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CHARACTERISTICS OF EXOCYTOSIS AND ENDOCYTOSIS IN PHOTORECEPTORS 

Karlene M. Cork, Ph.D. 

University of Nebraska, 2015 

 

Supervisor: Wallace B. Thoreson, Ph.D. 

Photoreceptors signal changes in light intensity to downstream retinal neurons 

through the exocytosis of glutamate-containing synaptic vesicles.  The maintenance of 

the vesicle exocytosis and endocytosis process is essential for ongoing synaptic 

signaling. This study investigated the properties of exocytosis and endocytosis in 

photoreceptors and their role in ongoing neurotransmission.   

 I used electrophysiology and imaging techniques to study the properties of 

vesicle exocytosis and endocytosis in photoreceptors.  First, we examined baseline 

release in photoreceptors that occurs in the absence of depolarizing stimulation.  We 

measured mEPSCs in whole cell patch clamp recordings from horizontal cells.  After 

inhibiting Ca2+ influx and efflux and increasing intracellular Ca2+ buffering, we found that 

mEPSCs persisted, indicating that a portion of the baseline release occurs by a Ca2+-

independent mechanism.  Presynaptic recordings from rods and cones confirmed that 

glutamate release continues after Ca2+ is blocked.  There was a decrease in frequency 

and amplitude of Ca2+-independent events.  Visualization of individual exocytosis events 

by TIRF microscopy showed that Ca2+-independent release can occur at non-ribbon 

release sites.  Following exocytosis, vesicles are retrieved by endocytosis and reenter 

the vesicle cycle.  We measured exocytosis and endocytosis from membrane 

capacitance changes evoked by depolarizing steps in voltage clamped rods.  

Endocytosis in rods was rapid relative to other neurons with an average time constant of 
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<200 ms.  The endocytosis kinetics in rods slowed with more vesicle exocytoisis and 

greater Ca2+ influx.   

Together these studies identified the sites and vesicle pools involved in Ca2+-

independent baseline release from photoreceptors and found that endocytosis kinetics in 

rods are rapid and depend upon endocytic load and local Ca2+ levels. 
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Chapter 1 

 

Exocytosis and endocytosis maintain neurotransmission by photoreceptors 

Photoreceptors in the retina are the initial site of light detection.  Photoreceptors 

then transmit information about the light signal to second-order neurons within the retinal 

circuit through the exocytosis of glutamate-filled vesicles.  To maintain signal 

transmission, neurons must sustain release of synaptic vesicles via exocytosis for long 

periods of time (Beutner et al., 2001; Wu et al., 2007; Alabi & Tsien, 2012). This process 

requires tight coupling between exocytosis and endocytosis (Gundelfinger et al., 2003; 

Haucke et al., 2011), with vesicles retrieved via endocytosis after their exocytosis (Pysh 

& Wiley, 1974; Miller & Heuser, 1984; LoGiudice & Matthews, 2007; Barg & Machado, 

2008; Smith et al., 2008; Xue & Mei, 2011).   

Maintaining neuronal signaling is central to many biological functions. The 

significance of this process is confirmed by studies showing that disrupting exocytosis 

and endocytosis, thereby impairing continued signal transmission, can lead to disease.  

Impairment in exocytosis has been found to contribute to a number of diseases.  Knock-

out models have shown that loss of central components of endocytosis including 

clathrin, AP2, epsin, and dynamin results in embryonic lethality.  Less severe mutations 

in proteins involved in endocytosis have been linked to diseases (Smith et al., 2005; 

Keating, 2008; McMahon & Boucrot, 2011).  The link between endocytosis impairment 

and neurological disorders includes Alzheimer ’s disease (Harold et al., 2009; Seshadri 

et al., 2010), Charcot-Marie-Tooth disease (Züchner et al., 2005), schizophrenia 

(Prabakaran et al., 2004; Clark et al., 2006; Pennington et al., 2008; English et al., 

2009), and bipolar disorder (English et al., 2009; Saito et al., 2001). One specific 

endocytic protein linked to neurodegeneration is cysteine string protein α, a presynaptic 

vesicle protein that regulates endocytosis via interaction with dynamin 1 (Nosková et al., 
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2011; Zhang et al., 2012).  Another example is amphiphysin, a protein involved in 

recruiting dynamin to sites of endocytosis (David et al., 1996), which is associated with 

the CNS disorder stiff person syndrome (Krishna et al., 2012; Hansen  et al., 2013).  

Eye-specific disease has also been linked to proteins involved in early steps of 

the endocytic pathway (Erdmann  et al., 2007). For example, Lowe Syndrome is 

characterized by major abnormalities of the nervous system and the eyes including 

cataracts and in some instances glaucoma (Kawano  et al., 1998).  Our study 

investigates the mechanisms by which the vesicle cycle maintains neurotransmission 

and can thus provide insight into the functional basis of these diseases related to 

exocytosis and endocytosis dysfunction.  This work addresses outstanding questions 

about neurotransmission by photoreceptors: Does Ca2+-independent exocytosis from 

photoreceptors occur (Chapter 2)?  What factors impact the kinetics of endocytosis in 

rods (Chapter 3)?  Overall, we found that Ca2+ is involved in the regulation of both 

exocytosis and endocytosis in photoreceptors.  Ca2+ may play a role the tight coupling 

between these two steps in the vesicle cycle, which is required for ongoing synaptic 

transmission.    
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1.1 Anatomy of the vertebrate retina 

 

1.1a Overview of retinal anatomy  

 The retina is the light-sensitive nerve tissue that lines the back of the eye.  The 

retina is made up of five major types of neurons, photoreceptors, bipolar cells, horizontal 

cells, amacrine cells, and retinal ganglion cells, arranged in layers (Fig 1.).  The outer 

nuclear layer contains the cell bodies of the rod and cone photoreceptors.  The outer 

plexiform layer contains the synapses between the photoreceptors and the horizontal 

and bipolar cells.  The inner nuclear layer contains the cell bodies of the horizontal, 

bipolar, and amacrine cells.  The inner plexiform layer contains the synapses between 

the bipolar cells and the amacrine and retinal ganglion cells.  The ganglion cell layer 

contains the cell bodies of the retinal ganglion cells.  Müller cells are the major glial cell 

type within the retina.  The anatomy of the vertebrate retina is highly conserved.  In our 

studies, we used the tiger salamander (Ambystoma tigrinum) retina as our model 

system, because the size of the salamander photoreceptors makes them amenable for 

electrophysiology and imaging experiments.   
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Figure 1: Retina organization. 

 

The retina is made up of 5 major types of neurons: photoreceptors, bipolar cells, 
horizontal cells, ganglion cells, and amacrine cells.  The retina has three layers of nerve 
cell bodies and two synaptic layers.  The cell bodies of both rod and cone 
photoreceptors are located in the outer nuclear layer.  The cell bodies of the bipolar, 
horizontal, and amacrine cells are located in the inner nuclear layer.  The cell bodies of 
ganglion cells are located in the ganglion cell layer.  The first synaptic layer is the outer 
plexiform layer where synapses between rod and cone photoreceptors and bipolar and 
horizontal cells are located.  The second synaptic layer is the inner plexiform layer where 
synapses among bipolar, amacrine, and ganglion cells are located.  The retinal pigment 
epithelium is a layer of cells that lies behind the retina and supports the function of the 
neuronal cells of the retina in many ways such as serving as part of the blood-retinal 
barrier and regenerating bleached photopigment.  Müller glial cells extend vertically 
through all layers of the retina.  Image from Simple Anatomy of the Retina by Helga 
Kolb, reproduced under a Creative Commons license. 
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1.1b Photoreceptor function and structure 

 Photoreceptors are categorized into rods and cones based on differences in their 

structure and function.  Rods are involved in vision during dim-light conditions.  Rods are 

extremely sensitive to light and are able to detect even single photons (reviewed by 

Sampath & Rieke, 2004).  The rod cell is comprised of four main parts- outer segment, 

inner segment, cell body, and synaptic terminal.  In the rod outer segment, the plasma 

membrane encloses a stack of disk-shaped organelles. The disk membrane is packed 

with rhodopsin, the rod visual pigment.  The structure of the rod outer segments provides 

a large surface area to increase the efficiency of light absorption, which is especially 

important in low-light conditions.  A thin cilium connects the rod outer and inner 

segments, which form two functionally distinct regions within the rod. The inner segment 

contains the mitochondria, ribosomes, and membranes for rhodopsin and other protein 

synthesis.  The cell body contains the nucleus.  The synaptic terminal is the site at which 

rods synapse with second order neurons- horizontal and bipolar cells.   

 Cones are less sensitive in low-light levels than rods and are primarily involved in 

vision in bright light conditions.  Cones have faster kinetics during phototransduction 

allowing perception of finer details and more rapid changes in images than in rod based 

vision.  Cones are also the cell type responsible for color vision based on different cone 

opsin photopigments.  The different opsins found in different cone types are sensitive to 

different wavelengths of light.  In humans, there are three cone subtypes: S, which are 

sensitive to short “blue” wavelengths; M, which are sensitive to middle “green” 

wavelengths; and L, which are sensitive to long “red” wavelengths (Schnapf et al., 1988).  

The structure of cones differs slight from rods, with cones typically having smaller outer 

segments.  The pigment-containing disks in cones are formed by invaginations of the 
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plasma membrane, unlike the fully enclosed rod disks.  As in rods, cones form synapses 

with second-order neurons. 

 

1.1c Horizontal and bipolar cells 

 Horizontal and bipolar cells are the second neurons in the visual pathway after 

photoreceptors.  Horizontal cells (HC), whose cell bodies are in the inner nuclear layer, 

are inhibitory interneurons that receive synaptic input from photoreceptors in the outer 

plexiform layer.  When photoreceptors release glutamate, the HC response is mediated 

by its AMPA type postsynaptic ionotropic glutamate receptors.  When light stimulation 

causes a reduction in the glutamate release from photoreceptors, HCs hyperpolarize 

due to a reduction in AMPA receptor activation.  With the exception of certain types of 

fish HCs that have NMDA receptors, other types of glutamate receptors have not been 

found on HCs in the adult retina (Yang et al., 1998; Thoreson & Witkovsky, 1999; Cadetti 

et al., 2005).  HCs also make reciprocal inhibitory synapses onto cones and bipolar cells. 

Although GABA is the primary neurotransmitter released by HCs, the inhibitory feedback 

onto cone terminals does not appear to be due to GABA but to other mechanisms such 

as protons (Thoreson & Mangel, 2012).   

Most mammals have two subtypes of HCs classified based on whether or not the 

HC has an axon (Edqvist et al., 2008), both of which hyperpolarize to light within the 

visible spectrum.  A third HC subtype has been identified that depolarizes to certain 

wavelengths of light and hyperpolarizes in response to other wavelengths of light.  This 

third color-opponent HC subtype is found in many other species (Mariani, 1987; Kolb et 

al., 1994; Cuenca et al., 2000; Connaughton et al., 2004), although not salamander 

(Lasansky & Vallerga, 1975; Zhang et al., 2006).  In our experiments, we did not 
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distinguish between HC subtypes when performing electrophysiology recordings, and 

therefore, likely recorded from multiple HC subtypes.   

In addition to synaptic connections to photoreceptors, HCs are also coupled to 

one another by gap junctions (O'Brien et al., 2006).  Functionally, the extensive electrical 

coupling between HCs is the basis of their large receptive fields.  The extent of HC 

coupling depends upon the adaptation state of the retina, with coupling maximized in 

dim light and diminished at higher and lower light levels (Dong & McReynolds, 1991; Xin 

& Bloomfield, 1999).  HCs are coupled to adjacent HCs of the same functional class 

creating a network across the retina (Hankins, 1995).  Since HCs contact multiple 

photoreceptors, typically both rods and cones, they are involved in spatial integration 

and regulation.  Large receptive fields allow HCs to detect mean luminance across wide 

areas of the retina. Inhibitory feedback from HCs to cones and bipolar cells subtracts this 

average luminance from signals relaying information about localized changes in 

luminance (Thoreson & Mangel, 2012).  Lateral feedback from HCs back to 

photoreceptors cells modifies their release properties.  One significant role of this 

negative feedback is formation of center-surround receptive fields, which are involved in 

edge detection.   

In experiments described later in this dissertation, HC to HC coupling can impact 

the ability to detect HC mEPSCs, because the coupling between cells impedes voltage 

clamping the HC membrane.  Without quality voltage clamp of the HC, the membrane 

current change that occurs during a mEPSC is more difficult to detect especially if the 

amplitude of the mEPSC is small.  In the retinal slice preparation used for most of these 

experiments, HC-HC coupling is typically reduced because connections between cells 

are physically severed during the tissue preparation.   
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Bipolar cells, whose cell bodies are also in the inner nuclear layer, form synapses 

in the outer plexiform layer with photoreceptors and horizontal cells. They also form 

synapses in the inner plexiform layer with ganglion and amacrine cells.  The two 

synaptic regions of bipolar cells are essential for their function of transferring signals 

from photoreceptors to ganglion cells.  Bipolar cells are classified into ON and OFF 

subtypes that respond in an opposite manner to glutamate released by photoreceptors.  

Glutamate causes ON-bipolar cells to depolarize and release glutamate, whereas OFF 

bipolar cells hyperpolarize and therefore release less glutamate (Euler et al., 2014).  

Within these two broad classes of ON and OFF bipolar cells, there are multiple different 

subtypes that are responsible for conveying information about different aspects of the 

visual scene.  In salamander, there are at least 12 subtypes (Wu et al., 2000). In 

mammalian retina, there is also an additional rod bipolar cell subtype creating a total of 

13 subtypes (Euler et al., 2014).   

 

1.1d Glutamate receptors on horizontal and bipolar cells 

Photoreceptors are the first cells in the visual pathway.  After light stimulation is 

detected by the photoreceptors, their rate of continuous release of glutamate-filled 

vesicles is diminished.  Following release of glutamate into the synapse, second order 

horizontal and bipolar cells detect changes in glutamate release through their glutamate 

receptors.  The two main classes of glutamate receptors found on second-order neurons 

in the retina are ionotropic and metabotropic glutamate receptors.  Ionotropic glutamate 

receptors form non-selective cation channels.  Glutamate binding triggers opening of the 

channel pore, which is more permeable to Na+ and K+ than Ca2+.  Activation of ionotropic 

glutamate receptors thus leads to depolarization.  Ionotropic glutamate receptors are 

present on horizontal cells and OFF-bipolar cells (DeVries & Schwartz, 1999; Shen et 
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al., 2004).  There are three types of ionotropic glutamate receptors in the retina: AMPA 

receptors, kainate receptors, and NMDA receptors (Thoreson & Witkovsky, 1999; Yang, 

2004).  The evidence suggests that horizontal cells have only the AMPA type receptors 

(Yang et al., 1998; Thoreson & Witkovsky, 1999; Cadetti et al., 2005).  OFF-bipolar cells 

can possess AMPA or kainate receptors (Cadetti et al., 2005; Lindstrom et al., 2014).  

