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Abstract 

Staphylococcus aureus (S. aureus) is an opportunistic pathogen that is a leading cause of both 

nosocomial and community-associated infections. Armed with a myriad of virulence factors and 

the propensity to form a biofilm on native tissues and implanted medical devices alike, S. aureus 

infections represent a very real public health threat, the treatment of which results in an excessive 

economic burden. S. aureus biofilm infections are notoriously recalcitrant to antibiotic therapy 

and adept at evading and neutralizing the host immune antimicrobial response. Previous studies 

from our laboratory have shown that S. aureus biofilms are able to cause persistent infections, in 

part, through the reprogramming of the macrophage (MΦ) immune response. While macrophages 

are readily able to recognize and respond to S. aureus in a planktonic state, their ability to mount 

a functional antimicrobial attack is thwarted upon encountering S. aureus biofilm. We have 

observed that MΦs in close proximity to S. aureus biofilms are less phagocytic and skewed 

towards an anti-inflammatory profile typified by arginase and IL-10 production. We have 

demonstrated that the ability of S. aureus biofilms to cause chronic infections is due, in part, to 

TLR2 or TLR9 evasion. However, we have shown that MyD88 signaling does provide some 

benefit to the host in combating S. aureus biofilm infections, which may be attributed to IL-1 

receptor signaling. To better understand how S. aureus biofilms subvert the MΦ antimicrobial 

response, the work described in this dissertation assessed S. aureus transcriptional activity during 

co-culture with MΦs, whether S. aureus biofilms inhibit MΦ activity through secreted molecules, 

and performed a high-throughput screen of the Nebraska Transposon Mutant Library to identify 

key genes involved in dampening the MΦ NF-κB-regulated proinflammatory response. We found 

that S. aureus biofilms attenuate their transcriptional activity following MΦ exposure, augment α-

hemolysin (Hla) and leukocidin AB (LukAB) secretion to inhibit MΦ phagocytosis and induce 

cell death, and rely on a functional purine biosynthetic pathway to prevent MΦ invasion and 

phagocytosis, in part, through controlling the amount of eDNA available for MΦ recognition at 
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the surface of the biofilm extracellular matrix (ECM). Collectively, these studies build upon our 

previous observations by identifying key mechanisms whereby S. aureus biofilms are able to 

thwart the MΦ antimicrobial response.  
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Chapter 1: Introduction 
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1) Staphylococcus aureus (S. aureus) biofilm infection 

a) Methicillin-resistant S. aureus (MRSA) 

 Staphylococcus aureus (S. aureus) is a gram-positive, opportunistic pathogen that in the 

past few decades has become a leading cause of both nosocomial and community-associated 

infections (1). S. aureus is the most virulent of the staphylococcus genus, with the ability to cause 

a wide range of diseases, from relatively minor skin and soft tissue infections (SSTIs) to more 

severe pneumonia and sepsis potentially leading to toxic shock syndrome (2). S. aureus has 

remained a successful pathogen throughout the antibiotic era due, in part, to its propensity to 

rapidly acquire antibiotic resistance, and methicillin-resistant S. aureus (MRSA) is no exception. 

Methicillin, a beta-lactamase insensitive beta-lactam that is bacteriocidal by inhibiting 

peptidoglycan synthesis, began being used in the 1950s in response to the emergence of 

penicillin-resistant S. aureus (PRSA). However, within ten years MRSA isolates began to emerge 

in hospitals across the US, with one of the first known incidences occurring at Boston City 

Hospital (3). Through the intervening decades, MRSA continued to slowly spread, but generally 

only affected immune compromised patients, until the late 1990s when a dramatic surge in 

MRSA rates began (4). It was around this time that community-associated MRSA (CA-MRSA) 

began to occur outside of hospitals, inflicting otherwise healthy individuals (5) who, had 

historically encountered primarily methicillin-sensitive S. aureus (MSSA) strains.  

CA-MRSA infection is now considered a worldwide epidemic and SSTIs are common, 

particularly among athletes, children, homeless persons, military personnel, and many other 

groups (6). While exact numbers vary from study to study, some reports place the percentage of 

CA-MRSA as responsible for over 50% of all CA-S. aureus infections (7). The emergence of 

MRSA coincides with the ability of S. aureus to express a low-affinity penicillin binding protein 

(PBP) known as PBP2a (3), which is encoded by the mecA gene and carried on a mobile genetic 

element known as Staphylococcal Cassette Chromosome (SCC) mec (8), which also contains 
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intact or truncated sets of the divergently transcribed regulatory genes, mecR1 and mecI (3). In 

the presence of beta-lactams, such as methicillin, mecR1 cleaves mecI bound to the operator 

region of the mecA promoter, thereby de-repressing PBP2a production (9). Since methicillin 

cannot bind PBP2a, cell wall synthesis is able to proceed and S. aureus is able to replicate in its 

presence (3). While both are MRSA, CA-MRSA usually differs from nosocomial MRSA in that it 

harbors smaller SCCmec variants, Type IV and V, is less resistant to other types of antibiotics, 

produces more toxins including Panton-Valentine Leukocidin (PVL), and most commonly causes 

SSTIs (3).  

b) S. aureus biofilms 

 Many bacteria can form biofilms, which are generally defined as an adherent community 

of bacteria encased within a self-produced matrix typically composed of a combination of 

exopolysaccharides, proteins, and extracellular DNA (eDNA) (10-12). The biofilm composition 

is often dependent on environmental factors, such as nutrient availability and mechanical stress 

(11). As biofilms represent a distinct lifestyle, biofilm-associated bacteria exhibit an altered 

phenotype from planktonic cells with regard to metabolism, gene expression, and protein 

production , undoubtedly in part due to nutrient, pH, and oxygen gradients present throughout the 

characteristic tower-like biofilm structures (13).  Biofilms represent a communal virulence 

determinant to circumvent immune-mediated clearance and establish persistent infection (13-16). 

Most medical device-associated biofilm infections are caused by S. epidermidis and S. aureus, 

and both species can also establish biofilms on native host surfaces, such as heart and bone tissue 

(17-19). The biofilm mode of growth has been recognized as a major mediator of infection, 

contributing to an estimated 80% of all infections (20).   

 Biofilm formation is classically considered to occur in a stepwise fashion, consisting of 

initial attachment, cell aggregation (21, 22) and proliferation, accumulation of an ECM and tower 

formation, and detachment of cells and biofilm dispersal (10, 23, 24). Initial attachment is 
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believed to be largely physico-chemical in nature, due to features such as hydrophobicity during 

the process of passive adsorption (10, 24). S. aureus can form biofilms on both native tissue and 

abiotic surfaces, and while the specific mechanisms for attachment likely differ between the two 

types of surfaces, it is believed to be mainly governed by the interaction of bacteria with human 

matrix proteins either present on native tissue or deposited on implanted medical devices shortly 

after placement (24).  Following initial attachment, S. aureus cells begin to accumulate and 

aggregate into multiple layers in a process that is largely mediated by the expression of microbial 

surface components recognizing adhesive matrix molecules (MSCRAMMs) (10). As the name 

suggests, these are surface-attached proteins (e.g. fibronectin- and fibrinogen-binding 

proteins)(25, 26) that help anchor the bacteria to the surface by linking with human matrix 

proteins (24). Next, cells began to proliferate and form biofilm structures through the production 

of exopolysaccharides (e.g. polysaccharide intercellular adhesion [PIA]) (27-29), proteins (e.g. S. 

aureus surface proteins C and G [SasC, G]) (30, 31), and eDNA (10, 24, 32). The formation of 

channels and tower-like structures are thought to facilitate nutrient and waste exchange within the 

base of the biofilm (13, 23). Finally, upon full maturity biofilm-associated bacteria begin to 

detach, facilitating biofilm dispersal in a process influenced by quorum-sensing (QS). QS is a 

phenomenon whereby increased bacterial cell density triggers changes in gene expression and, in 

S. aureus, is governed, in part, by the accessory gene regulator (agr) system (24).  

c) S. aureus prosthetic joint infections (PJIs) 

 An increasing world population coupled with increased life expectancies has led to a 

progressive rise in primary and revision arthroplasties (33). By 2030, the demand for primary 

total hip and knee arthroplasties in the United States alone is estimated to increase by 174% and 

673%, respectively, over the number of procedures performed in 2005 (17). Due to its commensal 

nature, it has been estimated that 20% of healthy adults are S. aureus carriers, typically in the 

nasal cavity, with another 60% experiencing transient carriage (34), placing a vast majority of the 
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adult population at increased risk of infection (35). Infection is the major complication of 

orthopedic implants, with incidences reportedly between 1-2% for both knee and hip 

replacements (36-40), and S. aureus is a leading cause of orthopedic implant infections with 

serious morbidity and mortality outcomes (17, 41) in large part due to its ability to form a 

biofilm. Biofilm infections are recalcitrant to antibiotics (42, 43), which often necessitates 

removal of the infected device or native tissue, and are associated with significant morbidity and 

economic impact (17, 44, 45). Indeed, it has been estimated that approximately $1.8 billion is 

spent annually in the US for the treatment and clinical management of orthopedic implant-related 

infections (46, 47).  

 While the exact mechanisms of prosthetic infection are still unclear, studies have 

indicated that the presence of a foreign body reduces the minimal inoculum of S. aureus required 

to cause infection by a factor of greater than 105 (48, 49). Experimental evidence in animal 

models, for instance, have shown that an infection can occur with fewer than 100 colony forming 

units (CFU) of microorganisms, and despite the use of perioperative antimicrobial prophylaxis, 

when a foreign body is present (50). These animal observations have seemingly held true in 

human patients as well, with higher relapse of infection following bacteremia in patients with 

orthopedic implants, 30-40% of which followed S. aureus bacteremia (51, 52).  

d) Mouse models of S. aureus prosthetic joint infection (PJI) 

 There are currently two published murine models of S. aureus PJI, both of which explore 

static biofilm growth and host-pathogen interactions during a persistent infection in an implant-

associated osteomyelitis setting, but which differ slightly in placement of the metal implant and 

observed host response. In the mouse tibial implant model, C57BL/6 mice have been shown to 

establish a chronic infection resulting in upregulation of IL-2, IL-12p70, TNF-α, IL-1β, IL-6, and 

IL-17 (53). In this model, it has been proposed that early activation of the inflammatory response 

may not only be ineffective at microbial clearance, but may also be detrimental to the host due to 
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collateral tissue damage caused by neutrophil (PMN) activation and inflammatory mediator 

influx. In contrast, the early inflammatory response gives way to a chronic anti-inflammatory 

milieu during the femur implant model, typified by myeloid-derived suppressor cell (MDSC) 

infiltration in part through IL-12p70-mediated recruitment, a dampening of proinflammatory 

signaling (e.g. IL-1β and IL-6), an increase in anti-inflammatory signaling (e.g. IL-10) (54-56).  

2) S. aureus virulence and host immune evasion 

a) Accessory gene regulator (agr) 

 S. aureus regulates protein production via a number of two-component systems, 

including a bacterial density-dependent mechanism of cell-to-cell communication known as QS. 

QS operates through the secretion and detection of a signal molecule, in this case autoinducing 

peptide (AIP), which triggers a cascade of cellular responses (57). In S. aureus, the QS system is 

encoded by the agr locus, composed of four co-transcribed genes (agrA, agrC, agrD, and agrB) 

encoding a two-component trans-membrane transduction complex, a pro-signaling peptide, and a 

membrane transporter (58). In S. aureus, at least four agr allelic genes exist that are characterized 

by a specific signaling peptide (numbered I to IV) and it has been observed that the agr activity 

within a group inhibits that of the other groups (59). The effector molecule of the agr system is a 

regulatory RNA, RNAIII, whose synthesis is dependent on agr activation and driven by the P3 

promoter (10). Altogether, the agr system acts as a trigger, switching from the expression of 

surface-associated proteins to secreted proteins and has been shown to regulate numerous 

virulence factors (e.g. α-toxin, leukocidins, phenol-soluble modulins [PSMs], adhesins, proteases, 

etc.) and even play a role in the biofilm maturation process (60, 61). For example, the DNA-

binding regulatory protein SarA is critical for biofilm formation and virulence factor expression 

in S. aureus and SarA acts, in part, through the accessory gene regulator agr, which can thus be 

thought of as an important regulatory switch between planktonic and biofilm lifestyles (62-65).  

b) Microenvironment modulation 
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 Previous work has characterized numerous secreted virulence factors used by 

staphylococci that target specific host cell populations. S. aureus, in particular, utilizes numerous 

hemolysins (66), leukocidins (67, 68), and proteases to evade the host immune system (69). 

While staphylococci certainly divert resources from secreted to structural proteins during early 

biofilm growth, protein secretion is still maintained in biofilms. For example, several reports have 

demonstrated that various bacterial biofilm-forming species secrete peptides and full-length 

proteins (i.e. Esp) that interfere with biofilm development of competing organisms, presumably to 

eliminate competition for a biofilm-friendly niche (70-72). Additionally, studies have 

demonstrated evidence of host-biofilm cross-talk involving the QS molecules N-Acyl homoserine 

lactones (AHL), presumably to facilitate biofilm formation and bacterial persistence (73, 74). 

Therefore, it is likely that staphylococcal biofilms also secrete factors in vivo, perhaps under QS 

system regulation, in an attempt to evade immune recognition and clearance. For example, we 

have recently shown that S. aureus biofilms are uniquely enriched in Hla and LukAB in an agr-

dependent manner in vitro and that the ability of S. aureus biofilm-conditioned medium to inhibit 

MΦ phagocytosis is partially dependent on an intact biofilm (75). However, the identity of such 

molecules remains to be elucidated but could represent future attractive anti-biofilm agents (76). 

Besides virulence factors, staphylococci also secrete molecules for nutrient procurement 

and cell signaling. For example, siderophores are critical for iron acquisition (77), while several 

signaling molecules are important for biofilm remodeling and dispersal, such as AIP (65), 

nuclease (78), and PSMs (79). While the primary roles of these molecules are apparently 

unrelated to immune interactions, recent evidence suggests the potential for alternative functions. 

For example, nuclease, which mediates biofilm dispersal (64, 78), can also participate in 

neutrophil extracellular trap (NET) degradation (80). Recently, nuclease in combination with 

adenosine synthase has been implicated in the conversion of NETs to leukotoxic deoxyadenosine, 

highlighting a clever means whereby S. aureus turns the immune response against itself (81). In 
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addition, S. aureus PSM expression is induced following PMN phagocytosis, resulting in PMN 

lysis and bacterial escape (79, 82, 83). This process is regulated by the stringent response 

characterized by the synthesis of the intracellular signaling alarmone (p)ppGpp (83). Therefore, 

the stringent response provides yet another means of staphylococcal adaptation in response to 

select immune pressures, something that has previously been well-established in relation to 

nutrient availability and metabolism (84-89). Indeed, recent evidence has implicated (p)ppGpp 

and di-cyclic NTPs as critical signals in the switch from planktonic to biofilm growth (76, 90). 

However, secreted factors are not the only means whereby staphylococcal biofilms could 

regulate the host response in an exogenous manner. While bacteria have a plethora of 

environmental sensory mechanisms at their disposal, host immune cells are also very sensitive to 

their surrounding environment (91-93). Because biofilms represent a large biomass, the sum 

metabolic activity of the bacteria themselves would be expected to have an impact on pH and 

oxygen levels in the surrounding tissue microenvironment. Indeed, even subtle changes in pH 

(92, 94) or oxygen (91) can significantly alter the nature of the immune response. Furthermore, 

novel research with fungal and bacterial biofilms has identified a coordinated system of ROS 

signaling for biofilm maturation (95). It will be interesting to see what, if any, impact this biofilm 

ROS gradient has on the host immune response and whether host-generated ROS can also act as a 

signaling molecule within the biofilm to influence target pathways, such as biofilm formation via 

QS (76, 95). 

3) Innate immune response to S. aureus infection 

a) Innate immune recognition of S. aureus 

 The innate immune system is well equipped to recognize foreign invaders through germ-

line encoded pattern recognition receptors (PRRs) that identify broad, highly conserved microbial 

patterns known as pathogen-associated molecular patterns (PAMPs) (96). One such class of PRRs 

is the Toll-like receptors (TLRs), which are responsible for the recognition of several key PAMPs 



   24 
 

from both gram-positive and gram-negative bacterial pathogens (97, 98). Of particular 

importance to S. aureus infections are TLR2 and TLR9, which recognize PGN and lipoproteins in 

the bacterial cell wall and unmethylated CpG motifs characteristic of bacterial DNA, respectively 

(99-102). TLR2 is expressed on the outer cell surface where it recognizes its ligands that are 

naturally secreted and/or released from growing bacteria. TLR9, on the other hand, is an 

intracellular receptor that could engage liberated bacterial DNA following phagocytosis and 

degradation in the phagosome. In total, 12 TLRs have been identified in mice and 10 in humans, 

each with their own unique ligand specificity (96, 103). While TLRs recognize different bacterial 

PAMPs, most utilize a common signaling pathway through myeloid differentiation factor 88 

(MyD88) and NF-κB that results in the transcriptional activation of several proinflammatory 

cytokines and chemokines (104-107) that are critically important for coordinating an effective 

antimicrobial immune response. 

 Although TLRs have been demonstrated to be critically important in mediating innate 

immune recognition and clearance of S. aureus during planktonic growth (101, 108-111), several 

recent studies have shown that S. aureus biofilms are able to circumvent TLR2 and TLR9 

recognition (15, 56). These findings also agree with the observations that TLR2-deficient patients 

show no increased risk of developing post-arthroplasty S. aureus infections (112). While the 

mechanism responsible for TLR2/9 evasion by S. aureus biofilms are unknown, this could in part 

be explained by ligand inaccessibility via the protective barrier provided by the complex biofilm 

ECM (16). However, it is still possible that S. aureus biofilms may be recognized by alternative 

PRRs, such as AIM2, DNA-dependent activator of IFN-regulator factors (DAI), and nucleotide-

binding oligomerization domain-containing protein 2 (NOD2) (113-116). Additionally, while 

TLR2 and TLR9 do not appear to be important for S. aureus biofilm recognition and clearance, 

IL-1β has been demonstrated to be critical for controlling early bacterial burdens in PJI (56). 

Likewise, studies from our laboratory and others have shown that MyD88 signaling is critical for 
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controlling bacterial burdens during S. aureus biofilm infections (15, 117, 118). Interestingly, 

both the IL-1 receptor (IL-1R) and TLRs signal through the adaptor MyD88 for the eventual 

induction of NF-kB-mediated transcription (16).  

b) MΦ and neutrophil (PMN) response to planktonic S. aureus 

 The MΦ is a key innate immune responder that resides in nearly all tissues in the body 

and arises upon maturation from extravasating monocytes from the peripheral circulation (119-

121). MΦs are highly plastic in that they can display a spectrum of functional states depending on 

their environment. For example, in vitro experimentation has shown that monocytes treated with 

granulocyte-macrophage colony-stimulating factor (GM-CSF) and inflammatory stimuli such as 

PAMPs give rise to microbicidal M1 MΦs, whereas monocytes treated with macrophage colony-

stimulating factor (M-CSF) and IL-4 give rise to anti-inflammatory M2 MΦs that function in 

tissue repair and fibrosis (122-124). In vivo, however, the situation is believed to be more 

complex, with MΦ functionality existing on a dynamic spectrum of polarized states. Previous 

work from our laboratory and others has shown that upon encountering S. aureus in a planktonic 

state, MΦs become classically activated (M1) and exert their microbicidal effector functions, in 

part, through the production of reactive oxygen and nitrogen species, in addition to 

proinflammatory cytokines (125-128). MΦs also clear planktonic bacteria by phagocytosis, which 

is tightly linked with proinflammatory cytokine and chemokine production to initiate adaptive 

immune responses (129-131). Collectively, these innate leukocyte responses, coupled with 

complement activation, usually ensure the successful clearance of planktonic staphylococcal 

infections in an immune competent host. 

 The neutrophil (PMN) is typically the most prominent cellular component of the host 

innate immune response to bacterial infections (132). PMNs are frequently the first responders to 

microbial invaders and, as such, it has been observed that individuals with PMN defects (e.g. 

chronic granulomatous disease) are highly susceptible to severe and life-threatening S. aureus 
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infections (133). PMNs originate and mature in the bone marrow, maintain immune surveillance 

by circulating in the peripheral vasculature, and are rapidly recruited to infected tissues through 

chemotactic signals produced by host cells (e.g. IL-8, GRO-alpha, and MIP-2) (134-136) and/or 

shed and secreted bacterial molecules (e.g. lipoteichoic acid or n-formyl peptides) (109, 137-141). 

Upon encountering a foreign invader, PMNs will attempt to phagocytose the microbes, a process 

which can be stimulated by PRRs but greatly enhanced when the pathogens are opsonized with 

host serum molecules, including antibodies and cleavage products of the complement cascade 

(142-146). Upon phagocytosis, PMNs use both oxygen-dependent (e.g. NADPH-dependent 

oxidase) (147-150) and oxygen–independent (e.g. granules containing microbicidal agents such 

as cathepsins) (151-154) processes to kill microbes. Recently, PMN and MΦ extracellular traps 

(NETs and METs, respectively) have been identified as another means of antimicrobial action 

(80, 155-157). This “beyond the grave” mechanism is typified by an extracellular net of DNA 

released from dying phagocytes that contains localized islands of lytic enzymes that kill ensnared 

extracellular bacteria. Collectively, these innate leukocyte responses, coupled with complement 

activation, usually ensure the successful clearance of planktonic staphylococcal infections in an 

immune competent host (76). 

c) MΦ and PMN response to S. aureus biofilms 

 In contrast to planktonic S. aureus infections, a very different scenario has emerged 

regarding biofilm infections. Recent studies have demonstrated that staphylococcal biofilms 

actively skew host immunity toward an anti-inflammatory, pro-fibrotic response that favors 

bacterial persistence (15, 158-160). This is typified by alternatively-activated (M2) MΦs and 

arginase-1 (Arg1) activity, resulting in urea and ornithine production, which are involved in 

collagen formation and tissue remodeling (127, 161, 162). Our laboratory has shown that MΦs 

associated with S. aureus biofilms both in vitro and in vivo have decreased inducible nitric oxide 

synthase (iNOS) concomitant with increased Arg1 expression, as well as attenuated cytokine and 
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chemokine production (15, 159, 160). Similar findings have been reported in response to S. 

epidermidis biofilms (158, 163-165) and biofilms from other bacterial species (166-169), 

suggesting a conserved mechanism exists to thwart host immunity to ensure biofilm persistence 

(76, 170).  

4) Overview of dissertation 

 Initial experiments from our laboratory demonstrated that S. aureus biofilms were able to 

cause persistent infections, in part, through the reprogramming of the MΦ immune response (15). 

Specifically, we observed that MΦs in close proximity to S. aureus biofilms were less phagocytic 

and skewed towards an anti-inflammatory M2 profile typified by Arg1 and IL-10 expression (15). 

We hypothesized that this was due, in part, to the physical barrier presented by the biofilm ECM, 

and that this matrix could be facilitating immune evasion by occluding otherwise recognizable 

PAMPs as well as inducing “frustrated phagocytosis”. Additionally, we found that S. aureus 

biofilms evade TLR2- and TLR9-mediated recognition in a murine model of biofilm infection 

(15). However, we did demonstrate that MyD88 signaling does provide some benefit to the host 

in combating S. aureus biofilm infections and that injecting exogenously activated M1 MΦs into 

an established biofilm infection can promote clearance in vivo (159, 160).  

 During the course of my research, I have further identified multiple mechanisms that 

contribute to S. aureus biofilm evasion of MΦ antimicrobial activity. First, I determined that S. 

aureus biofilm-associated bacteria dampen their transcriptional activity upon encountering MΦs, 

perhaps allowing the bacteria to limit the possibility of MΦ detection (171). Next, I observed that 

S. aureus biofilm-conditioned medium is able to inhibit MΦ activation and induce MΦ cell death 

due to heightened Hla and LukAB production (75). Finally, I performed a high-throughput screen 

of the Nebraska Transposon Mutant Library and discovered the importance of purine biosynthesis 

towards the ability of S. aureus biofilms to prevent MΦ phagocytosis. My research adds to the 

growing literature describing the ability of S. aureus biofilms to circumvent the MΦ antimicrobial 
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response and highlights some potential targets for novel treatments and prevention of chronic 

biofilm related infections.   
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Chapter 2: Materials and Methods 
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1) Bacterial strains and microbiological techniques 

Bacterial strains 

S. aureus USA300 LAC is a community-associated methicillin-resistant (CA-MRSA) strain 

isolated from a Los Angeles county (LAC) jail inmate with a SSTI and was also responsible for 

the CA-MRSA outbreak of 2002 (172-175). We received the isolate from Dr. Frank DeLeo 

(National Institute of Allergy and Infectious Diseases Rocky Mountain Laboratories, Hamilton, 

MT) and cured it of its 27 kb LAC-p03 plasmid encoding erythromycin resistance (176) by 

screening for spontaneous erythromycin sensitivity as previously described and was designated as 

USA300 LAC 13C. For the purposes of this thesis, this wild type strain will be referred to as 

USA300 LAC. The isogenic USA300 LAC agr mutant (Δagr) was provided by Dr. Alex 

Horswill (University of Iowa Medical Center, Iowa City, IA) (11). The isogenic LAC ∆hla strain 

was constructed by an insertion mutation using site-directed mutagenesis with the pE194 

erythromycin resistance cassette (ermB) as previously described (177), with a hla complemented 

strain (177) and a hla constitutively active strain (178) included to confirm the specificity of toxin 

action. The USA300 JE2 Nebraska Transposon Mutant Library (NTML) (179) mutants, ∆lukA/H, 

∆lukB/G, ∆lukD, ∆spl, and ∆purB were moved to the USA300 LAC 13C background by 

transduction with Φ11 bacteriophage. Allelic replacement mutants of lukA and lukB and 

complemented strains were generously provided by Dr. Victor Torres (New York University, 

New York, NY). In vitro complementation of the USA300 ∆purB strain was performed by the 

introduction of a functional purB gene on the pCM29 plasmid (180) under induction by the sarA 

promoter, named pTS1. In vivo complementation of the USA300 ∆purB strain was performed by 

the introduction of a functional purB gene with the native promoter on the pKK22 plasmid 

generously provided by Dr. Jeffrey Bose (University of Kansas Medical Center, Kansas City, 

KS). For confocal imaging, all strains were either transformed with pCM11 (erm10) or pCM29 

(ca10) to express GFP driven by the sarA P1 promoter.  
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Bacterial storage and preparation 

Bacterial strains were stored as glycerol stocks at -80⁰C, struck out on fresh TSA plates 

containing antibiotics for selection when necessary, and grown overnight at 37⁰C prior to 

experimentation. A new streak plate was prepared for each experiment in an effort to avoid 

mutation of bacteria by prolonged storage at 4⁰C. For experimentation, overnight cultures were 

grown in the desired medium by selecting a single bacterial colony from the streak plate using a 

sterile loop and incubating at 37⁰C overnight for 12-16 h with constant shaking at 250 rpm.  

