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The introduction of nanoformulated antiretroviral therapeutic regimens is a promising 

alternative to standard once a day oral treatment of HIV infection. Our lab has pioneered 

this effort and was successful in harnessing mononuclear phagocytes (monocytes, 

dendritic cells and macrophages) as nanoformulated drug carriers. The approach was 

developed as Trojan horses for drug transport, delivery and distribution to sites of viral 

replication in order to facilitate microbial elimination in HIV sanctuaries. However, the 

remaining challenges for current antiretroviral nanoformulations include to formulate a 

broad range of hydrophilic short-acting drugs, and to elucidate the mechanism of 

sequestered nanoparticles in macrophages at the subcellular level. To this end, we 

developed a two-step synthesis to create a long-acting lamivudine (2’,3’-dideoxy-3’-

thiacytidine, 3TC).  A stable hydrophobic pro-drug crystal formulation was produced by 

poloxamer drug encasement. Conversion of the hydrophilic 3TC significantly extended 

its bioavailability facilitated by chemical drug conjugation to a fatty acid and creating a 

myristoylated drug. A folate targeted poloxamer 407 coated a newly formed 

nanocrystalline pro-drug markedly improving cell uptake, bioavailability and 

pharmacokinetic profiles. Reduced cytotoxicity and robust antiretroviral activities were 

also achieved. The nanoparticle interactions at the subcellular level were investigated 

vial nanoformulated protease inhibitor. Quantitative SWATH-MS proteomics for complete 
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recording of fragment ion peptide precursors in biological sample. and cell profiling were 

applied for endolysosomal trafficking for HIV-1 assembly and nanoformulation depot 

formation. We believe these findings unveil new opportunities for nanoformulated 

antiretroviral therapy and have brought the idea of long-acting antiretroviral therapy 

closer to the clinical translation. 
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1.1. HIV and AIDS 

1.1.1. Epidemic 

Human immunodeficiency virus infection and acquired immune deficiency 

syndrome (HIV/AIDS) is a spectrum of conditions caused by infection with the human 

immunodeficiency virus. Since its first discovery in 1981, HIV/AIDS has killed more than 

25 million people worldwide. It has become a global pandemic. As of 2014, 

approximately 36.9 million people are living with HIV globally, and 1.18 million people 

died of HIV/AIDS. Due to the widespread infection of HIV there has been a 

determination for the discovery and use of medicinal agents that can inhibit the virus. 

HIV type-1 (HIV-1) displays extraordinary genetic variation and can be phylogenetically 

classified into three distinct groups and several subgroups across the globe. While HIV-1 

clade C dominates the HIV-1 epidemic worldwide with more than 50% of the total viral 

infections, predominantly in Southern Africa, and other parts of Asia, HIV-1 subtype B is 

mainly found in Europe and America with about 10% of the total infections [1, 2]. 

1.1.2. Pathobiology 

HIV is a member of the genus Lentivirus, belonging to the family Retrovirus. HIV is 

roughly spherical with a diameter of about 80 to 120 nm in diameter. It is transmitted as 

single-stranded, positive-sense, enveloped RNA virus. It is composed of 2,000 copies of 

the viral protein p24, which is tightly bound to nucleocapsid proteins and enzymes 

including reverse transcriptase, proteases, ribonuclease and integrase. The p24 protein 

is coated by capsid, which helps in ready adsorption onto the host cell surface and 

provides a protective shell for the nucleic acid core.  A series of host cell proteins and 

viral specific glycoproteins including gp41 and gp120 are embedded in the phospholipid 
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bilayer. In addition to the viral core HIV has six regulatory genes (tat, rev, nef, vif, vpr 

and vpu) that affect its abilities to infect, replicate and assemble within the cell [3, 4]. 

HIV primarily infects components of the human immune system such as CD4+ T 

cells, monocytes, macrophages, glial cells, and dendritic cells. The HIV virion enters 

host cells by the adsorption of glycoproteins on its surface to receptors on the target cell 

followed by fusion of the viral envelope with the cell membranes and the release of the 

HIV capsid into the cell. Entry to the cell begins through interaction of the trimeric 

envelope gp160 spike with both CD4 and a chemokine receptor, either CXCR4 or 

CCR5. The virus will first attach to the host cell via the CD4 receptor through the CD4 

binding domains of gp120. The envelope complex undergoes a structural change, 

exposing the chemokine binding domains of gp120 and allowing them to interact with the 

target chemokine receptor. Fusion peptide gp41 then can penetrate the cell membrane, 

causing the collapse of the extracellular portion of gp41 into a hairpin, fusion of the host 

cell membranes as well as subsequent entry of the viral capsid.  The HIV RNA and 

various enzymes are injected into the cell. The viral single-strand RNA genome is 

transcribed into double-strand DNA and integrated into a host chromosome. Infection 

and ultimate destruction of CD4+ T cells heralds secondary immune deficiency and 

concomitant co-morbid conditions that include opportunistic infections and primary virus-

induced metabolic changes that affect also the function of the central nervous system 

(CNS), gut and lymphoid tissues. Within days after primary infection HIV invades the 

nervous system through lymphocytes and macrophages that cross the blood brain 

barrier (BBB) and serve as Trojan Horses for viral dissemination [4, 5]. 
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1.2. Macrophages and HIV reservoir  

Mononuclear phagocyte including blood monocyte, tissue macrophages and 

dendritic cells are principal cells involved in the clearance and inactivation of the HIV. 

These cells act as the reservoirs and vehicles for the dissemination of this viral 

pathogen. After binding and uptake, the ability of HIV-1 to complete its replication cycle 

depends mainly on differentiation and activation of its target cell and on molecular 

determinants of the infecting viral strain. The viral infection is highly dependent on the 

state of macrophage differentiation and the role of macrophages is a reservoir for 

persistent lentiviral infection.  It will decide whether viral infection is abortive, restricted, 

permissive, latent, or enhanced. Cellular differentiation parallels macrophage 

susceptibility to viral infection. The viral life cycle in monocytes and macrophages is 

regulated by physiological factors involved in differentiation from monocyte precursors to 

mature tissue macrophages [6-8]. 

The transmission of HIV occurs through exchange of body fluids and is mediated in 

large measure by cell-associated virus. HIV-1 in leukocytes of seminal and vaginal 

fluids, uterine cervix, and gastrointestinal lamina propria support a cell-mediated 

transmission of virus. After primary viral exposure, high levels of HIV replication ensue in 

the infected human host, which results in plasma viremia. Virus seeds tissue 

macrophages and continues to replicate during the long subclinical latency period. Viral 

replication is regulated by humoral and cellular immune factors. These viral-mediated 

immune regulatory factors are produced against a number of HIV gene products. 

Macrophage amplify production of a variety of immunoregulatory molecules such as 

complement, arachidonic acid metabolites, neutral proteases, various growth factors, 

and other cytokines including platelet-derived growth factor, tumor necrosis factor α 

(TNF- α), colony-stimulating factors (CSFs), the interleukins, and the interferons (IFN- α 
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and IFN-β). Many cytokines like interleukins (IL-1, -3, -4, and -6), macrophage and 

granulocyte-macrophage CSFs (M-CSF and GM-CSF), and TNF- α up-regulate HIV 

gene expression and thus play important roles in disease onset and progression. Some 

cytokines like IFN-α, -β, and –γ and IL-4 exert suppressive effects on HIV replication. 

The cytokine responses to viral infection complement immune-specific antiviral 

responses including antibody-dependent complement-mediated, neutralization, and cell-

mediated immune responses. 

Viral reservoir sites protect the virus from biological elimination pathways, immune 

response, and antiretroviral drugs. They allow viral dissemination throughout the body, 

and serve as a major source of viral rebound upon treatment failure, and contribute to 

the development of drug resistance. Resting CD4+ cells are known to be the main 

cellular reservoir for the latent HIV-1 infection due to their ability to persist for a long 

span.  Although the pool of latently infected, resting CD4+ T cells has been the most 

extensively studied HIV reservoir to date and is widely recognized as one of the major 

obstacles to achieving eradication of virus, low levels of HIV replication may persist in 

infected individuals. The lack of consensus on the life span of the latent viral reservoir 

has sparked an intense debate regarding the possibility that low levels of HIV replication 

in subsets of CD4+ T cells in the lymphoid tissue may contribute to replenishment of 

infected CD4+ T cells. By this mechanism, the overall half-life of the viral reservoir could 

be indefinitely extended. In this regard, previous mathematical models have suggested 

that productively infected CD4+ T cells have a relatively short in-vivo half-life (<1 day) 

following initiation of ART. The data indicate that such cells should no longer be present 

in infected individuals who had been receiving clinically effective ART for extended 

periods. However, activated CD4+ T cells, enriched at high purity from the blood of a 

viremic individual receiving ART, carry HIV proviral DNA and are capable of 

spontaneously producing virions in culture. Furthermore, phylogenetic analyses of HIV 



 6 

env provided evidence for virologic cross-talk between infected resting and activated 

CD4+ T cells in the absence of detectable plasma viremia. HIV replicates primarily in the 

lymphoid tissues with extremely high levels of viral replication and extensive destruction 

of CD4+ T cells in the gut-associated lymphoid tissue (GLAT) of infected animals or 

humans. The overall HIV burden is substantially higher in the GALT than in the blood of 

infected individuals receiving long-term treatment [9]. 

Besides, other cellular reservoirs including monocytes and macrophages are the 

most important reservoirs outside the blood stream, which have been described to play 

an important role in HIV persistence. Monocytes and macrophages are relatively long-

lived cells since HIV has very low cytopathic effects on them, making them a persistent 

reservoir of HIV regardless of the presence of highly active antiretroviral therapy. 

Monocytes and macrophages express efflux transporters, which contribute to maintain 

subtherapeutic concentrations of antiretroviral medications in these cells and may 

explain why macrophages are sanctuaries for HIV. Macrophages are a major and crucial 

target of HIV-1 infection and, as potential long-term HIV reservoirs, infected cells must 

be selectively destroyed to achieve HIV-1 eradication. As macrophages function as 

potent antigen-presenting cells and mediators of both innate and acquired immunity, 

HIV-1-mediated macrophage deficiency is catastrophic to the global immune response. 

A significant obstacle in clearing virus from infected individuals is multiple latently 

infected viral sanctuaries. Latent HIV-1 can emerge with recrudescence as a productive 

infection later in disease progression and might also represent a source for the 

emergence of resistant HIV-1. Many regimens eventually fail, primarily because of lack 

of adherence to strict regimens, delayed toxicities and/or the emergence of drug-

resistant HIV strains. 

The function of macrophages in vivo presents a long-lived target for HIV-1 

infection; the half-life (t1/2) of macrophages is significantly longer than that of an activated 
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lymphocyte (weeks/years versus hours/days). More specifically, the life span of activated 

HIV-1-infected lymphocytes is relatively attenuated, with a t1/2 of approximately 0.8–1.1 

days, whereas productively infected macrophages maintain viability and virus production 

for at least 30 days. The latter study represents an in vitro assay and, although studies 

observing the t1/2 of HIV-1 infected macrophages in vivo are lacking, existing studies 

define a distinct advantage for macrophages when observing their life span and virus 

production over time. Viral dynamics in vivo indicate that CCR5-using viruses 

predominate early during infection. As macrophages display high CCR5 expression 

levels, they represent an early target for the establishment of both chronic and latent 

infection. Macrophages interact with lymphocytes during antigen presentation, conferring 

direct infection to new CD4+ T lymphocytic targets. Macrophages have also been 

implicated as the causative agent in central nervous system (CNS) infection of HIV-1, 

which often manifests itself as HIV-associated dementia during the later stages in the 

progression to AIDS [9, 10].  

Macrophages represent a crucial target for establishment and maintenance of 

chronic and latent HIV-1 infection. Various macrophage-like cells, including dendritic 

cells, alveolar macrophages, monocyte precursors and microglial cells, contribute to the 

complex interplay between systemic infection and administration of ART. Macrophages 

are found in every organ system and tissue, and, because of high CCR5 expression, 

represent a target for early establishment and maintenance of latent viral reservoirs.  

1.3. Traditional antiretroviral therapies 

The introduction of highly active antiretroviral therapy started from 1996, which has 

been a great medical success in terms of increasing survival and improving the quality of 

life of the HIV-infected patient population. Due to the steady advancements in HIV 
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research and drug discovery, HIV infected patients on current combination antiretroviral 

therapy (cART) can effectively maintain undetectable plasma virus levels for years. As 

the threat of HIV/AIDS persists to rise, effective drug treatments are required to treat the 

infected people. Antiretroviral therapy has markedly reduced HIV/AIDS related deaths 

and opportunistic infectious diseases. This has resulted in prolonged survival of 

individuals infected with HIV. Long-term medical care has significantly improved the 

patients’ life expectancy and quality by suppression of plasma viral replication. Viral 

resistance to antiretroviral (ARV) drugs can be addressed with two or more drug 

combinations that target two to more drug targets within the same or different viral 

proteins. The drugs available for the treatment of HIV/AIDS are proven to be selective 

and effective with an acceptable safety to suppress plasma viral propagation. Alternate 

drug combinations will be utilized if drug resistant virus appears in clinics. 

As the mechanisms and proteins essential for HIV replication are characterized, 

most of these viral proteins have been used as drug targets for inhibiting HIV replication. 

Potent inhibitors of viral entry, replications, intergration and maturation have been 

developed as therapeutic agents. These drugs are generally referred to as entry 

(CCR5/CD4), reverse transcriptase, integrase and protease inhibitors, respectively. 

Reverse transcriptase inhibitors have been elucidated in detail, which revealed two 

distinct classes of molecules that inhibit enzyme activity through unique mechanism. In 

combination, these reverse transcriptase inhibitors greatly reduce the risk of inducing 

drug-resistant virus. Nowadays, there are 26 or more drugs available for the treatment of 

HIV in the USA. Since single agent ART is no longer clinically relevant, the clinical use of 

combinations of drugs is more efficacious compared with HIV monotherapy. Clinically, 

therapeutic regimens often target multiple checkpoints in viral replication such as the 

combination of protease inhibitors with reverse transcriptase inhibitors. The development 
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of these agents for cART has been effective at suppressing plasma viral load and 

preventing drug resistance [11].  

The efficacy of ART cellular pharmacology in macrophages has significant 

implications in disease progression. The interplay between ART cellular pharmacology in 

macrophages directly affects viral loads, selection of resistance mutations both within 

and between subsets of HIV-1 target cells, eradication of systemic virus and long-term 

patient survival. Eradication of systemic HIV-1 infection is not possible without clearance 

of latently infected cells. As macrophages are a sentinel target for HIV-1 infection and 

latency, understanding the cellular pharmacology of current antiretroviral therapy in 

macrophages is essential. 

1.3.1. Entry inhibitors 

Entry inhibitors inhibit entry of HIV-1 into host cells and there are two anti-HIV 

drugs approved by the US Federal Drug Administration (FDA): enfuvirtide and 

maraviroc. Enfuvirtide is a peptide derived from a repeat sequence of the 

transmembrane portion of HIV-1 envelope, gp41, and inhibits the hairpin formation 

necessary for virus-host cell fusion to occur. Enfuvirtide sensitivity was largely 

independent of the coreceptor usage, and its overall antiviral activity in macrophages 

correlated more closely with HIV-1 entry by CCR5 rather than with entry through 

CXCR4. It is demonstrated the downstream effects of enfuvirtide relative to CXCR4- 

versus CCR5-mediated signaling and provide a foundation for understanding the effect 

of entry inhibitors on multiple cellular events in macrophages. Maraviroc is a small 

molecule, which inhibits viral entry by binding to the CCR5 coreceptor and inhibiting the 

receptor-coreceptor viral entry interaction required for HIV-1 entry into the host cell. The 

median effective concentration (EC50) for maraviroc in primary macrophages is reported 
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to be 0.5 nM for a subtype B M-R5 virus versus 0.2–2.9 nM in activated lymphocytes for 

R5-using viruses across multiple subtypes [12-14]. 

1.3.2. Nucleoside reverse transcriptase inhibitors  

Nucleoside reverse transcriptase inhibitors (NRTIs) have a well-established 

regulatory pathway and distinct clinical advantages. They are low plasma protein 

binding, sustained antiviral response and relative ease of chemical manufacture. There 

are about eight FDA approved NRTIs: zidovudine, didanosine, zalcitabine, stavudine, 

abacavir sulfate, lamivudine, entricitabine, and tonofovir disoproxil fumarate. The target 

of NRTIs in HIV-1 infection is the reversed transcriptase (RT), which is active early in the 

viral replication cycle. RT converts the genetic information of the virus stored at RNA into 

DNA by reverse transcription, which is a process necessary for continued viral 

replication. NRTIs are chiral small molecules that mimic natural nucleotides and require 

intracellular phosphyorylation to become functionally active against HIV-1 RT. In the 

triphosphate form, NRTIs compete with one of the four naturally occurring dNTP, 

namely, dCTP, dTTP, dATP or dGTP, for binding and DNA chain elongation near the 

active site of HIV-1 RT. As most NRTIs lack a 3′-hydroxyl terminus, incorporation of the 

analogue into the growing DNA strand results in termination of the DNA strand and the 

next phosphodiester bond is not formed. Because of these factors, both the 

concentration of cellular triphosphorylated drug and the levels of cellular dNTP pools 

play a key role in the efficacy of the NRTIs. Macrophages primarily remain in a resting 

G1 state and undergo limited DNA synthesis. Cellular dNTP levels are significantly lower 

in macrophages compared with activated cells. The EC50 for NRTIs ranges from 3 to 

300 nM in macrophages for acute infection. By contrast, the EC50 is larger than 25 µM 

in chronically infected macrophages. The differences indicate that chronic HIV-1 

infection alters the cellular milieu in a manner that modulates the ability of NRTI to 
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successfully become functionally active or subsequently inhibit viral reverse transcription 

[15, 16]. 

1.3.3. Non-nucleoside reverse transcriptase inhibitors  

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) make antiretroviral 

efficacy through interaction with binding pockets of HIV-1 RT and inhibiting its enzymatic 

activity by causing conformational changes at or near the active site. NNRTIs approved 

by FDA include etravirine, delavirdine, efavirenz and nevirapine. Although the cellular 

dNTP pool does not directly affect the mechanism of action of NNRTIs, the EC50 differs 

significantly for NNRTI against acute versus chronic infection in macrophages. The 

EC50 for inhibition of acute HIV-1 infection in macrophages ranges from 10 to 50 nM 

depending on the NNRTI; however, NNRTIs are not effective at inhibiting HIV-1 

replication in chronically infected macrophages. To date, the mechanism responsible for 

ineffective inhibition of viral replication in macrophages by NNRTI is incompletely 

understood. If this mechanism were solely responsible for differential activity of NNRTI in 

chronically activated macrophages, significant antiviral activity would probably still be 

observed because establishment of new infection and subsequent p24 production would 

be terminated. Intracellular accumulation of NNRTI within macrophages might present 

with a significantly diminished intracellular bioavailability profile relative to lymphocytes, 

which could present a direct link between differential activities of NNRTI in macrophages 

versus lymphocytes [17]. 

1.3.4. Protease inhibitors  

The HIV-1 protease is a member of the aspartic acid protease family and is 

structurally related to host aspartic acid proteases including renin, cathepsin D, gastrin, 

and pepsin. HIV-1 protease is a homodimer, composed of two noncovalently associated, 
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structurally identical polyprotein chains. The HIV genome is composed of three major 

genes including gag, pol and env. Transcription and translation of the gag and pol 

regions of the virus genome resultin the production of two large precursor polyproteins, 

p55 (gag) and a ribosomal frameshift product p160 (gag-pol). The enzyme active site 

contains well-defined subsites in which inhibitor or substrate side chains participate in 

tight binding interactions. HIV protease-mediated processing of the precursor 

polyproteins p55 and p160 occurs at different cleavage sites. Phe-Pro, Phe-Leu, and 

Phe-Thr are some of the scissile bonds, which can be used in the design of protease 

inhibitors. Protease inhibitors (PIs) have the ability to inhibit HIV-1 replication through 

competition for binding in the active site with the natural substrate. PIs can effectively 

inactivate the enzyme since it is not easily cleaved. Protease inhibitors are peptide-like 

chemicals that competitively inhibit the action of the virus aspatyl protease. They can 

affect the proteolytic cleavage of the polypeptide precursors into mature enzymes and 

structural proteins catalyzed by HIV protease. They can prevent proteolytic cleavage of 

HIV Gag and Pol polyproteins that include essential structural and enzymatic 

components of the virus, which prevents the conversion of HIV particles into their mature 

infectious form [18].  

The widely used PIs with FDA approval are amprenavir, tipranavir, indinavir, 

saquinavir, lopinavir, ritonavir, darunavir, atazanavir, and nelfinavir. PIs display potent 

activity in both acutely and chronically infected macrophages. The EC50 in acutely 

infected macrophages ranged from 10 to 120 nM, whereas the EC50 in chronically 

infected macrophages ranged from 400 to 3.3×103 nM. Higher rates of viral RNA 

metabolism in macrophages is considered as a mechanism responsible for higher EC50 

in macrophages. Plasma pharmacokinetics in vivo demonstrate inhibitory quotient 

values that are similar to the EC50 of PI in vitro for inhibition of chronic HIV-1 infection in 

macrophages. Macrophages are unique because they can be found in every tissue 
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compartment and organ systemically. Therefore, it is reasonable to suggest that many 

macrophages in vivo might be exposed to significantly lower levels of drug than those 

observed at inhibitory quotients in plasma in the circulating periphery [19]. 

1.3.5. Integrase inhibitors  

Integrase inhibitors act to inhibit integration of HIV-1 proviral genome into host cell 

DNA. HIV-1 integrase presents a highly selective target for anti-HIV therapeutics. 

Raltegravir is a novel representative integrase inhibitor approved by FDA. Raltegravir 

targets integrase, an HIV enzyme that integrates the viral genetic material into human 

chromosomes, a critical step in the pathogenesis of HIV and is metabolized away via 

glucuronidation, which has exhibited potent and durable antiretroviral activity [20]. 

1.3.6. Other potential therapeutics 

The elimination of virus cannot occur by a single mechanism, thus many new 

targets, including small interfering RNAs (siRNAs), carbohydrate-binding agents (CBAs), 

PI3K/Akt pathway inhibitors, and immunotoxins, are explored. The siRNAs could be 

useful for the induction of potent gene silencing by degradation of cognate RNA. The 

use of siRNA for HIV-1 infection presents a unique challenge because systemic or 

directed silencing of CXCR4 co-receptor would result in mortality, and silencing of CCR5 

co-receptor could represent a selective pressure for emergence of highly pathogenic 

CXCR4-using virus. CBAs target the heavily glycosylated HIV-1 envelope, impairing the 

ability of macrophages or dendritic cells to recognize and perform antigen presentation 

to CD4+ T-lymphocytes, subsequently impairing transfer infection. The mechanism of 

CBAs is predominantly extracellular, which makes them efficacious when co-

administered with other classes of drugs. The PI3K/Akt pathway is a cell survival 

pathway that is activated upon apoptotic stress and functions to activate downstream 
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modulators of cell survival. PI3K/Akt inhibitors were demonstrated to inhibit HIV-1 

replication in acutely infected primary macrophages, and their antiviral activity was only 

observed when drugs were co-administered with a compound that positively modulates 

nitric oxide-induced cytotoxicity in HIV-1 infection. Immunotoxins might provide a 

mechanism for targeted elimination of HIV-1-infected cells, and both novel design of 

immunotoxin-based antiviral agents and their effect on macrophages remains an 

ongoing area of research. Inhibitors targeting HIV-1 accessory proteins provide a 

targeted approach for elimination of HIV-1 within infected cells. Vpu provides an 

attractive target because interference with Vpu acts post-integration to confer abnormal 

packaging of newly formed virions [21]. 

Even though combination antiretroviral therapy (cART) provides stable viral 

suppression, it is still not perfect due to the undesirable side effects, especially for 

people undergoing long-term treatment. Besides, the traditional therapies find their 

limitations in multidrug resistance, lack of viral replication-targeted therapy. Traditional 

therapy is not able to eradicate HIV from infected individuals. During the early stages of 

HIV infection, HIV establishes reservoirs within cells where HIV lies latent, and tissues, 

which are inaccessible to optimal levels of antiviral drugs, thus escaping the action of 

antiretroviral drugs. Therefore, eliminating or preventing viral infection in macrophages is 

a key element to achieve viral eradication, and new strategies to enhance penetration of 

antiviral therapeutics in macrophages are urgently needed. Eradication of systemic HIV-

1 infection is not possible without clearance of latently infected cells. For these reasons, 

understanding dynamics of ART pharmacology in macrophages and subsequently 

eliminating productive infection in these cells, is critical to eliminating systemic HIV-1 

infection. 
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1.4. Novel nanomedicine for antiretroviral therapy 

Nanomedicine is one promising approach to target HIV in virus reservoir sites. Due 

to the introduction of highly active antiretroviral therapy (HAART) as well as the impact of 

preventive measures, the prevalence and incidence of HIV have declined globally over 

the last decade except for parts of Eastern Europe and Central Asia where a slight 

increase has been observed.  However, although potent compounds have been 

developed to suppress virus replication into undetectable levels in the blood of HIV 

infected patients, it is still a challenge to completely cure patients from HIV/AIDS.  

Therefore, there is an urgent need to investigate the residual viral source, virologic and 

physiologic mechanisms that allow viral persistence, in order to develop targeted drug 

delivery strategies to eliminate residual virus in HIV infected patients. 

To realize long-acting therapy, sustained dosage forms have had an extensive 

history and proven record of contribution to improve patient compliance. Formulation 

research and investigation has become indispensable in improving patients’ life quality. 

For chronic treatments, converting multiple daily doses to once-a-day dosing with 

sustained release dosage form has shown light to enhance patient compliance. The 

application of nanoformulations has been proven to be an important area of 

pharmaceutical research and development. 

Nanoparticles or nanomedicine refer to drug carrier particles and complexes in the 

range of 10-1000 nm. Nanoformulations include nanocrystals, colloids, nanoparticles, 

lipid vesicles, liposomes, biopolymers, and protein aggregates. These nanoformulations 

are intended to improve pharmaceutical properties and drug response by improving drug 

solubility, stability, biodistribution, pharmacokinetics, safety and efficacy. 

Nanotechnology-based drug delivery systems could potentially enhance cellular 

uptake of antiretroviral drugs into HIV host and infected cells in vitro and improve the 
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pharmacokinetics, pharmacodynamics and biodistribution of ARV agents in various 

rodent models. It should be noted that most of these reports are in early stage and use 

only a single agent formulation, which is no longer acceptable clinical practice for HIV 

therapy. The potential of nanotechonology to modify tissue distribution and extend 

plasma half-life of HIV drugs was demonstrated. When the antiretroviral drug is 

encapsulated into a nanosystem, its absorption, metabolism and excretion is not 

exclusively governed by drug properties; rather, the nanosystem’s physical-chemical 

properties, particularly surface-exposed molecules and electric charge, and size could 

modify the sustaining time and metabolic and elimination rates. Most current 

nanomedicine platforms for HIV treatment focus on drug delivery in the blood and on 

improving pharmacokinetic profiles. To reduce off-target effects and improve on-target 

drug distribution into tissues and cells that mediate or are linked to a clinical syndrome, 

an innovative nanoformulation must be stable both in vitro and in vivo for sufficient 

duration and exhibit physiochemical properties that allow distribution and localization of 

drug particles within the sites of interest, while minimizing peripheral toxicities [22, 23]. 

1.4.1. Polymeric nanoparticles 

Polymeric nanoparticles have shown great potentials in HIV therapy since 

polymers are versatile and can be customized to allow for encapsulation and controlled 

release of therapeutic agents from the nanoparticles. They can also realize reservoir 

targeting through decoration with ligands that bind to receptors on the target site. 

Peptides, proteins and antibodies are most widely used targeting ligands, which have 

shown to promote binding and uptake of nanoparticles encapsulating the drugs. 

Biodegradable polymers, like polyethylene glycol-block-polylactide (PEG-PLA), 

polymethylmethacrylate (PMMA), and methylmethacrylate-sulfopropylmethacrylate 

(MMA-SPM), have been applied to encapsulate antiretroviral drugs. Polymeric 
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nanoparticle with small particle sizes were found to improve drug loading efficiency and 

uptake. Modification of the polymers with ligands that target receptors expressed at the 

surface of endothelial cells has greatly improved antiretroviral efficacy. This delivery 

system can also enhance drug encapsulation and subsequent intracellular delivery in 

macrophages [22, 23]. 

1.4.2. Micelles 

Micelles are self-assembled colloidal systems consisting of amphiphilic molecules 

that spontaneously aggregate into particles at a concentration beyond the critical micelle 

concentration (CMC). A typical micelle has hydrophilic heads forming a shell structure, 

and the inner core structure serves as a reservoir for poorly water-soluble drugs. They 

have advantages including relatively small sizes (10-100 nm), ease of preparation, and 

prolonged in vivo circulation, which enable them to cross all kinds of physiological 

barriers. The application of Pluronic® copolymers inhibits efflux trasnporters, like P-

glycoprotein (Pgp) and Multidrug Resistance Protein (MRP), consequently facilitate drug 

delivery of substrates. Pluronic® block copolymers contains one hydrophobic 

poly(propylene oxide) (PPO) as the core, and two hydrophilic poly(ethylene oxide) (PEO) 

termini. Using polarized monolayers of bovine endothelial cells, Batrakova et al. 

examined the influence of Pluronic® block copolymers on the permeability of drugs, 

including Pgp substrates, organic anion transporter substrates, and compounds with less 

specificity for efflux transporters. The results indicated a 1.3- to 20-fold enhancement in 

the permeability of all the compounds evaluated. It is also demonstrated Pluronic® P85 

could enhance drug tissue drug permeability and facilitate antiretroviral efficacy in a 

severe combined immunodeficientcy (SCID) mouse model of viral encephalitis [24-26].   
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1.4.3. Liposomes 

Liposomes are artificially constructed vesicles that consist of an aqueous core 

separated from the continuous aqueous solvent by one or more spherical, bilayer 

membranes of surfactant molecules. Liposomes are composed of phospholipids, and 

may contain small amounts of other molecules that serve as cellular recognition markers 

and cholesterol that regulates membrane fluidity and stability. As drug delivery systems, 

liposomes have the capability of encapsulating both hydrophobic as well as hydrophilic 

payloads. Liposomes have several other benefits, such as solubilization improvement, 

protection of cargoes from enzymatic degradation and enhancement of intracellular 

uptake. Liposomes have been used to deliver antiretroviral agents to cross tissue 

barriers through receptor-mediated transcytosis. Besides, cell-penetrating peptides 

(CPP) and antibody conjugation are alternative approaches for liposomes to penetrate 

HIV reservoir. Mononuclear phagocytic system is another liposomal delivery mechanism, 

which can significantly increase the drug half-life in the central nervous system (CNS). 

Surface-engineered liposomes have been developed to target the lymphoid virus 

reservoir by incorporating surface charge or site-specific targeting ligands. Liposomes 

with negative surface charge have shown higher accumulation in lymph nodes and 

spleen compared to particles with positive charge [27].  

1.4.4. Nanosuspensions 

Nanoformulated antiretroviral therapeutics (nanoART) was developed in our 

laboratory in the past decade.  NanoART are polymer excipient coated drug 

nanosuspensions, which demonstrate high drug loading capacity, controllable size and 

charge, and tunable surface conjugation. Antiretroviral drugs could be formulated 

through high-pressure homogenization and wet milling for long-acting antiretroviral 

therapy. Mononuclear phagocyte targeted nanoART for delivery to HIV reservoirs was 
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developed with high drug loading, improved cell uptake and sustained drug retention. 

