ソルバーを用いた有限要素法による単相変圧器の磁界解析

木 村 昭 穂*・松 坂 知 行**

Magnetic Field Analysis of Single-Phase Transformer by Finite Element Using Solver

Akio KIMURA and Tomoyuki MATSUZAKA

Abstract

This is paper deals with the magnetic field analysis of a single-phase transformer by the finite element method using. The unique feature of this model is that it allowed a decrease of programming using solver. For example, the single-phase transformer is analyzed using the finite element method with solver. This method was proved effective.

Key words: 変圧器,有限要素法,数值計算

1. はじめに

有限要素法等のプログラミングの軽減を図る 為に、行列方程式を含む計算全体を記号で実行 する計算方法が試みられている。記号による代 表的な数式処理言語として Mathematica と MATLAB が上げられる。Mathematica^{1,2)}の 場合には,要素行列の次数が大きくなると,計 算に必要な行列が大規模行列となり、計算に必 要なモメリーが指数的に増大するので、元の行 列を部分行列に分割して解く等の工夫が必要で あることが指摘されている。MATLAB の場合 には、数式が Mathematica 同様に記述可能で あることや, 疎行列が簡単に取り扱えられるの で大きな行列の計算が可能である。またインタ プリタ方式であるのでデバックが容易であるこ とや,グラフィック表示が簡単に記述できる。そ こで筆者らは、このような利点を考慮して MATLABを有限要素解析のソルバーとして 用い,プログラミングの軽減を図ることを試み た。例として,単相変圧器に適用し,その有効 性を明らかにしたので報告する。

2. 基礎方程式と行列の処理

図1は,解析に用いた単相変圧器の構造図を 示したものである。左右上下対称であるので1/ 4領域について解析を行なった。図2は,端子電 圧や負荷を考慮したときの回路図を示したもの である。図から変圧器の二元場の磁界解析に必 要な基礎方程式は,次式で与えられる。

$$\frac{\partial}{\partial x} \left(\nu \frac{\partial A_z}{\partial x} \right) + \frac{\partial}{\partial y} \left(\nu \frac{\partial A_z}{\partial y} \right) = -\left(\frac{N_1 I_1}{S_1} + \frac{N_2 I_2}{S_2} \right) + \sigma \frac{\partial A_z}{\partial t}$$
(1)

 N_1, N_2 は一次側,二次側のコイルの巻き線数, S_1, S_2 は一次側,二次側のコイルの断面積であ る。また変圧器に負荷が接続され,印加電圧が 与えられ電流が未知であるとすると,図2より 一次側,二次側の電圧 V_1, V_2 に関す方程式は,

平成8年12月10日受理

^{*} 八戸工業大学 情報システム工学研究所 講師

^{**} 八戸工業大学 情報システム工学研究所 教授

一次側では,

$$V_1 = \frac{d\phi_1}{dt} + R_1 I_1 \tag{2}$$

二次側では,

$$V_2 = -\frac{d\phi_2}{dt} - R_2 I_2 - R_0 I_2 = 0 \qquad (3)$$

である。

ここで、 R_1 , R_2 は一次および二次の巻き線抵 抗、 R_0 は負荷抵抗、 I_1 , I_2 は一次および二次電 流、 ϕ_1 は一次巻線との磁束鎖交数、 ϕ_2 は二次巻 線との磁束鎖交数、 V_1 は外部から与えられるの で既知である。 V_2 は負荷抵抗の端子電圧であ る。

(1)式をガラーキン法を用いて離散化し,(2),
(3)式を考慮すると,解くべき連立一次方程式は,次式のように表される。

$$Ax = b \tag{4}$$

ただし, *A* は係数行列, *b* は右辺ベクトル, *x* は未知ベクトルである。

ー次連立方程式を解く場合に,解法のアルゴ リズムが簡潔で精度が良く,しかも数式形式で 記述ができ,解りやすいことが望まれる。MAT-LABは,行列の演算が記号形式で記述できるの で,共役勾配法のアルゴリズムが適している。さ らに,共役勾配法は解の精度がよいことでも知 られているので,行列の解法に共役勾配法を適 用した。MATLABによる共役勾配法のアルゴ リズムは,図3のように表される。