In vitro S. aureus biofilms 

Sterile 12-well plates (Falcon, Corning, NY) or sterile 2-well glass chamber slides (Nunc, 

Rochester, NY) were treated with 20% human plasma overnight at 4° C to facilitate bacterial 

attachment. The following day, plasma coating buffer was removed and each chamber inoculated 

with USA300 LAC at an OD600 of 0.05, whereupon bacteria were incubated at 37° C under static 

aerobic conditions for a period of up to 6 days to generate mature biofilms. Our prior studies have 

demonstrated that 6 day-old S. aureus biofilms propagated in RPMI-1640 are mature based on the 

presence of tower structures and thickness (15, 160). Medium was carefully replenished every 24 

h, and biofilms were visualized using a Zeiss laser scanning confocal microscope (LSM 510 

META; Carl Zeiss, Oberkochen, Germany). Z-stacks were collected from beneath the glass slide 

extending to above the point where bacteria could no longer be detected. Three-dimensional 

images of biofilms and measurements to demonstrate biofilm thickness were performed using 

Zen 2009 and 2012 software (Carl Zeiss). 

 

2) Mouse strains 

A breeding colony of C57BL/6 mice was established in Dr. Kielian’s laboratory after purchasing 

animals from the National Cancer Institute (Frederick, MD) or Jackson Laboratories (Bar Harbor 
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ME). These studies were performed in strict accordance with the recommendations provided in 

the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health (NIH) 

and were reviewed by the Institutional Animal Care and Use Committee of the University of 

Nebraska Medical Center. 

 

BALB/c NF-κB luciferase (NF-κB-luc) reporter mice (Caliper Life Sciences; Hopkinton, MA) 

were generously provided by Caliper Life Sciences. These mice produce firefly luciferase under 

the control of the mouse NF-κB promoter, allowing for the measurement of luminescence when 

cells are provided with the substrate luciferin as an indicator of inflammatory status. 

 

GFP transgenic (Tg) mice (C57BL/6-Tg[CAG-EGFP]) were purchased from The Jackson 

Laboratory (Bar Harbor, ME). These mice produce GFP under the control of a chicken beta-actin 

promoter and cytomegalovirus enhancer, which makes all of the tissues, with the exception of 

erythrocytes and hair, appear green under excitation light. 

 

TLR9 KO mice were obtained from The Jackson Laboratory (Bar Harbor, ME). These mice do 

not express TLR9 and are therefore deficient in the ability of their immune cells to recognize 

foreign, unmethylated CpG-DNA. 

 

MyD88 KO mice (originally from Dr. S. Akira, Osaka University, Suita, Osaka, Japan) (26) were 

purchased from the Centre de La Recherche Scientifique and have been previously backcrossed 

with C57BL/6 mice for over 10 generations (29, 34). These mice do not express the adaptor 

protein MyD88 which functions downstream of most TLR signaling pathways, connecting 

bacterial PAMP recognition to NF-κB activity. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2440502/#R26
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2440502/#R29
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2440502/#R34
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3) Cell culture techniques 

Primary mouse bone marrow-derived macrophage (BMDMΦ) culture 

Adult BALB/c NF-κB-luc, C57BL/6 WT, CAG-EGFP, TLR9KO, and MyD88 KO mice were 

euthanized with an overdose of inhaled isoflurane (Isothesia, VetUS, Dublin, OH) using a 

euthanasia chamber and cervical dislocation as the secondary method of euthanasia. The 

abdominal surface of each mouse was washed with an excess of 70% EtOH to minimize 

contamination and a subcutaneous incision was made near the midline of the abdomen opening 

up the peritoneum. Skin was separated until the hind limbs were exposed and excess muscle was 

dissected away, allowing for the hind limbs to be removed at the hip joint and placed in 1X PBS 

on ice. Hind limbs were then submerged in 70% EtOH, excess tissue and muscle was removed 

with Kimwipes, and clean bones were placed in fresh 1X PBS on ice. The following steps were 

performed under aseptic conditions in a biological safety cabinet with sterile autoclaved 

instruments. Both ends of the bones were cut with scissors and bone marrow was flushed with 

sterile, cold DMEM using a 26-gauge needle into a 50ml conical tube. Once all bones were 

flushed, cells were pipetted to disrupt aggregates, filtered through a 70μm cell strainer, and 

centrifuged at 1,200 rpm for 5 min at 4⁰C. The supernatant was aspirated and red blood cells 

lysed by the addition of 900μl sterile water for 5 sec, followed by 100μl 10X PBS to restore 

osmotic pressure. Finally, cells were washed with medium, centrifuged, and counted using trypan 

blue (Lonza, Walkersville, Germany) on a hemacytometer. Cells were plated in 175mm2 tissue 

culture dishes at a density of 107 cells/plate in 15ml of medium. BMDMΦ medium was composed 

of Dulbecco’s modified eagle’s medium (DMEM, 4.5g/L glucose supplemented with 4mM L-

glutamine) containing heat-inactivated fetal bovine serum (10% v/v FBS, HyClone, Logan, UT; 

inactivated at 55⁰C for 30 min, with mixing at 10 min intervals), 20% conditioned medium from 

L929 cells (ATCC) as a source of MΦ colony stimulating factor (M-CSF) (181) or 40ng/ml M-

CSF (eBioscience Inc., San Diego, CA), 1% v/v HEPES, 1% v/v Glutamine (both HyClone, 
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South Logan, UT), 0.1% v/v 50 mM Beta-mercaptoethanol (Fischer Scientific, Pittsburgh, PA) 

and antibiotic/antimycotic solution (penicillin, streptomycin, and ampotericin B, final 1% v/v, 

Mediatech Inc., Manassas, VA). Medium was changed on cultures at days 2, 4, and 6 after initial 

plating and cells were harvested on day 7 for experimentation. 

Neutrophil isolation from the mouse bone marrow 

Adult C57BL/6 mice were euthanized and bone marrow was isolated as previously described 

above and placed on a three-layer Percoll gradient (Amersham Pharmaca, Biotech, Uppsala, 

Sweden). After filtration, cells were centrifuged at 400 x g for 10 min at 4⁰C, resuspended in 3 ml 

of 78% Stock Isotonic Percoll (SIP, 100% SIP [9 parts Percoll to 1 part 10X PBS] in 1X PBS), 

followed by layering 3 ml of 69% and 52% SIP on top. The three-layer gradient was then 

centrifuged at 1500 x g for 30 min at 15⁰C with no brake. PMNs were carefully collected from 

the 69%/78% interface and upper portion of the 78% layer, washed with PBS, centrifuged at 400 

x g for 10 min at 4⁰C, resuspended in 1 ml 1X Lysing Buffer (BD Pharm Lyse, BD Biosciences, 

Franklin Lakes, NJ) and incubated at room temperature for 2 min. Lysis was stopped by addition 

of HBSS + 10% FBS and cells were centrifuged at 400 x g for 10 min at 4⁰C prior to 

resuspsension in 2 ml buffer for magnetic-activated cell sorting (MACS, PBS without Ca, Mg, + 

2% FBS), vortexed and counted with trypan blue on a hemacytometer. Magnetic labeling was 

performed using a Miltenyi anti-Ly6G MicroBead Kit (Miltenyi Biotec, San Diego, CA) 

according to manufacturer’s instructions. Magnetic separation was performed using an MS 

column on a MACS Separator. Columns were prepared by rinsing with 500 μl buffer, whereupon 

the cell suspension was added to the column. Unlabeled cells were flushed by washing the 

column 3X with 500 μl buffer prior to flushing buffer through with a plunger to elute the fraction 

of labeled cells into a collection tube. Cells were counted and at least 600,000 Ly6G+ cells were 

removed to check purity by flow cytometry, while the remaining cells were immediately used for 

experimentation. 
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4) Immune cell co-culture with S. aureus biofilms in vitro 

Co-cultures for microarray studies 

BMDMΦs or PMNs (107 and 106, respectively) were co-cultured with S. aureus biofilms for 

various periods to assess their impact on the biofilm transcriptome, which equated to a MOI of 

10:1 (bacteria/MΦ) or 100:1 (bacteria/PMN). PMNs or BMDMΦs were incubated with biofilms 

in RPMI-1640 supplemented with 10% FBS at 37° C under static aerobic conditions until they 

were harvested by mechanical dissociation at two different time points (1 and 24 h for BMDMΦs; 

1 and 4 h for PMNs) to collect RNA for microarray analysis. 

 

For visualization of BMDMΦ- or PMN-biofilm interactions, leukocytes were labeled with 5 µM 

CellTracker Orange or CellTracker Blue (both from Molecular Probes, San Diego, CA) 

depending on the experimental setup. BMDMΦ and PMN cell death was assessed using 

Propidium Iodide Staining Solution (eBioscience Inc., San Diego, CA). Leukocyte-biofilm 

interactions were visualized using a Zeiss laser scanning confocal microscope (LSM 510 META 

or LSM 710), where Z-stacks were collected from beneath the glass slide extending to above the 

point where labeled BMDMΦs or PMNs could no longer be detected. Three-dimensional images 

and measurements to demonstrate leukocyte invasion into the biofilm were performed using Zen 

2009 software and Zeiss LSM Image Browser (both from Carl Zeiss). 

Co-cultures for ELISA studies 

To determine the effect of S. aureus biofilms on MΦ cytokine secretion profiles, 106 BMDMΦs 

were incubated with mature USA300 LAC biofilms or planktonic bacteria for 6 h at 37°C under 

static aerobic conditions as previously described above, whereupon supernatants were clarified by 

centrifugation and filtration (0.2 µm) to quantitate TNF-α, IL-10, IL-1β (OptiEIA; BD 

Biosciences, Franklin Lakes, NJ), and IL-1RA (DuoSet; R & D Systems, Minneapolis, MN) 
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production by ELISA. To account for potential interference by S. aureus protein A (Spa) in 

ELISA assays, two separate controls were utilized; first, biofilm-conditioned supernatants without 

MΦs were tested, which resulted in minimal cytokine signals. Second, conditioned supernatants 

from USA300 LAC Δspa biofilm-MΦ co-cultures were also examined and produced similar 

results to what was observed for isogenic wild type biofilms (data not shown). 

Co-cultures prior to FACS 

To evaluate whether MΦs exposed to intact biofilms were refractory to further activation with 

well-characterized microbial antigens, BMDMΦs from GFP Tg mice were co-cultured with 

USA300 LAC static biofilms or an equivalent number of planktonic bacteria for 2 h as described 

above and subsequently dissociated by trituration. Next, the suspension was incubated with the 

vital dye 7-aminoactinomycin D (7-AAD; eBioscience, San Diego, CA) and viable BMDMΦs 

(GFP+, 7-AAD-) were recovered by fluorescence-activated cell sorting (FACS). A total of 105 

biofilm- or planktonic-exposed BMDMΦs were subsequently treated with 10 µg/ml 

peptidoglycan (PGN), 0.1 µM CpG oligodeoxynucleotide (ODN), or 1 µg/ml of the synthetic 

lipoprotein Pam3CSK4, or left untreated for an additional 24 h, whereupon supernatants were 

evaluated for TNF-α and IL-10 production by ELISA (OptiEIA; BD Biosciences). 

Co-cultures for eDNA/DNase treatments 

For visualization of BMDMΦ-biofilm interactions, BMDMΦs were labeled with 5 μM 

CellTracker blue (Molecular Probes, San Diego, CA) and added to biofilms in fresh medium for 

4-6 h. Propidium iodide staining solution (eBioscience Inc., San Diego, CA) was used to assess 

eDNA as well as MΦ and bacterial cell death. MΦ-biofilm interactions were visualized using a 

Zeiss laser scanning confocal microscope (LSM 710 META), where z-stacks were collected from 

beneath the glass slide extending to above the point where labeled MΦs could no longer be 

detected. Three-dimensional imaging and measurements to demonstrate MΦ invasion and 

phagocytosis of biofilm-associated bacteria were performed using Zen 2012 software and the 
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Zeiss LSM Image Browser (both from Carl Zeiss). In some experiments, biofilms were pretreated 

for 30 min with 100 U/ml DNase (Sigma, St. Louis, MO) or exogenous eDNA isolated from S. 

aureus biofilm was added to the surface prior to co-culture. Biofilm height and live/dead 

quantitation was performed using COMSTAT (182) via ImageJ. 

 

5) Nebraska Transposon Mutant Library screens 

The Nebraska Transposon Mutant Library (NTML) (179) is a collection of sequence-defined 

mutants where 1,952 non-essential genes in the S. aureus USA300 LAC genome have been 

disrupted by insertion of the mariner-based transposon, bursa aurealis (183). We screened the 

NTML to identify genes expressed during biofilm growth that influenced MΦ phagocytosis, 

inflammatory activity, and viability as described below. S. aureus mutants that displayed changes 

in MΦ activity but still formed a biofilm were selected for further analysis. 

BMDMΦ phagocytosis 

The NTML was screened using a microtiter plate assay to identify biofilm-associated genes 

regulating secreted products that inhibit BMDMΦ phagocytosis. Briefly, starter cultures of 

NTML mutants were prepared from glycerol stocks and incubated for 16 h in RPMI-1640 

supplemented with 10% FBS and 5 µg/ml erm at 37°C while shaking at 250 rpm under aerobic 

conditions. 96-well microtiter plates were pre-coated with 20% human plasma diluted in sterile 

carbonate-bicarbonate buffer (Sigma) at 4°C. The following day, plasma coating buffer was 

removed and starter cultures were inoculated at a 1:200 dilution and incubated at 37°C under 

static aerobic conditions for 4 days. Medium was carefully replenished every 24 h using an 

epMotion 5075 LH robotics platform (Eppendorf, Hamburg, Germany) to minimize cross 

contamination and prevent disruption of the biofilm structure. 
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BMDMΦ s were seeded at 105 cells/well in tissue culture-treated 96-well plates (Becton 

Dickinson, Franklin Lakes, NJ) and incubated overnight at 37°C, 5% CO2, whereupon BMDMΦs 

were treated for 2 h at 37°C with biofilm-conditioned supernatants diluted 1:2 in fresh RPMI-

1640/10% FBS, followed by 1 h incubation with 106 yellow-green fluorescent microspheres (2.0 

µm particle size; Molecular Probes, San Diego, CA) to assess phagocytic activity. After the 1 h 

incubation period, BMDMΦs were washed extensively with sterile PBS to remove any residual 

extracellular microspheres and phagocytic activity was assessed as a measure of total 

fluorescence using a Victor3V 1420 plate reader (Perkin Elmer, Waltham, MA) or TECAN M200 

PRO (Tecan Group Ltd., Mannedorf, Germany) running Magellan 7.0 software (Tecan Austria 

GmbH, Grodig, Austria). 

BMDMΦ NF-κB activation 

The NTML was also screened to identify mutants that affected MΦ NF-κB activation during 

biofilm growth. This assay utilized BMDMΦs from NF-κB-luciferase reporter mice (NF-κB-luc 

BMDMΦs), where NF-κB promoter activity is detected with the substrate D-luciferin and 

quantitated using a luminometer. Static biofilms were grown in luminescence-compatible 96-well 

microtiter plates (Perkin Elmer, Waltham, MA) until mature (as described above), whereupon 

NF-κB-luc BMDMΦs (105/well) were co-cultured with S. aureus biofilms for 4 h, after which 

samples were lysed using ddH2O and 100 µl/well of D-luciferin (15mg/ml; Gold Biotechnology, 

St. Louis, MO) was added to detect luciferase expression. Luminescence was quantified using a 

Victor3V 1420 plate reader (Perkin Elmer). Positive and negative controls included NF-κB-luc 

BMDMΦs treated with 10 µg/ml S. aureus PGN and untreated cells, respectively. Biofilms alone 

produced minimal luminescence signal compared to background (data not shown). 

 

6) BMDMΦ treatments with biofilm-conditioned medium 
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Preparation of biofilm-conditioned medium 

Static biofilms were generated in two-well glass chamber slides (Nunc, Rochester, NY) or 12-

well plates (Becton Dickinson, Franklin Lakes, NJ) with S. aureus grown in RPMI-1640 medium 

supplemented with 1% casamino acids (CAA; Becton Dickinson) as previously described (15, 

184, 185). Spent medium was replaced daily, whereupon conditioned medium for experiments 

was collected from 6 day-old USA300 LAC biofilms 24 h following the last medium change and 

filtered (0.2 µm). For comparisons, planktonic-conditioned medium was prepared by growing an 

overnight culture of USA300 LAC to early (12 h) and late (18 h) stationary phase. As no 

significant differences in phagocytosis or viability were observed when MΦs were treated with 

conditioned medium from either early or late stationary phase cultures (data not shown), early 

stationary phase was utilized throughout these studies. Conditioned medium was also collected 

from 6 day-old USA300 LAC biofilms that were mechanically disrupted by trituration, 

whereupon the suspension was incubated for another 24 h with fresh medium before collection as 

described above. Where indicated, biofilm-conditioned medium was treated with 10μg/ml 

proteinase K for 1h at 37⁰C to degrade proteins, or treated with either 10 μg/ml polyanethole 

sodium sulfanate (PAS) or mechanically disrupted and incubated with 50 μg/ml lysostaphin (both 

from Sigma, St. Louis, MO) 24 h prior to collection. In some experiments, fresh RPMI-1640 

medium was spiked with 10 μg of purified S. aureus Hla (Sigma) or 25 μg of purified bioactive or 

inactive LukAB (186) to examine effects on MΦ phagocytosis and viability. For some 

experiments, biofilm-conditioned medium was incubated with rabbit anti-staphylococcal Hla 

antiserum or control rabbit serum (both from Sigma) for 30 min prior to MΦ treatment. 

BMDMΦ phagocytosis and cell viability assay 

BMDMΦs were prepared and labeled with 5 µM CellTracker Blue (CTB; Molecular Probes, San 

Diego, CA) as previously described (15, 187). CTB-labeled MΦs were added to sterile 2-well 

glass chamber slides (5x106 cells/chamber) and allowed to adhere for 2 h. Next, MΦs were 
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exposed to conditioned medium collected from S. aureus biofilms or planktonic cultures for 2 h at 

37°C, whereupon red or green fluorescent microspheres (2.0 µm particle size; Molecular Probes) 

were added at a concentration of 4.5x1010 microspheres/ml for 1 h to assess phagocytic activity. 

Fluorescent microspheres were used instead of intact S. aureus, since pilot studies revealed that 

similar results were obtained with both reagents (Supplemental Fig. S2.1). MΦs were treated with 

undiluted biofilm- or planktonic-conditioned medium, since a stronger phenotype was observed 

under these conditions (Supplemental Fig. S2.1). MΦ phagocytosis was assessed using a Zeiss 

510 META laser scanning confocal microscope (Carl Zeiss, Oberkochen, Germany) and 

quantitated by the number of phagocytic events observed in at least 8, random fields of view 

(63x) using ZEN 2009 software (Carl Zeiss). Data is expressed as either “percent phagocytosis”, 

which indicates the percentage of phagocytic MΦs observed and manually counted within a given 

experiment, or “total phagocytosed beads/63x field”, where the total number of phagocytic events 

within a given experiment was calculated by an ImageJ plugin (ImageJ 1.47v, Wayne Rasband, 

NIH, USA) based on an experimentally determined average pixel area and RGB color code 

specific to the co-localization of phagocytosis. Pilot studies confirmed that identical results were 

obtained with this calculation compared to manual counts (data not shown). While the number of 

beads phagocytosed per MΦ was variable within any given incubation condition, we did not 

observe any trends in this parameter between treatment groups and, therefore, this was not 

quantified. MΦ viability was assessed by propidium iodide staining at the end of the 3 h 

incubation period with the total number of viable MΦs quantitated in at least 8 random 63x fields 

of view using ZEN 2009 software. Where reported, “total viable MΦs” were enumerated by an 

ImageJ plugin based on an experimentally determined average pixel area and RGB color code 

specific to viable MΦs and are reported per 63x microscopic field. 

 

7) Mouse model of S. aureus orthopedic implant biofilm infection 
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Preparation of inoculum 

A single bacterial colony from a fresh streak plate was used to inoculate 25 ml of autoclaved 

brain-heart infusion (BHI) broth in a baffled 250 ml flask (10:1 flask:volume ratio) with constant 

shaking at 250 rpm at 37⁰C for 12-16 h. The overnight culture was then diluted 1:10 in fresh BHI 

in order to estimate the total number of bacteria present by measuring OD600 (BioMate 3S 

Spectrophotometer, Thermo Scientific, Waltham, MA). At the same time, 1 ml of the overnight 

culture was centrifuged in a 1.5 ml Eppendorf microcentrifuge tube at 14,000 rpm for 5 min at 

4⁰C to pellet the bacteria. The supernatant was removed the pellet was resuspended in 1 ml sterile 

1X PBS and subsequently washed two more times by centrifuging as previously described. After 

washing, the pellet was diluted in sterile PBS to a final estimated concentration of 5x105 cfu/ml 

(1x103 cfu/2μl). The actual inoculum concentration was then determined by serial diluting the 

washed culture in triplicate to 10-8 and plating 100 μl of the 10-7 and 10-8 dilutions on TSA. 

Infection procedure 

Age and sex-matched mice (8-10 weeks old) were weighed and anesthetized with 

ketamine/xylazine (100 mg/kg and 5 mg/kg, respectively) by i.p. injection prior to the surgical 

site being shaved and disinfected with povidone-iodine. A scalpel was then used to make an 

incision along the midline of the knee exposing the patella. Next, a medial parapatellar 

arthrotomy was performed with the scalpel to access the knee joint, allowing for a lateral 

retraction of the patella to expose the entire distal femur. A 26-gauge needle was then used to 

bore a hole through the trochlea into the intramedullary canal creating space for the insertion of a 

precut and autoclaved 0.8-cm orthopedic-grade Kirschner wire (0.6 mm diameter, Nitinol [nickel-

titanium]; Custom Wire Technologies, Port Washington, WI) leaving approximately 1 mm 

exposed as an inoculation site. A total of 103 cfu of the USA300 LAC strain was inoculated in 2 

μl at the implant tip, and the patella was relocated prior to surgical wound closure with 6-0 metric 

absorbable sutures and skin closure with 6-0 metric nylon sutures (both from Covidien, 
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Mansfield, MA). Immediately following surgery and again at 24 h post-surgery, all animals 

received Buprenex (0.1 mg/kg s.c.; Reckitt Benckiser, Hull, U.K.) for pain management, after 

which all mice exhibited normal ambulation with no discernible pain.  

Recovery of implant and surrounding tissues 

Animals were sacrificed by an overdose of inhaled isoflurane followed by cervical dislocation. 

The flank and left leg were then disinfected with 70% EtOH prior to the skin of the left leg being 

carefully removed to expose the infected tissue. Excess underlying adipose tissue and muscle was 

removed prior to collection of the tissue immediately proximal to the infection site, which was 

then weighed and placed in 500 μl homogenization buffer (1X PBS + protease inhibitor cocktail 

tablet, Roche, Indianapolis, IN) on ice. The tissue was then dissociated with the blunt end of a 

plunger from a 30-cc syringe and filtered through a 35 μm filter (BD Falcon, Bedford, MA). 

Next, a 150μl aliquot was removed for quantitation of bacterial burdens and potential assessment 

of inflammatory mediator production (e.g. ELISA). The remaining filtrate was further processed 

for flow cytometry as described below. Following tissue collection, the knee joint and femur were 

collected, weighed, and placed in 500 μl homogenization buffer prior to being homogenized by a 

combination of handheld Polytron homogenizer at the highest setting for 30 s and a Bullet 

Blender (Next Advance, Averill Park, NY) with a combination of 0.9-2.0 mm diameter blend and 

3.2 mm diameter stainless steel beads (Next Advance, Averill Park, NY). Implants were removed 

from the femur and vortexed in 500 μl PBS for 5 min at 2000 rpm. Serial dilutions of effluents 

from tissue, joint, femur, and implant were plated on TSA and grown overnight at 37⁰C to 

determine bacterial colonization. For some experiments, the spleen, heart, and kidneys were 

collected as described above to determine dissemination.  