Drugs can be delivered into the target sites at levels above the effective therapeutic 

concentrations through mononuclear phagocytes. To improve pharmacokinetics and 

pharmacodynamics (PK/PD) of antiretroviral therapy, we further developed nanoART 

targeted to HIV reservoirs. Previous studies have shown that folate receptor (FOLR) is 

overexpressed on activated macrophages. Based on these findings, folate-decorated 

drug delivery systems have been developed to target macrophages for the treatment of 

inflammatory diseases with improved therapeutic efficacy. Folic acid was conjugated 

onto the coating excipient poloxamer 407 (P407) to generate folate-decorated nanoART 

for macrophage targeting. In vitro studies using a human MDM system, FA-nanoART 

showed a 2-fold increase in drug uptake, longer drug retention, and superior 

antiretroviral efficacy over non-targeted nanoART. In vivo PK/PD studies showed that 

FA-nanoART increased the plasma levels of ATV approximately 5-fold over that 

observed with non-targeted nanoART [28, 29]. 

1.4.5. Solid lipid nanoparticles  

Solid lipid nanoparticles (SLNs) usually comprise biocompatible lipids, that are 

solid at room temperature or surfactants for emulsification. They are typically solid 

particles consisting of one or more biocompatible solid lipids, which are stabilized by 

emulsifiers. The particle size ranges from approximately 50 to 1000 nm. They possess 

advantages like long retention, superior biocompatibility and biodegradability, excellent 

stability and loading capability as well as ease of introduction of targeting ligands. SLNs 

for CNS delivery of ART were developed, and the permeability of stavudine, delavirdine, 

and saquinavir encapsulated in different nanocarriers, including polymer nanoparticles 

and SLN, were tested across an artificial BBB. There was increased permeability of SLN 

encapsulated drugs compared to free drugs. In addition, delavirdine and saquinavir 
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loaded SLN showed better permeability than those loaded into polymer nanoparticles 

[30].  

1.4.6. Dendrimers 

Dendrimers are a highly branched complex multiple repeating structures of a 

monomer. They are comprised of hydrophobic cores and highly branched surface 

functional groups that make them ideal for transport of drugs across biological barriers. 

The end groups of these molecules can be functionalized to generate dendrimers that 

can be used as drug carriers and targeting moieties can be attached that influence 

biodistribution and toxicity of the dendrimers. Poly(amido amide) (PAMAM), the most 

commonly used dendrimer has been shown to incorporate several anticancer drugs. 

However, no dendrimer-based delivery systems have been approved for anti-HIV 

treatment due to their high cellular toxicity [31]. 

1.4.7 Nanomedicine in antiretroviral therapy 

Significant progress has been made to treat HIV/AIDS to improve the life quality of 

HIV infected people in the last decades. The utilization of nanomedicine in ART has 

successfully shifted rapidly progressive HIV infection to a disease with little detectable 

viral load in patients. It is still a big challenge so far to eradicate HIV due to the 

occurrence of drug resistance and viral reservoirs. Nanotechnology-based drug delivery 

systems can improve antiretroviral therapy by more precisely controlling drug 

concentrations in target cells and tissues, thus enhance uptake of antiretroviral agents 

into HIV-infected cell and tissue reservoirs and improve the pharmacokinetics, 

pharmacodynamics and biodistribution of antiretroviral agents using targeting ligands 

and improving drug delivery across tissue barriers. The goal of HIV eradication can be 

achieved through developing different nanomedicine platforms and decorating 
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nanomedicines with specific ligands to interact with receptors expressed on HIV infected 

cells. 

Nanomedicine has provided new tools and rationales in the development for novel 

strategies for HIV/AIDS treatment. The rational design has provided new candidates 

against HIV with improved solubility, stability and pharmacokinetic and adherence 

properties. Most current nanomedicine platforms focus on drug delivery in the blood and 

on improving pharmacokinetic profiles. Nanosustained drug release formulations could 

maintain plasma drug concentrations for weeks and even months. Although there are 

benefits and advantages of applying the systems approach to novel nanoformulations, 

there are still challenges that need to be overcome in the future to translate academic 

research into the clinical setting. These include the biocompatibility of excipients, safety, 

stability and the scale-up procedure for large-scale preparations. Nanomedicine 

platforms should be explored to develop combination therapies for safe and effective 

long-acting HIV therapy to improve patient compliance and life quality. 

1.5. Hypothesis and goals 

This study focuses on developing long-acting antiretroviral prodrug with enhanced 

hydrophobicity and stability. A hydrophobic lamivudine (3TC) prodrug is successfully 

synthesized and incorporated into targeted and non-targeted nanocrystalline 

formulations to improve drug half-life, enhance macrophage uptake, and sustain 

antiretroviral efficacy. Folic acid targeted parenteral nanoformulations are prepared for 

improved pharmacokinetics and improved antiretroviral therapy. This long-acting 

antiretroviral drug delivery system can serve both as drug transporters and as facilitators 

of viral clearance. Macrophage loading capacities and intracellular compartments of 

nanoparticle depots are studied. Macrophage endosomal compartments can be 
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harnessed for particle storage, release and drug trafficking. NanoART is expected to 

provide increased drug uptake, retention in macrophages, which facilitates its long acting 

antiretroviral efficacy. Macrophage can act as drug transporters for improved clinical 

stability and bioavailability. Regulation of phagolysosomal endocytic pathway is also 

studied. The co-localization of nanoformulated atazanavir  (ATV) at endosomal sites of 

viral assembly is expected to affect regulatory proteins and pathways that contribute to 

viral clearance. The cell targeted small magnetite ART (SMART) particles is developed 

to facilitate drug adherence and improve disease outcomes. Rapid noninvasive 

determination of drug biodistribution in virus-target tissues and reservoirs for nanoART 

can realize noninvasive assessments of antiretroviral drug tissue distribution through 

magnetic resonance imaging (MRI) techniques.  

 

 
 
 
 
 
 
 
Chapter II.  
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Long-acting lamvudine prodrug 
design and formulation 
development   
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2.1. Abstract 

The next generation of antiretroviral medicines will be characterized by infrequent 

parenteral administration, maintenance of continuous drug concentrations and viral 

reservoir-targeted drugs. This will enable reductions in toxicities, viral loads and 

resistance patterns while improving drug regimen adherence. Perhaps most 

importantly such advances would facilitate viral clearance in infectious reservoirs that 

include gut-associated lymphoid tissue, lymphoid nodes, the genitourinary system and 

the central nervous system.  While such progress has been now realized for 

hydrophobic integrase and select nonnucleoside reverse transcriptase inhibitors, very 

limited success has been achieved with the more hydrophilic short-acting nucleosides. 

To overcome such limitations, we developed a two-step synthesis to create a long-

acting lamivudine (2’,3’-dideoxy-3’-thiacytidine, 3TC).  A stable hydrophobic pro-drug 

crystal formulation was produced by poloxamer drug encasement. Conversion of the 

formerly hydrophilic 3TC significantly extended its bioavailability facilitated by chemical 

drug conjugation to a fatty acid and creating a myristoylated drug. A folate targeted 

poloxamer 407 coated a newly formed nanocrystalline pro-drug markedly improving 

cell uptake, bioavailability and pharmacokinetic profiles. Reduced cytotoxicity and 

robust antiretroviral activities were also observed. These findings bring the idea of 

long-acting antiretroviral medicines closer to the mainstay of clinical availability.   

2.2. Introduction 

The introduction of nanomedicine in antiretroviral therapeutic regimens has 

impacted the treatment of HIV infection. Long-acting nanoformulated antiretroviral 

therapy (nanoART) has the real potential to improve patient adherence, decrease 

systemic toxicities, and sustain viral suppression [32-37]. However, the remaining 
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challenge to bring nanoART to the forefront of antiretroviral therapy is to 

nanoformulate a broad range of hydrophilic drugs. While hydrophilic drugs are widely 

used in the clinic, their drawbacks include the need for frequent administration by rapid 

clearance, low intracellular absorption and suboptimal biodistribution.  Cellular and 

tissue toxicities also reduce their clinical effectiveness. Ideal drug delivery systems and 

encapsulation strategies specifically for hydrophilic antiretroviral nucleoside reverse 

transcriptase inhibitors (NRTIs) are still under investigation. 

NRTIs are the backbone of combination antiretroviral therapy in the treatment of 

HIV infection [38-40]. Lamivudine (3TC) by competing with an endogenous nucleotide 

transcriptase enzyme leads to viral DNA chain termination that follows incorporation of 

the active 3TC phosphorylated anabolite in place of endogenous cytidine triphosphate 

during reverse transcription. 3TC has potent antiviral effects on HIV-1, HIV-2, and 

hepatitis B virus [41-44]. However, the drug is < 36% protein bound and with a half-life 

of 5-7 hours and rapid renal elimination by tubular secretion is catalogued as a short-

acting drug. These characteristics minimize its utility as a once daily fixed dose 

medicine. 

Myristoyltransferase (NMT) effects myristoylation of proteins during the HIV life 

cycle [45-47]. Fatty acid analogues of myristic acid can inhibit NMT and can be used to 

convert a hydrophilic 3TC into a hydrophobic drug [48-50]. Myristolic 3TC (MTC) was 

encased into a nanoparticle with poloxamer 407 with well-distributed size and stable 

physical properties. Folic acid, the ligand for the folate receptor expressed on 

macrophages, attached to drug nanoparticles can facilitate drug uptake [51, 52]. 

Moreover, for nanoART macrophage uptake, the targeting ligand folic acid can 

facilitate drug uptake and retention in monocyte-macrophages [53]. We developed 

targeted MTC nanoformulations using folate as a targeting ligand, enabling it to affect 

cellular uptake, antiretroviral efficacy, and antiretroviral pharmacokinetic behavior. The 
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idea of formulating 3TC prodrug to improve therapeutic outcomes for patients receiving 

long-term antiretroviral treatment is novel and of significant potential utility. 

2.3. Materials and methods  

2.3.1. Reagents and antibodies.  

3TC was acquired from GlaxoSmithKline Inc. (Research Triangle Park, NC, USA). 

Poloxamer 407 (P407) and CF488-succinimidyl ester (CF488) were obtained from 

Sigma-Aldrich (St. Louis, MO, USA). Sephadex LH-20 was obtained from GE 

Healthcare (Piscataway, NJ, USA). Pooled human serum was obtained from 

Innovative Biologics (Herndon, VA, USA). Macrophage colony-stimulating factor (M-

CSF) was prepared from 5/9m alpha3-18 cells (ATCC; CRL-10154) cultured in ATCC 

complete growth medium as described previously [54]. Rabbit anti-human antibodies 

to Rab5, Rab7, Rab11, and Rab14 and Alexa Fluor 568 goat anti-rabbit IgG were 

purchased from Santa Cruz Biotechnology (Dallas, TX, USA). TRIzol reagent was 

obtained from Invitrogen (Grand Island, NY, USA). 

2.3.2. Synthesis of hydrophobic 3TC derivative.  

The hydrophobic 3TC derivative (MTC) was synthesized according to the scheme 

shown in Figure 2.1A. Briefly, 3TC (4 mmol) was dissolved in dimethylformamide 

(DMF, 6 mL) in an ice bath, imidazole (6 mmol) and tert-butyldimethylsilyl chloride (4.8 

mmol) were added separately and the reaction mixture was stirred at room 

temperature (25 °C) overnight. After the completion of reaction, the reaction mixture 

was concentrated at reduced pressure and purified with silica gel column 

chromatography using dichloromethane and methanol (2-10%) as eluents. The yield 

compound was dissolved in dry pyridine (6 mL). A solution of 4,4’-dimethoxytrityl 
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chloride (DMTr-Cl, 8 mmol) was added to the reaction mixture dropwise at 0 °C. The 

temperature was raised to room temperature, and stirring was continued overnight. 

The reaction mixture was neutralized with saturated sodium bicarbonate solution (200 

mL) and extracted with dichloromethane (200 mL) for three times. The organic layer 

was separated and concentrated in vacuo. The residue was purified with silica gel 

column chromatography using dichloromethane and methanol (2-10%) as eluents. The 

yield compound was dissolved in tetrahydrofuran (THF, 6 mL) and 

tetrabutylammonium fluoride (6.2 mL, 1.5 molar ratio) was added dropwise and stirred 

for 4 h. The reaction mixture was concentrated at reduced pressure, and the residue 

was purified with silica gel column chromatography using dichloromethane and 

methanol (2-10%) as eluents. The yield compound was dissolved in DMF (10 mL). 

Then myristic acid acid (945 mg, 2 molar ratio), 1-[Bis(dimethylamino)methylene]-1H-

1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU, 1.72 g, 2.2 molar 

ratio) and N,N-diisopropylethylamine (DIEA, 1.5 mL, 3.4 molar ratio) were added to the 

mixture separately. The reaction mixture was concentrated at reduced pressure, and 

the residue was purified with silica gel column chromatography using dichloromethane 

with 2% methanol as eluents. Acetic acid (10 mL) was added to the yield compound 

and the reaction mixture was heated at 80 °C for 30 min. The reaction mixture was 

concentrated at reduced pressure, and the residue was purified with silica gel column 

chromatography using dichloromethane with 2% methanol as eluents. The chemical 

structure of final product was characterized by nuclear magnetic resonance 

spectrometry (1H NMR) determined on a Varian Unity/Inova-500 NB (500 MHz; Varian 

Medical Systems Inc., Palo Alto, CA, USA). Chemical shifts are reported in parts per 

million (ppm). The structure of the final compound was analyzed by FTIR spectroscopy 

using a Spectrum Two FT-IR spectrometer,(PerkinElmer, Waltham, MA, USA) .  
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2.3.3. NanoMTC manufacture and characterization.  

MTC nanoparticles were formulated by high-pressure homogenization (Avestin 

EmulsiFlex-C3; Avestin Inc., Ottawa, ON, Canada), using P407 and FA-P407 to 

encase the drug crystals. For the non-targeted MTC formulation (called NMTC), the 

suspension contained modified 3TC (1% [wt/vol]) and P407 (0.5% [wt/vol]) and for the 

targeted MTC formulation (called FA-NMTC), the suspension contained modified 3TC 

(1% [wt/vol]), P407 (0.3% [wt/vol]) and FA-P407 (0.2% [wt/vol]). The suspension was 

premixed overnight in 10mM HEPES buffer at room temperature and then 

homogenized at 20,000 PSI for about 360 passes until the desired particle size of 

about 350 nm was achieved. The size, zeta potential, and polydispersity (PDI) were 

determined by dynamic light scattering (DLS), using a Malvern Zetasizer Nano Series 

Nano-ZS (Malvern Instruments, Westborough, MA, USA). A minimum of 3 iterations 

were taken, which varied by < 2%. After reaching the desired size (around 300 nm), 

the sample was purified by centrifugation at 100 × g for 5 min to remove aggregated 

particles and then at 20,000 × g for 30 min to collect a purified particle pellet. The 

resulting particles were resuspended in 10 mM HEPES for further studies [55, 56]. 

2.3.4. Preparation of dye-labeled nanoMTC.  

For preparation of CF488-labeled nanoMTC, CF488-P407 and P407 were 

dissolved in methanol at a weight ratio of 1:4. The solvent was evaporated, and the 

mixture was resuspended with 10 mM HEPES to yield a 0.5% surfactant solution. 

Modified 3TC was added at a 1% weight ratio. The suspension was premixed 

overnight in a light-protected environment at room temperature. The suspension was 

homogenized by high-pressure homogenization and purified by centrifugation as 

described above. 
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2.3.5. Human monocyte isolation and cultivation.  

Human monocytes were obtained by leukapheresis from HIV-1-, HIV-2-, and 

hepatitis B-seronegative donors and then purified by countercurrent centrifugal 

elutriation. Cells were obtained following informed consent using a protocol approved 

by the University of Nebraska Medical Center Institutional Review Board. The 

recovered monocytes, >98% pure by Wright-stained cytosmears, were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM) with 10% heat-inactivated pooled 

human serum, 1% glutamine, 50 µg/mL gentamicin, 10 µg/mL ciprofloxacin, and 1,000 

U/mL recombinant human macrophage colony stimulating factor for 7 days, facilitating 

cell differentiation into macrophages (MDM) [57]. 

2.3.6. Nanoformulated MTC particle stability.   

Formulated NMTC and FA-NMTC particles were dispersed in phosphate buffered 

saline (PBS) and placed into a 10 kDa dialysis tube in 2 L of PBS under stirring at 

37°C. At 30 min and 1, 2, 3, 4, 6, 8 and 10 days, 100 µL of the suspension was 

collected. The supernatant was dissolved in 900 µL methanol [58]. The amount of 

MTC was measured by high-performance liquid chromatography (HPLC). HPLC 

analysis was as previously described [59]. Triplicate 20-µL samples were assessed by 

HPLC using a Synergi 4 µm Hydro-RP 80A C18 column (Phenomenex Inc., Torrance, 

CA). The mobile phase, consisting of 80% acetonitrile-20% 5 mM Na2HPO4, pH 9.0, 

was pumped at 1.0 mL/min with UV-visible (Vis) detection at 272 nm. MTC 

concentration was determined by peak area comparison to those of a standard curve 

generated with free MTC (0.049 to 50 µg/mL) [60]. 
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2.3.7. Cytotoxicity studies.  

Cytotoxicity of native drug, modified drugs and the different nanoformulations was 

evaluated by Cell Counting Kit-8 (CCK-8, Dojindo Molecular Technologies Inc, 

Rockville, MD, USA) [61]. Briefly, human monocytes were cultivated in a 96-well-plate 

at the density of 100,000 cells per well. After 7 days of differentiation, MDM were 

treated with native 3TC, MTC, NMTC, or FA-NMTC at a series of concentrations: 0.10, 

0.33, 1.0, 3.3, 10.0, 33.3, and 100 mM. Four hours after treatment, 10 µL of CCK-8 

was added to each well. The plate was incubated in a 5% CO2 incubator for 2 h after 

which the absorbance was measured at 450 nm using a microplate reader. The cell 

survival rate was calculated based on the equation below: 

 

𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 % =
𝐴𝑠𝑎𝑚𝑝𝑙𝑒 − 𝐴𝑏

𝐴𝑐 − 𝐴𝑏
× 100 

 

𝐴𝑠𝑎𝑚𝑝𝑙𝑒: 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒,𝐴𝑏: 𝑏𝑙𝑎𝑛𝑘,𝐴𝑐: 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

2.3.8. Nanoformulated MTC particle cell uptake.  

Human monocytes were cultivated in a 12-well-plate at the density of 1.5 million 

cells per well. After 7 days of differentiation, MDM were treated with 100 µM 

nanoformulated MTC. Uptake of nanoMTC was assessed without medium changes for 

8 h. Adherent MDMs were collected by scraping into PBS, at 1, 2, 4 and 8 h after 

treatment. Cells were pelleted by centrifugation at 1000 × g for 8 min at 4°C. Cell 

pellets were briefly sonicated in 200 µL of methanol and centrifuged at 20,000 × g for 

10 min at 4°C. The MTC content in the cells was determined by HPLC. 
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2.3.9. Antiretroviral activities.  

Antiretroviral efficacy was determined by HIV-1 reverse transcriptase (RT) activity 

[62, 63]. Briefly, MDM were treated with 100 µM native 3TC, MTC or nanoformulated 

MTC for 4 h. Following treatment, cells were washed with PBS for three times and 

cultivated with fresh medium. At 0, 5, 10 and 15 days after treatment, cells were 

challenged with HIV-1ADA at a multiplicity of infection (MOI) of 0.1 infectious particles 

per cell. Following viral infection, the cells were cultured for another 7 days with half-

medium exchanges every other day. Medium samples were collected on days 7 for 

measurement of progeny virion production, as determined by RT activity. For 

assessment of RT activity, 10 µL medium samples were mixed with 10 µL of a solution 

containing 100 mM Tris-HCl (pH 7.9), 300 mM KCl, 100 mM dithiothreitol, 0.1% NP-40, 

and water in a 96-well plate. The reaction mixture was incubated at 37°C for 15 min, 

and 25 µL of a solution containing 50 mM Tris-HCl (pH 7.9), 150 mM KCl, 5 mM 

dithiothreitol, 15 mM MgCl2, 0.05% NP-40, 10 µL/mL poly(A), 0.25 U/mL oligo, and 10 

µCi/mL [3H]dTTP was added to each well; the plates were incubated at 37°C for 18 h. 

Following incubation, 50 µL of cold 10% trichloroacetic acid was added to each well, 

the wells were harvested onto glass fiber filters, and the filters were assessed for 

[3H]dTTP incorporation by beta-scintillation spectroscopy using a TopCount NXT 

(PerkinElmer Inc., Waltham, MA, USA). 

2.3.10. Immunocytochemistry and confocal microscopy.  

For immunofluorescence staining, cells were washed three times with PBS and 

fixed with 4% paraformaldehyde (PFA) at room temperature for 30 min. The cells were 

treated with blocking/permeabilizing solution (0.1% Triton, 5% BSA in PBS) and 

quenched with 50 mM NH4Cl for 15 min. The cells were washed once with 0.1% Triton 

in PBS and sequentially incubated with primary and secondary antibodies at room 
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temperature. Slides were covered in ProLong Gold AntiFade reagent with DAPI (4’,6-

diamidino-2-phenylindole) and imaged using a 63× oil lens on an LSM 510 confocal 

microscope (Carl Zeiss Microimaging, Inc., Dublin, CA, USA) [28]. The 

immunofluorescence was quantitated, and the percent overlap was determined using 

ImageJ software, the JACoP plug-in for percent overlap, and Zeiss LSM 510 Image 

browser AIM software version 4.2 for determining the number of pixels and the mean 

intensity of each channel, as previously described [55]. The results are represented as 

means ± standard errors of the mean. 

2.3.11. HIV-1 p24 staining.  

Cells in different treatment groups were fixed with 4% phosphate-buffered PFA for 

15 min at room temperature. The fixed cells were blocked with 10% BSA in PBS 

containing1%Triton X-100 for 30 min at room temperature and incubated with mouse 

monoclonal antibodies to HIV-1 p24 (1:100; Dako, Carpinteria, CA, USA) for 3 h at 

room temperature. Binding of HIV-1 p24 antibody was detected using a Dako 

EnVision+ System, HRP-labeled polymer anti-mouse secondary antibody, and 

diaminobenzidine staining. Cell nuclei were counterstained with hematoxylin for 60 s. 

Images were taken using a Nikon TE300 microscope with a 40× objective [55, 64]. 

2.3.12. Pharmacokinetic studies.  

All animal studies were conducted humanely according to a protocol for animal 

experiments approved by the University of Nebraska Medical Center Institutional 

Animal Care and Use Committee. Male Balb/cJ mice (Jackson Labs, Bar Harbor, ME, 

USA) were maintained on a folate-deficient diet (Harlan Teklad TD.00434; Harlan 

Laboratories, Inc., Indianapolis, IN, USA) beginning 2 weeks prior to drug 

administration. Mice were injected with native 3TC, MTC, NMTC, FA-NMTC (50 mg/kg 
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based upon 3TC) or PBS intramuscularly (IM). Plasma was collected at 8 h, 1, 3, 5, 7, 

10 and 14 days after drug administration. Tissues (liver, kidney, brain, spleen, gut, 

lymph node and muscle) were collected after sacrifice on day 14. 3TC and MTC from 

plasma and tissues were extracted using acetonitrile and assayed by UPLC-MS/MS. In 

preparation for drug analysis, 3TC and MTC were extracted from plasma (20 µL) using 

1 mL of acetonitrile. Internal standard was added to each sample (10 µL) and 

consisted of 1.33 µg/mL deuterated-3 isotope of lamivudine (3TC), 0.665 µg/mL 

deuterated-4 isotope of ABC, and 0.5 µg/mL lopinavir. Samples were dried using a 

ThermoScientific Savant Speed Vacuum (ThermoScientific, Waltham, MA, USA), and 

reconstituted in 80% v/v methanol in Optima grade water. Standards were prepared 

with initial 3TC concentrations (ng/ml) of: 13,300; 5,320; 2,660; 1,330; 532; 266, 133; 

53.2; 26.6, 13.3; 5.32; 2.66; and 1.33 for final 3TC concentrations (ng/mL) of: 500, 

200, 100, 50, 20, 10, 5, 2, 1, 0.5, 0.2, 0.1 and 0.05. MTC standards had initial 

concentrations of (ng/mL): 5000, 2000, 1000, 500, 200, 100, 50, 20, 10, 5, 2, 1, and 

0.5 and the same final concentrations as the 3TC standards. Plasma standards were 

prepared by extracting 20 µL of blank plasma from control Balb/cJ mice 

(BioreclamationIVT, Hicksville, NY, USA) into 1 mL of acetonitrile. The same internal 

standard was added to each standard.  

For tissue preparation, 50-100 mg of liver, spleen and lymph node were 

homogenized in 4 volumes of an esterase inhibitor mixture (12.5 mg/mL sodium 

fluoride and 3.75 mg/mL EDTA solution in Optima grade water) and 2.5 µL of a 

protease inhibitor (10 mM PMSF in HPLC grade isopropanol). Tissue homogenate 

(100 µL) was mixed with 10 µL of internal standard (5 µg/mL deuterated-3 isotope of 

lamivudine (3TC), 2.5 µg/mL deuterated-4 isotope of ABC, and 2 µg/mL lopinavir) and 

extracted in 300 µL methanol. Supernatant was used directly for MTC analysis or 

mixed with water for 3TC analysis. Standards were prepared with initial 3TC 
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concentrations (ng/mL) of: 50,000; 20,000; 10,000; 5,000; 2,000; 1,000; 500; 200; 100; 

50; 20; 10; and 5 for final 3TC concentrations (ng/mL) of: 500, 200, 100, 50, 20, 10, 5, 

2, 1, 0.5, 0.2, 0.1 and 0.05. MTC standards had initial concentrations of (ng/mL): 

20,000, 8,000, 4,000, 2,000, 800, 400, 200, 80, 40, 20, 8, 4, and 2 and the same final 

concentrations as the 3TC standards. Tissue standards were prepared by 

homogenizing 50-100 mg of blank liver, spleen or lymph node from control Balb/cJ 

mice in 4 volumes of the same esterase and protease inhibitor mixtures as the 

samples. The same internal standard was added to each standard then extracted in 

300 µL of methanol. Drug quantitation was completed using a Waters ACQUITY H-

class UPLC system (Waters, Milford, MA, USA) connected to a Waters Xevo TQS-

micro mass spectrometer with an electrospray ionization (ESI) source. 

Chromatographic separation of 10 µL 3TC sample injections was achieved using 

an ACQUITY UPLC CSH C18 column (1.7 µm, 2.1 mm x 100 mm) using a 13 min 

gradient of mobile phase A (7.5 mM ammonium bicarbonate in Optima grade water 

and adjusted to pH 7 using glacial acetic acid) and mobile phase B (100% Optima 

grade methanol) at a flow rate of 0.25 mL/min. Initial mobile phase conditions of 90% A 

were held for 2.5 min, decreased to 5% A over 6.5 min, held at 5% A for 1.3 min, then 

increased to 90% A over 0.45 min and held for 2.25 min. MTC chromatographic 

separation was achieved using the same CSH column and mobile phases, but with a 

16 min isocratic method using 19% mobile phase A and flow rate of 0.3 mL/min. Drug 

was detected in the ESI positive mode with a cone voltage of 4 V and a collision 

energy of 10 V. Multiple reaction monitoring (MRM) transitions used for 3TC and MTC 

were 230.23 > 111.97 and 440.10 > 111.97 respectively. The deuterium-4 isotope of 

3TC was used as the internal standard for 3TC quantitation and had an MRM 

transition of 233.23 > 114.97. Lopinavir was used as the internal standard for MTC 

quantitation and had an MRM transition of 629.18 > 447.20. Spectra were analyzed 



 35 

and quantified by MassLynx software version 4.1. All calculations were made using 

analyte peak area to internal standard peak area ratios. 

2.13. Statistics.  

All the data were analyzed by one-way analysis of variance (ANOVA) and Tukey’s 

multiple-comparison test using GraphPad Prism software (GraphPad Software, Inc., 

La Jolla, CA). All the cellular based experiments were replicated three times and the 

animal experiment was replicated twice. The sample size was determined according to 

published guidelines with a minimum of 5 animals per group (n=5). No outliers from 

animal or cell experiments were excluded. Differences were considered significant at a 

P value of <0.05. 

2.4. Results 

2.4.1. Characterization of chemically modified 3TC. 

A hydrophobic 3TC derivative (MTC) was synthesized successfully, as illustrated 

by the 1H NMR and FT-IR spectrum in Figure 2.1B and 1C. In the 1H NMR spectrum, 

chemical shifts of 0.9 and 1.3 ppm represented the 1° (RCH3) and 2° (R2CH2) aliphatic 

protons derived from the fatty acid chain. The protons connected to the ester (-H2C-

COOR) contributed to the peak at 2.4 ppm. In the FT-IR spectrum, the wavenumbers 

of 2917 and 2850 cm-1 were attributed to the C-H stretch, which belonged to the alkyl 

derivative derived from the fatty acid chain conjugated to the native 3TC; the 

wavenumber of 1692 cm-1 was attributed to the C=O stretch from the ester bond. The 

solubility of the hydrophobic MTC was determined to be 100 µg/mL in water, compared 

to 70 mg/mL water solubility of native 3TC. 



 36 

2.4.2. Characterization of nanoformulated MTC.  

The nanoformulations were manufactured by high-pressure homogenization. 

Particle size, charge and PdI for all formulations were determined by dynamic light 

scattering (DLS). The schematic diagram of the targeted MTC particles was illustrated 

in Figure 2.1D and the characteristics of different formulations are summarized in 

Figure 2.2A. For FA-NMTC nanoparticles, a 40% FA-P407/60% P407 polymer solution 

was used to formulate the MTC. Both NMTC and FA-NMTC showed equivalent 

physicochemical characteristics. For NMTC nanoparticles, the particle size was 375 ± 

21 nm with a PdI of 0.21; while the FA-NMTC showed a slightly larger particle size of 

433 ± 23 nm with a PdI of 0.25. The zeta-potential for FA-NMTC decreased to -19.7 ± 

1.3 mV compared with -21.0 ± 0.8 mV for NMTC. The changes in size and zeta-

potential can be attributed to the FA conjugated to the P407 polymer. High drug 

loading (75.0% for NMTC, 76.9% for FA-NMTC) and encapsulation efficiency (96.3% 

for NMTC, 98.4% for FA-NMTC) were found for both formulations. 

2.4.3. Nanoformulated MTC particle stability.   

The stability of NMTC and FA-NMTC nanoformulations is illustrated in Figure 2.2B. 

There was no significant burst release in the first 8 h and sustained MTC 

concentrations were seen over 12 days. The cumulative MTC release reached 70.0% 

on day 3 and 94.8% on day 12 for NMTC, and 76.4% on day 3 and 96.7% on day 12 

for FA-NMTC.  

2.4.4. Cytotoxicity of nanoformulated MTC.  

Cytotoxicity of native 3TC, MTC and both nanoformulations was evaluated by Cell 

Counting Kit-8. MDM were treated with native 3TC, MTC, NMTC, or FA-NMTC at 

different concentrations for 4 h and cytotoxicity is shown in Figure 2.2C.  Native 3TC 
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showed strong cytotoxicity when the drug concentration increased to above 1 mM and 

the cell survival rate decreased to 9.6% at 3.3 mM. Compared with native 3TC, MTC 

shower much lower cytotoxicity. The cell survival rate was 95.9% at 3.3 mM and 

slightly decreased with the increment of drug concentration. The cytotoxicity for both 

nanoformulations was between native 3TC and MTC and no significant difference was 

observed between these two formulations.  

