the lymphatic lumen during 

increased interstitial fluid pressure (47, 48). Upon entry into the lymphatic capillaries, lymph and 

its macromolecular and cellular contents are transported to larger pre-collecting lymphatic vessels 

and then to collecting vessels, composed of not just the endothelial layer, but also smooth muscles 

to facilitate flow and bi-leaflet valves to prevent backflow (49-51). The afferent collecting 

lymphatics enter the lymph nodes where the lymph is filtered and processed for immunity purposes. 

Upon exiting the lymph nodes through the efferent collecting vessels, the lymph passes through the 

major trunks of the lymphatic system, the thoracic duct and the right lymphatic trunk, and is then 

returned to the venous circulation (43, 52).” 

 “The network of lymphatic vasculature and lymph nodes responsible for draining the 

pancreas is quite complex. In the normal pancreas, the lymphatic vessels are typically located near 
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blood vessels and are often found in the interlobular spaces of the pancreas (53). Classification of 

pancreatic nodes has not been uniformly standardized, although pancreatic lymph nodes are 

generally divided into regions based upon their location around the pancreas and the areas of 

drainage of the pancreas: head/neck, body/tail, left side, or right side (reviewed in (54, 55)). Studies 

correlating primary tumor location and lymph node involvement following resection have helped 

to identify the regional patterns and probabilities of lymph node metastasis, but more analysis will 

need to done for consistent accurate prediction of lymph node involvement (56-59).” 

ii. Lymphangiogenesis and Pancreatic Cancer 

Lymphangiogenesis is the growth of new lymphatic vessels from preexisting vessels and 

is a crucial biological process during wound healing, inflammation, and malignancy (60). Under 

pathological conditions, lymphangiogenesis is primarily driven by binding of vascular endothelial 

growth factor-A (VEGF-A), -C, and -D to respective vascular endothelial growth factor receptors-

2 (VEGFR-2) and -3 and co-receptor neuropilin-2 (Nrp-2) (61-66) and binding of angiopoietin-1 

(Ang-1) and -2 to tyrosine kinase with immunoglobulin-like and EGF-like domains-2 (TIE2) 

receptor (67, 68). Additionally, numerous other growth factors have also been implicated in 

promoting lymphangiogenesis including but not limited to fibroblast growth factor -2 (FGF-2) (69), 

hepatocyte growth factor (HGF) (70), insulin-like growth factor-1 (IGF-1) and -2 (71), nerve 

growth factor (NGF) (72), epidermal growth factor (EGF) (73-75), and platelet-derived growth 

factor-BB (PGF-BB) (76, 77). Sources for these pro-lymphangiogenic factors include LECs 

(autocrine mechanisms) as well as cells within inflammatory and tumor microenvironments 

(paracrine mechanisms) such as fibroblasts (75, 78-81), macrophages (82-85), dendritic cells (83), 

and tumor cells (86-91).  

In many malignancies, new lymphatic vessel growth occurs not only within primary tumor 

sites but also pre-metastatic lymph nodes (41, 43, 52, 92-94). The reasons for tumor-induced 

lymphangiogenesis at these sites extend beyond the simple explanation of increasing potential 

escape routes for tumor dissemination to lymph nodes. Firstly, lymphangiogenesis augments the 
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transport of tumor-derived factors, such as cytokines, antigens, growth factors, and exosomes, to 

the lymph nodes. These factors are necessary for pre-conditioning of the lymph node metastatic 

niche prior to tumor arrival (41, 95, 96). Secondly, higher lymphatic vessel densities increase 

trafficking of immune-suppressing leukocytes from tumors to lymph nodes where they inhibit anti-

tumor response (97). Thirdly, lymphangiogenesis may also serve to exacerbate immunosuppression 

as LECs cross-present scavenged tumor antigens to induce T cell tolerance, and they also express 

immune checkpoint inhibitory molecules to prevent T cell activity (98-100). Fourthly, increased 

lymphatic vessel density, strengthens the chemotactic gradients needed to guide tumor cells to 

distant organs including the lymph nodes (101, 102). Lastly, lymphangiogenic vessels exhibit 

increased expression of cell adhesion molecules, integrins, and chemokines which promote LEC-

tumor cell communication and interaction during transendothelial migration and dissemination 

(103, 104). Altogether, this suggests that lymphangiogenesis supports tumor progression, and that 

anti-lymphangiogenic therapies may be effective treatment options for cancer patients. Targeting 

the lymphatic system for the treatment of cancer progression and metastasis is discussed in greater 

details in Chapter 6.  

The incidence and significance of lymphangiogenesis in pancreatic cancer progression is a 

contested area of research. Several studies have demonstrated a correlation between lymphatic 

vascular density (LVD) at the primary site and incidence of lymphatic invasion and lymph node 

metastasis in pancreatic cancer patient samples (94, 105). Additionally, expression levels of pro-

lymphangiogenic factors VEGF-C and -D and receptor VEGFR-3 have also been shown to 

correlate with increased LVD, lymphatic invasion, and lymph node metastasis of pancreatic cancer 

(94, 106, 107), but not with hematogenous invasion and metastasis (94). Correspondingly, in vivo 

deletion of VEGF-C or -D significantly decreased LVD and impaired lymph node metastasis of 

pancreatic cancer (108, 109). However, one study by Sipos et al. did not observe overexpression 

of VEGF-C or -D in PDAC patient samples (110). Moreover, they did not find any correlation 
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between LVD or pro-lymphangiogenic factor expression and lymph node metastasis or patient 

outcome (110). Their findings suggest that PDAC metastasis is independent of lymphangiogenesis 

and that metastasis to the lymph node occurs solely through pre-existing lymphatic vessels. More 

work will need to be done to determine the role of lymphangiogenesis in tumor progression and 

whether this process can be targeted for the treatment of PDAC.  

iii. PDAC Invasion of Lymphatic Vessels and Metastasis 

a. Background 

“Lymphatic vessel invasion and subsequent metastasis to the lymph nodes are early and 

significant events frequently observed during pancreatic cancer progression (5, 28). Although 

lymphatic invasion and metastasis to the lymph nodes does not directly contribute to PDAC 

morbidity in patients, these pathologies are important indicators of the metastatic potential of this 

disease. In the clinical setting, lymph node status is used to assess disease progression, to select 

appropriate therapies, and to predict survival (39, 40). Nearly all studies concur that lymph node 

status correlates with poor prognosis for pancreatic cancer patients (34, 36, 37, 111). Studies also 

agree that invasion of lymph nodes by PDAC occurs most frequently through the lymphatic 

vasculature rather than through direct/contiguous extension of the primary tumor to the lymph node 

(112-114). However, the prognostic value of mode of lymph node invasion is arguable: some 

studies report poorer overall survival in patients with lymphatic vessel-directed metastasis as 

compared to direct invasion (114), while other reports show no survival difference between the two 

modes of lymph node invasion (112, 113). Although lymph node invasion by PDAC occurs most 

frequently through the lymphatic vasculature, the LVD at the tumor site has not been conclusively 

correlated with either lymph node metastasis or prognosis due to conflicting study results (105, 

106, 110, 115). This is also true for studies examining the expression of pro-lymphangiogenic 

factors such as VEGF-C and -D (88, 110, 116) (and in pancreatic endocrine tumors (117)). The 

lack of standardized protocols for quantifying LVD in patients makes comparative analysis among 

collected data sets difficult. Some studies enumerate only intratumoral lymphatics in whole tumor 
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sections, while others examine tumor margins for peritumoral lymphatics, and still others examine 

the sum of lymphatic vessels in both regions. In the continued absence of a standardized method, 

LVD has limited value as a metric for assessing pancreatic cancer progression. “ 

“PDAC tumors are often hypovascular with only sporadic blood and lymphatic vessels 

found among the tumor cells (81). These intratumoral lymphatic vessels are typically collapsed and 

nonfunctional due to direct compression by the tumor cells and the high internal pressure of the 

PDAC tumor microenvironment (116, 118, 119). However, even in the absence of functioning 

intratumoral lymphatic vessels, tumor cells are still capable of disseminating to lymph nodes, 

although identification of reliable sentinel lymph nodes remains challenging (56). The lymphatic 

vessels located at the tumor margins are frequently described as enlarged with open lumens capable 

of being filled with tumor cells (116, 118), and drainage studies show that these peritumoral 

lymphatic vessels are, in fact, functional (119). Sipos and colleagues demonstrated that even in the 

absence of elevated LVD values and active lymphangiogenesis, PDAC patients still frequently 

presented with lymph node metastases (110). This suggests that PDAC cells are capable of invading 

the pre-existing lymphatic vasculature, especially enlarged vessels at tumor margins, and 

necessitates examination of the mechanisms regulating lymphatic invasion.” 

b. Mechanisms/Players 

“Mechanisms regulating lymphatic invasion are not completely understood, but are gaining 

increasing research interest. Most of our knowledge of vascular invasion has come from studies of 

the blood vasculature that are now being extended to studies of lymphatic vessel properties and 

function. Initially, invasion of lymphatic vessels by tumor cells was considered a passive process 

with increased interstitial fluid pressure driving tumor cells into draining lymphatic vessels (120). 

Although increased interstitial pressure may contribute to tumor cell invasion, the concept of 

lymphatic-mediated tumor metastasis as a process that utilizes a “path of least resistance” is greatly 

oversimplified, and proteomics studies have identified distinctions between primary pancreatic 
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tumors and their corresponding lymph node lesions (121). Comparisons of pancreas tumors with 

and without lymph node metastases revealed differences in protein expression intrinsic to these two 

pathological tumor presentations (122). In an effort to better understand the potential drivers of 

lymphatic metastasis, results of studies of leukocyte intravasation into lymphatic vessels are now 

being examined for commonalities to tumor cell intravasation. Three key molecular players of 

invasion have emerged as likely candidates in the regulation of tumor-lymphatic interactions and 

metastasis: chemokine signaling, paired binding of adhesion protein partners, and alterations in 

lymphatic vessel barrier integrity.” 

1. Chemokines 

“Chemokines secreted by lymphatic endothelial cells contribute to inflammation and 

initiation of immune responses in part by regulating the chemotaxis of antigen presenting cells to 

the lymph nodes. These same molecules are also being studied for similar roles in tumor metastasis 

to lymph nodes. Two widely researched candidate chemokines are CCL21 and CXCL12 and their 

respective G-protein coupled receptors (GPCRs), CCR7 and CXCR4.” 

“During normal immune responses, lymphatic endothelial cells secrete CCL21 to increase 

migration of CCR7+ dendritic cells (DCs) toward the vessel and then to guide DCs to the lymph 

nodes (123, 124). Tumor cells, including those of pancreatic cancer, overexpress CCR7 and are 

capable of responding to CCL21 cues to facilitate their dissemination to the lymph nodes (125-

128). Guo, et al., noted a correlation between CCR7 expression in tumor cells and frequency of 

lymph node metastasis in pancreatic cancer patients (129). Sperveslage, et al., confirmed these 

results and also demonstrated that lymphatic vessels of PDAC patients had significantly higher 

expression of CCL21 compared to lymphatic vessels of the normal pancreas. Expression of CCL21 

in lymphatic vessels correlated with increased lymphatic invasion and lymph node metastasis in 

these patients, as did overexpression of CCR7 in pancreatic tumor cells in vivo (130).” 
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“The expression of CCL21 in lymphatic endothelial cells is regulated by numerous 

inflammatory cytokines including tumor necrosis factor α (TNFα) and interleukin-1β (IL-1β) and 

is also influenced by increases in transmural flow (131), both of which are often present in tumor 

microenvironments. In vitro co-culture work has demonstrated that CCR7-expressing tumor cells 

have increased chemotaxis toward CCL21-expressing lymphatic endothelial cells (104, 132, 133). 

This chemotactic axis is used by tumor cells specifically for invasion into lymphatic vessels; tumor 

cell chemoattraction to blood endothelial cells does not use this mechanism (104, 134). Blocking 

CCR7 or CCL21 expression and/or function inhibits lymphatic vessel invasion and metastasis to 

the lymph nodes in vitro and in vivo (133, 135, 136). This chemokine signaling axis appears to be 

regulated by and to work in concert with VEGF-C to synergistically promote lymphatic invasion 

of CCR7+ and VEGFR-3+ tumor cells (104).” 

“Another chemokine axis that influences lymphatic metastasis is the CXCL12-CXCR4 

axis. It has been widely documented that CXCR4-expressing tumor cells, including PDAC cells, 

home to organs with high CXCL12 expression, such as the lungs, bone marrow, and lymph nodes 

(128, 137-139). In PDAC patient tissues, high expression of CXCR4 was found in tumors, while 

lymph nodes expressed high levels of CXCL12 (137, 140). This expression pattern positively 

correlated with increased LVD values in the pancreas, lymph node metastasis frequency, and poor 

disease prognosis. Tumor-associated, but not normal uninflamed, LECs secrete ample amounts of 

CXCL12 in the tumor microenvironment and attract CXCR4+ tumor cells to lymphatic vessels and 

lymph nodes (101, 141). Blocking the CXCR4-CXCL12 signaling axis has resulted in impaired 

lymph node metastasis in numerous tumor models (142-144).  An in vitro breast cancer model 

demonstrated that CXCL12-treated LECs permitted greater transendothelial migration by breast 

cancer cells, and this permissiveness could be reversed by blocking CXCR4 in the LECs (145). An 

in vivo model of melanoma demonstrated that stem-like, dual positive CD133+/CXCR4+ tumor 

cells were strongly associated with CXCL12-producing LECs and that these cells were resistant to 
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chemotherapy (101). Combinatorial treatment with a CXCR4 antagonist relieved this resistance 

and increased the efficacy of chemotherapy thereby reducing tumor growth and metastasis. This 

study suggested that CXCL12 secretion from lymphatic vessels supported a pro-metastatic and pro-

survival niche for tumor cells. Further studies are required to elucidate whether or not these types 

of mechanisms are employed in PDAC and/or its tumor microenvironment.” 

2. Adhesion Proteins 

“Physical interactions between tumor cells and lymphatic endothelial cells may be another 

crucial regulator of tumor cell intravasation. Adhesion molecules such as E-selectin, intercellular 

adhesion molecule 1 (ICAM-1), and vascular adhesion molecule 1 (VCAM-1) are typically used 

by DCs and other immune cell types to gain entry into inflamed lymphatic vessels during migration 

toward lymph nodes (131, 146). Mounting evidence indicates that these same leukocyte adhesion 

molecules may also be important for controlling tumor cell entry into lymphatic vessels (147-149). 

In a non-inflamed state, the lymphatic endothelium does not express or only very weakly expresses 

these adhesion molecules (146, 150). Inflammatory conditions—such as those found during 

infection or tumor development—or a wound healing response quickly increase the expression of 

these molecules on the lymphatic endothelium (131, 146). Increased transmural flow, also 

characteristic of an inflamed microenvironment, upregulates ICAM-1 and E-selectin expression on 

an in vitro lymphatic endothelium resulting in increased DC binding (131). A recent report shows 

that binding and transendothelial migration of breast cancer cells is also influenced by in vitro fluid 

flow, although the mechanisms governing these behaviors have not been elucidated (150). When 

placed in co-culture with tumor cells, LECs display marked upregulation of adhesion molecules. 

Kawai, et al. (2008 and 2009) have demonstrated that invasive breast cancer cells, which express 

the αLβ2 integrin ligand for ICAM-1, are capable of inducing the expression of E-selectin and 

ICAM-1 on lymphatic endothelial cells. They also demonstrated that blocking ICAM-1 impaired 

the ability of these tumor cells to bind to a lymphatic endothelium (149, 151). Studies of the ability 

of adhesion proteins on lymphatic vessels to regulate tumor cell entry should be expanded to 
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pancreatic cancer cell lines to determine if PDAC tumor cells can use similar mechanisms to bind 

and gain access to the lymphatic vasculature.”  

3. Lymphatic Vessel Barrier Integrity 

“The intrinsic cellular and molecular organizational characteristics of lymphatic vessels 

facilitate entry of immune cells and fluids from a collecting tissue bed—properties that may also 

allow these vessels to support tumor cell metastasis. The initial lymphatic capillaries within tissues 

are composed of only a single layer of endothelial cells with loose junctions between neighboring 

cells (44, 152). Unlike the tightly-formed, continuously-arranged junctions between neighboring 

endothelial cells of the blood vasculature (153), the junctional proteins—vascular endothelial 

cadherin (VE-cadherin), platelet/endothelial cell adhesion molecule-1 (PECAM-1; CD31), 

claudins, occludins, etc.—of initial lymphatic vessels are discontinuously arranged, creating gaps 

between overlapping lymphatic endothelial cells (45). These discontinuous junctions along with 

preformed openings in the basement membrane (46) enable uptake of macromolecules, fluids, and 

cells by the initial lymphatic capillaries. As lymph and cells are transported up the lymphatic 

vasculature to the collecting lymphatic vessels, the discontinuous intercellular junctions become 

more constant and successive to prevent leakage prior to arrival at the lymph nodes (45).”  

“Data suggest that tumor cells are capable of modulating the barrier integrity of the 

lymphatic endothelium to further facilitate lymphatic vessel invasion (154). Lipoxygenase 

secretion by breast cancer cells has been shown to disrupt VE-cadherin junctions and induce 

endothelial cell repulsion, resulting in breaches in the lymphatic endothelium. Tumor-secreted 

VEGF-C also facilitates invasion by creating leaky lymphatic vasculature. VEGF-C induces the 

internalization of VE-cadherin, which, in turn, promotes tumor cell transendothelial migration 

(155, 156). In a pancreatic tumor model, inhibiting Ang-2 signaling with a soluble Tie-2 receptor 

decreased lymphatic-directed metastasis to the lymph nodes (86). This result may be explained by 

studies demonstrating that Ang-2 disrupts the barrier integrity of the lymphatic endothelium and 
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increases lymphatic permeability through phosphorylation of VE-cadherin resulting in button-

junction formation in the initial lymphatic capillaries (157).”  

III. Lymphatic Vasculature and the PDAC Microenvironment 

“The PDAC microenvironment is arguably one of the most complex of any tumor 

microenvironment, replete with cancer associated fibroblasts (CAFs), immunosuppressive 

leukocytes, tumor-associated blood/lymphatic endothelial networks, and a considerably dense 

ECM compartment (Figure 1).” Collectively referred to as stroma, these components can comprise 

up to 80-90% of the tumor (29, 158, 159). The stroma not only facilitates PDAC progression and 

dissemination, it also has the capacity to influence the normal lymphatic vasculature within the 

pancreas. 

i. Cancer-Associated Fibroblasts 

One of the most striking features of PDAC tumors is the robust desmoplastic reaction observed 

within both the primary and metastatic sites. The major cellular component of desmoplasia is CAFs, 

also known as pancreatic stellate cells (PSCs) when specifically referring to PDAC. These PSCs 

have many tumor-supporting properties. Secretion of growth factors and cytokines from PSCs 

promotes PDAC cell proliferation, survival, migration, and invasion (160, 161). Reciprocally, 

PDAC cells secrete numerous factors that promote PSC proliferation and activation creating a 

positive feedback loop between the two cell types (162).  In vivo orthotopic co-injection of PSCs 

with PDAC cells was shown to accelerate tumor growth and metastasis (160, 161, 163, 164), and 

these co-injected PSCs were also observed to accompany PDAC cells to metastatic sites (161). 

Additionally, activated PSCs secrete excessive amounts of ECM proteins which impede drug 

delivery to tumors (165). Acute pharmacological inhibition of morphogen sonic hedgehog (Shh) 

was shown to inhibit α smooth muscle actin (αSMA) + fibroblast proliferation in PDAC tumors 

which, in turn, improved tumor vascularity and chemotherapy delivery to tumors (165, 166). In 

regards to influencing tumor immunity, PSCs secrete numerous factors that suppress or modulate 

immune cell function such as tumor growth factor-β (TGF-β), TNFα, IL-1β, -6, and -8. (167-169).  
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Figure 1.1 

 

 

 

Figure 1.1 Pancreatic tumor microenvironment and lymph node metastasis.  

“Cells of the tumor microenvironment are essential contributors to tumor growth, lymphatic 

invasion, and lymph node metastasis. CAFs and TAMs secrete pro-lymphangiogenic factors and 

proteases needed for lymphangiogenesis and metastasis.  Lymphatic vessels act as conduits not 

only for tumor cell metastasis, but also for immunosuppressive cell and cytokine transport to lymph 

nodes.  Nerves are also another route for pancreatic tumor metastasis and can communicate with 

lymphatic vessels to facilitate tumor metastasis from one network to the other.” 
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These factors also promote recruitment and differentiation of immunosuppressive immune cells 

such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) to PDAC tumor 

(80, 170). PSCs disrupt T cell recruitment to PDAC tumors and are capable of inducing T cell 

apoptosis (171-174). Depletion of fibroblast activation protein (FAP)+ fibroblasts was shown to 

significantly improve T cell infiltration and immunotherapy efficacy (171). Altogether, PSCs 

provide several mechanisms that drive tumor development and progression.  

Although initially believed to be solely tumor-supportive cells, new evidence indicates 

PSCs may possess both pro- and anti-tumor properties. Recently a handful of studies have 

demonstrated that in vivo depletion of these cells accelerated PDAC progression and shortened 

survival time. Genetic ablation of αSMA+ fibroblasts resulted in more aggressive PDAC tumors 

including increased invasion and metastasis, increased hypoxia, and enhanced immunosuppression 

leading to reduced survival (175). Rhim et al. demonstrated that genetic knockout of sonic 

hedgehog (Shh) from PDAC tumor cells reduced αSMA+ PSC activation and proliferation 

resulting in poorly differentiated tumors with accelerated growth and metastasis and significantly 

shortened animal survival (176). This group’s findings were confirmed using chronic 

administration of Shh antagonists (176). Lee et al. also confirmed Rhim’s findings demonstrating 

Shh inhibition accelerates PDAC growth and Shh activation slows PDAC growth (177). Altogether, 

these studies suggest that PSCs have anti-tumor properties and complete loss of these cells leads to 

accelerated tumor progression. Interestingly, ablation of fibroblasts in these studies exposed other 

vulnerabilities of PDAC tumors: Odzemir et al. demonstrated that fibroblast-depleted PDAC 

tumors were more susceptible to anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) 

immunotherapy (175), and Rhim et al. demonstrated that VEGFR inhibitors reversed tumor 

aggressiveness following Shh-dependent depletion of fibroblasts (176). The fibroblast population 

comprising the PDAC tumor microenvironment is likely heterogeneous (178, 179). Currently the 

molecular markers of fibroblast subtype are poorly defined and are often expressed across multiple 
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types of fibroblasts as well as other cell types. The depletion or inhibition of a particular subtype 

or multiple subtypes will likely have significant consequences on tumor progression and survival 

outcomes. Much more work needs to be done to fully understand the pro- and antitumor properties 

of CAFs and CAF subtypes and whether these cells can be targeted for effective PDAC therapy.  

“Due to their abundance in the PDAC microenvironment, PSCs also exert a strong 

influence over other microenvironmental cell types including the lymphatic endothelium (180). As 

one of the main protein regulators of desmoplasia, Shh signaling is PSCs lead to the creation of a 

pro-angiogenic and pro-lymphangiogenic stromal compartment (163, 181). When Shh signaling 

was inhibited in PSCs, LVD decreased and lymph node metastasis was reduced. Data such as these 

suggest that CAFs primarily influence the lymphatic endothelium via secretion of various effector 

proteins. It has been demonstrated that CAFs of various tumor types, including PDAC, secrete a 

wide range of pro-lymphangiogenic factors such as VEGF-C, VEGF-D (78, 79), VEGF-A (80), 

EGF (75), PDGF, and FGF (81). PSCs also secrete chemokines, including CXCL12, which has 

been shown to correlate with increased tumor aggressiveness, LVD values, and lymph node 

metastases in PDAC patient tissues (137, 171). In addition to their direct action on lymphatic 

endothelia, many of these same secreted factors as well as pro-inflammatory cytokines allow CAFs 

to indirectly support lymphangiogenesis and lymphatic vessel invasion through the recruitment of 

pro-lymphangiogenic immune cells such as tumor associated macrophages (TAMs) and DCs (182, 

183). Lastly, CAFs secrete matrix metalloproteinases (MMPs) and other proteases that remodel the 

ECM of tumors (184). This remodeling promotes tumor invasion of stroma and tumor vasculature 

and releases sequestered growth factors and cytokines from the ECM for tumor growth, 

angiogenesis, and lymphangiogenesis. A recent study by Shi et al. highlights an additional protease-

related mechanism by which PSCs may influence pancreatic cancer progression and lymphatic 

metastasis. Specific pancreatic stromal compartment deletion of protease-activated receptor-2 
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(PAR-2), a GPCR highly expressed in PDAC, resulted in decreased primary tumor size (due to 

anti-angiogenesis effects) but increased LVD and lymph node metastases (185).”  

ii. Immune Cells and Immune Regulation 

PDAC tumors are highly immunosuppressed microenvironments with pro-tumor 

mechanisms greatly outweighing anti-tumor mechanisms preventing the immune system from 

mounting an anti-tumor response (186). In addition to inducing immune suppression, tumor-

infiltrating immune cells contribute to many other aspects of tumor progression including tumor 

growth, inflammation, angiogenesis, metastasis and chemoresistance (187, 188). During 

progression from precancerous PanIN lesions to invasive PDAC, there is a drastic infiltration of 

tumor-supporting MDSCs, Tregs, and TAMs (189-192), and their presence significantly correlates 

with disease stage and metastasis and negatively correlates with survival (189-191, 193, 194). 

Many of these immune-suppressing infiltrating leukocytes promote tumor immune evasion by 

impairing T cell recruitment or function. MDSCs discourage T cell recruitment to tumors, induce 

T cell apoptosis through production of nitric oxide and reactive oxygen species, activate inhibitory 

Tregs, interfere with interferon γ (IFNγ) signaling, and deplete metabolites necessary for T cell 

function and survival (195-199). Additionally, Tregs inhibit the adaptive immunity through secretion 

of immunosuppressive cytokines such as IL-10 and TGF-β and expression of high levels of co-

inhibitory ligands (200). TAMs, another prominent immune cell type in the PDAC 

microenvironment, secrete ample amounts of immunosuppressive factors that impede T cell 

function directly and indirectly through preventing DC maturation necessary for T cell activation 

(201). These cells also secrete high levels of growth factors and cytokines that stimulate tumor 

growth, invasion, and angio- and lymphangiogenesis (201-206). Noticeably absent from the PDAC 

tumor microenvironment are cytotoxic and helper T cells. The abundant amounts of 

immunosuppressive cells and cytokines exclude T cells from contact with neoplastic PDAC cells 

and retain them either in the stromal compartment or at the tumor periphery (171, 172). These T 

cells are often of a naïve phenotype or are not activated (207, 208). 
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“One of the main functions of lymphatic vessels is to transport leukocytes to lymph nodes 

for immune response initiation, uniquely positioning LECs to modulate immune responses in ways 

that may support tumor progression. As immune cell trafficking conduits, LECs are responsible for 

the transport of both antigens and antigen presenting cells (APCs), such as DCs, to the lymph nodes 

for immune response optimization (124). By regulating the expression and secretion of various 

chemokines in response to inflammation, injury, or tumor development, LECs can alter the 

recruitment of immune cells to the lymph nodes, and, as a result, influence the ensuing immune 

response (reviewed (209, 210)). Partially due to lymphatic-directed recruitment, tumor-draining 

lymph nodes demonstrate a more immunosuppressive environment as compared to normal lymph 

nodes with an increased presence of Tregs, MDSCs, immature and tolerogenic DCs, and 

immunosuppressive cytokines (97, 131, 211, 212). These immunosuppressive cells and cytokines 

accumulate in the lymph as a result of increased lymphatic drainage from the tumor site (95). 

Within the lymph nodes TGF-β, a major driver of immune suppression, supports the differentiation 

and activation of Tregs as well as promoting tolerogenic and immature phenotypes of DCs (213). As 

Tregs differentiate and accumulate, they secrete more TGF-β to further drive immune suppression. 

IL-10 is another factor that supports the accumulation of immunosuppressive cells in the lymph 

nodes by promoting Treg activity (214) and tolerogenic DC function (214, 215). Indoleamine 2,3-

dioxygenase (IDO) increases the generation of Tregs in the lymph nodes (216, 217), while 

concurrently inhibiting effector T cell activity (218). Other factors implicated in the accumulation 

of immunosuppressive cells in lymph nodes include IL-4, VEGF-A, and prostaglandin E2 (219).”  

“In addition to cellular and cytokine transport, LECs also transport tissue antigens (and in 

the case of cancer, tumor antigens) from peripheral tissues to lymph nodes. Studies have 

demonstrated that LECs, particularly those in the lymph nodes, are capable of scavenging these 

tissue and tumor antigens and cross-presenting them on major histocompatibility complex-I (MHC-

I) (98, 99). This can lead to immune tolerance through deletion of naive CD8+ T cells as LECs lack 
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co-stimulatory molecules needed to activate the T cells and instead express programmed death-

ligand 1 (PD-L1), an inhibitory signal for T cells (100). LECs can also present scavenged 

exogenous tissue/tumor antigens on MHC-II molecules and likely induce immune tolerance 

through interactions with the inhibitory lymphocyte activation gene-3 (LAG-3) protein on CD8+ T 

cells (220). These studies shed light on the phenomenon that when tumor cells are denied lymphatic 

vessel experience, such as through direct implantation into lymph nodes, tumor immunity is 

impaired through a robust CD8+ T cell response (221). LECs also modulate immune responses by 

inhibiting DC maturation (211). Binding of DCs to the lymphatic endothelium via macrophage-1 

antigen (Mac-1) and ICAM-1-mediated interactions during transendothelial migration can reduce 

the expression of co-stimulatory molecules on DCs needed for T cell activation. Studies such as 

these inspire new ideas regarding increased lymphangiogenesis at the tumor periphery and draining 

lymph nodes, suggesting that it may influence tumor progression in two ways: 1) increasing 

metastatic routes for dissemination and 2) immune suppression through increased antigen 

scavenging and decreased DC maturation leading to T cell inhibition and immune tolerance (222). 