The inactivation kinetics of different AMPA and kainate receptor subtypes help shape 

post-synaptic response kinetics (DeVries, 2000).  In primate retina, transient signaling in 

the OFF pathway depends upon kainate but not AMPA receptors (Puthussery et al., 

2014).  In retinas of tetrapod vertebrates, NMDA receptors appear to be absent from 

horizontal and bipolar cells but are found only in third-order amacrine and ganglion cells 

(Thoreson & Witkovsky, 1999).   

The second class of glutamate receptors in the retina is metabotropic glutamate 

receptors.  Metabotropic glutamate receptors can produce membrane potential changes 

by acting through a G protein cascade to stimulate the opening or closing of ion 

channels.  All eight subtypes of metabotropic glutamate receptors are expressed in 

retina, where they primarily serve a modulatory role as in other CNS neurons.  The 

metabotropic glutamate receptor mGluR6 found on ON-bipolar cell dendrites post-

synaptic to rods and cones is the only identified instance in the nervous system in which 

a metabotropic glutamate receptor is the primary signaling mechanism independent of 

involvement of ionotropic receptors (DeVries, 2000; Connaughton, 2007).  The high 

affinity mGluR6 receptor acts via the G protein, Go, to close TRPM1 non-selective cation 

channels (Koike et al., 2010; Morgans et al., 2010). This creates a sign-inverting 

synapse so that a light-induced reduction in glutamate release produces membrane 

depolarization in ON bipolar cells.    
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1.1e Amacrine and ganglion cells   

 Amacrine cells are lateral inhibitory neurons.  In that sense, they function 

similarly to horizontal cells.  Also like horizontal cells, many of them contain the inhibitory 

neurotransmitter GABA.  Many others contain glycine.  But there are many more 

subtypes of amacrine cells-at least 29 subtypes-than horizontal cells (Masland, 2012).  

The interactions among amacrine cells, bipolar cell terminals, and ganglion cell dendrites 

help to refine the visual image, encoding its features into at least 20 parallel pathways 

that are fed into the final retinal cell type, the retinal ganglion cell. 

After receiving inputs from bipolar and amacrine cells, ganglion cells then 

transmit both image-forming and non-image-forming visual information to the brain. 

There are at least 20 types of retinal ganglion cells that appear to be specialized for 

transmitting information about different aspects of the visual world (Masland, 2012).  

These include ON, OFF, ON-OFF, sustained, and transient ganglion cell types.  There 

are also ganglion cells with more elaborate receptive field properties such as 

directionally-selective cells that respond selectively to stimuli moving in a certain 

direction. There is also a population of intrinsically photosensitive retinal ganglion cells 

that can respond to light stimulation independently of the photoreceptors response 

(Ramsey et al., 2013).  Unlike photoreceptors and second-order neurons, ganglion cells 

transmit information through spiking rather than graded changes in transmitter release.  

Visual information from the retina is then carried to the brain through the long axon of the 

ganglion cell that extends into midbrain nuclei including the lateral geniculate nucleus of 

the thalamus, the superior colliculus, the accessory optic system, the pretectum, and the 

hypothalamus  (Robles et al., 2014).   
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1.2 Photoreceptor activity in darkness and in light 

Both rods and cones convert light energy into changes in cell membrane 

potential that result in the transmission of electrical signals to downstream neurons in the 

visual pathway.  This visual phototransduction is the process that allows vision to occur.  

Rods and cones differ in their activity in darkness and in light due to their different 

sensitivities.  Rods undergo phototransduction in even very low-light conditions (Fig. 2), 

whereas cones undergo phototransduction more so in brighter light conditions.   

 In darkness, there is a high concentration of cGMP in the photoreceptor cell.  The 

cGMP binds cyclic-nucleotide gated Na+ channels causing the channels to open.  This 

allows Na+ ions to flow into the cell producing a photoreceptor resting membrane 

potential in darkness of about -40 mV.  The depolarizing flow of Na+ into the rod in 

darkness is known as the dark current (Dowling, 1987).  Absorption of photons causes 

photoreceptors to hyperpolarize, producing graded changes in the membrane potential, 

which modulates their rate of tonic glutamate release.  Retinal, also known as vitamin A 

aldehyde, is the photopigment in rods.  When a photon of light hits the outer segment it 

can be absorbed by the chromophore 11-cis retinal causing photoisomerization to all-

trans retinal.  The 11-cis retinal form has a kinked conformation, whereas the all-trans 

retinal form is a straight chain.  The conversion to all-trans retinal causes a 

conformational change in the G protein-coupled receptor rhodopsin to the active form 

metarhodopsin.  Then, activation of metarhodopsin induces GDP to dissociate from the 

G protein alpha subunit, transducin (Gt), and be replaced by GTP. This in turn allows 

dissociation of the GTP-bound transducin, which activates cGMP phosphodiesterase to 

hydrolyze cGMP to 5'-GMP.  This results in a decrease in the concentration of cGMP, so 

cyclic nucleotide-gated Na+ channels close.  The ongoing K+ current hyperpolarizes the 

photoreceptor.  The hyperpolarizing change in membrane voltage increases the 
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probability that voltage-gated Ca2+ channels will be in the closed conformation, thereby 

reducing the concentration of intracellular Ca2+ present to trigger vesicle exocytosis.  

With increasing light intensity the release of glutamate by rods is reduced, and at 

brighter light levels there is a decrease in glutamate release by cones as well.      

Following phototransduction, the photopigment must be converted back to its 

original unbleached form before it can be used again to detect photons.  Interestingly, 

pigment regeneration is not performed in the photoreceptor cells but requires export of 

bleached pigment to neighboring cells where it is then converted back to the unbleached 

all-trans form. In the classic visual cycle 11-cis retinal is generated from all-trans retinal 

in the retinal pigment epithelium.  Cones also have an additional cone-specific process 

in which isomerization of all-trans retinol occurs in Müller cells, facilitating rapid 

regeneration of cone pigment (Tang et al., 2013).  This pathway is essential for the 

cones to rapidly respond to changes in stimulation.     

  



15 

 

[Type text] 
 

 

 

 

Figure 2: Rod phototransduction cascade.  

 

A photon of light is absorbed in the rod outer segment.  Activated rhodopsin then 
activates heterotrimeric G protein catalyzing the exchange of GDP for GTP.  This 
produces the active form of the GTP-bound G protein.  Two GTP-bound G proteins bind 
the two inhibitory γ subunits of phosphodiesterase (Deterre et al., 1988), which releases 
the catalytic α and β subunits.  The activated phosphodiesterase catalyzes the 
hydrolysis of cGMP leading to a decrease in the cytoplasmic free cGMP.  When the 
concentration of free cGMP is reduced cGMP-gated channels on the plasma membrane 
close.  This channel closure blocks the influx of cations into the outer segment, reducing 
the circulating dark current.  Image from Phototransduction in rods and cones by Yingbin 
Fu, reproduced under a Creative Commons license 
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1.3 Synaptic vesicle exocytosis and endocytosis in photoreceptors  

 

1.3a Photoreceptor vesicle pool 

Photoreceptors can sustain a very high rate of continuous vesicle exocytosis 

indefinitely during darkness.  At conventional synapses, exocytosis occurs phasically in 

response to action potentials (LoGiudice & Matthews, 2007; Waites & Garner, 2011). 

Under dark conditions, photoreceptors in the retina have a relatively depolarized 

membrane potential, sustaining release for hours at a time with each cell capable of 

releasing over 6,000 vesicles per minute (Thoreson, 2010). To maintain this high rate of 

continuous release, photoreceptor synapses contain a much larger pool of releasable 

vesicles than conventional CNS neuronal synapses. Conventional neurons typically 

possess ~100 vesicles and most of these are relatively immobile (Hilfiker et al., 1999; 

Holt et al., 2004). By contrast, photoreceptors synapses contain nearly 100,000 vesicles 

and ~85% are freely mobile and participate in exocytosis (Rea et al., 2004; Sheng et al., 

2007).  Like a number of other sensory neurons, photoreceptors have adaptations 

including synaptic ribbons and large vesicle pools that facilitate long periods of 

exocytosis.  

 

1.3b Photoreceptor synaptic ribbon  

To maintain signaling during long periods of depolarization such as occurs in 

prolonged darkness at night, photoreceptors must sustain a high level of ongoing 

exocytosis.  To achieve this end, photoreceptors and a number of other sensory neurons 

including retinal bipolar cells, pineal photoreceptors, cochlear hair cells, vestibular hair 

cells, lateral line organ hair cells, and electroreceptors possess specialized protein 
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structures known as synaptic ribbons (Matthews & Fuchs, 2010).  In photoreceptor and 

bipolar cell terminals, the ribbon has a plate-like shape whereas it is more spherical in 

hair cell terminals.  In both rod and cone photoreceptors the ribbon is 30-40 nm wide and 

200-400 nm high (reviewed by Heidelberger et al., 2005; Sterling & Matthews, 2005; 

Schmitz, 2009).  Rod ribbons are longer on average than cone ribbons (rod ribbons 800-

1500 nm long, cone ribbons 200–700 long).  Rod terminals in mammals typically have 

one synaptic ribbon, whereas rod terminals in amphibians can have multiple ribbons 

(Carter-Dawson & LaVail, 1979; Townes-Anderson et al., 1985).  Cone terminals in both 

mammals and amphibians are larger and can have a dozen or more ribbons.  Each 

individual photoreceptor ribbon runs along the synaptic ridge on top of the arciform 

density.  The Ca2+ channels are located in the synaptic membrane beneath the arciform 

density. Synaptic vesicles are tethered to the ribbon.   

RIBEYE is the primary protein that makes up the ribbon (Matthews and Fuchs, 

2010).  The RIBEYE protein is made up of two domains (Schmitz et al., 2000).  The A 

domain is specific for ribbons and mediates assembly of RIBEYE into the ribbon 

structure.  The B domain is the same as C-terminal binding protein B, which is a 

transcriptional repressor related to 2-hydroxyacid dehydrogenase.  The B domain binds 

NAD+ with high affinity.   

The protein that tethers vesicles to the ribbon has not yet been identified but may 

involve Rab3a (Tian et al., 2012). Voltage-gated L-type Ca2+ channels are localized 

beneath the synaptic ribbon likely through protein-protein interactions. In salamander 

rods, 95% of the Ca2+ channels are located in the terminal (Xu & Slaughter, 2005)) and 

most of those are clustered beneath the ribbon (Nachman-Clewner et al., 1999; tom 

Dieck et al., 2005; Choi et al., 2008; Mercer & Thoreson, 2011).  Upon depolarization, 

the voltage-gated Ca2+ channels open.  The influx of Ca2+ triggers release of the readily 
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releasable pool of vesicles which contact the plasma membrane at the base of the 

ribbon (Snellman et al., 2011).  With additional stimulation, additional vesicles on the 

ribbon descend down to release sites at the ribbon base.  The sustained rate of release 

from cones is limited by the rate of vesicle delivery to these release sites (Jackman et 

al., 2009).  While cones appear to release vesicles exclusively at ribbons (Snellman et 

al., 2011), rods are also capable of substantial vesicle release at non-ribbon sites, 

triggered by Ca2+-induced Ca2+ release (CICR) from endoplasmic reticulum stores (Krizaj 

et al., 1999; Cadetti et al., 2006; Suryarnaryanan & Slaughter, 2006; Babai et al., 2010; 

Chen et al., 2013,2014).   

 The synaptic ribbon is believed to play a role in maintaining neurotransmission, 

though its exact function in photoreceptors and in other neurons is still being 

investigated.  Originally, the ribbon was proposed to function as a conveyor belt 

delivering synaptic vesicles to the release sites (Bunt, 1971).  Later, it was shown that 

movement of vesicles on the ribbon is not ATP-dependent (Heidelberger et al, 2002) and 

is likely due to passive diffusion (Graydon et al., 2014).  The ribbon may be involved in 

concentrating vesicles through protein-protein interaction (Prescott & Zenisek, 2005).  By 

facilitating delivery of vesicles to release sites (Jackman et al., 2009), the ribbon may 

also make release more consistent.  Regularizing release would facilitate detection of 

single photons by post-synaptic neurons, which can be impeded by randomness in 

vesicle release rates (Schein & Ahmad, 2005).  Ribbons localize synaptic vesicles to the 

active zone where vesicle exocytosis occurs.  Through this localization ribbons are likely 

to play a role in positional priming, bringing synaptic vesicles into close proximity with 

Ca2+ channels.  Therefore, when the Ca2+ channels open, the small domains of high Ca2+ 

concentration that form can trigger exocytosis of nearby vesicles tethered to the ribbon.  

Ribbons may also play a role in molecular priming (Snellman et al., 2011), making 



19 

 

[Type text] 
 

vesicles competent for release, for instance by facilitating changes in protein 

conformation needed for efficient exocytosis.  

 

1.3c The invaginating synaptic cleft in photoreceptors 

The photoreceptor synaptic contact with the dendrites of second order horizontal 

and bipolar cells occurs in an invaginated cleft in the photoreceptor terminal (Fig. 3; 

Dowling & Werblin, 1969; Lasansky, 1973; Haverkamp et al., 2000).  Bipolar cell 

dendrites terminate directly opposite the vesicle release sites at the base on the 

photoreceptor ribbon.  Horizontal cell dendrites are located laterally from the release 

sites.  In rods, there are usually two rod bipolar cell dendrites at the center of the 

invagination and two lateral HC dendrites.  In cones, there is typically one ON-bipolar 

cell dendrite at the center of the invagination flanked by two HC dendrites.  Other bipolar 

cells can make basal junctions with the cone on the under surface of the cone pedicle 

near the edges of the invagination.  Unlike mammalian retina, in the salamander retina 

that was used for these studies, the central contact is more often an OFF-bipolar cell 

and the basal junctions are more often ON-bipolar cells (reviewed in van Hook & 

Thoreson, 2014).   

The HC dendrites are located laterally on either side of the central bipolar cell 

dendrites.  The glutamate receptors are localized to the tips of the HC and bipolar cell 

dendrites.  The difference in position of the bipolar cell and HC dendrites relative to the 

sites of glutamate release impacts the mEPSCs measured in the two cell types.  The 

amplitudes of mEPSCs vary among different post-synaptic neurons. The variability 

cannot be fully explained by differences in the sizes of synaptic vesicles (Miller et al. 