2.4.5. Macrophage uptake.  

MDM uptake of nanoformulated MTC was assessed and MTC levels were 

quantified by HPLC. Cells were exposed to nanoMTC for 8 h at 100 µM (42.7 g/mL) for 

both NMTC and FA-NMTC treatment. As shown in Figure 2.2D, the uptake of 

nanoMTC was increased over the first 2 h, and maximum uptake was observed at 2 h 

for both nanoformulations. At 2 h, the uptake of FA-NMTC was 24.88 µg/106 cells, 

which was more than 2 times higher than that of NMTC (10.45 µg/106 cells). After 2 h, 

cell drug levels began to decrease, and drug levels of MTC for NMTC and FA-NMTC 

at 8 h were 2.06 and 2.85 µg/106 cells, respectively. 

2.4.6. Antiretroviral activities of nanoformulated MTC.  

To assess the antiretroviral activity of nanoMTC treatment HIV-1 RT activity was 

determined in HIV-1-infected MDM treated with native 3TC, NMTC or FA-NMTC. Cells 

were treated with 100 µM of native 3TC or nanoformulated MTC for 4 hours. At this 

time the medium was removed, cells were washed 3 times with PBS and fresh 

medium without drug was added prior to HIV-1ADA challenge at days 0, 5 and 10 after 

treatment. Infected cells were cultured for an additional 7 days and RT activity in the 

culture medium was determined. Significant differences were found between cells 

treated with native 3TC or nanoformulated MTC. For native 3TC treated cells, RT 
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activity was suppressed only in the day 0 infection group. After day 5, the RT activity 

for the 3TC treated group increased dramatically over time, and no viral suppression 

was observed at day 15. In contrast, for nanoformulation treated groups, sustained 

antiretroviral activities were observed. The RT activities were suppressed to a 

relatively low level (< 25%) during the first 10 days. At day 15, the RT levels for NMTC 

and FA-NMTC were 59.8% and 68.5%, respectively, compared with 110.0% for the 

native 3TC group. Significant differences were observed between NMTC and FA-

NMTC during the first 10 days (p<0.05) and FA-NMTC showed greater antiretroviral 

activity compared with NMTC, however, the difference was not significant at day 15 

(Figure 2.3A). These results were confirmed by HIV-1 p24 staining (Figure 2.3B). 

NMTC and FA-NMTC showed greater antiretroviral efficacy compared with native 3TC, 

and much less p24 staining was observed in these two groups. FA-NMTC shower 

greater suppression of viral replication especially in the first 10 days, little to no p24 

antigen was detected in MDM treated with FA-NMTC. 

2.4.7. Immunocytochemistry and confocal microscopy.  

To assess subcellular behavior of the nanoformulated MTC particles, fluorescently-

labeled nanoparticles were used to visualize if co-localization of endolysosomal 

proteins and nanoMTC occured. CF488-labeled nanoMTC was prepared and Rab 5, 7, 

11, 14 and LAMP 1 were selected as targeted proteins. Immunostaining was 

performed 4 h after particle incubation for visualization of endocytic compartments and 

nanoMTC co-localization. As observed nanoMTC distributed in a punctate pattern 

throughout the cytoplasm and perinuclear cell regions (Figure 2.4). NanoMTC was 

found predominantly in late (Rab 7) and recycling (Rab 11 and 14) endosomes [51], 

and this immunofluorescence co-localization demonstrated that nanoMTC was taken 

and stored in macrophages through the endolysosomal pathways. Our previous 
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studies have demonstrated that the HIV reservoir exists mainly in late and recycling 

endosomes, and HIV-1 and nanoformulations deregulated cellular proteins in an 

opposing manner [56], supporting the idea of subcellular-targeted nanoparticles for 

long acting antiretroviral therapy. 

2.4.8. Pharmacokinetics.  

Balb/cJ mice were administered nanoformulated MTC at 50 mg/kg based on 3TC 

concentration to determine the pharmacokinetic parameters for both NMTC and FA-

NMTC as the scheme shown in Figure 2.5A. Plasma drug concentrations following 

formulation treatment were analyzed by UPLC-MS/MS and data are presented in 

Figure 2.5B and C. At each time point, very little MTC was detected, which indicated 

the complete conversion of MTC to 3TC. Higher and more sustained drug levels were 

observed for MTC nanoformulation treated groups and plasma drug levels were 

maintained over 10 days for both nanoformulations. At day 1, no drug could be 

detected in plasma from the native 3TC treated group; the drug levels for MTC, NMTC 

and FA-NMTC groups were 58.65 ± 6.94, 349.25 ± 12.51, and 383.24 ± 13.77 ng/mL, 

respectively. At day 3, little drug was detected in plasma from the MTC treated group, 

whereas plasma drug levels for NMTC and FA-NMTC groups were 131.30 ± 18.09 and 

151.63 ± 23.16 ng/mL, respectively. Compared with NMTC, FA targeted 

nanoformulation showed prolonged drug release and plasma drug levels were more 

than 2 fold higher than these of NMTC from day 5 to day 14.  At day 14, the plasma 

drug level for FA-NMTC was 22.66 ± 12.53 ng/mL and that for NMTC was at the limit 

of quantitation (< 0.5 ng/mL). Tissue drug levels are shown in Figure 2.5D; no 3TC 

was detected in tissues for mice treated with native 3TC or MTC after 14 days. Drug 

levels for the FA-NMTC treated group were greater than 2-fold higher than these for 

the NMTC group in liver, spleen and lymph nodes. 
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2.5. Discussion 

Reverse-transcriptase inhibitors are a class of antiretroviral drugs used to treat 

HIV/AIDS and hepatitis B. RTIs inhibit activity of reverse transcriptase, a viral DNA 

polymerase that is required for replication of HIV and other retroviruses.  Lamivudine 

(3TC) is a typical nucleoside analog reverse-transcriptase inhibitor (NRTI). Its 

favorable safety profile, low potential for drug interaction, good tolerability, and high 

resistance barrier makes it one of the preferred choices for HIV/AIDS therapy in 

multiple clinical scenarios. However, the low protein bound, short half-life and fast 

clearance of 3TC limit its clinical application. In this paper, we describe development of 

a nanoformulated 3TC prodrug in order to improve its clinical potential. 

Myristic acid was used to synthesize the hydrophobic MTC. This 14-carbon alkyl 

chain could significantly decrease the water solubility of native 3TC and improve the 

drug-protein, drug-membrane interactions during systemic circulation. In the presence 

of NMT, HIV-1 viral proteins are covalently attached to myristic acid, which exposes 

them to the antiretroviral drug sufficiently. It has been reported that NMT is a crucial 

enzyme involved in catalyzing the myristoylation of capsid protein p17, Pr160gag-pol, and 

Pr55gag, which are involved in the life cycle of HIV-1 [46]. Myristic acid has been shown 

to inhibit NMT [65-67]. HIV-1 replication could, consequently, be inhibited by the 

myristoylated 3TC. An ester bond was formed after chemical conjugation, which did 

not affect the antiretroviral efficacy of the prodrug, since the ester bond could be easily 

hydrolyzed in the presence of intracellular esterases, including lysosomal acid lipase, 

phospholipase, acetylhydrolase, nucleases and lipoprotein lipase, which are localized 

mainly in lysosomes. These enzymes catalyze the breakdown of acyl groups and 

hydrolyze compounds taken into lysosomes. In our study, the hydrophobic MTC 

presumably diffused through the cell membrane into different cell compartments. The 
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prodrug was transported into lysosomes, degraded by the esterases, and released the 

native 3TC to provide antiretroviral activity. Interestingly, MTC particles exhibited 

comparable antiretroviral efficacy to native 3TC as shown in day 0 RT result. Relatively 

low RT levels were observed in cells treated with both MTC formulations, which 

indicates that the myristoylation did not alter the antiretroviral efficacy of native 3TC. 

Myristoylated 3TC demonstrated reduced cytotoxicity compared with native 3TC, 

which could be attributed to the increased molecular weight; the enhanced 

hydrophobicity can also explain the reduced cytotoxicity since the solubility of MTC 

decreased dramatically. Compared to MTC, water-soluble 3TC, which is easily ionized 

in solution, can be cationized, influencing its complexation with the cell membrane, 

leading to higher cytotoxicity [68]. 

 

Nanocrystals are extraordinary drug delivery carriers and are useful because of 

their high drug loading capacity, improved stability and bioavailability [63, 69].  

Nanosize drug crystals can be coated with surfactant for enhanced cellular uptake and 

sustained cellular maintenance for long-acting efficacy. For drugs with a short half-life, 

like 3TC, the therapeutic index is limited due to the low bioavailability, therefore 

nanocrystals are ideal platforms for increasing drug retention and improving systemic 

circulation. P407 was used as a coating surfactant in order to provide stable 

nanosuspensions, improve nanoparticle dispersity, and realize long-term drug release. 

Both FA-targeted and non-targeted MTC nanoparticles were prepared with well-

distributed particle size and PdI. FA-NMTC exhibited a slightly larger size compared 

with NMTC due to the longer chain of FA-P407 coating polymer, but otherwise no 

significant difference was observed based on the characterization of the these two 

formulations. Both nanoformulations were stable in PBS and sustained drug release 

was observed in vitro, which demonstrated that this platform could be utilized to 
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manufacture particles with stable physiochemical properties and a sustained release 

profile. 

The FA-NMTC nanoparticles showed better cell uptake by macrophages, 

especially in the first 2 hours. These particles were expected to be taken through both 

phagocytosis and receptor-mediated endocytosis. Folate derivatives are internalized 

mainly through the reduced folate carrier (RFC), which binds to the reduced form of 

vitamin B9; and the folate receptor (FR), which has a high affinity for folic acid [70]. 

There are several different isoforms of FR including FR-α and FR-β, which are 

glycosylphosphatidylinositol-anchored proteins (GPI-AP) receptors. We have 

demonstrated in previous studies that FA coated nanoparticles are taken up by 

macrophages mainly through FR-β due to its overexpression in activated 

macrophages during myelopoiesis [53]. Especially for HIV-1 infected patients, FR-β 

will be highly expressed since the immune cells are activated [71, 72].  Meanwhile, 

nanoparticles can directly activate macrophages and more FR-β could be stimulated 

and overexpressed on the cell membrane of macrophages [53]. Both folate targeted 

and non-targeted MTC formulations can be taken up by macrophages through clathrin 

mediated endocytosis. Particles undergo recognition in the blood stream through 

opsonization and the opsonized particles attach to the cell membrane and are ingested 

into phagosomes [73]. The folate conjugated MTC nanoparticles are internalized by 

macrophages preferentially through a clathrin-independent pathway by the effect of 

FR-β. Folate attached to the MTC particles binds to GPI-anchored folate receptor, FR-

β, which is overexpressed on the macrophage surface [74]. This process facilitates the 

internalization of the MTC particles, which can explain the 2-fold difference after 2 h 

treatment and the enhanced antiretroviral activity compared with the non-targeted 

nanoformulation. Due to the enhanced cell uptake, FA-NMTC exhibited greater 
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antiretroviral activity than non-targeted NMTC as confirmed by RT assay and HIV-1 

p24 staining. Greater protection against HIV-1 was observed for targeted nanoparticles 

and the significant differences lasted for 10 days. Equivalent antiretroviral efficacy for 

both formulations by day 15 could be because most of the drug had been released by 

that time; however, both formulations showed greater antiretroviral efficacy compared 

with native 3TC. 

It has been proved that endolysosomes can be affected by HIV-1 infection through 

Rab protein expression, and endosomes are sites of active viral assembly, where a 

great amount of virions accumulate during productive infection [55, 56]. 

Endolysosomal pathways are vital to the transport antimicrobial drugs since they 

enable the drug particles to re-locate at specific sites where virus produces and 

duplicates. We investigated the intracellular localization of non-targeted MTC particles 

in macrophages. We found they predominantly co-localized in late (Rab 7) and 

recycling (Rab 11 and 14) endosomes and lysosomes (LAMP1), which it demonstrated 

that nanoMTC was taken up and stored in macrophages through the endolysosomal 

pathways. MTC particles contained within endocytic compartments would provide a 

protected environment to facilitate drug release with steady antiretroviral efficacy. This 

not only provides effective drug delivery to HIV-1 action sites for improved therapeutic 

efficacy, but also protects the particles from intracellular degradation. 

To investigate the in vivo pharmacokinetic parameters of nanoformulated MTC, we 

treated the mice with 50 mg/kg 3TC equivalents based as native 3TC, pro-drug MTC 

or nanoformulated MTC. Nanoformulated MTC exhibited sustained drug release and 

the folate coated MTC formulation exhibited 2-fold enhanced plasma and tissue drug 

levels compared with non-coated formulation in. Even after two weeks, the plasma 

level for FA-NMTC was still greater than three times higher than the half maximal 

effective concentration (EC50) of 3TC (about 6.9 ng/mL). These studies also 
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demonstrated that the targeted MTC particles were more effectively stored in the 

macrophage depots after injection, as evidenced by their localization in 

reticuloendothelia tissues and lymph nodes. NanoMTC were taken by monocytes in 

blood, and redistributed during systemic circulation to reticuloendothelial tissues. In 

macrophages, MTC was gradually released into the endosomal compartments and 

converted to native 3TC by hydrolases. In vivo MTC was efficiently converted to 3TC 

since little MTC was detected in plasma and tissues. Due to effective binding to the FR 

on macrophages, more FA-NMTC particles could be taken up by 

monocyte/macrophages, distributed into different cellular compartments, and avoid 

degradation by lysosomes, all of which would explain the higher in vitro uptake and 

more sustained in vivo pharmacokinetic behavior for FA targeted MTC particles. 

2.6. Conclusions 

A hydrophobic 3TC prodrug was successfully synthesized through myristoylation 

and incorporated into targeted and non-targeted nanocrystalline formulation to improve 

drug half-life and reduce cytotoxicity. Nanoformulated MTC exhibited enhanced 

cellular uptake and sustained antiretroviral efficacy. Folate targeted MTC nanoparticles 

exhibited improved pharmacokinetics and this novel drug delivery system has showed 

great potentials in the clinical application.  
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Figure 2.1. Characterization of myristoylated 3TC.  

(A) Synthesis of myristoylated 3TC (MTC) derivative. (B) The 1H NMR spectrum of MTC. 

MTC was dissolved in Dichloromethane-d2 and characterized by nuclear magnetic 

resonance spectrometry (1H NMR) determined on a Varian Unity/Inova-500 NB. 

Chemical shifts are reported in parts per millions (ppm). (C) FT-IR spectra of MTC and 

native 3TC. MTC and 3TC powder was analyzed by Spectrum Two FT-IR Spectroscopy 

to detect the structure of the final compounds. (D). Schematic diagram of the FA-NMTC 

formulation. Hydrophilic 3TC was myristoylated into hydrophobic MTC, and FA-

P407/P407 polymer solution was used to encase MTC into FA-NMTC.  
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Figure 2.2. Characterization of MTC formulations  

(A) Characteristics of MTC nanoformulations. (B) Cumulative release of MTC in 

isotonic solution. (C) Cytotoxicity of nanoformulated MTC. Cytotoxicity of native 3TC, 

MTC and both formulations was evaluated by Cell Counting Kit-8. MDM were treated 

with native 3TC, MTC, NMTC, or FA-NMTC at different concentrations for 4 h and 

cytotoxicity was determined. The difference between 3TC and MTC at concentrations 

1.0, 3.3, 10.0, 33.3, and 100 mM are significant (P < 0.05). (D) Time course of uptake 

of MTC formulations in human MDM.. MDM were treated with 100 µM 

nanoformulations (based on MTC content) for 1, 2, 4 and 8 h. The cell lysates at 

indicated times were analyzed by HPLC for MTC quantification. Data represent the 

mean ± standard error of the mean (n = 3), for each time point.  
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Figure 2.3. Antiretroviral efficacy of MTC nanoformulations.  

(A) HIV-1 RT activity of native 3TC and nanoformulated MTC. (B) HIV-1 p24 staining 

of virus-infected MDM pretreated with native 3TC or nanoformulated MTC. MDM were 

treated with 100 µM native 3TC or nanoMTC for 4 h. At days 0, 5, 10, or 15, MDM 

were infected with HIV-1 for 4 h. Uninfected cells without treatment served as a 

negative control; HIV-1 infected cells without treatment served as a positive control for 

the RT assay. All the samples were collected after 7 days of viral infections for RT 

assay and HIV-1 p24 staining. For RT activity, results are shown as the mean of 5 

replicates. The differences between 3TC and nanoMTCs (NMTC and FA-NMTC) at 

days 5, 10 and 15 are significant (P < 0.05). The differences between NMTC and FA-

NMTC are significant at days 0, 5, and 10 (P < 0.05).  
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Figure 2.4. Subcellular localization of nanoformulated MTC in MDM.  

MDM were cultured for 7 days and treated with 100 µM CF488-labeled NMTC for 4 h. 

The cells were stained with Rab 5, 7, 11, or 14 primary antibodies and AlexaFluor 568-

labeled secondary antibodies to visualize the corresponding cell compartments using 

confocal microscopy. Nanoparticles are shown in green, cell compartments in red, and 

nuclei in blue. 
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Figure 2.5. Plasma drug levels of nanoformulated MTC in Balb/C mice. 

 (A) Scheme of the pharmacokinetic study design. (B) Plasma drug levels from 8h to 

day 3. (C) Plasma drug levels from day 5 to 14. (D) Drug levels in liver, spleen and 

lymph node with formulations treated mice at day 14. Mice were administered 

intramuscularly (IM) 50 mg /kg equivalents of 3TC using native 3TC, MTC or MTC 

nanoformulations.  Plasma was collected into acetonitrile for drug analysis at 8 h, and 

days 1, 3, 5, 7, 10 and 14 after treatment and tissues were collected at day 14 after 

sacrifice. 3TC levels were determined by UPLC-MS/MS. Data are expressed as mean 

± SEM. Statistical differences were determined using one-way ANOVA among groups.  
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3.1. Abstract 

Limitations in antiretroviral therapy (ART) include poor patient adherence, drug toxicities, 

viral resistance and failures to penetrate viral reservoirs. Recent developments of 

nanoformulated ART (nanoART) could overcome such limitations. To this end, we now 

report a novel effect of nanoART that facilitates drug depots within intracellular 

compartments at sites at or adjacent to the viral replication cycle. Poloxamer 407 coated 

nanocrystals containing the protease inhibitor atazanavir (ATV) were prepared by high-

pressure homogenization. These drug particles readily accumulated in human 

monocyte-derived macrophages (MDM). NanoATV concentrations were ~1,000 times 

higher in cells than what could be achieved by native drug. ATV particles in late and 

recycling endosome compartments were seen following pull down by immunoaffinity 

chromatography with Rab-specific antibodies conjugated to magnetic beads. Confocal 

microscopy provided cross validation by immunofluorescent staining of compartments. 

Mathematical modeling validated drug-endosomal interactions. Measures of reverse 

transcriptase activity and HIV-1p24 levels in culture media and cells showed that such 

endosomal drug concentrations enhanced antiviral responses up to 1,000 fold. We 

conclude that late and recycling endosomes can serve as depots for nanoATV. The co-

localization of nanoATV at endosomal sites of viral assembly and its slow release sped 

antiretroviral activities.  Long acting nanoART can serve as a drug carrier in both cells 

and subcellular compartments and as such facilitate viral clearance. The need for long 

acting ART is significant and highlighted by limitations in drug access, toxicity, 

adherence and reservoir penetrance.  We propose that targeting nanoformulated drugs 

to infected tissues, cells and subcellular sites of viral replication may improve clinical 
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outcomes.  Endosomes are sites for human immunodeficiency virus assembly and 

increasing ART concentration to such sites enhances viral clearance.  The current work 

uncovers a new mechanism for why nanoART can enhance viral clearance over native 

drug formulations.  

3.2. Introduction 

Long-acting nanoformulated antiretroviral therapy (nanoART) can result in improved 

patient adherence, decreased systemic toxicities and sustained viral suppression. This is 

seen through nanoART’s abilities to maintain consistent plasma and tissue drug levels 

[75-78]. Nonetheless, to facilitate clearance of the human immunodeficiency virus type 

one (HIV-1), antiretroviral drugs need be effectively delivered to viral sanctuaries [62]. 

This can target persistent or restricted infection [53, 79, 80]. With this in mind, our 

laboratories pioneered the use of monocytes and monocyte-derived macrophages (MDM) 

as nanoART carriers and drug depots. Macrophages can increase drug stability by 

preventing drug metabolic degradation and because of their highly mobile nature, they 

may also be used for delivery of ART to and from lymphocytes and other viral reservoirs 

[81-83]. How drug nanoparticles remain sequestered in macrophages for extended 

periods is incompletely understood. What is known is that nanoART can be delivered to 

endosomal organelles through clathrin-endosome pathways and remain inside the cell 

for extended time periods [81]. However, the virologic consequences of such a cell 

delivery system have not yet been elucidated. Investigations of nanoparticle interactions 

at the subcellular level remain of vital importance to the fields of long-acting antiretroviral 

pharmacokinetics and pharmacodynamics.  

     We reasoned that such mechanisms could be elucidated through investigations of 

nanoformulated viral protease inhibitors (PI). PI are substrate analogs for the HIV 
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aspartyl protease enzyme, involved in processing viral proteins by cleaving precursor 

proteins into smaller fragments and enabling the release of mature viral particles from 

infected cells. Once bound to the active site, they block the viral protease and in turn 

inhibit viral maturation, which blocks the formation of replication competent virions [84, 

85]. Atazanavir (ATV), a United States Food and Drug Administration-approved PI for 

the treatment of HIV-1 infection can selectively inhibit virus-specific processing of gag-

pol polyproteins. As a consequence PIs block viral assembly at action sites [86]. 

    It is well known that subcellular organelles are utilized for HIV-1 assembly in 

mononuclear phagocytes (MP; monocytes and tissue macrophages) [87, 88]. Indeed, 

large caches of infectious HIV-1 released from MDM are produced in late endosomes 

[89]. We thus reasoned that if nanoART can improve drug delivery to tissues and cells 

and affect viral clearance, its effects could be amplified if the PI is delivered to the late 

endosomal sites operative for viral assembly. Herein, we demonstrate that nanoART 

enhances its antiretroviral efficacy by being delivered to subcellular sites of active viral 

replication. By tracking endosomal nanoART transport, sequential immunoaffinity 

separations of cellular compartments and by developing computer assisted 

mathematical models we were able to track the antiretroviral drug activities inside 

macrophages. Antiretroviral responses as measured by reverse transcriptase (RT) 

activityand HIV-1p24 antigen provided evidence for the co-localization of nanoART and 

progeny virus. Mathematical modeling uncovered the pathways for nanoparticle 

trafficking through endosomal compartments [90]. Previous combinations of 

experimental and computational studies were limited by the inherent complexity of 

integrating simulated modals with experimental results [91]. The nanoparticle-subcellular 

compartment modeling supports the idea that nanoformulations can facilitate the use of 

macrophages as drug carriers for ART and thus facilitate the establishment of drug 

depots and speed of viral clearance. 
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3.3. Materials and methods 

3.3.1. Reagents & antibodies 

ATV sulfate purchased from Longshem Co (Shanghai, China) was free-based with 

triethylamine. Poloxamer 407 (P407) and CF568-succinimidyl ester (CF568) were 

obtained from Sigma-Aldrich (St. Louis, MO, USA).  Sephadex LH-20 was obtained from 

GE HealthCare (Piscataway, NJ, USA). Pooled human serum was obtained from 

Innovative Biologics (Herndon, VA, USA). Macrophage colony stimulating factor (MCSF) 

was prepared from 5/9m alpha3-18 cells (ATCC®, CRL-10154TM) cultured in ATCC 

complete growth medium as described [20]. Rabbit anti-human antibodies to Rab5, 

Rab7, Rab11 and Rab14, and Alexa Fluor 488 goat anti-rabbit IgG were purchased from 

Santa Cruz Biotechnology (Dallas, TX, USA). Protein A/G mix magnetic beads were 

purchased from Millipore (Billerica, MA, USA). TRIzol reagent was obtained from 

Invitrogen (Grand Island, NY, USA). 

3.3.2. NanoATV manufacture and characterization 

ATV nanoparticles were formulated by high-pressure homogenization (Avestin 

EmulsiFlex-C3, Avestin Inc., Ottawa, ON, Canada) using P407 to encase the drug 

crystals. The suspension containing free-based ATV (1%, w/v) and P407 (0.5%, w/v) in 

10 mM HEPES buffer was premixed overnight at room temperature then homogenized 

at 20,000 psi for ~30 passes until the desired particle size of <300 nm was achieved. 

Size, zeta-potential and polydispersity (PDI) were determined by dynamic light scattering 

(DLS) using a Malvern Zetasizer Nano Series Nano-ZS (Malvern Instruments, 

Westborough, MA, USA). A minimum of four iterations were taken and these varied by < 

2%. After reaching the desired size (< 300 nm) the sample was purified by centrifugation 

at 500 × g for 5 min to remove aggregated particles, then at 10,000 × g for 30 min to 
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collect a purified particle pellet. The resulting particles were resuspended in a 0.2% (w/v) 

P407 surfactant solution for cell studies. 

3.3.3. Synthesis of dye-labeled nanoATV  

For preparation of CF568-labeled nanoATV, CF568-P407 and P407 were dissolved in 

methanol at a weight ratio of 1:4 [6]. The solvent was evaporated and the mixture 

resuspended with 10mM HEPES to yield a 0.5% surfactant solution. Free-based ATV 

was added at a 1% weight ratio. The suspension was premixed overnight in a light 

protected environment at room temperature. The suspension was homogenized by high-

pressure homogenization and purified by centrifugation [10].  

3.3.4. Human monocyte isolation and cultivation 

Human monocytes were obtained by leukapheresis from HIV-1,2 and hepatitis B 

seronegative donors then purified by counter-current centrifugal elutriation. The 

recovered monocytes, >98% pure by Wright stained cytosmears, were cultured in 

Dulbecco’s Modified Eagle’s Media (DMEM) with 10% heat-inactivated pooled human 

serum, 1% glutamine, 50 µg/mL gentamicin, 10 µg/mL ciprofloxacin and 1000 U/mL 

recombinant human MCSF for seven days facilitating cell differentiation into 

macrophages (MDM) [57].  

3.3.5. Native and nanoformulated ATV cell uptake and retention 

MDM were treated with native ATV or nanoATV at 30 or 70 µg/ml. Uptake of drug was 

assessed without media change for 24h. Cell collection occurred at serial time points. 

After 24 h drug exposure, drug retention in MDM was evaluated. Adherent MDM were 

collected by washing 3X with 1 mL of phosphate buffered saline (PBS), followed by 

scraping cells into 1 mL PBS. Samples were centrifuged at 950 × g for 10 min and 

supernatant removed. The cell pellets were resuspended in 200 µL methanol and 



 57 

sonicated with a probe sonicator. The methanol extracts were centrifuged at 20,000 × g 

for 10 min prior to high performance liquid chromatography (HPLC) analysis as 

previously described [63].  Triplicate 20 µL samples of cells were assessed by HPLC 

using a YMC Pack Octyl C8 column (Waters Inc., Millford, MA) with a C8 guard 

cartridge. Mobile phase consisting of 47% acetonitrile/53% 25mM KH2PO4, pH 4.15, was 

pumped at 0.4 mL/min with UV/Vis detection at 212 nm. ATV levels in cells were 

determined by peak area comparisons to those of a standard curve generated with free 

drug (0.025-50 µg/mL). 

3.3.6. Immune isolation of endocytic subcellular compartments 

Immune isolation of endocytic compartments was performed as previously described 

[81]. Briefly, MDM were treated with native or nanoATV for 16 h. Cells were washed 3X 

in PBS to remove extracellular drug and then scraped in homogenization buffer (10 mM 

HEPS-KOH, pH 7.2, 250 mM sucrose, 1 mM EDTA, and 1 mM Mg(OAc)2). Cells were 

then disrupted by 15 strokes in a dounce homogenizer. Nuclei and unbroken cells were 

removed by centrifugation at 400 × g for 10 min at 40C. Twenty µL of slurry protein A/G 

paramagnetic beads conjugated to Rab 5, 7, 11 or 14 antibodies (binding in 10% BSA in 

PBS for 12 h at 40C) were incubated with cell supernatants. Following a 24 h incubation 

at 40C, Rab 5, 7, 11, and 14+ endocytic compartments were washed with PBS then 

collected on a magnetic separator. The drug content of each compartment was 

determined by HPLC [81]. 

3.3.7. Detection of HIV-1 integration by polymerase chain reaction (PCR) 

To estimate the HIV integration, a modified method of that developed by O’Diherty and 

colleagues was employed [92]. After seven days of culture, MDM were treated with 100 

µM native or nanoATV for 16 h then challenged with HIV-1ADA at a multiplicity of infection 
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(MOI) of 0.1 infectious viral particles/cell. Following viral infection for 4 h, cells were 

cultured for an additional 14 days with half media exchanges every other day before the 

cells were scraped for collection. TRIzol Reagent was used to isolate DNA and RNA 

samples. The number of proviruses/cell was determined by a kinetic PCR assay. The 

standard curve was derived by running the nested PCR protocol on several dilutions of 

the integrated standard nucleic acid samples [93]. The concentrations of human 

genomes in the isolated sample DNA (or RNA) were determined by OD260/280.  

3.3.8. Antiretroviral activities  

Antiretroviral efficacy was determined by HIV-1 RT activity [57, 94]. Briefly, MDM were 

treated with 100 µM native- or nano-ATV for 16 h and then challenged with HIV-1ADA at a 

MOI of 0.1. Following viral infection, cells were cultured for 14 days with half media 

exchanges every other day. Medium samples were collected on days 2, 4, 6, 8, 10, 12 

and 14 for measurement of progeny virion production as assayed by RT activity. Here, 

10 µL media samples were mixed with 10 µL of a solution containing 100 mM Tris-HCl 

(pH 7.9), 300 mM KCl, 100 mM dithiothreitol, 0.1% nonyl phenoxylpolyethoxylethanol-40 

(NP-40) and water in a 96-well plate. The reaction mixture was incubated at 370C for 15 

min and 25 µL of a solution containing 50 mM Tris-HCl (pH 7.9), 150 mM KCl, 5 mM 

dithiothreitol, 15 mM MgCl2, 0.05% NP-40, 10 µL/mL poly(A), 0.25 U/mL oligo d(T), and 

10 µCi/mL 3H-thymidine triphosphate was added to each well; plates were incubated at 

370C for 18 h. Following incubation, 50 µL of cold 10% TCA was added to each well, the 

wells were harvested onto glass fiber filters, and the filters were assessed for 3H-

thymidine triphosphate incorporation by beta-scintillation spectroscopy using a TopCount 

NXT (PerkinElmer Inc., Waltham, MA, USA). 
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3.3.9. Immunocytochemistry and confocal microscopy 

For immunofluorescence staining, cells were washed three times with PBS and fixed 

with 4% paraformaldehyde (PFA) at room temperature for 30 min. Cells were treated 

with blocking/permeabilizing solution (0.1% Triton, 5% bovine serum albumin (BSA) in 

PBS) and quenched with 50 mM NH4Cl for 15 min. Cells were washed once with 0.1% 

Triton in PBS and sequentially incubated with primary and secondary antibody at room 

temperature. Slides were covered in ProLong Gold anti-fading reagent with DAPI and 

imaged using a 63× oil lens in a LSM 510 confocal microscope (Carl Zeiss 

Microimaging, Inc., Dublin, CA, USA) [28]. 

3.3.10. HIV-1p24 staining  

Cells in different treatment groups were fixed with 4% phosphate-buffered PFA for 15 

min at room temperature. Fixed cells were blocked with 10% BSA in PBS containing 1% 

Triton X-100 for 30 min at room temperature and incubated with mouse monoclonal 

antibodies to HIV-1p24 (1:100; Dako, Carpinteria, CA, USA) for 3 h at room temperature. 