Flow cytometry 

Characterization of immune infiltrates was performed via Fluorescence-activated cell sorting 

(FACS). Animals were sacrificed with an overdose of inhaled isoflurane and tissues were excised 
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and processed as previously described above. The tissue filtrate was washed with ice-cold 1X 

PBS + 2% FBS and centrifuged at 1200 rpm for 5 min at 4⁰C, after which RBCs were lysed using 

BD Pharm lyse (BD Biosciences, San Diego, CA) per the manufacturer instructions. After lysis, 

cells were resuspended in 500 μl 1X PBS followed by Fc Block (2 μl/sample, eBioscience, San 

Diego, CA) for 20 min at 4⁰C to minimize nonspecific antibody binding. 100 μl of each sample 

was pooled and subsequently aliquoted into single color compensation and isotype control tubes 

to identify gaiting thresholds and assess the degree of nonspecific staining, respectively. The 

remaining 400 μl was divided between two tubes for subsequent staining with two panels (e.g. 

innate and T cell) and q.s. to 500 μl with 1X PBS. Cells were then stained for 30 min at 4⁰C 

protected from light with directly-conjugated antibodies for multi-color flow cytometry analysis, 

prior to being washed with 1X PBS, centrifuged as previously described, and resuspended in 1X 

PBS + 1% paraformaldehyde. The innate immune panel included: CD45-APC, Ly6G-PE, Ly6C-

PerCP-Cy5.5, and F4/80 PE-Cy7. The T cell panel included: CD3ε-APC, CD4-Pacific Blue, 

CD8a-FITC, Ly6C-PerCP-Cy5.5, and TCR γδ-PE. All fluorochrome-conjugated antibodies were 

purchased from either BD Biosciences or eBioscience. For the exclusion of dead cells, a 

Live/Dead Fixable Stain Kit (Life Technologies, Eugene, OR) was also used, following 

manufacturer’s instructions. Analysis was performed using BD FACSDiva software with cells 

gated on the live CD45+ leukocyte population. 

 

8) Bacterial microarray analysis and qRT-PCR 

RNA isolation 

At the appropriate intervals after biofilm-leukocyte co-culture, excess medium was removed from 

biofilm chambers and 2X the remaining volume of RNAprotect (QIAGEN, Hilden, Germany) 

was added. Biofilms were collected from the bottom of the chamber slide using a cell scraper. 
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RNA isolated from biofilms alone (i.e. no leukocyte addition) was included as a control for 

comparisons. The resulting suspension of biofilm cells was transferred to a tube and sonicated for 

5 min to facilitate dispersal. After sonication, cells were pelleted by centrifugation for 5 min and 

RNAprotect was decanted. The resulting pellet was resuspended in 700 µl of RLT Buffer 

supplemented with β-mercaptoethanol and transferred to a 2 ml FastPrep lysing tube (MP 

Biomedicals, Santa Ana, CA). Biofilm cells were lysed in a FastPrep high-speed homogenizer 

(MP Biomedicals) for 20 sec on a speed setting of 6. The resulting lysate was incubated for 5 min 

on ice and then centrifuged at 14,000 rpm at 4°C for 15 min. RNA was isolated from the clarified 

supernatant using a RNeasy mini kit (QIAGEN) and contaminating DNA was removed by on-

column DNase digestion using the RNase-Free DNase Set (QIAGEN). RNA was isolated from 

eight samples for each time point and co-culture condition with three independent experimental 

replicates performed to assess the reproducibility of microarray results. RNA quality and quantity 

were determined using an Agilent RNA6000 NANO kit and Agilent 2100 Bioanalyzer (Agilent 

Technologies, Santa Clara, CA). 

RNA labeling and DNA microarray analysis 

Following the manufacturer’s recommendations, 75 ng of total RNA from each sample was 

amplified using ExpressArt Bacterial mRNA amplification Nano kits (AmpTec GmbH, 

Germany) and labeled using BioArray HighYield RNA Transcript Labeling kits (Enzo Life 

Sciences, Inc., Farmingdale, NY). Three micrograms of resulting labeled RNA was hybridized to 

a S. aureus GeneChip® following the manufacturer’s recommendations for antisense prokaryotic 

arrays (Affymetrix, Santa Clara, CA) then washed, stained, and scanned as previously described 

(22, 188). Commercially available GeneChips® were used in this study, representing > 3300 S. 

aureus ORFs and > 4800 intergenic regions from strains N315, Mu50, NCTC 8325, and COL 

(Affymetrix). GeneChip® signal intensity values for each biofilm sample at each replicate time 

point (n ≥ 3) were normalized to the median signal intensity value for each GeneChip® and 
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averaged using GENESPRING 7.2 software (Agilent Technologies, Redwood City, CA). 

Transcripts that demonstrated 1) at least two-fold change in expression; 2) greater than 

background signal intensity value and determined to be "Present" by Affymetrix algorithms; and 

3) significant by Student's t-test (p value = 0.05) were considered differentially expressed. 

Verification of differentially expressed genes by qRT-PCR 

A subset of biofilm genes that were differentially regulated after leukocyte co-culture (i.e. sodA, 

saeS, saeR, agrB, rsbU, atl, recA, and nuc) was verified by qRT-PCR using Sybr Green. Primers 

were designed using Primer 3.0 software and melt-curve analysis was performed at the end of 

each amplification run to verify signal specificity. Results are presented as the relative expression 

compared to biofilms that were not co-cultured with leukocytes as a reference standard. 

 

9) Bacterial proteomics 

Sequential Windowed data-independent Acquisition of the Total High-resolution Mass 

Spectra (SWATH-MS) 

Conditioned medium from S. aureus WT and Δagr strains grown under biofilm or planktonic 

conditions as described above were harvested, treated with a protease inhibitor cocktail (Roche, 

Basel, Switzerland), and proteins precipitated with 20% TCA. Relative protein concentrations 

were compared between groups using three independent replicates per sample by Sequential 

Windowed data-independent Acquisition of the Total High-resolution Mass Spectra (SWATH-

MS) as previously described (189). A Z-transformation followed by a Z-test was performed on all 

positively identified proteins (>98% confidence) between two sample sets at a time (i.e. WT 

biofilm vs. Δagr biofilm or WT biofilm vs. WT planktonic) to assess significant differences in 

relative protein abundance as previously described (189). Identified proteins were functionally 

grouped by UniProt identifier utilizing the DAVID bioinformatics resource 6.7 



   46 
 

(http://david.abcc.ncifcrf.gov/) (190). Protein-protein interactions were predicted using STRING 

9.05 (http://string-db.com) (191, 192). 

Western blots 

Conditioned medium from S. aureus WT and Δagr biofilm and planktonic growth conditions was 

sterile-filtered and treated with a protease inhibitor cocktail (Roche) prior to storage at -80⁰C. 

Upon thawing, samples were TCA precipitated overnight and suspended in 30 μl of Laemmli 

buffer, whereupon 5 μl of each sample was loaded onto a gel, transferred to a PVDF membrane, 

and probed for S. aureus LukA and Hla. 

Enzyme-linked Immunosorbent Assay (ELISA)  

Conditioned medium from WT S. aureus biofilm and planktonic cultures was sterile-filtered 

(0.2µm) and analyzed for Hla concentrations by direct ELISA. Briefly, experimental samples or 

serial dilutions of purified S. aureus Hla (Sigma), to generate a standard curve, were diluted in 

carbonate-bicarbonate buffer and incubated in 96-well ELISA plates overnight at 4⁰C. The 

following day, wells were washed extensively with 1X PBS/0.5% Tween and incubated with a 

rabbit anti-Hla antibody followed by an anti-rabbit IgG-HRP antibody (both from Sigma) for 

detection. Plates were developed using a TMB substrate (Becton Dickinson) with the reaction 

halted using stop solution prior to reading at 450nm. Hla concentrations were normalized to total 

protein as measured by a Pierce BCA Protein Assay. 

 

10) Bioflim extracellular DNA (eDNA) isolation 

Isolation of eDNA from static biofilms grown in 12-well plates was performed as described 

previously (32). Briefly, day 6-old mature biofilms were chilled to 4⁰C followed by the addition 

of 50 mM EDTA prior to removal of supernatant, resusupended and mechanically disrupted in 

TES Buffer (Tris-HCL; pH 8.0/500mM NaCl). Next, a phenol:chloroform:isoamyl alcohol 

http://david.abcc.ncifcrf.gov/
http://string-db.com/
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(25:24:1) extraction followed by a chloroform/isoamyl alcohol (24:1) extraction was performed 

prior to storage overnight at -20⁰C in 100%  ice-cold ethanol and 10% 3M NaAcetate. The next 

day, the eDNA was pelleted and washed prior to a final resuspension in TE buffer. qRT-PCR was 

performed on 1:10 dilutions of each sample with the LightCycler DNA Master SYBR Green I 

(Roche) using gyrA. 
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Supplemental Figure S2.1 

 

Fluorescent microspheres can be used as a surrogate for live S. aureus to assess MΦ 

phagocytosis. (A) Bone marrow-derived MΦ were incubated for 3 h with fresh medium or 

conditioned medium collected from WT biofilms and left undiluted or diluted 1:5 with fresh 

medium, whereupon phagocytosis was assessed by the uptake of planktonic S. aureus + 

fluorescent microspheres (beads) or microspheres alone. Significant differences are denoted with 

asterisks (***, p < 0.001; unpaired two-tailed student’s t-test). Results are representative of at 

least two independent experiments.  
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Chapter 3: Global transcriptome analysis of Staphylococcus aureus biofilms in response to 

innate immune cells 

Published in Infection and Immunity 81(12):4363-76, 2013 
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Abstract 

 The potent phagocytic and microbicidal activities of PMNs and MΦs are among the first 

lines of defense against bacterial infections. Yet Staphylococcus aureus is often resistant to innate 

immune defense mechanisms, especially when organized as a biofilm. To investigate how S. 

aureus biofilms respond to MΦs and PMNs, gene expression patterns were profiled using 

Affymetrix microarrays. The addition of MΦs to S. aureus static biofilms led to a global 

suppression of the biofilm transcriptome with a wide variety of genes downregulated. Notably, 

genes involved in metabolism, cell wall synthesis/structure, and 

transcription/translation/replication were among the most highly downregulated, which was most 

dramatic at 1 h compared to 24 h following MΦ addition to biofilms. Unexpectedly, few genes 

were enhanced in biofilms after MΦ challenge. Unlike co-culture with MΦs, co-culture of S. 

aureus static biofilms with PMNs did not greatly influence the biofilm transcriptome. 

Collectively, these experiments demonstrate that S. aureus biofilms differentially modify their 

gene expression patterns depending on the leukocyte subset encountered. 
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Introduction 

Staphylococcus aureus produces numerous virulence factors that facilitate its ability to 

invade, colonize, disseminate to distant sites, and impede host defenses to cause disease (84, 

193). These characteristics can be amplified during biofilm formation, which represents a 

complex multicellular community of organisms encased in a matrix composed primarily of 

polysaccharides, extracellular DNA (eDNA), and proteins (10-12). S. aureus biofilm infections 

are often difficult to treat due to their heterogeneity and altered metabolic and transcriptional 

activity (194), which likely contributes to the chronic and recurrent nature of biofilm infections 

(159, 195-197). Our recent studies have demonstrated that S. aureus biofilms interfere with 

traditional microbial recognition and killing mechanisms by the innate immune system (159, 

195). The subversion of these responses is another example of the remarkable success of S. 

aureus as a pathogen and it is now clear that biofilm growth represents yet another immune 

resistance determinant. However, our understanding of the cross-talk between S. aureus biofilms 

and the immune response is limited. 

PMNs are important antimicrobial effectors that possess an arsenal of bactericidal 

compounds, including defensins, cathelicidins, and lysozyme (156, 198). In terms of their 

microbicidal activity, PMNs are most notable for their ability to produce large amounts of 

reactive oxygen intermediates catalyzed by NADPH oxidase. In addition, activated PMNs 

degranulate and release PMN extracellular traps (NETs), a meshwork of DNA and enzymes that 

facilitates the extracellular killing of S. aureus as well as other bacteria (199). However, the short 

lifespan of PMNs requires their constant recruitment to sites of infection, and their transcriptional 

capacity for inflammatory mediator production is more limited compared to other professional 

phagocytes (i.e. MΦs and dendritic cells). MΦs reside in virtually all tissues and also serve as a 

critical first line of defense against microbial invasion. In addition, MΦs are a major source of 

proinflammatory mediators that are critical for amplifying leukocyte recruitment and activation 
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cascades upon bacterial exposure, as well as providing potent phagocytic and antimicrobial 

effects (200, 201). Like PMNs, MΦs can form MΦ extracellular traps (METs),which are believed 

to exert similar antimicrobial activity (157). Both MΦs and PMNs are also equipped with an 

arsenal of pattern recognition receptors that sense invariant motifs expressed across a broad range 

of microbial species to trigger inflammatory mediator release (202, 203). Consequently, PMNs 

and MΦs represent key antimicrobial effector populations and their interactions with S. aureus 

biofilms is likely critical for dictating the outcome of infection. Our previous studies have 

demonstrated that S. aureus biofilms impair MΦ phagocytosis and induce cell death (159, 195, 

204); however the response of the biofilm itself to these leukocyte populations remains to be 

defined. 

While considerable progress has been made in defining S. aureus virulence factors and their 

regulatory networks, less is known about the organism’s ability to cope with the host immune 

response during biofilm growth (205-207). Genome-wide transcriptional profiling of planktonic 

S. aureus following PMN exposure has previously been reported (208, 209); however the 

transcriptional changes occurring in S. aureus biofilms in response to PMNs or MΦs has not yet 

been investigated. We predicted that S. aureus biofilms modify their transcriptome in response to 

these leukocyte subsets to subvert immune recognition and killing, thus favoring biofilm 

persistence. This possibility was assessed by defining alterations in S. aureus biofilm gene 

expression profiles after co-culture with MΦs or PMNs utilizing S. aureus Affymetrix GeneChip® 

arrays. Here we report that S. aureus biofilms respond differently to these leukocyte populations, 

with kinetic distinctions also observed. For example, MΦ addition induced a generalized 

repression of the biofilm transcriptome within 1 h, whereas at a later interval this inhibition had 

dissipated, which correlated with the biofilm’s ability to induce MΦ cell death. In contrast, the 

biofilm transcriptome remained relatively stable following PMN addition, regardless of the 

interval examined. These results indicate that S. aureus biofilms discriminate between leukocyte 
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subsets and alter their transcriptional profile accordingly, presumably in favor of avoiding 

detection by the host, leading to biofilm persistence.  
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Results 

Differences in neutrophil and macrophage interactions with S. aureus biofilms in vitro. To 

evaluate the impact of leukocyte subsets on S. aureus biofilm transcriptional profiles, biofilms 

that were propagated for either 4 or 6 d were selected for analysis based on their differences in 

structural maturity (195). Specifically, 4 day-old biofilms were considered more immature in 

terms of average thickness (32 µm) and irregular density (Fig. 3.1A and C), whereas 6 day-old 

biofilms were classified as more mature based on a relatively uniform average thickness (47 µm) 

and a more consistent density (Fig. 3.1B and C). 

 Previous studies from our group have demonstrated that S. aureus biofilms are capable of 

circumventing MΦ phagocytosis and inducing MΦ death (159, 195, 204). Since the goal of this 

study was to compare the impact of MΦs versus PMNs on the biofilm transcriptome, side-by-side 

comparisons of how both populations interact with the biofilm were required. S. aureus USA300 

LAC-GFP static biofilms were grown for 4 or 6 d, whereupon MΦs or PMNs were co-cultured 

with biofilms for an additional 1, 4, or 24 h. Three-dimensional confocal microscopy images were 

constructed to demonstrate the proximity of MΦs or PMNs from the biofilm surface and extent of 

phagocytosis (Fig. 3.2A and 2B, respectively). MΦs incubated with S. aureus biofilms for either a 

1 or 24 h period contained few internalized bacteria, a phenomenon that was independent of 

biofilm age as we have previously described (Fig. 3.2A and 3.3) (195). In contrast, intracellular 

bacteria were readily discernible in PMN biofilm co-cultures at 1, 4, and 24 h (Fig. 3.2B, 3.3, and 

Supplemental Fig. 3.1). In addition, the majority of PMNs were found in close association with 

the biofilm surface, whereas most MΦs remained distant from the biofilm (Fig. 3.2). 
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Figure 3.1 

 

S. aureus biofilm growth states. (A and B) USA300 LAC-GFP was inoculated into sterile 2-

well glass chamber slides and incubated at 37°C under static aerobic conditions for a period of 4 

(A) or 6 (B) days in RPMI 1640 supplemented with 10% FBS with daily medium replacement. 

Biofilms were visualized using confocal microscopy (magnification, X63; 1-μm slices), and 

representative three-dimensional images were constructed. (C) Quantification of 4- and 6-day-old 

biofilm thickness. Significant differences are denoted with asterisks (***, P < 0.001 using an 

unpaired two-tailed Student t test; n  = 30 biofilms/time point). 
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Figure 3.2 

 

S. aureus biofilm-leukocyte co-culture paradigm. USA300 LAC-GFP static biofilms (green) 

were grown for 6 days, whereupon BMDMΦs (A) (orange) or bone marrow-isolated PMNs (B) 

(blue) were incubated with biofilms for 24 h and 4 h, respectively. Biofilm co-cultures were 

visualized using confocal microscopy (magnification, X63; 1-μm slices), and representative 

three-dimensional images were constructed. Insets show a higher magnification to highlight the 

absence of MΦ phagocytosis (A) and the presence of PMN phagocytosis (B) of staphylococcal 

biofilms. Results are representative of two independent experiments examining three individual 

biofilms each. 
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Figure 3.3 

 

Differential responses of innate immune cells to S. aureus biofilms. S. aureus USA300 LAC-

GFP static biofilms were grown for 6 days and visualized using confocal microscopy (63X 

magnification, 1 µm slices). A total of 107 BMDMΦs or 5 x 106 bone marrow-isolated PMNs 

were incubated with biofilms for 18-24 h, whereupon the percentage of leukocytes exhibiting 

phagocytosis or death, were enumerated. Significant differences are denoted with asterisks (**, p 

< 0.005 using an unpaired two-tailed Student’s t-test, n = 3). 
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Macrophages and neutrophils induce differential gene expression profiles in S. aureus 

biofilms. The disparity between the ability of MΦs and PMNs to phagocytose and invade S. 

aureus biofilms suggested that these cell types may differentially influence biofilm transcriptional 

activity. To investigate this possibility, Affymetrix S. aureus GeneChip® profiles were compared 

between biofilms incubated in the presence or absence of either MΦs or PMNs. Analysis of the 

number of differentially expressed genes revealed that MΦs caused the most substantive changes 

in the biofilm, primarily at an early time point (i.e. 1 h; Fig. 3.4A, 3.5A, 3.5B, and Tables 3.2-3), 

affecting genes involved in metabolism and transcription/translation/replication for both 

immature and mature biofilms (Fig. 3.5). Unexpectedly, most biofilm genes were down-regulated 

in response to acute MΦ exposure, with the exception of several hypothetical genes and a lone 

gene involved in staphyloxanthin biosynthesis (Supplemental Table 3.1). However, the ability of 

MΦs to induce global gene repression was transient, as the number of genes altered was 

dramatically reduced after a 24 h co-culture period (Figs 3.4A, and Tables 3.2, 3.3, and 

Supplemental Fig. 3.1). This is likely attributable to the fact that a large percentage (≥ 55%) of 

MΦs are dead approximately 6 h after co-culture with S. aureus biofilms and presumably are no 

longer able to produce factor(s) that influence the biofilm transcriptome (195). A subset of genes 

identified as differentially expressed by biofilms upon MΦ addition in the microarray analysis 

were verified by qRT-PCR (Fig. 3.6). 

 In comparison to MΦs, PMNs were more limited in their ability to affect S. aureus biofilm 

gene transcription (Fig. 3.4B, 3.5C, 3.5D, and Tables 3.4, 3.5, and Supplemental 3.2). Of note, 

many genes remained unaltered following MΦ or PMN addition to biofilms, suggesting that these 

genes are important for biofilm maintenance in the face of an immune challenge. Nonetheless, 

PMNs and MΦs differentially impact the S. aureus biofilm transcriptome as revealed by the 

dichotomy in the observed gene expression patterns. 
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Figure 3.4 

Acute macrophage addition to S. aureus biofilms leads to the transcriptional repression of 

numerous genes. The total number of genes significantly up- or down-regulated in response to 

MΦ (A) or PMN (B) co-culture in immature (4 day-old) or mature (6 day-old) S. aureus biofilms 

is shown, including those encoding for hypothetical proteins. 
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Figure 3.5 

 

Classification of genes significantly altered by leukocyte addition in S. aureus biofilms. S. 

aureus USA300 LAC-GFP static biofilms were grown for 4 or 6 days, whereupon MΦs (A and 

B) or PMNs (C and D) were incubated with biofilms for 1 h. The numbers of genes with defined 

functions (grouped into cell wall/membrane, virulence/defense, regulation, metabolism, 

transcription/translation/replication, and miscellaneous categories) significantly altered after MΦ 

or PMN challenge are shown. Genes encoding for hypothetical proteins were not included. 
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Table 3.2. Significantly down-regulated genes between 6 day-old S. aureus biofilm versus 

biofilm-macrophage co-cultures for a 1 h period 

Category 

Virulence/defense 

Fold 

Change Common Locus Description 

-30.01 nuc SA0860 thermonuclease precursor  

-13.84 epiA  SA1878 lantibiotic epidermin precursor  

-12.43 

 

SA2525 ABC transporter, ATP-binding protein  

-9.54 

 

SAS0388 exotoxin 3 

-6.88 hlY SA1173 alpha-hemolysin precursor  

-6.40 hlb 

BA000017 

SA2003 phospholipase C  

-5.59 chp SAR2036 chemotaxis-inhibiting protein  

-4.99 

 

SA0477 

type I restriction-modification system, S subunit, EcoA 

family, putative  

-4.64 fmhA SA2409 fmhA protein  

-3.16 

 

SA2430 ABC transporter, ATP-binding/permease protein  

-2.91 

 

SA2445 fmtA-like protein  

-2.78 

 

SA1098 metallo-beta-lactamase family protein  

-2.73 epiP SA1874 epidermin leader peptide processing serine protease  

-2.39 entK SA0886 staphylococcal enterotoxin  

-2.22 eprH SA1265 endopeptidase resistance gene  

-2.04 set8 SA0384 exotoxin 8  

-2.03 epiE SA1872 epidermin immunity protein F  

Cell wall 

Fold 

Change Common Locus Description 

-22.02 isdC SA1141 NPQTN cell wall surface anchor protein  

-8.42 

 

SA1994 ABC transporter, ATP-binding protein  

-8.24 isdB SA1138 LPXTG cell wall surface anchor protein  

-7.69 

 

SA1779 transglycosylase domain protein 

-7.66 spsB SA0969 signal peptidase IB  

-6.44 isdD SA1142 hypothetical protein  

-6.39 

 

SA1932 transglycosylase domain protein  

-6.23 

 

SA0486 staphylococcus tandem lipoprotein  
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-5.38 tagX SA0697 teichoic acid biosynthesis protein X  

-4.62 abcA SA0700 ABC transporter, ATP-binding/permease protein  

-4.40 

 

SA1169 fibrinogen-binding protein precursor-related protein  

-3.93 srtA SA2539 sortase  

-3.46 opuBB SA0783 osmoprotectant ABC transporter, permease protein  

-3.35 isaB SA2660 immunodominant antigen B  

-3.34 

 

SA0203 

iron compound ABC transporter, iron compound-binding protein, 

putative  

-3.30 

 

SA0611 glycosyl transferase, group 1 family protein 

-3.27 

 

SA0242 teichoic acid biosynthesis protein, putative  

-3.19 dltA SA0935 D-alanine-activating enzyme/D-alanine-D-alanyl carrier protein ligase  

-2.94 

 

SA1806 cell wall surface anchor family protein  

-2.93 

 

SA1043 glycosyl transferase, group 1 family protein 

-2.48 

 

SA1951 Mur ligase family protein 

-2.27 

 

SA2431 ABC transporter, ATP-binding/permease protein  

-2.27 cap1C SA2685 capsular polysaccharide biosynthesis protein Cap1C  

-2.18 dltD SA0938 DltD protein  

-2.13 

 

SA2082 membrane protein, putative 

-2.11 

 

SA0119 cell wall surface anchor family protein  

Transcription/translation/replication 

Fold 

Change Common Locus Description 

-10.99 

 

SA2089 single-stranded DNA-binding protein family  

-9.90 

 

SA1900 DNA repair exonuclease family protein  

-7.17 gpxA SA1325 glutathione peroxidase  

-6.75 rbf SA0725 transcriptional regulator, AraC family  

-6.39 norR SA0746 transcriptional regulator, MarR family  

-6.28 

 

SA2058 PemK family protein  

-6.18 rpsA SA1516 ribosomal protein S1  

-6.13 

 

SA2517 transcriptional regulator, MerR family  

-5.85 gmk SA1221 guanylate kinase  

-5.68 

 

SA1919 transcriptional regulator, Fur family  

-5.53 

 

SA1060 transcriptional regulator, MarR family  

-5.49 

 

SA0550 S4 domain protein  

-5.44 

 