2001), though there may be differences in the amount of glutamate loaded into individual 

vesicles (Bartoletti and Thoreson, 2011). Different types of glutamate receptors on 
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different post-synaptic bipolar and horizontal cells might also contribute to differences in 

post-synaptic responses.  Differences in diffusional distance from release sites to the 

bipolar and horizontal cell dendrites due to the architecture of the invaginating synapse 

are also likely to play a role (DeVries et al., 2006).  HC dendrites are in closer proximity 

to the glutamate release sites than the bipolar cell dendrites, so they will be exposed to 

highly concentrated, localized, and brief increases in glutamate rapidly following release.  

HC glutamate receptors are only about 15-50 nm from release sites (Rao-Mirotznik et 

al., 1998).  The increase in glutamate at the HC receptors following vesicle release thus 

rises high and falls rapidly.  Glutamate levels at HC dendrites may exceed 1 mM (Kim & 

Miller, 1993; Cadetti et al., 2008). The HC glutamate receptors have low affinity and fast 

dissociation binding characteristics (Rao-Mirotznik et al., 1998). During light stimulation 

and sustained depolarization the response of HCs that contact rods but not cones is 

strongly influenced by the level of residual glutamate remaining in the cleft (Cadetti et al., 

2008). 

Glutamate must diffuse further within the cleft before reaching the bipolar cell 

dendrites, so bipolar cells detect more dilute, diffuse, and prolonged increases in 

glutamate following release.  Depending on the subtypes of bipolar cell, glutamate 

receptors may be as close as 130 nm from release sites but as far away as 1840 nm, 

much further than HC receptors (Calkins et al., 1996; Rao-Mirotznik et al., 1998).  The 

increase in glutamate at the bipolar cell receptors following vesicle release is thus lower 

and decreases more slowly (DeVries et al., 2006).  The bipolar cell glutamate receptors 

have high affinity and likely slower dissociation binding characteristics (Rao-Mirotznik et 

al., 1998). 

The invagination at the rod synapses is typically deeper than the invagination at 

the cone synapses.  There is evidence that the difference in the synaptic cleft between 
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rods and cones is functionally significant.  In rods, the deeper invagination may prevent 

spillover of transmitter to neighboring cells, so that single photon responses from 

individual rods can be detected (Rao-Mirotznik et al., 1998).  In contrast, it has been 

found that during a light response, glutamate released by one cone can spill over to 

neighboring cones, which may mediate a spatially distributed positive feedback 

(Szmajda & Devries, 2011).  
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A.  

 

 

B. 

 

 

Figure 3: Structure of the rod and cone invaginating synapses. 

 

A single synaptic ribbon with vesicles tethered along the sides of the ribbon is depicted 
for each photoreceptor type.  The ribbon appears as a thin dark strip in these cross 
sectional views. A. Electron microscopy and schematic of the mammalian rod synaptic 
triad. The three cell types are the rod, the horizontal cell axon terminals (HC), and the 
rod bipolar cell dendrite (rb).  Processes from two horizontal cells and two rod bipolar 
cells are seen in the invaginating cleft.  B. Electron microscopy and schematic of the 
mammalian cone synaptic triad.  The three cell types are the cone, the horizontal cell 
dendrite (HC), and the bipolar cells – the invaginating midget bipolar dendrite (imb), the 
flat midget bipolar (fmb), and the flat diffuse bipolar dendrite (fb).  Image from 
Photoreceptors by Helga Kolb, reproduced under a Creative Commons license. 



23 

 

[Type text] 
 

Glutamate transporters also play a role in shaping glutamate dynamics within the 

synaptic cleft.  Within the retina, excitatory amino acid transporters (EAATs) are 

responsible for uptake of extracellular glutamate.  EAATs are Na+- and K+-dependent 

membrane transporters.  These transporters have two separate conductances when 

activated: a coupled Na+,H+,K+-dependent conductance that is necessary for the 

transporter to bind and translocate glutamate and a stoichiometrically uncoupled Cl− 

conductance (Danbolt, 2001). There are five glutamate transporter subtypes EAAT-1 

through EAAT-5.  These high-affinity glutamate transporters are located on the terminals 

of photoreceptors and bipolar cells, as well on Müller glia surrounding the synaptic cleft 

(Eliasof et al., 1998; Burris et al., 2002).  In photoreceptors, the glutamate transporters 

are localized at the base of the synaptic terminal outside the cleft (Hasegawa et al., 

2006; Rowan et al., 2010).  The reuptake of glutamate by EAATs in photoreceptors 

produces anion currents that can be used to detect glutamate release presynaptically 

(Picaud et al., 1995; Szmajda & Devries, 2011).  In studies described later in this thesis, 

we exploit this property of glutamate transporter currents in our studies of baseline 

release by photoreceptors (Chapter 2).    

Glutamate uptake into rod and cone photoreceptors is mediated by different 

EAAT subtypes, which is likely to contribute to differences in the kinetics of glutamate 

transmission between the two photoreceptor types (Rauen et al. 2004).  In cones, 

EAATs maintain a low level of tonic glutamate in darkness preventing synaptic 

depression and play a role in encoding light offset signals (Rowan et al., 2010).   

Different EAAT subtypes in rods and cones probably play a role in differential 

modulation of synaptic activity in rods and cones.  Glutamate transporters are also 

present on retinal Müller cells (Yang & Wu, 1997). However, the processes of Müller 

cells in salamander do not enter the cone invaginated cleft (Lasansky, 1973).  Because 
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of their spatial separation from the synapse, Müller cells are unlikely to be involved in 

rapid regulation of synaptic transmission. 

 

1.3d Evoked and spontaneous exocytosis in photoreceptors 

 Exocytosis from photoreceptors involves both evoked and spontaneous types of 

release.  Evoked release is Ca2+-dependent and occurs following the opening of L-type 

Ca2+ channels, or in rods by CICR.  In photoreceptors, the Ca2+ channels are clustered 

beneath the synaptic ribbon adjacent to ribbon-associated synaptic vesicles.  Localized 

domains of high Ca2+ trigger fusion of the synaptic vesicles.  Experiments with the rapid 

Ca2+ chelator BAPTA suggest that Ca2+ channels are located less than 100 nm from 

release sites and that nanodomains of high Ca2+ control exocytosis from photoreceptors 

(Mercer et al., 2011).  Compared to release at other synapses, vesicle release from 

photoreceptors is highly Ca2+-sensitive.  At most synapses, Ca2+ levels must attain high 

micromolar levels to trigger release, but photoreceptor release can be driven by much 

lower Ca2+ levels with a threshold of about 400 nM (Rieke & Schwartz, 1996; Thoreson 

et al., 2004; Shen et al., 2007; Duncan et al., 2010).  Photoreceptors also exhibit a lower 

cooperativity of about 2 Ca2+ ions compared to 5 ions at most other synapses.   Opening 

of the voltage-gated L-type Ca2+ channels typically occurs after cell depolarization.  

When the cell is depolarized, there is a high probability that the Ca2+ channels will be in 

the open conformation, allowing Ca2+ influx into the synaptic terminal.  However, even 

when the cell is not depolarized there is still low probability occurrence of stochastic Ca2+ 

channels openings that could trigger exocytosis.  In our studies, we have defined any 

exocytosis that occurs due to the opening of Ca2+ channels following cell depolarization 

as evoked release.  Conversely, we defined spontaneous release as release occurring 

independently of cell depolarization. There is evidence for Ca2+-independent 
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spontaneous release in other neurons including CA3 neurons (Scanziani et al., 1992).  

However, spontaneous release can also include Ca2+-dependent release that is not 

triggered by Ca2+ channel openings but instead is driven by basal intracellular Ca2+ 

levels (Goswami et al., 2012).   

Different presynaptic mechanisms and postsynaptic targets may separate 

spontaneous and evoked neurotransmission (Kavalali, 2015).  The mechanisms that 

drive spontaneous exocytosis are not as well characterized as those mechanisms that 

allow evoked exocytosis.  However, one mechanisms that is believed to drive 

spontaneous exocytosis is thermodynamically driven changes in the conformation of 

proteins involved in exocytosis such as SNAREs that occasionally cause exocytosis 

independent of Ca2+.  Functionally, spontaneous release may regulate synaptic plasticity 

and homeostasis.  For instance, in other neurons baseline release has been shown to 

facilitate maintenance of synaptic connections and potentiation of post-synaptic 

receptors (McKinney el al., 1999; Kombian et al., 2000; Carter & Regehr, 2002; Sutton et 

al., 2006).  The evidence increasingly suggests that spontaneous release may have a 

functionally significant role in neuronal signaling.   

In rods and cones, exocytosis is maintained continuously in both light and dark 

conditions, although it diminishes in light when photoreceptors hyperpolarize. Our results 

show that baseline release from photoreceptors in light-adapted conditions includes both 

evoked release dependent upon Ca2+ influx and Ca2+-independent spontaneous release 

(Chapter 2).  In rods, Ca2+ released from internal Ca2+ stores such as the endoplasmic 

reticulum can drive evoked baseline exocytosis (Chen et al., 2014).  Baseline exocytosis 

can also involve Ca2+-independent spontaneous release.  In chapter 2, the process of 

baseline exocytosis in photoreceptors is characterized and its mechanisms are tested 

experimentally.   
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1.3e Exocytic proteins in photoreceptors 

 Synaptic vesicle exocytosis involves the interaction of multiple proteins.  Fusion 

of the vesicle membrane with the synaptic membrane is mediated by the SNARE 

(soluble NSF attachment protein receptor) complex, which is a four-helix bundle.  The 

SNARE complex includes proteins associated with the target membrane, in this case the 

photoreceptor synaptic membrane, known as t-SNAREs, and proteins associated with 

the vesicle membrane, v-SNAREs (Ungar & Hughson, 2003; Chapman, 2008).  The t-

SNARES in photoreceptors are SNAP-25, which contributes two helices to the SNARE 

complex, and syntaxin-3, which contributes one helix (Sherry et al., 2006; Kwok et. al., 

2008).  Photoreceptor synapses have syntaxin-3, whereas syntaxin-1 is the typical 

subtype found at other synapses.  In addition to serving as part of the core SNARE 

complex, there is evidence that SNAP-25 can also be associated with vesicles near the 

ribbon and potentially promotes vesicle priming or compound fusion prior to exocytosis 

(Morgans et al., 1996).  The V-SNARE in photoreceptors is synaptobrevin 2/3, also 

known as vesicle-associated membrane protein 2/3 (VAMP 2/3), which contributes one 

helix to the SNARE complex (Kwok et. al., 2008).   

 Ca2+-dependent exocytosis is regulated by calcium sensors that mediate SNARE 

complex-dependent fusion.  The Ca2+ sensor facilitates vesicle fusion by binding to 

phospholipids and the fusion machinery.  Synaptotagmin has been identified as the Ca2+ 

sensor in a number of cells types and its mechanism of action has been characterized.  

When Ca2+ binds to the C2 domains of synaptotagmin 1 this enhances binding to 

syntaxin and drives membrane fusion (Rizo & Rosenmund, 2008).  The identity of the 

Ca2+ sensor in photoreceptors is not known, but some of its properties have been 

determined.  As described in the previous section, the photoreceptor Ca2+ sensor has a 
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high affinity for Ca2+ with a threshold of 400 nm and low cooperativity of about two Ca2+ 

ions relative to other synapses (Thoreson et al., 2004).  The unique properties of the 

photoreceptor Ca2+ sensor could be because the Ca2+ sensor is another type or isoform 

of synaptotagmin or could result from the action of other accessory proteins that interact 

with the SNARE complex.   

 

1.3f Endocytosis in photoreceptors 

Following exocytosis, vesicles are retrieved by endocytosis.  Endocytosis is 

important for maintaining the structure of the synapse and synaptic exocytosis over both 

short and long time periods (LoGiudice & Matthews, 2007).  Because of the high rate of 

vesicle exocytosis in rods especially in darkness, rapid endocytosis may be even more 

critical in rod synapses than at conventional synapses.  In the short term, disruption of 

endocytosis could lead to a decrease in the neuron’s ability to respond to a given input 

(von Gersdorff and Matthews, 1994a; Sun et al., 2002; Kuromi and Kidokoro, 2005).  

While it has been established that endocytosis is necessary to maintain synaptic 

exocytosis, the mechanisms by which endocytosis facilitates ongoing release are not 

fully understood.  One function of endocytosis is to prevent depletion of the vesicle pool.  

Particularly in neurons with a small vesicle pool during periods of high stimulation of 

exocytosis, the vesicle pool would be rapidly depleted without endocytosis.  Endocytosis 

returns vesicles to the synaptic terminal where they can rejoin the vesicle cycle.  These 

vesicles can then be refilled with glutamate and be re-released by exocytosis during 

subsequent stimulation.   

Three main mechanisms of endocytosis have been identified in other cell types:  
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clathrin-mediated endocytosis, kiss-and-run endocytosis, and bulk endocytosis.  

Clathrin-mediated endocytosis involves the formation of a clathrin protein lattice around 

the vesicle prior to endoctyosis.  Assembly of this clathrin coat takes time, so this mode 

of endocytosis is typically thought to be slow, on the order of tens of seconds (Jockush 

et al., 2005).  However, there is evidence that this process can be primed by use of other 

forms of clathrin, the presence of partially preformed lattices, or the involvement of 

accessory proteins, thus speeding clathrin-mediated endocytosis (Pelassa et al., 2014).  

However, thus far there is no evidence to suggest that clathrin can mediate very rapid 

modes of endocytosis occurring in less than 1 second.  The kiss-and-run endocytosis 

mechanism has been suggested as a possible form of very rapid endocytosis (Zenisek 

et al., 2002; Llobet et al., 2003).  In kiss-and-run endocytosis a transient pore forms 

between the vesicle and the plasma membranes, but the two membranes do not 

completely fuse.  Neurotransmitter can be released through this pore before the pore 

closes and the vesicle returns to the cell cycle.  In bulk endocytosis a larger than single 

vesicle-sized portion of synaptic membrane is retrieved (Holt et al., 2003; Coggins et al., 

2007).  After endocytosis of this larger endosome, individual vesicles bud off and rejoin 

the vesicle pool.  Bulk endocytosis occurs when there is a high rate of exocytosis, as 

occurs with strong and prolonged stimulation.   