Binding of HIV-1p24 antibody was detected using a Dako EnVision+ System-HRP 

labeled polymer anti-mouse secondary antibody and diaminobenzidine staining. Cell 

nuclei were counter stained with hematoxylin for 60 s. Images were taken using a Nikon 

TE300 microscope with a 40 × objective. Quantitation of immunostaining was performed 

by densitometry using ImagePro Plus, v. 4.0 [95].  

3.4. Results 

3.4.1. NanoART characterization 

 The nanoATV particles were formulated as a nanosized drug crystal from free-base 

ATV and P407. Physical properties including size, PDI and zeta potential were 
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measured by DLS. The particle size was 371.7 nm with a PDI of 0.194, which indicated 

the majority of nanoATV particles were homogeneous.  The zeta potential was -28.9 mV, 

and the negative charge was contributed by P407.  Scanning electron microscopy 

revealed smooth rod-like morphologies for the nanoATV particles and confirmed size 

measurements and distribution, which was consistent with our previous studies [81, 82]. 

3.4.2. Native and nanoATV cell uptake and retention 

MDM uptake and retention of drug were assessed by HPLC. Cells were exposed to 

native ATV or nanoATV for 24 h and two treatment concentrations (30 and 70 µg/mL) 

were used. Significant differences were observed in rate and extent of drug uptake 

between native and nanoATV treatment groups (Figure 3.1A). The uptake of nanoATV 

was found to increase with time and the maximum uptake was observed at 16 h for 70 

µg/mL treatment group (53.5 µg ATV/106 cells) and 24 h for 30 µg/mL (23.7 µg ATV/106 

cells). However, uptake of less than 0.1 µg ATV/106 cells was observed at 24 h for both 

native ATV treatment groups, and this was not time-dependent. Drug retention in MDM 

was determined 24 h after treatment.  In MDM treated with nanoATV, drug levels of 28.5 

µg/106 cells and 14.0 µg/106 cells in 70 and 30 µg/mL treatment groups, respectively, 

were sustained over 24 h. Sustained release was expected for up to 15 days with 

nanoparticle treatment based on previous studies [53, 82]. Much less ATV was detected 

24 h following treatment with native ATV. 

3.4.3. Antiretroviral activities of native and nanoATV 

To estimate the level of HIV-1 DNA and RNA PCR amplification assays were employed. 

After seven days of cultivation, MDM were treated with 100 µM native or nanoATV for 16 

h then challenged with HIV-1ADA at a MOI of 0.1. Following infection, cells were cultured 

for 14 days with half media exchanges every other day before cell collections. Isolated 
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total cell DNA or RNA were quantitated by kinetic PCR and nucleic acid levels calculated 

using standard curves made by the linear regression analyses. These data are shown in 

Figure 3.1C and D. At day 14 after HIV-1 challenge, 1.15 × 104 and 1.05 × 104 viral 

copies/103 MDM of viral DNA and RNA, respectively were determined in infected 

samples. Viral copies paralleled the concentrations of native ATV where 1 µM of ATV 

failed to show significant antiretroviral activity. In contrast for nanoATV treated groups, 

viral DNA and RNA was effectively suppressed at 1 µM. Viral copies were 29.59 and 

36.09/103 MDM for HIV-1 DNA and RNA, respectively. This was seen following 100 µM 

nanoATV treatment, which effectively suppressed viral replication.   

    To determine the levels of progeny virus produced in native and nanoATV treated 

cultures we treated MDM with native or nanoATV in increasing drug concentrations of 

0.01, 0.1, 1, 10, and 100 µM. Treatment was for 16 h with subsequent HIV-1ADA 

challenge at a MOI of 0.1. The same formulation used for cell uptake and retention was 

tested for antiretroviral activities to ensure that the results were comparable. Infected 

cells were cultured for 14 days with half media change every other day. Culture 

supernatants were collected at days 2, 4, 6, 8, 10, 12, and 14 for determination of 

progeny virion production assayed by RT activity. A dose-dependent effect on RT 

activity for native and nanoATV at all time points was observed (Figure 3.1E and F). 

Significant differences between native and nanoATV were seen. For native ATV treated 

cells, suppression of RT activity was maintained over time only at 100 µM, and most of 

the other native drug concentrations failed to show significant viral suppression 

compared to untreated controls.  In contrast, nanoATV reduced RT activity effectively 

starting at 1 µM. A two-log increase in viral suppression was seen with nanoATV as 

compared to native ATV.  
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3.4.4. NanoATV effects on HIV-1 p24 antigen 

Cross validation of the results shown above was made through evaluation of viral 

antigen expression following native and nanoATV treatments for infected cell cultures. 

The expression of HIV-1 p24 antigen was used to determine antiretroviral activity in 

MDM that were treated with native or nanoATV and subsequently challenged with HIV-1 

at a MOI of 0.1. Evaluation of p24 expression by infected MDM treated with native or 

nanoATV showed a concentration-response effect on the HIV-1 p24 expression at day 

14 following viral exposure (Figure 3.2). Higher treatment concentrations resulted in 

lower p24 expression for both treatment groups. Formation of multinucleated giant cells 

was also observed. Significant differences between the native and nanoATV were seen 

at all concentrations. The expression of HIV-1 p24 antigen decreased slightly in cells 

treated with 1 or 10 µM native ATV, but an 89.4% decrease was found in cells treated 

with 100 µM native ATV (data not shown). HIV-1 p24 expression in cells was reduced 

with all concentrations of nanoATV. Viral suppression was to nearly asymptomatic levels 

with nanoATV treatment; i.e. 90.9, 94.2 and 95.7% for 1, 10 and 100 µM nanoATV 

treatment, respectively (data not shown).  

3.4.5. NanoATV subcellular distributions 

Confocal microscopy enabled both visualization and quantitation of the subcellular 

nanoATV distribution in early (Rab 5), late (Rab 7) and recycling (Rab 11, 14) endocytic 

compartments [96]. In these experiments, MDM were treated with 100 µM nanoATV 

fluorescently labeled with CF568. Immunostaining was performed 16 h after particle 

incubation for visualization of endocytic compartments and nanoATV co-localization. 

These experiments showed nanoATV distribution in a punctate pattern throughout the 

cytoplasm and perinuclear cell regions.  NanoATV was found predominantly in late and 

recycling endosomes of uninfected macrophages (Figure 3.3A). Quantitation of the 
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fluorophore labeled Rab species in endosomes with CF568 (fluorescent)-labeled 

nanoATV was made by adapting Pearson’s correlation coefficient to measure only 

positive co-localization coefficients (i.e. M1 and M2) of the two fluorophores at different 

emission wavelengths. Based on this, we showed significant accumulation (p< 0.001) of 

nanoATV within Rab 5- (35.4 ± 5%), Rab 7- (65.1 ± 7%), Rab 11- (70.3 ± 11%) and Rab 

14- (56.9 ± 12%), positive compartments. To assess subcellular co-localization of 

nanoATV with assembled HIV-1 virions, MDM were treated with 100µM CF568-labeled 

nanoATV for 16 h following 14 days of HIV-1ADA infection. Identical Rab-specific 

antibodies were employed to immunostain endocytic compartments in multinucleated 

giant cells. Quantitation of fluorophore in Rab compartments showed clear co-

localization between virus and the nanoparticles (Figure 3.3B and 3D). The greatest 

amount of dual co-localization was found in Rab 7-immunopositive late endosomes. 

These data indicated that after HIV-1 infection, nanoATV persists in late endosomal 

compartments, the site of active viral assembly, but at half the level present in recycling 

endosomes of uninfected macrophages (3.3C vs. 3.3D). 

3.4.6. NanoATV trafficking in endosomal subcellular comparments 

To assess the locale of nanoATV at the subcellular level we analyzed individual 

endosomal compartments within MDM by immunoaffinity techniques. MDM exposed to 

nanoATV were mechanically disrupted at specific time points, and subcellular 

compartments including early, late and recycling endosomes were immunoisolated using 

A/G paramagnetic beads conjugated to Rab 5, 7, 11 or 14 antibodies. Endocytic 

compartments bound to beads were collected by magnetic separation, digitally imaged 

and then analyzed by HPLC for drug content. Time dependent endocytic uptake was 

observed in all labeled endosomes and the data was used to generate 48 h subcellular 

uptake curves (Figure 3.4A). At 48 h, the maximum nanoATV uptake was 10.6 ± 1.4 
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µg/106 cells in Rab 14 (early recycling endosomes) compartments, followed by 8.3 ± 0.7 

µg/million cells in Rab 11 (late recycling endosomes) compartments. The lowest 

nanoATV concentration was found in Rab 5 compartments, representing early 

endosomes, regardless of HIV-1 infection, which was consistent with the co-localization 

confocal microscopy tests.  

3.4.7. Simulation of nanoATV at the subcellular level 

Mathematical means to simulate drug particle uptake and retention at both the cellular 

and subcellular levels were developed based upon our results. These models 

demonstrated that trafficking of nanoformulated particles in endosomal cell 

compartments provided an accurate and reliable view of their behavior in real time. The 

drug levels in specific compartments at different time points together with the 

confirmation that more nanoATV than native ATV could accumulate in late and recycling 

endosomes proved these to be the major subcellular depots for nanoATV. The modeled 

flow of nanoparticles is presented in Figure 3.4C where outside of the cell and the 

specific subcellular compartments involved in trafficking of the majority of nanoATV are 

represented as the graph nodes: ‘Out’ – the outside of the cell, ‘Rab5’, ‘Rab7’, ‘Rab11’, 

and ‘Rab14’ – denoting the compartments identified by the respective Rab proteins. The 

instantaneous concentration of nanoATV outside the cell, Q1, is associated with the node 

‘Out’, and the instantaneous concentrations of respective Rab proteins, Q2, …, Q5, are 

associated with the nodes ‘Rab5’, ‘Rab7’, ‘Rab11’, and ‘Rab14’. It has been noticed that 

the total number of the observed nanoATV/fluorescent labeled particles in the 

experiment decreases over time. This has been taken to account in the model as an 

open path marked δ in the graph of Figure 3.4C. 

    Based on the graph topology, the time changes of the concentrations in the model are 

controlled by the set of 5 difference equations: 
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where ΔT denotes the time increment in simulations, and (·)(j) denotes the value of (·) at 

jth step of simulation.  

    Based on the experimental results, using multiple linear regression, and curve fitting 

methods implemented as standard MATLAB functions, the following relationships 

between the concentrations Q1, …, Q5, and the rates of changes V1, …, V8 were 

established: 

𝑉! = 0.04269𝑄! + 0.7778 

𝑉! = 0.1000𝑄! − 0.085𝑄! + 0.0814 

𝑉! = 0.0367𝑄! − 0.2714𝑄! + 2.238 

𝑉! = 0.003𝑄! + 0.0367𝑄! − 0.155𝑄! − 0.1263𝑄! + 0.7366 

𝑉! = −0.003𝑄! + 0.155𝑄! − 0.33 

𝑉! = −0.0031𝑄! + 0.2344𝑄! − 0.22 

𝑉! = −0.0031𝑄! + 0.01785𝑄! − 0.112 

𝑉! = 0.01exp (0.01𝑡)𝑄! 

where t is time from the experiment start. The units for all the rates are µg/106 cells/h and 

µg/106 cells for concentrations. The simulation model based on the set of difference 

equations was implemented in MATLAB using similar technique as applied in [97].  
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3.4.8. Subcellular antiretroviral activity 

To determine in which compartments the virus persists and the antiretroviral efficacy of 

our nanoATV at a subcellular level, MDMs were challenged with HIV-1ADA for 4 h at a 

MOI of 0.1, then treated with 100 µM native ATV or nanoATV for 16 h. MDM were 

mechanically disrupted at days 7 and 14, and subcellular compartments were 

immunoisolated using A/G paramagnetic beads conjugated to Rab 5, 7, 11 or 14 

antibodies. Endocytic compartments bound to beads were collected by magnetic 

separation for the RT assay. The highest RT activity was found in Rab 11 

compartments, representing recycling endosomes, and Rab 7 compartments, 

representing late endosomes, in non-treated cells after 7 and 14 days of HIV-1 challenge 

(Figure 3.5B), respectively, which suggested that virus located mainly in these 

endosomal compartments. NanoATV and native ATV at 100 µM both exhibited 

antiretroviral efficacy, while nanoATV more effectively decreased RT activity in all 

endosome compartments, especially Rab 7 and 11 fractions. Based on the confocal 

results, greater overlap of nanoATV and cellular compartments was found in late and 

recycling endosomes, which could explain why nanoATV was more effective in 

suppressing HIV-1 virus in these compartments. 

3.5. Discussion 

Nanocrystals are broadly used for drug delivery due to their high drug loading capacity, 

increased dissolution in solution and enhanced bioavailability [98-101]. Herein, we report 

the manufacture of P407 coated nanocrystal ATV (nanoATV) by homogenization and 

show that its physical properties, including size and surface charge, facilitate 

macrophage particle uptake and drug stability. Indeed, nanoATV was readily internalized 

by macrophages and produced sustained drug release. This serves to improve drug 
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efficacy by increasing subcellular bioavailability. Nanosized drug crystals coated with 

surfactant exhibit enhanced cellular uptake and facilitate the cellular maintenance of 

drug particles for prolonged time periods. Particle coating serves to increase intracellular 

drug stability. Notably, nanoATV leads to effective inhibition of HIV-1 replication for 

prolonged time periods. In contrast to native ATV, nanoATV shows weeks of viral 

suppression linked to its abilities to increase drug delivery to subcellular macrophage 

compartments. This is facilitated by sustained antiretroviral drug release rates.  

     Interestingly, HIV-1 infection affects the size and or number of endosomes as 

reflective of Rab protein expression (G. Zhang, preliminary communication). We posit 

that such virus-induced alterations in endosomes are biologically relevant to sustain viral 

growth.  Indeed, endosomes are sites of active viral assembly and are the cellular 

substructures where large numbers of virions accumulate during productive infection 

[89].  Such a function has added strategic advantages for the nanoformulated 

antiretroviral drug as it enables the drug particle to reside in the identical site where viral 

maturation occurs in the cell. Taken together, such events certainly facilitate 

antiretroviral drug activities. This may also be operative for a broad number of 

endosomal compartments that affect “transport” of anti-microbial drugs and is likely a 

common pathway for macrophage scavenging functions. Notwithstanding we also 

accept that the pathways for endosomal trafficking and HIV are not perfectly congruent. 

Further investigations will determine the mechanisms behind each trafficking scheme. 

Such observations, nonetheless, open the means to improve antimicrobial therapies 

beyond what is being reported in the current study.  

     Over the past decade our laboratory has pioneered the development of long-acting 

nanoART. NanoATV serves as a model for macrophage-based nanoparticle drug 

delivery as descriptions of cell uptake and intracellular localization of ART content 

parallel one another. To better understand formulation trafficking at the cellular and 
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subcellular levels, we developed a mathematical means to simulate endosomal 

trafficking [90]. The model is simple to implement and can provide assessment of 

“putative” drug activities based on changes in concentration of nanoATV and/or Rab 

proteins in real time. Based on the model, divergent behaviors between native and 

nanoATV were readily observed. NanoATV was taken up efficiently into macrophages 

and effected sustained drug release while native ATV was minimally internalized. This 

helps to explain why nanoATV possesses distinct long-acting antiretroviral efficacy. 

Through our subcellular uptake simulation model, nanoATV subcellular distributions 

were visualized, and late and recycling endosomes were considered as the nanoATV 

depots. Indeed, large amounts of nanoATV were deposited in these endocytic 

compartments. However, it is also noted that differences exist between HIV-1 and 

nanoparticle drug subcellular accumulation including recycling endosomes. Whether this 

is a clever means of virus altering the “transport” properties of nanoparticles or a 

compensatory host mechanism in attempts to contain virus is not yet known.  Further 

studies are certainly needed to assess the unique transport properties of the virus and 

the drug-laden particle.  

     Harnessing macrophage transport properties for drug delivery can improve clinical 

drug responses. Indeed, cell-based nanocarriers have been developed for not only 

cancer chemotherapy but also a wide range of microbial infections [102-104]. 

Macrophage-based nanomedicine delivery schemes may have several advantages over 

more conventional drug delivery including enhanced cure rates, reduced side effects, 

increased drug stability and effective subcellular targeting [28, 95, 105, 106]. Using the 

macrophages as a nanocarriage vehicle can permit investigations of nanoATV entry, 

intracellular trafficking and drug release kinetics.  

       NanoATV contained within endocytic compartments provide a protected 

environment to facilitate drug release with unaltered antiretroviral activities. Both late and 
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recycling endosomes were able to retain a large number of the nanoparticles. 

Macrophages likely play a vital role in HIV pathogenesis as they are among the first cells 

infected [107, 108]. Within an infected macrophage, virions are formed in a temporally 

and spatially coordinated manner wherein the components that make up the virus 

assemble in association with a specific cellular membrane from which the viral envelope 

is derived [89]. HIV-1 virions bud directly into late endosomes and thereby acquire late 

endosomal membrane proteins, such as Rab 7, LAMP-1 and CD63 [88]. Macrophages 

secrete virions from virus-containing intracellular vacuoles [109]. Late endosomes are 

principal locales for HIV assembly [110-114]. Importantly, nanoATV retains full 

antiretroviral activity in late endosomes, as RT activity was significantly decreased in 

Rab 7 and Rab 11 vesicles.  

      In summary our results demonstrate that nanoATV and HIV target overlapping 

subcellular compartments. Entry of virus and particles inside macrophages tis facilitated 

through clathrin-mediated pathways [115-118]. NanoATV particles are stored within late 

endosomes or recycling compartments, which serves to minimize intracellular 

degradation. For release, nanoATV are slowly recycled to the plasma membrane [119-

122]. This provides a means for escape from phagolysosomal degradation and effective 

delivery of drug to action sites, which in the end has a net effect of improved therapeutic 

efficacy. 

3.6. Conclusions 

NanoATV is now demonstrated to effect increases in cellular drug uptake and retention 

in macrophages. The long acting antiretroviral efficacy of crystalline nanoformulated 

drugs is significantly enhanced over its native counterparts. Macrophages act as carriers 

of nanoATV to improve drug bioavailability. Computer assisted mathematical modeling 



 70 

can simulate subcellular trafficking of nanoATV to late and recycling endosomes that 

serve as drug particle depots. Overall, nanoATV and HIV utilize similar subcellular 

pathways. Delivery of drug through subcellular compartments increases its antiretroviral 

responses.  
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Figure 3.1. Comparisons of native and nanoATV cellular drug uptake and 

antiretroviral activity.  
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(A) Time course for monocyte-derived macrophage (MDM) uptake of native or nanoATV 

are illustrated. MDM cultures were treated with native or nanoATV for 24 h. (B) 

Computational simulation of the time course of MDM drug uptake and retention. After 24 

h treatment with native or nanoATV, cells were washed with PBS and treated with fresh 

medium for 24 h. HIV-1 (C) DNA and (D) RNA levels were quantitated 14 days after 

infection in MDM treated with various concentrations of native or nanoATV. The units for 

viral DNA and RNA are copies/103 cells and copies/cell, separately. HIV reverse 

transcriptase (RT) activity 14 days after HIV-1 infection in MDM treated with various 

concentrations of (E) native- or (F) nanoATV. Data are expressed as average +/- SEM 

for N=5 replicates. 
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Figure 3.2. HIV-1p24 staining of virus-infected MDM pre-treated with native or 

nanoATV.  

MDM were treated with native or nanoATV for 16 h then challenged with HIV-1 at a MOI 

of 0.1.  Infection was allowed to continue for 14 days. The treatment groups included: (A) 

HIV-1 infected controls; (B-D) 1, 10 and 100 µM native ATV, respectively; (E-G) 1, 10 

and 100 µM nanoATV, respectively; (H) uninfected MDM. 
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Figure 3.3. NanoATV subcellular distribution. 

 (A) Uninfected MDM and (B) HIV-1  infected MDM were treated with 100 µM, dye-

labeled nanoATV for 16 h then immunostained with Rab 5, 7, 11 or 14 antibodies and 

AlexaFluor 488-labeled secondary antibody (green) to visualize particle and organelle 

co-registration. Quantitation of the overlap of nanoATV and Rab proteins in (C) 

uninfected and (D) HIV-1 infected MDM are shown. Data are expressed as the average 

+/- SEM of N=10 replicates. 
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Figure 3.4. Kinetics of particle trafficking in subcellular endosomes.  

(A) Subcellular uptake in different compartments in MDM treated with 100 µM nanoATV 

over 48 h. (B) Simulated subcellular nanoATV uptake activity in different compartments 

over the same time frame. (C) Simulated subcellular nanoATV uptake pathways. Data 

are expressed as average +/- SEM of N=3 replicates. 
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Figure 3.5. Intracellular pathways for HIV-1 progeny virion production and 

nanoATV trafficking.  

(A) Schematic diagram for HIV-1 and nanoATV trafficking. HIV reverse transcriptase (RT) 

activity in subcellular endosomal compartments is shown. MDM were infected with HIV-1 

for 4 h then treated with 100 µM native or nanoATV for 16 h. Endosomal compartments 

were isolated using specific Rab antibody-coated magnetic beads and RT activity was 

measured in endosomal compartments on (B) day 7 and (C) day 14 after infection. R5, 
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R7, R11, R14: Rab 5, 7, 11 and 14, respectively. Data are expressed as the average of 

N=5 replicates. 
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4.1. Abstract 

Long-acting nanoformulated antiretroviral therapy (nanoART) is designed to improve 

subject regimen adherence, reduce systemic drug toxicities, and facilitate clearance of 

human immunodeficiency virus type one (HIV-1) infections. While nanoART establishes 

drug depots within recycling and late monocyte-macrophage endosomes, whether or not 

this provides a strategic advantage to eliminate the virus is not been completely 

elucidated. To this end, we applied quantitative SWATH-MS proteomics and cell profiling 

to nanoparticle atazanavir (nanoATV)-treated and HIV-1 infected human monocyte-

derived macrophages (MDM). Native ATV and uninfected cells served as controls. 

Surprisingly, both HIV-1 and nanoATV engaged the endolysosomal trafficking for their 

assembly and depot formation, respectively. Notably, the pathways were deregulated in 

opposing manners by the virus and the nanoATV likely by viral clearance. Paired-sample 

z-scores, of the proteomic data sets, showed up- and down- regulation of Rab-linked 

endolysosomal proteins. NanoART and native ATV treated uninfected cells showed 

limited effects. The data was confirmed by Western blot. DAVID and KEGG 

bioinformatics tools showed relationships between secretory, mobility and phagocytic 

cell cell functions and virus and particle trafficking. We posit that modulation of 

endolysosomal pathways by antiretroviral nanoparticles provides strategic path to 

combat HIV infection.    

4.2. Introduction  

Long acting nanoformulated antiretroviral therapy (nanoART) is emerging as an 

important part of the treatment armamentarium for human immunodeficiency virus type 

one (HIV-1) infection [123-126]. While our prior studies defined both a platform for drug 

delivery and the trafficking mechanisms operative for nanoART in monocyte-
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macrophages, how these cells can be harnessed as drug depots for improved 

antiretroviral responses has not been realized [55, 62, 63, 95, 127]. Indeed, human 

monocyte-derived macrophages (MDM) serve as nanoART carriers extending ART half-

life and drug stability [35, 81]. Such cell-based drug delivery strategies may also 

decrease systemic drug toxicities [53, 128]. We posit that endolysosomal pathways can 

serve as Trojan horses for viral persistence or as vehicles for its elimination. If correct, 

facilitated viral replication and the means to eliminate it may occur at identical subcellular 

locales. The operative nanoART response would facilitate drug delivery by bringing the 

medicine to the site of action within mononuclear phagocytes (MP; monocytes, 

macrophages and dendritic cells). To investigate a seemingly mechanistic paradox, 

functional proteomic tests were employed to uncover how drug particles affect the HIV-1 

replication cycle beyond nanoART activity.  

The intracellular trafficking pathways held by the virus and nanoART were investigated 

by Sequential Windowed data independent Acquisition of the Total High-resolution Mass 

Spectra (SWATH-MS) profiling. This technique was applied to obtain a broader picture 

of complex nanoART-HIV interactions. The method was previously employed in our and 

other laboratories to identify and quantify cellular peptides on a larger scale [129-133]. 

While past transcriptomic and proteomic analyses were applied to study virus-cell 

interactions [130-133], they have failed to uncover key proteins affected by targeted 

antiretroviral treatments. Herein, we identified deregulated cellular proteins affected by 

nanoatazanavir (nanoATV) in HIV-1-infected MDM. Comparison was made between 

formulated and native ATV by the effect of HIV-1. Common cellular proteins with 

coordinated molecular, biochemical and biological functions were altered in virus-

infected and nanoATV treated cells. These were linked to phagosome signalling 

pathways specifically associated with the endosomal and lysosomal compartments. 

Specifically, opposing expressions of Rab7 and -11 and LAMP1 were seen in HIV-1 
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infected and nanoATV-treated cells. Notably, the downregulation of late and recycling 

endosomes and LAMP1, indicated that pathways that could be employed, in measure, 

for viral assembly and nanoparticle lysosomal degradation were affected. Through cross 

validation of proteomics, cell biology and protein chemistry, our data provide novel 

insights into how nanoART facilitates viral clearance while establishing long-lived cell-

based depots different from native drug. These works represent a previously unknown 

mechanism for how long-acting nanoART provides a strategic advantage to combat viral 

infection.  

4.3. Materials and methods 

4.3.1. Reagents and Antibodies  

ATV sulfate (Gyma Laboratories of America Inc., Westbury, NY, USA) was free based 

with triethylamine. Poloxamer 407 (P407) and CF568-succinimidyl ester (CF568) were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). Human serum was obtained from 

Innovative Biologics (Herndon, VA, USA). Macrophage colony-stimulating factor (MCSF) 

was prepared from 5/9m alpha3-18 cells (ATCC; CRL-10154) [54]. Rabbit anti-human 

Rab 5, -7, -11, LAMP1 and β-actin antibodies were purchased from Santa Cruz 

Biotechnology, Dallas, TX, USA. Alexa Fluor 594 goat anti-rabbit IgG and Alexa Fluor 

647 donkey anti-mouse IgG were obtained from Life Technologies (Eugene, OR, USA) 

4.3.2. NanoATV manufacture and particle characterization  

P407-ATV was prepared by high-pressure homogenization using an Avestin Emulsiflex 

C3 homogenizer (Avestin Inc; Ottawa, ON, Canada) [63, 82]. CF568-labeled P407-ATV 

was prepared as described previously [53] using a 1: 4 (w/w) ratio of CF568-P407 and 

P407. Drug content of the nanosuspensions were determined by reverse phase high-
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performance liquid chromatography (HPLC) [105]. Particle size, polydispersity and zeta 

potential for the nanoparticles were determined by dynamic light scattering using a 

Malvern Zetasizer Nano-ZS instrument (Malvern Instruments Inc.; Westborough, MA, 

USA).  

4.3.3. Monocyte isolation, cultivation and HIV-1 Infection 

Human peripheral blood monocytes were obtained by leukapheresis from HIV-1,2 and 

hepatitis B seronegative donors and plated at a density of 1 x 106 cells/mL in Dulbecco’s 

modified Eagle’s medium supplemented with 10% heat-inactivated human serum, 1% 

glutamine, 50 µg/ml gentamicin, 10 µg/ml ciprofloxacin and 1,000 U/ml MCSF. After 

seven days of cell differentiation, MDM were infected with HIV-1ADA at a MOI of 0.1 

infectious viral particles per cell. After 4 hours the medium was removed and cells were 

treated with 100 µM P407-ATV. Following 16 hours of drug treatment, the media was 

replaced with drug-free fluids and cells were incubated for an additional seven days [57, 

62].  

4.3.4. SWATH-MS  

MDM samples for mass spectrometry were collected seven days after infection and drug 

treatment. Cells were washed with ice-cold PBS, scraped, pelleted, and stored at −80°C 

until processed. Cell samples from four donors were processed simultaneously. Cell 

pellets were re-suspended in cell lysis buffer containing 4% (w/v) SDS, 0.1 M 

dithiothreitol (DTT) and 0.1 M Tris-HCl. Lysates were vortexed at room temperature for 

10 min and then boiled at 95°C for 5 min to denature proteins. Protein quantification was 

performed using the Pierce 660 nm protein assay (Thermo Scientific; Wilmington, DE, 

USA) following the manufacturer’s protocol. On the basis of protein quantifications, 100-

200 µg of each sample was processed using filter aided sample preparation (FASP) 
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[134-136]. Samples were denatured with urea exchange buffer (8 M urea, 0.1 Tris-HCl, 

pH 8.5) placed into filter cartridges (10 kDa), centrifuged and then treated with 50 mM 

iodoacetamide (Sigma-Aldrich). Trypsin (Promega; Madison, WI, USA) was added (2 

µg/100 µg protein) and incubated at 37°C overnight on the cartridge. Eluted peptides 

were dried via vacuum centrifugation. Peptides were cleaned using an Oasis mixed 

cation exchange cartridge following manufacturer’s protocols (Waters Inc.;  Milford, MA, 

USA) and then dried under vacuum.  After processing through mixed cation exchange, 

peptides were subjected to further clean up using C18 Zip-Tips (EMD Millipore; Billerica, 

MA, USA) and dried under vacuum.  Peptides were resuspended in 0.1% formic acid 

(Honeywell Burdick & Jackson; Muskegon, MI, USA) and quantified using 

NanoDrop2000 (Thermo Scientific).  One µg of peptide was then prepared for SWATH-

MS quantitative proteomics analysis, as previously described [129, 137]. Samples used 

to generate the SWATH-MS spectral library were subjected to traditional, data-

dependent acquisition (DDA).  

4.3.5. Bioinformatics  

Each SWATH-MS condition (per each donor) was transformed independently of other 

conditions and comparisons between control condition and experimental conditions were 

calculated. Extracted raw data transformation was performed as described by Haverland 

et al. [129] The raw intensity for each protein was transformed by taking the natural log 

(ln) of the intensity followed by assignment of z-score. The p-value for the computed z-

score was assigned using standard normal distribution. Functional analysis and 

signalling pathway representation were performed using an array of complementary, 

open-access bioinformatic tools. Functional annotation of the proteins differentially 

expressed was performed using the Database for Annotation, Visualization and 

Integrated Discovery (DAVID) Bioinformatics Resources (6.7) and the Protein Analysis 
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Through Evolutionary Relationships (PANTHER) Classification System (9.0), by entering 

the UniProt sequence feature. The gene ontology (GO) annotations showed proteins 

according to Biological Processes, Molecular Functions and Cellular Components. 

Protein Class functional analysis was obtained by PANTHER. Protein–protein 

interactions among all identified transcription regulators were investigated using Search 

Tool for the Retrieval of Interacting Genes/Proteins (STRING) (9.1) considering a 

confidence of greater than 0.4 (medium confidence). Unconnected proteins (orphan 

proteins) and unconnected satellite networks (networks which were detached from the 

largest network) were removed. 

The complementary pathway analysis, Kyoto Encyclopedia of Genes and Genomes 

(KEGG) was used to determine significant pathways between experimental conditions. 

The KEGG pathway (71.0) for the phagosome was coloured using the KEGG mapper 

colour pathway tool. Green represents all proteins confidently identified and red and blue 

colours are assigned to up- or down-regulated proteins, respectively.  