SA2203 ClpA-related protein  
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-5.42 recF SA0004 recF protein  

-5.40 

 

SA1732 replication initiation and membrane attachment protein  

-5.29 

 

SA1939 phosphotyrosine protein phosphatase 

-5.28 

 

SA0305 ABC transporter, permease protein  

-4.87 

 

SA0980 transcriptional regulator, LysR family  

-4.77 

 

SA2407 lipoprotein, putative  

-4.68 

 

SA1803 pseudouridine synthase, family 1  

-4.63 

 

SA0028 IS431mec, transposase  

-4.62 ctsR SA0567 transcriptional regulator  

-4.51 licT SA1393 transcriptional antiterminator  

-4.41 

 

SA1997 transcriptional regulator, GntR family  

-4.34 rpsU SA1632 ribosomal protein S21  

-4.32 

 

SA2297 monooxygenase family protein  

-4.26 grpE SA1638 heat shock protein 

-4.22 

 

SA2290 transcriptional regulator, AraC family  

-4.13 glyS SA1622 glycyl-tRNA synthetase  

-3.97 

 

SA0552 general stress protein 13 

-3.88 tcaR SA2353 transcriptional regulator  

-3.72 

 

SA2713 rhodanese-like domain protein  

-3.63 

 

SA1897 protein export protein PrsA, putative  

-3.62 

 

SA1894 HIT family protein  

-3.62 

 

SA0526 DNA polymerase III, delta prime subunit, putative  

-3.56 serS SA0009 seryl-tRNA synthetase  

-3.52 ftsL SA1023 putative cell division protein  

-3.44 

 

SA2500 MutT/nudix family protein  

-3.43 rpmG SA1369 ribosomal protein L33  

-3.38 

 

SA2325 transcriptional regulator, LysR family  

-3.36 

 

SA1541 transcriptional regulator, Fur family 

-3.33 

 

SA2317 phosphosugar-binding transcriptional regulator  

-3.29 

 

SA0535 primase-related protein  

-3.24 

 

SA1957 RNA methyltransferase, TrmA family  

-3.24 rnr SA0846 exoribonuclease, VacB/RNase II family  

-3.23 rpsP SA1254 ribosomal protein S16  

-3.23 czrA SA2137 transcriptional regulator CzrA  
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-3.23 gidB SA2736 glucose-inhibited division protein B  

-3.20 rpmF SA1137 ribosomal protein L32  

-3.20 nusB SA1569 N utilization substance protein B  

-3.12 

 

SA1794 thioredoxin, putative  

-3.05 

 

SA1285 N utilization substance protein A, putative  

-3.04 

 

SA1205 cell-division initiation protein, putative  

-3.00 

 

SA0563 transcriptional regulator, GntR family  

-2.99 dinG SA1495 DNA polymerase III, epsilon subunit/ATP-dependent helicase  

-2.96 

 

SA0432 spoOJ protein  

-2.95 

 

SA1107 transcriptional regulator, Cro/CI family  

-2.86 

 

SA0540 endoribonuclease L-PSP, putative  

-2.84 rexB SA0970 exonuclease RexB  

-2.81 

 

SA1839 transposase, IS200 family  

-2.76 recQ SA1523 ATP-dependent DNA helicase RecQ  

-2.67 gltC SA0513 transcriptional regulatory protein GltC  

-2.61 

 

SA1752 CBS domain protein  

-2.61 

 

SA2131 Dps family protein  

-2.59 

 

SA0314 conserved hypothetical protein  

-2.58 miaA SA1323 tRNA delta(2)-isopentenylpyrophosphate transferase  

-2.51 crcB SA1832 crcB protein  

-2.51 

 

SA1065 transcriptional regulator, putative  

-2.48 

 

SA1954 exonuclease  

-2.45 nrdG SA2634 anaerobic ribonucleoside-triphosphate reductase activating protein  

-2.45 dnaK SA1637 dnaK protein  

-2.45 pcrA SA1966 ATP-dependent DNA helicase 

-2.44 

 

SA0024 5-nucleotidase family protein  

-2.40 recG SA1241 ATP-dependent DNA helicase RecG  

-2.39 

 

SA0551 cell-division protein divIC, putative  

-2.35 asnS SA1494 asparaginyl-tRNA synthetase  

-2.27 dnaN SA0002 DNA polymerase III, beta subunit  

-2.23 

 

SA1771 OsmC/Ohr family protein  

-2.21 htrA SA1028 serine protease  

-2.20 hexB SA1316 DNA mismatch repair protein  

-2.18 rnhC SA1150 ribonuclease HIII  



   65 
 

-2.10 parB SA2735 chromosome partioning protein, ParB family 

-2.09 

 

SA1153 DNA-dependent DNA polymerase family X  

-2.07 pheT SA1149 phenylalanyl-tRNA synthetase, beta subunit 

-2.06 

 

SA1250 chromosome segregation SMC protein, putative  

-2.05 map SA1946 methionine aminopeptidase, type I  

-2.01 mscL SA1182 large-conductance mechanosensitive channel  

Regulation 

Fold 

Change Common Locus Description 

-8.53 agrD SA2024 accessory gene regulator protein D  

-7.97 

 

SA2359 sensor histidine kinase  

-6.53 rsbW SA2055 anti-sigma B factor  

-5.85 

 

SA1354 sensor histidine kinase, putative  

-5.73 sarZ SA2384 staphylococcal accessory protein Z  

-5.61 rsbV SA2056 anti-anti-sigma factor RsbV  

-5.41 icaR SA2688 intercellular adhesion regulator  

-5.13 sarS SA0096 staphylococcal accessory regulator S  

-4.95 vraR SA1942 DNA-binding response regulator  

-4.91 rsbU SA2057 sigma factor B regulator protein  

-4.82 graS SA0717 sensor histidine kinase  

-4.50 arlS SA1450 sensor histidine kinase 

-4.07 vraS SA1943 sensor histidine kinase  

-3.82 sarY SA2289 staphylococcal accessory regulator Y  

-3.64 sarA SA0672 staphylococcal accessory regulator A 

-3.49 

 

SA1906 sensor histidine kinase, putative  

-3.37 agrB SA2023 accessory gene regulator protein B  

-2.61 

 

SA1355 DNA-binding response regulator, LuxR family 

-2.53 arlR SA1451 DNA-binding response regulator 

-2.39 agrC SA2025 accessory gene regulator protein C 

Metabolism 

Fold 

Change Common Locus Description 

-7.97 

 

SA2167 iron compound ABC transporter, iron compound-binding protein  

-7.58 isdE SA1143 iron compound ABC transporter, iron compound-binding protein, putative  

-7.32 

 

SA1111 spermidine/putrescine ABC transporter, spermidine/putrescine-binding protein 
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-7.31 epiD SA1875 epidermin biosynthesis protein  

-6.46 

 

SA1920 D-isomer specific 2-hydroxyacid dehydrogenase family protein  

-5.66 

 

SA1592 rhodanese-like domain protein  

-5.28 

 

SA2363 L-lactate permease  

-5.20 glmM SA2151 phosphoglucosamine mutase 

-5.19 

 

SA0024 5-nucleotidase family protein  

-5.13 nrdF SA0793 ribonucleoside-diphosphate reductase 2, beta subunit  

-5.11 cls1 SA1351 cardiolipin synthetase 

-5.08 phoU SA1420 phosphate transport system protein  

-5.06 

 

SA0031 glycerophosphoryl diester phosphodiesterase, putative  

-4.97 

 

SA1787 chorismate mutase/phospho-2-dehydro-3-deoxyheptonate aldolase  

-4.79 purB SA1969 adenylosuccinate lyase  

-4.73 isdF SA1144 iron compound ABC transporter, permease protein, putative  

-4.62 

 

SA2459 carboxylesterase  

-4.54 budA SA2617 alpha-acetolactate decarboxylase  

-4.25 

 

SA1753 universal stress protein family  

-4.19 coaBC SA1223 phosphopantothenoylcysteine decarboxylase/phosphopantothenate--cysteine ligase  

-4.10 

 

SA2138 cation efflux family protein 

-4.08 xpt SA0458 xanthine phosphoribosyltransferase  

-4.06 proC SA1546 pyrroline-5-carboxylate reductase  

-4.00 xseA SA1568 exodeoxyribonuclease VII, large subunit  

-3.92 lacG SA2180 6-phospho-beta-galactosidase  

-3.71 

 

SA0876 arsenate reductase, putative  

-3.62 sodA SA1610 superoxide dismutase 

-3.58 zwf SA1549 glucose-6-phosphate 1-dehydrogenase 

-3.58 

 

SA1588 proline dipeptidase  

-3.56 betA SA2627 choline dehydrogenase  

-3.53 

 

SA2375 transporter, CorA family 

-3.47 

 

SA1804 polysaccharide biosynthesis protein 

-3.32 

 

SA0666 iron compound ABC transporter, permease protein  

-3.30 gcvH SA0877 glycine cleavage system H protein 

-3.13 cdsA SA1280 phosphatidate cytidylyltransferase  

-3.09 

 

SA0024 5-nucleotidase family protein 

-3.03 asd SA1429 aspartate-semialdehyde dehydrogenase  
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-3.02 

 

SA1818 3,4-dihydroxy-2-butanone-4-phosphate synthase/GTP cyclohydrolase II  

-3.01 

 

SA0155 cation efflux family protein 

-2.98 

 

SA2475 peptide ABC transporter, permease protein, putative  

-2.97 

 

SA0712 lipase/esterase  

-2.97 

 

SA0687 Na+/H+ antiporter, putative  

-2.88 

 

SA2278 acyl-CoA dehydrogenase-related protein  

-2.84 rpe SA1235 ribulose-phosphate 3-epimerase  

-2.78 

 

SA0024 5-nucleotidase family protein 

-2.76 

 

SA1545 oxidoreductase, short-chain dehydrogenase/reductase family  

-2.73 

 

SA1553 glyoxalase family protein 

-2.65 nagB SA0616 glucosamine-6-phosphate isomerase  

-2.63 

 

SA0024 5-nucleotidase family protein  

-2.61 corA SA2342 magnesium and cobalt transport protein CorA, putative  

-2.57 

 

SA0409 conserved hypothetical protein  

-2.57 bglA SA0251 6-phospho-beta-glucosidase  

-2.57 

 

SA1825 N-acetylmuramoyl-L-alanine amidase, family 4  

-2.57 

 

SA0200 phosphoglycerate transporter family protein  

-2.54 tyrA SA1401 prephenate dehydrogenase  

-2.52 ribD SA1820 riboflavin biosynthesis protein  

-2.46 aroK SA1596 shikimate kinase  

-2.42 arcC SA1182 carbamate kinase  

-2.41 lysA SA1435 diaminopimelate decarboxylase  

-2.40 thrB SA1364 homoserine kinase  

-2.38 cidC SA2553 pyruvate oxidase 

-2.31 

 

SA1814 lysophospholipase, putative  

-2.31 

 

SA2303 inositol monophosphatase family protein  

-2.28 yajC SA1693 preprotein translocase, YajC subunit  

-2.27 

 

SA0655 oxidoreductase, aldo/keto reductase family 

-2.23 

 

SA1109 spermidine/putrescine ABC transporter, permease protein  

-2.15 nrdD SA2635 anaerobic ribonucleoside-triphosphate reductase  

-2.13 menE SA1844 O-succinylbenzoic acid--CoA ligase, putative  

-2.13 

 

SA0308 carbohydrate kinase, PfkB family  

-2.11 

 

SA2195 M23/M37 peptidase domain protein  

-2.08 

 

SA0921 CBS domain protein 
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-2.07 epiC SA1876 epidermin biosynthesis protein  

-2.01 

 

SA1309 pyruvate ferredoxin oxidoreductase, beta subunit  

Miscellaneous 

Fold 

Change Common Locus Description 

-15.57 

 

SA2526 membrane protein, putative, authentic point mutation  

-11.95 isdG SA1146 conserved hypothetical protein  

-9.42 asp23 SA2173 alkaline shock protein 23  

-9.15 

 

SA0893 pathogenicity island protein 

-8.72 

 

SA0658 HD domain protein  

-7.42 

 

SA1439 acylphosphatase  

-7.16 

 

SA0821 HD domain protein  

-6.87 

 

SA0606 hydrolase, haloacid dehalogenase-like family  

-6.33 

 

SA2378 transcriptional regulator, AraC family 

-6.30 

 

SA0668 hydrolase, alpha/beta hydrolase fold family 

-6.15 

 

SA1573 

integrase/recombinase, core domain family, authentic 

frameshift  

-5.80 

 

SA0602 hydrolase, haloacid dehalogenase-like family 

-5.75 

 

SA1365 hydrolase, haloacid dehalogenase-like family  

-5.51 

 

SA0318 prophage L54a, integrase 

-5.42 

 

SA2666 N-acetylmuramoyl-L-alanine amidase domain protein  

-5.20 

 

SA2245 acetyltransferase, GNAT family  

-4.77 

 

SA2328 abortive infection protein family  

-4.69 

 

SA2159 drug transporter, putative  

-4.65 

 

SA0764 glycosyl transferase, group 2 family protein 

-4.52 

 

SA0892 pathogenicity island protein, authentic frameshift  

-4.49 

 

SA1806 probable ATP-dependent helicase 

-4.49 

 

SA0812 degV family protein 

-4.46 

 

SA2036 ABC transporter, ATP-binding protein 

-4.46 dmpI SA1339 4-oxalocrotonate tautomerase 

-4.31 

 

SA1759 universal stress protein family  

-4.26 

 

SA2140 lytic regulatory protein, authentic frameshift  

-4.24 

 

SA1855 transposase, putative, degenerate  

-4.23 

 

SA0716 DNA-binding response regulator 

-4.17 

 

SA2142 SAP domain protein  



   69 
 

-4.15 scpA SA1538 segregation and condensation protein A 

-4.02 

 

SA1529 metallo-beta-lactamase superfamily protein  

-4.02 

 

SA0181 conserved domain protein  

-3.89 

 

SA1941 ribonuclease BN, putative  

-3.89 

 

SA2499 helicase, putative  

-3.77 

 

SA0630 amino acid permease  

-3.76 

 

SA2533 glyoxalase family protein  

-3.76 

 

SA0736 acetyltransferase, GNAT family  

-3.63 cbf1 SA1898 cmp-binding-factor 1  

-3.57 

 

SA0747 cobalamin synthesis protein/P47K family protein 

-3.44 

 

SA1677 aminotransferase, class V  

-3.41 

 

SA0607 azoreductase 

-3.38 

 

SA1933 ThiJ/PfpI family protein  

-3.34 

 

SA1515 GTP-binding protein, Era/TrmE family  

-3.33 

 

SA1287 30S ribosomal protein L7 Ae  

-3.30 

 

SA1179 exotoxin 4, putative  

-3.30 trxA SA1155 thioredoxin  

-3.24 

 

SA0803 lipoprotein, putative  

-3.19 

 

SA1047 conserved domain protein  

-3.19 

 

SA1180 exotoxin 3, putative  

-3.17 

 

SA0874 nitroreductase family protein  

-3.09 

 

SA1207 glyoxalase family protein  

-3.03 

 

SA1855 transposase, putative, degenerate  

-3.00 bcr SA2437 bicyclomycin resistance protein  

-2.97 

 

SA0891 transcriptional regulator, putative  

-2.95 

 

SA2354 membrane protein, putative  

-2.93 orfX SA0023 conserved hypothetical protein 

-2.89 

 

SAV1941 putative membrane protein 

-2.87 

 

SA0978 membrane protein, putative  

-2.86 

 

SA1412 hydrolase-related protein 

-2.79 

 

SA0553 MesJ/Ycf62 family protein 

-2.79 

 

SA1240 DAK2 domain protein  

-2.67 

 

SA1189 acetyltransferase (GNAT) family protein 

-2.66 tcaA SA2352 tcaA protein  
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-2.53 

 

SA1708 type III leader peptidase family protein  

-2.52 

 

SA0875 thioredoxin, putative 

-2.49 

 

SA2339 DNA-3-methyladenine glycosylase  

-2.49 

 

SA2499 helicase, putative  

-2.47 

 

SA0262 Choloylglycine hydrolase family protein  

-2.46 

 

SA2522 DedA family protein  

-2.41 

 

SA1644 putative competence protein ComEC/Rec2 

-2.40 

 

SA0855 acetyltransferase, GNAT family  

-2.39 

 

SA1437 cold shock protein, CSD family  

-2.38 

 

SA2018 abortive infection protein family  

-2.35 

 

SAV1976 similar to phi PVL ORF 52 homolog  

-2.34 

 

SA1615 ATP-dependent RNA helicase, DEAD/DEAH box family  

-2.30 

 

SA1751 DHH subfamily 1 protein  

-2.28 

 

SA2014 phage terminase family protein  

-2.28 int SA1810 integrase 

-2.27 

 

SA0595 peptidase, M20/M25/M40 family  

-2.26 

 

SA0201 DNA-binding response regulator, AraC family  

-2.25 

 

SA0250 PTS system, IIA component  

-2.24 

 

SA0744 ABC transporter, ATP-binding protein, MsbA family  

-2.23 relA SA1010 GTP pyrophosphokinase  

-2.19 

 

SA1589 lipoprotein, putative  

-2.18 

 

SAV1976 similar to phi PVL ORF 52 homolog 

-2.15 fmtC SA1396 fmtC protein  

-2.02 

 

SA2490 similar to N-hydroxyarylamine O-acetyltransferase  

-2.02 

 

SA1063 serine/threonine-protein kinase 
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Table 3.3. Differentially expressed genes between 6 day-old S. aureus biofilm versus biofilm-

macrophage co-cultures for a 24 h period 

Category 

Upregulated 

Metabolism 

Fold 

change Common Locus Description 

11.68 

 

SA0215 propionate CoA-transferase, putative  

9.94 

 

SA0214 long-chain-fatty-acid--CoA ligase, putative  

5.14 

 

SA0213 acyl-CoA dehydrogenase family protein 

4.68 

 

SA0211 acetyl-CoA acetyltransferase 

2.88 gltS SA2340 sodium:glutamate symporter  

Virulence/defense 

Fold 

change Common Locus Description 

4.23 spa SA0095 immunoglobulin G binding protein A precursor  

Cell wall 

Fold 

change Common Locus Description 

2.55 pbp1 SA1194 penicillin-binding protein 1  

2.46 dat SA1800 D-alanine aminotransferase  

2.37 sdrD SA0520 Ser-Asp rich fibrinogen-binding, bone sialoprotein-binding protein   

Transcription/translation/replication 

Fold 

change Common Locus Description 

2.06 glnR SA1328 glutamine synthetase repressor 

Miscellaneous 

Fold 

change Common Locus Description 

2.73 

 

SA1433 peptidase, M20/M25/M40 family  

Category 

Downregulated 

Metabolism 

Fold 

Change Common Locus Description 
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-3.85 

 

SA1912 glucosamine-6-phosphate isomerase, putative 

-3.04 

 

SA2579 phytoene dehydrogenase  

-2.42 

 

SA0921 CBS domain protein  

-2.30 

 

SA2369 pyridine nucleotide-disulfide oxidoreductase  

-2.27 

 

SA2708 ABC transporter, ATP-binding protein  

Transcription/translation/replication 

Fold 

Change Common Locus Description 

-3.41 fabG SA2482 3-oxoacyl-(acyl carrier protein) reductase, authentic point mutation  

-3.23 rpsA SA1516 ribosomal protein S1  

-2.59 hutG SA2327 formiminoglutamase  

-2.56 

 

SA1753 universal stress protein family  

-2.08 rpmB SA1238 ribosomal protein L28  

Cell wall 

Fold 

Change Common Locus Description 

-3.26 isdC SA1141 NPQTN cell wall surface anchor protein  

-2.93 

 

SA0764 glycosyl transferase, group 2 family protein  

-2.20 cap5E SA0140 capsular polysaccharide biosynthesis protein  

Virulence/defense 

Fold 

Change Common Locus Description 

-2.91 

 

SA1529 metallo-beta-lactamase superfamily protein 

-2.76 nuc SA0860 thermonuclease precursor  

-2.67 epiE SA1872 epidermin immunity protein F  

-2.42 

 

SA1797 metallo-beta-lactamase family protein 

-2.37 

 

SA2167 iron compound ABC transporter, iron compound-binding protein 

Regulation 

Fold 

Change Common Locus Description 

-2.26 arlR SA1451 DNA-binding response regulator 

Miscellaneous 

Fold 

Change Common Locus Description 

-3.21 asp23 SA2173 alkaline shock protein 23  

-3.20 dmpI SA1339 4-oxalocrotonate tautomerase 
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-3.05 

 

SA1038 membrane protein  

-2.82 

 

SA2007 peptidase, M20/M25/M40 family, authentic frameshift  

-2.68 

 

SA0671 hydrolase, alpha/beta hydrolase fold family  

-2.54 

 

SA1576 traG protein, putative  

-2.40 

 

SA2434 membrane protein, putative  

-2.12 

 

SA1941 ribonuclease BN, putative  
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Figure 3.6 

 

qRT-PCR validation of down-regulated genes in S. aureus biofilms identified by microarray 

analysis. A subset of genes identified by microarray analysis was confirmed by qRT-PCR 

following either a 1 or 24 h co-culture period of MΦs with 4 day-old USA300 LAC static 

biofilms. Results are presented as the relative gene expression after MΦ-biofilm co-culture 

compared to biofilms that were not incubated with MΦs as a reference standard. 
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Table 3.4. Differentially expressed genes between 6 day-old S. aureus biofilm versus biofilm-

neutrophil co-cultures for a 1 h period 

Category 

Upregulated 

Metabolism 

Fold  

Change Common Locus Description 

3.1 

 

SACOL0200 phosphoglycerate transporter family protein  

2.4 pyrE SACOL1217 orotate phosphoribosyltransferase  

2.2 feoB SACOL2564 ferrous iron transport protein B  

2.2 

 

SACOL2322 peptidase, M20/M25/M40 family  

2.0 carB SACOL1215 carbamoyl-phosphate synthase, large subunit  

2.0 

 

SACOL0217 ABC transporter, substrate-binding protein  

Virulence/defense 

Fold  

Change Common Locus Description 

2.0 

 

SACOL2449 drug transporter, putative  

Regulation 

Fold  

Change Common Locus Description 

2.1 lytS SACOL0245 sensor histidine kinase LytS  

2.0 

 

SACOL2585 regulatory protein, putative 

Miscellaneous 

Fold  

Change Common Locus Description 

2.7 

  

intergenic upstream of ORF sa_c4971s4276 

2.5 

  

intergenic upstream of ORF sa_c7173s10144 

2.4 

  

intergenic upstream of ORF sa_c8901s7819 

Category 

Downregulated 

Metabolism 

Fold  

Change Common Locus Description 

-3.7 

 

SACOL2131 Dps family protein  

-2.5 

 

SACOL1952 ferritins family protein  
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Regulation 

Fold  

Change Common Locus Description 

-2.7 groES SACOL2017 chaperonin, 10 kDa  

-2.4 grpE SACOL1638 heat shock protein  

-2.3 groEL SACOL2016 chaperonin, 60 kDa  

Miscellaneous 

Fold  

Change Common Locus Description 

-2.6 

  

intergenic upstream of ORF sa_c2703s2276 

-2.6 

  

intergenic upstream of ORF sa_c7269s10166 

-2.2 

  

reverse complement of intergenic upstream of ORF sa_c2703s2276 

-2.1 

  

reverse complement of intergenic upstream of ORF sa_c8455s7417 

-2.1 

  

intergenic upstream of ORF sa_c8544s7501 

 

Table 3.5. Differentially expressed genes between 6 day-old S. aureus biofilm versus biofilm-

neutrophil co-cultures for a 4 h period 

Category 

Upregulated 

Metabolism 

Fold  

Change Common Locus Description 

3.4 purK SACOL1074 phosphoribosylaminoimidazole carboxylase, ATPase subunit  

2.3 

 

SACOL0240 4-diphosphocytidyl-2C-methyl-D-erythritol synthase, putative  

2.1 gltB SACOL0514 glutamate synthase, large subunit 

Cell wall 

Fold  

Change Common Locus Description 

2.5 

 

SACOL0191 M23/M37 peptidase domain protein  

Miscellaneous 

Fold  

Change Common Locus Description 

2.5 

  

reverse complement of intergenic upstream of ORF sa_c10613s11068 

2.2 

 

SAS058 conserved hypothetical protein (all strains, N315) 

2.1 

  

intergenic downstream of ORF sa_c121s9459 
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Increased agr transcription by S. aureus biofilms promotes resistance to neutrophil 

challenge. agrA and agrB were both significantly enhanced in 4 day-old S. aureus biofilms 

following a 1 h exposure to PMNs (Supplemental Table 3.2). To evaluate the importance of 

increased agr transcriptional activity in the face of PMN challenge, we compared the extent of 

biofilm phagocytosis and death of PMNs after co-culture with USA300 LAC or its isogenic agr 

mutant (Δagr). While Δagr displayed significantly thicker biofilms as previously reported by 

others (Fig. 3.7A) (64, 210), PMNs co-incubated with Δagr demonstrated significantly less cell 

death and slightly enhanced phagocytosis of biofilm-associated bacteria, although the latter did 

not reach statistical significance (Fig. 3.7B). These results suggest that while the physical nature 

of the biofilm can limit the extent of phagocytosis, secreted factors also appear to play a role in 

evasion of PMN effector functions, at least in vitro; a hypothesis further corroborated by the types 

of genes known to be regulated by the agr operon (211, 212) as well as data previously reported 

by others (180). This functional study further substantiates our microarray data by illustrating 

how the enhanced expression of specific genes may facilitate biofilm evasion of innate immune 

mechanisms. 
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Figure 3.7 

 

agr promotes S. aureus biofilm resistance to neutrophil challenge. S. aureus USA300 LAC-

GFP wild type (WT) and isogenic Δagr static biofilms were grown for 6 days and visualized 

using confocal microscopy (63X magnification, 1 µm slices). (A) Quantification of 4 and 6 day-

old biofilm thickness. (B) PMNs (5 x 106) were incubated with biofilms for 20 h, whereupon the 

percent of phagocytic and dead PMNs was enumerated. Significant differences are denoted with 

asterisks, [(A) ***, p < 0.0001 using an unpaired two-tailed Student’s t-test, n = 60; (B) *, p < 

0.05 using an unpaired two-tailed Student’s t-test, n = 3].  
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Differential responses of macrophages and neutrophils to S. aureus biofilms are cell 

autonomous. To determine whether the differences between MΦs and PMNs to phagocytose 

biofilm-associated bacteria could be influenced by one another, both leukocyte populations were 

co-cultured with WT USA300 LAC biofilms. The extent of MΦ and PMN invasion into the 

biofilm was similar whether cells were added together (Fig. 3.8A) or separately (Fig. 3.8C). 