 In chapter 3, we characterize endocytosis in rod photoreceptors.  We found that 

endocytosis occurs with a time constant of < 200 ms, which is rapid relative to the rate of 

previously identified modes of endocytosis.  The rate of endocytosis is dependent upon 

the amount of exocytosis that occurs: with more release, the time course of endocytosis 

slows.  The rate of endocytosis is also dependent on the amount of Ca2+ influx into the 

synaptic terminal: with higher concentrations of Ca2+, the time course of endocytosis 

slows.   
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1.4 Ca2+ in photoreceptors 

 

1.4a Photoreceptor synaptic Ca2+  

 Ca2+ regulation is essential for photoreceptor function and integrity.  Both 

excessively low and excessively high intracellular Ca2+ concentrations can damage 

photoreceptors (Fain, 2006).  The outer and inner segments of the photoreceptors differ 

in function and also in their Ca2+ regulation (Thoreson et al., 1997; Krizaj & Copenhagen, 

2002).  The inner segment, which includes the synaptic terminal, is the functional region 

relevant for synaptic transmission.  At the synapse, Ca2+ drives the photoreceptor 

response to changes in light stimulation by modulating the vesicle release rate.  The 

amount of intracellular Ca2+ depends on the stimulation state of the photoreceptors.  

In darkness, photoreceptors have a relatively depolarized membrane potential of 

about -40 mV.  Voltage-gated L-type Ca2+ channels open allowing Ca2+ to move down its 

concentration gradient into the synaptic terminal.  This leads to an increase in Ca2+ 

concentration in the terminal to about 400 nM (Rieke & Schwartz, 1996, Szirka & Krizaj, 

2006; Choi et al., 2008; Mercer et al., 2011).  In the dark state, there is a dynamic 

equilibrium between the concentration of Ca2+ outside the cell which is typically about 2 

mM and the concentration of Ca2+ in the photoreceptor.  The intracellular Ca2+ 

concentration is prevented from becoming as high as the extracellular Ca2+ 

concentration, because a too high Ca2+ concentration within the cell would lead to 

toxicity.  The kinetics of Ca2+ removal from the synapse determines the kinetics of 

exocytosis (Rieke & Schwartz, 1996).  Ca2+ also plays a role in maintaining equilibrium in 

the polarization state of the membrane by activating outward K+ and Cl- conductances.   
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Upon stimulation by light, the phototransduction cascade causes 

hyperpolarization of the cell resulting in closure of the voltage-gated Ca2+ channels.  As 

the Ca2+ channels close, influx of Ca2+ into the synapse is diminished.  As light 

stimulation increases and intracellular Ca2+ subsequently decreases, the rate of vesicle 

exocytosis decreases.  In bright light, the cytoplasmic Ca2+ concentration in the inner 

segment is low, between 100 and 200 nM (Szikra & Krizaj, 2006; Mercer et al., 2011).   

  Multiple mechanisms are involved in controlling the Ca2+ concentration in the 

photoreceptors.  The intracellular Ca2+ concentration is reduced as residual cytoplasmic 

Ca2+ is effluxed from the synapse or sequestered into intracellular Ca2+ stores (Krizaj & 

Copenhagen, 2002).  High affinity mechanisms for Ca2+ efflux maintain the tight coupling 

between intracellular Ca2+ concentration and membrane potential.  Efflux occurs mainly 

via plasma membrane Ca2+ ATPases (Krizaj & Copenhagen, 1998; Morgans et al., 

1998).  Cones also have Na+/Ca2+ exchangers at their active zones that facilitate rapid 

reductions in Ca2+ concentration during light adaptation to increase the speed of the 

cone light response (Johnson et al., 2007).  Ca2+ extrusion in the outer segment is also 

performed by Na+/Ca2+ exchangers (Thoreson et al., 1997; Krizaj & Copenhagen, 1998).  

Sites of Ca2+ sequestration include the endoplasmic reticulum (ER) and mitochondria.  

Uptake of Ca2+ by the ER is ATP-dependent and mediated by the sarcoplasmic-

endoplasmic reticulum calcium ATPase (Ungar et al., 1984).  In photoreceptors, the 

principal SERCA subtype is type 2 (Krizaj, 2005; Szikra & Krizaj, 2007).  The ER is a 

dynamic site of Ca2+ storage, and Ca2+ can also be released from the ER when the cell 

is stimulated.  The functional impact of Ca2+ release from the ER is discussed below.  

Mitochondria are present in the terminals of mammalian photoreceptors, and while their 

primary role appears to be to provide the ATP needed for active extrusion of Ca2+ from 
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the terminal (Zenisek & Matthews, 2000), in conditions of high Ca2+ concentration, 

mitochondria can themselves sequester Ca2+ (Wan et al., 2012). 

 

1.4b Photoreceptor exocytosis can be driven by Ca2+ 

Ca2+ influx at the photoreceptor synapse can trigger evoked release of synaptic 

vesicles from the synaptic ribbon.  Voltage-gated Ca2+ channels (VGCCs) are the 

primary means of Ca2+ influx into the photoreceptor terminal.  Voltage-gated Ca2+ 

channel 1.4 is the major type of VGCC in photoreceptors (Lee et al., 2015).  In the 

retina, the voltage-gated Ca2+ channel is made up of a pore-forming α1 subunit and 

auxiliary β2 and α2δ4 subunits (Ball et al., 2002; Qin et al., 2002; Wycisk et al., 2006).  

Opening of the Cav1.4 channels is highly efficient at triggering release of synaptic 

vesicles from the photoreceptor ribbon, with the opening of fewer than three channels on 

average being sufficient to drive exocytosis (Bartoletti et al., 2011).    

Because Ca2+ influx occurs through VGCCs, the amount of Ca2+ influx into the 

cell depends upon the membrane potential.  The voltage at which photoreceptor Ca2+ 

currents achieve half-maximal activation is approximately -39 mV, similar to the dark 

resting membrane potential (Babai & Thoreson, 2009).  Because the midpoint is the 

steepest region of the sigmoidal Ca2+ current activation curve, small changes in Ca2+ 

channel activation near the dark potential can result in large, functionally significant 

changes in synaptic release.  Because membrane depolarization increases the open 

probability of the Ca2+ channels, this allows greater Ca2+ influx.  The peak activation of 

VGCCs is achieved at membrane potentials above -20 mV.  While overall cytosolic Ca2+ 

remains low relative to other neural synapses (Krizaj, 2012), small domains of high Ca2+ 

concentration near the Ca2+ channels drive release of the synaptic vesicles located in 

close proximity at the base of the ribbon (Cadetti et al., 2006; Choi et al., 2008).  Many 
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factors including protons, divalent cations, and anions have been shown to modulate 

Ca2+ channel gating and permeability (Barnes & Kelly, 2000) and thus the rate of vesicle 

exocytosis.  For example, increases in pH increase synaptic efficacy (Harsanyi & 

Mangel, 1993).  Other neuromodulators including zinc, glutamate, dopamine, adenosine, 

cannabinoids, somatostatin, insulin, nitric oxide, retinoids, and polyunsaturated fats can 

also change the Ca2+ current (reviewed by Heidelberger et al., 2005).  

In synaptic terminals of rod photoreceptors, Ca2+ influx through Ca2+ channels 

can also trigger Ca2+-induced Ca2+ release (CICR) from internal stores (Križaj et al., 

1999; Cadetti et al., 2006; Suryanarayanan & Slaughter, 2006; Babai et al., 2010; Chen 

et al. 2013, 2014).  CICR does not appear to be present in the terminals of cones 

(Cadetti et al., 2006).  In rods, there is ER located in the inner segment region near the 

synaptic terminal (Babai et al., 2010).  Ca2+ influx mobilizes Ca2+ from the ER via 

ryanodine receptors (Krizaj et al., 2003).  There is a retina-specific isoform of the 

ryanodine receptor, RyR2 (Shoshan-Barmatz et al., 2005, 2007).   Release of Ca2+ from 

the ER can trigger additional vesicle release (Krizaj et al., 1999; Suryarnaryanan and 

Slaughter, 2006; Cadetti et al, 2006; Babai et al., 2010) including exocytosis from non-

ribbon sites in rods (Chen et al., 2013, 2014).  ER Ca2+ at the terminal can be 

replenished by diffusion of Ca2+ through the ER from soma to terminal (Chen et al., 

2014).  During maintained depolarization, store-operated channels in the plasma 

membrane allow Ca2+ entry that elevates cytoplasmic Ca2+ that is used to replenish ER 

Ca2+ (Molnar et al., 2012).  The slower kinetics of CICR-mediated release contribute to 

overall slower release kinetics at rod synapses compared to cone synapses which in 

turn parallel the slower light response kinetics of rods (Schnapf & Copenhagen, 1982).      
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1.4c Ca2+ and endocytosis in photoreceptors 

 While the role of Ca2+ in driving exocytosis is well established, less is known 

about the role of Ca2+ in the next and final phase of the vesicle cycle, endocytosis.  

Evidence from another sensory synapse, the cochlear hair cell, indicates that Ca2+ can 

contribute to compensatory endocytosis with an increase in the fast mode of endocytosis 

with high intracellular Ca2+ concentrations (Beutner et al., 2001).  In cone 

photoreceptors, Ca2+ concentration did not impact the time constant of endocytosis, but 

did enhance endocytic overshoot (Van Hook & Thoreson, 2012).  Ca2+ is involved in 

exocytosis and likely in endocytosis in photoreceptors.  Ca2+ may play a role in linking 

these two steps in the vesicle cycle.  In chapter 2, we examine the role that Ca2+ plays in 

driving baseline release from photoreceptors.  In chapter 3, we examine how Ca2+ 

impacts the kinetics of vesicle endocytosis in rods.    
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Chapter 2 

 

Properties of spontaneous vesicle release by rod and cone photoreceptors 

 

Abstract 

In addition to evoked release, neurons can release vesicles spontaneously 

without stimulation. We studied mechanisms and sites of baseline release by 

photoreceptors. To measure baseline release, we performed whole cell recordings from 

horizontal cells (HCs), which receive inputs from rod and cone photoreceptors, in a slice 

preparation of tiger salamander retina.  We detected miniature excitatory post-synaptic 

currents (mEPSCs) in light-adapted HCs when no stimulation was applied to promote 

exocytosis.  Blocking Ca2+ influx with Cd2+ or lowering extracellular Ca2+ reduced the 

frequency and amplitude of mEPSCs, indicating that many mEPSCs are evoked by Ca2+ 

entry.  Event frequency was not diminished by increasing intracellular Ca2+ buffering with 

EGTA-AM, even in the presence of Cd2+.  These data indicate that some baseline 

release is due to Ca2+-independent, spontaneous release.  We measured quantal 

release of glutamate presynaptically from glutamate transporter anion currents. These 

were also reduced in amplitude by Cd2+, indicating that the change in mEPSC amplitude 

likely reflected smaller packets of glutamate release.  Presynaptic current measurements 

also established that both rods and cones exhibit spontaneous Ca2+-independent 

release.  Evoked release in cones occurs only at ribbons and so it is likely that 

spontaneous release from cones also occurs at ribbons.  Using total internal reflectance 

fluorescence (TIRF) microscopy to visualize individual vesicles loaded with pHrodo, we 

found that baseline release in rods occurred throughout the entire terminal, whereas 

evoked release was clustered close to Ca2+ entry sites near ribbons, suggesting that 

spontaneous release can occur at non-ribbon sites in rods.     
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2.1 Introduction  

Neurons transmit signals to one another by the evoked release of vesicles, 

triggered by cell depolarization and resultant opening of voltage-gated Ca2+channels 

(Katz, 1969; Llinás, 1991; Schweizer, 2006).  But neurons are also capable of 

spontaneous release that does not require depolarization.  The functional roles and 

mechanisms involved in spontaneous release are not as well understood as those of 

evoked release and appear to vary at different synapses (see reviews by Kaeser & 

Regehr, 2014; Kavalali, 2015).   

 There is evidence for both Ca2+-dependent and Ca2+-independent components to 

spontaneous release in various neurons.  A number of studies have found that 

spontaneous release depends upon intracellular Ca2+, although the source of Ca2+ can 

vary.  Spontaneous release can be reduced substantially by introducing the Ca2+ 

chelators BAPTA or EGTA into neurons (Xu et al., 2009; Goswamit et al., 2012; 

Schneider et al., 2015).  Ca2+ entry through a variety of Ca2+-permeable ion channels 

can contribute to spontaneous release.  Antagonism of voltage-gated Ca2+ channels in 

cortical and cerebellar neurons reduced spontaneous release by ∼50% (Goswami et al., 

2012; Williams et al., 2012). In brainstem neurons, influx through tonically active TRPV1 

receptors accounted for a substantial fraction of spontaneous release (Shoudai et al., 

2010; Peters et al., 2010).  Activation of Ca2+-permeable P2X2 receptors (Khakh, 2009) 

and release of intracellular Ca2+ from internal stores can also trigger spontaneous 

mEPSCs (Emptage et al., 2001; Xu et al., 2009).  On the other hand, other studies show 

that spontaneous release does not always require elevation of intracellular Ca2+.  

Blocking voltage-gated Ca2+ channels did not alter spontaneous release in CA3 neurons 

(Scanziani et al., 1992).  In neocortical neurons, spontaneous release was found to 
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depend on Ca2+-sensing G protein-coupled receptors that are activated by extracellular 

rather than intracellular Ca2+ (Vyleta & Smith, 2011).   

In addition to employing different mechanisms, evoked and spontaneous release 

can occur at distinct sites.  In hippocampal neurons, different populations of NMDA 

receptors respond to evoked and spontaneous release (Atasoy et al., 2008) suggesting 

spatial separation of the two forms of release.  Imaging of release events at individual 

Drosophila neuromuscular junctions showed that evoked and spontaneous release can 

occur at spatially distinct synapses (Melom et al., 2013; Peled et al., 2014).  TIRF 

imaging studies of single vesicle release at retinal bipolar cell synapses showed that 

evoked release events clustered near ribbons whereas spontaneous release events 

often occurred at non-ribbon sites (Zenisek, 2008).  

In photoreceptors, evoked release is tightly coupled to the opening of L-type Ca2+ 

channels localized to confined domains beneath the synaptic ribbons (Nachman-

Clewner et al., 1999; Morgans, 2001; Mercer et al., 2011).  Due to the presence of open 

cyclic nucleotide-gated channels in the outer segment, the photoreceptor membrane 

potential rests around -40 mV in darkness.  This relatively depolarized membrane 

potential stimulates Ca2+ channel openings that trigger release of ribbon-associated 

vesicles.  In rods, but not cones, Ca2+ channel openings can also trigger non-ribbon 

release by activating Ca2+-induced Ca2+ release (CICR) (Križaj et al., 1999; Cadetti et al., 

2006; Suryanarayanan & Slaughter, 2006; Babai et al., 2010; Chen et al., 2014).  