4.3.6. Antiretroviral activities 

HIV-1 reverse transcriptase (RT) activity was measured to assess antiretroviral efficacy 

in HIV-1 infected MDM. MDM were treated with 10, 100 or 250 µM native- or nanoATV 

for 16 hours then infected with HIV-1ADA for 4 hours at a MOI of 0.1 immediately and five 

and 10 days after drug treatment. Following viral infection, cells were cultured for an 

additional seven days at which time cell media were collected for measurement of RT 

activity. Briefly, in a 96-well plate, 10 µL of sample supernatants were mixed with 10 µL 

of solution containing 100 mM Tris-HCl (pH 7.9), 300 mM KCl, 100 mM dithiothreitol, 

0.1% NP-40 and water. The reaction mixture was incubated at 37˚C for 15 min and 25 

µL of a solution containing 50 mM Tris-HCl (pH 7.9), 150 mM KCl, 5 mM DTT, 15 mM 

MgCl2, 0.05% NP-40, 10 µL/mL poly(A), 0.25 U/mL oligo d(T) and 10 µCi/mL 3H-
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thymidine triphosphate was added to each well; plates were incubated at 37˚C for 18 

hours. Following incubation, 50 µL of cold 10% TCA was added to each well, the wells 

were harvested onto glass microfiber filters and the filters were assessed for 3H-

thymidine triphosphate incorporation by b-scintillation spectroscopy using a TopCount 

NXT (Perkin Elmer Inc.; Waltham, MA, USA) [55, 62]. 

4.3.7. Western Blots 

Protein expressions of Rab 5, 7 and 11, LAMP-1 and Actin were detected by Western 

blot assays. MDM were treated with native drug or nanoATV and infected with HIV-1ADA 

as described. Seven days after infection cells were collected and lysed using CellLytic M 

Cell Lysis Reagent (Sigma-Aldrich). Protein content was quantitated using the Pierce 

660-nm protein assay. Ten µg of protein was separated by electrophoresis using a 

NuPAGE Novex 4-12% Bis-Tris gel (Life Technologies-Novex; Grand Island, NY, USA). 

After electrophoresis, the proteins were transferred to a PVDF membrane (BioRad 

Laboratories, Hercules, CA, USA) and then blocked with 5% non-fat dry milk in PBS and 

0.1% Tween-20 (PBST). Membranes were probed with primary antibodies for Rab5, 

Rab7, Rab11 or LAMP-1 and β-actin (Santa Cruz Biotechnology) followed by 

horseradish peroxidase-conjugated secondary antibody (Life Technologies-Novex). 

Proteins were detected using the SuperSignal West Pico Chemiluminescent substrate kit 

(Thermo Scientific) [55, 81, 138]. 

4.3.8. Immunofluorescence and confocal microscopy 

For immunofluorescence staining, cells were washed three times with PBS and fixed 

with 4% paraformaldehyde (PFA) at room temperature for 30 min. Fixed cells were 

permeabilized with 0.1% Triton in PBS and then blocked with 5% bovine serum albumin 

(BSA) in PBS for 30 min. Cells were washed with 5% BSA in PBS and sequentially 
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incubated with primary antibody against HIV-1 p24 (Dako; Carpinteria, CA, USA) and 

either Rab5, -7, -11 or LAMP-1 (Santa Cruz Biotechnology) for 1 hour then washed 3 

times with PBS. Secondary antibodies conjugated with Alexa594 or Alexa647 dyes (Life 

Technologies-Molecular Probes) were applied against the primary antibody isotype and 

incubated at room temperature for 1 hour then washed 3 times with PBS. Slides were 

covered in ProLong Gold AntiFade reagent with DAPI (Life Technologies-Molecular 

Probes) and imaged using a 40X oil lens on a LSM 510 confocal microscope (Carl Zeiss 

Microimaging, Inc.; Dublin, CA, USA) [55, 139]. 

4.3.9. Cytokine Bead Array 

MDM were infected with HIV-1ADA for 4 hours at a MOI of 0.1 then treated with 100 µM 

native- or nanoATV for 16 hours immediately. 24 hours after drug treatment, 50 µL cell 

culture media from treated and infected MDM were tested to determine the 

concentrations of inflammatory cytokines measured by a cytokine bead array (CBA) 

detection kit (Becton Dickinson Biosciences; Mississauga, ON, USA) and performed 

according to instructions of the manufacturer. Monoclonal antibodies specific to 

interleukin-12 (IL-12), tumor necrosis factor (TNF), IL-10, IL-6, IL-1b and IL-8 were 

added to the samples in a 96 well plate. A serial dilution of known cytokines generated 

the standard curve. Following three hours of incubation, all samples were acquired and 

analysed on a FACSArray. The standard curve was determined using a parameter 

logistics model and analysed with FCAP Array software. Cytokine levels are expressed 

as pg/mL [140]. 
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4.4. Results 

4.4.1. Proteomics analyses of HIV-1 infected MDM  

HIV-1 infection engages a spectrum of cellular proteins seen in specialized cell 

populations that support its replication [109]. The effect of nanoART on cell protein 

expression has not yet been defined, in its target macrophage. To such ends, we applied 

quantitative SWATH-MS proteomics followed by bioinformatics to uncover proteins 

deregulated by free ATV or nanoATV with or without HIV-1 cell exposures. For these 

experiments MDM were first infected with HIV-1ADA and four hours later medium was 

removed and cells were treated with 100 µM P407-ATV. Following 16 hours of drug 

treatment, the media was replaced with drug-free fluids and cells harvested for 

proteomic tests after an additional seven days This experimental paradigm was followed 

to assess the role that the antiretroviral delivery system had on macrophage proteome 

during spreading viral infection. In attempts to separate the effects of the antiretroviral 

drug, the nanoparticle and viral infection both separate and combined analyses of each 

of these were required. Following biological assessments, cells samples were collected 

and we assessed how nanoATV and free ATV could modulate virus-induced protein 

changes. MDM were infected with HIV-1 at a multiplicity of infection (MOI) of 0.1 then 

treated with 100 µM free or nanoATV. After seven days, cells were harvested and 

SWATH-MS was performed on whole cell lysates [129]. Based on the expansive 

proteomic data sets based on the biological response variables amongst the cell 

treatments for nanoATV, ATV and HIV-1 illustrations of the data sets were divided into 

replicate files and two independent figures. The first identified differnces between HIV-1 

infected with or without nanoART and the second (with and without native ATV. 

Quantitative profiling identified 527 significantly changed MDM proteins following HIV-1 

infection.  These were up- or down-regulated (p<0.05) assessed by paired-samples z-
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scores. The numbers of proteins exhibiting changed expression in HIV-1-infected cells 

were greater than in replicate infected cells treated with nanoATV, 527 versus 376 

respectively (Figure 4.1A). Up- and down- regulated proteins in HIV-1 infected cells were 

41 and 59% of total (n=216 and 311, respectively). In contrast for nanoATV-treated HIV-

1-infected MDM, up- and down-regulated proteins were 59 and 41% of total (n=222 and 

154, respectively). Uninfected cells treated with nanoATV had fewer deregulated 

proteins (n=195) compared to the other groups. The proteins uncovered engaged the 

PANTHER database which sorted the deregulated proteins by classes. This illustrated 

the relative numbers of proteins in each class for the HIV-1-infected and infected and 

nanoATV-treated cells (Figure 4.1B). This showed that the number of deregulated 

proteins in HIV-1-infected versus infected and nanoATV-treated cells was greater for 

each of classes (nucleic acid binding, hydrolase, transferase, protease, signalling 

molecule, transporter, transcription factors and ligases). These results demonstrate that 

the deregulation of cellular proteins by HIV-1 infection can be altered by nanoATV 

treatment. To uncover the function classes of proteins deregulated by HIV infection we 

examined the functional categories by PANTHER classification. These data are based 

on Gene Ontology annotations (GO molecular function, GO biological processes and 

GO cellular component). Figure 4.2A shows the proteins sorted according to molecular 

function with the percentages of total deregulated proteins classified for subgroups. 

Common proteins were separated based on binding (28 to 31%), enzyme regulator (5%) 

and transporter (3-4%) activities between the nanoATV, HIV-1 and HIV-1 and nanoATV 

MDM. Proteins included Rab5, 7 (GDP/GTP and protein binding) and LAMP1 (enzyme 

and protein binding) were joined. The classification revealed enrichment for metabolic, 

cellular, localization, regulation and cellular organizational cellular processes. These 

were the principal categories or protein sets (Figure 4.2B). The relative ratios for the 

proteins were similar amongst groups. GO for cellular component showed that 
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deregulated proteins sorted by cell organelle and macromolecular complex (Figure 

4.2C). Note that such groupings were common to HIV-1 and HIV-1 and nanoATV cells. 

The data, demonstrated that HIV-1 and HIV-1 and nanoATV affect similar cellular 

processes. However, the numbers of proteins in each were reduced following infection 

and nanoATV treatment.   

4.4.2. KEGG pathway analyses for HIV-infected MDM 

The proteins relative to functional pathways were further investigated using the KEGG 

database, which, indicated phagosomes as one of the main pathways related to HIV-1 

infection and nanoATV treatment. First we identified the role of HIV-1 infection as 

compared to HIV-1 infected nanoART-treated MDM on the phagosome network (Figure 

4.3A and B, respectively). Few numbers of proteins were deregulated with nanoATV 

treatment. However, proteins were deregulated during HIV-1 infection and treatment 

groups.  Notably, there was an opposite regulation for proteins within the phagosome 

and endosomal compartment between HIV-1-infected and HIV-1-infected and nanoATV-

treated MDM. Up-regulation of Rab 5 and -7 proteins was observed in HIV-1 infected 

cells; in contrast these same proteins were down-regulated in nanoATV-treated HIV-1 

infected cells, pink = increased expression, blue = decreased expression). A similar 

pattern for LAMP1 was also observed. Moreover, DAVID functional enrichment 

clustering gave similar enrichment results for lysosomes in HIV-1-infected and HIV-1-

infected and nanoATV-treated cells by filtering the data sets at a P value <0.01. There 

was a down-regulation of endosomal and lysosomal proteins in the group of uninfected 

cells treated with native ATV (Figure 4.4A) or nanoATV. The latter showed few down-

regulated in parallel endosomal compartments (Figure 4.4B). HIV-1 infected MDM 

treated with native ATV showed few altered proteins (data not shown).  A composite of 

these protein network changes are summarized in Table 4.1.  
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4.4.3. Protein-protein interaction networks  

To elucidate the operative and dynamic biological processes, methods depicting 

changes of protein interaction networks are needed. Here we used our data from 

SWATH-MS and applied it to the STRING bioinformatics tool to determine the dynamics 

of the protein interaction after HIV-1-infection with or without nanoATV treatment. 

Differentially expressed proteins in infected or infected and treated MDM were identified 

using a P-value <0.05, and protein-protein interaction [141] networks were constructed. 

The results of the networking reproduced a consistently high number of altered cellular 

proteins by HIV-1 (Figure 4.5A). The complex changes and interactions during HIV-1 

infection are clearly visualized and, more importantly, the reduced complexity is clear 

when the infected cells are treated with nanoATV (Figure 4.5B). These dynamic changes 

following HIV-1 infection and nanoATV treatment provide evidence of the importance of 

antiretroviral therapy to control protein-protein interaction networks. 

4.4.4. Antiretroviral activities of native and nanoformulated ATV 

To confirm the antiretroviral activity of the nanoATV treatment the HIV-1 RT activity was 

determined in native- or nanoATV-treated HIV-1-infected MDM. Cells were treated with 

10,100 or 250 µM of native drug or nanoATV for 16 hours, followed by HIV-1ADA 

challenge at an MOI of 0.1 at days 0, 5 and 10 after treatment. Infected cells were 

cultured for an additional 7 days and RT activity in the culture medium was determined. 

Significant differences were found between cells treated with native- or nanoATV. For 

native ATV treated cells, RT activity was suppressed only in the day 0 infection group, at 

all treatment concentrations. At 10 and 100 µM little antiviral suppression was observed 

in the day 5 and 10 infection groups. In contrast, for cells treated with nanoATV, RT 

activity was suppressed to less than 20% HIV-1 positive control with all treatment 

concentrations and at all infection days (Figure 4.6) 
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4.4.5. Endolysosomal proteins deregulated HIV-1 and nanoATV  

We selected the proteins from the KEGG pathway related to phagosome and endosomal 

compartment which were oppositely regulated by HIV-1 and HIV-1/nanoATV, (Rab 5, -7, 

-11 and LAMP 1), for validation of the proteomics analysis. Protein expression of Rab 5, 

-7, -11 and LAMP1 was determined by Western blot. As shown in Figure 4.7, there was 

a down-regulation in Rab 5, -7, -11 and LAMP1 protein expression in nanoATV-treated 

infected cells group. This effect was greater than that seen with native ATV treatment, 

validating the KEGG analyses, and was time dependent, highlighting the dynamic nature 

of endosomal trafficking based on macrophage differentiation, viral infection and 

nanoparticle treatments. Notably, assay of Rab protein levels, at multiple days following 

of HIV-1 infection and antiretroviral treatment revealed that nanoATV while inducing a 

significant down-regulation of endosomal and lysosomal proteins the effects paralleled 

what was observed in uninfected cells. Moreover, the downregulation was significant as 

it was sustained over 10 days. To better assess the potential relationships between the 

virus, Rab protein and nanoART we used immunofluorescence to visualize if co-

localization of Rab7 or LAMP1, HIV-1 p24 and nanoATV could occur. 

Immunofluorescence co-localization (Figure 4.8) demonstrated that HIV-1 p24 (yellow), 

Rab7 or LAMP1 cellular proteins and nanoATV were in the identical cellular locale. 

These results highlight the fact that the endosomal trafficking routes taken by the virus 

and the nanoparticles are identical. Most importantly the results support the idea that 

HIV-1 and nanoATV while present in the identical subcellular locale influence endosomal 

trafficking in opposite ways.   

4.4.6. Cytokine profile for HIV-1 and nanoATV 

      To assess the activation state of the MDM, cytokine production was determined in 

HIV-1 infected cells with or without nanoATV treatment. Cell culture media from 
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nanoATV treated and untreated HIV-1 infected and uninfected MDM were incubated with 

capture beads for IL-12, TNF, IL-10, IL-6, IL-1b and IL-8 and a detection fluorochromo. 

Acquisition was performed by FACSArray cytometry. IL-12 and TNF were increased in 

HIV-1 infected MDM. However, when the infected cells were treated with nanoATV 

cytokine levels were reduced (Figure 4.9), implying a positive correlation with endosomal 

and lysosomal proteins expression in our analysis mentioned above. NanoATV treated 

infected macrophages also expressed higher levels of IL-6 and IL-8, compared to 

infected and uninfected cells. There were no significant changes for IL-10 and IL-1b 

(data not shown). These results showed a negative correlation in the expression of IL-12 

and TNF between treated and untreated HIV-1 infected MDM, suggesting a role for 

nanoATV as a regulator of pro-inflammatory cytokines. 

4.5. Discussion 

While it is well known that HIV-1 alters cellular nucleic acid binding and regulatory 

protein functions affecting its transcription and translation [129, 142-144] how such virus-

host cell interactions are altered by nanoART is not understood [81]. To this end, we 

used functional proteomics, cell biology and protein chemistry to investigate potential 

interactions between the virus, the host cell and nanoART to elucidate how common 

endocytic trafficking pathways can be engaged to both support viral replication and, at 

the same time, affect its elimination. Endolysosomal pathways were uncovered and 

found to be antagonistic in HIV-1 infected cells with nanoATV treatment. Notably, the 

results highlight how the cell can be manipulated to either facilitate or inhibit viral growth.  

The data also serves to highlight unique cellular processes engaged in both the viral 

replication cycle and the means to attenuate it. Within an infected cell, virions are formed 

in association with the cellular membrane. Initial investigations of HIV-1 assembly in 
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macrophages were done through electron microscopy studies and suggested that new 

virions were formed from the limiting membrane of a late endosomal compartment that 

was linked to vesicle formations as is known to occur in multi-vesicular bodies (MVB) but 

not at the plasma membrane known to be operative in T cells [113]. The linkage 

between Endosomal Sorting Complex Required for Transport (ESCRT), MVB biogenesis 

and viral budding is well known. In past years it was thought that HIV-1 budding is linked 

to ESCRT through the presence of late endosomal markers associated with 

macrophage-derived virions. However, the model has now been re-examined with 

several recent reports show that the viral compartment has a neutral pH and can be 

connected to the plasma membrane by micro-channels. [145-150]. We posit that the 

virion trafficking and viral budding can be two independent but not mutually exclusive 

pathways.  Both are likely operative. First, we now show through cross validations of 

proteomic, cell biology and protein chemistry is that the endolysosomal machinery is 

significantly deregulated by HIV-1 infection and in opposite manner by nanoART 

treatment. Second, there is a close association between endosomal-linked pathways 

that include Rab5, -7 and -11 and viral infection.  Third, the fact that this pathway is 

conversely down regulated by HIV-1 infection likely reflects that the ability of the virus to 

hijack ESCRT is augmented by the drug nanoparticles.  Such a theory was previously 

put forward in our own past works [81].  In regards to assembly and intracellular 

accumulation of progeny HIV-1 we need not discount the elegant work performed by 

immunofluorescence microscopy and immunoelectron microscopy that the organelles 

are of an internally sequestered plasma membrane domain divergent from endosomes. 

Both pathways can be operative in this scenario and are not mutually exclusive from one 

another. Nonetheless, there is little question that virions are endosomal-associated. 

Progeny virions are pulled down associated with these proteins and reverse 

transcriptase activities are reduced significantly in parallel structures. While we did not 
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study the tetraspanins CD81, CD9, and CD53, their regulation in phagocytosis or 

intracellular trafficking is appreciated [151]. It is noted that CD81 is linked to activation of 

mononuclear phagocytes, notably microglia [152]. Moreover, they are also involved in 

the formulation of multinucleated giant cells [153] an additional major feature of viral 

infection in macrophages. Rab proteins function to evade degradation and direct 

transport to intracellular locations and utilize host vesicles to affect a stable intracellular 

niche for microbial stability and longevity [154]. Thus, it is not surprising that HIV-1 would 

induce these pathways. While the uninfected macrophages, the proteins are at the cell 

surface and in intracellular vacuole-like structures with a complex content of vesicles and 

interconnected membranes these compartments are in a dynamic state within the cell 

and strongly regulated by HIV-1. While we acknowledge that endosome markers could 

be recruited to the viral structures and incorporated into virions the dynamic process of 

the virus and the macrophage transcends progeny virion assembly and includes viral 

trafficking and transport mechanisms. Such observations combined with a broader 

theory of the complexity of virus-cell interactions in the infected macrophages heralds 

the notion that multiple events are operative for virion assembly and persistence [155].  

NanoART enters the macrophages primarily through clathrin-mediated pathways 

and is then stored in endocytic compartments. This provides a protected environment for 

release of the drug to sites of viral growth. Compared with nanoART, the non-fromulated 

native drug didn’t show similar trafficking behavior since less endolysosomal proteins 

were found related to native drug treatment. On the one hand, amorphous native drug 

can hardly be taken or stored by macrophage; on the other hand, native drug cannot be 

internalized or carried by subcellular compartments for intracellular transportation. 

Subcellular distribution of nanoformulated ART is in late and recycling endosomal 

compartments. These same compartments serve as drug depots. Since late endosomes 
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are sites of viral assembly, nanoART stored within such compartments can retain 

significant antiretroviral activity. This was clearly demonstrated by the significant 

reductions in HIV-1 RT activity previously observed in isolated endosomal compartments 

in nanoATV treated HIV-1 infected MDM. 

All together, the current studies suggest a mechanism whereby the endolysosomal 

pathway is harnessed for HIV-1 viral replication and this same pathway may provide a 

means for its elimination. Indeed, while it is known that HIV-1 traffics through Rab5, -7, 

and -11 endosomal compartments how such early, late, and recycling endosomal pools 

regulate stages of the viral life cycle are not understood [156]. Such an intersection 

though is believed critical to the viral life cycle as the functions of the compartments 

serve to maintain cell homeostasis and protein transport [157]. It has been reported that 

Rab5 regulates clathrin-mediated endocytosis from the plasma membrane to early 

endosome pools serve as an intersection point for proteins sorted to undergo 

degradation through Rab7-dependent late endosome and lysosomal routes or be sorted 

back to the plasma membrane through Rab11-dependent recycling pathways [156]. The 

ability of the macrophage to overcome such degradation events at the subcellular level 

underlie its abilities to persistent in its macrophage reservoir [156]. Moreover, it is well 

known and accepted that Rab proteins function to evade degradation and direct 

transport to intracellular locations and utilize host vesicles to affect a stable intracellular 

niche for microbial stability and longevity. Similar mechanisms certainly parallel the 

persistence of nanoART and sustained drug depots for extended time periods. Notably, 

while proteomic tests revealed a large number of proteins deregulated by HIV-1 infection 

and these were the same protein sets also affected by nanoART. The protein sets 

included those affecting nucleic acid binding, hydrolase and enzyme activities, 

oxidoreductase responses, and the cellular cytoskeletal backbone. These were all 

characterized by GO molecular function that placed Rab5 and -7 proteins as those 
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engaged in GTP catabolic processes, endocytosis and small GTPase-mediated signal 

transduction pathways. The molecular functions for both endosomal-linked proteins are 

GDP/GTPase activity and protein binding [158]. LAMP1 is associated with autophagy, 

the establishment of protein localization to cell organelles, golgi to lysosome transport, 

protein transport along microtubules and regulation of natural killer cell degranulation 

cytotoxic activities. For the cellular component GO classification, LAMP1 is located at 

the late endosome, lysosome, multivesicular body and vesicular exosome. It is included 

in the group of enzyme and protein binding molecular function protein sets. Indeed, as 

GO information, Rab family members are small, RAS-related GTP-binding proteins that 

regulate vesicular transport. Each Rab targets multiple proteins that act in exocytic and 

endocytic pathways.  

An important finding in the current study was that Rab5, -7 and -11 and LAMP1 

were significantly upregulated in expression following HIV-1 infection. HIV-1 could 

induce those proteins linked to endosomes. While endosome markers could be recruited 

to the viral structures and incorporated into virions the dynamic process of the virus and 

the macrophage transcends progeny virion assembly but also viral trafficking and 

transport mechanisms also strongly affected during the dynamic course of viral infection. 

Interestingly, Rab 5, -7, -11 and LAMP1 deregulation in infected MDM was reversed, in 

part, by nanoATV. The extent of protein deregulation in infected MDM was reduced by 

nanoATV. As shown in some studies, Rab5 has a role in endocytosis and post-endocytic 

trafficking [159]. Its activation promotes focal adhesion disassembly, migration and 

invasiveness in tumor cells [160] and its knockdown decreases cell motility and invasion 

by an integrin-mediated signaling pathway [161]. Moreover, it has been indicated that 

Rab5, -7 and -11, affect RGS4 trafficking through plasma membrane recycling or 

endosomes [158] and are used by the drug particles and the virus in a coordinated 

manner. This was seen for other viral infections such as hepatitis B virus, which can 
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affect Rab5 and -7 expression and use pathways for viral transport from early to mature 

endosomes. This is a required step in the viral life cycle [162]. Similarly, in our study, 

following endocytosis HIV-1 travels through the complex endocytic pathway networks to 

reach the nucleus and initiate its replication and as such support the notion that 

endosomal proteins play a critical role in the viral life cycle.  

 

Interestingly, Rab5, -7 and -11 and LAMP1 were down-regulated in HIV-1 and 

nanoATV-treated cells. This opposite regulation between HIV-1 and nanoATV in 

regulation of endosomal proteins is likely important in that cellular trafficking pathways 

and may also be involved in the release of infectious progeny virus.  As such late 

endosome-associated Rab7A is known to be required for HIV-1 propagation, regulation 

of Env processing and the incorporation of mature Env glycoproteins into viral particle 

[163]. In addition Rab7A promotes Vpu interaction with BST2/tetherin to facilitate HIV-1 

release [164]. This may also be operative for nanoparticle viral interactions and suggests 

that in the present study nanoATV may disrupt mechanisms of critical cellular protein-

protein interactions harnessed during the viral life cycles to perpetuate its growth. In 

other studies, silencing the expression of Rab9 inhibited HIV-replication [141] and 

silencing the endogenous Rab11a GTPase expression could destabilize HIV-1 Gag and 

reduce virion production both in vitro and in NOD/SCID/gc-/- mice [165]. It has been well 

documented that Rab11 is located on pericentriolar recycling endosomes and plays a 

key role in regulating vesicle trafficking through recycling endosomes to the plasma 

membrane as well as in exocytosis [81, 114, 166]. Therefore, down regulation of Rab11, 

as shown in our study, could destabilize HIV-1 proteins that would fail to traffic through 

the endosomal compartments and could be redirected for degradation at the lysosomal 

site.  
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The deregulation of endosomal proteins suggests a new mechanism for viral 

suppression by nanoART. This includes altered expression of endosomal proteins 

resulting in parallel reductions in viral assembly sites. In addition, reduction of LAMP1 

following nanoART treatment could reduce degradation of the nanoparticles and 

therefore extend the half-life of ART. Our data is corroborated by studies demonstrating 

co-localization of HIV-1 and endosomal and lysosomal proteins (Rab7 and LAMP1) [81, 

167, 168]. Moreover, differences in cytokine profile expressions in untreated and 

nanoATV treated infected HIV-1 macrophages suggest that nanoATV down regulated 

the expression of pro-inflammatory cytokines. HIV-1 has been linked to the up-regulation 

of cytokines and in fact HIV-1 Tat upregulates IL-12 and TNF-α and -β expression in 

monocyte-derived dendritic cells [169, 170], suggesting an advantage of nanoATV in the 

regulation of pro-inflammatory cytokines during HIV-1 infection. In contrast with 

nanoATV, the effect of native ATV was relatively lower. Moreover, it has been reported 

that IL-12 up-regulates Rab7 and induces lysosomal transport. Others have reported 

that Rab proteins are regulated by cytokines and affect TNF secretion by activated 

macrophages [171-173]. These findings provide further support to link Rab, IL-12 and 

TNF expression. As HIV-1 virions assemble at the plasma membrane and recruit 

endosomes to enable particle release, nanoATV depletes endosomal/lysosomal proteins 

and deregulates pro-inflammatory cytokines thus controlling viral growth. Although a 

mechanism is now forged to bridge nanoATV activities and endosomal signaling 

pathways this study serves as only an entry to future investigations.  

To this end, we are currently examining the possible signaling pathways 

deregulated by nanoATV. Altogether, we found that SWATH-MS proteomics, 

bioinformatics analyses and cell biology showed that nanoATV treatment of HIV-infected 

MDM can down-regulate the endocytic proteins in HIV-1 infected cells and thus 
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decrease the subcellular space available for viral assembly. Through this mechanism, 

nanoATV has unique but real potential towards improving virus clearance. Our work 

articulates commonly used pathways that are engaged in common macrophage 

functions such as phagocytosis and vesicular trafficking that are used both by the virus 

and the anti-virus. 

4.6. Conclusions 

HIV-1 and nanoATV deregulate cellular proteins in opposing manners. The common 

pathways are linked to viral assembly and are endolysosomal-linked. Rab5, 7, 11 and 

LAMP1 serve to coordinate molecular and biological functions of the virus and the 

antivirus in subcellular compartments. Alterations made by HIV-1 and nanoATV indicate 

that specific organelles are action sites for both. These findings provide novel insights 

into the role played by long acting subcellular targeted nanotherapies for combating HIV-

1 infection.   
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Figure 4.1. Deregulated proteins during HIV-1 infection and nanoATV treatment.  

Uninfected and HIV-1 infected MDM were treated with or without nanoATV. The cells 

were then collected for peptide identification. (A) Numbers of significantly up- or down- 

regulated proteins were identified by mass-spectrometry based proteomics (SWATH-
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MS) and compared to uninfected and untreated MDM used as controls. (B) Numbers of 

proteins changed by PANTHER were classified according to protein class. These were 

represented by 28 independent clusters (p<0.05).  
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Figure 4.2. Functional characterization of significant deregulated proteins between 

uninfected and HIV-1-infected and nanoATV treated MDM.  

Proteins were compared to uninfected/untreated control cells (p<0.05) then 

bioinformatics analysis was performed. The Gene Ontology molecular function (A), 

biological processes (B) and cellular component distribution (C) were obtained from the 

analysis using the Protein Analysis Through Evolutionary Relationships (PANTHER) 

classification system. 
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Figure 4.3. Schematic representation of the MDM phagosome network identified in 

HIV-1-infected (A) and HIV-1-infected and nanoATV treated cells (B).  

Proteins identified were compared against control uninfected MDM cultures (p<0.05). 

The acquired profiles were analyzed through the bioinformatics program using a 

comprehensive set of functional annotation tools to uncover biological data sets behind 

the uncovered list of genes. This tool is titled Data for Annotation, Visualization and 

Integrated Discovery (DAVID) facilitated the linked sets of enriched functional-related 

protein groups. This tool was employed to identify enriched biological processes among 

the expressed proteins. Gene Ontology terms were used to identify related pathways 

with the assistance of the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

database. The KEGG database facilitated the elucidation of the level functions for the 

MDM as derived from the proteomic datasets. Statistical significance was determined 

using a p-value < 0.05. Proteins in red and blue, display up- and down- regulation, 

respectively. Proteins in green belong to the phagosome network and not deregulated by 

ATV treatment. 
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Figure 4.4. Changes in MDM phagosome network for uninfected cells treated 

treated with nanoATV (A) or native ATV (B).  

Proteins were compared to uninfected and untreated MDM controls (p<0.05) then 

bioinformatics analysis performed following parallel procedures described in Figure 4.1. 

Proteins in red and blue, display up- and down- regulation, respectively. Proteins in 

green belong to the phagosome network but were not significantly altered by viral 

infection or treatment. 
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Figure 4.5. Protein interaction in HIV-1-infected MDM or nanoATV treated HIV-1-

infected MDM. 
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Figure 4.6. NanoATV treatment effects HIV-1 reverse transcriptase (RT) activity.  

HIV-1 RT activity was determined in treated (native ATV or nanoATV) MDM followed by 

HIV-1 infection at days 0, 5 or 10. HIV-1 infected cells, without any treatment, served as 

a positive control for RT activity. All samples were collected after 7 days of viral infection. 

Results shown are the mean of 5 replicates. 
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Figure 4.7. NanoATV and HIV-1 endosomal protein regulation.  

Western blot of Rab5, -7, -11，LAMP1 and β-actin was performed in cell lysates from 

MDM treated with native ATV or nanoATV and infected with HIV-1 at day 0, 5 or 10 post-

drug treatment then incubated for 7 days. Uninfected cells and infected cells without 

drug treatment served as negative and positive controls for differential expression of 

cellular proteins during HIV-1 infection. Blots shown are from one donor and experiment, 

and equivalent to two independent experiments performed.  
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Figure 4.8. Subcellular localization of nanoATV, HIV-1 and endolysosomal proteins.  

Cellular localization of Rab7 or LAMP1 endosomal compartments [51], HIV-1p24 

(yellow) and nanoATV [174] are shown by confocal microscopy. Cell nuclei were stained 

with DAPI (blue). Merged images showed the co-localization of all proteins. 

Fluorescence images were acquired with a LSM 510 confocal microscopy, 400x 

magnification. 
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Figure 4.9. NanoATV regulation of cytokine profiles in HIV-1 infected MDM.  

MDM were treated with 100 µM native ATV or nanoATV and infected with HIV-1 at day 

0, 5 or 10 post-drug treatment. Untreated, uninfected cells were used as controls. After 

24 hours of viral infection, cell culture media were collected and analyzed using a 

cytokine bead array. (A) Density plots show expression of IL-12, TNF, IL-10, IL-6, IL-1b 

and IL-8 for control, treated, HIV-1 infected and treated infected MDM. Cytokine levels 

were detected by FACSArray cytometer and data was plotted using FlowJo (version 

10.7) software. (B) Levels of IL-12 and TNF after treatment and infection are shown. 