Further investigation is needed to substantiate the immunosuppressive properties of the lymphatic 

endothelium and its specific contribution to disease progression as a component of the tumor 

microenvironment.”  

“A reciprocal concept in relation to the capacity of LECs to affect immunity is that of 

immune cells inducing effects on LECs. One such tumor infiltrating immune cell type, TAMs, can 

be found in many tumor microenvironments, including PDAC (202, 203, 223, 224), and their 

presence often correlates with poor patient prognosis (225-227). TAMs promote tumor 

lymphangiogenesis through two mechanisms: paracrine secretion of pro-lymphangiogenic factors 

and transdifferentiation into LEC-like progenitor cells. TAMs secrete high levels of VEGF-C and 

-D, which, in turn, increases LVD in and around tumors (202-205). Indeed, TAM density has been 

shown to significantly correlate with increased LVD, lymphatic vessel invasion, and lymph node 
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metastasis in many cancers (202, 205, 228-230). Inhibition or depletion of TAMs from tumor 

microenvironments significantly reduced LVD values and decreased the incidence of lymph node 

metastases compared to tumors with TAMs present (231-233). However, depletion of TAMs did 

not completely inhibit lymph node metastasis as tumor cells were still able to invade pre-existing 

lymphatic vessels. These macrophages also secrete proteases such as MMP-2, MMP-9, and 

plasmin/urokinase plasminogen activator (uPA) that remodel the extracellular microenvironment 

and release sequestered growth factors for lymphangiogenesis (234, 235). The plasmin/uPA system 

is also important for the proteolytic maturation of VEGF-C and -D increasing their affinity for 

VEGFR-3 (236). It has yet to be determined if TAMs secrete any of the other factors known to 

promote lymphangiogenesis. The second way TAMs contribute to lymphangiogenesis is by 

transdifferentiating into LEC-like progenitors both in inflammatory and tumor settings (232, 237-

239). Transdifferentiated macrophages undergo genetic reprogramming (237) with increased 

expression of lymphatic markers LYVE-1, Prox-1, podoplanin, and VEGFR-3 (232, 237, 240, 241). 

Expression of LEC markers enables TAMs to physically incorporate into the newly developing 

lymphatic vasculature. The percentage of transdifferentiated TAMs within these newly formed 

lymphatic vessels is often less than 10% (232, 240) suggesting the main mechanism by which 

TAMs promote tumor-associated lymphangiogenesis is through secretion of pro-lymphangiogenic 

factors.”  

IV. Summary 

The lymphatic system almost certainly plays a significant role in PDAC progression, as 

dissemination to the lymph nodes is seen early and frequently in PDAC patients. Lymphatic vessels 

are routes for PDAC dissemination as they directly connect the primary tumor to the draining lymph 

nodes. Additionally, these vessels transport tumor-derived factors and immune cells to lymph nodes 

in order to make these organs more hospitable for tumor metastases. Lastly, the endothelial cells 

that comprise lymphatic vessels are known suppressors of the immune system through cross 

presentation and expression of co-inhibitory ligands. All these roles promote efficient PDAC 
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growth, dissemination, and immune suppression. However, the specific mechanisms governing 

lymphatic invasion and metastasis are sorely under-researched as are the contributions of the PDAC 

microenvironment to these processes. In this dissertation, we characterized the effects PDAC cells 

and pancreatic fibroblasts have on lymphatic endothelial cells in regards to recruitment, 

lymphangiogenesis, and invasion. Using novel small molecule inhibitors, we specifically focused 

on the roles of E-selectin and CXCR4 in regulating lymphatic invasion and metastasis and whether 

blocking the function of these proteins prolongs animal survival in PDAC-challenged mice.  
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CHAPTER 2: 

Materials and Methods  
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I. Cell Lines and Cell Culture 

i. Primary Human Lymphatic Endothelial Cells 

 Adult human dermal microvascular lymphatic endothelial cells (hLECs) were purchased 

from Lonza and cultured in EGM-2MV growth medium supplemented with 5% fetal bovine serum 

(FBS), growth factors (hEGF, VEGF, hFGF-B, R3-IGF-1), ascorbic acid, hydrocortisone and 

antibiotics (GA-1000) per manufacturer's specifications. Cells were maintained in a 37⁰ C 

humidified atmosphere at 5% CO2. As an alternative source, hLECs were also purchased from 

PromoCell and maintained in culture as stated above. Primary hLEC cultures were used at passages 

5-8. For serum starvation studies, hLECs were washed and media replaced with EBM-2 basal 

media for 24 hours. 

ii. Primary Human Umbilical Vein Endothelial Cells 

 Primary human umbilical vein endothelial cells (HUVECs) were purchased from Lonza 

and cultured in EGM-2MV growth medium supplemented with recommended growth factors and 

antibiotics per manufacturer's specifications. Cells were maintained in a 37⁰ C humidified 

atmosphere at 5% CO2. Primary HUVECs were used at passages 4-9.  

iii. Human Pancreatic Cancer Cell Lines 

 All human PDAC cell lines were maintained in RPMI medium supplemented with 7% FBS 

and 100 units penicillin/100 μg of streptomycin per 1 ml of culture media. Cells were stored in a 

37⁰ C humidified incubator with 5% CO2. Human PDAC cell lines used include: S2-013, BxPC-

3, Colo357, HPAF-II, T3M4, Hs667t, Capan-1 and MiaPaca-2.  For serum starvation studies, FBS-

containing RPMI was removed, cells were washed, and media replaced with RPMI containing no 

FBS. 

iv. Mouse Pancreatic Cancer Cell Lines 

 Mouse pancreatic tumor cells KPC8060 and KPC8069 were derived from LSL-

KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre (KPC) mouse tumors by our laboratory. KPC mice 

spontaneously develop PDAC tumors in a manner that recapitulates the human disease with 
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progression from precursor PanIN lesions to pancreatic cancer (242).  Additionally, our laboratory 

has back-crossed (10 times) the KPC mouse into the C57BL/6 background. For tumor cell isolation, 

the pancreas was minced with scissors and then digested with 2 mg/ml collagenase A (Roche, Basel 

Switzerland) for 45 minutes to 1 hour at 37⁰ C with shaking. Cells were cultured in DMEM 

containing 5% FBS and 100 units penicillin/100 μg of streptomycin per ml of media. KPC8060 

and KPC8069 cell lines were evaluated for epithelial morphology and routinely passaged to 

discourage fibroblast growth.  

v. Pancreatic Fibroblast Cells 

 Immortalized, non-transformed pancreatic fibroblast clones 13.34, 13.7, 13.8, and 13.9 

were cultured in RPMI supplemented with 7% FBS and 100 units of penicillin/100 μg of 

streptomycin per ml of media. Cells were maintained in a 37⁰ C humidified incubator with 5% 

CO2. 13.34 pancreatic fibroblasts have been previously determined to be of an activated stellate 

cell phenotype (166). Additionally, 09-06 PC pancreatic fibroblasts (isolated from a pancreatic 

cancer patient during a Whipple procedure and immortalized with hTERT) and primary LM 

fibroblasts (isolated from a liver metastasis of a pancreatic cancer patient) were a generous gift 

from Dr. Quan Ly. These cells were also cultured in RPMI supplemented with 7% FBS and 100 

units penicillin/100 μg of streptomycin per ml of media and stored in a 37⁰ C humidified incubator 

with 5% CO2. Dermal human foreskin fibroblasts (HuFF) were also cultured under the same 

conditions as above.  

II. Conditioned Media Collection and Preparation 

 To create cellular conditioned media (CM), 3.2x104 PDAC cells or pancreatic fibroblasts 

were plated per 1.0 cm2 in tissue culture-treated plasticware. Following cell adhesion, media was 

changed to RPMI or EBM-2 supplemented with 0.2% FBS. Cells were allowed to condition the 

media for 24 hour. Media was then collected and passed through a 0.45 μm filter to remove cell 

debris prior to use.  
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III. Cell Lysates and Western Blotting 

i. Whole Cell Lysates 

 Whole cell lysates were collected using a Radio Immuno Precipitation Assay (RIPA) lysis 

buffer (150 mM NaCl, 1% IGEPAL, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris base, pH 

8.0) supplemented with a Roche mini PMSF tablet, and 1X Halt Protease and Phosphatase Inhibitor 

Cocktail (Thermo Fisher Scientific). Collected samples were then centrifuged at 10,000 rpm for 10 

minutes at 4⁰ C. Supernatants were collected and stored at -20⁰ C.  

ii. CA19-9 Western Blot 

For CA19-9 western blotting of tumor cell lysates and conditioned media, 50 μg of protein 

or 30 μl of conditioned media were loaded onto  4-20% Tris-Glycine gradient gels (Bio-Rad 

Laboratories) under reducing conditions (2.5% dithiothreithol and 2.5% β-mercaptoethanol). Gels 

were run at 180 volts in SDS-PAGE running buffer (3 g/L Tris base, 14.4 g/L glycine, 1 g/L SDS). 

The proteins were then transferred to PVDF membranes for 1 hour at 0.35 amps in a Tris-glycine 

buffer (TBS; 1.4 g/L Tris base, 7.2 g/L glycine). The membranes were blocked for 2 hours with 

5% nonfat dry milk diluted in TBS buffer (3.0 g/L Tris base, 150 mM NaCl, 3 mM KCl) containing 

0.1% Tween-20 detergent (TBST). Following blocking, membranes were incubated with mouse 

anti-human sialyl LewisA (sLeA) (CA19-9; 1:500) or loading control mouse anti-mouse β-actin 

(1:3000, Sigma) overnight at 4⁰ C. After washing with TBST, the membranes were incubated with 

goat anti-mouse-HRP secondary antibodies (Jackson Labs) for 1 hour followed by exposure to 

chemiluminescence reagents (Thermo Scientific) for visualization.   

iii. CXCR4 Western Blot 

For CXCR4 western blots, 50 μg of protein were loaded into the wells of 10% Bis-Tris 

gels under reducing conditions in a 1X MOPS buffer (50mM Tris, 50 mM MOPS, 0.1% SDS, 1 

mM EDTA). The gel electrophoresis and membrane transfer were performed as stated above. 

Membranes were blocked for 2 hours with 5% nonfat dry milk diluted in TBST followed by 
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incubation with rabbit polyclonal CXCR4 antibody (Abcam; 1:500) overnight at 4⁰ C. After 

washing, the membranes were incubated with goat anti-rabbit-HRP secondary antibodies (Jackson 

Labs) for 1 hour followed by exposure to chemiluminescence reagents for visualization. 

iv. Phospho-ERK and Total ERK Western Blot 

Western blotting for phospho-ERK and total ERK was performed similarly to CXCR4 

western blotting except a 5% bovine serum albumin (BSA) buffer (10 mM Tris base, 100 mM 

NaCl, 0.2% Tween-20) was used for blocking and primary antibody incubations and 1% BSA 

buffer for secondary antibody incubations. Rabbit polyclonal phospho- and total ERK antibodies 

(Cell Signal) were used at a 1:1000 dilution.  

IV. Flow Cytometry 

i. In Vitro Expression Studies 

 Cells were collected using TryLE Cell Dissociation Buffer (Invitrogen) and then washed 

with PBS containing 5% FBS. Following washing, cells were incubated with primary antibodies 

for 30 minutes at room temperature. Cells were then washed 2 times with PBS+5% FBS and 

appropriate fluorescently labeled AlexFluor secondary antibodies (Invitrogen; 1:500) added. Cells 

were incubated with secondary antibodies for 30 minutes at room temperature in the dark. Cells 

were then washed again and incubated for 10 minutes with 2% neutral buffered formalin diluted in 

PBS+2% FBS. Cells were washed and resuspended in PBS and then analyzed by flow cytometry. 

Primary antibodies included rabbit polyclonal anti-CXCR4 (Novus Biologicals; 1:200), mouse 

anti-human E-selectin (Santa Cruz; 1:100), and mouse and IgG controls (Jackson Labs; 1:1000).  

ii. Immune Cell Identification  

 Cells isolated from KPC8060 orthotopic tumors were incubated with Live/Dead Aqua stain 

(Thermo Fisher Scientific) for 10 minutes in the dark then equally dispensed into the wells of a 96-

well plate. Excess Live/Dead stain was washed with PBS+2% FBS. Cells were then incubated with 

fluorophore-conjugated primary antibodies (5 µl/sample) for 30 minutes in the dark at room 
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temperature followed by washing with PBS+2% FBS. Dr. Kamiya Mehla kindly developed and 

optimized the immune cell panel for the study (Table 2.1). Following washing, cells were fixed 

with 2% paraformaldehyde (PFA) for 10 minutes in the dark at room temperature. Cells were again 

washed and then resuspended in 150 μl PBS+1% FBS and taken to the Flow Cytometry Facility 

for analysis. Unstained immune cells and compensation beads (eBiosciences) were used at controls.  

V. Methylene Blue Proliferation Assay 

 For analysis of the effects of E-selectin and CXCR4 blockade on cells, a methylene blue-

based proliferation assay was adapted from (243). Briefly, 3x103 cells were plated in the wells of a 

96-well plate along with increasing doses of GMI-1271 or GMI-1359. Five replicate wells were set 

up per dose. At designated time points (2, 24, 48, 72, and 96 hours), cells were fixed with 10% 

neutral buffered formalin then stained with 1% methylene blue for 30 minutes. After staining, cells 

were washed 4 times with 0.01 M borate buffer (pH 8.5). The methylene blue dye was then eluted 

from the cells with 1:1 (v/v) solution of ethanol and 0.1 N HCl, and the absorbance at 650 nm was 

read. Increases in the OD values were plotted as cells proliferated over time.  

VI. Inhibitor Dosing Assay 

 Cells were plated in the wells of 24-well plates and grown to 70% confluence. GMI-1271 

or GMI-1359 at various concentrations was added to the wells. Cells were imaged every 24 hours 

for 96 hours and examined for changes in morphology and cell death. GMI-1271 and GMI-1359 

are rationally designed glycomimetic small molecule inhibitors developed by GlycoMimetics, Inc. 

(Rockville, MD). GMI-1271 inhibits adhesion protein E-selectin with an IC50 of 2.4 µM. GMI-

1359 inhibits both E-selectin (IC50: 1.0 µM) and chemokine receptor CXCR4 (IC50: 0.5 µM). To 

design GMI-1359, a CXCR4 blocking structure was added to the GMI-1271 scaffolding backbone.  
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Table 2.1 Panel of immune cell markers used for in vivo identification within tumors.  

 

Panel 1   

Marker Fluorophore Cell Type 

Live/Dead Aqua live vs. dead cells 

CD11b eFluor450 macrophages/monocytes 

CD11c PE-Cy7 DCs 

Gr-1 FITC MDSCs 

F4/80 PE macrophages 

   

Panel 2   

Marker Fluorophore Cell Type 

Live/Dead Aqua live vs. dead cells 

CD3 PE T cells 

CD8 PerCP-Cy5.5 CD8+ T cells 

CD4 APC-Cy7 CD4+ T cells 

CD19 PE-Cy7 B cells 

CD335 APC NK cells 

 

Table 2.1 lists the immune cell markers and conjugated fluorophores used to identify the immune 

cell composition of KPC8060 orthotopic tumors by flow cytometry.  
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VII. In Vitro Lymphangiogenesis Assays 

i. Collagen-I Three-Dimensional Matrix 

 For analysis of in vitro tubulogenesis, 5x104 hLECs were plated into the wells of a 48-well 

plate. When hLECs achieved a confluent monolayer, 100 μg/ml of rat tail collagen-I (BD 

Biosciences) was overlaid across the hLECs and allowed to form a three-dimensional matrix. Cells 

were imaged at 18 hours and tube number quantified. All treatments were performed in triplicate. 

For inhibitor studies, increasing doses of GMI-1271 or GMI-1359 were included during 

tubulogenesis.  

ii. Growth Factor Reduced Matrigel Three-Dimensional Matrix 

 As a secondary method for evaluating lymphatic tubulogenesis in vitro, we used a three-

dimensional matrigel matrix to elicit tube formation. In the wells of a 96-well plate, 55 μl of Growth 

Factor Reduced Matrigel Basement Membrane Matrix (Corning) was allowed to gelatinize for 30 

minutes at 37⁰ C in a humidified incubator. After gel formation, 1.2x104 hLECs were plated in 

designated wells. After 6 hours, hLECs formed tube-like networks and phase contrast images were 

collected. Tubulogenesis was quantified by counting the number of tubes per image. For inhibitor 

studies, increasing doses of GMI-1271 and GMI-1359 were incubated with hLECs for 30 minutes, 

after which, hLECs were added to the matrigel matrix. Each treatment was performed in triplicate. 

VIII. Live Cell Imaging of Co-cultures 

i. Co-culture Invasion Imaging Assay 

 To characterize PDAC cell and pancreatic fibroblast interactions with a lymphatic 

endothelium, hLECs were plated in the wells of a 24-well plate and grown to confluence. Once 

confluence was achieved, 4x104 S2-013, Colo357, or 13.34 cells were overlaid atop the hLEC 

monolayer. In studies examining the effects of E-selectin and CXCR4 blockade on this invasion 

process, GMI-1271 or GMI-1359 was added to hLEC monolayers 30 minutes prior to the addition 

of PDAC cells or fibroblasts. Phase contrast images at 10X or 20X magnification were collected 
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every 10 minutes using an IX81 Spinning Disk Upright Confocal Olympus Microscope. During 

image collection, cells were stored in a 37⁰ C humidified (48%) chamber with 5% CO2. Live cell 

movies were made from the images using Slikebook 5.5 software for image acquiring and 

processing. Cell types were distinguished by cell morphology. Each co-culture and/or treatment 

conditions were performed in triplicate and multiple cells per well analyzed. 

ii. Co-culture Migration Imaging Assay 

 To characterize the migration properties of a distinct cell population to another distinct cell 

population, 2-well silicone adhesive cell culture inserts were added to the wells of a 24-well plate. 

Cells were plated into designated wells at a density of 2x104/insert and allowed to adhere overnight. 

Inserts were removed once cells had adhered and washed twice to remove non-adherent cells and 

cell debris. Phase contrast images at 10X magnification were collected every 10 minutes. Each cell 

combination was performed in triplicate and assay was repeated thrice. Image analysis and front 

migration rate was performed using NIH open source Image J program. 

iii. Co-culture Lymphangiogenesis Assay 

 To evaluate how pancreatic tumor cells and fibroblasts influenced lymphangiogenesis in 

vitro, we did live cell imaging of these cells in co-cultures with LECs during collagen-I induced 

tubulogenesis. Human LECs were plated into the wells of a 48-well plate and grown to confluence. 

Once a confluent monolayer was established, 5x104 S2-013, Colo357, 13.34 cells were overlaid 

atop the hLEC monolayer along with 100 μg/ml of rat tail collagen-I.  Phase contrast images (10X 

magnification) were collected every 10 minutes. Each cell combination was performed in triplicate 

and assay was repeated thrice. Image analysis was performed using NIH open source Image J 

program.  
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IX. Immunohistochemical Staining 

  To identify metastatic lesions, formalin-fixed (24 hours) paraffin-embedded (FFPE) mouse 

tissues were cut into 5 µm sections and deparaffinized and rehydrated using standard procedures. 

Standard hematoxylin and eosin staining was performed.  

 Staining for specific proteins, FFPE tissue sections were deparaffinized and rehydrated. 

Heat-induced antigen retrieval was performed using 10 mM citrate buffer (pH 6.0) containing 

0.05% Tween-20 for 10 minutes. Endogenous peroxidases were blocked using DAKO peroxidase 

block for 5 minutes followed by a 1% BSA protein block for 1 hour. Primary antibodies were 

incubated overnight at 4⁰ C. For secondary staining identification, DAKO polymer-labelled 

secondary was used followed by DAB substrate and a hematoxylin counterstain. Primary antibodies 

included mouse anti-mouse α-smooth muscle actin (Sigma; 1:400), rabbit polyclonal anti-CD31 

(Abcam; 1:100) and rabbit polyclonal anti-CD45 (Abcam; 1:100) antibodies. 

X. Immunofluorescence Staining 

  For immunofluorescence staining, deparaffinization, antigen retrieval and blocking were 

all performed in the same manner as the immunohistochemical staining for FFPE tissue sections. 

Rabbit polyclonal anti-LYVE-1 (Abcam; 1:100) was incubated with tissues overnight at 4⁰ C. 

After washing, appropriate Alexa Fluor secondary (1:500) antibodies were applied for 1 hour at 

room temperature. Sections were mounted with DAPI-containing mounting media (Vector Labs).  

 For staining of cells in vitro, cells were fixed with 10% neutral buffered formalin for 15 

minutes. Protein blocking and permeabilization were performed simultaneously with PBS 

containing 5% FBS and 0.1% Triton X-100 for 30 minutes. Primary antibodies were incubated at 

4⁰ C overnight. After washing, appropriate Alexa Fluor secondary antibodies were applied for 1 

hour at room temperature. Again, sections were mounted with DAPI-containing mounting media. 

Primary antibodies used included: mouse anti-human E-selectin (R&D Systems, 1:100); mouse 
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anti-human VE-cadherin (BioLegend; 1:400); mouse anti-human CA19-9 (1:100); and mouse IgG 

(Jackson Labs; 1:1000).  

XI. Boyden Chamber Migration Assays 

 For a quantifiable measure of cell migration, Boyden chamber control insert migration 

plates were used (24 well; 8 μm pore; PET membrane). In the upper chamber, cells were diluted in 

serum free media at plated at a density of 2.5x104 cells/insert (500 μl/insert). In the lower wells, 

750 μl of chemoattractant-containing media was added. After 24 hours of migration, membranes 

were washed with PBS, and non-migratory PDAC cells were mechanically removed using a Q-tip. 

Migratory cells were fixed and stained with Diff-Quick staining kit. Membranes were mounted on 

slides and divided into quadrants. Representative 10X images were collected from each quadrant 

and the numbers of cells quantified. Each experiment was performed in triplicate.  

 Several types of chemoattractants were used for various studies: undiluted PDAC 

conditioned media, undiluted fibroblast conditioned media, EGM-2MV growth media for hLECs, 

RPMI containing 7% FBS for PDAC cells and fibroblasts, or 200 ng/ml CXCL12 diluted in serum 

free media. When studies employ GMI-1271 or GMI-1359, inhibitors were added to the upper 

chamber and lower well at designated concentrations.  

XII. Live Cell Fluorescent Labeling 

 To help identify disparate cell types in co-culture assays, cells were fluorescently labeled 

with either 5 μM Vybrant CFDA-SE Cell Tracer or 10 μM Cell Tracker Orange CMRA (Invitrogen, 

Carlsbad, CA). Briefly, cells were incubated with designated concentrations of the fluorescent 

labels diluted in serum free media at 37⁰ C for 15-30 minutes. After labeling, cells were washed 

with prewarmed, serum containing media for 30 minutes at 37⁰ C. Washing media was removed 

and cells were prepped and counted for co-culture assays. 
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XIII. PDAC Adhesion Assays 

 For evaluation of the role of E-selectin and CXCR4 in PDAC cell adhesion, hLECs were 

plated in 8-well chamber slides (BD Biosciences) and grown to confluence. After establishing a 

confluent monolayer, hLECs were pretreated with increasing doses of GMI-1271 or GMI-1359 for 

1 hour. After hLEC pretreatment, 2.5x104 CFDA-SE-labeled PDAC cells were overlaid on top of 

the hLEC monolayers. Non-adhered tumor cells were washed away with PBS and adhered cells 

were fixed with a 10% neutral buffered formalin. Slides were mounted with DAPI-containing 

mounting media and images collected and quantified. Four representative fields were imaged at a 

4X magnification. Three replicate wells were analyzed per experiment, and each experiment was 

also performed in triplicate. 

XIV. Transendothelial Migration Assays 

 Using a modified Boyden chamber system (24 well; 8.0 μm pore), 3x104 hLECs were 

plated on the underside of PET membrane insert and allowed to grow to confluence. In some 

experiments, hLEC monolayers were pre-treated with 2 ng/ml recombinant human TNFα (R&D 

Systems) for 7 hours to induce inflammatory E-selectin expression. In experiments with CXCL12, 

hLECs were pretreated with 200 ng/ml recombinant human CXCL12 for 8 hours. Additionally, 

hLECs were pretreated with increasing doses of GMI-1271 or GMI-1359 or mouse anti-human 

CXCR4 neutralizing antibody (10 µg/ml) for 1 hour. After pretreatment, 5x104 CFDA-SE-labeled 

PDAC cells were diluted into serum free RPMI and added to the upper insert of the Boyden 

chamber. In the lower wells, EGM-2MV was added as a chemoattractant. PDAC cells were allowed 

to transendothelial migrate for 24 hours. Following TEM, membranes were washed with PBS, and 

non-migratory PDAC cells were mechanically removed using a Q-tip. Membranes were then fixed 

with methanol and mounted on slides using DAPI-containing mounting medium. Five 

representative images at 10X magnification were taken of every membrane and the CFDA-SE 
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fluorescent pancreatic tumor cells were quantified. Three replicate wells were analyzed per 

experiment, and each experiment was also performed in triplicate. 

XV. Transwell Co-culture and qRT-PCR 

4x105 hLECs were plated on the underside of PET membrane inserts (0.4 μm pore; 24 mm 

diameter; BD Biosciences) and incubated overnight. The next day, 6x105 PDAC cells or pancreatic 

fibroblasts were added to upper side of the membrane and co-cultured with the hLECs for 

designated times. After co-culturing, mRNA was isolated from hLECs using RNAqueous Micro 

Isolation kit (Invitrogen). 200 ng RNA was reverse transcribed using Verso cDNA Synthesis kit 

(Thermo Scientific). Triplicate qRT-PCR reactions were performed using SYBR Green Master Mix 

(Applied Biosystems) per manufacturer’s specifications. Relative fold changes were calculated 

based on normalization to GAPDH using cycle threshold values. E-selectin forward primer: 5’-

TGTGGGTCTGGGTAGGAACC-3’; reverse primer: 5’-AGCTGTGTAGCATAGGGCAAG-3’; 

GAPDH forward primer: 5’-GAAGGTGAAGGTCGGAGTC-3’; reverse primers 5’-

CAAGCTTCCCGTTCTCAGCC-3’. 

XVI. Orthotopic Implantation Models  

i. S2-013 Orthotopic Implantation  

  S2-013 (2x106 cells) were orthotopically implanted into the pancreases of female athymic 

nude mice (4-6 weeks old; Jackson Labs). Tumors were allowed to establish over the course of two 

weeks prior to the start of treatment. Following tumor development, mice were divided into 

treatment groups. For metastasis studies, mice were treated for 4 weeks then sacrificed. For survival 

studies, mice were treated until end stage disease. The criteria for end stage disease included severe 

weight loss, excessive ascites accumulation, or extreme weakness/inactivity. Primary pancreatic 

tumors and metastatic organ sites (lymph nodes, lungs, diaphragm, liver, kidneys and spleen) were 

collected at the end of each study and evaluated for tumor microenvironment composition and 

metastatic lesion presence.   
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ii. KPC8060 Orthotopic Implantation 

 For evaluation of GMI-1271 and GMI-1359 effectiveness in immunocompetent mice, 

9x104 KPC8060 mouse PDAC cells were implanted into the pancreas of syngeneic C57BL/6 mice. 

In some studies, treatments were initiated two weeks post-orthotopic implantation; in other studies, 

treatments were initiated the day after orthotopic implantation. Similar to experiments with S2-013, 

both survival and metastatic studies (2-week duration), were performed.  

iii. Inhibitor Treatment Schedules 

 All injections were administered by intraperitoneal injections. Table 2.2 describes the 

various drugs and treatment schedules performed in the in vivo tumor studies. PD-L1 was 

administered on days following gemcitabine treatment as it has been previously demonstrated that 

immunotherapy results in better responses after cytotoxic tumor killing (244).  

iv. Immune Cell Isolation from Mouse Tumors 

 For analysis of immune cell populations within KPC8060 tumors, primary tumors were 

collected and minced into small pieces. Tissue was then digested in RPMI containing 10% FBS, 2 

mg/ml Collagenase A and 0.25 units/ml DNase I for 45 minutes at 37⁰ C with shaking. Cells were 

washed twice then resuspended in PBS and prepped for flow cytometry. 
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Table 2.2 Drug schedule for in vivo treatment of mice. 

Drug Dose Frequency 

Vehicle Control (PBS) --- Daily 

GMI-1271 (low dose) 40 mg/kg Daily 

GMI-1271 (high dose) 40 mg/kg Twice daily 

GMI-1359 40 mg/kg Daily 

Gemcitabine* 60 mg/kg Every 4 days 

Gemcitabine 100 mg/kg Every 4 days 

Anti-PD-L1 antibody 160 μg/mouse Every 4 days following gemcitabine 

 

Table 2.2 lists the small molecule inhibitors and chemotherapy used in the metastasis and survival 

in vivo studies of orthotopically challenged mice as well the KPC drug enrollment study. Drugs 

were administered by intraperitoneal injection.  