Second-order horizontal and OFF-bipolar cells that receive synaptic inputs from 

photoreceptors show a high rate of miniature excitatory post-synaptic currents 

(mEPSCs) in darkness.  Much of this baseline release is not truly spontaneous, but 

evoked by the opening of L-type Ca2+ channels at the relatively depolarized membrane 



37 

 

[Type text] 
 

potential of photoreceptors in darkness.  We thus prefer the term “baseline” rather than 

“spontaneous” when discussing release in the absence of Ca2+ channel blockers.    

In the present study, we examined the contributions of Ca2+-independent 

spontaneous release to baseline release by photoreceptors.  It has been shown that a 

significant fraction of baseline release events persist after applying Co2+ in nominally 

Ca2+-free conditions (Maple et al., 1994), suggesting a contribution from Ca2+-

independent spontaneous release.  However, removal of extracellular Ca2+ causes 

membrane surface charge effects that can shift Ca2+ current activation to more negative 

potentials so that relatively large Ca2+ currents can be generated at the dark potential 

even in the presence of Co2+ (Piccolino et al., 1996; Piccolino & Pignatelli, 1996). We 

therefore tested the ability of 0.1 mM Cd2+ to inhibit mEPSCs in horizontal cells.  We also 

inhibited Ca2+ influx through other ion channels by using a Ca2+-free extracellular 

solution and we prevented release from internal stores by blocking ryanodine receptors.  

To test whether basal Ca2+ levels may be sufficient to stimulate spontaneous release, we 

lowered intracellular Ca2+ by incubating retinas with a cell-permeant Ca2+ buffer, EGTA-

AM.  In addition to measuring mEPSCs in horizontal cells, we examined release events 

presynaptically by measuring glutamate transporter anion currents in rods and cones.  

We found that there is a Ca2+-independent component to baseline release from both rod 

and cone photoreceptors.  Ca2+-independent spontaneous release events were smaller 

in amplitude than evoked release events and showed a more rapid decline in the 

presence of a vesicular ATPase inhibitor, suggesting different vesicle pools are involved. 

We looked at the locations of release events in rods by visualizing the fusion of 

individual vesicles loaded with a fluorescent dye, 10-kD dextran-conjugated pHrodo, 

using TIRF microscopy.  Our results suggest that spontaneous release can occur at both 

ribbon and non-ribbon sites.   
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2.2 Materials and methods 

 

2.2a Retinal slice 

Retinal slice preparations were made using the retinae of aquatic tiger salamanders 

(Ambystoma tigrinum; both sexes, 18-25 cm length; Charles Sullivan, Nashville, TN) 

following methods described by Van Hook and Thoreson (2013).  The University of 

Nebraska Medical Center’s Institutional Animal Care and Use Committee approved all 

experimental procedures.  Salamanders were housed in a tank with the water 

maintained at 4-8 ºC on a 12 h:12 h light-dark cycle.  Salamanders are sacrificed 1-2 

hours after the beginning of subjective night following treatment with 0.25 g/L MS222 for 

15 minutes.  The eyes were then enucleated and the anterior segment and the lens were 

removed.  A section of eyecup was placed vitreal side down onto a nitrocellulose 

membrane (5 x 10 mm; type AAWP, 0.8 µm pores; Millipore). The sclera, choroid and 

retinal pigment epithelium were gently separated from the retina under cold superfusate 

to isolate the retina.  A razor blade tissue slicer (Stoelting Co.) was used to cut the 

isolated retina into 125-µm slices, which were then rotated 90 degrees and anchored to 

the recording chamber with vacuum grease.  Dissections were performed under room 

lights.  The retinal cells were visualized using an upright fixed-stage microscope 

(E600FN; Nikon) equipped with a long working distance, 60X, 1.0 NA water-immersion 

objective. The tissue was superfused at ~1 ml/min with an oxygenated amphibian saline 

solution containing the following (in mM): 111 NaCl, 2.5 KCl, 1.8 CaCl2, 0.5 MgCl2, 5 

glucose, and 10 HEPES (pH 7.8; 240-245 mOsm).  A 0 Ca2+ extracellular solution was 

prepared by adding 1 mM EGTA to a Ca2+-free extracellular solution in order to buffer 
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any residual Ca2+.  In some instances other pharmacological agents were also added to 

the perfusion solution as detailed below.   

 

2.2b Electrophysiology and mEPSC analysis 

Whole-cell patch clamp recordings from postsynaptic horizontal cells (HCs) were 

made using the retinal slice preparation described above.  Borosilicate glass pipettes 

(1.2 mm outer diameter, 0.9 mm inner diameter, with internal filament; World Precisions 

Instruments) were used to make recording pipettes with a Narishige PP-830 vertical 

puller to produce tips of 1-2 μm in diameter and resistance values between 12-20 MΩ.  

Pipettes were filled with a solution containing the following (in mM): 40 Cs glutamate, 50 

Cs gluconate, 10 TEACl, 3.5 NaCl, 1 CaCl2, 1 MgCl2, 10 MgATP, 0.5 GTP, 5 EGTA, and 

10 HEPES (pH 7.2; 235-240 mOsm).  Huxley-Wall micromanipulators were used to 

position pipettes such that the tip contacted the cell body, which was identified 

morphologically based on position within the retinal layers.  Once a giga-ohm seal was 

formed, gentle suction was used to rupture the patch. HCs were voltage clamped at -60 

mV with a Multiclamp 700A amplifier (Axon Instruments), which was controlled using an 

Axon Instruments Digidata 1550 interface (Molecular Devices) and pClamp 10.4 

software (Axon/Molecular Devices).  Quantal mEPSCs in HCs were detected and 

analyzed using Minianalysis 6.0.7 (Synaptosoft, Inc., Decatur, GA).  Events were 

detected using an amplitude threshold of 2 pA and an area threshold of 5 pC.  After 

automated detection, each mEPSC was then evaluated individually by eye and the peak 

amplitude recalculated as necessary.  Double peaks were analyzed using an algorithm 

within Synaptosoft that extrapolates the exponential decay of the first peak. 

Presynaptic currents in rod and cone photoreceptors arising from activation of 

glutamate transporter currents were measured using a pipette solution contained 90 mM 
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potassium thiocyanate in place of the 40 mM Cs glutamate and 50 mM Cs gluconate 

(Picaud et al., 1995; Szmajda & Devries, 2011).  Use of thiocyanate enhanced the anion 

currents associated with glutamate transporter activation. Photoreceptors were voltage 

clamped at -70 mV. 

 

2.2c Imaging 

For imaging experiments with total internal reflection fluorescence (TIRF) 

microscopy, isolated rod photoreceptors were used.  The retina was dissected under 

infrared illumination and isolated in a solution containing the following (in mM): 116 

NaCl, 2.5 KCl, 1.8 CaCl2, 0.5 MgCl2, 10 HEPES, and 5 glucose (pH 7.8). The tissue was 

kept in darkness to maintain rods in a depolarized state and incubated with a 10-kDa 

dextran-conjugated, pH-sensitive form of rhodamine (pHrodo, 500 µg/ml; Invitrogen) for 

3 min at 20°C. This brief incubation period loads only a small fraction (~3%) of synaptic 

vesicles allowing individual vesicles to be visualized under TIRF illumination (Chen et al., 

2013). After dye loading was complete, retinas were placed in a nominally Ca2+-free 

saline solution and exposed to light to limit further vesicle cycling.  Next, the retina was 

prepared for dissociation by incubation with papain (30 U/ml; Worthington) plus cysteine 

(0.2 mg/ml) in nominally Ca2+-free amphibian saline for 35 min at 20°C.  The tissue was 

then washed and triturated using a fire-polished Pasteur pipette.  The cell suspension 

containing isolated rods was transferred onto 1.78 refractive index glass coverslips 

(Olympus) coated with Cell-Tak (3.5 µg/cm2; BD Biosciences) 30 min prior to imaging.  

During the imaging experiments, the tissue was superfused with oxygenated amphibian 

saline solution at room temperature.  Imaging was done using a 1.65 numerical aperture 

objective (Apo 100X oil; Olympus) with a solid-state laser at 561 nm wavelength (Melles 

Griot) illuminating the pHrodo-loaded vesicles.  Fluorescence emission was filtered with 
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a 609 nm (54 nm wide) bandpass filter (Semrock) and collected by an electron 

multiplying CCD camera at 30–40 ms/frame (Hamamatsu ImageEM) with a pixel size of 

80 nm/pixel.  Data were acquired and analyzed using MetaMorph software (Molecular 

Devices).   

Spontaneous release from rods was measured in standard amphibian saline 

solution with the addition of Cd2+ plus dantrolene to block Ca2+ channels.  Alternatively, 

spontaneous release was measured in rods that were voltage clamped at -70 mV.  In 

these same cells, Ca2+ imaging was then used to determine the sites of Ca2+ influx.  In 

rod photoreceptors, the Ca2+ channels are clustered beneath the synaptic ribbons 

(Nachman-Clewner et al., 1999; tom Dieck et al., 2005; Choi et al., 2008; Mercer & 

Thoreson, 2011).  As a result, sites of focal Ca2+ entry evoked by brief 50-ms 

depolarizing steps from -70 to -10 mV co-localize with the ribbons (Chen et al., 2013). 

Therefore, these sites of focal Ca2+ entry can be used as an indication of ribbon location, 

since ribbons in photoreceptors are difficult to visualize directly using TIRF microscopy, 

perhaps because of their distance from the plasma membrane (Chen et al., 2013).  To 

image Ca2+ entry sites, fluo-5F (100 μM, Kd = 2.3 μM, Invitrogen) was added to the 

pipette solution.  Ca2+ entry sites were defined as the sites of peak fluorescence 

increases evoked by 50-ms steps with ΔF/F > 0.5.  In some instances labeled vesicles 

approached the vesicle membrane but were not released.   True release events were 

distinguished from non-release events based on the rapid decline in fluorescence 

following fusion and subsequent release of pHrodo.  Release events were defined as a 

decline in peak fluorescence intensity of greater than 60% within two 40-ms frames with 

a total decrease in fluorescence of >90% relative to baseline.  More details on the 

imaging technique can be found in Chen et al., 2013.   

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3910126/#B36
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3910126/#B36
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3910126/#B11
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2.2d Pharmacology 

Multiple pharmacological methods were used to study the Ca2+-dependence of 

baseline release.  Drug solutions were prepared in amphibian saline solution and 

superfused over the slice preparations unless otherwise noted.  100 µM cadmium (Cd2+, 

Sigma Chemicals) was used to block influx through Ca2+ channels.  10 µM of the 

ryanodine receptor blocker dantrolene was used to block Ca2+ release from internal 

stores (Chen et al., 2014). Due to concerns about incomplete recovery after washout, 

each slice preparations was only exposed to Cd2+ one time, after which a new slice 

preparation was made for subsequent experiments.   In some experiments, retinal slices 

were incubated with 100 µM EGTA-AM (Life Technologies) for 2 hours prior the start of 

the electrophysiology recordings to increase buffering of intracellular Ca2+.   

 

2.2e Analysis 

Whole cell and paired recordings were analyzed with pClamp 10.4 software.  

Data were analyzed using GraphPad Prism 4 to determine the mean ± SEM.   Statistical 

significance of differences between experimental conditions was determined using two-

tailed independent or paired Student's t tests with p < 0.05.  A Kolmogorov–Smirnov test 

(KS test) was used to compare cumulative frequency curves.   

Amplitude histograms of mEPSCs were fit with a multiple Gaussian function 

where the integrals of the Gaussian fit were constrained to a binomial distribution using 

approaches described in detail by Freed and Liang (2014).  The average quantal content 

of each mEPSC was calculated as 𝑚 = 𝑛𝑝/[1 − (1 − 𝑝)𝑛] where 𝑛 = the number of 

release sites participating in release and 𝑝 = release probability. In our fits, we 

constrained 𝑛 < 7. 
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2.3 Results 

 

2.3a HC mEPSCs persist when synaptic Ca2+ is reduced 

The persistence of mEPSCs in bipolar cells following application of 2 mM Co2+ in 

nominally Ca2+-free solution suggests that there may be a mechanism for Ca2+-

independent release of vesicles from photoreceptors (Maple et al., 1994).  However, the 

effects of nominally Ca2+-free solutions on membrane surface charge can enhance L-

type Ca2+ currents in photoreceptors at or below the dark resting membrane potential.  

This allows functionally significant currents to persist in the presence of Co2+ (Piccolino 

et al., 1996; Piccolino and Pignatelli, 1996), raising concerns that Co2+ might not have 

completely blocked Ca2+ influx.  CICR is also a major mechanism for controlling release 

from rods (Suranarayanan and Slaughter, 2006; Babai et al., 2010; Chen et al., 2014).  

We therefore tested effects on HC mEPSCs of inhibiting Ca2+ channels with Cd2+ (100 

µM) and inhibiting CICR with dantrolene (10 µM).  In light-adapted retinas under control 

conditions, we consistently detected mEPSCs in HCs arising from baseline release 

events.  HCs receive both rod and cone inputs (Thoreson et al., 2002; Zhang et al., 

2006), so mEPSCs detected in the HCs are typically a mix from both rods and cones.  

Fig. 4A shows a representative trace with multiple mEPSCs.  Even in this light-adapted 

preparation, resting potentials of photoreceptors are likely to be sufficiently depolarized 

(-50 to -60 mV) to activate a fraction of the L-type Ca2+ channels in their synaptic 

terminals.  If the baseline mEPSCs in control conditions were entirely due to Ca2+ and/or 

CICR, then application of Cd2+ plus dantrolene should completely abolish these events.  

Cd2+ (100 µM) completely blocked the rod Ca2+ current and dantrolene (10 µM) has been 

shown to block CICR in rods (Chen et al., 2014).  We found that, although the frequency 
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diminished considerably, a large number of mEPSCs persisted in Cd2+ plus dantrolene.  

This is illustrated by a representative trace from the same cell in Fig. 4B.  Fig. 4C and D 

show the mEPSC amplitude distributions for the records in Fig. 4 A and B, respectively.  

In addition to reducing frequency, application of Cd2+ plus dantrolene also reduced the 

average amplitude of mEPSCs relative to control conditions (Fig. 4 B and D, KS test P < 

0.001).   

Amplitude histograms in control conditions and in Cd2+ plus dantrolene could be 

fit by a sum of Gaussians where the integrals of the Gaussians are constrained to a 

binomial distribution (Singer et al., 2004; Freed & Liang, 2014). The quantal content of 

mEPSCs in control and Cd2+ plus dantrolene conditions did not differ significantly, 

averaging 1.13 ± 0.03 and 1.17 ± 0.05 respectively (P = 0.34 paired t-test, N = 7).  