Data are analyzed using FCAP software and values of cytokine expression were 

expressed as pg/mL. 
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Table 4.1. Endolysosomal proteins in HIV-1, HIV+nanoATV, nanoATV and native 

ATV treated MDM. 

Deregulated (up- and down- regulated) proteins from the endolysomal (or phagosome) 

pathway were grouped into early or late endosomes or lysosomes signalling. Z test 

values were obtained after proteomics analyses. Up-, down- regulation or unchanged 

protein expression are represented by red, blue and green arrow, respectively.  

          

  
HIV HIV+nanoATV nativeATV nanoATV 

 
Protein Ztest Regulation Ztest Regulation Z test Regulation Z test Regulation 

E
ar

ly
 e

nd
os

om
es

 

Rab5 4.09 ! -2.57 " -2.35 " 2.87 ! 

TAP 3.38 ! -- #$ -- #$ -- #$ 

TfR 2.62 ! -3.02 " -- #$ -- #$ 

vATPase 3.70 ! 2.32 ! -5.21 " -2.02 " 

Stx13 -- #$ 3.47 ! -- #$ -2.43 " 

EEA1 -- #$ -- #$ 2.62 ! -- #$ 

VPS34 -- #$ -- #$ -- #$ -- #$ 

CALR -- #$ 2.03 ! 2.29 ! -3.73 " 

Calnexin -- #$ -- #$ -3.40 #$ -- #$ 

La
te

 e
nd

os
om

es
 

Rab7 2.71 ! -2.62 " 3.87 ! -- #$ 

vATPase 3.70 ! 2.30 ! -5.20 " -2.02 " 

Dynein -2.01 " -- #$ -- #$ -- #$ 

TUBB -2.90 " 2.81 ! -- #$ -- #$ 

TUBA -- #$ -- #$ -- #$ -- #$ 

RILP -- #$ -- #$ -- #$ -- #$ 

Stx7 -- #$ -- #$ -- #$ -- #$ 

Ly
so

so
m

es
 

LAMP 2.88 ! -2.23 " -- #$ -- #$ 

vATPase 3.70 ! 2.30 ! -5.20 " -2.02 " 

TAP 3.40 ! -- #$ -- #$ -- #$ 

M6PR -- #$ -- #$ -- #$ -- #$ 

Cathepsin -- #$ -- #$ -- #$ -- #$ 

          
  

" Downregulated #$ unchanged ! Upregulated 
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5.1. Abstract 

Drug toxicities, patient compliance and limited penetrance into viral reservoirs have 

diminished the efficacy of long-term antiretroviral therapy (ART) for treatment of human 

immunodeficiency viral (HIV) infection. In response, cell targeted nanoformulated ART 

(nanoART) was developed to facilitate drug adherence and improve disease outcomes. 

However, rapid noninvasive determination of drug biodistribution in virus-target tissues 

and reservoirs for nanoART have remained unrealized. To this end, small magnetite 

ART (SMART) particles were made providing, for the first time, noninvasive 

assessments of antiretroviral drug tissue distribution through magnetic resonance 

imaging (MRI) techniques. Here, poly(lactic-co-glycolic acid), 1,2-distearoyl-sn-glycero-

3-phosphocholine and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy 

(polyethylene glycol)-2000] encased particles were synthesized that contained 

atazanavir (ATV) and ultra small paramagnetic iron oxide (referred to as magnetite). 

Cellular uptake and retention of magnetite and ATV were first performed in human 

monocyte-derived macrophages (MDM). Here tandem mass spectrometry showed that 

SMART particles were efficiently taken up and retained in MDM. In mice, magnetite and 

drug biodistribution paralleled one another, as readily seen after parenteral injections. 

Three to one ratio of ATV to magnetite allowed drug assessments, for proof of concept 

experiments, continuously up to 4 and again at 24 hours after particle injection. T2 maps 

and 3D spoiled gradient recalled echo image sets confirmed rapid drug tissue 

distribution in the reticuloendothelial system including spleen, liver, kidney and lung.  At 

four hours, T2 mapping showed predominant vascular particle distribution. However, by 

24 hours signal intensity was seen in liver and spleen with little to no magnetite in 

kidneys. Significantly, ATV tissue levels correlated with changes in tissue relaxivity 
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(DR2=1/T2postinjection-1/T2preinjection). We conclude that SMART can facilitate the evaluation 

of drug tissue concentrations in viral reservoirs and provide rapid assessments for the 

next generation cell and tissue ligand decorated particles. 

5.2. Introduction 

Eradication of the human immunodeficiency virus type one (HIV-1) in its infected human 

host will necessitate antiretroviral drug delivery to viral sanctuaries with the secondary 

elimination of latent or restricted infections [75]. The former could be facilitated through 

targeted nanoparticle drug delivery but, to achieve its potential, would require improved 

virus-target tissue drug bioavailability. One major hurdle towards achieving this goal is 

the dearth of any means to measure antiretroviral therapy (ART) distribution outside of 

plasma drug levels [76]. We theorized that one way to achieve this is by combinations of 

small magnetite particles and ART in a single nanoparticle. If realized, such small 

magnetite ART (SMART) could permit rapid pharmacokinetic and pharmacodynamics 

evaluations of ART in virus-target tissues, such as the lymph nodes and brain. Drug 

biodistribution would readily be quantitated by a conventional magnetic resonance 

imaging (MRI) scan. Such an approach would also provide the potential of delivering 

packaged medicines to sites of limited viral growth and serve, in part, to eliminate the 

viral reservoir. The approach was previously used for magnetically targeted cancer drug 

delivery utilizing T2- or T2
*-quantification by MRI [175-178].  

To perform proof of concept studies on this theranostic approach we placed magnetite, 

also referred to as superparamagnetic iron oxide particles, into lipid-coated polylactic-co-

glycolic acid (PLGA) nanoparticles with a commonly used antiretroviral protease inhibitor, 

atazanavir (ATV). By combining PLGA and magnetite, organic/inorganic hybrid 

composite biomaterials allowed combined diagnostics, or drug distribution assessments, 
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with therapeutic ART delivery through a single MRI scan [80]. The SMART nanoparticle 

testing was sped through the availability of in vitro cultivated monocyte-derived 

macrophages (MDM) that determined optimal particle cell uptake and retention.  This 

facilitated studies of the dynamics of in vivo drug tissue distribution. All together, the 

works provide the groundwork for the implementation of SMART systems for 

noninvasive drug pharmacokinetics for the inevitable goal of viral eradication. 

5.3. Materials and methods 

5.3.1. Material preparation and characterization 

PLGA, 1,2-distearoyl-sn-glycero-3-phospho-choline (DSPC) and 1,2-distearoyl-sn-

glycero-3-phosphoethanolamine-N-[methoxy-(polyethylene glycol)-2000] (DSPE-

PEG2000) encased the SMART particle containing ATV and magnetite. The magnetite 

particles were synthesized as follows: 6 mmol tris(acetylacetonato) iron(III) was mixed 

with 30 mmol 1,2-hexadecanediol, 18 mmol oleic acid, 18 mmol olylamine and 60 mL 

benzyl ether in a three-neck round-bottomed flask equipped with condenser, magnetic 

stirrer, thermograph and heating mantle and stirred under nitrogen. The mixture was 

slowly heated to 110oC and kept at that temperature for 1 hour, then slowly heated to 

200oC. Reflux was kept after it reached 200oC for 2 hours, then slowly heated to 298oC 

and kept at reflux for another 1.5 hours. After cooling to room temperature, a dark 

homogeneous colloidal suspension was obtained. The suspension was precipitated in 

ethanol with a magnetic field. The black precipitate was dissolved in hexane with the 

presence of oleic acid and oleylamine and the solution was centrifuged at 3,800 x g for 

10 min to remove any undispersed residue. The black solution was re-precipitated in 

ethanol and centrifuged at 10,000 x g for 30 min. Solid products were obtained by drying 

the precipitate under vacuum, generating the final dry particles. 
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5.3.2. SMART composition and characterization 

Preparation of the drug loaded DSPC/mPEG-DSPE shell and PLGA core particle was as 

follows. First, a weighed amount of PLGA, ATV and magnetite were dissolved in 

chloroform (oil phase) with a weight ratio of magnetite to ATV of 1:3. Second, the 

aqueous phase was prepared by hydration of DSPC and mPEG-DSPE films. The oil 

phase was added to the DSPC and mPEG-DSPE aqueous solution drop-by-drop with 

constant stirring then sonicated for 60 seconds followed by a 20 second break under an 

ice bath. This procedure was repeated for three cycles. Chloroform was then removed 

by stirring overnight. Third, the particle suspension was centrifuged at 500 x g for 5 min.  

The supernatant fluids were collected to remove the aggregated nanoparticles. A high 

speed 50,000 x g centrifugation for 20 min was used to collect the nanoparticles. After 

washing twice with phosphate-buffered saline (PBS), the nanoparticles were 

resuspended. SMART size and size distribution were measured by dynamic light 

scattering (DLS, 90Plus, Brookhaven Instruments Co. USA) then diluted in ultrapure 

water related to mass concentrations and dispersions. Fourth, the surface charge of the 

SMART particles was determined by ZetaPlus, a zeta-potential analyzer (Brookhaven 

Instruments Co. USA). The pH value and concentration of the particles dispersion were 

fixed before measurements of zeta potentials. Fifth, the shape and surface morphology 

of the SMART particles were investigated by transmission electron microscopy 

performed as previously described [63]. Samples were prepared from dilutions in 

distilled water of particle suspensions and dropped onto stubs. After air drying the 

particles were coated with a thin layer of gold then examined by transmission electron 

microscopy. The magnetic properties were determined by a Physical Property 

Measurement System [179]. 
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5.3.3. SMART particle stability and release of drug in isotonic solution  

SMART particles were dispersed in PBS and placed into a 10 k dialysis tube in 2 L PBS 

under stirring at 37oC. At 30 min and 1, 2, 3, 4, 6, 8 and 10 days, 100 ml of the 

suspension was collected. The supernatant was dissolved in 100 µl 

tetrahydrofuran/methanol (volume ratio 1:10) mixture. The amount of ATV and magnetite 

was measured by high performance liquid chromatography (HPLC) and inductively 

coupled plasma mass spectrometry (ICP-MS), respectively [63, 180]. 

5.3.4. SMART uptake and retention by MDM  

Human monocytes were obtained by leukapheresis, from HIV-1 and hepatitis B 

seronegative donors, then purified by counter-current centrifugal elutriation [106]. 

Monocytes were cultured in 6-well plates at a density of 1 x 106 cells/ml in DMEM 

containing 10% heat-inactivated pooled human serum, 1% glutamine, 50 mg/ml 

gentamicin, 10 mg/ml ciprofloxacin and 1,000 U/ml recombinant human macrophage-

colony stimulating factor [57]. After 7 days of differentiation, MDM were treated with 100 

mM SMART particles, (based upon ATV content). Uptake of SMART particles was 

assessed without medium change for 8 hours. Adherent MDM were collected by 

scraping into PBS, at 1, 2, 4 and 8 hours after treatment. Cells were pelleted by 

centrifugation at 1000 x g for 8 min at 4oC. Cell pellets were briefly sonicated in 200 ml of 

methanol/acetonitrile (1:1) and centrifuged at 20,000 x g for 10 min at 4oC. To determine 

cell retention of SMART particles, MDM were exposed to 100 mM SMART particles for 8 

hours, washed 3x with PBS, and fresh media without particles was added. MDM were 

cultured for an additional 15 days with half medium exchanges every other day. On days 

1, 5, 10 and 15 after SMART treatment, MDM were collected as described for cell 

uptake. Cell extracts were stored at -80oC until HPLC analysis [63].  
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5.3.5. Prussian blue staining of MDM retained SMART particles 

 MDM were treated with 100 mM SMART particles for 24 hours. Adherent MDM were 

washed 3x with PBS. Cells were fixed with 2% formalin/2.5% glutaraldehyde in PBS for 

10 min then washed 2x with PBS. Fixed macrophages were treated with 5% potassium 

ferrocyanide/5% hydrochloric acid (1:1) for 10 min at room temperature. Following 

solution aspiration the cells were washed 2x with PBS. Stained cells were examined by 

light microscopy. 

5.3.6. MRI phantoms and relaxivity measures  

MDM were seeded onto 12-well plates at 1 x 106 cells/ml. After the cells reached 80% 

confluence, the medium was changed to medium containing 100 mM SMART particles 

(based on ATV content). Twenty-four hours later the treatment medium was removed 

and the cells were washed 3x with 1 ml PBS. Cells were collected and suspended at 

different cell concentrations (0-5 x 106 cells/ml) in 1% agar gel. T2-relaxtivity was 

measured by MRI. Magnetite content in the cells was quantitated by ICP-MS.   

5.3.7. SMART biodistribution 

Biodistribution of SMART particles was determined in male Balb/cJ mice (Jackson Labs, 

Bar Harbor, ME). SMART particles (30 mg/kg ATV) were injected via a jugular vein 

cannula in a total volume of 100 ml for each mouse. The mice were scanned by MRI two 

hours before injection then continuously at 0.25, 1, 2 and 4 hours or at 24 hours after 

SMART administration. Tissues were collected following the final MRI scan. Tissue drug 

levels were quantitated by ultra performance liquid chromatography tandem mass 

spectrometry (UPLC-MS/MS) [181] and magnetite levels were determined by ICP-MS as 

previously described [180].  
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5.3.8. MRI acquisition 

MRI was acquired using a 7T/16cm Bruker (Ettlingen, Germany) Pharmascan MRI/MRS 

scanner and a commercial mouse body resonator. SMART detection by MRI was done 

using T2 mapping for quantitation and T2
* weighted high resolution imaging for detection 

of biodistribution throughout the body. The sequence used for T2 mapping was a CPMG 

phase cycled multislice multiecho sequence. Forty-one 0.5 mm thick contiguous 

interleaved coronal images were acquired with an acquisition matrix of 256 x 192, 40 

mm field of view, 12 echoes at 10 ms first echo time and 10 ms echo spacing, repetition 

time of 4680 ms, three averages, for a total acquisition time of 30 min.  T2
* weighted MRI 

was acquired using a 3D spoiled gradient recalled echo sequence with echo time = 3 ms, 

repetition time = 10 ms, 15 degree pulse angle, 50 x 40 x 30 mm FOV, 256 x 196 x 128 

acquisition matrix, six averages, for a total scan time of 25min.  

5.3.9. MRI analyses 

T2 maps were reconstructed using custom programs written in Interactive Data 

Language (IDL; Exelis Visual Information Solutions, McLean, VA). Preinjection and 24 

hour postinjection maps were constructed using the even-echo images from the CPMG 

phase cycled imaging data set. Mean tissue T2 was determined using region of interest 

[164] analyses before and after SMART injection for the 24 hour results. Magnetite 

concentration was then determined from the change in relaxivity (DR2 = 1/T2preinjection - 

1/T2postinjection) and the per milligram magnetite of SMART particle relaxivity (r2) 

determined as the slope of magnetite concentration versus R2 in phantom studies.  

Acute (0-4 hour) data were acquired with in-magnet jugular vein injection, allowing 

sequential T2 mapping to be acquired with a T2
* weighted FLASH image acquired at the 

end of a four-hour period. The natural coregistration of these data allowed development 

of magnetite concentration maps based on relaxivity changes using custom programs 
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written in IDL for the acute scanning session. The ROI analyses were performed using 

ImageJ (http://imagej.nih.gov/lj) software. For analysis of the acute study, the windows 

synchronize option was used to simultaneously draw ROIs at same locations on all 

concentration maps at different time points. 

5.3.10. Immunohistochemical identification of cell-SMART uptake 

To determine cell localization of SMART spleen and liver were collected after the final 

MRI scan and fixed in 10% neutral buffered formalin. Tissues were paraffin embedded 

and sectioned at 5 µm. To identify macrophages, sections were incubated with antibody 

to ionized calcium binding adaptor molecule 1 (Iba1, Wako Chemicals USA, Inc., 

Richmond, VA). The polymer-based HRP-conjugated anti-mouse and anti-rabbit Dako 

EnVision were used as secondary detection reagents and color developed with 3,3'-

diaminobenzidine (DAB). All paraffin-embedded sections were stained with Prussian 

blue to identify magnetite content.  Slides were imaged using a Nuance light microscopy 

system for brightfield imaging. 

5.4. Results and discussion  

5.4.1. SMART development and in vitro evaluation  

The schematic structure of SMART is represented in Figure. 5.1A. This is composed of a 

hydrophobic PLGA/ATV/magnetite core and an amphiphilic DSPC and DSPE-PEG2k 

lipid shell. DSPC and DSPE-PEG2k increased SMART stability and facilitated increased 

systemic formulation circulation times. Both ATV and magnetite are distributed 

homogeneously within the core of the particle. SMART was made using a single oil-in-

water emulsion with lipid surfactants. After sonication amphiphilic lipids self-assembled 

to the monolayer surrounding PLGA/ATV/magnetite containing oil droplets, achieved 
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through hydrophobic interactions. Evaporation of chloroform under continuous magnetic 

stirring allowed for the formation of lipid-coated solid PLGA/ATV/magnetite core. SMART 

was then purified by ultracentrifugation before further characterization. Our DLS results 

showed that the average size of the particles is 268 nm with a polydispersity of 0.2. The 

narrow size distribution is linked to the DSPC, which serves to stabilize the polymeric 

SMART in the aqueous phase. The zeta potential of the particles is -45.2 mV, which 

provides its stability when suspended in aqueous media. Although DSPC is neutral when 

it is used as a particle coat it exhibits non-zero mobilities in an external electric field. This 

may result in a higher negative charge since some anions bind to the neutral lipids 

making the surface more negatively charged. Transmission electron microscopy (TEM) 

was employed to obtain the image that best reflects SMART particle morphology 

(Figure. 5.1B, right panel). This illustrated that the particles were spherical in shape with 

narrow size distributions. A representative particle is shown by TEM, showing the ultra 

small iron oxide contained within the particle’s core.  

Our preliminary in vitro results showed that SMART is very stable and ATV can slowly 

release from SMART up to 10 days. After SMART particle characterizations were 

completed, the in vitro kinetics of MDM uptake and retention were determined. Our 

previous studies of nanoART uptake in MDM showed that > 95% of total uptake occurs 

by 8 hours for ATV nanoART [62, 63, 82, 182]. Up to 2 mg of ATV/ 106 cells was 

recorded in MDM at 8 hours with magnetite uptake reflective of particle composition 

(Figure. 5.1C). The majority of the cells took up the magnetite as observed through 

Prussian blue staining (Figure. 5.1D). Indeed, such staining demonstrated that 

magnetite-containing particles were readily incorporated in macrophages by 8 hours. 

The controlled and sustained release profile or ATV facilitates the application of the 

SMART particles for the delivery of antiretroviral drugs.  
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5.4.2. Measures of SMART particle relaxivity (r2)  

Concentration dependent relaxivity [r2 (s-1 ml mg-1)] causing increased relaxivity (R2 (s-1)) 

in tissue as a function of concentration (expressed as mg/ml magnetite) of SMART 

particles were determined using phantoms consisting of both free SMART particles 

(Figure. 5.2A) and SMART particles taken up by MDM (Figure. 5.2B). The magnetite 

concentrations in mg/ml contained by SMART in 1% agar gels were plotted against R2 

as measured by MRI. The relationship between R2 and magnetite concentration of 

SMART in phantoms was linear within the range of the measured magnetite 

concentrations. The concentration dependent relaxivity of SMART was found to be r2 = 

6200.2 (s-1 ml mg-1) in MDM and r2 = 7052.1 (s-1 ml mg-1) in PBS. The r2 of SMART in 

MDM was used for noninvasive in vivo quantitation of magnetite concentration due to 

SMART influx using MRI.    

5.4.3. Real time SMART biodistribution and pharmacokinetics 

Magnetite labeling allows MRI to be used to quantify the distribution of SMART particles 

over time in live animals. This can be seen in Figure. 5.3. Figure. 5.3A shows examples 

of magnetite concentration (from magnetite in SMART) constructed from MRI T2 maps 

measured before and continuously every 30 minutes for four hours after SMART 

injection. ROI analyses of these data from six animals are shown in Figure. 5.3B. It can 

be appreciated from the images that a significant amount of the SMART is still within the 

vasculature, largely leading to the intensity in the kidney, as kidney shows very little 

uptake by 24 hours. This reflects the measured concentration in kidney reducing over 

the first four hours while in liver and spleen, organs where SMART accumulates, the 

mean signal is relatively constant or increases as the particles redistribute from the 

blood to the tissue. Significant accumulation of SMART was found in liver and spleen at 

4 hours as can be appreciated in Figure. 5.4. Figure. 5.4 displays two of the 0.128 mm 



 128 

thick T2
* weighted high resolution 3D FLASH images of the same mouse before and 4 

hours after injection of SMART. Presence of magnetite in tissue causes a reduction of 

T2* to the point of complete signal loss at TE = 3 ms in the liver, spleen, and some 

abdominal regions. This method is not quantitative, however it does allow ready 

identification of the presence of magnetite throughout the body which can be used to 

guide quantitative ROI analyses using T2 maps. 

5.4.4. Correlation between magnetite and drug tissue content 

Figure. 5.5 shows the relationship between magnetite concentration and ATV 

concentration of liver, spleen and kidney in four animals 24 hours after injection. It can 

be appreciated that there is a significant positive correlation (Pearson Correlation, 

r=0.786, p=0.0008). These results demonstrate the capability of MRI to be used for 

monitoring nanoART distribution. 

5.4.5. Identification of magnetite-ART relationships in systemic tissues 

We reasoned that cellular biodistribution of SMART was concordant with our prior results 

with nanoART [183]. To prove this theory we next studied the relationships between 

SMART particle biodistribution and macrophages in mice following parenteral SMART 

injections. Animals were sacrificed 4 hours after injection and tissues collected. Dual Iba-

1 (for macrophages) and Prussian blue staining (for magnetite) were performed and 

evaluated by brightfield microscopic imaging. Prussian blue staining was nearly 

exclusively in tissue cells identified as macrophages. As shown in Figure. 5.6, Iba-1+ 

macrophages were readily seen in both liver and spleen in parallel to distribution of 

Prussian blue. The dual staining pictures showed that the SMART particles were 

retained in tissue macrophages. Erythrocyte hemoglobin and its breakdown products are 

a substantive source of iron. These are degraded after the lifespan of the erythrocyte 
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[38]. This occurs predominantly in the spleen with iron transferred back into the blood. 

The highly vascularized spleen contains easily seen red blood cell breakdown products 

including iron that are phagocytized by macrophages [34]. Thus, the total iron content in 

the spleen is readily visualized by Prussian blue staining but substantively increased 

after SMART treatments (Figure. 5.6G and H). The iron content in spleen also changed 

from 228 µg/g before treatment to 356 µg/g after treatment, measured by ICP-MS. This 

also explains why background MRI scans are darkened in the spleen but increased after 

injection of SMART particles. 

5.5. Discussion  

Our laboratories are responsible for the development of cell-based carriage and delivery 

of antiretroviral drugs to sites of active HIV-1 replication [63, 82, 95, 106, 182, 184, 185].  

This so-called “Trojan Horse” macrophage drug delivery scheme takes full advantage of 

the cells’ substantive endosomal storage capacity, its phagocytic and secretory functions, 

and its high degree of mobility to facilitate drug delivery [81]. As the macrophage is a 

principal cell target for viral growth, the added benefit rests in the abilities to bring ART to 

subcellular sites of viral assembly [186]. Such a system when used as a weekly or 

monthly parenteral injection has previously been shown to hold significant gains over 

conventional native oral drug therapeutic regimens [184, 185].  

The principal goal in developing this polymer system rests in the ability to utilize MRI 

scans to rapidly assess cell and tissue drug biodistribution.  The idea is that the polymer-

encased dual magnetite and drug particle would permit a clear determination of drug 

levels in virus-target tissues in a very short time interval (hours).  As plasma drug levels 

remain the gold standard for pharmacokinetic testing this technology clearly opens new 

opportunities to develop platforms that would accelerate elimination, or some day cure, 



 130 

of viral infections. Notably, there is a considerable focus amongst HIV/AIDS researchers 

towards the development of any or all reliable methods to bring drugs to reservoir sites 

with the explicit goal of eliminating virus.  Targeted drug as well as gene delivery when 

combined with suitable imaging techniques could facilitate this goal by providing a “go/no 

go” for treatment success [63]. Although this is the first time such “theranostics” has 

been applied for HIV diagnosis and therapies, similar systems have been developed in 

recent years for cancer treatments [187]. Here, the application is for early diagnostics. 

The unique payloads of nanomaterials include fluorescent semiconductor nanocrystals 

(quantum dots) as well as magnetic nanoparticles as developed in this report.  All 

provide properties that can facilitate in vivo imaging with the help of MRI tests as well as 

fluorescence based approaches [188]. In all, interest in this idea will likely continue to 

grow through the development of carrier nanoparticles designed to target specific tissue 

and effect local chemo-, radio- and gene- directed antiretroviral or immune modulatory 

therapies [189]. 

Liposomes and polymer nanoparticles are the two major types of nanoparticles that have 

been developed and evaluated for diagnostic and therapeutic purposes. Liposomes 

composed of natural lipids are attractive DDS because of their high biocompatibility, low 

immunogenicity, long systemic circulation and favorable pharmacokinetic profile. 

Specific targeted delivery can easily be achieved by conjugating a targeting ligand to the 

lipid molecule [190-192]. Several liposomal drug formulations have been approved by 

FDA for clinical application, such as Doxil and DaunoXome [190, 192, 193]. However, 

the possible intrinsic low drug loading capacity, fast release profiles of hydrophobic 

drugs and physical instability of liposomes limit their clinical applications of different 

drugs [194]. Polymeric nanoparticles composed of synthetic PLGA are another widely 

developed/studied drug delivery platform because of their high stability, relatively high 

drug loading capacity of all kinds of drugs, biodegradability, low toxicity, and 
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controlled/sustained drug release profiles. Depending on particle composition, the drug 

release profiles of PLGA nanoparticles can be modulated to be within days, weeks or 

even months [195-197].  However, the biocompatibility/immunogenicity of nanoparticles 

composed of synthetic polymers including PLGA is not as high as liposomes. Without 

further chemical modification, PLGA nanoparticles are rapidly removed from circulation 

by the mononuclear phagocyte system (MPS), resulting in short systemic circulation 

[194]. In summary, both liposomes and PLGA nanoparticles are not independently 

structurally robust platforms. Thus, lipid-coated polymer nanoparticles, formed by 

combining synthetic polymers and natural lipids, have been developed as robust drug 

delivery platform to combine the advantages and avoid the disadvantages of liposomes 

and polymer nanoparticles [198, 199].  

The visualization of cellular function in living organisms is not a new modality [106, 200, 

201]. Optical, X-ray, nuclear, MRI and ultrasound allows three-dimensional whole-body 

scans at high spatial resolution and are adept at morphological and functional 

evaluations. The data obtained can be enhanced by magnetite and improved image 

resolution. By immobilizing a specific target molecule on the surface of a magnetic 

particle, the molecule inherits its magnetic property. Magnetic tissue targeting using 

multifunctional carrier particles can also facilitate effective treatments by enabling site-

directed therapeutic outcomes. To this end, we selected DSPC and DSPE-PEG2k as the 

shell and PLGA as the core of SMART system. DSPC is used to increase the 

biocompatibility of SMART, and DSPE-PEG2k is used to build a sterically repulsive 

shield around SMART that reduces opsonization, prevents interactions with the MPS, 

escape renal exclusion, and increases systemic circulation. To the best of our 

knowledge, this is the first attempt to develop lipid-coated PLGA nanoparticles for HIV 

therapeutics. Our current work sought to use lipid coated PLGA SMART to encase 

magnetite and antiretroviral therapy to facilitate MDM uptake of drug and its subsequent 
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slow release. The long-term goals are straightforward. One is to use the synthesized 

SMART to facilitate drug screening for specific targeting ligands or sugars.  The second 

is to determine the distribution of nanoART in viral reservoirs for the ultimate eradication 

of HIV. Our in vivo MRI results clearly demonstrated that SMART could facilitate the 

noninvasive evaluation of drug pharmacokinetics and biodistribution in different tissues, 

and provide rapid assessments for the next generation cell and tissue ligand decorated 

particles. This initial study lays the groundwork for what will quickly follow and ultimately, 

we believe, lead to an effective means to combat and potentially eliminate HIV disease.  

 5.6. Conclusions 

We posit that SMART particles can be developed for noninvasive evaluation of drug 

distribution and pharmacokinetics.  These particles show clear potential in allowing a 

rapid evaluation of ART content in viral reservoirs that include the brain and lymphoid 

tissues.  Improve in particle delivery have been seen in cell and tissue targeted particles 

with coated ligands and sugars for future viral elimination studies. 
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Figure 5.1. Development of SMART nanoparticles.  

(A) The schematic structure of lipid-coated PLGA SMART. ATV and SPIO are well 

distributed within the PLGA matrix to form the core of SMART. The PLGA core is coated 

with lipid monolayer to form the shell of SMART. (B) Representative transmission 

electron micrograph (TEM) of a single SMART particle. (C) Timecourse of uptake (upper 
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panel) and retention (lower panel) of SMART in MDM., MDM were treated with 100 mM 

SMART (based on ATV content) for 1, 2, 4 and 8 hour uptake studies. For cell retention 

MDM were treated with 100 mM SMART for 8 hours, cell culture media was changed 

and cells were cultured for an additional 15 days. The cell lysates at indicated times 

were analyzed by HPLC and ICP-MS for ATV and magnetite quantification, respectively. 

Data represent the mean ± SEM, n = 3, for each time point. (D) Prussian blue staining of 

MDM. MDM were treated with PBS (negative control, upper panel) or 100 mM SMART 

(lower panel) for 24hours, and then fixed with 2% formalin/2.5% glutaraldehyde and 

stained with 5% potassium ferrocyanide/5% hydrochloric acid (1:1).  
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Figure 5.2. Concentration dependence of relaxivity (r2) of SMART in (A) PBS and 

(B) MDM.  

MDM were incubated with 100 µM SMART (based on ATV content) for 24 hours. 

Collected MDM and SMART were suspended in 1% agar gel. T2 was measured by MRI 

and magnetite content by inductively coupled mass spectrometry (ICP-MS). 
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Figure 5.3. MRI assessments of the tissue drug biodistribution and 

pharmocokinetics by SMART particles.  

After pre-MRI scan, mice were injected with SMART through a jugular vein cannula, and 

then scanned by MRI at continuously at 30 minute intervals up to 4 hours after SMART 

administration. Mean tissue SMART content was determined as detailed in Materials 

and Methods. Immediately after the final scan, mice were euthanized and tissues were 
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collected for ATV quantification by UPLC-MS/MS. (A) MRI based images of magnetite 

concentration in kidney, spleen and liver from 0.5 h to 4 h following SMART 

administration. (B) Mean ± SEM (n=6) of magnetite levels in kidney, spleen and liver 

over 4h following SMART administration. 

 

  



 138 

 

Figure 5.4. 3D gradient recalled echo images of the same mouse before (A) and 4 

hours after (B) injection of SMART.  

It can be appreciated that the signal from the liver is completely eliminated due to the 

accumulation of magnetite loaded SMART (L=lung, Lv=liver, K=kidney and S=spleen). 
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Figure 5.5. Correlation of SMART-associated magnetite and ATV in tissues 24 

hours after administration.  

The magnetite concentration was quantified from the change in T2 weighted relaxivity 

(DR2 = 1/T2preinjection - 1/T2postinjection) and the per milligram magnetite relaxivity (r2) 

determined as the slope of magnetite concentration versus R2 in SMART phantom 

studies. ATV concentrations were quantified by UPLC-MS/MS following the final 24 hour 

MRI scan. 
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Figure 5.6. Immunohistology of Iba-1 staining and Prussian blue staining. 