 

* For initial evaluation of GMI-1271 efficacy in vivo, gemcitabine was used at 60 mg/kg. However, 

for all other subsequent in vivo studies, it was used at 100 mg/kg (165, 245).  
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XVII. In Vivo Drug Enrollment Studies  

To evaluate GMI-1359 efficacy in a spontaneous mouse model of pancreatic cancer, LSL-

KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre (KPC) mice were monitored by ultrasound imaging for the 

development of pancreas tumors. Enrollment eligibility was determined by the mean of the shortest 

and longest tumor diameters of the largest tumor cross section being 4 to 7 mm in diameter. Upon 

attainment of the enrollment eligibility, mice were randomized into 4 treatment groups: 1) Vehicle 

(PBS) control; 2) 40 mg/kg GMI-1359 daily; 3) 160 µg/mouse anti-PD-L1 antibody; 4) 

combination GMI-1359 and anti-PD-L1. Tumors growth was monitored weekly by ultrasound 

imaging. Mice were treated until they displayed signs of end stage disease (extreme lethargy, 

excessive ascites accumulation, and/or severe cachexia).  

XVIII. Statistical Analysis 

Statistical analyses were performed using GraphPad Prism 5 software. Student t test was 

used for tubulogenesis assays, binding assays and transendothelial migration assays. Student t test 

was also used to evaluate statistical significance in tumor volume, weight, desmoplasia, and 

lymphatic and blood vascular densities in the in vivo studies. One-way ANOVA was used for 

proliferation assays. Statistical significance for survival studies was determined using log-rank 

tests. Significance level was set at p<0.05 and error bars represent standard deviations. 
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CHAPTER 3: 

Characterization of Lymphatic Endothelial 

Communications and Interactions with Pancreatic 

Tumor Cells and Pancreatic Fibroblasts 
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Steele, MM and Hollingsworth, MA. Regulation of cellular lymphatic biology by pancreatic 

tumor cells and fibroblasts. (In submission to Oncotarget)
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I. Introduction 

Pancreatic ductal adenocarcinoma (PDAC), the fourth leading cause of cancer-related 

deaths in the United States, is lethal with a median survival of 6 months and a 5-year survival rate 

of 7% (1). Very little progress has been made in improving overall patient survival (4). One of the 

factors impeding development of successful therapies for this deadly disease is the complexity of 

the PDAC microenvironment. A dense desmoplastic response is one of the defining characteristics 

of this disease and can comprise up to 80% of the tumor mass (159). Although there is debate about 

the role of fibroblasts in tumor progression, some fibroblast components of the desmoplastic 

response are significant contributors to PDAC progression through promotion of tumor growth and 

survival, immune suppression, and metastasis. These tumor-supporting fibroblasts provide 

paracrine support to tumor cells as well as other tumor-supporting cell types within the PDAC 

microenvironment including immune cells and vascular and lymphatic endothelial cells [reviewed 

in (246-248). 

Lymphatic vessel invasion and subsequent metastasis to the lymph nodes are frequently 

observed events during pancreatic cancer progression (5, 28, 33). At the time of diagnosis, more 

than 70% of pancreatic cancer patients present with lymph node involvement (56, 249-251), and 

this lymph node involvement strongly correlates with poor patient prognosis (34-37). Additionally, 

lymph node status is a significant factor in staging patients and selecting appropriate therapy (39, 

40, 111). Although clinicians and researchers recognize the importance of lymph node involvement 

for patient prognosis and therapy selection, the biological mechanisms governing lymphatic vessel 

invasion and lymph node metastasis remain poorly understood.   

Due to their prevalence within the PDAC microenvironments, pancreatic fibroblasts are 

probable effectors of lymphatic biology and function within PDAC tumors and likely promote 

PDAC invasion of lymphatic vessels. However, the mechanisms by which fibroblasts impact 

lymphatic endothelial cells, the main cell type comprising lymphatic vessels, have not been widely 
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investigated. In this paper, we describe, for the first time, evidence for intercellular communications 

and interactions between fibroblasts and lymphatic endothelial cells. We demonstrate that 

fibroblasts promote lymphatic recruitment, accelerate lymphangiogenesis, and invasion. Using a 

combination of live cell imaging and endpoint co-culture techniques, we compare the effects of 

fibroblasts or pancreatic tumor cells on lymphatic endothelial cells to elucidate the contributions 

by each cell type to the biology of lymphatic endothelial cells within the PDAC microenvironment.  

 

II. Results 

Lymphatic endothelial cells strongly migrate toward pancreatic fibroblasts in vitro. 

 We evaluated the capacity of pancreatic fibroblast and PDAC cells to recruit hLECs 

through secreted paracrine factors. Conditioned media (CM) was collected from a panel of 

pancreatic tumor cells (Colo357, S2-013, BxPC-3, T3M4, Hs766T, HPAF-II) and pancreatic 

fibroblasts derived from normal pancreas (13.34) and used as chemoattractants for hLECs in a 

Boyden chamber migration system. 13.34 pancreatic fibroblasts were determined to be of an 

activated phenotype (αSMA+) suggesting they are capable of producing abundant growth factors 

and cytokines necessary to induce cellular migration (Supplementary Figure 3.1A-D) (167). Data 

in Figure 3.1A show that CM from Colo357, S2-013, and T3M4 PDAC cells induced modest levels 

of directional hLEC migration compared to unconditioned media. Hs766T, BxPC-3, or HPAF-II 

CM did not induce significant hLEC migration compared to unconditioned control media. In 

contrast, 13.34 pancreatic fibroblast CM induced high levels of hLEC migration. In our hands, 

13.34 CM was a stronger chemoattractant for hLECs than standard endothelial growth media EGM-

2MV (positive control), which contains necessary growth factors and serum for hLEC maintenance. 

 To determine if the chemotactic effect was specific to the 13.34 line, hLEC migration 

toward CM collected from other pancreatic fibroblast lines was also evaluated.  CM from three 

separate lines of normal pancreatic fibroblasts - 13.7, 13.8, and 13.9, strongly induced directional 

hLEC migration compared to unconditioned media (Figure 3.1B). We also evaluated CM from a  
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Figure 3.1 

 

Figure 3.1 Pancreatic fibroblasts strongly induce hLEC migration while PDAC cells only 

induce moderate hLEC migration.  

A) Conditioned media (CM) from pancreatic fibroblasts (13.34) or PDAC lines (Colo357, S2-013, 

T3M4, Hs766T, BxPC-3, HPAF-II) was evaluated as a potential chemoattractant for hLECs using 

a Boyden chamber migration system. EGM-2MV with 5% FBS was used as a positive control for 

hLEC migration. Graphical representation is the mean of 3 replicate membranes; experiment was 

repeated 3 times.  *p<0.05, **p<0.01; error bars = s.d. 

 

B) Conditioned media from a panel of human non-transformed pancreatic fibroblasts (13.34, 13.7, 

13.8, 13.9), PDAC-associated fibroblasts (09-06 PC), PDAC liver metastasis-associated fibroblasts 

(liver fibro), or dermal foreskin fibroblasts (HuFF) was used as a chemoattractant to induce hLEC 

migration. Graphical representation is the mean of 3 replicate membranes; experiment was repeated 

3 times.  *p<0.05, **p<0.01, ****p<0.0001; error bars = s.d. 

 

C) hLECs were plated in the lower well of a Boyden chamber to act as a chemoattractant for 13.34 

fibroblasts or S2-013, Colo357, or T3M4 cells. Graphical representation is the mean of 3 replicate 

membranes; experiment was repeated 3 times.  **p<0.01; error bars = s.d. 



42 
 

 tumor-associated fibroblast line, 09-06 PC, which also strongly attracted hLEC populations. 

Comparable results were obtained for CM from fibroblasts isolated from a liver metastasis of 

PDAC patient sample (liver fibroblast CM). CM from neonatal dermal foreskin fibroblasts 

(HuFF) consistently displayed a weaker ability to attract hLECs compared to CM from the other 

fibroblast lines; however, CM from this line consistently attracted enhanced numbers of hLECs 

compared to unconditioned media. These data demonstrate that pancreatic fibroblasts are strong 

inducers of hLEC migration, and suggest that their presence strongly supports lymphatic 

recruitment to primary PDAC tumor sites.  

As the ability of PDAC cells and fibroblasts to migrate toward lymphatic vessels is also 

key for key for successful lymphatic-directed dissemination, we evaluated the ability of hLEC 

paracrine factors to induce migration of PDAC cells and pancreatic fibroblasts. Across multiple 

replicate experiments, 13.34 fibroblasts consistently showed strong migration toward hLECs as 

compared to control wells without hLECs present (Figure 3.1C). PDAC cells did not demonstrate 

an increased ability to migrate toward hLECs compared to control wells that lacked hLECs. 

Chemotactic communication between pancreatic fibroblasts and PDAC cells is highly 

variable across PDAC lines. 

 To more fully understand cell-cell communications within the pancreatic tumor 

microenvironment, we also examined the ability of PDAC tumor cell lines to induce pancreatic 

fibroblast migration as well as the ability of pancreatic fibroblasts to induce PDAC migration. 

Figure 3.2A shows that conditioned media from BxPC-3 and Colo357 PDAC lines significantly 

increased pancreatic fibroblast migration compared to unconditioned media. HPAF-II PDAC cells 

were unresponsive to 13.34 conditioned media. Unexpectedly, the conditioned media from S2-013 

cells consistently inhibited 13.34 fibroblast migration compared to unconditioned media. 
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Figure 3.2 

 

 

Figure 3.2 Chemotactic communication between pancreatic fibroblasts and PDAC cells is 

highly variable across PDAC lines.  

A) Boyden migration plates were used to evaluate the ability of S2-013, BxPC-3, Colo357, and 

HPAF-II CM to induce 13.34 fibroblast migration. Graph represents the mean of 3 membranes per 

conditioned media type; experiment was repeated 3 times. ***p<0.001, ****p<0.0001; error bars 

= s.d. 

B) CM from 13.34 pancreatic fibroblasts was loaded into the lower wells of a migration plate to 

act as a potential chemoattractant for S2-013, Bx-PC-3, Colo357, and HPAF-II PDAC cells. 13.34 

CM strongly induced S2-013 and Colo357 migration but did not alter on BxPC-3 or HPAF-II 

migration compared to unconditioned media. Graphical representation is the mean of 3 

membranes/treatment; experiment was repeated 3 times. **p<0.01, ****p<0.0001; error bars = s.d. 
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 We also examined whether factors secreted from 13.34 pancreatic fibroblasts were capable 

of inducing PDAC cell migration. Although S2-013 cells do not induce pancreatic fibroblast 

migration, these cells are strongly attracted to the secreted factors found in pancreatic fibroblast 

conditioned media (Figure 3.2B). Colo357 PDAC cells were also strongly attracted to 13.34 

conditioned media compared to unconditioned media. BxPC-3 and HPAF-II PDAC cells 

demonstrated no difference in migration to 13.34 conditioned media compared to unconditioned 

media. 

Live cell imaging characterization of homogenous cell populations. 

 Boyden chamber migration systems allow for easy quantification of cell migration; 

however, these assays only capture migration of a single cell type at a fixed endpoint. Using live 

cell imaging, we examined real-time migration of PDAC cells, pancreatic fibroblasts, and/or hLECs 

in co-culture. Various cell types were plated into the wells of a 2-well silicone insert. Once the cells 

within the wells of the inserts had adhered to the bottom of the well, the insert was removed, 

creating a 500 μm gap-exclusion zone between the two cell populations. Images of cell migration 

into the gap were captured every 10 minutes for 24 hours and then the frames were stitched together. 

The use of a barrier, rather than a scratch, to create a gap between two cell populations is important 

for multiple reasons: a) it permits migration analysis of disparate cell types; b) it minimizes cell 

damage which can influence migration results, and c) it creates a uniform gap in all multiple 

experimental wells. Using live cell imaging, we followed the migration pattern and morphology 

changes of two cell types as they migrated toward one another. Figure 3.3 diagrams some of the 

terminology used to describe these assays. 

 For controls, we initially characterized the migration of identical cell populations (13.34 to 

13.34; hLEC to hLEC; S2.013 to S2.013; and Colo357 to Colo357; Figure 3.4A-D). Numerous 

similarities were seen when cells of the same type migrate toward one another. The migration fronts 

of each home population move at uniform rates, and the cells at the leading edge of the migration 

front remain associated with the home population; individual cells did not escape the home  
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Figure 3.3 

 

 

 

Figure 3.3 Co-culture migration illustration and terminology. 

Two-well silicone removeable inserts were adhered to the bottom of the wells of 24-well plate. 

Disparate or similar cell types were seeded into each of the wells. Following cell adhesion to the 

bottom of the well, the silicone insert was removed creating a uniform 500 µm gap between the 

two cell populations. The population where a cell type was plated prior to the start of the experiment 

is referred to as its “home” population. The “migration front” refers the edge of the population 

migrating into the gap (dashed line). The individual cells at the boundary of the migration front are 

referred to as “leading edge” cells (asterisks).  
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population to traverse the gap and interact with the opposing population of cells. When migration 

fronts met at gap closure, the forward migration of each cell population stopped and the cells at the 

edge of each front integrated to form a homogenous monolayer. No cells were observed crawling 

atop the approaching cell population nor did one population drive the opposing front backward. 

 Some dissimilarities were noted among the different cell types during homogeneous cell 

migration. Human LECs populations moved as a single, connected group. The cells at the leading 

edge of the migration flattened out and formed obvious lamellipodia on the side of the cell facing 

the gap (Figure 3.4A). The cells behind the leading edge appeared to pulled along by the leading 

cells and did not form obvious lamellipodia themselves. All the cells retained a round cell shape. 

No proliferation was undergone by the hLECs at the leading front while the cells behind the front 

were observed regularly dividing. Upon gap closure, hLECs at the leading edge integrated to form 

a single cohesive population. 

 Unlike hLECs, pancreatic fibroblasts at the leading edge of the migration front significantly 

elongated toward the oncoming fibroblast population (Figure 3.4B). Fibroblasts both at the leading 

edge and behind the leading edge formed filipodia in the direction of the opposing fibroblasts. Each 

population migrated as a loosely connected group with all the cells remaining in close proximity. 

As the leading edges closed the gap, individual fibroblasts intermixed but retained their elongated 

shape in the direction of the opposite cell population.  
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Figure 3.4

 

 

 

Figure 3.4 Live cell imaging characterization of the migration patterns of identical cell 

populations. 

A-D) Live cell imaging of two cell populations of the same type migrating across a gap toward one 

another. Images were collected at 10X magnification every 10 minutes for 24 hours. Figures A-D 

contain representative steady state images collected at 10 minute, 6 hour, 12 hour, 18 hour, and 24 

hour timepoints at the same location. Scale bar = 100 µm 
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 S2-013 cells displayed much more individual movements among cells within the home 

population but the movement did not appear to be directed toward the opposing S2-013 population 

(Figure 3.4C). S2-013 cells both at the migration front and behind it formed lamellipodia; however, 

the lamellipodia were not always orientated in the direction of the other S2-013 population. Similar 

to the fibroblasts, S2-013 populations migrated as a loosely connected group while closing the gap. 

Cells at both the leading edge and behind the leading edge underwent significant amounts of 

proliferation. Once the gap closed individual cell movements slowed and cells formed a single 

cohesive monolayer.  

 Colo357 gap closure was much slower compared to that of the other cell types as the gap 

did not completely close by 24 hours (Figure 3.4D). Much like the hLECs, Colo357 populations 

migrated as a single connected population with very little movement among the individual cells. 

Cell division was frequently observed behind the migration front. A significant accumulation of 

cells behind the migration front suggested that proliferation may have contributed to gap closure. 

Additionally, lamellipodia formation was not orientated in the direction of the oncoming Colo357 

population.  

Characterization of migration of disparate cell types in co-culture using live cell imaging.  

 Next, we characterized the migration patterns of cells toward a disparate cell type initially 

focusing on co-cultures of hLECs with 13.34 pancreatic fibroblasts or PDAC cells (S2-013, 

Colo357; Figure 3.5A-D). Figure 3.5A displays the migration of hLECs to hLECs as a reference 

for control migration. Assessment of migration patterns between pancreatic fibroblasts and hLECs 

revealed that, similar to homogenous migration, 13.34 elongated and formed filipodia in the 

direction of the approaching hLEC population (Figure 3.5B). Unlike migration toward an identical 

cell population, individual 13.34 cells were observed exiting the home population and migrating  
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Figure 3.5 

 

 

Figure 3.5 Live cell imaging characterization of the migration patterns of hLECs in co-culture 

with pancreatic fibroblasts or PDAC cells. 

A-D) Live cell imaging of the migration patterns of hLECs in A) monoculture or in co-culture with 

B) 13.34 fibroblasts, C) S2-013, or D) Colo357 PDAC cells. Images were collected at 10X 

magnification every 10 minutes for 24 hours at the exact same location. Figures A-D contain 

representative steady state images collected at the 10 minute, 6 hour, 12 hour, 18 hour, and 24 hour 

timepoints. Circles indicate examples of cells crawling atop by not invading the hLEC population. 

Scale bar = 100 µm 
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across the gap toward the hLEC population. 13.34 fibroblasts demonstrated a greater migration 

potential by closing more of the gap than the hLEC population. Migration of hLECs toward 13.34 

fibroblasts was relatively similar to migration toward another hLEC population: hLECs moved as 

a cohesive unit with leading edge cells forming lamellipodia in the direction of the oncoming 

fibroblasts. As the migration fronts converged, 13.34 fibroblasts and hLECs did not intermix. 

Rather, the two populations remained abutted against one another. The only exception to this was 

the occasionally observed fibroblast crawling atop the hLEC population (white circles). 

 Examination of S2-013 and hLEC migration in co-cultures revealed that leading edge 

hLECs elongated perpendicularly to the approaching S2-013 population (Figure 3.5C). These cells 

did not form lamellipodia nor did the hLEC migration front progress very far into the gap. 

Individual S2-013 cells at the leading edge of the migration front were observed very early to exit 

the home population and migrate across the gap to the opposing hLEC population. After physical 

contact was made with hLEC cells, S2-013 cells often returned to the home population. As the S2-

013 migration front got closer to the hLEC population, the hLEC front was observed to recede 

backward. Eventually the S2-013 front closed the gap between the two populations and then 

physically forced the hLEC population backward. There was no intermixing of two cell types upon 

gap closure although a handful of S2-013 were observed crawling atop the hLEC monolayer. 

 Examination of Colo357, another PDAC line, migration toward hLECs revealed that a 

small number of hLEC migrate across the gap early toward the Colo357 population (Figure 3.5D). 

However, these hLECs never fully lost contact with their home population. Unlike S2-013 

migration toward hLECs, individual Colo357 cells did not exit their home population and migrate 

across the gap toward the hLEC population. The Colo357 population moved as a single cohesive 

unit as did the majority of the hLEC population. Colo357 cells did not induce hLEC recession like 

the S2-013 cells did. Since both Colo357 and hLEC migration is relatively slow, the gap never fully 

closed between the two cell types in 24 hours.  
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Lastly, we characterized the migration patterns of pancreatic fibroblasts and pancreatic 

tumor cells toward one another (Figure 3.6A-C). Unlike migration toward hLEC cells, migrating 

S2-013 cells remained with the home population moving as a loosely connected group (Figure 

3.6B). Individual S2-013 cells were not observed to escape the home population and migrate across 

the gap toward the fibroblasts. S2-013 lamellipodia formation was not orientated in the direction 

of the approaching fibroblasts, but rather formation occurred on all sides of the cell. Similar to other 

experimental setups, 13.34 fibroblasts at the leading edge elongated and formed filipodia in the 

direction of the approaching S2-013 population. Although elongated, leading edge 13.34 cells 

remained associated with the home population. Once the two fronts met to close the gaps, progress 

forward stopped and both migration fronts remained stationary. Cells of opposing type did not 

intermix nor were they observed to crawl atop the opposing monolayer.  

Examination of 13.34 and Colo357 migration in co-culture again demonstrated 13.34 

elongation toward the approaching Colo357 cells (Figure 3.6C). However, unlike migration 

toward S2-013 cells, numerous individual 13.34 fibroblasts exited the home population and 

migrated toward the approaching Colo357 population making multiple physical contacts with the 

PDAC cells. The Colo357 cells maintained tight contact with the home population and do not 

migrate cross the gap. When the two fronts closed the gap, front progression stopped and neither 

population regressed nor intermixed with the opposing cell population.  

Analysis of the rate of gap closure and cellular migration front progression from live cell 

imaging.  

 Using the live cell images, we calculated the rates of gap closure as well as the migration 

rates of each cell front under the examined co-culture settings. The rate of gap closure was relatively 

consistent across the groups, with migration between two S2-013 populations being the fastest and 

migration between two Colo357 populations being the slowest (Figure 3.7A). As gap closure rate 

is the average velocity of two migration fronts, we also calculated the rate of migration for each 

front in each of the co-culture conditions (Figure 3.7B-E). The migration rate of hLECs  
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Figure 3.6  

 
 

Figure 3.6 Live cell imaging characterization of the migration patterns of pancreatic 

fibroblasts in co-culture with PDAC cells. 

A-C) Live cell imaging of the migration patterns of pancreatic fibroblasts in A) monoculture or in 

co-culture with B) S2-013 or C) Colo357 PDAC cells. Images were collected at 10X magnification 

every 10 minutes for 24 hours. Figures A-D contain representative steady state images collected at 

the 10 minute, 6 hour, 12 hour, 18 hour, and 24 hour timepoints at the same location. Scale bar = 

100 µm 



53 
 

Figure 3.7 

 

 

Figure 3.7 Rate of front progression during co-culture migration. 

A) Graphical representation of the mean rate of gap closure in a series of co-culture migration 

assays. Rate = d/t, where d = length of the gap and t = total time to gap closure. If the gap did not 

completely close, t = 24 hours. This is a measure of the average rate of both population fronts. n=6 

gap closure studies per co-culture setup. a.u.= arbitrary units; error bars = s.d. 

B-E) Graphical representation of the mean rate of the migration front for B) hLECs, C) 13.34 

fibroblasts, D) S2-013 or E) Colo357 PDAC cells in a series of co-culture migration assays. Rate 

= (x1-x0)/t, where x1 = area covered by a cell population at gap closure, x0 = area covered at t = 0, 

and t = time of gap closure. If the gap did not close, t = 24 hours. n=6 gap closure studies per co-

culture setup. Asterisks indicate a statistically significant change in the migration rate of a cell type 

when in co-culture with a disparate cell type compared to the migration rate when in co-culture 

with the same cell type. *p<0.05, **p<0.01; a.u.= arbitrary units; error bars = s.d.  
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was relatively similar when migration was toward other hLECs, 13.34 fibroblasts, or Colo357 cells 

(Figure 3.7B). However, the hLEC rate significantly slowed when migration was toward S2-013 

cells. The 13.34 fibroblast migration rate was slowest toward another 13.34 population, but it 

significantly increased during migration toward an hLEC or an S2-013 population (Figure 3.7C). 

The rate of S2-013 migration was fastest toward hLECs and 13.34 fibroblasts compared to 

migration toward another S2-013 population (Figure 3.7D). Lastly, Colo357 migration was slowest 

toward pancreatic fibroblasts and fastest toward hLECs (Figure 3.7E). Asterisks indicate statistical 

significance of co-culture migration compared to monoculture migration.  

Pancreatic tumor cells and fibroblasts accelerate in vitro lymphatic tubulogenesis and 

disrupt normal tube network organization. 

 Lymphangiogenesis is a crucial physiological function of lymphatic endothelial cells, 

particularly during times of wound healing, inflammation, and malignancy. To evaluate the effects 

of PDAC cells and pancreatic fibroblasts on lymphangiogenesis, we performed live cell imaging 

of collagen-I-induced hLEC tubulogenesis when co-cultured with PDAC cells or pancreatic 

fibroblasts. Figure 3.8A shows fixed timepoints of normal tubulogenesis when hLECs are in 

monoculture. At 4 hours, hLECs lost their smooth cell boundaries and developed a more dendritic 

appearance with many cellular protrusions. By 8 hours, several individual hLEC cells started to 

coalesce into an immature tube-like configuration, and by 12 hours, a network of interconnected 

tubes began to form. Tube formation was completed by 20 hours when nearly all individual hLECs 

incorporated into the network. 

 The addition of 13.34 pancreatic fibroblasts or PDAC cells (S2-013, Colo357) to hLECs 

during collagen-I-induced tubulogenesis resulted in significant changes to the tubulogenesis 

process (Figure 3.8B-D). For three different co-culture experimental designs, tube formation began 

much earlier than was observed for hLECs in monoculture. Thirty minutes following initiation, 

tube-like structures were initiated in the co-culture system; this was not seen until 8 hours in the 

monoculture model. Also unlike the monoculture system where every hLEC cell coalesced into the  
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Figure 3.8 Characterization of lymphatic tubulogenesis in the presence of PDAC cells or 

pancreatic fibroblasts. 

A-E) Live cell imaging of in vitro collagen-I-induced hLEC tubulogenesis in A) monoculture or in 

co-culture with B) 13.34 fibroblasts, C) S2-013, D) Colo357, or E) additional hLECs. Images were 

collected at 10X magnification every 10 minutes for 24 hours at the exact same location. Figures 

A-E contain representative steady state images collected at the 30 minute, 4 hour, 12 hour, 18 hour, 

and 20 hour timepoints. Scale bars = 100 µm 

F) Quantitative analysis of the mean number of hLECs tubes formed when in monoculture or in 

co-culture with 13.34, S2-013, or Colo357 cells at t=20 hours. 3 replicate wells were analyzed per 

experiment; experiment was performed 3 times. *p<0.05, **p<0.01, ****p<0.0001; error bars = 

s.d. 

G) Quantitative analysis of the mean number of disconnected or broken hLEC tubes under 

monoculture and co-culture conditions at t=20 hours. 3 replicate wells were analyzed per 

experiment; experiment was performed 3 times. **p<0.01, ****p<0.0001; error bars = s.d. 

H) Graphical representation the percentage of co-culture cell types 13.34, S2-013, or Colo357 

either associated (physical contact) or not associated (no physical contact) with hLEC tubes at t=20 

hours. *p<0.05, ***p<0.001; error bars = s.d. 

I) Representative images of 13.34, S2-013, or Colo357 cells in culture with hLECs during collagen-

I-induced tubulogenesis. 13.34, S2-013, or Colo357 were labeled with green CFDA-SE cell tracer 

and hLECs were labeled with orange CMRA cell tracer. Scale bar = 25 µm 
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Figure 3.8 
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tube network, many individual hLEC cells remained unincorporated at the time of tube network 

completion. Pancreatic tumor cells and fibroblasts significantly reduced the number of hLEC tubes 

formed (Figure 3.8F). Furthermore, the tubes formed in the co-culture settings had thin diameters 

and were disconnected from branch points or nodal clusters (Figure 3.8G). Examination of the 

tumor cell and fibroblast position revealed that most of these cells closely associated with hLEC 

tubes or hLEC nodes (Figure 3.8H). However, the tumor cells and fibroblasts did not incorporate 

into the tube network themselves (Figure 3.8I). To ensure that the acceleration in tubulogenesis by 

PDAC cells or pancreatic fibroblasts was not simply due to increases in total cell number during 

induction, the assay was performed with the addition hLECs commensurate with the addition of 

collagen-I. Similar to the monoculture studies described above, hLEC tube formation started 

around 8 hours and was complete at 20 hours; there was no acceleration of tuber formation with 

the addition of hLECs to the culture (Figure 3.8E). Nearly all hLECs, including those added at the 

time of induction, incorporated into the tube network. Moreover, the tubes had thick diameters and 

all were connected to network branch points or nodal clusters. Altogether these data suggest that 

pancreatic fibroblasts and tumor cells are capable of accelerating lymphatic tube formation through 

a process that leads to poorly formed lymphatic networks with decreased diameters and disjointed 

tubes in vitro.  

Characterization of pancreatic tumor cell invasion of simulated lymphatic endothelia. 

 The ability of PDAC cells to invade lymphatic endothelia is a critical step for dissemination 

to lymph nodes. We evaluated this this function in vitro through transendothelial migration (TEM) 

assays as diagramed in Figure 3.9A. Briefly, a confluent hLEC monolayer was established on the 

underside of the porous membrane of a Boyden chamber insert (Figure 3.9B). Plating the hLECs 

on the underside of the membrane orientates the basal side of the LECs toward the invading PDAC 

cells similarly to lymphatic invasion in vivo. Following monolayer formation, a chemoattractant 

was added to the lower well and PDAC cells diluted in serum free media were added to the upper 

insert. PDAC cells underwent TEM for 20-24 hours. The TEM capacity of a panel of PDAC lines   
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Figure 3.9 

 

 

Figure 3.9 Evaluation of the TEM capacity of PDAC cells in vitro.  

A) Diagram illustrating the setup of an in vitro transendothelial migration assay. Human LEC 

monolayers were established on the bottom of the membrane to position the basal cell surface of 

hLECs toward the invading PDAC cells; this is analogous to lymphatic invasion in vivo.  

B)  Representative immunofluorescent images of hLEC monolayers plated on the underside of a 

Boyden chamber membrane. Actin (red; top) and VE-cadherin (green; bottom) labeling was used 

to demonstrate that the hLECs formed a confluent monolayer on the underside of the membrane 

and there were no gaps between hLEC cells. Potential gaps would have allowed PDAC cells to 

cross the endothelial barrier without undergoing invasion. Cell nuclei were stained with DAPI 

(blue). Scale bar = 50 µm 

C) Graphical representation of TEM through a lymphatic endothelium by a panel of PDAC cell 

lines: S2-013, Colo357, BxPC-3, HPAF-II, T3M4, and HS766T. 3 replicate membranes/cell type; 

experiment was repeated 3 times. Error bars = s.d. 
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is shown in Figure 3.9C. Not all PDAC lines displayed the same propensity to invade a 

lymphatic endothelium: S2-013 cells demonstrated a high rate of TEM; Hs766t, BxPC-3, and 

Colo357 cells demonstrated a moderate rate; and HPAF-II and T3M4 demonstrated a low rate.  