共役勾配法の反復計算は^{4.5,6)},右辺ベクトル bの最大コルム $\|b\|$ に対する反復 (k+1)回目の 残差ベクトル r_{k+1} 最大ノルム $\|r_{k+1}\|$ の比が, 指定した収束判定値 ϵ 以下になった場合に打 ち切る。

3. 解析結果

図4は,要素の分割例を示したものであり,要 素数1,642,節点数871である。

図5は、無負荷のときの等ポテンシャル線図

ソルバーを用いた有限要素法による単相変圧器の磁界解析

を示したものである。図より磁束分布が内側の 角の部分に集中していることがいえる。

図6は、図3の要素分割のときに生成された 行列の非ゼロ要素値の構造のパターンを示した ものである。図6の(a)は、疎行列を示したもの である。(b)は、疎行列の帯幅を少なくする為に、 RCM 法を適用したときの行列のパターンを示 したものである。(c)は、最小次数順序法を適用 したときの行列のパターンを示したものであ る。MATLAは、コマンドを指定することによ り解析の為に生成された行列を容易に確認でき る等の利点を有している。

図7の(a),(b)は,無負荷時のときに渦電流考 慮無しと有りの場合の入力電圧と電流の解析結

果を示したものである。(a)の渦電流を考慮しな い場合には,初期の段階に大きな電流が流れ,時 間の経過とともに電流値が安定して行くことが いえる。図より(b)の渦電流を考慮した場合に は,全体的に大きな電流値が流れている。また 時間の経過と共に緩やかに定常状態に近づくこ とがいえる。渦電流の影響により電流波形の先 端が急峻である。これは,渦電流を考慮したこ とによる渦電流の影響によるものである。

図8の(a),(b)は、負荷(R=100 Q)のときに

渦電流考慮なしと有りの場合の入力電圧と電流 の解析結果を示したものである。図7の時と同 様なことがいえる。(a)の渦電流を考慮しない場 合には、初期の段階に大きな電流が流れ、時間 の経過とともに電流値が安定して行くことがい える。(b)の渦電流を考慮した場合には、初期の 電流値の大きさはほぼ同じであるが、定常状態 の電流値は(a)の2倍程度の大きさであること がいえる。これは、渦電流を考慮したことによ る影響によるものと思われる。実際に変圧器に は渦電流が流れるので、解析をする場合には渦 電流を考慮することが必要である。

図9の(a), (b)は,負荷(R=100Ω)のときに 渦電流考慮無しと有りの場合の二次側の電圧と 電流を示したものである。負荷が抵抗負荷であ るので,電圧,電流値が安定するまでの過渡現 象が小さいことがいえる。渦電流を考慮した場

合に, 電圧, 電流値が幾分小さめとなっている。 これは, 渦電流の影響によるものと思われる。

4. ま と め

MATLAB の利点は、行列の演算が数式形式

で記述できるのでプログラミングがしやすく, 且つ簡潔でかかりやすい事や,疎行列が簡単に 取り扱えるので大きな行列の計算が容易に出来 ることである。また,回路方程式を考慮して解 析することにより,出力電圧,電流を推定する ことが出来るようになった。今後の課題として, 磁性材料そのものがヒステリシスを有している ので,ヒステリシスを考慮した解析が必要であ る。ヒステリシスを考慮することにより,入出 力電流をより正確に推定することが出来るもの と思われる。

なお,本研究の一部は平成8年度文部省科研 費の補助により行った。

参考文献

- 依田: Mathematica を用いた2次元有限要素 逆解析,日本シミュレーション学会,1992,pp 103-105
- 安武,加川:数式処理言語 Mathematica による静電場逆解析,日本シミュレーション学会, 1995, pp 225-227
- Jose Roborto Cardoso: Finite Element Method with BiCG Solber Applied to Moving Linear Induction Motors, IEEE, p 1888-1891, 1995
- 4) 小国: MATLAB と利用の実際, サイエンス社
- 5) 藤原,中田,高橋: ICCG 法の高速化手法に関 する検討,静止器・回転機合同研究会 SA-91-43, RM-91-106
- 6) 戸川: 共役勾配法, 教育出版

— 49 —