(A) Liver from control mice with Prussian blue (200×). (B) Liver from SMART treated 

mice with Prussian blue (200×). (C) Liver from SMART treated mice with Prussian blue 

and Iba-1 (200×). (D) Enlargement from indicated section in C. (E) Spleen from SMART 

treated mice with Prussian blue (200×). (F) Spleen from SMART treated mice with 

Prussian blue and Iba-1 (200×). (G) Enlargement from indicated section in F. (H)  Spleen 

from control mice with Prussian blue and Iba-1 (400×). Livers and spleens were fixed 

with 10% formalin, paraffin embedded and sectioned for immunohistological analysis 

after the final MRI scan. Macrophages were identified by Iba1 stains (brown) and 

magnetite identified by Prussian blue. Fl=lymphoid follicle, M=marginal zone. 
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Our laboratory has developed nanoART for improved formulation stability and 

bioavailability, higher intracellular drug concentrations, and sustained in vivo drug 

release. It has realized long-acting antiretroviral therapy for types of hydrophobic 

antiretroviral drugs. In this study, we focused on hydrophilic nucleoside reverse 

transcriptase inhibitor—lamivudine. A hydrophobic 3TC prodrug was successfully 

synthesized through myristoylation and incorporated into targeted and non-targeted 

nanocrystalline formulations to improve drug half-life and reduce cytotoxicity. NMTC 

exhibited enhanced macrophage uptake and sustained antiretroviral efficacy. FA-NMTC 

exhibited improved pharmacokinetics and this novel drug delivery system has shown 

great potential for clinical application. In our subcellular trafficking study, we found 

macrophages could act as carriers of nanoART to improve drug bioavailability. Late and 

recycling endosomes are depots for both drug particle and HIV, and nanoATV and HIV-1 

utilize similar subcellular pathways. SWATH-MS profiling broad the understanding of 

complex nanoART-HIV interactions. HIV-1 and nanoART deregulate cellular proteins in 

opposing manners and specific organelles are action sites for both. Rab5, 7, 11 and 

LAMP1 serve to coordinate molecular and biological functions of HIV-1 and drug 

particles. Besides, we developed SMART particles for noninvasive evaluation of drug 

distribution and pharmacokinetics. These studies unveil a broader understanding of 

nanomedicine for antiretroviral therapy and exhibit great potential in its future clinical 

applications.  

Overall, this project has exhibited the great potential of our nanoformulated antiretroviral 

drug delivery system in the clinical applications. In the future, all types of antiretroviral 

drugs can take advantage of this system for improved antiretroviral efficacy and 

pharmacokinetics. Besides folic acid, different targeting ligands will be developed and 

utilized for nanoformulation development, which will uncover new mechanisms for long-

acting antiretroviral therapy.  



 143 

References 

[1]	HIV	epidemic	--	a	global	update.	Excerpts	from	the	UN	World	AIDS	Day	report.	

Health	for	the	millions.	1998;24:3-5.	

[2]	Faria	NR,	Rambaut	A,	Suchard	MA,	Baele	G,	Bedford	T,	Ward	MJ,	et	al.	HIV	

epidemiology.	The	early	spread	and	epidemic	ignition	of	HIV-1	in	human	

populations.	Science.	2014;346:56-61.	

[3]	Berger	EA,	Doms	RW,	Fenyo	EM,	Korber	BT,	Littman	DR,	Moore	JP,	et	al.	A	new	

classification	for	HIV-1.	Nature.	1998;391:240.	

[4]	Cohen	J.	The	many	states	of	HIV	in	America.	Science.	2012;337:168-71.	

[5]	Karlsson	Hedestam	GB,	Fouchier	RA,	Phogat	S,	Burton	DR,	Sodroski	J,	Wyatt	RT.	

The	challenges	of	eliciting	neutralizing	antibodies	to	HIV-1	and	to	influenza	virus.	

Nature	reviews	Microbiology.	2008;6:143-55.	

[6]	Stevenson	M,	Gendelman	HE.	Cellular	and	viral	determinants	that	regulate	HIV-1	

infection	in	macrophages.	Journal	of	leukocyte	biology.	1994;56:278-88.	

[7]	Gendelman	HE,	Orenstein	JM,	Baca	LM,	Weiser	B,	Burger	H,	Kalter	DC,	et	al.	The	

macrophage	in	the	persistence	and	pathogenesis	of	HIV	infection.	AIDS.	1989;3:475-

95.	

[8]	Gendelman	HE,	Narayan	O,	Kennedy-Stoskopf	S,	Kennedy	PG,	Ghotbi	Z,	Clements	

JE,	et	al.	Tropism	of	sheep	lentiviruses	for	monocytes:	susceptibility	to	infection	and	

virus	gene	expression	increase	during	maturation	of	monocytes	to	macrophages.	

Journal	of	virology.	1986;58:67-74.	



 144 

[9]	Finzi	D,	Hermankova	M,	Pierson	T,	Carruth	LM,	Buck	C,	Chaisson	RE,	et	al.	

Identification	of	a	reservoir	for	HIV-1	in	patients	on	highly	active	antiretroviral	

therapy.	Science.	1997;278:1295-300.	

[10]	Chun	TW,	Fauci	AS.	HIV	reservoirs:	pathogenesis	and	obstacles	to	viral	

eradication	and	cure.	AIDS.	2012;26:1261-8.	

[11]	Coleman	CM,	Wu	L.	HIV	interactions	with	monocytes	and	dendritic	cells:	viral	

latency	and	reservoirs.	Retrovirology.	2009;6:51.	

[12]	Kurapati	KR,	Atluri	VS,	Samikkannu	T,	Garcia	G,	Nair	MP.	Natural	Products	as	

Anti-HIV	Agents	and	Role	in	HIV-Associated	Neurocognitive	Disorders	(HAND):	A	

Brief	Overview.	Frontiers	in	microbiology.	2015;6:1444.	

[13]	Matthews	T,	Salgo	M,	Greenberg	M,	Chung	J,	DeMasi	R,	Bolognesi	D.	Enfuvirtide:	

the	first	therapy	to	inhibit	the	entry	of	HIV-1	into	host	CD4	lymphocytes.	Nat	Rev	

Drug	Discov.	2004;3:215-25.	

[14]	MacArthur	RD,	Novak	RM.	Reviews	of	anti-infective	agents:	maraviroc:	the	first	

of	a	new	class	of	antiretroviral	agents.	Clinical	infectious	diseases	:	an	official	

publication	of	the	Infectious	Diseases	Society	of	America.	2008;47:236-41.	

[15]	Diamond	TL,	Roshal	M,	Jamburuthugoda	VK,	Reynolds	HM,	Merriam	AR,	Lee	

KY,	et	al.	Macrophage	tropism	of	HIV-1	depends	on	efficient	cellular	dNTP	utilization	

by	reverse	transcriptase.	The	Journal	of	biological	chemistry.	2004;279:51545-53.	

[16]	Schinazi	RF,	Hernandez-Santiago	BI,	Hurwitz	SJ.	Pharmacology	of	current	and	

promising	nucleosides	for	the	treatment	of	human	immunodeficiency	viruses.	

Antiviral	research.	2006;71:322-34.	



 145 

[17]	Souza	TM,	Cirne-Santos	CC,	Rodrigues	DQ,	Abreu	CM,	Tanuri	A,	Ferreira	VF,	et	

al.	The	compound	6-chloro-1,4-dihydro-4-oxo-1-(beta-D-ribofuranosyl)	quinoline-

3-carboxylic	acid	inhibits	HIV-1	replication	by	targeting	the	enzyme	reverse	

transcriptase.	Current	HIV	research.	2008;6:209-17.	

[18]	Patick	AK,	Potts	KE.	Protease	inhibitors	as	antiviral	agents.	Clinical	

microbiology	reviews.	1998;11:614-27.	

[19]	Anker	M,	Corales	RB.	Raltegravir	(MK-0518):	a	novel	integrase	inhibitor	for	the	

treatment	of	HIV	infection.	Expert	opinion	on	investigational	drugs.	2008;17:97-

103.	

[20]	Imamichi	T.	Action	of	anti-HIV	drugs	and	resistance:	reverse	transcriptase	

inhibitors	and	protease	inhibitors.	Current	pharmaceutical	design.	2004;10:4039-

53.	

[21]	Chugh	P,	Bradel-Tretheway	B,	Monteiro-Filho	CM,	Planelles	V,	Maggirwar	SB,	

Dewhurst	S,	et	al.	Akt	inhibitors	as	an	HIV-1	infected	macrophage-specific	anti-viral	

therapy.	Retrovirology.	2008;5:11.	

[22]	Bawarski	WE,	Chidlowsky	E,	Bharali	DJ,	Mousa	SA.	Emerging	

nanopharmaceuticals.	Nanomedicine.	2008;4:273-82.	

[23]	Biddlestone-Thorpe	L,	Marchi	N,	Guo	K,	Ghosh	C,	Janigro	D,	Valerie	K,	et	al.	

Nanomaterial-mediated	CNS	delivery	of	diagnostic	and	therapeutic	agents.	

Advanced	drug	delivery	reviews.	2012;64:605-13.	

[24]	Trivedi	R,	Kompella	UB.	Nanomicellar	formulations	for	sustained	drug	delivery:	

strategies	and	underlying	principles.	Nanomedicine.	2010;5:485-505.	



 146 

[25]	Batrakova	EV,	Li	S,	Miller	DW,	Kabanov	AV.	Pluronic	P85	increases	

permeability	of	a	broad	spectrum	of	drugs	in	polarized	BBMEC	and	Caco-2	cell	

monolayers.	Pharmaceutical	research.	1999;16:1366-72.	

[26]	Spitzenberger	TJ,	Heilman	D,	Diekmann	C,	Batrakova	EV,	Kabanov	AV,	

Gendelman	HE,	et	al.	Novel	delivery	system	enhances	efficacy	of	antiretroviral	

therapy	in	animal	model	for	HIV-1	encephalitis.	Journal	of	cerebral	blood	flow	and	

metabolism	:	official	journal	of	the	International	Society	of	Cerebral	Blood	Flow	and	

Metabolism.	2007;27:1033-42.	

[27]	Kaur	CD,	Nahar	M,	Jain	NK.	Lymphatic	targeting	of	zidovudine	using	surface-

engineered	liposomes.	Journal	of	drug	targeting.	2008;16:798-805.	

[28]	Dou	H,	Destache	CJ,	Morehead	JR,	Mosley	RL,	Boska	MD,	Kingsley	J,	et	al.	

Development	of	a	macrophage-based	nanoparticle	platform	for	antiretroviral	drug	

delivery.	Blood.	2006;108:2827-35.	

[29]	Puligujja	P,	Arainga	M,	Dash	P,	Palandri	D,	Mosley	RL,	Gorantla	S,	et	al.	

Pharmacodynamics	of	folic	acid	receptor	targeted	antiretroviral	nanotherapy	in	

HIV-1-infected	humanized	mice.	Antiviral	research.	2015;120:85-8.	

[30]	Kuo	YC,	Su	FL.	Transport	of	stavudine,	delavirdine,	and	saquinavir	across	the	

blood-brain	barrier	by	polybutylcyanoacrylate,	methylmethacrylate-

sulfopropylmethacrylate,	and	solid	lipid	nanoparticles.	International	journal	of	

pharmaceutics.	2007;340:143-52.	

[31]	Nanjwade	BK,	Bechra	HM,	Derkar	GK,	Manvi	FV,	Nanjwade	VK.	Dendrimers:	

emerging	polymers	for	drug-delivery	systems.	European	journal	of	pharmaceutical	



 147 

sciences	:	official	journal	of	the	European	Federation	for	Pharmaceutical	Sciences.	

2009;38:185-96.	

[32]	Balkundi	S,	Nowacek	AS,	Roy	U,	Martinez-Skinner	A,	McMillan	J,	Gendelman	HE.	

Methods	development	for	blood	borne	macrophage	carriage	of	nanoformulated	

antiretroviral	drugs.	J	Vis	Exp.	2010.	

[33]	Nair	M,	Jayant	RD,	Kaushik	A,	Sagar	V.	Getting	into	the	brain:	Potential	of	

nanotechnology	in	the	management	of	NeuroAIDS.	Advanced	drug	delivery	reviews.	

2016.	

[34]	Edagwa	BJ,	Zhou	T,	McMillan	JM,	Liu	XM,	Gendelman	HE.	Development	of	HIV	

reservoir	targeted	long	acting	nanoformulated	antiretroviral	therapies.	Current	

medicinal	chemistry.	2014;21:4186-98.	

[35]	Gendelman	HE,	Gelbard	HA.	Adjunctive	and	long-acting	nanoformulated	

antiretroviral	therapies	for	HIV-associated	neurocognitive	disorders.	Current	

opinion	in	HIV	and	AIDS.	2014;9:585-90.	

[36]	Lenjisa	JL,	Woldu	MA,	Satessa	GD.	New	hope	for	eradication	of	HIV	from	the	

body:	the	role	of	polymeric	nanomedicines	in	HIV/AIDS	pharmacotherapy.	Journal	

of	nanobiotechnology.	2014;12:9.	

[37]	Date	AA,	Destache	CJ.	A	review	of	nanotechnological	approaches	for	the	

prophylaxis	of	HIV/AIDS.	Biomaterials.	2013;34:6202-28.	

[38]	Russo	G,	Paganotti	GM,	Soeria-Atmadja	S,	Haverkamp	M,	Ramogola-Masire	D,	

Vullo	V,	et	al.	Pharmacogenetics	of	non-nucleoside	reverse	transcriptase	inhibitors	

(NNRTIs)	in	resource-limited	settings:	Influence	on	antiretroviral	therapy	response	

and	concomitant	anti-tubercular,	antimalarial	and	contraceptive	treatments.	



 148 

Infection,	genetics	and	evolution	:	journal	of	molecular	epidemiology	and	

evolutionary	genetics	in	infectious	diseases.	2016;37:192-207.	

[39]	Clark	DN,	Hu	J.	Hepatitis	B	virus	reverse	transcriptase	-	Target	of	current	

antiviral	therapy	and	future	drug	development.	Antiviral	research.	2015;123:132-7.	

[40]	Famiglini	V,	Silvestri	R.	Focus	on	Chirality	of	HIV-1	Non-Nucleoside	Reverse	

Transcriptase	Inhibitors.	Molecules.	2016;21.	

[41]	Lytvyak	E,	Montano-Loza	AJ,	Mason	AL.	Combination	antiretroviral	studies	for	

patients	with	primary	biliary	cirrhosis.	World	journal	of	gastroenterology.	

2016;22:349-60.	

[42]	Li	X,	Jie	Y,	You	X,	Shi	H,	Zhang	M,	Wu	Y,	et	al.	Optimized	combination	therapies	

with	adefovir	dipivoxil	(ADV)	and	lamivudine,	telbivudine,	or	entecavir	may	be	

effective	for	chronic	hepatitis	B	patients	with	a	suboptimal	response	to	ADV	

monotherapy.	International	journal	of	clinical	and	experimental	medicine.	

2015;8:21062-70.	

[43]	Palacios	R,	Perez-Hernandez	IA,	Martinez	MA,	Mayorga	ML,	Gonzalez-

Domenech	CM,	Omar	M,	et	al.	Efficacy	and	safety	of	switching	to	

abacavir/lamivudine	(ABC/3TC)	plus	rilpivirine	(RPV)	in	virologically	suppressed	

HIV-infected	patients	on	HAART.	European	journal	of	clinical	microbiology	&	

infectious	diseases	:	official	publication	of	the	European	Society	of	Clinical	

Microbiology.	2016.	

[44]	Greig	SL,	Deeks	ED.	Abacavir/dolutegravir/lamivudine	single-tablet	regimen:	a	

review	of	its	use	in	HIV-1	infection.	Drugs.	2015;75:503-14.	



 149 

[45]	Agarwal	HK,	Chhikara	BS,	Hanley	MJ,	Ye	G,	Doncel	GF,	Parang	K.	Synthesis	and	

biological	evaluation	of	fatty	acyl	ester	derivatives	of	(-)-2',3'-dideoxy-3'-

thiacytidine.	Journal	of	medicinal	chemistry.	2012;55:4861-71.	

[46]	Farazi	TA,	Waksman	G,	Gordon	JI.	The	biology	and	enzymology	of	protein	N-

myristoylation.	The	Journal	of	biological	chemistry.	2001;276:39501-4.	

[47]	Wu	Z,	Alexandratos	J,	Ericksen	B,	Lubkowski	J,	Gallo	RC,	Lu	W.	Total	chemical	

synthesis	of	N-myristoylated	HIV-1	matrix	protein	p17:	structural	and	mechanistic	

implications	of	p17	myristoylation.	Proceedings	of	the	National	Academy	of	Sciences	

of	the	United	States	of	America.	2004;101:11587-92.	

[48]	Langner	CA,	Lodge	JK,	Travis	SJ,	Caldwell	JE,	Lu	T,	Li	Q,	et	al.	4-oxatetradecanoic	

acid	is	fungicidal	for	Cryptococcus	neoformans	and	inhibits	replication	of	human	

immunodeficiency	virus	I.	The	Journal	of	biological	chemistry.	1992;267:17159-69.	

[49]	Takamune	N,	Hamada	H,	Misumi	S,	Shoji	S.	Novel	strategy	for	anti-HIV-1	action:	

selective	cytotoxic	effect	of	N-myristoyltransferase	inhibitor	on	HIV-1-infected	cells.	

FEBS	letters.	2002;527:138-42.	

[50]	Ohta	H,	Takamune	N,	Kishimoto	N,	Shoji	S,	Misumi	S.	N-Myristoyltransferase	1	

enhances	human	immunodeficiency	virus	replication	through	regulation	of	viral	

RNA	expression	level.	Biochemical	and	biophysical	research	communications.	

2015;463:988-93.	

[51]	Bahrami	B,	Mohammadnia-Afrouzi	M,	Bakhshaei	P,	Yazdani	Y,	Ghalamfarsa	G,	

Yousefi	M,	et	al.	Folate-conjugated	nanoparticles	as	a	potent	therapeutic	approach	in	

targeted	cancer	therapy.	Tumour	biology	:	the	journal	of	the	International	Society	

for	Oncodevelopmental	Biology	and	Medicine.	2015;36:5727-42.	



 150 

[52]	Chaudhury	A,	Das	S.	Folate	receptor	targeted	liposomes	encapsulating	anti-

cancer	drugs.	Current	pharmaceutical	biotechnology.	2015;16:333-43.	

[53]	Puligujja	P,	McMillan	J,	Kendrick	L,	Li	T,	Balkundi	S,	Smith	N,	et	al.	Macrophage	

folate	receptor-targeted	antiretroviral	therapy	facilitates	drug	entry,	retention,	

antiretroviral	activities	and	biodistribution	for	reduction	of	human	

immunodeficiency	virus	infections.	Nanomedicine	:	nanotechnology,	biology,	and	

medicine.	2013;9:1263-73.	

[54]	Clark	SC.	Interleukin-6.	Multiple	activities	in	regulation	of	the	hematopoietic	

and	immune	systems.	Annals	of	the	New	York	Academy	of	Sciences.	1989;557:438-

43.	

[55]	Guo	D,	Zhang	G,	Wysocki	TA,	Wysocki	BJ,	Gelbard	HA,	Liu	XM,	et	al.	Endosomal	

trafficking	of	nanoformulated	antiretroviral	therapy	facilitates	drug	particle	carriage	

and	HIV	clearance.	Journal	of	virology.	2014;88:9504-13.	

[56]	Arainga	M,	Guo	D,	Wiederin	J,	Ciborowski	P,	McMillan	J,	Gendelman	HE.	

Opposing	regulation	of	endolysosomal	pathways	by	long-acting	nanoformulated	

antiretroviral	therapy	and	HIV-1	in	human	macrophages.	Retrovirology.	2015;12:5.	

[57]	Gendelman	HE,	Orenstein	JM,	Martin	MA,	Ferrua	C,	Mitra	R,	Phipps	T,	et	al.	

Efficient	isolation	and	propagation	of	human	immunodeficiency	virus	on	

recombinant	colony-stimulating	factor	1-treated	monocytes.	J	Exp	Med.	

1988;167:1428-41.	

[58]	Guo	D,	Li	T,	McMillan	J,	Sajja	BR,	Puligujja	P,	Boska	MD,	et	al.	Small	magnetite	

antiretroviral	therapeutic	nanoparticle	probes	for	MRI	of	drug	biodistribution.	

Nanomedicine.	2014;9:1341-52.	



 151 

[59]	Bareford	LM,	Swaan	PW.	Endocytic	mechanisms	for	targeted	drug	delivery.	

Advanced	drug	delivery	reviews.	2007;59:748-58.	

[60]	Notari	S,	Sergi	M,	Montesano	C,	Ivanovic	J,	Narciso	P,	Pucillo	LP,	et	al.	

Simultaneous	determination	of	lamivudine,	lopinavir,	ritonavir,	and	zidovudine	

concentration	in	plasma	of	HIV-infected	patients	by	HPLC-MS/MS.	IUBMB	life.	

2012;64:443-9.	

[61]	Gray	LR,	Tachedjian	G,	Ellett	AM,	Roche	MJ,	Cheng	WJ,	Guillemin	GJ,	et	al.	The	

NRTIs	lamivudine,	stavudine	and	zidovudine	have	reduced	HIV-1	inhibitory	activity	

in	astrocytes.	PloS	one.	2013;8:e62196.	

[62]	Nowacek	AS,	McMillan	J,	Miller	R,	Anderson	A,	Rabinow	B,	Gendelman	HE.	

Nanoformulated	antiretroviral	drug	combinations	extend	drug	release	and	

antiretroviral	responses	in	HIV-1-infected	macrophages:	implications	for	neuroAIDS	

therapeutics.	J	Neuroimmune	Pharmacol.	2010;5:592-601.	

[63]	Nowacek	AS,	Balkundi	S,	McMillan	J,	Roy	U,	Martinez-Skinner	A,	Mosley	RL,	et	

al.	Analyses	of	nanoformulated	antiretroviral	drug	charge,	size,	shape	and	content	

for	uptake,	drug	release	and	antiviral	activities	in	human	monocyte-derived	

macrophages.	Journal	of	controlled	release	:	official	journal	of	the	Controlled	

Release	Society.	2011;150:204-11.	

[64]	Zhang	G,	Guo	D,	Dash	PK,	Arainga	M,	Wiederin	JL,	Haverland	NA,	et	al.	The	

mixed	lineage	kinase-3	inhibitor	URMC-099	improves	therapeutic	outcomes	for	

long-acting	antiretroviral	therapy.	Nanomedicine.	2016;12:109-22.	



 152 

[65]	Rampoldi	F,	Bonrouhi	M,	Boehm	ME,	Lehmann	WD,	Popovic	ZV,	Kaden	S,	et	al.	

Immunosuppression	and	Aberrant	T	Cell	Development	in	the	Absence	of	N-

Myristoylation.	Journal	of	immunology.	2015;195:4228-43.	

[66]	Perinpanayagam	MA,	Beauchamp	E,	Martin	DD,	Sim	JY,	Yap	MC,	Berthiaume	LG.	

Regulation	of	co-	and	post-translational	myristoylation	of	proteins	during	apoptosis:	

interplay	of	N-myristoyltransferases	and	caspases.	FASEB	journal	:	official	

publication	of	the	Federation	of	American	Societies	for	Experimental	Biology.	

2013;27:811-21.	

[67]	Morgan	CR,	Miglionico	BV,	Engen	JR.	Effects	of	HIV-1	Nef	on	human	N-

myristoyltransferase	1.	Biochemistry.	2011;50:3394-403.	

[68]	Shityakov	S,	Sohajda	T,	Puskas	I,	Roewer	N,	Forster	C,	Broscheit	JA.	Ionization	

states,	cellular	toxicity	and	molecular	modeling	studies	of	midazolam	complexed	

with	trimethyl-beta-cyclodextrin.	Molecules.	2014;19:16861-76.	

[69]	Kumar	L,	Verma	S,	Prasad	DN,	Bhardwaj	A,	Vaidya	B,	Jain	AK.	Nanotechnology:	

a	magic	bullet	for	HIV	AIDS	treatment.	Artificial	cells,	nanomedicine,	and	

biotechnology.	2015;43:71-86.	

[70]	Zaki	NM,	Tirelli	N.	Gateways	for	the	intracellular	access	of	nanocarriers:	a	

review	of	receptor-mediated	endocytosis	mechanisms	and	of	strategies	in	receptor	

targeting.	Expert	opinion	on	drug	delivery.	2010;7:895-913.	

[71]	Hattori	Y,	Sakaguchi	M,	Maitani	Y.	Folate-linked	lipid-based	nanoparticles	

deliver	a	NFkappaB	decoy	into	activated	murine	macrophage-like	RAW264.7	cells.	

Biological	&	pharmaceutical	bulletin.	2006;29:1516-20.	



 153 

[72]	Kularatne	SA,	Low	PS.	Targeting	of	nanoparticles:	folate	receptor.	Methods	in	

molecular	biology.	2010;624:249-65.	

[73]	Sahay	G,	Alakhova	DY,	Kabanov	AV.	Endocytosis	of	nanomedicines.	J	Control	

Release.	2010;145:182-95.	

[74]	Rijnboutt	S,	Jansen	G,	Posthuma	G,	Hynes	JB,	Schornagel	JH,	Strous	GJ.	

Endocytosis	of	GPI-linked	membrane	folate	receptor-alpha.	The	Journal	of	cell	

biology.	1996;132:35-47.	

[75]	Wainberg	MA.	AIDS:	Drugs	that	prevent	HIV	infection.	Nature.	2011;469:306-7.	

[76]	Pretorius	E,	Klinker	H,	Rosenkranz	B.	The	role	of	therapeutic	drug	monitoring	

in	the	management	of	patients	with	human	immunodeficiency	virus	infection.	Ther	

Drug	Monit.	2011;33:265-74.	

[77]	Beyrer	C,	Malinowska-Sempruch	K,	Kamarulzaman	A,	Kazatchkine	M,	Sidibe	M,	

Strathdee	SA.	Time	to	act:	a	call	for	comprehensive	responses	to	HIV	in	people	who	

use	drugs.	Lancet.	2010;376:551-63.	

[78]	Chulamokha	L,	DeSimone	JA,	Pomerantz	RJ.	Antiretroviral	therapy	in	the	

developing	world.	J	Neurovirol.	2005;11	Suppl	1:76-80.	

[79]	Wang	X,	Li	J,	Wang	Y,	Cho	KJ,	Kim	G,	Gjyrezi	A,	et	al.	HFT-T,	a	targeting	

nanoparticle,	enhances	specific	delivery	of	paclitaxel	to	folate	receptor-positive	

tumors.	Acs	Nano.	2009;3:3165-74.	

[80]	Kabanov	AV,	Gendelman	HE.	Nanomedicine	in	the	diagnosis	and	therapy	of	

neurodegenerative	disorders.	Prog	Polym	Sci.	2007;32:1054-82.	

[81]	Kadiu	I,	Nowacek	A,	McMillan	J,	Gendelman	HE.	Macrophage	endocytic	

trafficking	of	antiretroviral	nanoparticles.	Nanomedicine	(Lond).	2011;6:975-94.	



 154 

[82]	Nowacek	AS,	Miller	RL,	McMillan	J,	Kanmogne	G,	Kanmogne	M,	Mosley	RL,	et	al.	

NanoART	synthesis,	characterization,	uptake,	release	and	toxicology	for	human	

monocyte-macrophage	drug	delivery.	Nanomedicine	(Lond).	2009;4:903-17.	

[83]	Kingsley	JD,	Dou	H,	Morehead	J,	Rabinow	B,	Gendelman	HE,	Destache	CJ.	

Nanotechnology:	a	focus	on	nanoparticles	as	a	drug	delivery	system.	J	Neuroimmune	

Pharmacol.	2006;1:340-50.	

[84]	Wood	R.	Atazanavir:	its	role	in	HIV	treatment.	Expert	Rev	Anti	Infect	Ther.	

2008;6:785-96.	

[85]	Schwarcz	SK,	Hsu	LC,	Vittinghoff	E,	Katz	MH.	Impact	of	protease	inhibitors	and	

other	antiretroviral	treatments	on	acquired	immunodeficiency	syndrome	survival	in	

San	Francisco,	California,	1987-1996.	Am	J	Epidemiol.	2000;152:178-85.	

[86]	Arribas	JR,	Eron	J.	Advances	in	antiretroviral	therapy.	Current	opinion	in	HIV	

and	AIDS.	2013;8:341-9.	

[87]	Rowell	JF,	Stanhope	PE,	Siliciano	RF.	Endocytosis	of	endogenously	synthesized	

HIV-1	envelope	protein.	Mechanism	and	role	in	processing	for	association	with	class	

II	MHC.	Journal	of	immunology.	1995;155:473-88.	

[88]	Raposo	G,	Moore	M,	Innes	D,	Leijendekker	R,	Leigh-Brown	A,	Benaroch	P,	et	al.	

Human	macrophages	accumulate	HIV-1	particles	in	MHC	II	compartments.	Traffic.	

2002;3:718-29.	

[89]	Pelchen-Matthews	A,	Kramer	B,	Marsh	M.	Infectious	HIV-1	assembles	in	late	

endosomes	in	primary	macrophages.	The	Journal	of	cell	biology.	2003;162:443-55.	



 155 

[90]	Goncalves	E,	Bucher	J,	Ryll	A,	Niklas	J,	Mauch	K,	Klamt	S,	et	al.	Bridging	the	

layers:	towards	integration	of	signal	transduction,	regulation	and	metabolism	into	

mathematical	models.	Mol	Biosyst.	2013;9:1576-83.	

[91]	Karr	JR,	Sanghvi	JC,	Macklin	DN,	Gutschow	MV,	Jacobs	JM,	Bolival	B,	Jr.,	et	al.	A	

whole-cell	computational	model	predicts	phenotype	from	genotype.	Cell.	

2012;150:389-401.	

[92]	Liszewski	MK,	Yu	JJ,	O'Doherty	U.	Detecting	HIV-1	integration	by	repetitive-

sampling	Alu-gag	PCR.	Methods.	2009;47:254-60.	

[93]	Kumar	R,	Vandegraaff	N,	Mundy	L,	Burrell	CJ,	Li	P.	Evaluation	of	PCR-based	

methods	for	the	quantitation	of	integrated	HIV-1	DNA.	J	Virol	Methods.	

2002;105:233-46.	

[94]	Kalter	DC,	Nakamura	M,	Turpin	JA,	Baca	LM,	Hoover	DL,	Dieffenbach	C,	et	al.	

Enhanced	HIV	replication	in	macrophage	colony-stimulating	factor-treated	

monocytes.	Journal	of	immunology.	1991;146:298-306.	

[95]	Dou	H,	Grotepas	CB,	McMillan	JM,	Destache	CJ,	Chaubal	M,	Werling	J,	et	al.	

Macrophage	delivery	of	nanoformulated	antiretroviral	drug	to	the	brain	in	a	murine	

model	of	neuroAIDS.	Journal	of	immunology.	2009;183:661-9.	

[96]	Hutagalung	AH,	Novick	PJ.	Role	of	Rab	GTPases	in	membrane	traffic	and	cell	

physiology.	Physiol	Rev.	2011;91:119-49.	

[97]	Martin	TM,	Wysocki	BJ,	Beyersdorf	JP,	Wysocki	TA,	Pannier	AK.	Integrating	

mitosis,	toxicity,	and	transgene	expression	in	a	telecommunications	packet-

switched	network	model	of	lipoplex-mediated	gene	delivery.	Biotechnology	and	

Bioengineering.	2014:n/a-n/a.	