 We collected steady state images of fluorescently labeled PDAC cells (BxPC-3, Colo357, 

HPAF-II, and S2-013) and pancreatic fibroblasts (13.34) invading a lymphatic monolayer. To 

evaluate the position of invasion within the monolayer, we used immunofluorescence staining of 

endothelial-specific adherens junction protein VE-cadherin to visualize hLEC cell boundaries 

(Figure 3.10A-F). There were three possible positions of PDAC cell invasion of a lymphatic 

monolayer: 1) where two endothelial cells came together (bicellular junction); 2) where three 

endothelial cells came together (tricellular junction); or 3) on the cell body of an endothelial cell. 

The majority of PDAC cells invaded at tricellular endothelial junctions (Figure 3.10G). 

Occasionally, PDAC cells would invade at bicellular junctions and even less often transcellularly 

through an endothelial cell body. PDAC cells caused a loss of VE-cadherin at the site of invasion; 

however, occasionally, VE-cadherin loss also occurred at sites away from invasion (arrowhead, 

Figure 3.10D).  Comparable to the invasion pattern of PDAC cells, 13.34 pancreatic fibroblasts 

also preferred to invade at tricellular junctions (Figure 3.10F, G). However, 13.34 cells also 

demonstrated the unique ability to elongate across the top of the monolayer without invading into 

it (no disruption of VE-cadherin staining). This was not seen in any of the co-cultures with PDAC 

cells. We compared the invasion pattern of PDAC cells and the 13.34 pancreatic fibroblasts to that 

of freshly isolated leukocytes (Figure 3.10H-I). Leukocytes displayed no preference for an 

endothelial junction type during adhesion or invasion of the lymphatic monolayer.  

 Live cell imaging was also used to fully characterize PDAC invasion of a simulated 

lymphatic endothelium. Examination of S2-013 PDAC invasion revealed that S2-013 cells invade 

a monolayer in clusters; single cells were rarely successful at invading the monolayer (Figure  
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Figure 3.10 Characterization of PDAC invasion of an hLEC endothelium. 

A) Representative image of an hLEC monolayer prior to addition of PDAC cells. 

Immunofluorescent staining with VE-cadherin (red) antibody indicates fully-matured cell junctions 

between adjacent hLEC cells. Nuclei are labeled with DAPI (blue). Asterisks represent potential 

cellular invasion sites on the hLEC monolayer: the white asterisk is an example of a tricellular 

junction; the yellow asterisk is an example of a bicellular junction; and the pink asterisks is an 

example of an endothelial cell body location. Scale bars = 50 µm 

B-E) Representative images of B) BxPC-3, C) Colo357, D) HPAF-II, and E) S2-013 invasion of 

an hLEC monolayer. PDAC cells were labeled with a CFDA-SE (green) cell tracer and hLEC 

adherens junctions were labeled with VE-cadherin (red) antibody. Nuclei were labeled with DAPI 

(blue). D) Arrowhead indicates an example of VE-cadherin loss in hLECs distant from sites of 

invasion. Scale bars = 50 µm 

F) Representative image of 13.34 fibroblasts invading an hLEC monolayer. 13.34 cells were 

labeled with CMRA cell tracer (orange) and hLEC adherens junctions were labeled with VE-

cadherin (green). Nuclei were labeled with DAPI (blue). Scale bar = 50 µm 

G) Graphical representation of the locations within an hLEC monolayer invaded by PDAC cells 

and fibroblasts: tricellular junctions, bicellular junctions, or atop endothelial cell body. 

****p<0.0001; error bars = s.d. 

H) Representative image of leukocyte entering an hLEC monolayer. Freshly isolated leukocytes 

were labeled with CMRA cell tracer (orange) and hLEC adherens junctions were labeled with VE-

cadherin (green). Nuclei were labeled with DAPI (blue). Scale bar = 50 µm 

I) Graphical representation of the locations on an hLEC monolayer where leukocytes preferred to 

enter: tricellular junctions, bicellular junctions, or atop endothelial cell body. Error bars = s.d. 
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Figure 3.10 
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Figure 3.11 

 

Figure 3.11 Live cell imaging evaluation of PDAC invasion of an hLEC endothelium 

A) Representative live cell imaging photographs of S2-013 invasion of a lymphatic endothelium at 

10 minutes, 6 hours, 12 hours, and 24 hours. Individual images were collected at 10X magnification 

every 10 minutes for 24 hours at the exact same location. Scale bar = 100 µm 

B) Representative live cell imaging photographs of S2-013 invasion of a lymphatic endothelium at 

10 minutes, 12 hours, 24 hours, and 36 hours. Individual images were collected at 20X 

magnification every 10 minutes for 36 hours at the exact same location. Scale bar = 10 µm 

C) Representative live cell imaging photographs of Colo357 invasion of a lymphatic endothelium 

at 10 minutes, 6 hours, 12 hours, and 24 hours. Individual images were collected at 10X 

magnification every 10 minutes for 24 hours at the exact same location. Scale bar = 100 µm 

D) Representative live cell imaging photographs of 13.34 fibroblast invasion of a lymphatic 

endothelium at 10 minutes, 6 hours, 12 hours, and 24 hours. Individual images were collected at 

10X magnification every 10 minutes for 24 hours at the exact same location. Scale bar = 100 µm 
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3.11A). Rather individual S2-013 cells actively migrated to clusters to augment invasion through 

collective cell migration. Following successful invasion, S2-013 clusters expanded the opening in 

the monolayer by physically forced extension of tumor cells and endothelial retraction. 

Expanding S2-013 islands physically pushed against the surrounding endothelial cells to further 

open the monolayer. Additionally, hLECs actively retracted from the invaded S2-013 cells, 

creating larger holes in the monolayer; this retraction often occurred in the absence of contact 

between the two cell types. Human LECs at the invasive boundary displayed an elongated 

morphology. Non-invaded S2-013 cells migrated across the top of the monolayer to sites of 

successful invasion; this migration to invaded sites appeared to be directed and non-random. 

These newly recruited S2-013 cells then rapidly incorporated into the invaded S2-013 population. 

Figure 3.11B illustrates this process at a greater magnification and decreased S2-013 density. As 

seen in the steady-state immunofluorescence images, S2-013 cells were also able to induce gaps 

in the monolayer at sites distant to invasion (Figure 3.11B arrowhead).  

 Colo357 invasion was also evaluated to determine if all PDAC cells invade in the same 

manner (Figure 3.11C). Like S2-013 cells, Colo357 also invaded the monolayer as clusters (albeit 

smaller clusters compared to S2-013 cells), and single Colo357 cells migrated toward clusters to 

augment collective cell migration and invasion. Colo357 cells did not invade the monolayer as 

rapidly as S2-013 cells: by 6 hours numerous S2-013 cells had invaded the monolayer while very 

few Colo357 cells had invaded the monolayer at this same time point. Like S2-013 cells, Colo357 

formed islands within the hLEC monolayer and recruited other Colo357 cells to sites of successful 

invasion. Colo357 cells invasion was principally physical pressure to enlarge openings in the hLEC 

monolayer openings; there was less endothelial retraction induced by Colo357 cells compared to 

S2-013 cells.  

Evaluation of fibroblast entry into an hLEC monolayer revealed that 13.34 cells are much 

less invasive in this system compared to PDAC cells (Figure 3.11D). Many of the 13.34 cells 
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remained atop the endothelial layer and did not invade into it, although a small invaded cluster can 

be seen within the monolayer by 24 hours (Figure 3.11D; arrowhead). These pancreatic fibroblasts 

did not induce endothelial retraction, suggesting accompanying PDAC cells may be required to 

enhance fibroblast migration across an endothelium.  

III. Conclusions 

Very few studies have evaluated how pancreatic tumor cells interact with lymphatic 

endothelia, and even fewer studies have examined how pancreatic fibroblasts interact with 

lymphatic endothelia. We demonstrated that pancreatic fibroblasts are strong recruiters of LECs, 

while PDAC cells only moderately recruited LECs. Pancreatic fibroblasts also strongly induce 

PDAC migration, but this induction is very dependent on the PDAC cell line, as is the ability of a 

PDAC line to induce fibroblast migration. Co-culture analysis of the effects of fibroblasts and 

PDAC cells on lymphangiogenesis revealed that all these cell types accelerated lymphangiogenesis 

and led to poorly developed lymphatic networks with thin, broken vessels and defective LEC 

incorporation. Finally, evaluating PDAC invasion revealed that different PDAC lines have varying 

abilities to invade a lymphatic endothelium, but all PDAC cells preferred to invade at tricellular 

endothelial junctions. Live cell imaging uncovered many of the minute differences that allow 

different PDAC lines to invade a lymphatic endothelium. Understanding the role of LECs in the 

PDAC tumor microenvironment is still in its infancy. The work presented here lays the groundwork 

for understanding the impacts that pancreatic tumor cells and fibroblasts have on lymphatic 

biology.  
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Supplementary Figure 3.1 

 

 

 

Supplementary Figure 3.1 Characterization of 13.34 pancreatic fibroblasts.  

A-C) Flow cytometry evaluating αSMA, FAP, and podoplanin fibroblast markers in 13.34 

pancreatic fibroblasts. Red histograms represent isotype control; blue histograms indicate A) 

αSMA (activation marker) B) FAP, and C) podoplanin expression. 13.34 fibroblasts demonstrated 

positive expression for αSMA and FAP and were negative for podoplanin.  

 

D) Immunofluorescence staining for αSMA (red) and FAP (green) in 13.34 fibroblasts. Mouse IgG1 

isotype antibodies (red; far right) and sheep polyclonal IgG antibodies (green; far right) were used 

as negative controls. Cell nuclei were labeled with DAPI.  
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CHAPTER 4: 

A novel glycomimetic inhibitor reveals the role of E-

selectin in lymphatic invasion and dissemination of 

pancreatic cancer 
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Hollingsworth, MA.  A novel glycomimetic inhibitor reveals the role of E-selectin in lymphatic 

invasion and dissemination of pancreatic cancer. (In final preparation)  
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I. Introduction 

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related 

deaths in the United States and has a dismal 7% 5-year survival rate (1). One of earliest and most 

frequently observed sites of PDAC metastasis is the draining lymph nodes, which also correlates 

with poor prognosis (34-36). The process of lymph node metastasis requires interactions between 

tumor cells and lymphatic endothelial cells, the primary cell type comprising lymphatic 

vasculature. The specific mechanisms that regulate PDAC invasion of lymphatic vessels are poorly 

understood. One hypothesis is that tumor cells invade lymphatic vasculature by utilizing molecular 

processes similar to those used by immune cells during lymphatic intravasation. Although not fully 

understood, it is known that leukocyte entry into lymphatics is regulated by several adhesion 

proteins including E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular adhesion 

molecule-1 (VCAM-1) (146). Many of these same adhesion proteins have also been implicated as 

regulators of tumor-endothelial interactions and vasculature invasion for many cancer types (252). 

Adhesion protein E-selectin belongs to the selectin family of proteins, which are single-

pass transmembrane glycoproteins that encode a lectin-like domain which forms an adhesive 

receptor capable of binding to carbohydrate ligands including sialyl LewisA/X (sLeA/X) motifs (253). 

E-selectin expression is restricted to endothelial cells and is known to facilitate endothelial-

leukocyte interactions during immune cell extravasation across the blood vasculature (254, 255). 

Recently, it has been determined that E-selectin plays a similar role in the lymphatic vasculature 

for leukocyte intravasation during inflammation (256). Many types of tumors, including PDAC, 

have been shown to appropriate leukocyte intra- and extravasation mechanisms for invasion of 

blood vessels during dissemination (146, 257). However, the role E-selectin in tumor invasion of 

lymphatic vessels has not been investigated.   

The investigation reported here was to determine the role of E-selectin in PDAC metastasis 

through the lymphatic vasculature. Using a novel glycomimetic, small molecule antagonist of E-
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selectin ligand binding to sLeA/X, GMI-1271, in combination with chemotherapy, we demonstrate 

that E-selectin blockade decreases metastasis to lymphatic vasculature-dependent sites in 

orthotopic models of spontaneous PDAC metastasis. Additionally, combinatorial treatment with 

GMI-1271 and gemcitabine extended survival in an immune competent model of pancreatic cancer. 

We report for the first time that inhibition of E-selectin ligand binding resulted in a significant 

reduction in metastasis to lymph nodes. Immunohistochemical staining revealed that the reduction 

in metastasis by GMI-1271 was not due to decreased lymphatic and blood vessel densities at the 

tumor site. Rather, E-selectin blockade through GMI-1217 impaired the ability of PDAC cells to 

adhere to and migrate across an endothelial barrier in vitro. Interestingly, co-culture of PDAC cells 

with lymphatic endothelial cells induced E-selectin expression in lymphatics to facilitate this 

invasion. Together, our data demonstrate that PDAC cells use E-selectin-dependent mechanisms to 

gain access to the lymphatic vasculature for dissemination to lymph nodes.  

II. Results 

PDAC cells express the E-selectin ligand sialyl LewisA. 

We examined the expression of E-selectin ligands, sLeA/X, on a panel of human PDAC cell 

lines to select lines for studies of interactions with E-selectin on lymphatic endothelial cells. 

Western blot analyses demonstrated that several PDAC lines express the sLeA including S2-013, 

Capan-2, and BxPC-3 cells (Figure 4.1A). The polydispersed migration of glycoproteins 

containing sLeA is consistent with the known expression of this glycan on multiple proteins in these 

cells. These same cell lines also had detectable levels of sLeA on proteins secreted into conditioned 

media (Figure 4.1B). PDAC lines T3M4, Colo357, Hs766t, and HPAF-II and pancreatic fibroblasts 

(13.34) showed no expression of sLeA (Figure 4.1A-B). Expression of sLeA was also confirmed by 

immunofluorescence staining (Figure 4.1C). E-selectin ligand sLeX was not detected in any of the  
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Figure 4.1 PDAC cells express E-selectin ligand sialyl Lewis A. 

 

A) Immunoblot (50 µg protein/lane) analysis of sLeA expression in pancreatic fibroblasts (13.34) 

and a panel of human PDAC cell line lysates (T3M4, Colo357, Capan-2, Hs766T, BxPC-3, HPAF-

II, and S2-013). β-actin expression was used as a loading control for all cell lines. Capan-2, BxPC-

3, and S2-013 demonstrate expression of sLeA. The smeared pattern indicates that sLeA is expressed 

on a multitude of PDAC proteins.  

 

B) Immunoblot (30 µl/lane) analysis of sLeA expression in pancreatic fibroblasts (13.34) and a 

panel of human PDAC cell line conditioned media. Secreted proteins from Capan-2, BxPC-3, and 

S2-013 display sLeA expression.  
 

C) Immunofluorescence staining indicating sLeA expression in S2-013, Capan-2, and BxPC-3 

PDAC cells. SLeA (green) is expressed by several individual PDAC cells, but not all cells within a 

population. Cell nuclei are stained with DAPI (blue). Scale bars = 25 µm 

 

D) Immunofluorescence staining indicating sLeA expression in non-implanted S2-013 (left) and in 

vivo implanted S2-013 (right) cells. In vivo implantation of S2-013 increases the number of cells 

expressing sLeA (green) as compared to S2-013 cells not implanted. Cell nuclei are stained with 

DAPI (blue). Scale bars = 50 µm 
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Figure 4.1 
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PDAC lines (data not shown). To ensure that PDAC cells retained sLeA expression following in 

vivo implantation, S2-013 PDAC cells were orthotopically implanted into the pancreases of 

athymic mice for 3 weeks and then isolated from the tumors. Immunofluorescence staining revealed 

that in vivo implantation increased the incidence of sLeA expression in S2-013 cells (Figure 4.1D).  

GMI-1271 in combination with gemcitabine reduces vasculature-dependent metastasis of 

PDAC. 

We evaluated the effects of blocking the binding of E-selectin to ligands (using GMI-1271) 

on PDAC metastasis in vivo with a specific focus on metastasis to the lymph nodes. S2-013 PDAC 

cells, which express sLeA and frequently metastasize to lymph nodes (258, 259) were orthotopically 

implanted into the pancreas of athymic mice. Treatment with GMI-1271 was initiated two weeks 

after tumor implantation. Mice were randomized to 6 different treatment groups: vehicle, low dose 

GMI-1271, high dose GMI-1271, gemcitabine, low dose GMI-1271 with gemcitabine, and high 

dose GMI-1271 with gemcitabine. Treatment with GMI-1271 alone (low or high dose) had no 

impact on in vivo tumor growth compared to control mice (Figure 4.2A). This result was verified 

in vitro by examining the effects of GMI-1271 on PDAC proliferation (Supplementary Figure 

4.1). As expected, mice treated with gemcitabine showed a significant reduction in tumor size 

compared to mice treated with the vehicle control; however, addition of GMI-1271 (low and high 

dose) to gemcitabine treatment did not further decrease tumor size (Figure 4.2A). Gross 

histological examination of representative sections revealed that GMI-1271 had no effect on the 

overall morphology of primary tumors or the metastatic lesions (Figure 4.2B). None of the GMI-

1271-treated mice displayed any drug-induced toxicities.  

Since E-selectin has been previously implicated in promoting tumor dissemination, we 

evaluated several candidate organs for the presence of metastases following treatment with GMI-

1271. Figure 4.3A illustrates observed lesions found in representative sections of lungs, lymph 

nodes, and liver. Untreated control mice demonstrated a high incidence of PDAC metastasis to the  
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Figure 4.2 

 

 

 
 

 

 

Figure 4.2 E-selectin blockade has no impact on PDAC growth or morphology in vivo. 

  

Human S2-013 PDAC cells were orthotopically implanted into the pancreases of athymic female 

mice and allowed to establish for 2 weeks. GMI-1271 and gemcitabine treatments were 

administered for 4 weeks, after which tumors and metastatic organs were collected. n = 15 

mice/treatment group. 

 

A) Graphical representation of tumor volume and weight for each treatment group. E-selectin 

blockade (high or low dose) had no impact on tumor size. As expected, gemcitabine significantly 

reduced tumor size, but combinatorial treatment GMI-1271 and gemcitabine did not further 

decrease tumor size.  ****p<0.0001  

 

B) Representative histological sections of S2-013 primary tumors, lung lesions, and lymph node 

lesions from mice treated with vehicle control (PBS) or GMI-1271. High dose GMI-1271 did not 

alter primary tumor morphology. Scale bars = 50 µm.  
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Figure 4.3

 
 

  
Figure 4.3. E-selectin blockade reduces pancreatic cancer metastasis in vivo. 

 

A) Representative histological sections of spontaneous lung, lymph node, and liver lesions from 

GMI-1271-treated mice. Arrows indicate metastatic lesions. Scale bars = 200 µm for lung and 

lymph node. Scale bar = 50 um for liver. n=15 mice/treatment group. 

 

B) The presence of spontaneous metastatic lesions was identified in lymph nodes, liver, lungs, 

diaphragm, kidney, spleen, and peritoneum using histological staining of multiple representative 

sections. Graphs represent the absolute percentage of mice per group exhibiting spontaneous 

metastases in the indicated organs. n= 15 mice/group 
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lymph nodes, lungs, liver, diaphragm, spleen, and peritoneum (Figure 4.3B).  We observed a 

reduction in metastatic incidence to the liver in mice treated with high dose GMI-1271. Treatment 

with GMI-1271 alone (low or high dose) did not significantly affect the incidence of metastasis to 

other organs. 

Gemcitabine monotherapy moderately decreased metastatic incidence to all organs 

examined when compared to vehicle-treated mice (Figure 4.3B). Interestingly, combinatorial 

treatment with gemcitabine and low dose GMI-1271 resulted in a significant reduction in metastatic 

incidence within all examined organs, except spleen, compared to mice treated with gemcitabine 

only (Figure 4.3B). In groups receiving gemcitabine and high dose GMI-1271, metastatic 

incidence to most organs was also reduced compared to the gemcitabine only treatment group, 

though not to levels greater than that observed with low dose GMI-1271. Examination of lesion 

size revealed that GMI-1271, alone or in combination with gemcitabine, had no impact on lesion 

growth if tumor cells reached a distant site (Supplementary Figure 4.2).  

As E-selectin regulates immune cell trafficking, we sought to determine if E-selectin 

blockade was impeded immune cell trafficking to tumors. Immunohistochemical staining revealed 

total numbers of CD45+ leukocytes within the tumors remained relatively similar across all 

treatment groups (Figure 4.4A-B). Also, there was no effect of the treatments on the presence of 

tertiary lymphoid aggregates within primary tumors (Figure 4.4C-D).  

GMI-1271 significantly prolongs survival in an immune competent model of PDAC. 

 We evaluated survival of immune deficient mice challenged with S2-013 following 

treatments with PBS, low dose GMI-1271, gemcitabine (100 mg/kg) or a combination of 

gemcitabine and GMI-1271. There was no difference in survival of animals treated with GMI-1271 

either as a monotherapy or in combination with gemcitabine (Figure 4.5A). Histological 

examination of organs at end stage revealed that GMI-1271 in combination with gemcitabine  
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Figure 4.4 

 

 
Figure 4.4 GMI-1271 does not affect total numbers of CD45+ leukocytes within orthotopic 

PDAC tumors. 

 

A) Representative immunohistochemical staining of CD45+ (brown) immune cells within PDAC 

primary tumor sections. Arrows indicate CD45+ immune cells. Sections were counterstained with 

hematoxylin (blue). Scale bar = 50 µm  

 

B) Quantification of the number of CD45+ leukocytes per field within the tumors. Four sections 

from four different mice were examined; at least 4 fields at 20X magnification were collected per 

section. GMI-1271 did not affect total numbers of CD45+ immune cells within the primary tumor. 

Error bars = s.d. 

 

C) Quantification of the number of CD45+ tertiary lymphoid aggregates (TLAs) per tumor section. 

15 sections examined/treatment group. Error bars = s.d. 

 

D) Representative staining of a CD45+ (brown) TLAs. Asterisk indicates a TLA.  Sections were 

counterstained with hematoxylin (blue). Scale bar = 100 µm  
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Figure 4.5 

 
 

 

Figure 4.5 GMI-1271 does not improve animal survival in an immune incompetent model of 

PDAC. 

 

A) Kaplan-Meier survival curve for S2-013-challenged athymic mice treated with PBS, GMI-1271, 

gemcitabine, or Gem+1271. Arrow indicates treatment start day. n = 10 mice/group. Log-rank tests 

determined no statistical significance between the GMI-1271 treatment groups.  

 

B) Graphical representation of the absolute metastatic incidence in KPC-challenged mice at end 

stage disease. n = 10 mice/group 
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resulted in decreased metastasis to the lymph nodes, lungs, and liver at end stage disease compared 

to the gemcitabine treated group (Figure 4.5B).  

 We also evaluated the effects of GMI-1271 on survival in immune competent mice using 

transplanted KPC tumors.  A tumor line isolated from the KPC pancreatic cancer mouse model was 

implanted into the pancreases of C57BL/6 mice. After two weeks to establish tumors, mice were 

treated with GMI-1271, gemcitabine, or both. The GMI-1271 monotherapy did not prolong survival 

compared to untreated mice (Figure 4.6A). Interestingly, in this immune competent model, GMI-

1271, when used in combination with gemcitabine, significantly improved animal survival 

compared to mice treated with gemcitabine only (p=0.0302).  All mice were evaluated at end stage 

disease, and mice treated with both GMI-1271 and gemcitabine demonstrated a slightly lower 

incidence of metastasis to the lungs, diaphragm, kidney and spleen compared to mice treated with 

only gemcitabine (Figure 4.6B).  

GMI-1271 does not decrease PDAC metastasis to the lymph nodes by reducing lymphatic 

vascular density in vivo. 

Our results demonstrated that E-selectin blockade significantly reduced PDAC metastasis 

to the lymph nodes. We next evaluated the lymphatic vessel density (LVD) within primary tumors 

to determine if changes in LVD following gemcitabine and GMI-1271 treatment might explain the 

reduction in metastatic incidence within the lymph nodes. Immunofluorescent staining revealed 

that GMI-1271-treated mice had similar numbers of LYVE-1+ lymphatic vessels within primary 

tumors compared to tumors from control mice (Figure 4.7A-B). Moreover, gemcitabine and 

combinatorial treatment with GMI-1271 did not alter LVD within primary tumors.  

We further verified that E-selectin blockade did not impact lymphatic growth by examining 

the effects of GMI-1271 on hLEC proliferation and tubulogenesis in vitro. Treatment with 

increasing concentrations of GMI-1271 did not impair hLEC proliferation in culture over the course 

of 96 hours (Figure 4.7C). In collagen-I-induced tubulogenesis studies, low concentrations (10-50 
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Figure 4.6 

 

 

 
 

Figure 4.6 GMI-1271 improves survival when used in combination with gemcitabine in an 

immune competent model of PDAC. 

 

A) Kaplan-Meier survival curve for KPC-challenged C57BL/6 mice treated with PBS, GMI-1271, 

gemcitabine, or Gem+1271. Arrow indicates treatment start day. n = 10 mice/group. Log-rank test: 

p = 0.0302 between gemcitabine vs gem+1271.  

 

B) Graphical representation of the absolute metastatic incidence in KPC-challenged mice at end 

stage disease. n = 10 mice/group 
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Figure 4.7 GMI-1271 does not decrease lymphatic vascular density within the primary site 

nor does it impact LEC growth. 

 

A) Representative immunofluorescent staining of LYVE-1+ (red) lymphatic vessels within the 

primary tumor. Nuclei are stained with blue DAPI. Arrows indicate LYVE-1+ lymphatic vessels. 

Scale bars = 50 µm  

 

B) Quantification of the number of LYVE-1+ lymphatic vessels within the primary tumor site. n=4 

mice/treatment group; 4 images (20X magnification) were collected per tumor section. Error bars 

= s.d.  

 

C) hLECs were treated with increasing concentrations of GMI-1271 and proliferation monitored 

for 96 hours. n=6 technical replicates/treatment and per timepoint; experiments were repeated 3 

times. GMI-1271 did not affect hLEC proliferation in vitro. Error bars = s.d. 

 

D) Quantification of the number of hLEC tubes formed in a three-dimensional (3D) collagen-I 

matrix following treatment with GMI-1271. n=3 replicate wells; 3 separate experiments performed. 

*p<0.05; **p<0.01; error bars = s.d. 

 

 E) Representative images of hLEC tube networks in a 3D collagen-I matrix following GMI-1271 

treatments. Scale bars = 100 µm 

 

F) Quantification of the number of hLEC tubes formed in a 3D matrigel matrix following treatment 

with GMI-1271. n=3 replicate wells; 3 separate experiments performed. *p<0.05; error bars = s.d. 

 

G) Representative images of hLEC tube networks in a 3D matrigel matrix following GMI-1271 

treatments. Scale bar = 250 µm 
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Figure 4.7 

 

 
  



81 
 

µg/ml) had no impact on hLEC tube formation (Figure 4.7D-E). However, high concentrations of 

GMI-1271 (100-200 µg/ml) slightly decreased hLEC tubulogenesis but did not completely block 

the process. High levels of GMI-1271 reduced hLEC tube formation by approximately 15%. This 

study was repeated using another extracellular matrix to induce hLEC tubulogenesis, matrigel. 

Again, high concentrations GMI-1271 slightly decreased Matrigel-induced hLEC tubulogenesis 

(approximately 38%); however, it did not completely block the process (Figure 4.7F-G). Taken 

altogether, these results suggest that E-selectin blockade by GMI-1271 does not reduce lymph node 

metastasis by inhibiting lymphangiogenesis or lymphatic endothelial proliferation.  

Lymphatic vessels are not the only escape route for tumor dissemination and many tumors 

are known to invade blood vessels; thus, we also evaluated blood vessel densities in primary PDAC 

tumors. Immunohistochemical staining for CD31 revealed no difference in vascular densities 

among control and GMI-1271-treated tumors and no difference among gemcitabine and 

combinatorial gemcitabine and GMI-1271 treated tumors (Figure 4.8A-B). We confirmed this 

finding by demonstrating GMI-1271 has no impact on vascular endothelial cell proliferation in 

vitro (Figure 4.8C).  

GMI-1271 inhibits the ability of E-selectin ligand -expressing PDAC cells to adhere to and 

transendothelial migrate across a lymphatic endothelium. 

Since decreased PDAC metastasis to lymph nodes was not attributed to a diminished 

presence of lymphatics in the primary tumor, we examined whether E-selectin blockade impaired 

tumor-lymphatic interactions. We performed a series of in vitro experiments to evaluate PDAC 

adhesion to and migration across a lymphatic endothelium in the presence of GMI-1271. We 

examined the response to E-selectin blockade of both E-selectin ligand expressing (S2-013, BxPC-

3) and non-expressing (Colo357, HPAF-II) PDAC lines.  

Treatment of hLECs with GMI-1271 significantly inhibited the adhesion of sLeA-

expressing S2-013 and BxPC-3 PDAC cells to a lymphatic monolayer in a concentration-dependent 
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Figure 4.8 

 

 

 
 

 

Figure 4.8 GMI-1271 does not decrease the number of blood vessels at the primary tumor 

site. 

 

A) Representative immunohistochemical staining of CD31+ (brown) blood vessels within primary 

tumors of mice orthotopically challenged with S2-013 PDAC cells and treated with GMI-1271 for 

4 weeks. Sections were counterstained with hematoxylin (blue). Arrows indicate CD31+ blood 

vessels.  Scale bars = 50 µm. 

 

B) Quantification of the number of CD31+ blood vessels per field within the primary tumor. Five 

(20X magnification) representative images were collected per tumor section from 4 mice within 

each treatment group. Error bars = s.d. 

 

C) Vascular endothelial cells (HUVECs) were treated with increasing concentrations of GMI-1271 

and proliferation monitored for 96 hours using a methylene blue assay. n=6 technical 

replicates/treatment and per timepoint; experiments were repeated three times. Error bars = s.d. 
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manner (Figure 4.9A). However, blocking E-selectin had no impact on the ability of non-sLeA-

expressing Colo357 or HPAF-II PDAC cells to adhere to a lymphatic endothelium (Figure 4.9B).   