These results suggest that a similar small number of events in both conditions arise from 

the simultaneous coordinated release of more than one vesicle. Thus, the smaller 

amplitude of mEPSCs in Cd2+ plus dantrolene is not due to a lower frequency of 

coordinated release events.  Furthermore, these results suggest that the mechanisms 

responsible for this coordinated release did not differ for Ca2+-dependent and Ca2+-

independent spontaneous release.  We obtained poor fits to amplitude histograms when 

we constrained the mean quantal amplitude for control mEPSCs to the smaller value 

determined for Ca2+-independent mEPSCs from the same cell.  This indicates that the 

quantal amplitude of control baseline mEPSCs is not a multiple of the smaller amplitude 

Ca2+-independent events observed in Cd2+.   

To compare kinetics of mEPSCs in control vs. Cd2+ plus dantrolene conditions, 

we analyzed ~100 well-isolated events in both conditions to determine their rise and 

decay time constants.  In control, the rise time was 2.11 ± 0.03 ms and the decay 

averaged 2.94 ± 0.31 ms.  The rise and decay times in Cd2+ plus dantrolene did not differ 
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significantly, averaging 2.09 ± 0.06 ms and 2.91 ± 0.34 ms respectively (rise P = 0.81, 

decay P = 0.88).  The fact that the kinetics did not differ significantly suggests that the 

smaller size of Ca2+-independent spontaneous release was not due to release at 

significantly more distant sites that would be expected to produce longer diffusional 

distances and/or greater electrotonic decay.  
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Figure 4:  mEPSCs persisted after blocking Ca2+ channels with Cd2+ (100 mM) and 
CICR with dantrolene (10 mM).   

 

mEPSCs were measured by whole-cell patch clamp recording in horizontal cells (HCs).  
Representative traces showing mEPSCs in control conditions (A) and following 
application of Cd2+ plus dantrolene in the same cell (B).   (C) and (D) show mEPSC 
amplitude histograms from the same cell.  The dashed lines show the baseline noise 
histograms.  Distributions were fit with a binomially-constrained multiple Gaussian curve.  
Control data were fit with an amplitude (± S.D.) of 5.01 ± 1.12 pA, n = 2 release sites and 
release probability of 0.168 yielding a quantal content of m = 1.21 vesicles/release site.   
Cd2+ plus dantrolene data were fit with an amplitude of 3.74 ± 0.79 pA, 2 release sites, 
and release probability of 0.167 yielding a quantal content of 1.09 vesicles/release site.  
Control: 115 events.  Cd2+plus dantrolene: 108 events. 
  



47 

 

[Type text] 
 

 

We examined potential sources of Ca2+ that might support spontaneous baseline 

release.  We focus first on mEPSC frequency and consider effects of these agents on 

mEPSC amplitude later. The lowest mEPSC frequency was observed in Cd2+ plus 

dantrolene (19.0 ± 4.15 Hz; N = 7 HCs).  Application of Cd2+ alone without dantrolene 

reduced frequency to a lesser extent (36.0 ± 7.42 Hz, P = 0.08, N = 8 HCs).  To test the 

possibility that spontaneous release might be mediated by Ca2+ influx through other 

types of Ca2+-permeable channels that are not blocked by Cd2+, we applied 0 Ca2+ 

solution plus EGTA (1 mM) to ensure removal of residual Ca2+ from the extracellular 

solution.  With 0 Ca2+ plus EGTA, the frequency of mEPSCs was reduced significantly 

relative to control (Fig. 5A, 27.4 ± 6.28 Hz, P < 0.05, N = 5 HCs), but remained slightly 

higher than that seen with Cd2+ plus dantrolene.  This suggests that influx through other 

Ca2+-permeable channels did not contribute significantly to spontaneous release. 

Consistent with this, adding Gd3+ (30 µM) to block store-operated channels in the 

presence of Cd2+ also did not further reduce mEPSC frequency (37.0 ± 11.49 Hz, P = 

0.94, N = 6 HCs).  

An alternative mechanism by which extracellular Ca2+ could trigger spontaneous 

release is through activation of Ca2+-sensing receptors (Vyleta & Smith, 2011).  We 

tested a positive allosteric modulator for Ca2+-sensing receptors, calindol (5 µM), and 

observed no significant effect on mEPSC frequency (KS test, P = 0.81, N = 6) or 

amplitude (KS test, P = 0.70, N = 6).  Furthermore, this mechanism does not explain the 

persistence of mEPSCs in 0 Ca2+ extracellular solution.  These results indicate that 

spontaneous HC mEPSCs are not the result of activating Ca2+-sensing receptors in 

photoreceptors.   
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The residual release seen in Cd2+ plus dantrolene shows that there is a 

component of baseline vesicle release from photoreceptors that does not require Ca2+ 

influx through membrane channels. However, it is possible that the basal level of 

intracellular Ca2+ is sufficient to drive vesicle release, especially at photoreceptor 

synapses that employ an exocytotic Ca2+ sensor exhibiting a threshold of only ~400 nM 

Ca2+ and a low Ca2+ cooperativity of 1-2 (Thoreson et al., 2004; Duncan et al., 2010). 

Increasing intracellular Ca2+ buffering with EGTA-AM or BAPTA-AM can reduce the 

frequency of spontaneous miniature postsynaptic currents (Xu et al., 2009; Goswami et 

al., 2012; Schneider et al., 2015). If basal Ca2+ triggers spontaneous HC mEPSCs, we 

expected to see a decrease in mEPSC frequency relative to control when we increased 

intracellular buffering by incubating retinas in EGTA-AM (100 µM) for 2 hours.  After 

EGTA-AM incubation, the frequency of mEPSCs was no different from control untreated 

slices (Fig. 5A, 56.69 ± 10.60 Hz, P = 0.92, N = 6 HCs).  Addition of Cd2+ plus dantrolene 

to slices incubated in EGTA-AM did not reduce mEPSC frequency (Fig. 5A- 56.05 ± 

12.53 Hz, P = 0.97, N = 6 HCs) suggesting that the spontaneous mEPSCs observed 

under these conditions were Ca2+-independent. Nanodomains of Ca2+ were unlikely to 

be the cause of the remaining release, because Cd2+ blocked influx through Ca2+ 

channels.        

 As mentioned earlier, in addition to lowering release frequency, Cd2+ plus 

dantrolene reduced mEPSC amplitude from 5.64 ± 0.35 pA (N = 17 HCs) to 4.45 ± 0.36 

pA (Fig. 5, P < 0.001 paired t-test, N = 7 HCs).  Amplitude was also reduced in 0 Ca2+ 

extracellular solution to 4.7 ± 0.35 pA (N = 5 HCs) although this reduction did not reach 

statistical significance (P = 0.08 paired t-test). After incubation with EGTA-AM, mEPSCs 

showed an amplitude of 5.20 ± 0.30 pA (Fig. 5B- N = 6 HCs), which was not significantly 

different from control (P = 0.50).  After incubation with EGTA-AM followed by application 
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of Cd2+ plus dantrolene, mEPSCs also exhibited a mean amplitude of 5.60 ± 0.52 pA 

(Fig. 5B- N = 6 HCs) that did not differ significantly from control (P = 0.96).  The decline 

in mEPSC amplitude appeared to parallel effects on frequency (Fig. 4).  One potential 

contributor to this decline in amplitude is that lower release frequency promotes 

detection of smaller events, thus skewing the distribution downward.  While this likely 

contributed to some of the amplitude changes, there was also a genuine reduction in the 

number of large events in the presence of Cd2+ plus dantrolene.  This can be seen, for 

example, by comparing the example traces show in Fig. 4.  We investigate the source of 

this amplitude reduction further in the next set of experiments. 
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Figure 5: HC mEPSCs are lower in frequency and amplitude when Ca2+ influx and 
efflux are inhibited.   

 

mEPSCs were recorded in HCs voltage clamped at -60 mV.  (A) HC mEPSCs in control 
conditions exhibited a frequency of 55.7 ± 4.66 (N = 17 HCs).  Application of Cd2+ (100 
µM) plus dantrolene (10 µM) reduced the frequency of mEPSCs to 19.0 ± 4.15 Hz (N = 7 
HCs).  This was significantly lower than in control conditions (P < 0.001), but also 
remained significantly non-zero (P < 0.05, one-sided t-test).  In 0 Ca2+ extracellular 
solution with EGTA (1 mM) to buffer any residual Ca2+, mEPSCs showed a frequency of 
27.4 ± 6.28 Hz (N = 5 HCs), significantly lower than control (P < 0.05), but significantly 
non-zero (P < 0.05, one-sided t-test).  After incubation with EGTA-AM (100 µM) for 2 
hours to increase buffering of intracellular Ca2+, mEPSCs had a frequency of 56.7 ± 10.6 
Hz (N = 6 HCs), which was not significantly different from control (P = 0.92).  Application 
of Cd2+ plus dantrolene to slices incubated in EGTA-AM (100 µM) did not reduce 
frequency (56.1 ± 12.5 Hz; N = 6 HCs).  (B) In control conditions, mEPSCs had an 
amplitude of 5.64 ± 0.35 pA (N = 17 HCs).  In Cd2+ plus dantrolene, mEPSCs had a 
significantly smaller amplitude of 4.45 ± 0.36 pA (P < 0.001, N = 7 HCs).  In 0 Ca2+ 
extracellular solution, mEPSCs had an amplitude of 4.71 ± 0.35 pA (P = 0.08 paired t-
test compared to control, N = 5 HCs).  After incubation with EGTA-AM, mEPSCs had an 
amplitude of 5.20 ± 0.30 pA (N = 6 HCs).  After incubation with EGTA-AM followed by 
application of Cd2+ plus dantrolene, mEPSCs had an amplitude of 5.60 ± 0.52 pA (N = 6 
HCs).  Increasing intracellular Ca2+ buffering with EGTA-AM did not change mEPSC 
frequency (P = 0.92 EGTA-AM, P = 0.97 EGTA-AM + Cd2+ + dantrolene) or amplitude (P 
= 0.50 EGTA-AM, P = 0.96 EGTA-AM + Cd2+ + dantrolene) relative to control.     
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2.3b mEPSCs result from glutamate release by rods and cones 

The release of glutamate-filled vesicles activates glutamate transporters on 

presynaptic photoreceptors producing anion currents that can be used to detect release 

events (Picaud et al., 1995; Szmajda & Devries, 2011). To enhance glutamate 

transporter anion currents, we recorded from rods and cones using a patch pipette 

containing thiocyanate as the primary anion (Szmajda & Devries, 2011).  In rods voltage 

clamped at -70 mV with this pipette solution, we observed spontaneous inward currents 

as illustrated in Fig. 6. As expected for transporter anion currents, presynaptic events 

were blocked by the glutamate transport inhibitor, TBOA (100 µM, N = 4 rods, Fig. 6A).  

The spontaneous events in rods had much slower kinetics than those in horizontal cells 

with rise times averaging 7.95 ± 0.33 ms and decay times averaging 6.67 ± 0.90 ms (N = 

7 rods).  As illustrated in Fig. 6B, application of Cd2+ (100 µM) significantly reduced the 

frequency of rod presynaptic events relative to control conditions (9.1 ± 0.65 Hz control; 

6.3 ± 0.79 Hz Cd2+; paired t-test P = 0.02, N = 7 rods).  This result is consistent with the 

reduction in frequency of HC mEPSCs found in Cd2+.  The amplitude of rod presynaptic 

events in Cd2+ was also reduced significantly relative to control conditions (7.56 ± 1.06 

pA control; 5.66 ± 0.96 pA Cd2+; paired t-test P < 0.001, N = 7 rods).  Similar to HC 

mEPSCs, application of Cd2+ abolished larger events in rods, leaving only smaller events 

as illustrated in Fig. 6B.  This indicates that the smaller size of mEPSCs observed in 

recordings from HCs is due to reduced presynaptic release of glutamate and not post-

synaptic factors such as inhibition of glutamate receptors by Cd2+.  These data indicate 

that when rods are voltage-clamped at -70 mV where few if any Ca2+ channels should be 

open, baseline release involves both larger Ca2+-dependent and smaller Ca2+-

independent release events.  
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HCs in salamander retina receive inputs from both rods and cones (Zhang et al., 

2006), so we determined whether cones were also capable of Ca2+-independent release 

of vesicles.  As with rods, we observed quantal presynaptic glutamate anion currents in 

cones voltage-clamped at -70 mV under control conditions (Fig. 6C).  This finding 

supports the assumption that spontaneous mEPSCs in HCs are the result of release 

from both rods and cones.  The kinetics of presynaptic events in cones were even 

slower than those in rods (rise 9.15 ± 0.23 ms, P = 0.016; decay 14.8 ± 1.27 ms, P < 

0.001, N = 6 cones), which may reflect differences in the locations of glutamate 

transporters relative to release sites (Vandenbranden et al., 2000; Hasegawa et al., 

2006; Rowan et al., 2010). Presynaptic events in cones were also abolished when TBOA 

was applied (data not shown). As in rods, Cd2+ (100 µM) completely blocked the cone 

Ca2+ current (N = 6 cones; not shown) but presynaptic events persisted (Fig. 6C).  In 

cones, evoked release appears to occur only at ribbon sites (Snellman et al., 2011). The 

presence of quantal anion currents in cones after blockade of Ca2+ channels is therefore 

consistent with spontaneous release occurring at ribbons although it is possible that 

Ca2+-independent release might also involve non-ribbon sites that do not participate in 

evoked release.  Similar to both rods and HCs, the average amplitude of cone 

presynaptic events was also reduced after Cd2+ was applied (6.87 ± 0.58 pA control; 

5.32 ± 0.54 pA Cd2+; paired t-test P = 0.037, N = 5 cones). There was not a significant 

change in frequency of cone presynaptic events (9.7 ± 0.75 Hz control; 10.1 ± 2.00 Hz 

Cd2+; paired t-test P = 0.80, N = 5 cones). Like rods, these data suggest there are both 

larger Ca2+-dependent and smaller Ca2+-independent components to spontaneous 

release from cones at -70 mV.  The lack of a significant change in frequency suggests 

that there are few large Ca2+-dependent events in cones and that their loss has smaller 

effects on frequency than average amplitude. 
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Figure 6: Presynaptic release events detected by glutamate transporter anion 
currents in rod and cone photoreceptors.  