 156 

[98]	Junghanns	JU,	Muller	RH.	Nanocrystal	technology,	drug	delivery	and	clinical	

applications.	International	journal	of	nanomedicine.	2008;3:295-309.	

[99]	Kumar	L,	Verma	S,	Prasad	DN,	Bhardwaj	A,	Vaidya	B,	Jain	AK.	Nanotechnology:	

A	magic	bullet	for	HIV	AIDS	treatment.	Artificial	cells,	nanomedicine,	and	

biotechnology.	2014.	

[100]	Ramana	LN,	Sharma	S,	Sethuraman	S,	Ranga	U,	Krishnan	UM.	Evaluation	of	

chitosan	nanoformulations	as	potent	anti-HIV	therapeutic	systems.	Biochim	Biophys	

Acta.	2014;1840:476-84.	

[101]	Rabinow	BE.	Nanosuspensions	in	drug	delivery.	Nat	Rev	Drug	Discov.	

2004;3:785-96.	

[102]	Gollapudi	K,	Galet	C,	Grogan	T,	Zhang	H,	Said	JW,	Huang	J,	et	al.	Association	

between	tumor-associated	macrophage	infiltration,	high	grade	prostate	cancer,	and	

biochemical	recurrence	after	radical	prostatectomy.	Am	J	Cancer	Res.	2013;3:523-9.	

[103]	Schulz	R,	Moll	UM.	Targeting	the	heat	shock	protein	90:	a	rational	way	to	

inhibit	macrophage	migration	inhibitory	factor	function	in	cancer.	Curr	Opin	Oncol.	

2014;26:108-13.	

[104]	Goshima	F,	Esaki	S,	Luo	C,	Kamakura	M,	Kimura	H,	Nishiyama	Y.	Oncolytic	

viral	therapy	with	a	combination	of	HF10,	a	herpes	simplex	virus	type	1	variant	and	

granulocyte-macrophage	colony-stimulating	factor	for	murine	ovarian	cancer.	Int	J	

Cancer.	2013.	

[105]	Gautam	N,	Roy	U,	Balkundi	S,	Puligujja	P,	Guo	D,	Smith	N,	et	al.	Preclinical	

pharmacokinetics	and	tissue	distribution	of	long-acting	nanoformulated	

antiretroviral	therapy.	Antimicrobial	agents	and	chemotherapy.	2013;57:3110-20.	



 157 

[106]	Beduneau	A,	Ma	Z,	Grotepas	CB,	Kabanov	A,	Rabinow	BE,	Gong	N,	et	al.	

Facilitated	monocyte-macrophage	uptake	and	tissue	distribution	of	

superparmagnetic	iron-oxide	nanoparticles.	PloS	one.	2009;4:e4343.	

[107]	Meltzer	MS,	Gendelman	HE.	Mononuclear	phagocytes	as	targets,	tissue	

reservoirs,	and	immunoregulatory	cells	in	human	immunodeficiency	virus	disease.	

Curr	Top	Microbiol	Immunol.	1992;181:239-63.	

[108]	Meltzer	MS,	Nakamura	M,	Hansen	BD,	Turpin	JA,	Kalter	DC,	Gendelman	HE.	

Macrophages	as	susceptible	targets	for	HIV	infection,	persistent	viral	reservoirs	in	

tissue,	and	key	immunoregulatory	cells	that	control	levels	of	virus	replication	and	

extent	of	disease.	AIDS	Res	Hum	Retroviruses.	1990;6:967-71.	

[109]	Feng	Y,	Press	B,	Wandinger-Ness	A.	Rab	7:	an	important	regulator	of	late	

endocytic	membrane	traffic.	The	Journal	of	cell	biology.	1995;131:1435-52.	

[110]	Meng	B,	Lever	AM.	Wrapping	up	the	bad	news:	HIV	assembly	and	release.	

Retrovirology.	2013;10:5.	

[111]	Bell	NM,	Lever	AM.	HIV	Gag	polyprotein:	processing	and	early	viral	particle	

assembly.	Trends	in	microbiology.	2013;21:136-44.	

[112]	Bell	NM,	L'Hernault	A,	Murat	P,	Richards	JE,	Lever	AM,	Balasubramanian	S.	

Targeting	RNA-protein	interactions	within	the	human	immunodeficiency	virus	type	

1	lifecycle.	Biochemistry.	2013;52:9269-74.	

[113]	Benaroch	P,	Billard	E,	Gaudin	R,	Schindler	M,	Jouve	M.	HIV-1	assembly	in	

macrophages.	Retrovirology.	2010;7:29.	



 158 

[114]	Varthakavi	V,	Smith	RM,	Martin	KL,	Derdowski	A,	Lapierre	LA,	Goldenring	JR,	

et	al.	The	pericentriolar	recycling	endosome	plays	a	key	role	in	Vpu-mediated	

enhancement	of	HIV-1	particle	release.	Traffic.	2006;7:298-307.	

[115]	Kumari	S,	Mg	S,	Mayor	S.	Endocytosis	unplugged:	multiple	ways	to	enter	the	

cell.	Cell	Res.	2010;20:256-75.	

[116]	McMahon	HT,	Boucrot	E.	Molecular	mechanism	and	physiological	functions	of	

clathrin-mediated	endocytosis.	Nat	Rev	Mol	Cell	Biol.	2011;12:517-33.	

[117]	Jordens	I,	Marsman	M,	Kuijl	C,	Neefjes	J.	Rab	proteins,	connecting	transport	

and	vesicle	fusion.	Traffic.	2005;6:1070-7.	

[118]	Sonnichsen	B,	De	Renzis	S,	Nielsen	E,	Rietdorf	J,	Zerial	M.	Distinct	membrane	

domains	on	endosomes	in	the	recycling	pathway	visualized	by	multicolor	imaging	of	

Rab4,	Rab5,	and	Rab11.	The	Journal	of	cell	biology.	2000;149:901-14.	

[119]	Schonteich	E,	Wilson	GM,	Burden	J,	Hopkins	CR,	Anderson	K,	Goldenring	JR,	et	

al.	The	Rip11/Rab11-FIP5	and	kinesin	II	complex	regulates	endocytic	protein	

recycling.	Journal	of	cell	science.	2008;121:3824-33.	

[120]	Parent	A,	Hamelin	E,	Germain	P,	Parent	JL.	Rab11	regulates	the	recycling	of	

the	beta2-adrenergic	receptor	through	a	direct	interaction.	Biochem	J.	

2009;418:163-72.	

[121]	Yamamoto	H,	Koga	H,	Katoh	Y,	Takahashi	S,	Nakayama	K,	Shin	HW.	Functional	

cross-talk	between	Rab14	and	Rab4	through	a	dual	effector,	RUFY1/Rabip4.	Mol	

Biol	Cell.	2010;21:2746-55.	

[122]	Zerial	M,	McBride	H.	Rab	proteins	as	membrane	organizers.	Nat	Rev	Mol	Cell	

Biol.	2001;2:107-17.	



 159 

[123]	Boffito	M,	Jackson	A,	Owen	A,	Becker	S.	New	approaches	to	antiretroviral	drug	

delivery:	challenges	and	opportunities	associated	with	the	use	of	long-acting	

injectable	agents.	Drugs.	2014;74:7-13.	

[124]	Puligujja	P,	Balkundi	SS,	Kendrick	LM,	Baldridge	HM,	Hilaire	JR,	Bade	AN,	et	al.	

Pharmacodynamics	of	long-acting	folic	acid-receptor	targeted	ritonavir-boosted	

atazanavir	nanoformulations.	Biomaterials.	2015;41C:141-50.	

[125]	Rajoli	RK,	Back	DJ,	Rannard	S,	Freel	Meyers	CL,	Flexner	C,	Owen	A,	et	al.	

Physiologically	Based	Pharmacokinetic	Modelling	to	Inform	Development	of	

Intramuscular	Long-Acting	Nanoformulations	for	HIV.	Clinical	pharmacokinetics.	

2014.	

[126]	Spreen	WR,	Margolis	DA,	Pottage	JC,	Jr.	Long-acting	injectable	antiretrovirals	

for	HIV	treatment	and	prevention.	Current	opinion	in	HIV	and	AIDS.	2013;8:565-71.	

[127]	Gautam	N,	Puligujja	P,	Balkundi	S,	Thakare	R,	Liu	XM,	Fox	HS,	et	al.	

Pharmacokinetics,	biodistribution,	and	toxicity	of	folic	Acid-coated	antiretroviral	

nanoformulations.	Antimicrobial	agents	and	chemotherapy.	2014;58:7510-9.	

[128]	Roy	U,	McMillan	J,	Alnouti	Y,	Gautum	N,	Smith	N,	Balkundi	S,	et	al.	

Pharmacodynamic	and	antiretroviral	activities	of	combination	nanoformulated	

antiretrovirals	in	HIV-1-infected	human	peripheral	blood	lymphocyte-reconstituted	

mice.	The	Journal	of	infectious	diseases.	2012;206:1577-88.	

[129]	Haverland	NA,	Fox	HS,	Ciborowski	P.	Quantitative	proteomics	by	SWATH-MS	

reveals	altered	expression	of	nucleic	acid	binding	and	regulatory	proteins	in	HIV-1-

infected	macrophages.	Journal	of	proteome	research.	2014;13:2109-19.	



 160 

[130]	Kudoh	A,	Takahama	S,	Sawasaki	T,	Ode	H,	Yokoyama	M,	Okayama	A,	et	al.	The	

phosphorylation	of	HIV-1	Gag	by	atypical	protein	kinase	C	facilitates	viral	infectivity	

by	promoting	Vpr	incorporation	into	virions.	Retrovirology.	2014;11:9.	

[131]	Levine	AJ,	Panos	SE,	Horvath	S.	Genetic,	transcriptomic,	and	epigenetic	studies	

of	HIV-associated	neurocognitive	disorder.	Journal	of	acquired	immune	deficiency	

syndromes.	2014;65:481-503.	

[132]	Linde	ME,	Colquhoun	DR,	Ubaida	Mohien	C,	Kole	T,	Aquino	V,	Cotter	R,	et	al.	

The	conserved	set	of	host	proteins	incorporated	into	HIV-1	virions	suggests	a	

common	egress	pathway	in	multiple	cell	types.	Journal	of	proteome	research.	

2013;12:2045-54.	

[133]	Schweitzer	CJ,	Jagadish	T,	Haverland	N,	Ciborowski	P,	Belshan	M.	Proteomic	

analysis	of	early	HIV-1	nucleoprotein	complexes.	Journal	of	proteome	research.	

2013;12:559-72.	

[134]	Wisniewski	JR,	Rakus	D.	Multi-enzyme	digestion	FASP	and	the	'Total	Protein	

Approach'-based	absolute	quantification	of	the	Escherichia	coli	proteome.	Journal	of	

proteomics.	2014;109C:322-31.	

[135]	Drabik	A,	Bodzon-Kulakowska	A,	Suder	P,	Ciborowski	P,	Silberring	J.	iTRAQ	

analysis	with	Paul	ion	trap-obstacle	solved.	Journal	of	proteome	research.	

2013;12:4607-11.	

[136]	Peng	H,	Wu	Y,	Duan	Z,	Ciborowski	P,	Zheng	JC.	Proteolytic	processing	of	SDF-

1alpha	by	matrix	metalloproteinase-2	impairs	CXCR4	signaling	and	reduces	neural	

progenitor	cell	migration.	Protein	&	cell.	2012;3:875-82.	



 161 

[137]	Huang	da	W,	Sherman	BT,	Lempicki	RA.	Systematic	and	integrative	analysis	of	

large	gene	lists	using	DAVID	bioinformatics	resources.	Nature	protocols.	2009;4:44-

57.	

[138]	Raska	M,	Czernekova	L,	Moldoveanu	Z,	Zachova	K,	Elliott	MC,	Novak	Z,	et	al.	

Differential	glycosylation	of	envelope	gp120	is	associated	with	differential	

recognition	of	HIV-1	by	virus-specific	antibodies	and	cell	infection.	AIDS	research	

and	therapy.	2014;11:23.	

[139]	Edagwa	BJ,	Guo	D,	Puligujja	P,	Chen	H,	McMillan	J,	Liu	X,	et	al.	Long-acting	

antituberculous	therapeutic	nanoparticles	target	macrophage	endosomes.	FASEB	

journal	:	official	publication	of	the	Federation	of	American	Societies	for	

Experimental	Biology.	2014.	

[140]	Cook	EB,	Stahl	JL,	Lowe	L,	Chen	R,	Morgan	E,	Wilson	J,	et	al.	Simultaneous	

measurement	of	six	cytokines	in	a	single	sample	of	human	tears	using	microparticle-

based	flow	cytometry:	allergics	vs.	non-allergics.	Journal	of	immunological	methods.	

2001;254:109-18.	

[141]	Murray	JL,	Mavrakis	M,	McDonald	NJ,	Yilla	M,	Sheng	J,	Bellini	WJ,	et	al.	Rab9	

GTPase	is	required	for	replication	of	human	immunodeficiency	virus	type	1,	

filoviruses,	and	measles	virus.	Journal	of	virology.	2005;79:11742-51.	

[142]	Li	M,	Ablan	SD,	Miao	C,	Zheng	YM,	Fuller	MS,	Rennert	PD,	et	al.	TIM-family	

proteins	inhibit	HIV-1	release.	Proceedings	of	the	National	Academy	of	Sciences	of	

the	United	States	of	America.	2014;111:E3699-707.	

[143]	Chen	AK,	Sengupta	P,	Waki	K,	Van	Engelenburg	SB,	Ochiya	T,	Ablan	SD,	et	al.	

MicroRNA	binding	to	the	HIV-1	Gag	protein	inhibits	Gag	assembly	and	virus	



 162 

production.	Proceedings	of	the	National	Academy	of	Sciences	of	the	United	States	of	

America.	2014;111:E2676-83.	

[144]	Liu	C,	Zhang	X,	Huang	F,	Yang	B,	Li	J,	Liu	B,	et	al.	APOBEC3G	inhibits	

microRNA-mediated	repression	of	translation	by	interfering	with	the	interaction	

between	Argonaute-2	and	MOV10.	The	Journal	of	biological	chemistry.	

2012;287:29373-83.	

[145]	Welsch	S,	Groot	F,	Krausslich	HG,	Keppler	OT,	Sattentau	QJ.	Architecture	and	

regulation	of	the	HIV-1	assembly	and	holding	compartment	in	macrophages.	Journal	

of	virology.	2011;85:7922-7.	

[146]	Tan	J,	Sattentau	QJ.	The	HIV-1-containing	macrophage	compartment:	a	perfect	

cellular	niche?	Trends	in	microbiology.	2013;21:405-12.	

[147]	Mlcochova	P,	Pelchen-Matthews	A,	Marsh	M.	Organization	and	regulation	of	

intracellular	plasma	membrane-connected	HIV-1	assembly	compartments	in	

macrophages.	BMC	biology.	2013;11:89.	

[148]	Jouve	M,	Sol-Foulon	N,	Watson	S,	Schwartz	O,	Benaroch	P.	HIV-1	buds	and	

accumulates	in	"nonacidic"	endosomes	of	macrophages.	Cell	host	&	microbe.	

2007;2:85-95.	

[149]	Ono	A.	Subcellular	locations	at	which	HIV-1	assembles.	Uirusu.	2007;57:9-18.	

[150]	Deneka	M,	Pelchen-Matthews	A,	Byland	R,	Ruiz-Mateos	E,	Marsh	M.	In	

macrophages,	HIV-1	assembles	into	an	intracellular	plasma	membrane	domain	

containing	the	tetraspanins	CD81,	CD9,	and	CD53.	The	Journal	of	cell	biology.	

2007;177:329-41.	



 163 

[151]	Chang	Y,	Finnemann	SC.	Tetraspanin	CD81	is	required	for	the	alpha	v	beta5-

integrin-dependent	particle-binding	step	of	RPE	phagocytosis.	Journal	of	cell	

science.	2007;120:3053-63.	

[152]	Dijkstra	S,	Geisert	EE,	Jr.,	Dijkstra	CD,	Bar	PR,	Joosten	EA.	CD81	and	microglial	

activation	in	vitro:	proliferation,	phagocytosis	and	nitric	oxide	production.	Journal	of	

neuroimmunology.	2001;114:151-9.	

[153]	Takeda	Y,	Tachibana	I,	Miyado	K,	Kobayashi	M,	Miyazaki	T,	Funakoshi	T,	et	al.	

Tetraspanins	CD9	and	CD81	function	to	prevent	the	fusion	of	mononuclear	

phagocytes.	The	Journal	of	cell	biology.	2003;161:945-56.	

[154]	Stein	MP,	Muller	MP,	Wandinger-Ness	A.	Bacterial	pathogens	commandeer	

Rab	GTPases	to	establish	intracellular	niches.	Traffic.	2012;13:1565-88.	

[155]	Tippett	E,	Cameron	PU,	Marsh	M,	Crowe	SM.	Characterization	of	tetraspanins	

CD9,	CD53,	CD63,	and	CD81	in	monocytes	and	macrophages	in	HIV-1	infection.	

Journal	of	leukocyte	biology.	2013;93:913-20.	

[156]	Poteryaev	D,	Datta	S,	Ackema	K,	Zerial	M,	Spang	A.	Identification	of	the	switch	

in	early-to-late	endosome	transition.	Cell.	2010;141:497-508.	

[157]	Collier	ME,	Mah	PM,	Xiao	Y,	Maraveyas	A,	Ettelaie	C.	Microparticle-associated	

tissue	factor	is	recycled	by	endothelial	cells	resulting	in	enhanced	surface	tissue	

factor	activity.	Thrombosis	and	haemostasis.	2013;110:966-76.	

[158]	Bastin	G,	Heximer	SP.	Rab	family	proteins	regulate	the	endosomal	trafficking	

and	function	of	RGS4.	The	Journal	of	biological	chemistry.	2013;288:21836-49.	



 164 

[159]	Gulappa	T,	Clouser	CL,	Menon	KM.	The	role	of	Rab5a	GTPase	in	endocytosis	

and	post-endocytic	trafficking	of	the	hCG-human	luteinizing	hormone	receptor	

complex.	Cellular	and	molecular	life	sciences	:	CMLS.	2011;68:2785-95.	

[160]	Mendoza	P,	Ortiz	R,	Diaz	J,	Quest	AF,	Leyton	L,	Stupack	D,	et	al.	Rab5	activation	

promotes	focal	adhesion	disassembly,	migration	and	invasiveness	in	tumor	cells.	

Journal	of	cell	science.	2013;126:3835-47.	

[161]	Liu	SS,	Chen	XM,	Zheng	HX,	Shi	SL,	Li	Y.	Knockdown	of	Rab5a	expression	

decreases	cancer	cell	motility	and	invasion	through	integrin-mediated	signaling	

pathway.	Journal	of	biomedical	science.	2011;18:58.	

[162]	Macovei	A,	Petrareanu	C,	Lazar	C,	Florian	P,	Branza-Nichita	N.	Regulation	of	

hepatitis	B	virus	infection	by	Rab5,	Rab7,	and	the	endolysosomal	compartment.	

Journal	of	virology.	2013;87:6415-27.	

[163]	Vitelli	R,	Santillo	M,	Lattero	D,	Chiariello	M,	Bifulco	M,	Bruni	CB,	et	al.	Role	of	

the	small	GTPase	Rab7	in	the	late	endocytic	pathway.	The	Journal	of	biological	

chemistry.	1997;272:4391-7.	

[164]	Caillet	M,	Janvier	K,	Pelchen-Matthews	A,	Delcroix-Genete	D,	Camus	G,	Marsh	

M,	et	al.	Rab7A	is	required	for	efficient	production	of	infectious	HIV-1.	PLoS	

pathogens.	2011;7:e1002347.	

[165]	Amet	T,	Nonaka	M,	Dewan	MZ,	Saitoh	Y,	Qi	X,	Ichinose	S,	et	al.	Statin-induced	

inhibition	of	HIV-1	release	from	latently	infected	U1	cells	reveals	a	critical	role	for	

protein	prenylation	in	HIV-1	replication.	Microbes	and	infection	/	Institut	Pasteur.	

2008;10:471-80.	



 165 

[166]	Ullrich	O,	Reinsch	S,	Urbe	S,	Zerial	M,	Parton	RG.	Rab11	regulates	recycling	

through	the	pericentriolar	recycling	endosome.	The	Journal	of	cell	biology.	

1996;135:913-24.	

[167]	Milev	MP,	Brown	CM,	Mouland	AJ.	Live	cell	visualization	of	the	interactions	

between	HIV-1	Gag	and	the	cellular	RNA-binding	protein	Staufen1.	Retrovirology.	

2010;7:41.	

[168]	Sandgren	KJ,	Smed-Sorensen	A,	Forsell	MN,	Soldemo	M,	Adams	WC,	Liang	F,	et	

al.	Human	plasmacytoid	dendritic	cells	efficiently	capture	HIV-1	envelope	

glycoproteins	via	CD4	for	antigen	presentation.	Journal	of	immunology.	

2013;191:60-9.	

[169]	Fanales-Belasio	E,	Moretti	S,	Fiorelli	V,	Tripiciano	A,	Pavone	Cossut	MR,	

Scoglio	A,	et	al.	HIV-1	Tat	addresses	dendritic	cells	to	induce	a	predominant	Th1-

type	adaptive	immune	response	that	appears	prevalent	in	the	asymptomatic	stage	

of	infection.	Journal	of	immunology.	2009;182:2888-97.	

[170]	Fanales-Belasio	E,	Moretti	S,	Nappi	F,	Barillari	G,	Micheletti	F,	Cafaro	A,	et	al.	

Native	HIV-1	Tat	protein	targets	monocyte-derived	dendritic	cells	and	enhances	

their	maturation,	function,	and	antigen-specific	T	cell	responses.	Journal	of	

immunology.	2002;168:197-206.	

[171]	Micaroni	M,	Stanley	AC,	Khromykh	T,	Venturato	J,	Wong	CX,	Lim	JP,	et	al.	

Rab6a/a'	are	important	Golgi	regulators	of	pro-inflammatory	TNF	secretion	in	

macrophages.	PloS	one.	2013;8:e57034.	



 166 

[172]	Mori	R,	Ikematsu	K,	Kitaguchi	T,	Kim	SE,	Okamoto	M,	Chiba	T,	et	al.	Release	of	

TNF-alpha	from	macrophages	is	mediated	by	small	GTPase	Rab37.	European	journal	

of	immunology.	2011;41:3230-9.	

[173]	Bhattacharya	M,	Ojha	N,	Solanki	S,	Mukhopadhyay	CK,	Madan	R,	Patel	N,	et	al.	

IL-6	and	IL-12	specifically	regulate	the	expression	of	Rab5	and	Rab7	via	distinct	

signaling	pathways.	The	EMBO	journal.	2006;25:2878-88.	

[174]	Green	DA,	Masliah	E,	Vinters	HV,	Beizai	P,	Moore	DJ,	Achim	CL.	Brain	

deposition	of	beta-amyloid	is	a	common	pathologic	feature	in	HIV	positive	patients.	

Aids.	2005;19:407-11.	

[175]	Guthi	JS,	Yang	SG,	Huang	G,	Li	S,	Khemtong	C,	Kessinger	CW,	et	al.	MRI-visible	

micellar	nanomedicine	for	targeted	drug	delivery	to	lung	cancer	cells.	Molecular	

pharmaceutics.	2010;7:32-40.	

[176]	Lebel	RM,	Menon	RS,	Bowen	CV.	Relaxometry	model	of	strong	dipolar	

perturbers	for	balanced-SSFP:	application	to	quantification	of	SPIO	loaded	cells.	

Magnetic	resonance	in	medicine	:	official	journal	of	the	Society	of	Magnetic	

Resonance	in	Medicine	/	Society	of	Magnetic	Resonance	in	Medicine.	2006;55:583-

91.	

[177]	Liu	W,	Dahnke	H,	Rahmer	J,	Jordan	EK,	Frank	JA.	Ultrashort	T2*	relaxometry	

for	quantitation	of	highly	concentrated	superparamagnetic	iron	oxide	(SPIO)	

nanoparticle	labeled	cells.	Magnetic	resonance	in	medicine	:	official	journal	of	the	

Society	of	Magnetic	Resonance	in	Medicine	/	Society	of	Magnetic	Resonance	in	

Medicine.	2009;61:761-6.	



 167 

[178]	Girard	OM,	Ramirez	R,	McCarty	S,	Mattrey	RF.	Toward	absolute	quantification	

of	iron	oxide	nanoparticles	as	well	as	cell	internalized	fraction	using	

multiparametric	MRI.	Contrast	media	&	molecular	imaging.	2012;7:411-7.	

[179]	Boska	M,	Liu	Y,	Uberti	M,	Sajja	BR,	Balkundi	S,	McMillan	J,	et	al.	Registered	

bioimaging	of	nanomaterials	for	diagnostic	and	therapeutic	monitoring.	J	Vis	Exp.	

2010.	

[180]	Mascheri	N,	Dharmakumar	R,	Zhang	Z,	Paunesku	T,	Woloschak	G,	Li	D.	Fast	

low-angle	positive	contrast	steady-state	free	precession	imaging	of	USPIO-labeled	

macrophages:	theory	and	in	vitro	experiment.	Magnetic	resonance	imaging.	

2009;27:961-9.	

[181]	Huang	J,	Gautam	N,	Bathena	SP,	Roy	U,	McMillan	J,	Gendelman	HE,	et	al.	UPLC-

MS/MS	quantification	of	nanoformulated	ritonavir,	indinavir,	atazanavir,	and	

efavirenz	in	mouse	serum	and	tissues.	Journal	of	chromatography	B,	Analytical	

technologies	in	the	biomedical	and	life	sciences.	2011;879:2332-8.	

[182]	Balkundi	S,	Nowacek	AS,	Veerubhotla	RS,	Chen	H,	Martinez-Skinner	A,	Roy	U,	

et	al.	Comparative	manufacture	and	cell-based	delivery	of	antiretroviral	

nanoformulations.	International	journal	of	nanomedicine.	2011;6:3393-404.	

[183]	Roy	U,	McMillan	J,	Alnouti	Y,	Gautum	N,	Smith	N,	Balkundi	S,	et	al.	

Pharmacodynamic	and	antiretroviral	activities	of	combination	nanoformulated	

antiretrovirals	in	HIV-1-infected	human	peripheral	blood	lymphocyte-reconstituted	

mice.	The	Journal	of	infectious	diseases.	2012;206:1577-88.	



 168 

[184]	Dash	PK,	Gendelman	HE,	Roy	U,	Balkundi	S,	Alnouti	Y,	Mosley	RL,	et	al.	Long-

acting	nanoART	elicits	potent	antiretroviral	and	neuroprotective	responses	in	HIV-

1-infected	humanized	mice.	AIDS.	2012;26:2135-44.	

[185]	Roy	U,	McMillan	J,	Alnouti	Y,	Gautum	N,	Smith	N,	Balkundi	S,	et	al.	

Pharmacodynamic	and	antiretroviral	activities	of	combination	nanoformulated	

antiretrovirals	in	HIV-1-infected	human	peripheral	blood	lymphocyte-reconstituted	

mice.	The	Journal	of	infectious	diseases.	2012;206:1577-88.	

[186]	Gendelman	HE,	Gelbard,	H.	and	Swindells	S.	The	neurological	manifestations	

of	HIV-1	infection.	Philadelphia:	Lippincott-Raven	Publishers;	2003.	

[187]	Choi	KY,	Liu	G,	Lee	S,	Chen	X.	Theranostic	nanoplatforms	for	simultaneous	

cancer	imaging	and	therapy:	current	approaches	and	future	perspectives.	

Nanoscale.	2012;4:330-42.	

[188]	Boska	M,	Dou	D.,	Liu,	Y.,	Destache,	C.,	Bartoletti,	T.M.,	Uberti,	M.,	Rabinow,	B.E.,	

and	Gendelman,	H.E.	Magnetic	resonance	imaging	and	histological	co-registration	

for	blood-borne	macrophage	nanoformulated	drug	delivery	in	HIV-1	encephalitis	

Glia.	2007;submitted.	

[189]	Kibuule	D,	Dou	H,	Uberti	M,	Nelson	J,	Mellon	M,	Bradley	J,	et	al.	Magnetic	

labeled	macrophages	migrate	across	the	blood	brain	barrier	in	mice	with	HIV-1	

encephalitis.	The	12th	Annual	Meeting	of	the	Society	on	NeuroImmune	

Pharmacology,	La	Fonda	on	the	Plaza,	Santa	Fe,	New	Mexico,	abstract	(TP-17).	2006.	

[190]	Torchilin	VP.	Recent	advances	with	liposomes	as	pharmaceutical	carriers.	

Nature	reviews	Drug	discovery.	2005;4:145-60.	



 169 

[191]	Lasic	DD.	Doxorubicin	in	sterically	stabilized	liposomes.	Nature.	

1996;380:561-2.	

[192]	Barenholz	Y.	Doxil(R)--the	first	FDA-approved	nano-drug:	lessons	learned.	

Journal	of	controlled	release	:	official	journal	of	the	Controlled	Release	Society.	

2012;160:117-34.	

[193]	Petre	CE,	Dittmer	DP.	Liposomal	daunorubicin	as	treatment	for	Kaposi's	

sarcoma.	International	journal	of	nanomedicine.	2007;2:277-88.	

[194]	Liu	Y,	Pan	J,	Feng	SS.	Nanoparticles	of	lipid	monolayer	shell	and	biodegradable	

polymer	core	for	controlled	release	of	paclitaxel:	effects	of	surfactants	on	particles	

size,	characteristics	and	in	vitro	performance.	International	journal	of	

pharmaceutics.	2010;395:243-50.	

[195]	Avgoustakis	K.	Pegylated	poly(lactide)	and	poly(lactide-co-glycolide)	

nanoparticles:	preparation,	properties	and	possible	applications	in	drug	delivery.	

Current	drug	delivery.	2004;1:321-33.	

[196]	Panyam	J,	Labhasetwar	V.	Biodegradable	nanoparticles	for	drug	and	gene	

delivery	to	cells	and	tissue.	Advanced	drug	delivery	reviews.	2003;55:329-47.	

[197]	Cho	K,	Wang	X,	Nie	S,	Chen	ZG,	Shin	DM.	Therapeutic	nanoparticles	for	drug	

delivery	in	cancer.	Clinical	cancer	research	:	an	official	journal	of	the	American	

Association	for	Cancer	Research.	2008;14:1310-6.	

[198]	Chan	JM,	Zhang	L,	Yuet	KP,	Liao	G,	Rhee	JW,	Langer	R,	et	al.	PLGA-lecithin-PEG	

core-shell	nanoparticles	for	controlled	drug	delivery.	Biomaterials.	2009;30:1627-

34.	



 170 

[199]	Li	B,	Xu	H,	Li	Z,	Yao	M,	Xie	M,	Shen	H,	et	al.	Bypassing	multidrug	resistance	in	

human	breast	cancer	cells	with	lipid/polymer	particle	assemblies.	International	

journal	of	nanomedicine.	2012;7:187-97.	

[200]	Wessels	E,	Simpson	JC.	Impact	of	live	cell	imaging	on	coated	vesicle	research.	

Seminars	in	cell	&	developmental	biology.	2007;18:412-23.	

[201]	Kingsley	J,	Dou	H,	Morehead	J,	Rabinow	B,	Gendelman	H,	Destache	C.	

Nanotechnology:	a	focus	on	Nanoparticles	as	a	Drug	delivery	System	J	neuroimmune	

Pharmacol.	2006;	1:340-50.	

 

 


	Long-Acting Antiretroviral Nanoformulation Development and Subcellular Trafficking
	Recommended Citation

	Microsoft Word - Dongwei dissertation 062016.docx