We also evaluated whether E-selectin blockade impaired PDAC transendothelial migration 

(TEM) across a lymphatic endothelium using an in vitro model of TEM. Figure 4.10A shows that 

GMI-1271 significantly decreased the TEM of sLeA -expressing PDAC cells (S2-013, BxPC-3) in 

a dose dependent manner. However, GMI-1271 had no significant impact on the TEM of PDAC 

cells not expressing the E-selectin ligands (Colo357, HPAF-II; Figure 4.10B). It is of note that the 

sLeA-expressing PDAC cells had a stronger capacity to undergo lymphatic TEM compared to 

PDAC cells not expressing sLeA.  

We sought to determine if E-selectin blockade also inhibited PDAC TEM across a 

lymphatic endothelium under inflammatory conditions. Human LECs were stimulated with 

inflammatory cytokine TNF-α, a known inducer of E-selectin expression in endothelial cells, and 

this significantly increased the TEM of E-selectin ligand-expressing PDAC S2-013 cells (Figure 

4.10C).  Additional treatment with GMI-1271 restored TNFα-induced PDAC TEM rates to control 

levels. TNFα did not increase the TEM rate of PDAC cells not expressing E-selectin ligands 

(Colo357) and GMI-1271 was ineffective at inhibiting TEM for this cell line (Figure 4.10D).  

PDAC cells are capable of inducing expression of E-selectin in hLECs. 

Uninflamed hLECs are reported to express very little to no E-selectin (5), yet E-selectin 

blockade inhibited PDAC TEM. We therefore investigated the hypothesis that PDAC cells were 

capable of inducing E-selectin expression in hLECs in co-culture. Using a transwell system, we co-

cultured hLECs with PDAC cells S2-013 and Colo357 for varying lengths of time and then 

evaluated E-selectin mRNA expression in hLECs. TNFα-treated hLECs were used as a positive 

control for induction of E-selectin expression. After only 1 hour of co-culturing S2-013, E-selectin 

mRNA was substantially increased in hLECs compared to hLECs in monoculture (Figure 4.11A). 

E-selectin mRNA levels began to decrease following 6 hours of co-culturing. Interestingly, 
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Figure 4.9 

 

 

 
 

Figure 4.9 GMI-1271 inhibits the binding of sLeA-expressing pancreatic tumor cells to 

lymphatic endothelia under steady state conditions. 

 

A) Human LEC monolayers were pretreated with increasing concentrations of GMI-1271. 

Fluorescently-labeled sLeA-expressing (S2-013, BxPC-3) PDAC cells were overlaid atop the 

monolayer and allowed to adhere to the LEC monolayer for 1 hour in the presence of GMI-1271. 

n=3 replicate wells; 4 images/well were collected for quantification. *p<0.05; **p<0.01; error 

bars=s.d. 

 

B) Human LEC monolayers were pretreated with increasing concentrations of GMI-1271. 

Fluorescently-labeled non-sLeA-expressing (Colo357, HPAF-II) PDAC cells were overlaid atop 

the monolayer and allowed to adhere to the LEC monolayer for 1 hour in the presence of GMI-

1271. n=3 replicate wells; 4 images/well were collected for quantification. Error bars=s.d. 
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Figure 4.10 

  
 

 
 
Figure 4.10 GMI-1271 inhibits the ability of sLeA-expressing PDAC cells to transendothelial 

migrate across a lymphatic endothelium both under uninflamed and inflamed conditions. 

 

A-B) Human LEC monolayers were established on the underside of Boyden chamber membranes 

and then pretreated with increasing concentrations of GMI-1271. Fluorescently labeled A) sLeA-

expressing (S2-013, BxPC-3) or B) non-sLeA-expressing (Colo357, HPAF-II) PDAC cells were 

plated in the upper insert and allowed to undergo TEM for 20-24 hours in the presence of GMI-

1271. n=3 replicate wells; 5 image collected/well for quantification. *p<0.05; **p<0.01; error 

bars=s.d. 

 

C) hLEC monolayers were pretreated with TNFα to induce inflammatory E-selectin expression and 

TEM experiments repeated. n=3 replicate wells; 5 image collected/well for quantification. *p<0.05; 

**p<0.01; ***p<0.001; error bars=s.d.  
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Colo357 cells, which are not dependent on E-selectin for invasion of lymphatic endothelia, also 

upregulated E-selectin mRNA in hLECs. (Figure 4.11A), but E-selectin mRNA levels began to 

decrease following just 1 hour of co-culturing. Pancreatic fibroblasts also induced E-selectin 

mRNA expression in hLECs but to a lesser extent as the PDAC lines (Figure 4.11B).  

Normalization based on TNFα-induced E-selectin expression revealed that S2-013 and Colo357 

induce E-selectin mRNA expression in hLECs at similar levels for the first hour (Figure 4.11C). 

However, after the first hour Colo357 and 13.34-induced E-selectin rapidly declined, while S2-

013-induced E-selectin expression levels remained substantially elevated for longer periods of 

time.   

Induction of E-selectin expression in hLECs by S2-013 and pancreatic fibroblasts was also 

evaluated at the protein level. Flow cytometry indicated a slight increase in the extracellular 

expression of E-selectin in hLECs following 6 hours of co-culture with S2-013 cells (Figure 

4.11D). Pancreatic fibroblasts showed no induction of E-selectin protein in hLECs. 

Immunofluorescence staining of hLEC and S2-013 co-cultures confirmed upregulation of E-

selectin expression at the protein level (Figure 4.11E-I). Unstimulated monocultures of hLECs 

displayed very low E-selectin expression (Figure 4.11E), while TNFα stimulation markedly 

increased E-selectin expression in hLECs (Figure 4.11F). Co-culturing with S2-013 cells for 2 

hours produced a slight increase in hLEC expression of E-selectin (Figure 4.11G). As co-culturing 

time was increased to 4 (Figure 4.11H) and 6 hours (Figure 4.11I), hLEC expression of E-selectin 

significantly increased. Taken altogether, these results indicate that PDAC cells are capable of 

inducing E-selectin expression in hLECs and this E-selectin expression facilitates PDAC cell 

invasion.  
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Figure 4.11 PDAC cells induce E-selectin expression in lymphatic endothelial cells. 

 

A-B) Human LECs were plated on the underside of a transwell system membrane (pore: 0.4µm) 

and human PDAC lines A) S2-013 or Colo357 or B) pancreatic fibroblasts (13.34) were plated on 

the upper side. At the designated timepoints, mRNA was collected from hLECs and analyzed for 

E-selectin expression by qRT-PCR. E-selectin mRNA expression was normalized to GAPDH. 

Controls included E-selectin expression in hLECs in monoculture and hLECs treated with 2 ng/ml 

TNFα-treated for 6 hours. Monoculture hLEC expression of E-selectin mRNA was set equal to 1. 

n=3 technical replicates and each experiment co-culture performed thrice. ***p<0.001; 

****p<0.0001; error bars=s.d. 

 

C) TNFα-induced E-selectin mRNA expression was normalized across plates to compare E-

selectin induction in hLECs by PDAC tumor cells and fibroblasts.  

 

D) Flow cytometry analysis examining the expression of E-selectin in non-permeabilized hLECs 

following co-culturing with S2-013 (left) or pancreatic fibroblasts (right). Red histogram indicates 

E-selectin expression in monoculture hLECs (negative control); green histograms indicate TNFα-

induced E-selectin expression in hLECs (positive control); blue histograms indicate E-selectin 

expression in hLEC following 2.5 hours of co-culturing; and orange histograms indicate E-selectin 

expression in hLEC following 6 hours of co-culturing.  

 

E-I) Immunofluorescence staining indicating E-selectin (red) expression in permeabilized hLECs 

following co-culture with S2-013 PDAC cells. E) Control hLECs display very low to no expression 

of E-selectin while F) TNFα stimulation significantly increased E-selectin expression. Coculturing 

with S2-013 cells increased E-selectin expression in hLECs at G) 2 hours, H) 4 hours, and I) 6 

hours with 6 hours of co-culturing displaying the highest level of expression. Cell nuclei are stained 

with DAPI (blue). Scale bars = 50 µm 
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Figure 4.11 
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III. Conclusions 

Adhesion protein E-selectin has been shown to regulate metastasis in a variety of cancers 

(146, 257, 260). However, its direct role in the metastasis of pancreatic cancer in vivo has not been 

fully evaluated. Using a novel glycomimetic small molecule antagonist of E-selectin, we 

demonstrated that E-selectin influences PDAC dissemination via the vasculature systems, and that 

blocking its ligand binding function decreased PDAC metastasis. Although it is known that E-

selectin plays a role in vascular invasion of tumor cells, we demonstrated for the first time a role 

for E-selectin in facilitating tumor cell invasion of the lymph nodes via the lymphatic vasculature. 

Using GMI-1271, we showed that blockade of E-selectin significantly impairs PDAC adhesion to 

a simulated lymphatic endothelium and subsequent transendothelial invasion. In vivo, this blockade 

led to a significant decrease in lymph node metastasis. This inhibition of transendothelial invasion 

was contingent upon the expression of E-selectin ligands on PDAC cells. Lastly, we showed that 

PDAC cells can directly regulate the expression of E-selectin in order to undergo TEM. Novel E-

selectin antagonist GMI-1271 holds promise as a potential treatment for PDAC and other metastatic 

malignancies as well.   
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Supplementary Figure 4.1 

 

 
 

 

 

Supplementary Figure 4.1 GMI-1271 does not alter PDAC proliferation in vitro.  

 

S2-013 and Colo357 PDAC cells were treated with increasing concentrations of GMI-1271 and 

proliferation monitored for 96 hours using a methylene blue assay. n=6 technical 

replicates/treatment and per timepoint; experiments were repeated three times. Error bars = s.d. 
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Supplementary Figure 4.2 

 

 
 

Supplementary Figure 4.2 E-selectin blockade does not impair lesion growth following 

colonization at a distant site.  

 

Evaluation of the size distribution of metastatic lesions. Numbers above bar indicate total number 

of lesions quantified per treatment group. Large lesions > 100 cells/lesion; small lesions < 100 

cells/lesion.  
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CHAPTER 5: 

Effects of E-selectin and CXCR4 Dual Inhibition by 

Novel Inhibitor, GMI-1359, on Pancreatic Cancer and 

the Tumor Microenvironment 
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I. Introduction 

 CXCR4 is the most frequently overexpressed chemokine receptor in malignancy (261, 

262). High expression of CXCR4 and its predominant ligand, CXCL12, frequently correlates with 

advanced tumor stage and poor patient prognosis in many types of cancer including pancreatic 

(140, 263, 264), breast (128, 265-267), lung (268-270), renal (271), melanoma (101), colorectal 

(272), brain (273), and prostate cancers (274). In the setting of PDAC, CXCR4 first becomes 

upregulated in early stage precursor PanINs and expression continues to increase as PanINs 

progress to malignancy (264). Pancreatic tumor cells themselves express high levels of CXCR4 but 

very low levels of its ligand. CXCL12 is mainly secreted by the cellular components of the tumor 

microenvironment such as activated fibroblasts and endothelial cells (275, 276). CXCL12-CXCR4 

signaling within the primary tumor has been shown support PDAC progression by promoting tumor 

cells proliferation (277), invasion (278), angiogenesis (137, 279, 280), chemoresistance (281), and 

immune evasion (171). 

 Studies have also indicated that CXCR4 and CXCL12 are significant players in the 

regulation of tumor metastasis. CXCR4-expressing tumor cells often follow CXCL12 gradients to 

distant organs sites during dissemination. Organs that most highly express CXCL12, the lungs, 

liver, and bone marrow, are frequent sites for tumor dissemination (128, 282-284). CXCL12-

CXCR4 has also been shown to promote angio- and lymphangiogenesis which increases the 

number of potential routes tumor cells can use to escape the primary site (280, 285). CXCL12 

expression by lymphatic and vascular endothelial cells attracts CXCR4+ tumor cells to the 

lymphovascular niche where CXCR4 enables transendothelial invasion (101, 286-288). 

Additionally, this CXCL12+ lymphovascular niche within the primary and metastatic tumor sites 

provides chemoprotection to CXCR4+ tumor cells and inhibits therapy-induced cell death (101). 

The role of CXCR4 in promoting metastasis as well as other pro-tumor mechanisms makes it an 

interesting target for cancer therapy.  
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Our studies examine the role of CXCL12-CXCR4 in facilitating intercellular 

communications and interactions among cells of the PDAC microenvironment: tumor cells, 

fibroblasts, and lymphatic endothelial cells. Specifically, we focus on potential roles it may have 

in lymphatic-directed metastasis. Using a novel small molecule antagonist of both CXCR4 and E-

selectin, GMI-1359, our results demonstrate that GMI-1359 is an effective inhibitor of previously 

described CXCR4-dependent mechanisms in vitro. Additionally, we performed side-by-side 

studies with GMI-1359 and GMI-1271, an E-selectin only antagonist, to elucidate the CXCR4-

dependent effects from the E-selectin-dependent effects of this dual inhibitor. Our results indicate 

that CXCL12 secretion from pancreatic fibroblasts facilitates the recruitment of LECs, and 

blockade of CXCR4 abrogates this recruitment. Moreover, CXCR4 expression facilitates the ability 

of hLECs to support PDAC adhesion and transendothelial migration across a lymphatic barrier. 

These in vitro studies demonstrate an essential role for CXCR4 in supporting lymphatic recruitment 

and invasion for PDAC invasion and metastasis. Examination of in vivo antagonism of CXCR4 in 

PDAC orthotopic mouse models resulted in delayed metastasis of PDAC and a significant 

reorganization of the PDAC microenvironment. Unfortunately, in vivo treatment with GMI-1359 

did not result in prolonged animal survival when used alone or in combination with chemo- and 

immunotherapies in both immune incompetent and immune competent mice. However, alterations 

to the dosage and treatment schedule of GMI-1359 in combination with other PDAC therapies may 

improve survival in future studies.  

II. Results 

Characterization of CXCR4 and CXCL12 expression in cellular components of the PDAC 

tumor microenvironment. 

To understand the potential effects of GMI-1259 on PDAC tumor cells, we examined the 

expression of CXCR4 in a panel of human PDAC cell lines. Western blot analysis demonstrated 

that all examined PDAC cell lines expressed CXCR4, albeit at varying levels (Figure 5.1A). Flow 

cytometry analysis on non-permeabilized PDAC cells confirmed this expression and showed that 
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Figure 5.1 Pancreatic tumor cell express CXCR4 in culture. 

 

A) Western blot (50 µg protein/lane) analysis demonstrating CXCR4 expression in a panel of 

human PDAC cell line lysates: HPAF-II, S2-013, Hs766t, T3M4, Capan-2, BxPC-3, MiaPaca-2, 

and Colo357. β-actin expression was used as a loading control for all cell lines.  

 

B) Flow cytometry confirming expression of CXCR4 in a panel of non-permeabilized human 

PDAC cell lines: S2-013, Colo357, BxPC-3, Capan-2, MiaPaca-2. Rabbit polyclonal IgG was used 

as an isotype control. Blue histograms represent the IgG isotype control and red histograms 

represent CXCR4 labeling.  

 

C) Immunofluorescence staining indicating CXCR4 expression in human PDAC cell lines. CXCR4 

(red) is diffusely expressed across the cell surface. Cell nuclei are stained with DAPI (blue). Rabbit 

polyclonal isotype control was used as a negative control (red; bottom row, far right image). Scale 

bars = 25 µm 
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Figure 5.1 
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 CXCR4 is expressed on the PDAC cell surface (Figure 5.1B). Lastly, immunofluorescence 

staining revealed that CXCR4 is distributed uniformly across the cell surface of PDAC cells 

(Figure 5.1C).  

Cell types of the PDAC tumor microenvironment were also evaluated for CXCR4 

expression. Western blot analysis revealed that pancreatic fibroblasts (13.34) and lymphatic 

(hLECs) and vascular (HUVECs) endothelial cells express measurable levels of CXCR4 (Figure 

5.2A). Human neonatal foreskin fibroblasts (HuFF) were used a negative control for CXCR4. Flow 

cytometry confirmed expression of CXCR4 in the pancreatic fibroblasts and hLECs (Figure 5.2B). 

Immunofluorescence staining revealed that pancreatic fibroblasts express CXCR4 across the cell 

surface while hLECs and HUVECs have more nuclear expression of CXCR4 (Figure 5.2C). LECs 

also demonstrated low levels of CXCR4 across the cell surface.  

To characterize the expression of the CXCR4 ligand, CXCL12, ELISA analysis was 

performed on both conditioned media (secreted CXCL12) and whole cell lysates (cell-bound 

CXCL12) from PDAC cells, pancreatic fibroblasts (13.34), and hLECs. In culture, only pancreatic 

fibroblasts constitutively secrete CXCL12 into conditioned media (Figure 5.3A). CXCL12 was not 

detected by ELISA in the conditioned media of PDAC cells S2-013 and Colo357 nor was it detected 

in hLEC conditioned media. ELISA analysis on whole cell lysates revealed expression of CXCL12 

in PDAC cells, pancreatic fibroblasts, and hLECs suggesting that CXCL12 may be bound to the 

cell surface or sequestered within intracellular compartments (Figure 5.3B). Flow cytometry on 

permeabilized samples confirmed the intracellular expression of CXCL12 within these same cell 

types (Figure 5.3C).  

GMI-1359 effects on PDAC tumor cell, fibroblast, and endothelial cell proliferation. 

We evaluated the effects of GMI-1359 on PDAC cells, fibroblasts, and endothelial cell 

proliferation. Both of the examined PDAC lines, S2-013 and Colo357, showed little response to 

treatment with 10 µg/ml GMI-1359 over the course of 96 hours (Figure 5.4A). At higher  
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Figure 5.2 

 
 

 

Figure 5.2 Expression of CXCR4 in cell types of the PDAC microenvironment. 

 

A) Western blot (30 µg protein/lane) analysis demonstrating CXCR4 expression in human 

lymphatic endothelial cells (LECs), vascular endothelial cells (HUVECs), and pancreatic 

fibroblasts (13.34) lysates. Human neonatal foreskin fibroblasts (HuFF) lysates were used as a 

negative control for CXCR4 expression.  β-actin expression was used as a loading control for all 

cell lines.  

 

B) Flow cytometry confirming expression of CXCR4 in human lymphatic endothelial cells 

(hLECs), and pancreatic fibroblasts (13.34). For hLECs, the red histogram indicates IgG isotype 

control labeling and the blue histogram indicates CXCR4 labeling. For pancreatic fibroblast, the 

blue histogram indicates IgG isotype control labeling and the red histogram represents CXCR4 

labeling.  

 

C) Immunofluorescence staining indicating CXCR4 expression in 13.34 pancreatic fibroblasts, 

hLECs, and HUVECs. CXCR4 (red) is diffusely expressed across the cell surface of 13.34 cells 

while mainly nuclear staining is seen in the hLECs and HUVECs. Cell nuclei are stained with DAPI 

(blue). Rabbit polyclonal isotype control was used as a negative control (lower left image). Scale 

bars = 25 µm 
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Figure 5.3 

 

 

 
 

 

Figure 5.3 CXCL12 secretion and expression in PDAC cells and tumor microenvironment 

cell types. 

 

A) ELISA-based quantification of CXCL12 within conditioned media of PDAC cells (Colo357, 

S2-013), pancreatic fibroblasts (13.34), or hLECs. Media was conditioned for 24 hours by equal 

numbers of cells in equal volumes of serum free media. Unconditioned serum free media was used 

as a control. 3 replicate wells were analyzed per experiment and experiments were performed 

thrice. Error bars = s.d. 

 

B) ELISA-based quantification of CXCL12 within whole cell lysates (2000 µg/ml) of PDAC cells 

(Colo357, S2-013), pancreatic fibroblasts (13.34), or hLECs. Lysis buffer was used as a control. 3 

replicate wells were analyzed per experiment and experiments were performed thrice. Error bars = 

s.d. 
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Figure 5.4 Effect of GMI-1359 on PDAC, fibroblast, and endothelial cell proliferation and 

morphology.  

 

Methylene blue assay measuring the proliferation of A) S2-013, B) Colo357, C) 13.34 pancreatic 

fibroblasts, D) hLECs, or E) HUVECs treated with increasing concentrations of GMI-1359 or 

GMI-1271 (0, 10, 100, 1000 µg/ml). Line graphs represent cell numbers collected at 2, 24, 48, 72, 

or 96 hours. OD values were read at 650 nm. 5 replicate wells were performed at each inhibitor 

concentration and each time point. Experiment was repeated 3 times. Error bars = s.d. Phase 

contrast images (10X magnification) are of S2-013, Colo357, 13.34, and hLEC treated with 100 

µg/ml GMI-1359 for 72 hours. Scale bars = 100 µm 
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Figure 5.4  
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concentrations, proliferation appeared normal for the first 24 hours for S2-013 cells. However, by 

72-96 hours, S2-013 proliferation significantly decreased with increasing concentrations of GMI-

1359. Examination of cell morphology revealed that GMI-1359-treated S2-013 PDAC cells had an 

elongated morphology compared to untreated cells. Similar to S2-013 cells, 10 µg/ml GMI-1359 

had little effect on Colo357 proliferation (Figure 5.4B). However, at 100 and 1000 µg/ml, GMI-

1359 completely impaired Colo357 proliferation after 24 hours. GMI-1271 did not affect Colo357 

at any of the examined concentrations.  Examination of cell morphology revealed the Colo357 cells 

were undergoing cell death after 72 hours of treatment with 100 µg/ml GMI-1359. GMI-1271 had 

no impact on S2-013 or Colo357 proliferation at any of the tested concentrations (Figure 5.4A-B). 

The effects of GMI-1359 on pancreatic fibroblast and endothelial cell proliferation were 

also evaluated. Treatment with 10 µg/ml GMI-1359 had no effect on 13.34 proliferation (Figure 

5.4C). At 100 µg/ml, GMI-1359 slightly reduced pancreatic fibroblast proliferation, but not 

significantly. By 1000 µg/ml GMI-1359, 13.34 proliferation was completely inhibited. GMI-1271 

had no significant impact on 13.34 proliferation. Morphologic examination revealed that treatment 

with 100 µg/ml GMI-1359 for 72 hours had no impact on 13.34 morphology. LEC proliferation 

was unaffected by GMI-1359 or GMI-1271 treatment even at high concentrations (Figure 5.4D). 

Increasing concentrations of GMI-1359 moderately inhibited HUVEC proliferation (Figure 5.4E). 

Even at high concentrations of GMI-1359 (1000 µg/ml), HUVEC still proliferated but at a reduced 

rate. GMI-1271 had no impact on HUVEC proliferation.  

GMI-1359 inhibits CXLC12-induced signaling and CXCL12-directed migration by 

blocking CXCR4. 

To verify that GMI-1359 blocks CXCR4 function, we examined its ability to inhibit 

CXCL12-induced ERK1/2 phosphorylation and CXCL12-induced migration. We used hLECs as a 

model cell type as it has been previously reported that CXCL12 induces these effects in hLECs 

(285). In agreement with these reports, CXCL12 induced phosphorylation of ERK 1/2 within 5 

minutes of stimulation (Figure 5.5A). By 30 minutes, phospho-ERK1/2 levels returned to steady 
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state levels. Total ERK1/2 levels remained unchanged during CXCL12 stimulation. CXCR4 

blockade with GMI-1359 significantly decreased, but did not completely inhibit, CXCL12-induced 

ERK1/2 activation in hLECs. Blockade of E-selectin alone with GMI-1271 had no effect on 

ERK1/2 activation during CXCL12 simulation. These data suggest that GMI-1359 blocks CXCR4 

function resulting in inhibition of CXCL12-induced ERK1/2 phosphorylation (Figure 5.5B).  

The impact of GMI-1359 on CXCL12-induced migration of hLECs was also examined. 

When present in the lower wells of a Boyden chamber system, increasing concentrations of 

recombinant CXCL12 induced a strong upregulation of hLEC migration (Figure 5.6A). 

Pretreatment of hLECs with GMI-1359 significantly impaired hLEC migration toward CXCL12. 

Regardless of CXCL12 concentration, 10 µg/ml GMI-1359 was sufficient to return hLEC 

migration to control levels. To verify that GMI-1359 impaired only CXCL12-induced migration 

and was not a general inhibitor of migration process, we evaluated its effects on hLEC migration 

using endothelial growth media EGM-2MV containing FBS and growth factors as the 

chemoattractant. GMI-1359 had no impact on hLEC migration toward FBS/growth factor-

containing media (Figure 5.6B). Combined these results demonstrate that GMI-1359 inhibits 

CXCL12-induced migration and is not a general inhibitor of the hLEC migration process.  

We also evaluated the ability of GMI-1359 to impair CXCL12-induced migration of 

another CXCR4-expressing cell type, S2-013 PDAC cells. At 100 ng/ml, CXCL12 moderately 

increased S2-013 directional migration; however, increasing the concentration to 500 ng/ml did not 

further increase in S2-013 migration (Figure 5.6C). Pretreatment with GMI-1359 reduced S2-013 

migration toward CXCL12 but did not return migration to control levels. Similar to hLECs, GMI-

1359 did not affect S2-013 migration toward FBS-containing media (Figure 5.6D), again, 

demonstrating that GMI-1359 specifically inhibits the CXCL12-directed migration and is not a 

general inhibitor of migration.  
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Figure 5.5 

 

 
 

 

Figure 5.5 Blockade of CXCR4 by GMI-1359 reduced ERK1/2 activation in hLECs. 

A) Western blot analysis of phopho-ERK1/2 activation in hLECs following stimulation with 200 

ng/ml human recombinant CXCL12 for 5, 10, or 30 minutes. Designated hLECs were pretreated 

with 10 µg/ml GMI-1359 30 minutes prior to CXCL12 stimulation.  

B) Western blot analysis of phopho-ERK1/2 activation in hLECs following stimulation with 200 

ng/ml human recombinant CXCL12 for 5, 10, or 30 minutes. Designated hLECs were pretreated 

with 10 µg/ml GMI-1271 for 30 minutes prior to CXCL12 stimulation.  
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Figure 5.6 
 

 
 

 

Figure 5.6 CXCR4 blockade by GMI-1359 inhibits CXCL12-induce migration of hLECs and 

S2-013. 

 

A) The lower wells of a Boyden chamber plates were loaded with serum free media containing 

either 0, 100 or 500 ng/ml CXCL12. Human LECs were diluted in serum free media and added to 

the upper inserts. Designated hLECs were pretreated with 10 µg/ml GMI-1359 for 30 minutes prior 

to plating in the upper inserts. Migration was stopped after 16 hours and quantified. CXCL12 

induced hLEC migration. Treatment with GMI-1359 significantly inhibited CXCL12-induced 

hLEC migration. Quantification is the average of 3 replicate membranes; experiment was repeated 

3 times.  *p<0.05, **p<0.01, error bars = s.d. 

 

B) The lower wells of a Boyden chamber plates were loaded FBS/growth factor-containing EGM-

2MV. Human LECs or were diluted in serum free media and added to the upper inserts. Designated 

hLECs were pretreated with 10 µg/ml GMI-1359 for 30 minutes prior to plating in the upper inserts. 

Migration was stopped after 16 hours and quantified. Quantification is the average of 3 replicate 

membranes; experiment was repeated 3 times. Error bars = s.d. 

 

C) Migration plates were set up as described in Figure 5.6A except with S2-013 cells. CXCL12 

moderately increased S2-013 migration. Quantification is the average of 3 replicate membranes; 

experiment was repeated 3 times.  *p<0.05, error bars = s.d. 

 

D) The lower wells of a Boyden chamber plates were loaded FBS-containing RPMI. S2-013 cells 

were diluted in serum free media and added to the upper inserts. Designated S2-013 cells were 

pretreated with 10 µg/ml GMI-1359 for 30 minutes prior to plating in the upper inserts. Migration 

was stopped after 16 hours and quantified. Quantification is the average of 3 replicate membranes; 

experiment was repeated 3 times. Error bars = s.d.  
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CXCR4 blockade through GMI-1359 completely inhibited CXCL12-induced hLEC 

migration but did not completely suppress CXCL12-stimulated ERK1/2 activation. The other 

known receptor for CXCL12, CXCR7, has been shown to induce ERK1/2 signaling, but has no 

known role in migration (289, 290). Therefore, we hypothesized that hLECs may express CXCR7. 

Flow cytometry revealed that hLECs do, in fact, express CXCR7 and that may explain why GMI-

1359 did not completely suppress ERK1/2 activation following CXCL12 stimulation 

(Supplementary Figure 5.1).  

Pancreatic fibroblasts induce hLEC migration via the CXCL12-CXCR4 chemokine axis.  

Previously, we demonstrated that pancreatic fibroblasts strongly induced hLEC migration 

and also secrete abundant amounts of CXCL12. We evaluated whether fibroblast-induced hLEC 

migration was dependent on a CXCL12 gradient secreted by the fibroblasts. Using 13.34 

conditioned media as a chemoattractant in a Boyden migration assay, hLECs were pretreated with 

either dual E-selectin/CXCR4 antagonist GMI-1359 or E-selectin only antagonist GMI-1271. 

Treatment with GMI-1359 completely abrogated fibroblast- induced hLEC migration (Figure 

5.7A). In the presence of 10 µg/ml GMI-1359, hLEC migration to pancreatic fibroblast conditioned 

media returned to the same level as that induced by unconditioned media. Blockade of E-selectin 

alone through GMI-1271 had no significant impact on hLEC migration to fibroblast conditioned 

media. These results demonstrate that pancreatic fibroblasts strongly induce hLEC migration 

through secretion of CXCL12 and blockade of the CXCL12 receptor, CXCR4, complete abolishes 

this fibroblast-induced hLEC migration.  