  

(A) Presynaptic release events in rods voltage clamped at -70 mV were blocked by 
inhibiting the glutamate transporter with TBOA (100 µM). (B) Application of Cd2+ (100 
µM) reduced the frequency and amplitude of presynaptic events but did not eliminate 
them.  (C) Release events in cones voltage clamped at -70 mV were also reduced in 
amplitude by application of Cd2+ (100 µM).   
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2.3c Independence of vesicle pool involved in spontaneous and evoked release 

The finding that Ca2+-independent spontaneous mEPSCs were smaller in 

amplitude than Ca2+-dependent mEPSCs suggests that they may arise from different 

vesicle populations.  To test this idea further, we inhibited the vesicular ATPase with 

bafilomycin to inhibit glutamate refilling of vesicles.  We then compared evoked EPSCs 

and baseline mEPSCs during bafilomycin application. To evoke EPSCs, we obtained 

paired whole cell recordings from a rod and post-synaptic HC and then stimulated the 

rod with a depolarizing voltage step (-70 to -10 mV, 100 ms) at one-minute intervals.  As 

illustrated in Fig. 7A, a depolarizing voltage step applied to rods typically evoked an 

initial fast EPSC followed by slower EPSC components.  The initial fast component has 

been shown to be due to release from synaptic ribbons (Chen et al., 2013, 2014). The 

second slower component is primarily due to non-ribbon release driven by CICR (Chen 

et al, 2014). Slow EPSC components also involve release from neighboring rods evoked 

by the flow of depolarizing current through gap junctions (Cadetti et al., 2006; Chen et 

al., 2014).  Release by this mechanism was limited in our experiments by 

hyperpolarizing neighboring rods with application of a bright background light (Chen et 

al., 2014). Fig. 7C and D plot the amplitude of the fast, ribbon-mediated component (C) 

and the second, slower, non-ribbon component (D) as a function of time. In control 

conditions, EPSCs exhibited rundown during paired recording, with the faster ribbon-

mediated EPSC component showing a more rapid rundown than the slower component.  

Applying bafilomycin (7 mM) caused a slight, but not statistically significant, acceleration 

of rundown in both fast and slow EPSC components.  On the other hand, bafilomycin 

caused a larger and statistically significant decline in both the frequency (Fig. 7E) and 

amplitude (Fig. 7F) of baseline mEPSCs measured in the absence of stimulation.  After 

10 min. of bafilomycin treatment, mEPSC frequency had declined by 40% and amplitude 
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by 19%.  The decline in amplitude is likely due to incomplete re-filling of vesicles 

following their turnover (Cavelier & Attwell, 2007). Based on the reductions in mEPSC 

amplitude and frequency, if the pools involved in spontaneous and evoked release 

mixed thoroughly, then one would predict that treatment with bafilomycin should have 

reduced EPSCs and mEPSCs by a similar percentage. 
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Figure 7: Using the vesicular ATPase inhibitor bafilomycin to block refilling of 
vesicles with glutamate causes different rates of decline in EPSCs and mEPSCs.   

 

(A) A representative HC EPSC in control conditions evoked by a 200-ms depolarizing 
step from  -70 to -10 mV in a paired rod.  There is an initial fast EPSC due to release 
from ribbons followed by a second slower peak due to non-ribbon release (Chen et al., 
2014).  (B) EPSC evoked in the same rod/HC pair 15 min after application of bafilomycin 
(7 µM).  There was a decrease in amplitude of both EPSC peaks.  (C) Decline in 
amplitude of the fast, ribbon-mediated EPSC peak in control conditions and following 
bafilomycin application.  Bafilomycin was applied at 4 minutes (dashed vertical lines).  
(D) Decline in amplitude of the 2nd EPSC peak in control conditions and following 
bafilomycin application.  Both the 1st and 2nd EPSC peaks declined in control conditions 
due to rundown.  The decrease in EPSC amplitude was slightly but not significantly 
accelerated by bafilomycin (peak 1: P = 0.65, N = 9 rod/HC pairs bafilomycin, N = 8 
rod/HC pairs control; peak 2: P = 0.44, N = 8 rod/HC pairs bafilomycin, N = 8 rod/HC 
pairs control).  (E) HC mEPSC frequency declined significantly during application of 
bafilomycin  (P = 0.03, N = 7 HCs bafilomycin, N = 8 HCs control).  (F) HC mEPSC 
amplitude declined significantly during application of bafilomycin (P = 0.03, N = 7 HCs 
bafilomycin, N = 8 HCs control). 
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2.3d Spontaneous release can occur at ribbon and non-ribbon sites 

Since evoked release appears to occur only at ribbons in cones (Snellman et al., 

2011), the persistence of spontaneous events in cones following application of Cd2+ 

suggests that Ca2+-independent release can occur at ribbons.  In rods, evoked release 

can occur at both ribbon and non-ribbon sites (Chen et al., 2013; Zampighi et al. 2011). 

We therefore examined the sites of release in rods using total internal reflection 

fluorescence (TIRF) microscopy.  To visualize individual release events, vesicles within 

rod terminals were loaded with a 10-kD dextran-conjugated pH-sensitive form of 

rhodamine (pHrodo). This dye fluoresces in the acidic conditions within the vesicle, but 

its fluorescence is quickly quenched when exposed to the slightly alkaline extracellular 

medium. We used a short incubation period of 3 minutes with the dye to load only 1-3% 

of the vesicles and thus visualize individual vesicle fusion events (Chen et al., 2013).   

 We first measured spontaneous release events in the presence of Cd2+ (100 µM) 

plus dantrolene (10 µM) to block influx through Ca2+ channels and efflux from internal 

stores, matching the condition in which HC mEPSC frequency was the lowest.  With 

Cd2+ plus dantrolene we observed spontaneous vesicle release events at sites 

throughout rod terminals (Fig. 8A), rather than being clustered together as occurs when 

release occurs principally at ribbon release sites (Chen et al., 2013, 2014).    

Ca2+ channels are clustered at ribbons and so, to locate ribbon sites, we 

identified hot spots of Ca2+ influx using the Ca2+-sensitive dye fluo-5F (Chen et al., 

2013). Use of ribbon-targeted fluorescent peptides was a less reliable way of identifying 

ribbons (Chen et al. 2013). Because we were unable to identify hot spots of Ca2+ influx 

after blocking Ca2+ channels with Cd2+, we instead visualized the location of 

spontaneous release events that occurred in rod terminals voltage-clamped at -70 mV 

(Fig. 8B). Evidence from glutamate transporter currents indicates that spontaneous 
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release events consisted of both Ca2+-dependent and Ca2+-independent release. We 

applied a 50-ms voltage step to -10 mV to trigger a brief influx of Ca2+ so that we could 

locate hot spots of Ca2+ influx at ribbons (Chen et al., 2013). Fig. 8C replots data from 

Chen et al. (2013) showing the distance of individual vesicle fusion events evoked by the 

depolarizing voltage step from the nearest Ca2+ hot spot, which can be used as a proxy 

for the ribbon location. These data showed that release evoked by 50-ms steps tended 

to cluster close to ribbons. We analyzed data from these same cells to determine the 

distance from the nearest Ca2+ hot spot for spontaneously occurring baseline release 

events that preceded the voltage step. As shown in Fig 8C, these baseline, unstimulated 

release events tended to occur farther away from Ca2+ entry sites than release events 

stimulated by a 50-ms step (KS test P < 0.001) suggesting that many spontaneous 

release events occurred at non-ribbon sites.   
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Figure 8:  Spatial distribution of spontaneous release events visualized by TIRF 
microscopy in rod terminals where vesicles were loaded with 10 kD dextran-
conjugated pHrodo.   

 

(A) Map of spontaneous release events occurring in the presence of Cd2+ (100 µM) and 
dantrolene (10 µM). The gray region shows the footprint of the rod terminal membrane 
pressed against the coverslip.  Ca2+-independent spontaneous release events did not 
appear to be clustered at any particular location but occurred throughout the terminal.  
(B) A map of release sites in a different rod that was voltage-clamped at -70 mV also 
shows spontaneous release events occurring throughout the rod terminal. (C) 
Exocytosis events following a 50-ms voltage step from -70 to -10 mV to evoke 
exocytosis occur closer to Ca2+ entry sites at ribbons (data replotted from Chen et al., 
2013) than events occurring in un-stimulated rods.  Baseline release events in 
unstimulated rods occurred more often further away from Ca2+ entry sites than 
depolarization-evoked release indicating that spontaneous release events can occur at 
non-ribbon sites (KS test P < 0.001, N = 50 events- 50 ms, N = 81 events- unstimulated).  
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2.4 Discussion 

 

2.4a Mechanisms of baseline release 

Vertebrate photoreceptors do not exhibit fast sodium-dependent action potentials 

but instead vary their membrane potential continuously with changes in light intensity 

and the state of adaptation. The resting membrane potential of about -40 mV in 

darkness drives continuous release of vesicles.  Our study delineates three components 

to this continuous release:  1) Ca2+-dependent, evoked release driven by the sustained 

activation of L-type Ca2+ channels that diminishes when photoreceptors are 

hyperpolarized by light, 2) Ca2+-dependent spontaneous release that occurs even when 

photoreceptors are hyperpolarized to -70 mV where L-type Ca2+ channels are generally 

thought to remain in the closed state, and 3) Ca2+-independent spontaneous release that 

persists even after  inhibiting Ca2+ influx with Cd2+ or Ca2+-free extracellular solution.  

Our data suggest that the mEPSCs that remain after reduction of synaptic Ca2+ are likely 

due to a Ca2+-independent release mechanism that does not require Ca2+ influx, Ca2+ 

release from intracellular stores, or high basal levels of intracellular Ca2+.   However, in 

the light-adapted state of the retinas that we studied, much of the baseline release was 

likely due to Ca2+-dependent spontaneous release.  

The reduction in amplitude of HC mEPSCs and quantal currents in 

photoreceptors by Cd2+ suggests that Ca2+-independent events are smaller than Ca2+-

dependent release events.  Their smaller size suggests that Ca2+-independent 

spontaneous release involves different vesicles than either evoked or spontaneous Ca2+-

dependent release.  Bafilomycin caused a more rapid decline in spontaneous mEPSCs, 

which in this case consisted of both Ca2+-dependent and Ca2+-independent release, than 
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in evoked EPSCs, supporting the idea that vesicles involved in evoked and at least one 

form of baseline release may originate from different vesicle pools.   

Some studies suggest that different molecular mechanisms mediate evoked and 

spontaneous release, whereas others suggest that the same mechanisms may mediate 

both (Deitcher et al., 1998; Deak et al., 2006; Glitsch, 2008; Smith et al., 2012; Kaeser & 

Regehr, 2014). The initial hypothesis to explain the origins of spontaneous release was 

that it might occur through SNARE-mediated membrane fusion driven by Ca2+-

independent, thermodynamic changes in SNARE conformation. But it has also been 

proposed that a special Ca2+ sensor such as Doc2 may mediate Ca2+-dependent 

spontaneous release (Groffen et al., 2010). Doc2 might also be involved in Ca2+-

independent spontaneous release (Pang et al., 2011).  Although its molecular identity 

remains unclear, the sensor that mediates exocytosis at photoreceptor synapses 

exhibits high Ca2+ affinity and low cooperativity (Thoreson et al., 2004; Duncan et al., 

2010), properties that are similar to the sensor thought to mediate asynchronous and 

spontaneous release at other synapses (Lou et al., 2005; Sun et al., 2007). It has also 

been suggested that distinct SNARE proteins, such as the noncanonical SNAREs 

VAMP7 (Hua et al., 2011) and Vti1a (Ramirez et al., 2012), may mediate spontaneous 

release (Hua et al., 1998; Scheuber et al., 2006). Differences in SNARE configurations 

caused by different SNARE isoforms or associated proteins might alter the preference 

for spontaneous or evoked release (Maximov et al., 2009; Buhl et al., 2013) by altering 

domain structure of the SNARE complex (Weber et al., 2010). For example, the 

expression of complexin 3/4 subtypes at ribbon synapses constrains ongoing 

spontaneous release from bipolar cells (Vaithianathan et al., 2013, 2015).   

 

2.4b Sources of Ca2+-independent spontaneous release 
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Post-synaptic recordings from HCs, which receive both rod and cone inputs, and 

presynaptic recordings from both photoreceptor types, indicate that Ca2+-independent 

spontaneous release can occurred in both rods and cones. Our TIRF results show that 

when Ca2+ channels were blocked with Cd2+, release from rods occurs throughout the 

terminal, consistent with release at non-ribbon sites. We also observed Ca2+-

independent release in cones, where only ribbon release has been shown (Snellman et 

al., 2011). Taken together, these results suggest that Ca2+-independent release can 

occur at both ribbon and non-ribbon sites.    

At bipolar cell ribbon synapses, as well as other ribbon (Glowatzki & Fuchs, 

2002) and conventional synapses (Wadiche & Jahr, 2001; Raghavachari & Lisman, 

2004), release of vesicles can occur in coordinated bursts involving more than one 

vesicle.  Consistent with the presence of coordinated release of multiple vesicles in 

photoreceptors, we found that amplitude histograms of mEPSCs during baseline release 

could be fit with a multiple Gaussian function when the integrals of the Gaussian were 

constrained to a binomial distribution (Freed & Liang, 2014). Ca2+-independent 

spontaneous mEPSCs and mEPSCs in baseline control conditions that were largely due 

to Ca2+-dependent release both exhibited a similar quantal content averaging ~1.1 

vesicles/release event. These data suggest that a small fraction of baseline release 

events may be due to the coordinated release of multiple vesicles. By comparison, the 

average quantal content of spontaneous mEPSCs in retinal ganglion cells originating 

from bipolar cell release averaged  ~1.4 quanta/release event (Singer et al., 2004; Freed 

& Liang, 2014). If different mechanisms were employed for the release of Ca2+-

dependent and Ca2+-independent mEPSCs, then one would expect to see a difference in 

the propensity for coordinated multivesicular release. Thus, the finding of equivalent 

quantal content in both conditions suggests they involve similar mechanisms of release. 
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TIRF results indicate that spontaneous release in rods occurs with a greater frequency 

at non-ribbon sites than evoked release, but the sites of Ca2+-independent and Ca2+-

dependent spontaneous release did not differ dramatically. Together, these results 

suggest that the differences in amplitude between Ca2+-dependent and Ca2+-

independent mEPSCs are likely to arise from differences between the vesicles 

themselves, not differences in the sites or mechanisms of release.     

 

2.4c Functional impact of spontaneous release  

A number of functions have been proposed for spontaneous release, including 

maintenance of synaptic connections and potentiation of post-synaptic receptors 

(McKinney el al., 1999; Kombian et al., 2000; Carter & Regehr, 2002; Sutton et al., 

2006). Photoreceptor synapses do not show any evidence for synaptic potentiation. 

Furthermore, the frequency of Ca2+-dependent release, even when photoreceptors are 

hyperpolarized to -70 mV, should be sufficient for post-synaptic cells to recognize that 

connections to presynaptic photoreceptors are still present. Thus, the function, if any, for 

Ca2+-independent spontaneous release remains unclear.  

 While its functional significance remains unclear, one functional consequence of 

Ca2+-independent spontaneous release is to increase noise at photoreceptor synapses. 