Similarly, MΦs were incapable of phagocytosing biofilm-associated S. aureus whether co-

cultured with PMNs (Fig. 3.8B) or alone (Fig. 3.8D), whereas PMNs were equally phagocytic 

under both conditions (Fig. 3.8B, D). This data demonstrates that the phagocytic ability of PMNs 

over MΦs in regard to S. aureus biofilm is cell autonomous and is not influenced by the other 

population in vitro. 
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Figure 3.8 

 

Differential responses of macrophages and neutrophils to S. aureus biofilms are cell 

autonomous. S. aureus USA300 LAC-GFP static biofilms were grown for 6 days and visualized 

using confocal microscopy (63X magnification, 1 µm slices). Quantification of invasion or 

phagocytosis of MΦs and PMNs (5 x 106 each) cultured either together (A and B) or separately 

(C and D) with 6 day-old biofilms at 4 and 24 h. Significant differences are denoted with asterisks 

[(A and B) **, p < 0.01 using an unpaired two-tailed Student’s t-test, n = 4; ***, p < 0.0001 using 

an unpaired two-tailed Student’s t-test, n = 4; (C and D) *, p < 0.05 using an unpaired two-tailed 

Student’s t-test, n = 2; **, p < 0.01 using an unpaired two-tailed Student’s t-test, n =2]. 
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Supplemental Figure S3.1 

   

Neutrophils phagocytose S. aureus biofilms throughout the co-culture period. USA300 LAC-

GFP static biofilms were grown for 6 days, whereupon bone marrow-isolated PMNs were 

incubated with biofilms for 1, 4, or 24 h (A-C, respectively). Biofilm co-cultures were visualized 

using confocal microscopy (63X magnification, 1 µm slices) and representative three-

dimensional images were constructed. Insets are provided at higher magnification to highlight the 

presence of intracellular bacteria. Results are representative of at least two independent 

experiments. 
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Supplemental Table S3.1. Significantly increased genes between 6 day-old S. aureus biofilm 

versus biofilm-macrophage co-cultures for a 1 h period 

Category 

Virulence/Defense 

Fold  

Change Common Locus Description 

4.5 

 

SA2291 staphyloxanthin biosynthesis protein  

Miscellaneous 

Fold  

Change Common Locus Description 

2.2 ssr161 

 

Hypothetical  

2.2 ssr162 

 

Hypothetical  

2.2 ssr169 

 

Hypothetical  

2.2 ssr166 

 

Hypothetical  

2.2 ssr167 

 

Hypothetical  

2.1 ssr168 

 

Hypothetical  

2.1 ssr159 

 

Hypothetical  

2.1 ssr160 

 

Hypothetical  

 

Supplemental Table S3.2. Significantly increased genes between 4 day-old S. aureus biofilm 

versus biofilm-neutrophil co-cultures for a 1 h period 

Category 

Regulation 

Fold 

change Common Locus Description 

5.6 agrB SA2381 accessory gene regulator protein B  

4.7 agrA SACOL2026 accessory gene regulator protein A 

Virulence/defense 

Fold 

change Common Locus Description 

3.6 

 

SACOL1187 antibacterial protein 

Miscellaneous 

Fold 

change Common Locus Description 

3.6 

 

SA1773 hypothetical protein  
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3.0 

 

SACOL2565 conserved hypothetical protein  

2.0 

 

SACOL2557 conserved domain protein   

2.0  SACOL2503 hypothetical protein 

Transcription/translation/replication 

Fold 

change Common Locus Description 

2.4 glnR SACOL1328 glutamine synthetase repressor 

Cell Wall 

Fold 

change Common Locus Description 

2.4 atl SACOL1062 bifunctional autolysin  

2.1  SACOL0507 LysM domain protein 

2.0 isaA SACOL2584 Immunodominant antigen A 

Metabolism 

Fold 

change Common Locus Description 

2.2 abcA SACOL0700 ABC transporter, ATP-binding/permease protein 

2.1 

 

SACOL1114 Mn2+/Fe2+ transporter, NRAMP family 
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Discussion 

 One facet of S. aureus pathogenesis is the organism’s ability to maintain cellular 

homeostasis while enduring immune-mediated stresses (174). S. aureus has been shown to 

interfere with virtually every level of the host immune response, including increased resistance to 

antimicrobial peptides, impairment of phagocyte recruitment, escape from NETs, resistance to 

intracellular killing, and interference with complement function as well as antibody-mediated 

opsonization (213). The objective of this study was to examine how relevant innate immune cell 

populations, such as PMNs and MΦs, alter the S. aureus biofilm transcriptome. To our 

knowledge, there have been no studies to date examining biofilm gene expression profiles after 

incubation with innate immune cell populations with any species of bacterial biofilm. Based on 

our preliminary data and the fact that PMNs are generally shorter-lived than MΦs, we chose early 

(i.e. 1 and 4 h) and late (i.e. 1 and 24 h) time points for biofilm co-cultures, respectively. 

Surprisingly, in subsequent experiments, we found that a significant number of PMNs remained 

viable at 24 h after biofilm addition; therefore, PMN co-incubation periods were extended in 

subsequent confocal experiments. 

In the current study, the greatest transcriptional impact on S. aureus biofilms was achieved 

during an early (i.e. 1 h) co-culture period with MΦs. This effect was independent of 

phagocytosis, since we observed few internalized bacteria within MΦs incubated with S. aureus 

biofilms (195, 204). Although numerous genes were repressed following biofilm exposure to 

MΦs after 1 h of co-culture, surprisingly many genes remained unaltered. These unaffected genes 

are likely important for biofilm maintenance, and may represent an essential core transcriptome 

needed to maintain biofilm survival and/or evade host antimicrobial effector mechanisms in the 

face of an immune challenge. In contrast, few genes were altered in S. aureus biofilms following 

a 24 h exposure to MΦs, which may be explained by changes in MΦ viability following extended 

biofilm co-culture periods. Specifically, our previous work demonstrated that most MΦs remain 
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viable during a 1 h co-culture period with biofilms; however, by 6 h MΦ viability is significantly 

reduced as measured by the live/dead stain 7-aminoactinomycin D (7-ADD)(195). Together, 

these findings suggest that S. aureus biofilms rapidly transition into a transcriptionally dormant 

mode after MΦ challenge, which is reversed once the pressure of viable MΦs has dissipated. We 

cannot exclude the possibility that minor changes in biofilm gene expression could have occurred 

following leukocyte addition that were not detected due to limitations in microarray sensitivity. In 

addition, although extreme care was taken to ensure rapid processing of biofilms prior to RNA 

isolation, it remains possible that some transcriptional changes may have occurred during this 

interval due to the short half-life of many bacterial mRNAs (214). However, since we compared 

the transcriptional profiles of biofilms alone concurrent with leukocyte co-culture conditions, any 

changes in mRNA turnover would be expected to decay at the same rate. 

Despite the extensive microbicidal mechanisms employed by PMNs, these cells did not 

significantly alter the S. aureus biofilm transcriptome. This was unexpected, since we predicted 

that PMN challenge would enhance bacterial virulence factor expression to interfere with 

recognition/killing mechanisms. While recent studies have demonstrated the ability of S. aureus 

to survive intracellularly within PMNs and, to a lesser extent, MΦs, one would expect this 

adaptation to necessitate large scale transcriptional changes (215). One possibility to explain the 

discrepancy between MΦs and PMNs in regulating biofilm transcriptional responses is that 

PMNs were added to biofilms at a 10-fold reduced density than MΦs. However, our confocal 

analysis indicated that PMNs invade the biofilm in greater numbers, remain viable for a longer 

period than MΦs, and exhibit phagocytosis. Nonetheless, the latter appears to be futile, since 

PMN phagocytosis of S. aureus biofilms does not significantly decrease bacterial numbers in 

vitro (204). Additionally, PMNs have not proven to play a key microbicidal role in a S. aureus 

catheter-associated biofilm model in vivo, showing minimal impact on bacterial burdens (197, 

204). 
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While MΦs and PMNs perform many overlapping functions in terms of bactericidal activity, 

subtle specialization of labor could potentially account for the S. aureus biofilm transcriptional 

differences reported in this study. For example, while PMNs are considered potent phagocytic 

effectors against numerous extracellular bacteria, activated MΦs are recognized as a signaling 

hub during bacterial infections through their secretion of numerous immune stimulatory and 

bactericidal factors (200, 201, 216-218). Therefore, it is possible that S. aureus biofilms are more 

responsive to this secreted milieu than physical disruption via phagocytosis, although this remains 

speculative. 

In addition to producing molecules to circumvent the host immune system, S. aureus biofilms 

must adapt to nutrient-limiting conditions encountered during growth. Interestingly, MΦ addition 

to S. aureus biofilms repressed numerous metabolism-associated genes, further suggesting that 

biofilms transition into a dormant mode to evade immune killing pathways. Correspondingly, 

MΦ exposure also lead to the repression of genes implicated in transcription, translation, and 

replication as well as cell wall synthesis, which would be expected to conserve energy during a 

decreased metabolic state. The repression of cell wall synthesis may also be a mechanism to 

evade innate immune recognition. 

The agr and sarA regulatory systems are among the many controlling the production of 

staphylococcal virulence and defense factors. The agr locus encodes a QS system involved in 

RNAIII production, which switches the synthesis of surface and adhesive molecules to toxin and 

exoprotein expression (84). SarA is a DNA-binding regulator protein that influences the 

expression of multiple genes, including those contributing to virulence and biofilm formation 

(188, 219). In this study, sarA transcription was reduced in S. aureus biofilms following MΦ 

exposure, which agrees with the generalized decrease in numerous genes regulated by SarA.  In 

contrast, agr transcription was significantly increased in S. aureus biofilms after PMN addition. 

The enhanced expression of agr in this setting allowed us to examine its contribution to PMN 
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reactivity using an isogenic agr mutant. The percentage of PMNs exhibiting phagocytic activity 

was increased in Δagr biofilms, despite the significant increase in biofilm thickness. This 

phenotype may be explained, in part, by alterations in phenol-soluble modulin (PSM) expression. 

PSMs are surfactant peptides that have recently been implicated in bacterial biofilm formation 

across a number of species, including S. aureus (79). PSM expression is intricately linked to 

bacterial density and is agr regulated (79). Based on this evidence, it is reasonable to predict that 

although Δagr biofilms are thicker than WT, they are likely less structurally complex and unable 

to effectively circumvent PMN invasion. In addition, Δagr biofilms elicited less PMN death, 

likely due to the reduced expression of lytic toxins, such as Hla and PSMs, which have been 

shown to play key roles in S. aureus pathogenesis (82, 220). There were no significant effects on 

MΦ phagocytosis or viability in response to Δagr biofilms (data not shown), implying that 

enhanced agr transcription is selective for thwarting aspects of PMN function. This finding 

further substantiates a potential selective role for impaired PSM action on PMNs, since its 

cytotoxic effects primarily target this cell type(221, 222). Finally, as PSM expression is induced 

by the stringent response resulting from the harsh conditions within the phagolysosome (83), 

impaired PSM activity provides a potential explanation for the increased intracellular burden of 

Δagr biofilms by PMNs. The impressive ability of S. aureus biofilms to adapt to PMN challenge 

correlates with the modest transcriptome changes reported in this study. 

In conclusion, the changes in S. aureus biofilm transcriptional profiles after leukocyte exposure 

reported here provides a comprehensive view of the molecules that may impact S. aureus immune 

evasion and survival during biofilm growth. Further investigations into the role of differentially 

regulated genes will provide a better understanding of the ability of S. aureus to adapt to 

environmental challenges and may provide novel strategies and therapeutic targets for 

staphylococcal biofilm infections. 
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Abstract 

The MΦ response to planktonic S. aureus involves the induction of proinflammatory, 

microbicidal activity. However, S. aureus biofilms can interfere with these responses, in part, by 

polarizing MΦs toward an anti-inflammatory, pro-fibrotic phenotype. Here we demonstrate that 

conditioned medium from mature S. aureus biofilms inhibited MΦ phagocytosis and induced 

cytotoxicity, suggesting the involvement of a secreted factor(s). Iterative testing identified the 

active factor(s) to be proteinaceous and partially agr-dependent. Quantitative mass spectrometry 

identified Hla and LukAB as critical molecules secreted by S. aureus biofilms that inhibit murine 

MΦ phagocytosis and promote cytotoxicity. A role for Hla and LukAB was confirmed using hla 

and lukAB mutants and synergy between both toxins was demonstrated with a lukAB/hla double 

mutant and verified by complementation. Independent confirmation of the effects of Hla and 

LukAB on MΦ dysfunction was demonstrated using an isogenic strain where Hla was 

constitutively expressed, a Hla antibody to block toxin activity, and purified LukAB peptide. The 

importance of Hla and LukAB during S. aureus biofilm formation in vivo was assessed using a 

murine orthopedic implant biofilm infection model, where the lukAB/hla strain displayed 

significantly decreased bacterial burdens and increased MΦ infiltrates compared with each single 

mutant. Collectively, these findings reveal a critical synergistic role for Hla and LukAB in 

promoting MΦ dysfunction and facilitating S. aureus biofilm development in vivo.  

  



   90 
 

Introduction 

Highly opportunistic pathogens possess attributes that facilitate persistent infections, in part, 

by shielding themselves from immune-mediated attack (223-225). S. aureus is one such example, 

and in addition to its well-known arsenal of virulence determinants, biofilm formation represents 

another means to circumvent immune-mediated clearance in the host (15, 16). Biofilms are 

heterogeneous bacterial communities encased in a complex matrix composed of extracellular 

DNA (eDNA), proteins, and polysaccharides (11, 32, 226, 227). S. aureus has a propensity to 

form biofilms on medical devices, such as prostheses and indwelling catheters, and the organism 

remains a major cause of health care- and community-associated infections (194, 228, 229). 

Many S. aureus virulence factors target innate immune pathways that are elicited during 

acute planktonic infection, such as phagocytosis and proinflammatory transcription factor 

activation (15, 160, 213, 230). Phagocytosis leads to the killing of extracellular pathogens as well 

as proinflammatory cytokine and chemokine production, which collectively orchestrate local and 

systemic inflammatory responses and initiate adaptive immunity (129-131). Recent studies have 

demonstrated that biofilms formed by various bacterial species interfere with classical host anti-

bacterial effector mechanisms (170, 231-235). With regard to S. aureus, work from our laboratory 

and others has shown that biofilms polarize MΦs towards an anti-inflammatory phenotype by 

dampening proinflammatory responses and limiting MΦ invasion in vivo (15, 159, 160, 236, 

237). This response is considered detrimental to biofilm clearance, since polarized MΦs possess 

poor microbicidal activity and instead promote fibrosis (15). Similar findings of MΦ dysfunction 

have been reported in response to S. epidermidis biofilms (158, 164, 165), suggesting the 

existence of a conserved effort to thwart efficient biofilm recognition and clearance by the host. 

However, the molecules responsible for the ability of S. aureus biofilms to attenuate MΦ 

proinflammatory responses remain ill-defined. 
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 The objective of this study was to identify S. aureus biofilm-derived products that induce 

MΦ dysfunction and facilitate biofilm persistence. Quantitative mass spectrometry identified Hla 

and the bicomponent leukotoxin, LukAB, also known as LukGH, as potential candidates 

responsible for inhibiting MΦ phagocytosis and promoting cytotoxicity, which was confirmed 

using hla and lukAB mutants. A synergistic effect was demonstrated with a lukAB/hla double 

mutant that also revealed decreased biofilm formation in vivo using a murine model of orthopedic 

implant biofilm infection. The reduction in MΦ phagocytosis, concomitant with enhanced cell 

death, likely facilitates the ability of S. aureus to avoid destructive host responses when organized 

as a biofilm. 
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Results 

S. aureus biofilms secrete a proteinaceous factor(s) that inhibits macrophage phagocytosis. 

Our previous studies demonstrated that MΦs are unable to phagocytose S. aureus biofilms (15, 

160); however, the mechanism responsible for this phenomenon remained to be identified. While 

it is known that the physical size of a biofilm is one factor that impedes phagocytosis (15), we 

investigated the possibility that a secreted factor(s) was also involved. In order to assess the effect 

of biofilm-conditioned medium on MΦ phagocytosis, we utilized fluorescent microspheres 

instead of live bacteria, since live S. aureus actively secretes factors during planktonic growth 

that would have been impossible to differentiate from biofilm-derived molecules. Using this 

approach, we were able to readily distinguish differences in phagocytosis and viability of murine 

MΦs exposed to fresh medium (Fig. 4.1A), S. aureus biofilm-conditioned medium (Fig. 4.1B), 

and S. aureus planktonic-conditioned medium (Fig. 4.1C) using confocal microscopy. Of note, 

similar effects of S. aureus biofilm-conditioned medium on MΦ phagocytosis were obtained with 

fluorescent microspheres and intact S. aureus in pilot studies (Supplemental Fig. S2.1), 

supporting the validity of this approach. MΦ phagocytic activity was significantly reduced after 

treatment with conditioned medium from intact biofilms of the Methicillin-resistant S. aureus 

(MRSA) clinical isolate USA300 LAC (172-175) (Fig. 4.1B and D), revealing a role for an 

extracellular factor(s). To determine whether this effect relied on an intact biofilm structure, fresh 

medium was added to mature biofilms that were disrupted by trituration, whereupon conditioned 

medium was harvested 24 h later. Treatment of MΦs with supernatants collected from disrupted 

biofilms had less impact on phagocytosis (Fig. 4.1D), suggesting that the putative extracellular 

factor(s) is enriched in intact biofilms, perhaps via a QS system that is disturbed upon destruction 

of the biofilm architecture. Similarly, conditioned medium from planktonic organisms was less 

effective at blocking MΦ phagocytosis (Fig. 4.1C and D), even when cultures were grown to a 

high cell density (i.e. late stationary phase; data not shown), demonstrating the enrichment of this 
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secreted factor(s) in intact biofilms. Importantly, these differences did not result from alterations 

in bacterial density or secreted protein levels, since titers and extracellular protein concentrations 

of intact biofilms, disrupted biofilms, and planktonic cultures were similar (Supplemental Fig. 

S4.1 and data not shown). 

 Whereas little information is currently available regarding the S. aureus biofilm secretome, 

the importance of autolysis to biofilm formation has been well-established (20, 32, 78, 238-240). 

To determine whether the putative biofilm extracellular factor(s) was actively secreted or a 

byproduct of cell lysis, mature biofilms were treated for 24 h with polyanethole sodium sulfanate 

(PAS) to inhibit lysis (241) or disrupted by trituration and treated with lysostaphin to artificially 

induce lysis. Only biofilm-conditioned medium from PAS-treated supernatants maintained 

inhibitory activity (Fig. 4.1F), suggesting that S. aureus biofilms actively secrete molecule(s) that 

impede MΦ phagocytosis. To elucidate the chemical nature of secreted inhibitory factor(s), 

conditioned medium from intact biofilms was treated with proteinase K prior to MΦ addition. 

Proteinase K completely ablated the inhibitory effect of S. aureus biofilm-conditioned medium on 

MΦ phagocytosis, implicating the action of a protein(s) in this phenomenon (Fig. 4.1H). 

 In addition to impaired phagocytosis, our prior report demonstrated that S. aureus biofilms 

also induced MΦ cytotoxicity (15). The latter could result from frustrated phagocytosis based on 

the inability of MΦs to physically engulf the bulky biofilm structure combined with the action of 

secreted toxins, such as Hla or leukocidins with known cytotoxic activity (131, 213, 242). 

Exposure of murine MΦs to conditioned medium from intact S. aureus biofilms induced 

significant cell death, whereas minimal cytotoxicity was observed following treatment with 

medium from either disrupted biofilms or planktonic S. aureus (Fig. 4.1A-C, and E). Similar to 

the approach employed for phagocytosis, biofilms were treated with lysostaphin or PAS, where 

only lysostaphin prevented the cytotoxic effects of biofilm-conditioned medium (Fig. 1G), again 
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revealing the action of an actively secreted protein based on its proteinase K-sensitive nature (Fig. 

4.1I). 
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Figure 4.1 

 

S. aureus biofilms secrete a proteinaceous factor(s) that inhibits macrophage phagocytosis. 

(A-C) Representative 2D confocal images (63x) of BMDMΦ phagocytosis of fluorescent 

microspheres (yellow-white) and cell death with propidium iodide stain (red-purple) after 

exposure to (A) fresh medium, (B) S. aureus biofilm-conditioned medium, or (C) S. aureus 

planktonic-conditioned medium. (D and E) BMDMΦs were exposed to fresh medium or 

conditioned medium collected from an intact biofilm, a mature biofilm that was mechanically 

disrupted, or a similar number of planktonic S. aureus. After a 3 h treatment period, (D) MΦ 

phagocytosis of fluorescent microspheres and (E) cell viability was quantitated by confocal 

microscopy. (F and G) Conditioned medium from biofilms treated with either PAS (10 μg/ml) or 
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lysostaphin (50 μg/ml) were added to MΦs to assess the relative importance of active biofilm 

secretion versus passive release of products via autolysis, respectively, on MΦ (F) phagocytosis 

and (G) cell death. (H and I) Biofilm-conditioned supernatants were treated with proteinase K (10 

μg/ml) prior to MΦ exposure to assess the chemical nature of the inhibitory molecule(s). 

Significant differences are denoted with asterisks (***, p < 0.001; one-way ANOVA followed by 

Bonferroni's multiple comparison test). Results are representative of at least two independent 

experiments. 
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S. aureus biofilm-induced macrophage dysfunction is partially agr-dependent. Our findings 

that disrupted biofilms were not as effective at blocking MΦ phagocytosis or inducing 

cytotoxicity suggested that QS systems enriched during biofilm formation may regulate the 

putative inhibitory molecule(s). The expression of numerous virulence factors in S. aureus, 

including secreted proteases, leukocidins, and Hla, is either directly or indirectly influenced by 

two-component regulatory systems, such as the agr QS system (243). Agr modulates virulence 

factor expression and is an important regulatory switch between planktonic and biofilm lifestyles 

in S. aureus (64, 212, 244-246). Conditioned medium from a Δagr biofilm induced minimal MΦ 

cell death (Fig. 4.2B), whereas the phagocytic block was significantly attenuated but only 

partially influenced by agr (Fig. 4.2). Since the MΦ inhibitory phenotypes upon exposure to S. 

aureus biofilms were partially agr-dependent, the Δagr strain was utilized for subsequent 

proteomics comparisons with WT biofilms in an attempt to identify secreted proteins enriched 

during biofilm growth that were capable of inducing MΦ dysfunction. 
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Figure 4.2 

 

S. aureus biofilm-induced macrophage dysfunction is partially agr-dependent. BMDMΦs 

were exposed to fresh or conditioned medium from S. aureus WT or isogenic ∆agr biofilms for 2 

h, whereupon (A) phagocytosis of fluorescent microspheres and (B) total viable MΦs were 

quantitated by confocal microscopy. Significant differences are denoted with asterisks (***, p < 

0.001; unpaired two-tailed student’s t-test). Results are representative of at least three 

independent experiments. 
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Sequential Windowed data-independent Acquisition of the Total High-resolution Mass 

Spectra (SWATH-MS) as a tool to identify S. aureus biofilm factors that induce 

macrophage dysfunction. We next employed a proteomics approach to identify candidate 

molecules that might be responsible for biofilm-mediated MΦ dysfunction. Our proteomics 

strategy utilized the ∆agr strain as a comparator with WT biofilm, since the MΦ inhibitory 

phenotypes were partially agr-dependent (Fig. 4.2). A second comparison was made between 

biofilm and planktonic conditions because the MΦ inhibitory factors were enriched during 

biofilm growth (Fig. 4.1). To identify differentially expressed proteins between WT vs. ∆agr 

biofilm- and planktonic-conditioned medium, TCA-precipitated proteins were analyzed by 

quantitative SWATH-MS (189). As expected, conditioned medium from WT and ∆agr biofilms 

displayed vastly different proteomic profiles, with 68 of 153 (44%) proteins significantly 

enriched in WT biofilms, 23% of which were either secreted proteases or known virulence 

factors, such as Hla (Fig. 4.3A and B; Table S4.1). In contrast, cell wall and structural proteins 

were more abundant in ∆agr biofilm-conditioned medium compared to WT (Fig. 4.3A and B). 