We also hypothesized that S2-013 and Colo357 PDAC cell migration toward pancreatic 

fibroblast conditioned media may also be dependent on the CXCL12-CXCR4 axis. Pretreatment 

with GMI-1359 moderately reduced (38.7%) S2-013 migration toward pancreatic fibroblast 

conditioned media (Figure 5.7B). However, fibroblast-induced S2-013 migration did not return to  
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Figure 5.7  

 

 
 

 

Figure 5.7 Pancreatic fibroblast strongly induce hLEC, but not pancreatic tumor cell, 

migration through CXCL12 secretion and this migration can be inhibited by GMI-1359. 

 

A-C) 13.34 pancreatic fibroblasts conditioned media (CM) was loaded into the lower wells of a 

Boyden chamber plate. 2.5 x 104 A) hLECs, B) S2-013, or C) Colo357 cells were diluted in serum 

free media and added to the upper inserts. Designated cells were pretreated with 10 µg/ml GMI-

1359 for 30 minutes prior to plating in the upper inserts. Migration was stopped after 16 hours and 

quantified. Graphical representation is the mean of 3 replicate membranes; experiment was 

repeated 3 times.  *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 error bars = s.d. 

 

D) Lower wells of Boyden chamber plates were loaded with FBS-containing media to induce 

cellular migration. 2.5 x 104 Colo357 cells were diluted in serum free media and added to the upper 

inserts. Designated cells were pretreated with 0, 10, 100 µg/ml GMI-1359 for 30 minutes prior to 

plating in upper inserts. Migration was stopped after 16 hours and quantified. Graphical 

representation is the mean of 3 replicate membranes; experiment was repeated 3 times. Error bars 

= s.d.  
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the same levels as migration induced by unconditioned media. Blockade of CXCR4 had even less 

of impact on Colo357 migration to pancreatic fibroblast conditioned media (Figure 5.7C). 

Blockade of E-selectin with GMI-1371 had no impact on S2-013 or Colo357 migration toward 

pancreatic fibroblast conditioned media. Similar to previously described experiments with S2-013 

cells, Colo357 migration toward FBS-containing growth media was not impacted by CXCR4 

inhibition (Figure 5.7D) These data suggest that PDAC migration toward pancreatic fibroblasts is 

only partially dependent on CXCL12 and that other factors contribute to this migration.  

CXCR4 faciliates PDAC adhesion to and transendothelial migration across lymphatic 

endothelial barriers. 

CXCR4 has been shown to play a role in promoting lymphatic-leukocyte interactions 

during intravasation (276). We hypothesized that CXCR4 may also facilitate PDAC-lymphatic 

interactions during tumor cell invasion. To examine the role of CXCR4 in facilitating PDAC 

adhesion to a lymphatic endothelium, a confluent monolayer of hLECs was established and 

pretreated with increasing concentrations of GMI-1359. Following pretreatment, either S2-013 or 

Colo357 PDAC cells were overlaid atop the monolayer and allowed to adhere for one hour. 

Treatment with GMI-1359 significantly impaired S2-013 adhesion to an hLEC endothelium 

(Figure 5.8A). Since S2-013 cells express E-selectin ligands, the ability of GMI-1359 to inhibit 

S2-013 adhesion may have been due to E-selectin blockade by this dual inhibitor. Therefore, to 

determine if CXCR4 may also contribute to endothelial adhesion, we examined the ability of GMI-

1359 to suppress adhesion of a PDAC cell line that does not express E-selectin ligands, Colo357. 

Interestingly, blockade of CXCR4 through GMI-1359 significantly inhibited the ability of Colo357 

to adhere to a lymphatic endothelium in a dose-dependent manner (Figure 5.8A). We performed 

similar PDAC adhesion assays using vascular endothelial cells (HUVECs) in place of hLECs. 

GMI-1359 moderately inhibited the adhesion of both E-selectin ligand-expressing and non-

expressing PDAC cells to a vascular endothelium, though these studies with HUVECs never 

achieved statistical significance (Figure 5.8B).  
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Figure 5.8 Blockade of CXCR4 by GMI-1359 inhibits PDAC adhesion and transendothelial 

migration across a lymphatic endothelium. 

 

A) Human LEC monolayers were pretreated with increasing concentrations of GMI-1359 for 1 

hour. Fluorescently-labeled S2-013 or Colo357 PDAC cells were overlaid atop the monolayer and 

allowed to adhere to the LEC monolayer for 1 hour in the presence of GMI-1359. Non-adherent 

PDAC cells were washed away and adherent cells were quantified. Graphical representation is the 

mean of 3 replicate wells. Four representative images (4X magnification) were collected per well. 

*p<0.05; **p<0.01; error bars = s.d. 

 

B) HUVEC monolayers were pretreated with increasing concentrations of GMI-1359 for 1 hour. 

Fluorescently-labeled S2-013 or Colo357 PDAC cells were overlaid atop the monolayer and 

allowed to adhere to the HUVEC monolayer for 1 hour in the presence of GMI-1359. Non-adherent 

PDAC cells were washed away and adherent cells were quantified. Graphical representation is the 

mean of 3 replicate wells. Four representative images (4X magnification) were collected per well. 

Error bars=s.d. 

 

C) Human LEC monolayers were established on the underside of Boyden chamber membranes and 

then pretreated with increasing concentrations of GMI-1359 for 1 hour. Fluorescently-labeled S2-

013 or Colo357 PDAC cells were plated in the upper insert and allowed to undergo TEM for 20-

24 hours in the presence of GMI-1359. Non-transmigrated PDAC cells were mechanically removed 

and transmigrated cells were quantified. Graphs represent the mean of 3 replicate membranes; 

experiment was repeated 3 times. *p<0.05; **p<0.01; error bars = s.d. 

 

D) Human LEC monolayers were established on the underside of Boyden chamber membranes 

and then pretreated with 10 µg/ml anti-CXCR4 blocking antibody for 1 hour. Fluorescently-

labeled S2-013 cells were plated in the upper insert and allowed to undergo TEM for 20-24 hours 

in the presence of GMI-1359. Non-transmigrated PDAC cells were mechanically removed and 

transmigrated cells were quantified. Graphs represent the mean of 3 replicate membranes; 

experiment was repeated 3 times. *p<0.05; **p<0.01; error bars = s.d. 
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Figure 5.8 
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As tumor cell adhesion to an endothelium does not directly translate to invasion, we set 

up a series of PDAC transendothelial migration (TEM) assays to determine if CXCR4 blockade 

could inhibit tumor invasion of an endothelium. LEC monolayers were established on the 

underside of Boyden chamber membranes and pretreated with increasing concentrations of GMI-

1359. Following pretreatment, CFDA-SE-labeled S2-013 were added to the upper insert and 

allowed to undergo TEM for 20-24 hours. S2-013 TEM across a lymphatic endothelium was 

markedly reduced in the presence of GMI-1359 (Figure 5.8C). To determine if this inhibition 

was due to E-selectin, CXCR4, or both, we again evaluated the effects of GMI-1359 on the TEM 

of PDAC cells not expressing E-selectin ligands. Similar to S2-013 TEM, TEM across a 

lymphatic endothelium by Colo357 cells was significantly reduced in the presence of GMI-1359 

(Figure 5.8C). As further verification of the role of CXCR4 in PDAC TEM, we also performed 

TEM assays in the presence of a CXCR4 blocking antibody. Similar to GMI-1359, the CXCR4 

blocking antibody significantly reduced the TEM of S2-013 cells across a lymphatic endothelium 

(Figure 5.8D). The data from these experiments demonstrate that CXCR4 plays a considerable 

role in the interactions between PDAC cells and lymphatic endothelium and that blockade of this 

receptor significantly impairs the adhesion and TEM of PDAC cells across a lymphatic 

endothelium.  

CXCR4 ligand CXCL12 promotes the ability of hLECs to facilitate PDAC TEM. 

To evaluate the role for the CXCR4 ligand, CXCL12, on PDAC TEM, we stimulated hLEC 

monolayers with 200 ng/ml human recombinant CXCL12 for 8 hours, washed the monolayer, and 

then added PDAC cells. In some experiments, hLEC monolayers were pretreated with GMI-1271 

or 1359 for 1 hour and then washed prior to the addition of S2-013 PDAC cells. Neither GMI-1271 

nor 1359 was present during the TEM process to elucidate the effects of blocking E-selectin and 

CXCR4 only on the hLEC monolayers during PDAC TEM.  In inhibitor-only-treated hLECs, 

pretreatment of monolayers with GMI-1271 or 1359 significantly impaired the ability of hLECs to 
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facilitate S2-013 TEM (Figure 5.9A). Since neither GMI-1271 nor 1359 was present during the 

TEM process, these results suggest that expression of E-selectin and CXCR4 by hLECs facilitates 

PDAC cell TEM. This was not unexpected for E-selectin as E-selectin expression is restricted to 

endothelial cells. However, CXCR4 is expressed by both PDAC cells and hLECs and blockade of 

CXCR4 in only the hLECs significantly impaired PDAC TEM.  

We also evaluated the role of CXCL12 in hLEC-facilitated TEM. CXCL12 stimulation of 

hLECs resulted in a significant increase in the ability of hLECs to facilitate S2-013 TEM (Figure 

5.9A). As expected, blockade of CXCR4 in hLECs through GMI-1359 abrogated this CXCL12-

enhanced TEM of S2-013 cells. Unexpectedly, GMI-1271 pretreatment of hLECs also suppressed 

CXCL12-enhanced S2-013 TEM. Under E-selectin blockade only, the ability of CXCL12-

stimulated hLEC to facilitate S2-013 TEM was returned to control levels. This suggests a link 

between CXCL12 stimulation and E-selectin. Similar results with CXCL12 and GMI-1359 were 

seen using Colo357 cells (Figure 5.9B). Lastly, we evaluated whether a cellular of source of 

CXCL12 could stimulate hLEC-facilitated TEM similarly to recombinant CXCL12. Lymphatic 

monolayers were pretreated with conditioned media from 13.34 pancreatic fibroblasts. Some 

monolayers were also pretreated with GMI-1271 or 1359. Pancreatic fibroblast conditioned media 

moderately increased the ability of hLECs to facilitate PDAC TEM (Figure 5.9C). The fold 

increase in TEM was similar to treatment with recombinant CXCL12 (1.5 times control levels). 

Pretreatment with GMI-1271 or 1359 again returned S2-013 TEM to control levels.  

GMI-1359 delays metastasis in an in vivo orthotopic model of pancreatic cancer. 

Our in vitro studies demonstrated that the CXCL12-CXCR4 axis plays a significant role in 

facilitating PDAC-endothelial interactions during invasion, and that blockade of both E-selectin 

and CXCR4 through GMI-1359 significantly impairs TEM of PDAC cells. We next evaluated 

whether GMI-1359 could impair this invasion in vivo and prevent spontaneous PDAC metastasis. 

We orthotopically challenged athymic mice with S2-013 PDAC cells for 2 weeks and then 
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Figure 5.9 

 

 
 

 

Figure 5.9 CXCL12 stimulation of lymphatic endothelial cells enhances pancreatic tumor 

transendothelial migration.  

 

A-B) Human LEC monolayers were stimulated with 200 ng/ml CXCL12 for 8 hours and either 

10 µg/ml GMI-1271 or GMI-1359 for 1 hour. Monolayers were washed three times prior to the 

addition of migratory cells so that only hLECs would be affected by CXCL12 and inhibitors. 

Fluorescently-labeled A) S2-013 of B) Colo357 cells were plated in the upper insert and allowed 

to undergo TEM for 20-24 hours. Non-transmigrated PDAC cells were mechanically removed 

and transmigrated cells were quantified. Graphs represent the mean of 3 replicate membranes; 

experiment was repeated 3 times. *p<0.05; **p<0.01; error bars = s.d. 

 

C) Human LEC monolayers were stimulated with pancreatic fibroblast conditioned media (CM) 

for 8 hours and either 10 µg/ml GMI-1271 or GMI-1359 for 1 hour. Monolayers were washed 

three times prior to the addition of migratory cells so that only hLECs would be affected by CM 

and inhibitors. Fluorescently labeled S2-013 cells were plated in the upper insert and allowed to 

undergo TEM for 20-24 hours. Number of transmigrated cells were quantified. Graphs represent 

the mean of 3 replicate membranes; experiment was repeated 3 times. *p<0.05; ***p<0.001; 

error bars = s.d. 
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 distributed the mice among 6 treatment groups with 15 mice per group: 1) vehicle control (PBS), 

2) GMI-1271, 3) GMI-1359, 4) gemcitabine (Gem), 5) Gem+1271, or 6) Gem+1359. We chose to 

investigate the effects of using GMI-1359 in combination with gemcitabine because CXCR4 has 

been implicated in promoting gemcitabine resistance in pancreatic tumor cells (291). GMI-1271 

was used in this study to elucidate E-selectin-dependent and CXCR4-dependent effects. Mice were 

treated for 4 weeks after which they were sacrificed and organs collected for metastatic analysis. 

Analysis of tumor size among the treatment groups revealed that monotherapy with GMI-

1359 had no impact on PDAC tumor size in these mice (Figure 5.10A-B). In accordance with our 

previous studies, GMI-1271 monotherapy also did not reduce tumor size, but gemcitabine did 

significantly reduce tumor size. When used in combination with gemcitabine, GMI-1359 treatment 

did not further reduce tumor size compared to mice treated with gemcitabine monotherapy (Figure 

5.10A-B). Histological examination of the tumors both at the primary site and metastatic sites 

revealed that neither GMI-1271 nor 1359 treatment affected the morphology of the tumor cells 

(Figure 5.10C). None of the mice displayed any drug-induced toxicities when treated with GMI-

1359.  

Next, we surveyed several representative organ sections from spleen, lymph nodes, liver, 

lung, kidney, and diaphragm for presence of metastatic lesions by gross microscopic analysis. 

Results from this metastatic study are displayed in Figure 5.11A. In accordance with our previous 

studies, GMI-1271 monotherapy did not significantly reduce the incidence of metastasis to any of 

the organs sites examined when compared to the vehicle control treatment group. Gemcitabine 

monotherapy reduced metastasis to all examined sites compared to control mice. This reduction in 

metastasis by gemcitabine is likely due to inhibition of primary tumor growth. The combination of 

gemcitabine and GMI-1271 further reduced the incidence of metastasis to all organ sites except 

lungs when compared to mice receiving gemcitabine only. Assessment of metastatic sites also 

revealed that GMI-1359 monotherapy decreased metastatic incidence within the spleen and slightly 
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Figure 5.10 

 

 
 

 

Figure 5.10 GMI-1359 does not affect in vivo tumor growth or morphology in an immune 

incompetent orthotopic model of pancreatic cancer. 

 

Human S2-013 PDAC cells were orthotopically implanted into the pancreases of athymic female 

mice and allowed to establish for 2 weeks. Treatments were given for 4 weeks, after which 

tumors and metastatic organs were collected. n = 15 mice/treatment group. 

 

A-B) Graphical representation of A) tumor volume (based on length, width, height 

measurements) and B) weight for each treatment group. ****p<0.0001  

 

C) Representative histological sections of S2-013 PDAC tumors, lung lesions, and lymph node 

lesions from mice treated with vehicle control (PBS), GMI-1271, or GMI-1359. Scale bars = 200 

µm.  
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Figure 5.11 
 

 
 

Figure 5.11 GMI-1359 delays metastasis in an immune incompetent orthotopic model of 

pancreatic cancer. 

 

A) The presence of spontaneous metastatic lesions was identified in spleen, lymph nodes, liver, 

lungs, kidney, and diaphragm of all mice using histological staining of representative sections. 

Graphs represent the absolute percentage of mice per treatment group exhibiting spontaneous 

metastases in the indicated organs. n = 15 mice/group 
 

B) The presence of spontaneous metastatic lesions was identified in spleen, lymph nodes, liver, 

lungs, kidney, and diaphragm of only mice completing the study. Graphs represent the absolute 

percentage of mice per treatment group exhibiting spontaneous metastases in the indicated organs. 

Vehicle n = 8; GMI-1271 n = 7; GMI-1359 n = 8; Gemcitabine, Gem + 1271 and Gem + 1359: n 

= 15.  
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within the lungs and kidneys compared to control mice. Surprisingly, the addition of gemcitabine 

to GMI-1359 therapy had no impact on the incidence of metastasis when compared to mice 

receiving gemcitabine only. A couple of sites (liver and lung) even demonstrated a slightly 

increased percentage of mice having metastases when treated with GMI-1359 and gemcitabine. 

Approximately half of the mice in the vehicle control, GMI-1271, and GMI-1359 

monotherapy groups succumbed to disease prior to the end of the 4-week study. Since these mice 

most likely would have had advanced disease at death, their results may have obscured any small 

effect or delay GMI-1359 may have had on S2-013 metastasis. Excluding the mice that died prior 

to treatment completion, Figure 5.11B displays the absolute incidence of metastasis in only the 

mice surviving to the end of the study. Mice treated with GMI-1359 monotherapy demonstrated 

significantly reduced metastasis to the spleen, lung, kidney, and liver as compared to vehicle control 

mice. GMI-1271 had no impact on the incidence of metastasis when only examining the mice that 

completed the study. This suggests that at the tested dose and treatment schedule, GMI-1359 may 

delay PDAC metastasis but it does not completely inhibit metastasis in vivo.  

Blockade of CXCR4 significantly alters the cellular organization of the PDAC tumor 

microenvironment. 

As several cell types comprising the PDAC tumor microenvironment express CXCR4 and 

use this receptor to facilitate intercellular communications, we evaluated how CXCR4 blockade 

alters the cellular organization of the tumor microenvironment. Staining for αSMA, a marker for 

activated fibroblasts, revealed that treatment with GMI-1359 significantly reduced the amount of 

desmoplasia within the primary tumor (Figure 5.12A). Quantification revealed that GMI-1359 

resulted in a 2.8-fold reduction in desmoplasia within the primary tumors compared to control 

tumors (Figure 5.12B). This same result was also found among the gemcitabine and GMI-1359 

combinatorial treated group: tumors treated with gemcitabine and GMI-1359 had significantly 

reduced levels of desmoplasia (2.2-fold) compared to tumors treated with gemcitabine alone. 

Neither gemcitabine nor GMI-1271 had any impact on desmoplasia. These data suggest that the  



118 
 

Figure 5.12 
 

 

 
 

Figure 5.12 In vivo treatment with GMI-1359 significantly reduces tumor desmoplasia in an 

S2-013 orthotopic model of pancreatic cancer. 

 

A) Representative immunohistochemical staining of αSMA (brown) in primary tumors of mice 

orthotopically challenged with S2-013 PDAC cells and treated with either, PBS, GMI-1271, GMI-

1359, and/or gemcitabine for 4 weeks. Counterstaining was performed with hematoxylin (blue).  

Scale bars = 50 µm. 

 

B) Graphical representation of morphometric quantification of desmoplasia within primary 

orthotopic tumors following treatment. Grids (1400 pixel2/box; total of 825 grid boxes/field) were 

superimposed over 20X images of representative tumor sections. Number boxes containing 

+αSMA staining was divided by the total number of grid boxes and multiplied by 100 to calculate 

percent desmoplasia/field. Two to three representative images were collected per section from 4 

mice/treatment group. Primary tumors from mice treated with GMI-1359 had a marked reduction 

in desmoplasia.  ****p<0.0001; error bars = s.d. 

  



119 
 

CXCL12-CXCR4 axis plays a significant role in the recruitment and/or activation of fibroblasts 

within PDAC primary tumors. 

Next, lymphatic (LVD) and blood (BVD) vessel densities within the primary tumor site 

were evaluated. Immunofluorescence staining of LYVE-1, a marker of LECs, in primary tumor 

sections revealed that neither gemcitabine nor GMI-1271 affected LVD (Figure 5.13A-B). 

However, tumors from mice treated with GMI-1359 had drastically fewer lymphatic vessels within 

the primary tumor site. Reduced LVD was also found in mice treated with both gemcitabine and 

GMI-1359. Unexpectedly, immunohistochemical staining for CD31, an endothelial marker, 

revealed no difference in BVD among any of the treatment groups (Figure 5.14A-B). These data 

suggest that the CXCL12-CXCR4 chemokine axis may be a critical player in the recruitment of 

lymphatic vessels to tumor sites through either direct or indirect mechanisms. Additionally, these 

data demonstrate that blood vessel recruitment is not necessarily regulated by the same mechanisms 

as lymphatic vessel recruitment. 

Lastly, we evaluated the presence of CD45+ leukocytes within the primary tumors of the 

various treatment groups. Immunohistochemical staining and quantification revealed no difference 

in the total number of immune cells present within the primary tumors (Figure 5.15A-B). 

Intratumoral tertiary lymphoid aggregates (TLAs) were also quantified (Figure 5.15C-D), and 

analysis revealed there was no difference in the total number of TLAs present per tumor section 

among the 6 treatment groups.  

GMI-1359 does not prolong survival of orthotopically-challenged athymic mice. 

Although GMI-1359 demonstrated only a slight delay in PDAC metastasis, it resulted in a 

significant reorganization of the PDAC tumor microenvironment. We next investigated whether 

GMI-1359 treatment and the reduction in desmoplasia may extend animal survival. We performed 

similar in vivo experiments as described earlier, but rather than stopping the study at 4 weeks, we 

treated mice until they reached end stage disease. When used as monotherapies, neither GMI-1271 
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Figure 5.13 
 

 
 

 
 

Figure 5.13 Orthotopically challenged mice treated with GMI-1359 demonstrate a marked 

reduction in lymphatic vessel densities. 

 

A) Representative immunofluorescent staining of LYVE-1+ (red) lymphatic vessels within primary 

tumors of mice orthotopically challenged with S2-013 PDAC cells and treated with either, PBS, 

GMI-1271, GMI-1359, and/or gemcitabine for 4 weeks. Nuclei are stained with DAPI (blue). 

Arrows indicate LYVE-1+ lymphatic vessels. Scale bars = 50 µm. 

 

B) Quantification of the number of LYVE-1+ lymphatic vessels per field within the primary tumor. 

Five (20X magnification) representative images were collected per tumor section from 4 mice 

within each treatment group. GMI-1359-treated tumors displayed a significant reduction in 

lymphatic vascular densities. **p<0.01; ****p<0.0001; Error bars = s.d.  
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Figure 5.14 

 

 

 
 

 

 

Figure 5.14 Orthotopically challenged mice treated with GMI-1359 demonstrate no change 

in blood vessel densities. 

 

A) Representative immunohistochemical staining of CD31+ (brown) blood vessels within primary 

tumors of mice orthotopically challenged with S2-013 PDAC cells and treated with either, PBS, 

GMI-1271, or GMI-1359 for 4 weeks. Sections were counterstained with hematoxylin (blue). 

Arrows indicate CD31+ blood vessels.  Scale bars = 50 µm. 

 

B) Quantification of the number of CD31+ blood vessels per field within the primary tumor. Five 

(20X magnification) representative images were collected per tumor section from 4 mice within 

each treatment group. GMI-1359 treatment had no impact on blood vessel densities within the 

primary tumor. Error bars = s.d. 
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Figure 5.15 Orthotopic tumors treated with GMI-1359 demonstrate no change in immune 

infiltration compared to control mice. 

 

A) Representative immunohistochemical staining of CD45+ (brown) leukocytes within primary 

tumors of mice orthotopically challenged with S2-013 PDAC cells and treated with either, PBS, 

GMI-1271, GMI-1359, and/or gemcitabine for 4 weeks. Sections were counterstained with 

hematoxylin (blue).  Scale bars = 50 µm. 

 

B) Quantification of the number of CD45+ leukocytes per field within the primary tumors. Five 

(20X magnification) representative images were collected per tumor section from 4 mice within 

each treatment group. GMI-1359 treatment had no impact on immune cell infiltration within the 

primary tumor. Error bars = s.d. 

 

C) Representative immunohistochemical staining of CD45+ (brown) tertiary lymphoid aggregates 

(TLAs) within primary tumors of mice orthotopically challenged with S2-013 PDAC cells and 

treated with either, PBS, GMI-1271, GMI-1359, and/or gemcitabine for 4 weeks. Arrow indicates 

a TLA. Sections were counterstained with hematoxylin (blue).  Scale bars = 100 µm 

 

D) Quantification of the number of CD45+ TLAs per primary tumor section for all orthotopically-

challenged mice. GMI-1359 treatment had no impact on immune cell infiltration within the 

primary tumor. Error bars = s.d. 
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Figure 5.15 
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 nor 1359 prolonged animal survival as compared to the control group (Figure 5.16A). We also 

performed these same treatments in combination with gemcitabine since GMI-1359 reduced 

desmoplasia in the tumors and that might result in improved chemotherapy to the tumor. 

Unfortunately, combinatorial treatment of GMI-1271 or 1359 with gemcitabine also did not 

prolong survival when compared to mice receiving gemcitabine only (Figure 5.16B). Comparison 

of tumor weight and volume revealed no significant difference in tumor size among the mice treated 

with GMI-1271 or GMI-1359 compared to vehicle-treated mice (Figure 5.16C). Mice treated with 

gemcitabine had significantly smaller tumors at end stage disease compared to vehicle control- 

treated mice. Combinatorial treatment of GMI-1271 or GMI-1359 with gemcitabine did not further 

reduce tumor size.  

GMI-1359 does not prolong survival of orthotopically-challenged immune competent mice. 

CXCR4 signaling has been shown to inhibit T cell responses in pancreatic cancer (171). 

We next evaluated if GMI-1359 may prolong survival in immune competent mice where T cell 

responses may be impacted by CXCR4 blockade. For initial studies, we chose to orthotopically 

implant PDAC cells isolated from primary tumors of LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre 

(KPC) mice into syngeneic immune competent C57BL/6 mice. To determine if isolated KPC 

PDAC cells would respond to GMI-1271 or 1359 treatments, we evaluated two lines, KPC8060 

and KPC8069 for CXCR4 expression and E-selectin binding. Flow cytometry (Figure 5.17A), 

immunofluorescence staining (Figure 5.17B), and immunoblotting (Figure 5.17C) all confirmed 

that these KPC lines express CXCR4. GlycoMimetics, Inc. assessed the ability of KPC8060 and 

KPC8069 to interact with E-selectin using mouse E-selectin-Fc chimeric proteins. Employing flow 

cytometry as a readout, they demonstrated that both KPC lines had an enhanced ability to bind to 

the E-selectin chimeras as compared to IgG-Fc negative control chimeras (data not shown). 

Initial in vivo studies with the KPC 8060 mouse PDAC line were performed in a similar 

manner as the S2-013 studies. Briefly, 9 x 104 KPC 8060 cells were implanted into the pancreases  
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Figure 5.16 

 

 

Figure 5.16 GMI-1359 does not prolong survival of orthotopically challenged immune 

incompetent mice whether administered as a monotherapy or in combination with 

chemotherapy. 

A) Kaplan-Meier survival curve of immune incompetent mice orthotopically challenged with S2-

013 PDAC cells. Following tumor establishment, mice were treated with vehicle control (PBS), 

GMI-1271, or GMI-1359 until end stage disease. Arrows specify treatment start day. Tables denote 

median survival (in days) for each treatment group. Log-rank tests indicate no survival benefit for 

mice treated with GMI-1271 or GMI-1359 compared to vehicle control. n = 15 mice/treatment 

group 

B) Kaplan-Meier survival curve of immune incompetent mice orthotopically challenged with S2-

013 PDAC cells. Following tumor establishment, mice were treated with vehicle control 

gemcitabine (Gem), Gem+1271, or Gem+1359 until end stage disease. Arrows specify treatment 

start day. Tables denote median survival (in days) for each treatment group. Gemcitabine 

significantly extended survival compared to vehicle control mice (p<0.0001). Log-rank tests 

indicated no survival benefit for mice treated with Gem+1271 or Gem+1359 compared to mice 

receiving only gemcitabine. n = 15 mice/treatment group.  

C) Graphical representation of tumor weight and tumor volume for each treatment group. *p<0.05, 

****p<0.0001; error bars = s.d. 
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Figure 5.17  

 

 

Figure 5.17 PDAC cells isolated from KPC mice express CXCR4. 

A) Flow cytometry confirming expression of CXCR4 in mouse PDAC cell lines KPC8060 and 

KPC8069. The upper histograms indicate IgG isotype control labeling and the lower histograms 

indicate CXCR4 labeling. Both KPC cell lines demonstrate CXCR4 expression. 

 

B) Immunofluorescence staining indicating CXCR4 expression in mouse PDAC cell lines 

KPC8060 and KPC8069. CXCR4 (red) is diffusely expressed across the cell surface. Cell nuclei 

are stained with DAPI (blue). Rabbit polyclonal isotype control was used as a negative control (red; 

far right images). Scale bars = 25 µm 

 

C) Western blot (50 µg protein/lane) analysis demonstrating CXCR4 expression in a panel of 

mouse KPC8060 and KPC8069 lysates. β-actin expression was used as a loading control for all cell 

lines.  
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of syngeneic C57BL/6 mice. Tumors were allowed to establish for 2 weeks prior to the initiation 

of treatment. Unexpectedly, KPC 8060 cells demonstrated very rapid and aggressive growth in 

vivo. By the treatment start day, some mice were already showing signs of advanced disease such 

as cachexia or death. Neither GMI-1271 nor 1359 monotherapies prolonged animal survival 

(Figure 5.18A). Treatment with gemcitabine alone nearly doubled animal survival compared to 

control mice (p=0.0124; Figure 5.18B). Unexpectedly, combinatorial treatment with gemcitabine 

and GMI-1271 resulted in a statistical increase in animal survival compared to mice receiving 

gemcitabine only (p=0.0302). Combinatorial treatment with gemcitabine and GMI-1359 had no 

impact on animal survival when compared to the gemcitabine group. Histological staining revealed 

no significant difference in tumor morphology among the treatment groups (Figure 5.18C), and all 

mice had similarly sized primary tumors at death regardless of treatment (Figure 5.18D).   

Due to the aggressive growth of KPC8060 tumors in vivo, we repeated the survival study 

but with treatments beginning the day following orthotopic challenge. Similar to the previously 

described study, GMI-1271 and GMI-1359 monotherapies failed to prolong animal survival even 

when treatments were administered during early stage disease (Figure 5.19A). Additionally, 

combinatorial treatment of GMI-1271 or GMI-1359 with gemcitabine also failed to prolong animal 

survival compared to mice receiving gemcitabine alone (Figure 5.19B). Analysis of tumor size 

revealed that mice treated with gemcitabine either alone or in combination with GMI-1271 or 1359 

succumb to PDAC with statistically larger tumors than their control or monotherapy counterparts 

(Figure 5.19C).  

Incidence of metastasis in the KPC8060 orthotopic model with GMI-1271 or GMI-1359 

treatment. 

To determine the effects of GMI-1271 and 1359 on metastasis in immune competent mice, 

a pilot study was performed in the KPC8060 orthotopic model. KPC8060 cells were implanted into 

the pancreases of C57BL/6 mice. Treatments were initiated the day after implantation. After 2 

weeks of treatment, mice were sacrificed and tissues collected and processed for microscopic 
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Figure 5.18 GMI-1359 does not prolong survival of orthotopically challenged immune 

competent mice with aggressive late stage disease, but GMI-1271 does when used in 

combination with gemcitabine. 

A) Kaplan-Meier survival curve of immune competent mice orthotopically challenged with 

KPC8060 PDAC cells. Following tumor establishment, mice were treated with vehicle control 

(PBS), GMI-1271, or GMI-1359 until end stage disease. Arrows specify treatment start day. Tables 

denote median survival (in days) for each treatment group. Log-rank tests indicate no survival 

benefit for mice treated with GMI-1271 or GMI-1359 monotherapies compared to vehicle control. 

n = 10 mice/treatment group 

B) Kaplan-Meier survival curve of immune competent mice orthotopically challenged with 

KPC8060 PDAC cells. Following tumor establishment, mice were treated with vehicle control 

gemcitabine (Gem), Gem+1271, or Gem+1359 until end stage disease. Arrows specify treatment 

start day. Tables denote median survival (in days) for each treatment group. Gemcitabine 

significantly extended survival compared to vehicle control mice (p=0.0124). Log-rank tests 

indicate a survival benefit for mice treated with Gem+1271 compared to mice treated with 

gemcitabine only (p=0.0302). There was no survival benefit for mice treated with Gem+1359 

compared to mice receiving only gemcitabine. n = 10 mice/treatment group.  

C) Representative histological sections of KPC8060 orthotopic tumors treated with vehicle control 

(PBS), GMI-1271, or GMI-1359. Scale bars = 50 µm.  

 

D) Graphical representation of tumor volume and weight for each treatment group. Error bars = 

s.d. 
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Figure 5.18 
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Figure 5.19 GMI-1359 does not prolong survival of orthotopically challenged immune 

competent mice with early stage disease. 

A) Kaplan-Meier survival curve of immune competent mice orthotopically challenged with 

KPC8060 PDAC cells. Treatments began the day after PDAC cell implantation and continued until 

mice reach end stage disease. Tables indicate median survival (in days) for each treatment group. 

Log-rank tests indicate no survival benefit for mice treated with GMI-1271 or GMI-1359 compared 

to vehicle control. n = 10 mice/treatment group 

B) Kaplan-Meier survival curve of immune competent mice orthotopically challenged with 

KPC8060 PDAC cells Treatments began the day after PDAC cell implantation and continued until 

mice reach end stage disease. Tables indicate median survival (in days) for each treatment group. 

As expected, gemcitabine significantly extended survival compared to vehicle control mice 

(p<0.0001). Log-rank tests indicate no survival benefit for mice treated with Gem+1271 or 

Gem+1359 compared to mice receiving only gemcitabine. n = 10 mice/treatment group.  

C) Graphical representation of tumor weight and tumor volume for each treatment group. KPC8060 

orthotopically challenged mice treated with gemcitabine, Gem+1271, or Gem+1359 had 

statistically larger tumors than their non-gemcitabine treated counterparts (GMI-1271 vs Gem+ 

1271: p<0.0001; GMI-1359 vs Gem+1359 p =0.0189). *p<0.05; **p<0.01; p<0.001; error bars = 

s.d. 
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Figure 5.19 
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identification of metastases. All mice survived to the end of the 2-week treatment period; 

however, many of the mice were demonstrating signs of advanced disease such as lethargy and 

significant weight loss. Similar to previous studies, in vivo treatment with GMI-1271 or 1359 had 

no impact on tumor size (Figure 5.20A). Examination of organs for metastatic lesions revealed 

that very few organs contained metastatic lesions after 2 weeks of tumor progression in the 

KPC8060 orthotopic model even though the animals demonstrated symptoms of advanced stage 

disease (Figure 5.20B). This suggests that KPC8060 orthotopic challenge may not be a good 

model for metastatic studies. Treatment with either GMI-1271 or 1359 had no significant impact 

on the incidence of metastasis in these mice. Flow cytometry revealed that treatment with GMI-

1271 or 1359 had no impact on the immune cell subtypes (T cells, B cells, NK cells, 

macrophages, MDSCs, or dendritic cells) present within the primary tumors (Figure 5.20C).  

In vivo efficacy of GMI-1271 and 1359 in combination with chemo- and immunotherapies. 

Ozdemir et al. demonstrated that although loss of αSMA+ CAFs in PDAC tumors resulted 

in more aggressive tumors, it also made these tumors susceptible to immunotherapy (175). 

Additionally, another recent study demonstrated that ablation of FAP+ CAFs in KPC mice also 

improved checkpoint antagonist immunotherapy (171). To go along with this, they also 

demonstrated that treatment with AMD3100, a CXCR4 antagonist, also improved immunotherapy 

efficacy, resulting in significant tumor regression in KPC mice. This study examined tumor 

regression for only a short period (6 days) and did not examine the results of chronic inhibition of 

CXCR4. Therefore, we evaluated whether CXCR4 blockade with GMI-1359 could improve 

immunotherapy efficacy and impair PDAC progression over an extended period of time. For initial 

studies that could be done rapidly, we evaluated the efficacy of GMI-1359 and anti-PD-L1 

combinatorial therapy in our orthotopic model with KPC8060 PDAC cells. Seven treatment groups 

were set up with 10 mice per group: 1) Vehicle, 2) anti-PD-L1, 3) anti-PD-L1 + 1271, 4) anti-PD-

L1 + 1359, 5) anti-PD-L1 + Gem, 6) anti-PD-L1 + Gem + 1271, and 7) PD-L1 + Gem + 1359. 
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Mice were treated until end stage disease and then necropsies performed. The survival curves 

indicate that the addition of GMI-1271 or 1359 to anti-PD-L1 immunotherapy did not result in 

extended survival compared to PD-L1 treatment alone (Figure 5.21A). Treatment with both 

gemcitabine and anti-PD-L1 significantly improved survival compared to anti-PD-L1 therapy alone 

(p<0.0001; Figure 5.21B). However, the addition of GMI-1271 or GMI-1359 did not result in 

significantly improved survival compared to mice receiving the PD-L1/gemcitabine combination 

(Figure 5.21B). Analysis of tumor size revealed no major difference across the 7 treatment groups 

(Figure 5.21C). 

  



134 
 

Figure 5.20 GMI-1359 does not impact metastasis of KPC cells orthotopically implanted into 

immune competent mice. 

A) Graphical representation of tumor volume and tumor weight for mice treated with vehicle 

control, GMI-1271 or GMI-1359 for 2 weeks following KPC8060 tumor implantation in C57BL/6 

mice. Treatment began the day after implantation and continued for 14 days. n = 5 mice/group; 

error bars = s.d. 

 

B) The presence of spontaneous metastatic lesions was identified in lungs, lymph nodes, spleen, 

kidney, diaphragm, and liver of all mice using histological staining of representative sections. 

Graphs represent the absolute percentage of mice per treatment group exhibiting spontaneous 

metastases in the indicated organs. n = 5 mice/group 

C) Flow cytometry analysis of immune cell subtypes within KPC8060 primary tumors of mice 

treated with vehicle control, GMI-1271, or GMI-1359 for 2 weeks. n = 5 mice/group; error bars = 

s.d. 
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Figure 5.20 
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Figure 5.21 GMI-1359 does not prolong survival of orthotopically challenged immune 

competent mice whether administered in combination with chemotherapy or 

immunotherapy. 

A) Kaplan-Meier survival curve of immune competent mice orthotopically challenged with 

KPC8060 PDAC cells and treated with GMI-1271 or GMI-1359 and immunotherapy anti-PD-L1. 

Treatments began the day after PDAC cell implantation and continued until mice reach end stage 

disease. Tables denote median survival (in days) for each treatment group. Log-rank tests indicate 

no survival benefit for mice treated with a combination of PD-L1 and GMI-1271 or GMI-1359 

compared to receiving the vehicle control or anti-PD-L1 only. n = 10 mice/treatment group. 

B) Kaplan-Meier survival curve of immune competent mice orthotopically challenged with 

KPC8060 PDAC cells and treated with GMI-1271 or GMI-1359 and immunotherapy anti-PD-L1. 

Treatments began the day after PDAC cell implantation and continued until mice reach end stage 

disease. Tables denote median survival (in days) for each treatment group. Log-rank tests indicate 

no survival benefit for mice treated with a combination of PD-L1 and gemcitabine with GMI-1271 

or GMI-1359 compared to receiving PD-L1 and gemcitabine only. Addition of gemcitabine to PD-

L1 treatment significantly improved survival in this KPC orthotopic model (p<0.0001). n = 10 

mice/treatment group. 

C) Graphical representation of tumor volume and tumor weight for mice treated with GMI-1271 

or GMI-1359 in combination with chemotherapy (gemcitabine) and/or immunotherapy (anti-PD-

L1). Error bars = s.d. 
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Figure 5.21 
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III. Conclusions 

Our results indicate that the CXCL12-CXCR4 chemokine axis mediates interactions 

between cellular components of the PDAC microenvironment including tumor cells, fibroblasts 

and endothelial cells. Using a novel dual inhibitor of E-selectin and CXCR4, GMI-1359, we 

demonstrate that pancreatic fibroblast secretion of CXCL12 strongly induces hLEC migration and 

that when CXCR4 is blocked through GMI-1359 treatment, this migration is completely abrogated. 

Additionally, we show for the first time that CXCR4 on lymphatic endothelial is capable of 

mediating pancreatic tumor cell adhesion and transendothelial migration during invasion of a 

lymphatic endothelium. GMI-1359 treatment blocked both these processes regardless of E-selectin 

ligand expression on the PDAC cells demonstrating a role for CXCR4 during endothelia invasion.  

In vivo studies in athymic mice using an S2-013 pancreas orthotopic model demonstrated 

that blockade of CXCR4 with GMI-1359 moderately delays PDAC metastasis. However, this GMI-

1359 delay in metastasis did not result in prolonged animal survival. Animals treated with GMI-

1359 demonstrated significant reorganization of the primary tumor microenvironment: drastically 

decreased desmoplasia and reduced lymphatic vascular densities. Interestingly, blood vascular 

density and immune cell infiltration remained unaffected by GMI-1359 and CXCR4 blockade. As 

CXCR4 is a negative regulator of T cell function in PDAC tumors (171), we investigated the 

efficacy of GMI-1359 in an immune competent model by orthotopically implanting KPC8060 

PDAC cells into the pancreases of C57BL/6 mice. Unfortunately, GMI-1359 did not prolong 

animal survival even when in used in combination with chemotherapy and/or immunotherapy under 

the tested treatment schedule. GMI-1359 holds promise as a tool for investigating the role of 

CXCR4 in in vitro studies; however, more work needs to be done to improve its in vivo efficacy in 

combination with other approved pancreatic cancer therapies.  
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Supplementary Figure 5.1 

 

 

 

Supplementary Figure 5.1 CXCR7 expression in lymphatic endothelial cells  

Flow cytometry showing positive CXCR7 expression in hLECs. The red histogram indicates IgG 

isotype control labeling and the blue histogram indicates CXCR7 labeling. 
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CHAPTER 6: 

Discussion and Future Directions 
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I. Overview 

Cancer metastasis into and through the lymphatic vasculature and lymph nodes occurs 

early and frequently during PDAC development and progression (5, 28, 33) and is strongly 

correlated with poor patient prognosis (34-37). This suggests the lymphatic system is likely a 

substantial contributor to PDAC progression and metastasis. Although clinicians and researchers 

recognize the importance of lymph node involvement as a determinant of PDAC prognosis and 

therapy selection, the mechanisms governing lymphatic-directed metastasis are almost completely 

unknown. Furthermore, very few studies have examined the contributions of the PDAC 

microenvironment in promoting lymphatic invasion and metastasis. In this dissertation, we set out 

to characterize how PDAC cells and pancreatic fibroblasts, major cellular components of the PDAC 

microenvironment, communicate and interact with lymphatic endothelial cells, the main cell type 

comprising lymphatic vessels. Our studies went on to explore the roles of adhesion protein E-

selectin and chemokine receptor CXCR4 in lymphatic invasion in vitro and how targeting these 

proteins impacts metastasis and survival in mice orthotopically challenged with PDAC.  

II. Characterization of PDAC Cells and Pancreatic Fibroblasts Impact Lymphatic Biology 

The pancreatic tumor microenvironment is arguably one of the most complex of any 

malignancy. Due to their prevalence in pancreatic tumor tissues, pancreatic fibroblasts exert a 

prominent influence over many cell types of the PDAC microenvironment including lymphatic 

endothelial cells, the cells responsible for facilitating PDAC dissemination to the lymph nodes. 

Through work presented in this chapter, we demonstrate for the first time the cell biology of in 

vitro interactions between pancreatic tumor cells, pancreatic fibroblasts, and lymphatic endothelial 

cells during processes that included cellular recruitment and tubulogenesis.  

We showed that several PDAC cell lines display a moderate ability to induce directional 

hLEC migration; however, pancreatic fibroblasts, through the secretion of soluble paracrine factors, 

strongly induce hLEC migration (we would later identify one of these paracrine factors to be 
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CXCL12). Additionally, pancreatic fibroblasts co-cultured with hLECs accelerated lymphatic 

tubulogenesis resulting in poorly formed tube networks. The ability of fibroblasts to facilitate hLEC 

recruitment and tubulogenesis at the cellular level was anticipated as studies have demonstrated 

that fibroblasts secrete a number of pro-lymphangiogenic factors such as VEGF-C, VEGF-D, 

VEGF-A, PDGF, EGF, and FGF (75, 78-81). Immunohistochemical studies have demonstrated that 

lymphatic vessel densities are highest in the stromal compartment of tumors and lowest in the 

intratumoral compartments, suggesting that there is an intimate association between fibroblasts and 

lymphatics within tumors (79). Specific to PDAC, Bailey et al., demonstrated that depletion of 

activated fibroblasts within the PDAC tumors of orthotopically challenged mice led to a significant 

reduction in lymphatic vessel density and metastasis to lymph nodes (163).  This groups findings 

were corroborated by our in vivo studies demonstrating that elimination of αSMA+ fibroblasts from 

PDAC tumors (through CXCR4 blockaded) correlated with significantly reduced lymphatic vessel 

density within pancreatic tumors. 

Our studies suggest that pancreatic fibroblasts are key to the recruitment and formation of 

new of lymphatic vessels within PDAC tumors. Other non-tumor cell types of the tumor 

microenvironment have also been implicated as contributors of lymphatic recruitment and 

lymphangiogenesis within tumors, such as tumor associated macrophages (202-205, 232), mast 

cells (292-294), and dendritic cells (83, 295). The studies reported here as well as others support 

the hypothesis that malignancies exploit the pro-lymphangiogenic mechanisms of tumor 

microenvironment cells to augment tumor invasion of lymphatic vessels and subsequent 

dissemination to lymph nodes, a common site of metastasis for many tumors including PDAC. 

Further research is needed to define the specific molecules that mediate the influence of tumor-

associated fibroblasts on lymphatic biology and function. 

 Our studies also demonstrate that paracrine factors secreted from several PDAC lines 

induce moderate hLEC migration, albeit not as strongly as pancreatic fibroblasts. Furthermore, 
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these same PDAC lines (S2-013, Colo357) also accelerated tubulogenesis in co-culture with 

hLECs. This accelerated tubulogenesis resulted in poorly formed lymphatic networks replete 

broken tubes and dissociated LECs. These poorly structured lymphatic networks support previous 

studies that described intratumoral lymphatic vessels from both clinical and in vivo samples as 

being disorganized, collapsed, and non-functional (118, 119, 296) and suggest that tumor cells are 

a significant contributor to malformed lymphatics within overall tumor structure. Studies have 

demonstrated that PDAC cells secrete a number of pro-lymphangiogenic factors and therefore are 

capable of influencing tumor-associated lymphangiogenesis (107, 116, 297, 298). In support of this 

conclusion, numerous studies have correlated the expression of pro-lymphangiogenic within 

primary tumors (both tumor-secreted and stromal-secreted) with LVD and lymph node metastasis 

including in the setting of PDAC (107, 116, 137, 297-300). However, many previous studies relied 

on immunohistochemical staining to correlate the expression of pro-lymphangiogenic factors with 

LVD and lymph node metastasis rather than studies showing direct effects by specific cell types, 

which are demonstrated by the results presented in this manuscript. Further work is needed to 

elucidate the specific paracrine signaling mechanism induced by PDAC cells use to promote tumor-

associated lymphangiogenesis.  

 We also for the first time report on PDAC and pancreatic fibroblast invasion of a simulated 

lymphatic endothelium. Chemotactic-directed TEM assays demonstrated that both PDAC cells and 

pancreatic fibroblasts are capable of crossing a lymphatic endothelial barrier albeit at differing 

rates. Steady state images of invasion revealed that PDAC cells primarily invade a lymphatic 

monolayer at tricellular junctions between LECs suggesting that PDAC cells mainly undergo 

paracellular routes during endothelial invasion as opposed to transcellular invasion. These results 

coincide with previous studies demonstrating that PDAC cells also invade vascular endothelia at 

tricellular junctions (301). Additionally, the preference of PDAC cells to invade tricellular 

junctions indicates invasion is not a random process in which PDAC cells invade the most proximal 
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lymphatic location. Rather PDAC cells showed preference for specific sites to attach to and invade 

the lymphatic vasculature.  It was also notable that tumor cells preferred a pattern of collective 

migration during invasion, suggesting that the formation of invasive sites produces a local 

chemotactic environment that recruits other cells to the invading cell mass.  Definition of the 

molecular factors that produce this effect requires further investigation, but is likely important 

given emerging reports in the literature of the potential importance of collective migration of cells 

during invasion and metastasis (302, 303). Only a handful of studies have examined the 

mechanisms regulating transmigration at tricellular junctions, and these studies evaluated vascular 

endothelial junctions. It has been proposed that tricellular junctions express a discontinuous pattern 

of adherens junctions that enables greater cell TEM (304, 305). Another study demonstrated that 

vascular endothelial tricellular junctions have enriched expression of adhesion proteins (306). 

Further investigation will be needed to determine if these same mechanisms enable PDAC invasion 

of lymphatic tricellular junctions.  

 Pancreatic fibroblasts also interacted with hLECs at tricellular junctions. However, unlike 

PDAC cells, pancreatic fibroblasts demonstrated the ability to remain atop the hLEC monolayer 

without invading, as seen in steady state images and live cell imaging. This implies that the 

fibroblasts seek to establish a stable interaction with and along the LECs, in contrast to tumor cells.  

TEM assays demonstrated that fibroblasts are capable of invading lymphatic endothelia; however, 

the capacity of these to form higher order structures (e.g. tubes surrounded by fibroblasts) were not 

addressed in the studies presented here. Although tumor-associated fibroblasts have been shown to 

accompany tumor cells to distant metastatic sites (161, 307), our results raise the possibility that 

pancreatic fibroblasts’ interactions with tumor cells facilitate fibroblast invasion of endothelial 

layers during dissemination, a process that may also contribute to the disorganization of lymphatics 

that is observed in tumors.  
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Few studies have evaluated the paracrine mechanisms by which pancreatic tumor cells 

communicate and interact with lymphatic endothelial cells, and even fewer studies have evaluated 

the paracrine mechanisms by which pancreatic fibroblasts influence the biology of LEC and 

lymphatics. The work presented here lays the groundwork for understanding the biological impact 

of interactions between pancreatic tumor cells, fibroblasts lymphatic endothelial cells. A better 

understanding of the processes of lymphatic invasion and lymph node metastasis in PDAC will 

significantly contribute to our overall understanding of this deadly disease and provide insights for 

the development of novel efficacious therapies for pancreatic cancer.  

III. Blockade of E-selectin and Implications for PDAC Therapy 

Adhesion protein E-selectin has been shown to regulate metastasis in a variety of cancers 

(146, 252, 257, 260). However, its direct role in the metastasis of pancreatic cancer in vivo has not 

been fully evaluated. Using a novel glycomimetic small molecule antagonist of E-selectin, we 

demonstrated that E-selectin influences PDAC dissemination via the vasculature systems, and that 

blocking its ligand binding function decreased PDAC metastasis. Although it is known that E-

selectin plays a role in vascular invasion of tumor cells, we demonstrated for the first time a role 

for E-selectin in facilitating tumor cell invasion of the lymph nodes via the lymphatic vasculature. 

The normal role of E-selectin is to initiate the tethering of circulating leukocytes to vascular 

endothelia during extravasation (254, 255, 308). Previous studies demonstrated that tumor cells 

expressing the E-selectin ligands sLeA/X exploit the function of E-selectin for dissemination (146, 

252, 257, 260, 309). However, very few studies have examined the functional role of E-selectin in 

lymphatics especially in regards to tumor invasion. It has been demonstrated that activated LECs 

upregulate E-selectin expression (146, 310) which enables leukocyte TEM and trafficking to the 

lymph nodes (131, 256). Using GMI-1271, we demonstrated for the first time that blockade of E-

selectin significantly impairs PDAC adhesion to a simulated lymphatic endothelium and 

subsequent transendothelial invasion. In vivo, this blockade led to a significant decrease in lymph 
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node metastasis. These results are consistent with studies showing PDAC cells and other tumor 

cells use E-selectin to facilitate invasion of blood vessels for dissemination (311-313).  

Corresponding to our in vitro results, blockade of E-selectin in vivo reduced PDAC 

metastasis to lymph nodes in an orthotopic model of pancreatic cancer. No prior reported in vivo 

studies have examined tumor metastasis specifically to the lymph nodes during E-selectin blockade. 

We demonstrated that this reduction in lymph node metastasis by E-selectin blockade was not due 

to inhibition of tumor growth nor decreased LVD at the primary tumor site. In patient samples from 

several cancer types, it has been noted that there is a potential correlation between high expression 

of E-selectin/E-selectin ligands and presence of lymph node metastases (314-319). In the setting of 

PDAC, only one study has examined this relationship, and they found no correlation between the 

expression of E-selectin/E-selectin ligands and lymph node metastases (320). Thus, further 

investigation is warranted to determine if there is a correlation between the expression of E-

selectin/E-selectin ligands and lymph node metastasis in clinical samples of pancreatic cancer and 

whether E-selectin a major contributor to lymph node metastasis. 

Our in vivo results demonstrated that E-selectin blockade by GMI-1271 resulted in 

decreased metastasis to the lymph nodes and other organs: liver, lungs, diaphragm, and kidney. 

Metastasis to these sites would be dependent on PDAC cell trafficking through the vasculature 

systems and necessitate interactions between E-selectin on endothelial cells and E-selectin ligands 

on tumor cells. Confirming the posited role of E-selectin in vasculature-dependent metastasis, 

previous studies demonstrated a strong correlation between high expression of E-selectin/E-selectin 

ligands and increased metastatic burden and poor prognosis in patient tumor samples (321-323). 

Additionally, prior studies have demonstrated that metastasis specifically to the liver and lungs is 

often regulated by E-selectin, suggesting that E-selectin may influence organ selectivity during 

tumor dissemination (324-327). However, other studies presented contrasting results that found E-

selectin dispensable for tumor homing to the liver and lungs (328).  Our results support the 
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hypothesis that E-selectin regulates organ selectivity during PDAC dissemination, as PDAC 

metastasis to the liver and lung were the sites most highly impacted by E-selectin blockade. It is 

unknown but possible that E-selectin influences tumor selectivity to other sites (i.e. lymph nodes, 

diaphragm, kidneys) as well.  

Not all PDAC cell lines examined in our study used E-selectin-dependent mechanisms for 

invasion of lymphatic endothelia in vitro and these were predictably resistant to GMI-1271 

treatment. Additionally, E-selectin blockade did not completely prevent PDAC dissemination in 

vivo. These suggest that additional mechanisms contribute to PDAC invasion of endothelial 

barriers. Other proteins have been implicated in tumor invasion of endothelia including ICAM-1, 

VCAM-1, platelet endothelial cell adhesion molecule-1, chemokine receptors CXCR4 and 

CXCR7, integrins, and others (reviewed in (260)). Additionally, immune cells can act as an 

intermediate linker cell type between tumor cells and endothelial cells to facilitate endothelial 

invasion (329, 330). This multicellular process could render non-E-selectin ligand-expressing 

tumors susceptible to E-selectin blockade in vivo, as immune cells are known to use E-selectin for 

intra- and extravasation across endothelia. Colo357 cells, which were shown to use E-selectin-

independent mechanisms for TEM, were capable of upregulating E-selectin expression in hLECs. 

Investigation as to whether PDAC cells upregulate E-selectin to promote leukocyte-assisted TEM 

or for an alternative mechanism, would provide additional insight into the mechanisms driving 

tumor cell transendothelial invasion. It was interesting that PDAC cell lines using E-selectin-

independent mechanisms directly for TEM had reduced capacities to invade a lymphatic 

endothelial barrier compared to E-selectin ligand-expressing PDAC cell lines. This suggests that 

direct E-selectin-independent mechanisms of invasion may be less efficient compared to E-selectin- 

dependent mechanisms. More work needs to be done to fully elucidate the mechanisms that 

underlie the process of lymphatic invasion by tumor cells.  
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GMI-1271 was particularly effective at reducing metastasis and extending survival when 

used in combination with chemotherapy. The improved efficacy of combination therapy with 

gemcitabine is of biological interest and clinical importance. As an anti-proliferative agent, 

gemcitabine significantly reduces the number of potentially metastatic PDAC cells within the 

tumor. Additional treatment with GMI-1271 effectively inhibited the dissemination of the 

remaining metastatic-capable tumor cells. Alternatively, E-selectin has been shown to promote 

chemoresistance by facilitating tumor interactions with a protective vascular niche (331). 

Following GMI-1271 administration, it is possible that PDAC cells were forced to exit the vascular 

niche and enter blood and lymphatic vessels where gemcitabine effectively destroyed more of these 

transiting tumor cells.  It is also possible that inhibition of E-selecting ligand binding disrupted 

other cell-cell interactions in the tumor microenvironment which thereby improved the delivery of 

gemcitabine.  As E-selectin has other biological functions, it is possible that unknown mechanisms 

contributed to the enhanced efficacy of GMI-1271 and gemcitabine when administered together. 

E-selectin is crucial for leukocyte trafficking to inflamed tissues including tumor sites. 

Immune cells within tumor microenvironments are often significant contributors to tumor cell 

killing, survival, proliferation, immune suppression, and metastasis (180, 212, 332). Although our 

results showed no change in the total numbers of immune cells present within the primary tumor 

following GMI-1271 treatment, it is possible that GMI-1271 modified the composition of specific 

immune cell subtypes within the PDAC microenvironment and that this contributed to decreased 

metastasis. Concordant with this possibility, we showed that GMI-1271 (in combination 

chemotherapy) improved survival of immunocompetent mice (but not immune compromised mice) 

following orthotopic challenge. This suggests a link between E-selectin and immune cell-dependent 

mechanisms that modulate tumor progression. Further analysis is warranted to elucidate the effects 

of E-selectin blockade on immune cell recruitment to tumors and how GMI-1271 may work in 

combination with immunotherapies. 
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Our studies demonstrate for the first time the effectiveness of using a glycomimetic small 

molecule antagonist of E-selectin, GMI-1271, in the setting of solid tumors. Until now, GMI-1271 

has mainly been evaluated in hematological malignancies specifically acute myeloid leukemia 

(AML) (333, 334). These AML studies demonstrated that GMI-1271 enhanced leukemic stem cell 

mobilization, resulting in improved efficacy of chemotherapy and prolonged animal survival in 

vivo. Similar to our findings, successful treatment of AML in vivo was dependent on combinatorial 

treatment with an anti-tumor therapy and GMI-1271. Currently, this E-selectin antagonist is in 

phase 1/2 clinical trials for AML (NCT02306291). Additional studies should evaluate the 

effectiveness of GMI-1271 in other solid tumors and as well as its ability to inhibit metastasis in 

early diagnosed tumors. 

In the clinic, PDAC patients are most often diagnosed with advanced metastatic disease. 

However, approximately 15-20% of patients are diagnosed with localized resectable disease (1, 6). 

For these patients, GMI-1271 may be an effective therapy for slowing or reducing PDAC 

dissemination prior to surgical resection. Moreover, unclean resection margins pose a substantial 

risk for disease recurrence (15). GMI-1271 treatment along with chemotherapy may prevent this 

recurrence and improve patient survival.   