Similarly, proteomic comparisons between WT biofilm- vs. WT planktonic-conditioned medium 

differed significantly, with 108 of 301 (36%) proteins enriched in WT biofilm, including several 

secreted virulence factors such as toxins and proteases (Table S4.2). A functional proteomics 

network constructed with overlapping hits from both comparisons (WT biofilm vs. ∆agr biofilm 

and WT biofilm vs. WT planktonic) identified 17 proteins, including two serine proteases and 

two leukocidin components, as candidates to account for the inhibitory effects of biofilm-

conditioned medium on MΦ function (Fig. 4.3C). Additionally, Hla was significantly enriched in 

WT compared to ∆agr biofilms (Table S4.1), which represented another toxin of interest for its 

potential role in regulating MΦ dysfunction. Importantly, both Hla and LukAB were significantly 

enriched in biofilm- compared to planktonic-conditioned medium (Fig. 4.4), suggesting that these 

two proteins may be responsible for biofilm-induced MΦ dysfunction. LukAB is a bi-component 

leukotoxin also involved in S. aureus-mediated killing of host phagocytes (67, 247, 248).  
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Therefore, Hla and LukAB were the focus of subsequent mechanistic studies as they likely play a 

significant role in MΦ dysfunction and death in this setting. 
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Figure 4.3 

 

SWATH-MS identifies potential biofilm factors responsible for macrophage dysfunction. 

Conditioned supernatants from either S. aureus WT or Δagr strains grown under planktonic or 

biofilm conditions were harvested and TCA precipitated for protein isolation in triplicate. 

Relative protein concentrations were compared between sample sets by Sequential Windowed 

data independent Acquisition of the Total High-resolution Mass Spectra (SWATH-MS). (A) 68 

of 153 (44%) identified proteins were significantly enriched in WT vs. Δagr biofilm, with the 

largest percentage associated with metabolism and virulence. 85 of 153 (56%) identified proteins 

were significantly enriched in Δagr biofilm vs. WT biofilm, with the largest percentage of 

proteins falling into the functional category of cell wall proteins. (B) Direct comparison of 

significantly expressed proteins in WT vs. Δagr biofilm by functional category, with more refined 

groups of metabolism and virulence shown. (C) Functional protein association network of 

SWATH-MS identified proteins significantly enriched in WT biofilm-conditioned supernatant vs. 

planktonic and Δagr biofilm-conditioned supernatants. For all comparisons, statistical 

significance was assessed using a Z-test (p < 0.05). 
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Figure 4.4 

 

LukA and Hla secretion is enhanced in S. aureus biofilms. (A) LukA and Hla levels in S. 

aureus biofilm- vs. planktonic- conditioned medium were assessed by Western blots. (B) 

Quantitation of Hla levels in conditioned medium from WT S. aureus biofilms versus planktonic 

bacteria. Significant differences are denoted with asterisks (***, p < 0.001; unpaired two-tailed 

student’s t-test). Results are representative of at least two independent experiments. 
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LukAB and Hla play significant roles in biofilm-induced macrophage dysfunction. Biofilm-

conditioned medium from both ∆lukA and ∆lukB strains elicited minimal MΦ death compared to 

WT biofilm (Fig. 4.5B). Likewise, the phagocytic block induced by the ∆lukA and ∆lukB strains 

was less pronounced than WT biofilm-conditioned medium, although phagocytosis did not return 

to baseline levels (Fig. 4.5A). Both ∆lukA and ∆lukB phenotypes could be complemented, 

providing direct evidence for LukAB in modulating MΦ survival and phagocytosis (Fig. 4.5A 

and B). In contrast, while serine proteases were also noted to be elevated by SWATH-MS, 

biofilm-conditioned medium from serine protease mutants (∆spl or Δaur/spl/sspAB/scpA) as well 

as another leukocidin mutant (∆lukD) behaved similarly to WT biofilms (data not shown). 

 Since LukAB did not account for the entire MΦ dysfunction phenotype and SWATH-MS 

identified increased Hla levels in WT biofilm-conditioned medium (Table S4.1), we next 

examined the contribution of Hla to MΦ dysfunction. Further justification for investigating Hla 

stemmed from the vast literature on Hla regulation by the agr QS system (242, 249-251), the 

finding that conditioned medium from ∆agr biofilms was less effective at inducing MΦ 

dysfunction (Fig. 4.2), and that Hla secretion was significantly increased during biofilm growth 

(Fig. 4.4). Hla inserts into host cell membranes and oligomerizes to form pores, leading to cell 

death (242, 252). Indeed, MΦ survival was significantly improved following exposure to ∆hla 

biofilm-conditioned medium compared to WT biofilm, which was complementable (Fig. 4.5D). 

The effects of ∆hla on MΦ phagocytosis were less pronounced, but still reached statistical 

significance (Fig. 4.5C). Furthermore, blockade of Hla activity in WT biofilm-conditioned 

medium using a Hla neutralizing antibody phenocopied the findings with ∆hla (Fig. 4.5C and D). 

Specificity of the Hla antibody was demonstrated by its ability to inhibit the effects of purified 

Hla on MΦ survival and viability (Supplemental Fig. S4.3). Additional evidence to support Hla 

action was provided by the ability of biofilm-conditioned medium from a S. aureus strain that 
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constitutively expresses hla (hlaon) to induce significant MΦ death and inhibit phagocytosis (Fig. 

4.5C and D). 

 Both Hla and LukAB expression were markedly increased in conditioned medium from WT 

biofilms compared to planktonic bacteria (Fig. 4.4). Therefore, to assess whether LukAB and Hla 

act cooperatively to effect MΦ activity, ∆lukA and ∆lukB biofilm-conditioned media were treated 

with a Hla neutralizing antibody (Fig. 4.6). Interestingly, negating Hla action in ∆lukA and ∆lukB 

biofilm-conditioned medium significantly improved MΦ phagocytosis compared to supernatants 

where Hla was active (Fig. 4.6A). Similar findings were obtained with a ∆lukAB/∆hla mutant 

(Fig. 4.6A). Hla blockade in ∆lukA and ∆lukB biofilm-conditioned medium had no additional 

effect on MΦ survival, which was not unexpected since viability had nearly been restored with 

each of the single mutants to levels observed with fresh medium (Fig. 4.6B). When MΦs were 

treated with ∆lukAB biofilm-conditioned medium (that still produces Hla) in combination with 

purified LukAB or a point mutant that lacks lytic activity (LukABE323A) (186), only bioactive 

LukAB returned both phagocytic inhibition and cytotoxicity to levels observed with WT biofilm-

conditioned medium (Fig. S4.3). Collectively, these results demonstrate that LukAB acts in 

concert with Hla to induce MΦ dysfunction. 
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Figure 4.5 

 

LukAB and Hla play significant roles in biofilm-induced macrophage dysfunction. (A and 

B) BMDMΦs were exposed to fresh or conditioned medium from S. aureus WT, ∆lukA, ∆lukB, 

or chromosomally complemented ∆lukAB (∆lukAB::lukAB) biofilms. After a 3 h treatment 

period, (A) phagocytosis of fluorescent microspheres and (B) viable MΦs were quantitated by 

confocal microscopy. (C and D) BMDMΦs were exposed to fresh or conditioned medium from S. 

aureus WT biofilm + Hla antibody (α-Hla), ∆hla, plasmid complemented ∆hla [∆hla(pHla)], and 

constitutively expressed hla (hlaon) biofilms. After a 3 h treatment period, (C) phagocytosis of 

fluorescent microspheres and (D) viable MΦs were quantitated by confocal microscopy. 

Significant differences are denoted with asterisks (*, p < 0.05; ***, p < 0.001; unpaired two-tailed 

student’s t-test). Results are representative of at least three independent experiments. 
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Figure 4.6 

 

S. aureus Hla and LukAB act in concert to promote macrophage dysfunction. BMDMΦs 

were exposed to fresh or conditioned medium from S. aureus WT or isogenic ∆lukA, ∆lukB and 

∆lukAB/hla biofilms + Hla antibody (α-Hla). After a 3 h treatment period, (A) phagocytosis of 

fluorescent microspheres and (B) viable MΦs were quantitated by confocal microscopy. 

Significant differences are denoted with asterisks (***, p < 0.001; unpaired two-tailed student’s t-

test). Results are representative of at least three independent experiments. 
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LukAB and Hla are important for S. aureus biofilm formation in vivo. Previous work from our 

laboratory has demonstrated that augmenting MΦ proinflammatory activity is critical for biofilm 

clearance in vivo (160). Therefore, to determine whether the functional role identified for LukAB 

and Hla in mediating MΦ dysfunction in vitro would impact biofilm formation in vivo, we 

utilized a murine model of S. aureus orthopedic implant biofilm infection (54, 55, 253). Similar 

to our in vitro studies revealing cooperation between LukAB and Hla, the ΔlukAB/Δhla double 

mutant displayed the greatest reduction in bacterial burdens in the knee joint, surrounding soft 

tissue, and femur at days 3 and 7 post-infection compared to ΔlukAB or Δhla strains (Fig. 4.7A-

C). Furthermore, MΦ infiltrates were significantly increased in mice infected with ΔlukAB/Δhla 

(Fig. 4.7D), although they represent a minor population in this model of orthopedic implant 

biofilm infection, which is dominated by myeloid-derived suppressor cells (MDSCs) (54, 55). 

Taken together, these results identify LukAB and Hla as important virulence factors for 

modulating bacterial persistence and MΦ infiltrates during S. aureus biofilm formation in vivo. 
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Figure 4.7 

 

LukAB and Hla are important for S. aureus biofilm formation in vivo. Bacterial burdens 

associated with the (A) soft tissue surrounding the knee, (B) knee joint, and (C) femur of mice 

infected with WT S. aureus and isogenic ∆hla, ∆lukAB and ∆lukAB/hla strains at days 3 and 7 

post-infection (n = 10 mice per strain for each time point). Results are expressed as the number of 

CFU per gram of tissue to correct for differences in tissue sampling size. (B) Quantitation of 

F4/80+ MΦs infiltrating the soft tissue of mice infected with WT S. aureus and isogenic ∆hla, 

∆lukAB and ∆lukAB/hla strains. Significant differences are denoted with asterisks (*, p < 0.05; 

**, p < 0.01; ***, p < 0.001; unpaired two-tailed Student’s t-test). Results are combined from two 

independent experiments. 
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Figure 4.8 

 

Proposed model for S. aureus biofilm-induced macrophage dysfunction. S. aureus biofilms 

produce an abundance of LukAB, which can associate with the cell surface as a toxin reservoir or 

be actively secreted into the extracellular milieu. Biofilms also secrete Hla that acts 

synergistically with LukAB to elicit MΦ dysfunction. Other secreted proteins, such as 

lipoproteins, lantibiotics, or siderophores may also impact MΦ phagocytosis. 
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Supplemental Figure S4.1 

 

Bacterial counts and extracellular protein concentrations of S. aureus WT planktonic, 

biofilm, and isogenic mutant biofilms are similar. (A) All S. aureus strains used in these 

studies grew to comparable extents after 6 days of culture in RPMI-1640 supplemented with 1% 

CAA as indicated by the number of viable bacteria determined by quantitative culture with results 

expressed as colony forming units (CFU) per ml. (B) Quantitation of secreted proteins for each 

strain. Data are representative of at least two independent experiments. Strains are abbreviated as 

follows: ∆agr = accessory gene regulator mutant; ∆hla = α-hemolysin mutant; ∆hla (pHla) = 

plasmid complemented α-hemolysin mutant; hlaon = WT strain constitutively expressing α-toxin; 

∆lukA = leukocidin AB component single mutant; ∆lukB = leukocidin AB component single 

mutant; ; ∆lukAB::lukAB = chromosomally complemented leukocidin AB double mutant; 

∆lukAB/∆hla = leukocidin AB and α-hemolysin double mutant. 
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Supplemental Figure S4.2 

 

Validation of S. aureus Hla action on macrophage dysfunction. BMDMΦs were incubated for 

2 h with fresh medium alone or fresh medium with purified S. aureus Hla + an isotype control or 

Hla antibody (α-Hla). After a 2 h treatment period, (A) MΦ phagocytosis of fluorescent 

microspheres and (B) total viable MΦs were quantitated by confocal microscopy. Significant 

differences are denoted with asterisks (*, p < 0.05; ***, p < 0.001; unpaired two-tailed student’s 

t-test). Results are representative of at least two independent experiments. 
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Supplemental Figure S4.3 

 

Purified LukAB augments macrophage cytotoxicity. BMDMΦs were exposed to fresh or 

biofilm-conditioned medium from S. aureus WT or isogenic ΔlukAB + purified LukAB or 

inactive LukABE323A. After a 3 h treatment period, the (A) percentage of MΦs phagocytosing 

fluorescent microspheres and (B) percentage of viable MΦs were quantitated by confocal 

microscopy. Significant differences are denoted with asterisks (***, p < 0.001; unpaired two-

tailed Student’s t-test). Results are representative of at least two independent experiments. 
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Supplemental Figure S4.4 

 

Characterization of S. aureus biofilm growth in 1% casamino acids. Total numbers of 

dispersed (supernatant) vs. biofilm-associated bacteria in RPMI-1640 supplemented with 1% 

casamino acids were assessed by serial dilution (CFU/well) throughout the 6 day biofilm 

maturation process. 
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Table S4.1 Proteins identified to be in greater abundance in WT S. aureus biofilm- 

conditioned medium compared to ∆agr biofilm-conditioned medium 

Magnitude Category Protein Identity 

14.32 

4.73 

4.09 

3.32 

2.90 

2.72 

2.56 

2.42 

2.1 

2.01 

25.93 

6.92 

4.37 

3.91 

3.63 

3.07 

2.87 

2.50 

2.42 

2.29 

42.01 

33.61 

24.78 

24.78 

14.23 

9.02 

6.48 

2.17 

11.97 

10.59 

9.71 

6.38 

5.09 

3.90 

3.81 

3.09 

9.98 

6.49 

5.92 

5.08 

2.29 

23.69 

23.39 

6.92 

6.09 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Protease 

Protease 
Protease 

Protease 

Protease 

Protease 

Protease 

Protease 

Virulence 

Virulence 

Virulence 

Virulence 

Virulence 

Virulence 

Virulence 

Virulence 

Cell Stress 

Cell Stress Cell 

Stress Cell 

Stress Cell 

Stress 

Other 

Other 

Other 

Other 

RL5 

Syn 

RL13 

RL332 

EF-TU 

RL27 

GatB 

RS7 

RL16 

RL10 

CysK 

CarB 

OtcC 

KpyK 

Pur8 

HutG 

Pgk 

GlmS 

OdpB 

Ldh1 

SplB 

SplD 

SspA 

SspB 

SspP 

SplA 

SplC 

SplE 

LukDV/HlgB 

HlgA 

Hld 

Hla 

PsmA4 

LukB/H 

LukA/G 

ClfA 

Asp23 

Ch60 

ClpL 

OhrL 

HchA 

Pnp 

Lip1 

Pbp 

PpaC 

Ribosomal protein 

Asparagine-tRNA ligase 

Ribosomal protein 

Ribosomal protein 

Elongation factor 

Ribosomal protein 

Aspartyl/glutamyl-tRNA amidotransferase subunit B 

Ribosomal protein 

Ribosomal protein 

Ribosomal protein 

Cysteine synthase 

Carbamoyl phosphate synthetase subunit B 

Ornithine carbamoyltransferase 

Pyruvate kinase 

Adenylosuccinate lyase 

Formimidoylglutamase 

Phosphoglycerate kinase 

Glutamine--fructose-6-phosphate aminotransferase 

Pyruvate dehydrogenase E1 component subunit beta 

L-lactate dehydrogenase 1 

Serine-like proteasea 

Serine-like protease 

Serine protease 

Cysteine protease 

Cysteine protease 

Serine-like protease 

Serine-like protease 

Serine-like protease 

Leukocidin component 

Gamma-hemolysin component A 

Delta-hemolysin 

Alpha-hemolysin 

Phenol-soluble modulin alpha 4 peptide 

Leukocidin component 

Leukocidin component 

Clumping factor A 

Alkaline shock protein 

60 kDa chaperonin  

ATP-dependent Clp protease ATP-binding subunit 

Organic hydroperoxide resistance protein-like 

Molecular chaperone Hsp31 and glyoxalase 3 

Polyribonucleotide nucleotidyltransferase 

Lipase 

Beta-lactam-inducible penicillin-binding protein 

Probable manganese-dependent inorganic pyrophosphatase 
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5.13 

4.33 

4.25 

3.98 

3.84 

3.72 

3.69 

3.49 

3.44 

3.30 

3.17 

2.94 

2.83 

2.63 

2.46 

2.45 

2.44 

2.36 

2.21 

2.20 

2.16 

2.14 

2.10 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Lip2 

Ggi3 

AtpB 

AtpA 

ButA 

Ispd2 

Y2518 

Y2365 

Ptg3C 

GcsT 

FtsZ 

PdxS 

CatA 

Y840 

DldH 

ClpB 

PtgA 

MtlD 

Y370 

Y941 

UP355 

Dbh 

Y1797 

Lipase 

Antibacterial protein 3 homolog 

ATP synthase subunit beta 

ATP synthase subunit alpha 

Diacetyl reductase 

2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase 2 

Uncharacterized hydrolase 

Uncharacterized lipoprotein 

PTS system glucose-specific EIICBA component 

Aminomethyltransferase 

Cell division 

Pyridoxal biosynthesis lyase 

Catalase 

Uncharacterized protein 

Dihydrolipoyl dehydrogenase 

Chaperone protein 

Glucose-specific phosphotransferase enzyme IIA component 

Mannitol-1-phosphate 5-dehydrogenase 

Uncharacterized protein 

NADH dehydrogenase-like protein 

Uncharacterized protein 

DNA-binding protein 

Uncharacterized protein 
aProteins in red were selected for follow-up confirmation with mutant strains 

Table S4.2 Proteins identified to be in greater abundance in WT S. aureus biofilm-

conditioned medium compared to WT planktonic-conditioned medium 

Magnitude Category Protein Identity 

36.16 

19.56 

19.27 

15.11 

13.88 

10.66 

10.54 

10.16 

9.01 

8.12 

7.95 

7.59 

7.54 

7.47 

6.98 

6.74 

6.71 

6.48 

5.97 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

GlmS 

GlnA 

PyrB 

Dha1 

Alf1 

Odo1 

Kad 

DaaA 

TpiS 

Pur1 

Odp2 

P5cr 

PyrG 

HutG 

LdhD 

AckA 

SdrD 

Acp 

RocA 

Glutamine--fructose-6-phosphate aminotransferase 

Glutamine synthetase 

Aspartate carbamoyltransferase 

Alanine dehydrogenase 1 

Fructose-bisphosphate aldolase class 1 

2-oxoglutarate dehydrogenase E1 component 

Adenylate kinase 

D-alanine aminotransferase 

Triosephosphate isomerase 

Amidophosphoribosyltransferase 

Dihydrolipoyllysine-residue acetyltransferase  

Pyrroline-5-carboxylate reductase 

CTP synthase 

Formimidoylglutamase 

D-lactate dehydrogenase 

Acetate kinase 

Serine-aspartate repeat-containing protein D 

Acyl carrier protein 

1-pyrroline-5-carboxylate dehydrogenase 
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4.97 

4.86 

4.83 

4.56 

4.00 

3.94 

3.62 

3.56 

2.89 

2.88 

2.83 

2.66 

2.10 

15.61 

8.07 

7.28 

7.20 

6.06 

4.96 

4.84 

4.62 

4.43 

4.30 

3.74 

3.62 

2.81 

13.97 

9.19 

8.05 

7.05 

6.59 

4.03 

2.80 

2.48 

66.31 

13.95 

7.61 

6.05 

5.14 

4.46 

4.19 

7.29 

5.11 

3.35 

2.75 

2.73 

2.06 

10.98 

2.90 

2.73 

2.57 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Metabolism 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Translation 

Virulence 

Virulence 

Virulence 

Virulence 

Virulence 

Virulence 

Virulence 

Virulence 

Redox 

Redox 

Redox 

Redox 

Redox 

Redox 

Redox 

Cell Stress 

Cell Stress  

Cell Stress  

Cell Stress  

Cell Stress 

Cell Stress 

Structural 

Structural 

Structural 

Structural 

TdcB 

Pdp 

Hps 

K6pf 

Mqo2 

Pgk 

CarB 

KpyK 

OtcC 

PyrC 

F16pC 

PurM 

OdpB 

RL29 

RL3 

RL25 

RL14 

RL24 

RL7 

GatB 

RS2 

RL16 

RS15 

RL5 

RL11 

RS7 

FnbA 

GyrA 

LukDV/HlgB 

LukB/H 

BlaR 

HlgC 

Emp 

Plc 

MtlD 

Dhe2 

Y2305 

AhpF 

Y542 

Adh 

Azo1 

SodM 

RecA 

CspA 

GrpE 

ClpB 

ClpC 

Atl 

IsdC 

Omp7 

Rot 

L-threonine dehydratase catabolic protein 

Pyrimidine-nucleoside phosphorylase 

3-hexulose-6-phosphate synthase 

6-phosphofructokinase 

Probable malate:quinone oxidoreductase 2 

Phosphoglycerate kinase 

Carbomoyl phosphate synthetase subunit B 

Pyruvate kinase 

Ornithine carbamoyltransferase, catabolic subunit 

Dihydroorotase 

Fructose-1,6-bisphosphatase class 3 

Phosphoribosylformylglycinamidine cyclo-ligase 

Pyruvate dehydrogenase E1 component subunit beta 

Ribosomal protein 

Ribosomal protein 

Ribosomal protein 

Ribosomal protein 

Ribosomal protein 

Ribosomal protein 

Aspartyl/glutamyl-tRNA amidotransferase subunit B 

Ribosomal protein 

Ribosomal protein 

Ribosomal protein 

Ribosomal protein 

Ribosomal protein 

Ribosomal protein 

Fibronectin-binding protein A 

DNA gyrase subunit A 

Leukocidin componenta 

Leukocidin component 

Regulatory protein 

Gamma-hemolysin component C 

Extracellular matrix protein-binding protein 

1-phosphatidylinositol phosphodiesterase 

Mannitol-1-phosphate 5-dehydrogenase 

NAD-specific glutamate dehydrogenase 

Putative 2-hydroxyacid dehydrogenase 

Alkyl hydroperoxide reductase subunit F 

Putative heme-dependent peroxidase 

Alcohol dehydrogenase 

FMN-dependent NADPH-azoreductase 

Superoxide dismutase 

Recombinase A 

Cold shock protein  

Putative stress response protein 

Chaperone protein 

ATP-dependent Clp protease ATP-binding subunit 

Bifunctional autolysin 

Iron-regulated surface determinant protein C 

77 kDa membrane protein 

Repressor of toxin, transcriptional regulator 
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2.35 

2.00 

8.33 

5.74 

5.46 

3.91 

3.70 

87.39 

18.16 

15.64 

14.54 

14.02 

13.22 

11.32 

11.29 

8.30 

7.27 

6.91 

6.71 

5.82 

5.75 

5.50 

5.46 

4.60 

4.49 

4.33 

4.27 

3.94 

3.93 

3.68 

3.56 

3.29 

3.23 

3.07 

3.06 

2.75 

2.40 

2.37 

Structural 

Structural 

Protease 

Protease 

Protease 

Protease 

Protease 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

Other 

IsdH 

SarA 

SplF 

SplA 

SplE 

Aur 

PepVL 

RsbW 

SrrA 

Dpo3B 

PanB 

AtrF2 

RpoE 

Hem3 

RpoC 

AtpB 

GpsB 

IlvE 

HdoX2 

Y680 

CodY 

SceD 

Np30 

ThlA 

Y1696 

RpoA 

Rnj1 

PdxT 

FtsL 

Oat2 

Gsa2 

Y2518 

PtgA 

Ptg3C 

Y752 

Y968 

FabF 

Ldh2 

Iron-regulated surface determinant protein H 

Transcriptional regulator 

Serine-like protease 

Serine-like protease 

Serine-like protease 

Zinc metalloproteinase aureolysin 

Putative dipeptidase subunit 

Serine-protein kinase 

Transcriptional regulatory protein 

DNA polymerase III subunit beta 

3-methyl-2-oxobutanoate hydroxymethyltransferase 

Putative acetyltransferase 

Probable DNA-directed RNA polymerase subunit delta 

Porphobilinogen deaminase 

DNA-directed RNA polymerase subunit beta' 

ATP synthase subunit beta 

Cell cycle protein 

Probable branched-chain-amino-acid aminotransferase 

Heme oxygenase (staphylobilin-producing) 2 

Probable transcriptional regulatory protein\ 

GTP-sensing transcriptional pleiotropic repressor 

Probable transglycosylase 

30 kDa neutral phosphatase 

Probable acetyl-CoA acyltransferase 

UPF0297 protein 

DNA-directed RNA polymerase subunit alpha 

Ribonuclease J 1 

Glutamine amidotransferase subunit 

Cell division protein 

Ornithine aminotransferase 2 

Glutamate-1-semialdehyde 2,1-aminomutase 2 

Uncharacterized hydrolase 

Glucose-specific phosphotransferase enzyme IIA component 

PTS system glucose-specific EIICBA component 

Uncharacterized protein 

Uncharacterized protein 

3-oxoacyl-[acyl-carrier-protein] synthase 2 

L-lactate dehydrogenase 2 
aProteins in red were selected for follow-up confirmation with mutant strains 
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Discussion 

S. aureus subverts the host immune response by numerous mechanisms, including increased 

resistance to cationic antimicrobial peptides, impairment of phagocyte recruitment, interference 

with antibody-mediated opsonization and complement activation, and resistance to intracellular 

killing (213). In addition, biofilm formation further protects S. aureus from the host innate 

immune response, representing a communal virulence determinant (15, 56, 159). We have 

previously demonstrated that biofilm formation shields S. aureus from Toll-like receptor (TLR) 

detection and interferes with MΦ activation in vivo (15, 160). Here we explored the genetic basis 

of how biofilm growth prevents MΦ phagocytosis. Our earlier study showed that MΦs were 

capable of phagocytosing bacteria from mechanically disrupted, but not intact biofilms, 

suggesting that the size of the biofilm and/or density of its matrix represents a physical obstacle, a 

phenomenon referred to as “frustrated phagocytosis” (15, 254, 255). Here we extend these 

findings to demonstrate that S. aureus biofilms also secrete proteinaceous factors that actively 

inhibit MΦ phagocytosis and induce cell death. Interestingly, this proteinaceous component was 

mainly evident in intact biofilms, as conditioned medium from mechanically disrupted biofilms 

or planktonic cultures grown to early or late stationary phase failed to prevent phagocytosis to the 

same extent, although bacterial numbers and secreted protein concentrations were similar (Fig. 