In summary, we demonstrate E-selectin is important regulator of lymphatic-directed 

metastasis of pancreatic cancer. The novel glycomimetic E-selectin antagonist GMI-1271 impairs 

PDAC interactions with endothelial cells resulting in decreased tumor dissemination. GMI-1271 is 

a promising agent for inhibiting metastasis in solid tumors. Further work needs to be done to 

determine the effectiveness of GMI-1271 in other solid tumors, its effects on immunity, and its 

ability to improve chemotherapy efficacy.  
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IV. Dual Blockade of CXCR4 and E-selectin and Implications for PDAC Therapy 

i. CXCR4 contributes to invasion of a lymphatic endothelium by PDAC cells 

Very few studies have investigated the role of the CXCL12-CXCR4 chemokine axis in 

lymphatic endothelial cells. The studies that have examined this axis demonstrated it contributes to 

lymphatic migration and lymphangiogenesis (285, 335). We confirmed the finding that hLEC 

migration is stimulated by recombinant CXCL12 as well as CXCL12 secreted from pancreatic 

fibroblasts. Blockade of CXCR4 on hLECs through treatment with GMI-1359 completely 

abrogated CXCL12-induce migration. As GMI-1359 is a dual inhibitor of both CXCR4 and E-

selectin, we demonstrated that the effects were due to CXCR4 antagonism, as E-selectin only 

antagonism did not abrogate CXCL12-induced hLEC migration.   

The CXCL12-CXCR4 axis has also been implicated in facilitating vascular extravasation 

by immune cells and vascular invasion by tumor cells including those of PDAC (277, 286-288, 

336-339). However, a role for CXCR4 in lymphatic invasion has not been fully elucidated. Our in 

vitro results demonstrated that the CXCL12-CXCR4 chemokine axis supports PDAC adhesion to 

and TEM across a lymphatic endothelium and that blockade of CXCR4 significantly impairs these 

processes. Since GMI-1359 antagonizes both CXCR4 and E-selectin, a protein we previously 

showed regulated PDAC TEM, we evaluated the effects of GMI-1359 on two types of PDAC cells: 

ones that express E-selectin ligands (S2-013) and ones that do not express E-selectin ligands 

(Colo357). Not only did GMI-1359 inhibit the TEM of E-selectin ligand-expressing PDAC cells 

(S2-013) but also inhibited the TEM of PDAC cells that do not express E-selectin ligands 

(Colo357). These results were also confirmed using neutralizing antibody specific to CXCR4. Our 

findings are consistent with one other study that demonstrated the CXCL12-CXCR4 axis 

contributes to the TEM of DCs across an inflamed lymphatic endothelium (276). Altogether, our 

results demonstrated that CXCR4 plays a role in the invasion of lymphatic endothelia by PDAC 

cells and by blocking its function we can inhibit PDAC TEM. 
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To further dissect the role of CXCL12-CXCR4 in lymphatic invasion, we pretreated only 

the hLEC monolayer with GMI-1359 and demonstrated that blocking hLEC CXCR4 significantly 

impaired PDAC TEM. Furthermore, pretreatment of the hLEC monolayer with CXCL12 

significantly enhanced the ability of hLECs to facilitate PDAC TEM. Additional pretreatment with 

GMI-1359 returned CXCL12-enhanced TEM to below unstimulated levels. This is the first study 

demonstrating that endothelial expression of CXCR4 plays a role in enabling PDAC TEM. 

Previous studies have focused on the role of CXCR4 in the invading cell type (i.e. immune cells or 

tumor cells) enabling TEM (277, 286-288, 336, 340). If CXCR4 on hLECs regulates PDAC TEM, 

then PDAC cells would need to express the ligand, CXCL12. Indeed, ELISA of whole cell lysates 

indicated PDAC cells express CXCL12; however, it is not constitutively secreted from PDAC cells 

as we did not detect it in PDAC conditioned media. Non-secreted, immobilized CXCL12 has been 

shown to contribute to immune cell TEM across a vascular endothelium (340). To solidify our 

findings, cell-specific knockdown of CXCR4 in hLECs, PDAC cells, or both cell types is needed 

to accurately determine which CXCR4-expressing cell type is regulating PDAC invasion. It would 

not be surprising if CXCR4 in both the endothelial cells and the PDAC cells was contributing to 

lymphatic invasion. Similar studies should also be performed using CXCL12 knockdown 

strategies. It would also be interesting to determine if the other receptor for CXCL12, CXCR7, also 

contributes to lymphatic invasion of PDAC cells. CXCR7 expression in pancreatic tumors 

correlates with lymph node metastasis (341) and has been shown to accelerate tumor invasion in 

vivo (342). 

Unexpectedly, our in vitro results also revealed that E-selectin antagonism (using GMI-

1271) returned CXCL12-enhanced hLEC facilitation of PDAC TEM to control levels. This 

suggests that CXCL12 may upregulate E-selectin expression in lymphatic endothelial cells. A 

previous set of studies did demonstrate that CXCL12 could induce E-selectin expression in vascular 

endothelial cells to facilitate diabetic wound healing (343). More studies are needed to verify the 
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ability of CXCL12 to induce E-selectin expression in hLECs and what mechanisms regulate this 

induction.  

ii. In vivo blockade of CXCR4 and E-selectin in PDAC challenged mice 

Based on our in vitro results, we decided to evaluate whether dual inhibition of CXCR4 

and E-selectin reduced PDAC metastasis and improved overall survival. Similar to our GMI-1271 

studies, we performed our in vivo studies with athymic mice that were orthotopically challenged 

with the human PDAC line S2-013. Our findings demonstrated GMI-1359 monotherapy decreased 

metastatic incidence within the spleen, liver, lungs, and kidneys compared to treatment with the 

vehicle control. However, this was only apparent when we excluded the mice that did not complete 

the 4-week treatment regimen. When used in combination with gemcitabine, GMI-1359 failed to 

reduce PDAC metastasis when compared to mice treated with gemcitabine alone. Consistent with 

our previous in vivo studies, GMI-1271 in combination with gemcitabine was the most effective at 

reducing PDAC metastasis. Although the reduction in metastasis with GMI-1359 was not 

substantial, it is consistent with studies showing CXCR4 expression in pancreatic cancer patient 

samples correlates with metastatic burden (137, 140).  

Due to its efficacy in reducing metastatic incidence, we anticipated that GMI-1359 would 

prolong animal survival. However, GMI-1359 failed to improve overall animal survival when used 

as either a single agent or in combination with gemcitabine in our immunocompromised orthotopic 

model. Obfuscating our results is the gemcitabine treatment. We suspect that prolonged treatment 

with gemcitabine contributed to animal death as all mice treated with gemcitabine were severely 

cachexic at end stage and died with much smaller tumors compared to mice not treated with 

gemcitabine. For future studies requiring extended treatment, we recommend treating athymic mice 

with a lower dose of gemcitabine.  

Being a chemokine receptor, CXCR4 regulates the recruitment of various cell types to the 

PDAC microenvironment. We, therefore, evaluated the effects GMI-1359 had on the cellular 
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composition of the PDAC microenvironment. Unexpectedly, immunohistochemical staining 

revealed that GMI-1359 treatment significantly decreased the desmoplastic reaction within primary 

tumors as determined by loss of activated (αSMA+) fibroblasts. This was the result of blocking 

CXCR4 as blockade of E-selectin alone had no impact on activated fibroblast presence. In the past, 

researchers hypothesized that reducing the desmoplastic barrier would result in improved drug 

perfusion into the tumor (165).  However, more recent studies suggest that pancreatic fibroblasts 

may constrain tumor growth and progression as depletion of tumoral fibroblasts led to the 

development of both highly aggressive and highly proliferative undifferentiated tumors (175-177). 

This may explain why GMI-1359 did not prolong overall animal survival as we may have 

inadvertently promoted tumor growth and aggressiveness by eliminating fibroblasts from the 

PDAC microenvironment.  

For future studies, we would like to determine the mechanism by which blockade of 

CXCR4 decreases the presence of αSMA+ fibroblasts in PDAC tumors. The most obvious 

hypothesis would be that blocking the CXCL12 chemokine gradient impairs recruitment of 

fibroblasts to the tumor. However, an alternative hypothesis would be that CXCR4 regulates the 

activation status of fibroblasts and that antagonism of this receptors reverts fibroblasts to a 

quiescent state (αSMA-). Currently, there are no specific markers for identifying quiescent 

fibroblasts in tumor sections. Most studies rely upon in vitro stimulation to evaluate the ability of 

protein or drug to induce or inhibit fibroblast activation (167). A third hypothesis pertains to the 

regulation of Shh. This morphogen is one of the major drivers of desmoplasia in pancreatic cancer 

(166). PDAC-secreted Shh promotes desmoplasia through paracrine signaling in pancreatic 

fibroblasts. It was recently uncovered that Shh expression in PDAC cells is regulated by the 

CXCL12-CXCR4 axis (344). GMI-1359 may indirectly suppresses desmoplasia by inhibiting 

PDAC cell secretion of Shh thus preventing its paracrine signaling in pancreatic fibroblasts which 

is necessary to drive desmoplasia.  
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 We also noted a reduction in LVD within the primary tumors of mice treated with GMI-

1359. There are a handful of explanations for this finding. CXCL12 is a known lymphangiogenic 

factor (285, 335) and blockade of its receptor, CXCR4, would inhibit lymphangiogenesis and 

reduce tumor LVDs. In agreement with this hypothesis, we demonstrated that CXCL12 is a strong 

chemoattractant for lymphatic endothelial cells and blockade of CXCR4 potentially impairs 

recruitment of lymphatic vessels to the primary tumor. Alternatively, CXCL12 is a chemoattractant 

for many cell types within the PDAC microenvironment. Blockade of CXCR4 may have impaired 

the recruitment of cells known to secrete pro-lymphangiogenic factors such as CAFs and TAMs, 

and, this, in turn, reduced lymphatic vessel numbers within the tumor. In line with this, GMI-1359 

drastically reduced the number of αSMA+ fibroblasts within primary tumors, and without these 

fibroblasts to induce lymphatic migration and stimulate lymphangiogenesis, LVD remained low in 

GMI-1359-treated tumors. Further research is needed to determine the mechanisms by which GMI-

1359 reduces lymphatic vessel densities, although one can predict it is likely a combination of 

direct and indirect mechanisms.  

GMI-1359 significantly reduced LVD within primary tumor sites, but it did not suppress 

PDAC metastasis to the lymph nodes. This finding is likely due to disruption of the PDAC 

microenvironment including the reduction in desmoplasia following GMI-1359 treatment. 

Although we did not see a change in the total number of immune infiltrates, it is likely GMI-1359 

altered the immune cell composition of the tumor as well. By disrupting the “normal” PDAC 

microenvironment, it is possible that tumors acquired a more aggressive phenotype enabling 

successful metastasis the lymph nodes despite decreased lymphatic densities. The mechanisms 

contributing to tumor aggressiveness following GMI-1359 treatment and stromal disruption are 

likely to be complex and dependent upon the functions of multiple cell types.  

 Although GMI-1359 significantly reduced the presence of lymphatic vessels within the 

primary tumor, we saw no change in blood vessel densities. This is surprising considering the 
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overlap of mechanisms that contribute to both lymphangiogenesis and angiogenesis. The 

discrepancy in lymphatic vessel and blood vessel densities suggests that the mechanisms promoting 

lymphatic vessel growth within PDAC tumors are not necessarily the same as those promoting 

blood vessel growth. This idea of differential mechanisms regulating lymphatic and vascular 

growth is supported by studies examining lymphangiogenesis within tumor draining lymph nodes. 

These lymph nodes undergo massive lymphangiogenic remodeling prior to the arrival of tumor 

cells but the blood vasculature remains unchanged (95, 345-347). Adding to the complexity is that 

these lymph nodes contain an abundance of both pro-lymphangiogenic and pro-angiogenic factors, 

yet only lymphangiogenesis occurs. More work needs to be done to determine the differential 

factors regulating lymphatic and vascular growth within PDAC tumors.  

The CXCL12-CXCR4 axis has been shown to be a negative regulator of anti-tumor T cell 

responses within PDAC tumors (171). Therefore, we investigated CXCR4 blockade in an immune 

competent mouse model. To accelerate our studies, we orthotopically challenged C57BL/6 mice 

with a KPC cell line (KPC8060) derived by our laboratory.  In our first set of studies, tumors were 

allowed to establish for two weeks after which treatments were initiated. Unexpectedly, KPC cells 

display a very aggressive phenotype following orthotopic implantation: just two weeks after 

implantation, mice began to show signs of end stage disease (lethargy, extreme cachexia, and/or 

significant accumulation of ascites). We consulted with Dr. David Tuveson whose laboratory 

developed the KPC mouse and they have observed a similar aggressiveness when orthotopically 

implanting KPC cell lines into syngeneic mice. Despite demonstrating late stage disease, we 

proceeded with the survival study. Unfortunately, GMI-1359 treatment failed to improve the 

survival of mice with advanced disease. These studies were repeated except treatment regimens 

began the day following KPC cell implantation. Even in animals with early stage disease, GMI-

1359 failed to prolong overall animal survival. In future studies, we would like to profile the tumor 

microenvironments of GMI-1359-treated immune competent mice just as we did with the 
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immunocompromised mice. In these mice, we will also evaluate changes to the immune cell 

compartment. We expect that the tumors from GMI-1359-treated immunocompetent mice will 

similarly display a significant reduction in desmoplasia and LVD. We also expect that GMI-1359 

will significantly alter the immune cell subtypes found within the tumor.  

Ozdemir et al. demonstrated that depleting the fibroblasts from the PDAC tumor 

microenvironment makes these tumors susceptible to immunotherapy (175). Additionally, Feig et 

al. demonstrated that CXCR4 blockade (with AMD3100) significantly improved immunotherapy 

efficacy resulting in tumor regression in KPC mice (171). We evaluated if blockade of CXCR4 and 

the ensuing depletion of pancreatic fibroblasts improves the efficacy of anti-PD-L1 immunotherapy 

in KPC-challenged C57BL/6 mice. Unfortunately, in our study GMI-1359 did not improve survival 

when used in combination with gemcitabine and/or anti-PD-L1 immunotherapy. Feig et al. 

observed approximately a 15% reduction in tumor size after only 6 days of treatment with CXCR4 

inhibitor AMD3100 and anti-PD-L1 antibodies. Although not investigated in their study, one would 

suspect that tumor regression would translate to improved overall survival. Contrarily, our studies 

demonstrated that chronic blockade of CXCR4 failed to improve anti-PD-L1 efficacy and did not 

prolong overall animal survival.  

iii. Ongoing future studies: Combinatorial treatment of KPC mice with GMI-1359 and anti-

PD-L1 immunotherapy 

Our results demonstrated that CXCR4 blockade improved neither the efficacy of 

immunotherapy nor overall survival in orthotopically challenged mice. However, orthotopic tumor 

models often do not recapitulate the human disease nor do these tumors respond appropriately to 

therapies. Therefore, we are currently evaluating GMI-1359 efficacy in combination with 

immunotherapy for the treatment of pancreatic cancer in KPC mice. We have designed a drug 

enrollment study that uses ultrasound imaging to identify PDAC tumors and track their growth in 

vivo. Pancreatic tumors are typically identifiable by ultrasound at 4 mm in diameter. Enrollment 

eligibility is determined by the mean of the shortest and longest tumor diameters of the largest 
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tumor cross section being 4 to 7 mm in diameter. Upon attainment of the enrollment eligibility, 

mice are randomized into 4 treatment groups: 1) Vehicle (PBS) control; 2) 40 mg/kg GMI-1359 

daily; 3) 160 µg/mouse anti-PD-L1 antibody; 4) combination GMI-1359 and anti-PD-L1. Tumors 

growth is monitored weekly by ultrasound imaging. Mice are treated until they display signs of end 

stage disease.  

Although this investigation is still ongoing, we have some preliminary data. Figure 6.1A 

illustrates the relative change in tumor size across the various treatment groups. For effective 

evaluation of tumor growth, a minimum of three images are needed: an image at the time of 

enrollment; an image following 1 week of treatment; and an image following 2 weeks of treatment. 

At this point in the trial, we see no significant effect of GMI-1359 inhibiting KPC tumor growth. 

The same is true for combinatorial treatment with GMI-1359 and anti-PD-L1. Treatment with PD-

L1 alone appears to be slightly increasing PDAC tumor growth. By plotting the tumor growth for 

each enrolled mouse, we can see that individual mice respond to therapy relatively similarly within 

a treatment group (Figure 6.1B). Plotting the relative change in tumor size as a waterfall plot, we 

can evaluate the relative change in tumor size for individual mice after 2, 3, or 4 weeks of treatment 

(Figure 6.1C). Mice treated with GMI-1359 alone or in combination with anti-PD-L1 demonstrate 

similar tumor growth rates as control mice, while anti-PD-L1-treated mice demonstrate slightly 

elevated tumor growth rates. With only 2-4 total mice enrolled per group, significantly more mice 

will need to be enrolled before any accurate conclusions can be made regarding the effects of GMI-

1359 and immunotherapy in KPC mice. 

In this trial, we are also evaluating post-enrollment animal survival. Based on median 

survival time, GMI-1359 may be prolonging animal survival compared to vehicle-treated mice 

(Figure 6.1D). Mice treated with anti-PD-L1 alone demonstrate the longest post-enrollment 

survival time while mice treated with both GMI-1359 and anti-PD-L1 demonstrate a slightly shorter 

survival time. Table 6.1 indicates the post-enrollment survival time for each individual mouse and  
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Figure 6.1 Tumor growth and post-enrollment survival time for KPC mice treated with 

GMI-1359 and/or immunotherapy.  

A) Line graph showing the relative average change in KPC tumor size (diameter) following 

enrollment into the GMI-1359 drug study. Upon attainment of enrollment criteria, mice are 

randomized into four treatment groups: 1) vehicle control (black line), 2) 40 mg/kg GMI-1359 

daily (blue line), 3) 160 μg/mouse anti-PD-L1 every 4 days (green line), or 4) GMI-1359 + PD-

L1 (red line). Tumors are image every week by ultrasound to follow tumor growth. Initial tumor 

size was normalized to 1 to account for starting size variations. Error bars = s.d. 

B) Line graph demonstrating change in tumor growth for each KPC mouse. Tumors are image 

every week by ultrasound to follow tumor growth. Initial tumor size was normalized to 1 to 
account for starting size variations. Asterisks indicates mice is still enrolled in the trial.  

Error bars = s.d. 

C) Waterfall plots demonstrating final tumor volume changes after 2 weeks of treatment (left) or 

3 weeks of treatment (right).  Each bar represents a single mouse.  

D) Kaplan-Meier survival curve demonstrating survival post-enrollment (days) for KPC mice 

enrolled in the GMI-1359/PD-L1 drug study. Median survival listed to the right.  
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Figure 6.1 
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Table 6.1 KPC Drug Enrollment Mouse Identification List 

 

Table 6.1 lists all the KPC mice that have been enrolled in the drug study along with the 

treatment group, total number of survival days post-enrollment, and the current status of the 

mouse. Asterisks indicates mice currently enrolled in the trial.   
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illustrates the variability in survival times within each treatment group. Again, too few animals 

have been enrolled in the study, and, therefore, no accurate conclusions can be made at this time.  

V. Targeting the Lymphatic System as Treatment for PDAC 

i. Potential lymphatic-targeted therapies 

“Due to advanced stage at diagnosis and its complex microenvironmental organization, 

pancreatic ductal adenocarcinoma has proven to be very difficult to treat. Surgical removal of the 

tumor is the most effective option, but only approximately 15% of cases are considered resectable 

(348, 349). Of those cases in which resection is an option, incomplete removal of microscopic 

disease (R1 residual margin status) only slightly improves patient survival over those cases 

presenting with unresectable metastatic disease (350, 351). Non-surgical options for pancreatic 

cancer include radiation, chemotherapy, or a combination of both. Some approved chemotherapies 

for the treatment of pancreatic cancer are the use of FOLFIRINOX, gemcitabine, albumin-bound 

paclitaxel, cisplatin, and oxaliplatin (as well as others) (352, 353). However, these drugs have had 

limited success in prolonging patient survival. Development of targeted therapies that specialize in 

blocking crucial molecular pathways of the pancreatic tumor and its microenvironment is becoming 

an increasingly attractive therapeutic option.”  

“Anti-angiogenic therapies were originally developed to starve tumors of important 

nutrients and oxygen and to reduce the number of potential routes for dissemination. However, 

clinical trials demonstrated that, when used alone, anti-angiogenic therapy was not sufficient to 

improve patient survival. Unexpectedly though, the results indicated that anti-angiogenic therapy 

significantly improved survival of patients with solid tumors when used in combination with  

conventional chemotherapies (354-356). These findings led to the evolution of the current vascular 

normalization theory: the use of anti-angiogenic therapy to block aberrant tumor angiogenesis and 

alleviate vessel dysfunction (357). By restoring the balance between pro- and anti-angiogenic 

factors, anti-angiogenic therapies improved vessel organization, stabilized cell-to-cell junctions, 
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increased pericyte coverage, and, consequently, reduced fluid leakage. All these factors, in turn, 

relieved blood flow irregularities resulting in improved delivery of chemotherapy to all parts of the 

tumor (358). Unfortunately, in the setting of pancreatic cancer, anti-angiogenic therapies have had 

either no effect or only transient effects on improving patient survival even when used in 

combination with standard chemotherapies (359-363). PDAC tumors are unusually hypovascular 

and desmoplastic negating the ability of even normalized vessels to deliver therapy (364). The 

failure of anti-angiogenic therapy in PDAC may also be the result of tumor cells circumventing the 

VEGF-A/VEGFR-1 blockade through autocrine or paracrine secretion of alternative angiogenic 

factors, such as the prototypical lymphangiogenic factors which have overlapping angiogenic 

functions (363, 365-367).”  

“Targeting the tumor lymphatic vasculature as a treatment for cancer is beginning to gain 

interest among both basic and clinical research groups with the primary focus on anti-

lymphangiogenic therapies. Lymphangiogenic growth factors are not critical for the maintenance 

of adult lymphatic vessels in homeostasis. This allows for extended treatment with anti-

lymphangiogenic therapies in tumor settings without disruption of pre-existing vessels and with 

minimal drug-induced toxicities (368, 369). Numerous pre-clinical in vivo studies have 

demonstrated that blocking pro-lymphangiogenic factors VEGF-C and VEGF-D and their receptor 

VEGFR-3 significantly reduces tumor lymphangiogenesis and lymph node metastases in many 

tumor types including pancreatic (108), breast (370-373), melanoma (369), renal (374), lung (156, 

375), gastric (376, 377), prostate (378), hepatocellular (379), and bladder (380). Other protein 

targets of lymphangiogenesis that have shown promise in inhibiting lymphatic metastasis in vivo 

include the VEGFR-3 co-receptor Nrp-2 (381, 382) and the angiopoietins Ang-1 and -2 (383, 384). 

Currently, two humanized neutralizing antibodies are in clinical trials for patients with solid 

tumors: VGX-100, which inhibits VEGF-C (NCT01514123) and IMC-3C5, which inhibits 

VEGFR-3 (NCT01288989).” 
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“The blockade of a single VEGF/VEGFR pathway will likely be insufficient to inhibit 

tumor lymphangiogenesis and lymph node metastasis due to the multiple compensatory and 

overlapping roles of the VEGF ligands and receptors (52, 66, 366, 385). Other growth mechanisms 

outside of VEGF/VEGFR signaling may also regulate lymphangiogenesis in the tumor setting, such 

as PDGF-BB/PDGFR (76) and FGF/FGFR (386). Receptor tyrosine kinase inhibitors (RTKIs) 

often target multiple receptors allowing them to inhibit several signaling pathways 

simultaneously—including the VEGFR pathways. Both pre-clinical comparative studies and 

clinical trials have determined the safety and efficacy of numerous anti-angiogenic/-

lymphangiogenic RTKIs for the treatment of cancer including foretinib (387), cediranib (388, 389), 

and axitinib (390-392). Some of these RTK inhibitors have also been approved for clinical use. 

Sorafenib, which inhibits VEGFR-1 and -3, PDGFR-β, FGFR-1, and Raf proteins, has been 

approved for renal cell (RCC) and hepatocellular carcinomas (393-395); sunitinib, which inhibits 

VEGFR-1 and -3, and PDGFR-α and -β, has been approved to treat pancreatic neuroendocrine 

tumors, RCC, and gastrointestinal stromal tumors (396-399); and pazopanib, which inhibits 

VEGFR-1 and -3, PDGFR-α and -β, and FGFR, has been approved to treat RCC and soft tissue 

sarcoma (400-402) (RTKIs further reviewed in (42)). Vatalanib, which inhibits VEGFR-1, -2, and 

-3, and PDGFR-β, is currently in clinical trials for the treatment of various solid tumors including 

pancreatic, ovarian, and breast cancers. This RTKI has been shown to directly inhibit angiogenesis, 

lymphangiogenesis, and tumor growth in pre-clinical models of pancreatic cancer as well as other 

cancer models (403-407). In a recent clinical trial, vatalanib resulted in a partial or stable response 

for some metastatic pancreatic cancer patients who had initially failed gemcitabine treatment (408). 

Many of these lymphangiogenic receptor-targeting RTKIs hold promise for the treatment of early-

diagnosed and resectable cancers (52).  Unfortunately, these are not typical characteristics of 

pancreatic cancer, and, consequently, many of these drugs have failed to significantly improve 

pancreatic cancer patient survival (391, 409-411).”  
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“Lymphangiogenesis is not the only manner by which the lymphatic vasculature may 

promote tumor progression. As discussed previously, pre-existing lymphatic vessels can directly 

facilitate metastasis by transporting tumor cells to distant sites, and our studies with GMI-1271 and 

GMI-1359 indicate that is possible to target mechanisms of lymphatic invasion by tumor cells 

during dissemination. Lymphatic endothelia may also contribute to immune suppression by altering 

DC and T cell responses. However, the processes of lymphatic invasion and lymphatic-directed 

immune suppression are poorly understood and much more work needs to be done to determine if 

these functions can be specifically targeted in lymphatic vessels for effective treatment of PDAC 

as well as other cancers.” 

ii. Using lymphatic vessels to deliver therapies to lymph nodes 

“In pancreatic cancer, metastasis to lymph nodes and distant sites has often already 

occurred by the time of diagnosis. Anti-lymphangiogenic therapies may inhibit further tumor cell 

dissemination but will do little to reduce the growth of metastatic tumors that have already 

colonized distant sites (156, 389, 412). Successful treatment of tumor-invaded lymph nodes has 

been particularly difficult to achieve. Resection of invaded lymph nodes would intuitively seem to 

be a promising strategy; however, as discussed above, current clinical imaging technologies cannot 

reliably detect single cell or microscopic lymph node metastases (413, 414), and excision of an 

excessive number of lymph nodes is controversial due to conflicting evidence regarding its survival 

benefits and concerns about post-operative quality-of-life (415, 416). Also, conventional 

intravenously-administered therapies display poor access to lymphatic vessels and lymph nodes 

resulting in sub-optimal drug concentrations within lymph nodes (417). This enables tumor cells 

present within lymph nodes to evade treatment and potentiate future recurrence. Using the 

lymphatic vasculature as a delivery system for cancer therapies to the lymph nodes has gained 

increasing interest. For therapies to be effectively taken up by lymphatic vessels and not blood 

capillaries requires specific characteristics of drug formulations such as being of a particular size 

and molecular weight, lipophilicity and surface charge of the drug carrier, and concentrations of 
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the drug and carrier (reviewed in (418, 419)). A few anti-cancer drugs have been formulated to 

target the lymphatic system and have shown promise in vivo: a methyl poly(ethylene glycol)-

distearoylphosphatidylethanolamine micelle containing doxorubicin reduced the size of lymph 

node metastases in a melanoma model (420); a PEGylation of interferon-α2 demonstrated anti-

tumor efficacy in the lymph nodes of rats with breast cancer (421); cisplatin conjugated to a 

copolymer block of poly(ethylene oxide)-block-poly(lysine) successfully treated lymph node 

metastases in a model of squamous cell carcinoma (422); and gemcitabine loaded onto magnetic 

multiwalled carbon nanotubes (mMWNTs) resulted in better uptake of gemcitabine in the lymph 

nodes and regression of lymph node metastases in a subcutaneous model of pancreatic cancer (380). 

Recently, implantable intralymphatic ports have also been evaluated as a mechanism for delivering 

drugs and DC vaccines to lymph nodes (423, 424). The field of lymphatic-based drug delivery is 

still in its infancy and more studies are required to demonstrate efficacy and feasibility in patients.” 

VI. Conclusions and Perspectives 

The lymphatic system almost certainly plays a significant role in PDAC progression, as 

dissemination is seen early and frequently in PDAC patients. However, the specific mechanisms 

governing tumor-associated lymphangiogenesis, lymphatic invasion, and lymphatic-directed 

metastasis are sorely under-researched as are the contributions of the PDAC microenvironment to 

these processes. In this dissertation, we characterized the effects PDAC cells and pancreatic 

fibroblasts have on lymphatic endothelial cells in regards to recruitment, lymphangiogenesis, and 

invasion. Using novel small molecule inhibitors, we specifically focused on the roles of E-selectin 

and CXCR4 in regulating lymphatic invasion and metastasis. Blockade of E-selectin significantly 

impaired PDAC interactions with lymphatic endothelia resulting in decreased metastasis to the 

lymph nodes. Blockade of CXCR4 also impaired PDAC invasion of lymphatic endothelia as well 

as reshaped the PDAC tumor microenvironment. The work presented in this dissertation uncovers 

some the mechanisms by which lymphatic endothelial cells support PDAC progression 

(particularly invasion and metastasis) as well as how both PDAC tumor cells and pancreatic 
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fibroblasts influence lymphatic biology. Further investigation into the role of the lymphatic 

vasculature during PDAC progression and metastasis will undoubtedly improve our understanding 

of PDAC biology and lead to improved pancreatic cancer therapies.   
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