1D, Supplemental Fig. S4.1, and data not shown). The preferential ability of intact S. aureus 

biofilms to inhibit MΦ phagocytosis suggested the involvement of QS mechanisms that are 

enriched during biofilm growth and dissipate once the biofilm structure has been disrupted. This 

was confirmed by the finding that biofilm-mediated MΦ dysfunction, in particular cell death, was 

less pronounced following exposure to conditioned medium from a ∆agr biofilm. These 

observations, combined with the fact that conditioned medium from PAS-treated biofilms 

maintained inhibitory activity, whereas lysostaphin-treated biofilms did not, strongly implicated 
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the importance of active protein secretion by the biofilm (based on proteinase K sensitivity) to 

inhibit MΦ phagocytosis and induce cell death. 

The identification of candidate proteins responsible for inducing MΦ death and inhibiting 

phagocytosis was facilitated with a relatively new quantitative mass spectrometry technique, 

namely SWATH-MS (189). After generating a protein library from our combined sample sets 

(i.e. WT biofilm, Δagr biofilm, WT planktonic, and Δagr planktonic), comparisons were 

performed to identify the most abundant proteins unique to WT biofilm-conditioned medium. 

While this list included some proteins undoubtedly released as a result of cell lysis (i.e. metabolic 

enzymes and ribosomal subunits), we focused on known secreted toxins and proteases that were 

also detected. Of this list, LukB, as well as its partner component LukA, were shown to have a 

significant impact on MΦ phagocytosis and viability. LukAB is unique among leukocidins for its 

ability to either remain cell wall-associated or released into the extracellular milieu (67, 247, 

248). A recent study has shown that human leukocytes are exquisitely sensitive to the cytolytic 

actions of LukAB due to its specificity for CD11b (256) mediated by the binding of a specific 

glutamic acid residue (323A) (186). While murine leukocytes are less sensitive to LukAB (256, 

257), this toxin was still implicated in S. aureus pathogenesis in a murine renal abscess model 

(67), which was confirmed in the current study using a murine S. aureus orthopedic implant 

biofilm model. Therefore, although human cells display a greater sensitivity to LukAB, it is clear 

from our report and work by others that this bi-component leukotoxin is also active towards 

murine leukocytes. 

In addition to LukAB, Hla also significantly contributed to biofilm-associated murine MΦ 

death and phagocytosis. The toxic effects of Hla are well-known and, while a recent publication 

has demonstrated the cytoprotective effects of S. aureus Hla within phagosomes (258), it is 

important to note that this scenario is not applicable in our studies given that our phagocytosis 

assay utilized microspheres and not viable bacteria. This strategy was employed to avoid 
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confounds from toxins secreted by live planktonic S. aureus if they were used to measure MΦ 

phagocytosis, which could not be discriminated from biofilm-secreted molecules. Interestingly, 

the already potent cytolytic effects of S. aureus Hla were enhanced with the addition of purified 

bioactive LukAB. Furthermore, treatment of ΔlukA and ΔlukB biofilm-conditioned medium with 

a Hla neutralizing antibody significantly dampened the MΦ phagocytic block. These results 

suggest a synergistic effect, whereby the presence of LukAB enhances or accelerates Hla-

mediated MΦ dysfunction, perhaps via enhanced binding, localization to the cell membrane, or 

regulating intracellular signaling pathways. 

Previous studies have demonstrated the importance of LukAB or Hla for S. aureus 

pathogenesis in murine models of renal abscess (67), pneumonia (259, 260), skin infection (261, 

262), bacteremia (263, 264), peritonitis (177, 262, 265), and other localized infection models 

(242). However, it should be noted that a ΔlukAB single mutant displayed no attenuation of 

virulence in murine models of skin infection and bacteremia (257). In support of our in vitro 

findings, our study is the first to report that LukAB and Hla cooperate to regulate S. aureus 

virulence in a murine orthopedic implant biofilm infection model. While ΔlukAB or Δhla single 

mutants displayed decreased bacterial burdens in some tissues, ΔlukAB/Δhla showed the largest 

reduction in bacterial numbers when compared to mice infected with the isogenic WT strain. In 

further support of this synergistic effect, ΔlukAB/Δhla infected mice displayed the greatest 

increase in MΦ infiltrates. While this in vivo data reveals an important synergistic role for LukAB 

and Hla during S. aureus biofilm infection, it remains unclear whether these toxins are directly 

altering MΦ survival (i.e. via cell lysis) or indirectly tailoring the immune response (i.e. eliciting 

tissue damage resulting in altered cytokine signaling to promote MΦ phagocytosis and 

proinflammatory activity). However, evidence against the former possibility was revealed by the 

finding that biofilm-conditioned medium elicited similar cytotoxic effects towards 

proinflammatory (classically activated) and pro-fibrotic (alternatively activated) MΦs (data not 
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shown). We also investigated whether biofilm-conditioned medium augmented MΦ CD11b 

expression, which binds LukAB, but found no evidence to support this possibility. Another 

potential mechanism to link the synergistic effects of Hla and LukAB is the zinc-dependent 

metalloproteinase ADAM10, since Hla is known to recognize ADAM10 on the host cell surface 

(266). Once bound, Hla augments ADAM10 activity (267), which could result in increased 

LukAB dissociation from the bacterial cell surface and, in turn, enhanced Hla activity. However, 

it should be noted that this interaction may provide an explanation for our in vivo findings, but 

fails to inform the apparent synergistic effect in our in vitro assay, since MΦs were treated with 

biofilm-conditioned medium clarified of bacteria. The mechanism whereby LukAB and Hla 

influence biofilm formation in vivo is an area of active investigation in our laboratory. 

While the effect of S. aureus biofilm-conditioned medium on MΦ viability was largely 

LukAB/Hla-dependent, it appears that part of the phagocytic block was not. SWATH-MS 

identified other potential candidate proteins that could act in concert with Hla/LukAB to 

maximally impair MΦ phagocytosis, including pyrimidine biosynthetic enzymes, 

phosphotransferase proteins, pyruvate kinase, and histidine metabolic enzymes. Along these lines, 

it is important to recognize that biofilms represent a diverse bacterial population influenced by a 

myriad of complex gradients (e.g. nutrient, oxygen, pH,), metabolic activity, and virulence 

potential (13, 84, 268, 269). For example, while our studies utilized conditioned medium 

collected from static biofilms, a subpopulation of planktonic or “dispersed” cells is also present at 

the air-liquid interface. While this cell population was 2-3 log lower than the biofilm 

(Supplemental Fig. S4.4), it is probably naïve to disregard their impact; particularly in light of 

recent studies demonstrating the secretory potential of biofilm-dispersed cells (270). Based on 

this evidence, we posit that S. aureus biofilms prevent MΦ phagocytosis, in part, by inducing cell 

death through LukAB and Hla production (Fig. 4.8). However, since the phagocytic block was 

still evident even when MΦ viability was restored to 100% following LukAB/Hla inactivation, 
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this suggests the action of additional proteins that act together with Hla/LukAB to maximally 

inhibit MΦ phagocytic activity (Fig. 4.8). 

 Collectively, this study demonstrates that S. aureus biofilms have evolved mechanisms to 

establish persistent infections, in part, by actively preventing MΦ phagocytosis and eliciting cell 

death that is mediated by the synergistic actions of LukAB and Hla. These findings not only 

identify a novel interaction for these secreted proteins, but also highlight the layers of redundancy 

within the S. aureus virulence repertoire. 
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Chapter 5: purB affects eDNA release during Staphylococcus aureus biofilm development to 

evade macrophage recognition 

Manuscript in preparation 
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Abstract 

The typical MΦ response to planktonic S. aureus involves the induction of 

proinflammatory, microbicidal activity. However, S. aureus biofilms can interfere with anti-

bacterial mechanisms, in part, by polarizing MΦs toward an anti-inflammatory, pro-fibrotic 

phenotype. Here we showed that MΦs exposed to S. aureus biofilms failed to induce the 

proinflammatory transcription factor NF-κB, which translated into minimal inflammatory 

cytokine production. We took advantage of this phenotype to screen the S. aureus Nebraska 

Transposon Mutant Library to identify mutants that were no longer able to suppress MΦ NF-κB 

activity. Among the top hits was purB, which encodes the enzyme adenylosuccinate lyase and 

catalyzes two reactions in the purine metabolic pathway. In addition to no longer inhibiting MΦ 

NF-κB activity, purB mutant biofilms were more susceptible to MΦ invasion and phagocytosis in 

a MyD88-dependent manner. This was attributed, in part, to increased eDNA in the purB mutant 

biofilm matrix that triggered MΦ invasion and phagocytosis of biofilm-associated bacteria via 

Toll-like receptor 9 (TLR9). In vivo, the purB mutant displayed significantly decreased bacterial 

burdens in a mouse orthopedic implant biofilm infection model concomitant with significantly 

increased MΦ infiltrates that was dependent on TLR9 recognition during acute infection. 

Collectively, these findings point towards a critical role for purB in facilitating biofilm evasion of 

MΦ microbicidal effector functions. 
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Introduction 

S. aureus is an opportunistic pathogen recognized for its ability to cause both nosocomial 

and community-associated infections (223). While S. aureus isolates encode a myriad of 

virulence factors, including toxins, proteases, and nutrient acquisition systems that facilitate 

colonization of numerous locations throughout the host, biofilm formation is another key 

virulence determinant (15, 16). Biofilms are a heterogeneous population of bacteria surrounded 

by a self-produced matrix composed of proteins, exopolysaccharides, and eDNA (32, 226, 227). 

While the biofilm matrix likely provides some physical barrier from the host immune response, 

heterogeneity within the bacterial population induced by signals such as nutrient and oxygen 

gradients, likely provides another layer of protection via differential gene expression and protein 

production throughout the biofilm proper (76).  Indeed, our prior work demonstrated that S. 

aureus biofilms alter their transcriptional profiles upon encountering MΦs (Chapter 3) and 

biofilms are enriched in toxins that attenuate MΦ phagocytosis and induce cell death (Chapter 4) 

(75, 171). 

S. aureus has a number of mechanisms for sensing and responding to environmental 

stimuli, including several characterized two-component regulatory systems. For example, the agr 

QS system regulates the production of surface-associated versus secreted proteins according to 

population density (84). In addition, the link between S. aureus metabolism and virulence is an 

active area of investigation (86-89). While many connections are still unclear, previous studies 

have demonstrated differential gene expression between S. aureus in the planktonic versus 

biofilm lifestyles, including differences in metabolic gene expression (22).  Interestingly, the 

influence of bacterial metabolites on the host immune response is only beginning to be explored 

and represents an area of investigation in our laboratory. 

The innate immune system is well-equipped to recognize pathogens through a variety of 

cell surface and PRRs. One example is the TLR family, which recognizes PAMPs such as 
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lipoproteins and PGN in the bacterial cell wall (via TLR2) and unmethylated CpG motifs in 

bacterial DNA (via TLR9). Once engaged by their microbial ligand, most TLRs (with the 

exception of TLR3) initiate a proinflammatory signaling cascade through the adapter molecule 

MyD88, culminating in NF-kB activation and the induction of a robust proinflammatory, 

antimicrobial immune response. While PMNs are among the first innate immune responders to 

planktonic bacterial infections such as those caused by S. aureus, there has been an increasing 

appreciation for the role of resident tissue MΦs in this response. Although PMNs are highly 

phagocytic and possess an arsenal of granules rich in antimicrobial peptides and enzymes (156), 

MΦs are also professional phagocytes capable of producing high levels of reactive oxygen 

species (ROS) and serve a critical role in leukocyte recruitment and activation through 

chemokine/cytokine production as well as inducing adaptive immunity by antigen presentation 

(125-127, 130). 

Our previous work has established that S. aureus biofilms, in contrast to planktonic 

organisms, prevent MΦ invasion and phagocytosis of biofilm-associated bacteria and drive MΦs 

towards an anti-inflammatory state (15, 160). Recent studies have revealed a synergistic role for 

the toxins Hla and LukAB in inhibiting MΦ phagocytosis and inducing cell death (75); however, 

other factors are also involved. The purpose of this work was to identify key genes involved in 

inhibiting MΦ proinflammatory activity by taking advantage of the NTML to screen for S. aureus 

mutants that were still capable of biofilm formation but lost the ability to skew MΦs towards an 

anti-inflammatory state, hence transforming them into proinflammatory, phagocytic cells. Our 

results identified numerous hits in the purine regulatory pathway. In depth analysis of a purB 

mutant (ΔpurB) revealed increased eDNA release at the outer surface of the biofilm that 

triggered, in part, TLR9-mediated MΦ activation. In addition, ΔpurB was less virulent in a mouse 

orthopedic implant biofilm model that was TLR9-dependent during the early stage of infection. 
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Collectively, these findings suggest that S. aureus carefully regulate eDNA levels and 

accessibility during biofilm formation to prevent MΦ recognition and proinflammatory activity.  
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Results 

Genes expressed during S. aureus biofilm growth that influence macrophage NF-κB 

activation. Our previous work has shown that MΦs are unable to invade and phagocytose S. 

aureus biofilm-associated bacteria and biofilm exposure drives MΦs towards an anti-

inflammatory phenotype (15, 160). Although our recent report demonstrated a synergistic role for 

Hla and LukAB produced during S. aureus biofilm growth in preventing MΦ phagocytosis 

(Chapter 4) (75), this study revealed that other proteins are also involved. To identify additional 

molecules important for S. aureus biofilms to evade MΦ recognition, we utilized MΦs from NF-

κB-luciferase reporter mice to screen the NTML (158, 271, 272). NF-κB is a key transcription 

factor that drives the expression of numerous cytokines/chemokines and is a widely used readout 

of MΦ proinflammatory activity (125, 131, 230). To validate this screening approach, NF-κB 

activation was minimal in MΦs exposed to intact S. aureus biofilms, whereas significant NF-κB 

induction was observed in response to planktonic bacteria and S. aureus-derived PGN (Fig 5.1A). 

The ability of biofilms to attenuate MΦ NF-κB activation is in agreement with significantly 

impaired cytokine production (Fig 5.1B). Furthermore, after biofilm exposure, MΦs remain 

refractory to subsequent stimulation by PAMPs, showing a reduction in both proinflammatory 

and anti-inflammatory cytokines, similar to MΦs exposed to planktonic S. aureus (Fig 5.1C, D).  

The NTML screen identified 22 mutants where MΦ NF-κB activity was significantly 

increased compared to WT biofilms (Fig 5.1E, Table 5.1). S. aureus mutants were also evaluated 

for their ability to form biofilms (Fig 5.1F), since impaired biofilm formation could lead to false 

positive hits by the ability of planktonic bacteria to increase NF-κB activity (Fig 5.1A). Of note, 

the numbers of mutants identified by our NF-κB screen were of relatively low abundance, 

representing only 1.1% of the library, revealing the stringency of the assay, which was 

corroborated by the identification of multiple hits within the purine pathway (i.e. purA, purB, 

purF, purM, and purS) and other operons (Table 5.1 and data not shown). Of particular interest 
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were purB and purA, since they represented the most robust inducers of MΦ NF-κB activity. 

purB was selected for further analysis, since its phenotype was slightly larger, it participates in 

two steps of the purine metabolic pathway (whereas purA catalyzes a single reaction; 

Supplemental Fig. S5.1), and purB expression has been previously shown to be increased during 

biofilm growth although functional assessments were not performed (22). 
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Figure 5.1 

 

Genes expressed during S. aureus biofilm growth that influence macrophage NF-κB 

activation. (A) BMDMΦs from NF-κB-luciferase reporter mice were incubated with fresh 

medium (Unstim.), PGN (10 µg/ml), or S. aureus planktonic or biofilm cultures for 4 h, 

whereupon luciferase activity (counts per second) was measured as a function of NF-κB 

activation and was normalized against PGN stimulated values (set to 100%). (B) MΦs were co-

cultured with biofilms or planktonic bacteria for 6 h, whereupon supernatants were collected to 

quantitate TNF-α, IL-1β, IL-10, and IL-1RA by ELISA (N.D. = not detected). (C) MΦs were 

incubated alone (non-exposed MΦ) or co-cultured with biofilms or planktonic bacteria for 2 h, 

whereupon MΦs were separated from bacteria by FACS and treated with medium alone (no 

treatment), the synthetic lipoprotein Pam3Cys (1 µg/ml), peptidoglycan (PGN; 10 µg/ml), or CpG 

oligodeoxynucleotides (ODN; 0.1 µM) for an additional 24 h. At 24 h, supernatants were 

collected for TNF-α and (D) IL-10 quantitation by ELISA [(-) = not detected]. (E) BMDMΦs 

from NF-κB-luciferase reporter mice were incubated with WT or NTML biofilms for 4 h, 

whereupon luciferase activity (counts per second) was measured as a function of NF-κB 

activation. Luciferase activity elicited by each mutant was normalized against WT biofilm 
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stimulated MΦs, which was set to 100% (solid red line). Red circles represent mutants where NF-

κB activity was increased (numbers refer to genes listed in Table 1). (F) Crystal violet staining 

was utilized as a quantitative assessment of biofilm formation, with each mutant normalized 

against WT biofilm, which was set to 100% (solid red line). Significant differences are denoted 

by asterisks (*, p < 0.05; **, p < 0.01; ***, p < 0.001; unpaired two-tailed student’s t-test). 

Results are representative of at least three independent experiments. 

  



   132 
 

Table 5.1. Genes expressed by S. aureus biofilms that influence macrophage NF-κB 

activation in vitro 

% WT Locus Gene Identity Function Location 

on Fig. 

5.1E 

418.05 SAUSA300_1889 purB adenylosuccinate lyase Purine 

metabolism 

17 

417.83 SAUSA300_0017 purA adenylosuccinate synthetase Purine 

metabolism 

1 

282.23 SAUSA300_1095 carA carbamoyl phosphate synthase small 

subunit 

Pyrimidine 

metabolism 

12 

264.28 SAUSA300_0969 purS phosphoribosylformylglycinamidine 

synthase 

Purine 

metabolism 

11 

213.39 SAUSA300_0957  Hypothetical protein hypothetical 10 

207.64 SAUSA300_2060 atpA F0F1 ATP synthase subunit alpha metabolism 19 

192.36 SAUSA300_0972 purF amidophosphoribosyltransferase Purine 

metabolism 

9 

181.38 SAUSA300_1225  aspartate kinase Amino acid 

metabolism 

14 

175.67 SAUSA300_1467 ipdA dihydrolipoamide dehydrogenase Amino acid 

metabolism 

15 

157.96 SAUSA300_1105 priA primosomal protein N DNA 

replication 

13 

156.74 SAUSA300_0973 purM phosphoribosylaminoimidazole 

synthetase 

Purine 

metabolism 

8 

155.16 SAUSA300_0489  putative cell division protein FtsH Protease 4 

154.37 SAUSA300_0787 aroD biosynthesis of aromatic amino acids Amino acid 

metabolism 

7 

153.29 SAUSA300_0086  Hypothetical protein Hypothetical 2 

151.66 SAUSA300_0618  ABC transporter substrate-binding 

protein 

Metal transport 6 

147.22 SAUSA300_0538  NAD-dependent 

epimerase/dehydratase family protein 

Carbohydrate 

transport 

5 

146.53 SAUSA300_0213  oxidoreductase; Gfo/Idh/MocA 

family 

Oxidoreductase 3 

145.23 SAUSA300_1754 splE Serine-like protease Protease 16 

145.22 SAUSA300_2631  Putative N-acetyltransferase Metabolites 20 

142.94 SAUSA300_2030  Hypothetical protein Hypothetical 18 
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purB is important for preventing macrophage invasion and phagocytosis of mature S. 

aureus biofilms. To determine whether the ability of the purB mutant to augment MΦ NF-κB 

activity translated into increased invasion and phagocytosis of biofilm-associated bacteria, MΦs 

were co-cultured with WT, ΔpurB, and ΔpurB complemented USA300 LAC biofilms. Indeed, 

MΦ invasion into mature ΔpurB biofilms was significantly increased compared to WT (Fig. 

5.2A) concomitant with enhanced phagocytosis (Fig. 5.2B). To confirm that these changes were 

not the result of increased planktonic growth of ΔpurB, biofilm formation was assessed. ΔpurB 

was capable of biofilm formation and although biofilm height was significantly reduced (Fig. 

5.2C), quantitation revealed a minor reduction in bacterial counts (i.e. < 2-fold; Fig. 5.2D). The 

increases in MΦ invasion and phagocytosis of ΔpurB biofilms was complementable (Fig. 5.2A, 

B), underscoring the importance of purB in inhibiting MΦ activity. 
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Figure 5.2 

 

purB is important for preventing macrophage invasion and phagocytosis of mature S. 

aureus biofilms. BMDMΦs were co-cultured with mature WT, ΔpurB, or ΔpurB + pTS1 GFP 

biofilms for 4-6 h, after which the percentage of MΦs (A) invading or (B) phagocytosing the 

biofilms was enumerated using confocal microscopy. (C) Mature GFP biofilms alone were 

observed by confocal microscopy to measure average biofilm height, (D) after which mature 

biofilms were mechanically disrupted, serially diluted in PBS, and plated to quantitate viable 

bacteria. Significant differences are denoted by asterisks (*, p < 0.05; **, p < 0.01; one-way 

ANOVA, followed by Bonferroni’s multiple-comparison test). Results are representative of at 

least three independent experiments. 
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eDNA is increased in S. aureus ΔpurB biofilms. Since the ability of MΦs to invade and 

phagocytose biofilms is likely dictated, in part, by the accessibility of immune stimulatory motifs 

at the outer biofilm surface, we next focused on the biofilm ECM. As eDNA is required for S. 

aureus biofilm development (32) and bacterial DNA is a known TLR9 ligand (101, 102), 

USA300 LAC GFP biofilms were stained with PI to visualize eDNA (Fig. 5.3A). The ratio of PI 

(eDNA/dead bacteria) to GFP (live) signal was quantitated in z-stacks acquired by confocal 

microscopy, which revealed a significant increase in eDNA/dead bacteria in ΔpurB throughout 

biofilm maturation (Fig. 5.3B). As PI is not specific for eDNA, but also stains dead cells present 

in the biofilm, eDNA was isolated from mature biofilms and the housekeeping gene gyrA was 

quantitated by qRT-PCR. Results confirmed that ΔpurB biofilms contained significantly 

increased eDNA (Fig. 5.3C) and all ΔpurB phenotypes could be complemented (Fig. 5.3). 

Another interesting finding was that more PI staining was observed at the outer surface of ΔpurB 

biofilms, presumably making it more accessible to MΦ recognition, compared to the WT and 

complemented strains where eDNA was mainly buried at the base of the biofilm (Fig. 5.3A). To 

determine whether the failure of MΦs to invade and phagocytose WT biofilms resulted, in part, 

from inaccessibility to immune stimulatory eDNA, purified biofilm-derived eDNA was added to 

the surface of mature WT biofilms, which phenotypically transformed the MΦ response to what 

was observed with ΔpurB, namely increased biofilm invasion and phagocytosis (Fig. 5.3D). 
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Figure 5.3 

 

eDNA is increased in S. aureus ΔpurB biofilms. (A) Propidium iodide was added to mature (6 

day-old) WT, ΔpurB, or ΔpurB + pTS1 GFP biofilms, visualized by confocal microscopy (X63, 

1-μm slices), and representative three-dimensional images were constructed. (B) GFP and PI 

signals were quantitated by COMSTAT analysis to determine a PI/GFP signal ratio. (C) eDNA 

was collected from mature biofilms and quantitated by performing qRT-PCR with gyrA. (D) 

BMDMΦs were co-cultured for 4-6 h with mature WT GFP biofilms alone, biofilms pretreated 

for 30 min with 100 U/ml DNase1, and biofilms with additional eDNA added to the surface after 

which the percentage of MΦs (D) invading or (E) phagocytosing biofilms was enumerated using 

confocal microscopy. Significant differences are denoted by asterisks (*, p < 0.05; **, p < 0.01; 

one-way ANOVA, followed by Bonferroni’s multiple-comparison test). Results are 

representative of at least three independent experiments. 
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S. aureus ΔpurB biofilm eDNA can be detected by MΦs and trigger activation. MΦs are 

equipped with a variety of PRRs. Among these are TLRs, including TLR9, which senses bacterial 

DNA and signals via the adapter molecule MyD88 to trigger NF-κB activation and 

proinflammatory properties (101, 102). Since ΔpurB augmented MΦ NF-κB activation, biofilm 

invasion, and phagocytosis, we next investigated whether this was TLR9-dependent based on 

increased eDNA in the ΔpurB biofilm matrix and its accessibility at the surface. Again, WT MΦs 

displayed significantly increased invasion (Fig. 5.4A) and phagocytosis (Fig. 5.4B) of ΔpurB 

biofilms; however, this was diminished upon co-culture of ΔpurB biofilms with TLR9 KO MΦs, 

and completely abrogated in the presence of MyD88 KO MΦs (Fig. 5.4A, B). Collectively, these 

results suggest that purB is important for regulating eDNA levels and localization in biofilms, 

which is partially responsible for the ability of WT biofilms to evade MΦ detection by preventing 

TLR9-dependent proinflammatory activity. However, additional MyD88-dependent signaling 

receptors are also involved, the identity of which remains to be determined. 
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Figure 5.4 

 

S. aureus biofilm eDNA can be detected by MΦs and trigger activation. BMDMΦs from WT, 

TLR9 KO, and MyD88 KO mice were co-cultured with mature WT, ΔpurB, or ΔpurB + pTS1 

GFP biofilms for 4-6 h, after which the percentage of MΦs (A) invading or (B) phagocytosing the 

biofilms was enumerated using confocal microscopy. Significant differences are denoted by 

asterisks (*, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; one-way ANOVA, followed 

by Bonferroni’s multiple-comparison test). Results are representative of at least three independent 

experiments. 
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S. aureus purB is important for chronic biofilm establishment. While the previous results 

revealed a role for purB in the ability of S. aureus biofilms to evade MΦ recognition in vitro, we 

next assessed the importance of purB in a model of orthopedic implant biofilm infection in WT 

and TLR9 KO mice. Interestingly, ΔpurB displayed decreased bacterial burdens in WT mice 

beginning at day 7, which became more pronounced over time, with some mice appearing to have 

cleared the infection by day 28 (Fig. 5.5A). Decreased biofilm burdens in WT mice infected with 

ΔpurB correlated with a significant reduction in anti-inflammatory MDSCs (Fig. 5.5B) 

concomitant with increased MΦ infiltrates (Fig. 5.5B). While ΔpurB showed similarly decreased 

biofilm burdens in TLR9 KO mice at later time points, concomitant with reduced MDSC and 

increased MΦ infiltrates (Fig. 5.5C), importantly, there were no differences in titers between 

ΔpurB and WT infected TLR9 KO mice at day 7 (black and grey squares). This suggests that 

eDNA recognition in ΔpurB occurs via TLR9 but only during early biofilm development. By 

extension, since WT biofilms have less eDNA that is not present at the outer biofilm surface and 

accessible to invading MΦs, this may represent a mechanism whereby WT biofilms evade TLR9-

mediated recognition, in agreement with our earlier report (15). Importantly, the observed 

decrease in bacterial burdens at day 14 was complementable (Fig. 5.5D), again underscoring the 

specific importance of purB in this in vivo biofilm infection model. Complementation was not 

assessed at other time points to limit the number of animals utilized. 
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Figure 5.5 

 

S. aureus purB is important for chronic biofilm establishment. (A) Bacterial burdens 

associated with the soft tissue surrounding the knee of WT and TLR9 KO mice infected with WT 

S. aureus and isogenic ΔpurB strains at days 7, 14, 21, and 28 post-infection. (B) Quantitation of 

Ly6GhighLy6C+ MDSCs and F4/80+ MΦs infiltrating the soft tissue of C57BL/6 WT mice infected 

WT S. aureus and isogenic ΔpurB strains at days 7, 14, 21, and 28 post-infection. (C) 

Quantitation of Ly6GhighLy6C+ MDSCs and F4/80+ MΦs infiltrating the soft tissue of TLR9 KO 

mice infected WT S. aureus and isogenic ΔpurB strains at days 7, 14, 21, and 28 post-infection. 

(D) Bacterial burdens associated with the soft tissue surrounding the knee of WT and TLR9 KO 

mice infected with WT S. aureus and isogenic ΔpurB, and complemented ΔpurB + pKK22:purB 

strains at day 14 post-infection. Significant differences are denoted by asterisks (*, p < 0.05; **, p 

< 0.01; ***, p < 0.001; one-way ANOVA, followed by Bonferroni’s multiple-comparison test). 

Results are representative of at least two independent experiments.  



   141 
 

Supplemental Figure S5.1 

 

Predicted purine biosynthetic pathway in S. aureus. 5-Phospho-alpha-D-ribose 1-diphosphate 

(PRPP) is converted to 5-Phosphoribosylamine (PRA) by amidophosphoribosyltransferase 

(purF), which is then converted to 5′-Phosphoribosylglycinamide (GAR) by 

phosphoribosylamine-glycine ligase (purD), which is then converted to 5′-Phosphoribosyl-N-

ormylglycinamide (FGAR) by phosphoribosylglycinamide formyltransferase 1 (purN), which is 

then converted to 2-(Formamido)-N1-(5′-phosphoribosyl)acetamidine (FGAM) by a combination 

of phosphoribosylformylglycinamidine synthase (purS), phosphoribosylformylglycinamidine 

synthase I (purQ), and phosphoribosylformylglycinamidine synthase II (purL), which is then 

converted to Aminoimidazole ribotide (AIR) by  phosphoribosylformylglycinamidine cyclo-

ligase (purM), which is then converted to (5-Phospho-D-ribosyl)-5-amino-4-

imidazolecarboxylate (CAIR) by 5-(carboxyamino)imidazole ribonucleotide synthase (purK) and 

5-(carboxyamino)imidazole ribonucleotide mutase (purE), which is then converted to 1-(5′-

Phosphoribosyl)-5-amino-4-(N-succinocarboxamide)-imidazole (SAICAR) by 

phosphoribosylaminoimidazole-succinocarboxamide synthase (purC), which is then converted to 

1-(5'-Phosphoribosyl)-5-amino-4-imidazolecarboxamide (AICAR) by adenylosuccinate lyase 

(purB), which is then converted to 1-(5'-Phosphoribosyl)-5-formamido-4-imidazolecarboxamide 

(FAICAR) followed by Inosine monophosphate (IMP) both by 
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phosphoribosylaminoimidazolecarboxamide formyltransferase / IMP cyclohydrolase (purH); 

which is then converted to adenylosuccinate by adenylosuccinate synthase (purA), which is then 

converted to Adenosine monophosphate (AMP) by adenylosuccinate lyase (purB), which can 

then be eventually converted into Adenosine triphosphate (ATP) and used as energy, into adenine 

or adenosine through adenosine synthase (adsA), or into RNA or DNA as needed.  
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Discussion 

  S. aureus subverts the host immune response by numerous mechanisms, including 

increased resistance to cationic antimicrobial peptides, impairment of phagocyte recruitment, 

interference with antibody-mediated opsonization and complement activation, and resistance to 

intracellular killing (213). In addition, biofilm formation further protects S. aureus from the host 

innate immune response, representing a communal virulence determinant (15, 56, 159). The 

objective of this study was to identify genes expressed by S. aureus biofilms that contribute to 

MΦ dysfunction through the inhibition of NF-κB. 

  MΦs utilize phagocytic receptors to identify microbes and trigger immune defenses. 

Infectious agents that cause persistent infections, such as S. aureus biofilms, must be able to 

detect and subvert these defenses. We have previously demonstrated that biofilm formation 

protects S. aureus from TLR detection and phagocytosis, reduces proinflammatory cytokine and 

chemokine production, decreases inducible NO synthase (iNOS) expression, and interferes with 

MΦ activation in vivo (15, 160). We were interested in the genetic basis of how biofilm growth 

prevents MΦ phagocytic functions. Previously, we determined that MΦs were capable of 

phagocytosing bacteria from mechanically disrupted, but not intact biofilms, suggesting that the 

size of the biofilm and/or density of its matrix may form a mechanical obstacle that physically 

prevents MΦ phagocytosis, a phenomenon leading to “frustrated phagocytosis” (15, 254, 255). 

Subsequent studies revealed that toxins, including Hla and LukAB are also responsible for the 

MΦ phagocytic block, but that additional factors are also involved, which is not unexpected given 

the arsenal of S. aureus virulence determinants. 

  In response to planktonic bacteria, MΦs produce numerous proinflammatory mediators, 

exhibit potent phagocytic and anti-microbial activity, and are critical for immune cell recruitment 

and activation, serving as a first line of defense against microbial invasion (200, 201). However, 

we have previously reported that MΦs are polarized towards an alternatively activated, anti-
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inflammatory, M2 phenotype upon contact with S. aureus biofilms (15, 160). Here we have 

extended these findings to demonstrate that prior biofilm exposure makes MΦs refractory to a 

subsequent microbial challenge, further highlighting the immune subversive properties of S. 

aureus biofilms. Correspondingly, MΦ NF-κB activation was also significantly reduced after 

contact with S. aureus biofilms, whereas a strong response was detected after exposure to 

planktonic S. aureus or PGN. This indicates that in addition to impaired phagocytosis, another 

mechanism utilized by S. aureus biofilms to subvert the host immune response results from the 

ability to prevent MΦ NF-κB activation and resultant proinflammatory cytokine secretion. 

Indeed, multiple pathogens employ similar strategies to interfere with MΦ microbicidal activity 

either by hindering cytokine expression/secretion (273, 274) or by the production of virulence 

factors that directly impede NF-κB activation (158, 275). 

  To identify genes expressed by S. aureus biofilms that inhibit MΦ NF-κB activation, a 

screen of the NTML was performed. This approach utilized MΦs from transgenic mice where the 

transcription factor NF-κB drives luciferase expression. Several S. aureus mutants in the purine 

biosynthetic pathway (i.e. purA, purB, purF, purS, and purM) failed to block MΦ NF-kB 

activation, implicating their involvement in thwarting proinflammatory functions. Previous work 

demonstrated that S. aureus purine auxotrophs were less virulent in a murine abscess model of 

infection (276). Likewise, purine biosynthesis also appears to have broad physiological effects in 

S. aureus, including the modification of global patterns of virulence gene expression (276). 

Accordingly, we found that ΔpurB biofilms secreted significantly decreased levels of Hla 

compared to WT biofilms (Supplemental Fig. S5.2). Not surprisingly, ΔpurA and ΔpurB 

displayed the most robust NF-κB activation in our experiments, as these genes represent more 

distal steps in the purine biosynthetic pathway for converting inosine monophosphate (IMP) to 

adenosine monophosphate (AMP). A major end product of the purine biosynthetic pathway, 

AMP, can be converted to adenosine during staphylococcal infections (277). Adenosine is a 
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potent extracellular messenger that is abundant at sites of hypoxia, trauma, and inflammation 

(278). Moreover, adenosine has strong immunosuppressive effects, such as down-regulating 

cytokine production and immune cell receptors, many of which are mediated by its ability to bind 

A3 and A2A receptors on leukocytes (278-280). Accordingly, we found that adenosine attenuated 

MΦ NF-κB activity in response to PGN stimulation, further indicating that products of the purine 

biosynthetic pathway influence MΦ activation (Supplemental Fig. S5.3). 

  Interestingly, these studies indicate that purine biosynthesis is also important for S. 

aureus regulation of eDNA in the outer biofilm matrix. Consistent with our previous studies, 

disrupting the ability of MΦs to recognize bacterial eDNA via TLR9 does not alter invasion and 

phagocytosis during co-culture with WT biofilms in vitro, nor does it result in a more severe 

infection in vivo in association with WT S. aureus (15).  However, disrupting purine biosynthesis 

via ΔpurB results in increased eDNA, particularly at the biofilm surface, providing an accessible 

PAMP for MΦ recognition and activation. While this phenomenon was complementable and 

reproducible with the addition of eDNA to the WT S. aureus biofilm surface, we observed a 

stronger phenotype in association with MyD88, implying an additive effect of other PAMP(s) 

being recognized by other TLRs, the identity of which remains to be determined. 

  The results of the current study, concomitant with our previous findings, support the 

conclusion that S. aureus biofilms have evolved mechanisms to establish persistent infections, in 

part, by actively programming MΦs towards an anti-inflammatory phenotype and preventing 

phagocytosis, presumably through the production of adenosine. Additionally, S. aureus biofilms 

shield the eDNA component of the ECM from MΦ recognition at the biofilm surface, thereby 

further evading MΦ detection. 
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Supplemental Figure S5.2 

 

purB activity effects Hla production in S. aureus biofilms. Quantitation of Hla levels in 

conditioned medium from WT S. aureus biofilms versus isogenic ΔpurB, and complemented 

ΔpurB + pTS1 strains. Significant differences are denoted with asterisks (****, p < 0.0001; 

unpaired two-tailed student’s t-test). Results are representative of at least two independent 

experiments. 
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Supplemental Figure S5.3 

 

Adenosine attenuates macrophage activation. Bone marrow-derived macrophages from NF-

κB-luciferase reporter mice were stimulated with 10 μg/ml peptidoglycan (PGN) for 2 h + 50 μM 

adenosine, whereupon luciferase activity was measured as a function of NF-κB activation. 

Significant differences are denoted with asterisks (*, p < 0.05; unpaired two-tailed student’s t-

test). Results are representative of at least three independent experiments. 
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Chapter 6: Discussion and Future Directions 

Key Findings and Conclusions: 

 The phagocytic and microbicidal activities of PMNs and MΦs are among the first lines of 

protection from bacterial pathogens. However, S. aureus is often resistant to innate immunity, 

especially when ensconced within the confines of the biofilm matrix. While previous studies in 

our laboratory have shown that S. aureus biofilms are able to resist clearance by both PMNs and 

MΦs, we wondered if this was accomplished by a conserved set of genes or through entirely 

different means. In order to answer this question, we examined biofilm gene expression profiles 

following co-culture with these two innate immune cell populations. We also compared the 

relative ability of PMNs and MΦs to invade and phagocytose biofilm-associated S. aureus. To 

our knowledge, this was the first study of its kind with any species of bacterial biofilm.  

 During co-culture with PMNs, we observed no significant alteration of the S. aureus 

biofilm transcriptome at an early or late period (Chapter 3). This was unexpected, especially 

taken together with our confocal data indicating that PMNs were readily able to invade the 

biofilm matrix and phagocytose biofilm-associated bacteria. While it is known that S. aureus can 

survive intracellularly in PMNs (215, 281, 282), PMN phagocytosis did not result in a significant 

reduction in viable bacterial numbers in vitro, and one would expect this adaptation to necessitate 

major transcriptional changes but this was not observed. While few transcriptional changes were 

detected, interestingly agr transcription was significantly increased after PMN addition to 

biofilms. agr regulates the production of numerous secreted virulence factors, including phenol-

soluble modulins (PSMs), which have been shown to play a role in biofilm maturation and are 

known to elicit cytotoxic effects on PMNs (79, 283). In agreement with this finding, we noted 

that Δagr biofilms were less able to inhibit PMN invasion and induce PMN cell death, despite 

being significantly thicker on average.  



   149 
 

 In contrast to PMNs, we observed a significant dampening of the biofilm transcriptome 

during early co-culture with MΦs, including numerous metabolism-associated genes. This 

transcriptional dormancy was negated at late co-culture periods, likely because a vast majority of 

MΦs had already succumbed to cell lysis by biofilm-secreted toxins (Chapter 4). Also in contrast 

to PMNs, we were able to document little/no MΦ invasion and phagocytosis of biofilm-

associated bacteria, perhaps in part due to successful “cloaking” of the biofilm. This curious 

difference in the biofilm transcriptional response to PMNs and MΦs, despite invasion and 

phagocytosis by the former and little to none by the latter, could be explained by the presence of a 

MΦ secreted molecule being sensed by the biofilm. 

 As I had now confirmed previous experiments in our laboratory observing an inability of 

MΦs to phagocytose biofilm-associated bacteria, the next question was whether molecules in the 

biofilm-conditioned milieu contributed to this phagocytic block (Chapter 4). We first 

demonstrated that S. aureus biofilm-conditioned medium could inhibit MΦ phagocytosis and 

induce cell death, and that it was significantly more inhibitory and lytic than planktonic-

conditioned medium. Next, we established that the bioactive factors were actively secreted, 

proteinaceous in nature, specific to intact biofilms, and at least partially agr-dependent. We then 

performed proteomics analysis via SWATH-MS comparing conditioned medium from Δagr with 

the WT strain, which identified Hla and LukAB as significantly enriched in WT biofilm-

conditioned medium. These results were further corroborated by Western Blot, ELISA, and a 

series of MΦ treatments using combinations of neutralizing antibodies and Δhla ΔLukAB 

mutants. Furthermore, hla and lukAB were found to act synergistically in vitro and in vivo in an 

implant-associated biofilm infection model. Taken together, these studies identified a novel 

interaction between these secreted proteins and highlighted another layer of redundancy within 

the S. aureus virulence secretome.  
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 Having identified secreted proteins enriched in S. aureus biofilms that hinder macrophage 

phagocytosis and induce cell death, we wanted to specifically ask how biofilms are able to skew 

macrophages towards an anti-inflammatory, M2 profile. In order to answer this question, we 

performed a high-throughput screen of the NTML in which we co-cultured BMDMΦs from NF-

κB reporter mice with S. aureus single-gene mutants to identify genes involved in inhibiting 

proinflammatory, or M1, MΦ activation (Chapter 5). This screen identified over 20 genes, several 

of which encode proteins involved in purine biosynthesis, including one of the top hits, 

adenolysuccinate lyase (purB). In vitro, ΔpurB biofilms displayed a significantly decreased 

ability to inhibit MΦ invasion and phagocytosis of biofilm-associated bacteria, which was 

complementable. We next examined differences in biofilm eDNA content and found that ΔpurB 

biofilms contained increased amounts of eDNA. Suspecting that increased eDNA at the biofilm 

surface may be leading to increased MΦ activation and invasion, we next performed co-cultures 

with BMDMΦs from TLR9 and MyD88 KO mice and found that both had a decreased ability to 

invade ΔpurB biofilms. Interestingly, however, MyD88 KO MΦs showed the most significant 

decrease, indicating a role for additional PAMPs in this co-culture paradigm in addition to the 

CpG motifs present in biofilm eDNA that would be recognized by TLR9. Furthermore, we were 

able to show that spiking additional eDNA onto WT S. aureus biofilms facilitated increased 

invasion. Finally, we demonstrated the importance of purB in the establishment of an infection in 

vivo in our murine orthopedic implant model, which we were also able to confirm by 

complementation. 

 In total, my studies have helped identify some key factors that contribute to S. aureus 

biofilm evasion of MΦ recognition and inhibition of MΦ antimicrobial activities (Fig. 6.1). These 

experiments also serve to further highlight the immense challenge we face in attempting to more 

effectively treat, and even prevent, S. aureus biofilm infections. The vast repertoire of virulence 

factors and exquisite control over which S. aureus produces them is truly astounding. It is my 
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hope that these studies may positively contribute to the ever growing corpus of S. aureus research 

that should one day allow us to live in harmony with this commensal turned opportunistic 

pathogen. 
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Figure 6.1 

 

Mechanisms by which S. aureus biofilms interfere with MΦ antimicrobial responses. 1) S. 

aureus biofilms are able to uniquely detect and respond to MΦ over PMN insult by down-

regulating much of its transcriptional activity. 2) S. aureus biofilms are uniquely enriched over 

planktonic cultures in Hla, LukAB, adenosine, and other factors that contribute to macrophage 

antimicrobial inhibition and cell death. 3) S. aureus biofilms are able to regulate eDNA 

expression in a purB-dependent manner thereby further preventing MΦ detection via TLR9. 
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Future Directions: 

Proteomics on innate immune cell and S. aureus biofilm co-cultures 

 While transcriptional profiling of the S. aureus biofilm after co-culture with either PMNs 

or MΦs was novel and informative, a translational assessment of biofilm protein production could 

help confirm some of the earlier data and pinpoint shifts in actual protein production in response 

to immune insults. In addition, it would be exciting to simultaneously measure protein production 

fluctuations from the PMN and MΦ populations after encountering a biofilm. This data collection 

could also begin to shed light on potential players in host-pathogen crosstalk and could be 

performed using SWATH-MS mass spectrometry. Significant S. aureus protein hits could be 

isolated, purified, and used to treat both immune cell populations in vitro to assess the impact on 

antimicrobial activity via phagocytic assay, qRT-PCR, and/or Western Blot. Similarly, individual 

PMN or MΦ protein hits could be used to treat biofilms to assess the impact on metabolic and 

transcriptional activity as measured by qRT-PCR and confocal microscopy via reporter constructs 

of key genes.  Finally, it may also be interesting to perform immune cell co-cultures with 

planktonic S. aureus to gain a fuller understanding of how biofilms alter the innate immune 

response. To my knowledge, this would be a completely novel study and should be feasible by 

careful identification of bacterial and eukaryotic proteins via consultation with separately 

acquired reference libraries.  

 

Identify biofilm proteins that directly inhibit macrophage phagocytosis 

 Although the effect of S. aureus biofilm-conditioned medium on MΦ viability was 

largely Hla/LukAB-dependent, part of the phagocytic block was not. While SWATH-MS 

identified other potential candidate proteins including pyrimidine biosynthetic enzymes, 

phosphotransferases, pyruvate kinase, histidine metabolic enzymes, and serine-like proteases, 
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these were all identified in a comparison between WT and Δagr mutant biofilms and part of the 

phagocytic block was not agr-dependent. However, we know this phenotype is protein-dependent 

as treatment of the biofilm-conditioned medium with Proteinase K fully reversed the phagocytic 

block. With this in mind, other two-component regulators could be tested, in conjunction with 

neutralizing Hla and LukAB antibody, to identify a regulator of the protein of interest. Upon 

identification, SWATH-MS could be performed as before with the new comparator to identify the 

protein(s) involved in directly inhibiting MΦ phagocytosis. Alternatively, a phagocytic screen of 

the NTML could be performed assessing the inhibitory effect of conditioned medium from every 

mutant biofilm after treatment with the neutralizing antibodies. This study could lead to the 

identification of a novel drug target, as we have previously shown that, once activated and 

phagocytic, MΦs are capable of decreasing bacterial burdens in an established biofilm infection 

in vivo. 

 

Assess agr activity across various medium formulations 

 Though my original co-culture experiments were performed with RPMI-1640 

supplemented with 10% FBS, the MS proteomics studies required supplementation with 1% 

casamino acids, since the proteins in FBS would have masked the detection of most bacterial 

proteins. Importantly, pilot studies demonstrated similar biofilm formation between FBS and 

casamino acids and no adverse effects on MΦ function or viability. However, I have observed 

apparently increased levels of sarAP1 promoter activity during biofilm growth in casamino acids 

as determined by fluorescence intensity of the sarAP1-GFP plasmid used to visualize the biofilm, 

even when normalized for any differences in culturable bacteria. In addition, I have measured 

significantly increased levels of Hla production in biofilms grown in casamino acids by ELISA, 

even when normalized for any differences in total protein production. As agr regulates numerous 

virulence factors including Hla, it would be interesting to note any significant differences in its 
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activity between the two media formulations. I could also include more traditional 

microbiological media formulations (e.g. TSB), with the expectation that it may promote even 

greater agr activity than casamino acids, since it is more nutrient-rich. These studies could be 

very interesting and help inform medium selection for in vitro experimentation, particularly when 

attempting to draw correlations between growth in media and growth during infection in a 

patient. Finally, it would be very interesting to identify any molecules present in the FBS that 

inhibit agr activity, as these could potentially be used therapeutically. What about examining 

changes when grown in dilute blood to mimic colonization/growth during wound formation? 

 

Characterize the ΔpurB blood agar phenotype 

 During my experiments with ΔpurB, I noticed that the mutant had a significant growth 

defect on TSA + 10% sheep blood in that it was unable to form single, isolated colonies, although 

growth was observed in concentrated areas of bacterial lawns. Curiously, this phenotype 

disappears after a few days of static biofilm growth in vitro or after 7 days of infection in the in 

vivo model of orthopedic implant biofilm infection. In order to determine the responsible genes, I 

could perform transcriptomics comparing ΔpurB with the WT strain pre- and post- in vitro or in 

vivo biofilm growth. Alternatively, I could perform DNA sequencing to look for any mutations 

that may be occurring during these growth conditions that suddenly confer growth on blood agar.  

 S. aureus infections are challenging to treat as it seems to be uniquely adapted to 

circumvent the host antimicrobial response, with the ability to colonize multiple sites on the 

human body with ease. Furthermore, S. aureus seems equally adept at benignly living on the 

human body as a commensal or chronically persisting inside the body as a pathogen. While many 

scientists are attempting to prevent S. aureus infections through the development of vaccines 

targeting key virulence factors or through manipulating the bacterial virulence factor regulatory 

pathways themselves, the diversity of states in which S. aureus can survive (e.g. planktonic vs 
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biofilm, proliferative vs persister) has made the identification of a common denominator to target 

unclear. What is becoming clearer, however, is that a multifactorial approach, combining some 

form of antibiotics with an immunostimulatory boost, will likely be required. Therefore, there is a 

continued pressing need to better understand all of the ways in which S. aureus biofilms thwart 

innate immunity.
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