Ca2+-independent spontaneous mEPSCs in HCs showed an average frequency of 19 Hz 

in the presence of Cd2+ and dantrolene, but the rate of release at any individual 

presynaptic release site is far lower. Although there are not similar numbers for HCs, 

Lasansky (1978) reported that each OFF-bipolar cell received 30-50 contacts from 10-15 

photoreceptors. Horizontal cells have larger light responses and larger receptive fields 

than OFF-bipolar cells, so HCs are likely to receive at least as many contacts as OFF 

bipolar cells. In cones, there appear to be ~15-20 release sites at the base of each 
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ribbon (Bartoletti et al., 2010). In rods, the readily releasable pool averages a slightly 

larger number of ~24 vesicles/ribbon (Van Hook & Thoreson, unpublished).  If we 

assume that each HC, like each OFF BP, receives 30-50 ribbon contacts and that each 

ribbon has 20 release sites at its base, then input into a horizontal cell may arise from 

600-1000 separate release sites. Given a total frequency of 19 Hz, this suggests a 

frequency at each release site of only 0.02-0.03 Hz or one release event every 30-50 s.  

Ribbon release sites in cones are replenished within about 1 s (Van Hook et al., 2014) 

suggesting that individual release sites are capable of sustaining release at a frequency 

of 15-24 vesicles/s/ribbon or ~1 Hz at each release site, almost 1000x greater than the 

spontaneous rate. A rate of 15-24 vesicles/s/ribbon is consistent with previous estimates 

of release in darkness (Ashmore & Copenhagen, 1983; Sheng et al., 2007). Assuming 

that 1200 release sites contact each HC, these data suggest that HC mEPSCs could 

occur at a rate of 1200 Hz in darkness. This high rate would support a steady inward 

current of ~20-30 pA in darkness given an individual mEPSC peak amplitude of 5 pA 

and duration of ~5 ms. This is similar to the amplitude of OFF bipolar cell light responses 

in salamander retina (Gao et al., 2000; Thoreson et al., 2003). However, dark-adapted 

HCs sometimes exhibit a light-evoked change in membrane current exceeding 300 pA 

suggesting that they receive ten times as many synaptic inputs (Yang et al., 1998; 

Thoreson et al., 2003). By under-estimating the number of photoreceptor contacts per 

horizontal cell and not including non-ribbon release sites where considerable 

spontaneous release can occur in rods, the actual frequency of spontaneous release per 

release site in photoreceptors is likely to be at least tenfold lower than 1 release event 

every 30-50 seconds.  This would approach the frequency at other synapses where 

spontaneous release has been estimated to occur as little as once every 1,000 s at each 

site (Kaeser & Regehr, 2014). Such a low frequency of spontaneous release would 

contribute little synaptic noise.  The post-synaptic impact of spontaneous mEPSCs may 
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be further minimized by the smaller size of Ca2+-independent mEPSCs. The impact of a 

single mEPSC would also be small because the low input resistance of most HCs would 

result in only a small change in voltage for a given current change.     
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Chapter 31 

 

Rapid kinetics of endocytosis at rod photoreceptor synapses depends upon 

endocytic load and calcium 

 

Abstract 

Release from rods is triggered by the opening of L-type Ca2+ channels that lie 

beneath synaptic ribbons. After exocytosis, vesicles are retrieved by compensatory 

endocytosis. Previous work showed that endocytosis is dynamin-dependent in rods but 

dynamin-independent in cones. We hypothesized that fast endocytosis in rods may also 

differ from cones in its dependence upon the amount of Ca2+ influx and/or endocytic 

load. We measured exocytosis and endocytosis from membrane capacitance (Cm) 

changes evoked by depolarizing steps in voltage clamped rods from tiger salamander 

retinal slices. Similar to cones, the time constant for endocytosis in rods was quite fast, 

averaging <200 ms. We manipulated Ca2+ influx and the amount of vesicle release by 

altering the duration and voltage of depolarizing steps. Unlike cones, endocytosis 

kinetics in rods slowed after increasing Ca2+ channel activation with longer step 

durations or more strongly depolarized voltage steps. Endocytosis kinetics also slowed 

as Ca2+ buffering was decreased by replacing BAPTA (10 or 1 mM) with the slower Ca2+ 

buffer EGTA (5 or 0.5 mM) in the pipette solution. These data provide further evidence 

that endocytosis mechanisms differ in rods and cones and suggest that endocytosis in 

rods is regulated by both endocytic load and local Ca2+ levels. 

 

1 The material presented in this chapter was previously published: Cork KM, Thoreson 
WB. (2014). Rapid kinetics of endocytosis at rod photoreceptor synapses depends upon 
endocytic load and calcium. Visual Neuroscience 31(3):227-35.
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3.1 Introduction  

 

To maintain signal transmission, neurons must sustain release of synaptic 

vesicles for long periods of time (Beutner et al., 2001; Wu et al., 2007; Alabi & Tsien, 

2012). This process requires tight coupling between exocytosis and endocytosis (Rieke 

& Schwartz, 1996; Gundelfinger et al., 2003; Haucke et al., 2011), with vesicles retrieved 

via compensatory endocytosis after their release (Pysh & Wiley, 1974; Miller & Heuser, 

1984; LoGiudice & Matthews, 2007; Wu et al., 2007; Barg & Machado, 2008; Smith et 

al., 2008; Xue & Mei, 2011). Tight temporal coupling between exocytosis and 

endocytosis is especially important in rod photoreceptors. At conventional synapses 

release occurs phasically in response to action potentials (Waites & Garner, 2011), but 

rods respond to changes in light and dark by graded changes in membrane potential that 

modulate the continuous release of vesicles (Dowling, 2012). In darkness, rods have a 

depolarized membrane potential of ca. -40 mV that promotes continued activation of L-

type Ca2+ channels and sustained release of vesicles. To facilitate ongoing release, rods 

contain a specialized protein active zone structure known as the ribbon, which tethers 

releasable vesicles close to Ca2+ channels (Sterling & Matthews, 2005; Schmitz, 2009). 

Unlike mammalian rods that have a single ribbon per rod terminal (Sterling & Matthews, 

2005), there are an average of 7 ribbons per terminal in salamander rods (Townes-

Anderson et al., 1985). Measurements in both salamander and mouse retina suggest 

that synaptic vesicles are released from rods at a rate of 18 vesicles/second/ribbon in 

darkness (Berntson & Taylor 2003; Sheng et al. 2007). At this rate, the entire 

cytoplasmic pool of vesicles would be depleted within 5-10 minutes after the onset of 

darkness without compensatory endocytosis (Sheng et al. 2007; Zampighi et al, 2011). 

Thus, even though a very large number of vesicles participate in release from rods (ca. 
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75,000 per rod in salamander retina; Sheng et al., 2007), endocytosis remains essential 

for maintaining ongoing release.  

 The properties of endocytosis have been studied directly in only a few neuronal 

cell types. Retinal bipolar cells are one of the most thoroughly characterized. Studies in 

bipolar cells show that multiple mechanisms of endocytosis with different kinetics are 

involved in retrieving vesicles after their release (von Gersdorff & Matthews, 1994b). A 

slow phase of endocytosis, with a time constant of approximately 10 s, was shown to be 

clathrin-dependent (Jockush et al., 2005). In clathrin-mediated endocytosis, a clathrin 

protein lattice coats the exterior of the vesicle prior to endoctyosis. Another faster 

component of endocytosis, with a time constant of approximately 1 s, was not clathrin-

dependent (Jockush et al., 2005), but did involve endophilin (Llobet et al. 2011). This 

fast component was not due to a kiss-and-run endocytosis mechanism, in which a 

transient pore connects the vesicle to the plasma membrane without full collapse fusion 

(Zenisek et al., 2002; Llobet et al., 2003). Both clathrin-dependent and clathrin-

independent modes of endocytosis typically involve the GTPase dynamin (LoGiudice et 

al., 2009; Wan & Heidelberger, 2011). However, a GTP-independent mode of 

endocytosis has also been observed in bipolar cells (Heidelberger, 2001) as well as 

other neurons (Xu et al. 2008; Chung et al., 2010). A third mechanism, bulk endocytosis, 

was identified under conditions of strong and prolonged stimulation (Holt et al., 2003; 

Coggins et al., 2007). In this mechanism, portions of the synaptic membrane are 

retrieved less selectively forming large endosomes.  

 In photoreceptors, both coated vesicles (Gray & Pease, 1971; Schaeffer & 

Raviola, 1978) and clathrin (Sherry & Heidelberger, 2005; Wahl et al., 2013; Fuchs et al., 

2014) are found in perisynaptic regions adjacent to ribbons.  Other endocytic proteins 

including dynamin, syndapin, amphiphysin, endophilin, and calcineurin are also found in 
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this region of rod terminals (Ullrich & Sudhof, 1994; Sherry & Heidelberger, 2005; Wahl 

et al., 2013; Fuchs et al., 2014). Rods and cones exhibit both fast and slow components 

of endocytosis (Rieke & Schwartz, 1996; Rabl et al. 2005; Innocenti & Heidelberger, 

2008; Van Hook & Thoreson, 2012).  Cones have an ultrafast component of 

endocytosis, with a time constant of ~250 ms, much more rapid than the fast component 

in bipolar cells (Van Hook & Thoreson, 2012).  Fast endocytosis in cones was not 

slowed by inhibition of dynamin with dynasore or GTPγS, whereas endocytosis in rods 

was decreased by these same inhibitors (Van Hook & Thoreson, 2012). This result 

indicates that different mechanisms mediate endocytosis in rods and cones.  

 In the present study, we characterized endocytosis in rods further and observed 

an ultrafast component of retrieval with an average time constant of <200 ms following a 

brief depolarizing test step. Unlike cones, the kinetics of endocytosis in rods slowed with 

increasing release and decreasing Ca2+ buffering suggesting that endocytosis in rods is 

regulated by both endocytic load and local Ca2+ levels. 
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3.2 Materials and methods 

 

3.2a Retinal slice 

Slices were prepared from the retina of aquatic tiger salamanders (Ambystoma 

tigrinum; both sexes, 18-25 cm length; Charles Sullivan, Nashville, TN) using methods 

described by Van Hook and Thoreson (2013). Experimental procedures were approved 

by the University of Nebraska Medical Center’s Institutional Animal Care and Use 

Committee. Animals were maintained at 4-8ºC on a 12 h:12 h light-dark cycle. 

Salamanders were sacrificed 1-2 hours after the beginning of subjective night by rapid 

decapitation and hemisection of the head with heavy shears followed immediately by 

pithing. Then, the eyes were enucleated and the anterior segment of the eye and the 

lens were removed. The resultant eyecup was placed vitreal side down onto a 

nitrocellulose membrane (5 x 10 mm; type AAWP, 0.8 µm pores; Millipore). The tissue 

was cut into 125 µm slices using a razor blade tissue slicer (Stoelting Co.). Slices were 

rotated 90 degrees and anchored to the recording chamber using vacuum grease. The 

recording chamber was placed on an upright fixed stage microscope (E600FN; Nikon) 

equipped with a long-working distance, 60X, 1.0 NA water-immersion objective. Tissue 

was superfused at ~1 ml/min with an oxygenated amphibian saline solution containing 

the following (in mM): 111 NaCl, 2.5 KCl, 1.8 CaCl2, 0.5 MgCl2, 5 glucose, and 10 

HEPES (pH 7.8; 240-245 mOsm).  

 

3.2b Electrophysiology 

Recording pipettes were fabricated from borosilicate glass pipettes (1.2 mm outer 

diameter, 0.9 mm inner diameter, with internal filament; World Precisions Instruments) 
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using a Narishige PP-830 vertical puller to produce tips of ~2 μm in diameter and 

resistance values between 12-20 MΩ. The shaft of each recording pipette was coated 

with dental wax to reduce stray capacitance. Pipettes were positioned with Huxley–Wall 

micromanipulators, so that the tip of the pipette contacted the rod cell body, which was 

identified morphologically. After establishing a giga-ohm seal, the patch was ruptured 

with gentle suction. The pipette solution contained (in mM): 40 Cs glutamate, 50 Cs 

gluconate, 10 TEACl, 3.5 NaCl, 1 CaCl2, 1 MgCl2, 10 MgATP, 0.5 GTP, 1 BAPTA, and 

10 HEPES (pH 7.2; 235-240 mOsm). BAPTA was included to rapidly buffer Ca2+ and 

minimize Ca2+-dependent conductances. In some experiments, we used 10 mM BAPTA, 

5 mM EGTA, or 0.5 mM EGTA in place of the 1 mM BAPTA. The 0.5 mM EGTA solution 

was made without the 1 mM CaCl2. TEA and Cs are included to block K+ channels, 

improving voltage clamp and Ca2+ current (ICa) measurements. Rods were voltage 

clamped with an Optopatch patch-clamp amplifier (Cairn Research), which was 

controlled using an Axon Instruments Digidata 1322A interface (Molecular Devices) and 

pClamp 9.2 software (Axon/Molecular Devices). We excluded rods that required holding 

currents >200 pA in order to maintain a membrane potential of -70 mV. Membrane 

resistance, series resistance, and membrane capacitance (Cm) averaged 223.0 ± 16.8 

MΩ, 34.5 ± 1.8 MΩ, and 31.2 ± 1.4 pF, respectively (N = 21).  

Changes in Cm were used to measure exocytosis and endocytosis. Vesicle 

exocytosis was evoked by applying a depolarizing voltage step to the rod. 

Measurements of Cm were made using the phase-tracking circuitry of the lock-in 

amplifier integrated into the Optopatch patch clamp amplifier (Johnson et al., 2002; Rabl 

et al., 2006; Bartoletti et al., 2010; Van Hook & Thoreson 2012). The membrane 

potential was varied sinusoidally (500-600 Hz, 30 mV peak-to-peak) about a holding 

potential of -70 mV. Series resistance and membrane capacitance controls were 
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adjusted to cancel the sinusoidal output current of the lock-in amplifier. To limit possible 

Cm measurement artefacts that can be caused by conductance changes and allow time 

for the phase angle feedback circuitry to settle, capacitance recordings were suspended 

during the voltage step and for 30 ms afterwards. Recordings that showed pronounced 

poststimulus changes in access resistance were excluded. The net change in Cm is due 

to exocytosis of vesicles minus any compensatory endocytic retrieval. The kinetics of 

endocytosis were characterized by the time constant for a single exponential fit to the 

decline in Cm after stimulation (Ƭendo) or for the time required for the increase in Cm to 

decline by 50% (t50).   

In a few experiments, we obtained simultaneous paired whole cell recordings 

from rods and horizontal cells in retinal slices. Rod recordings were obtained as 

described for capacitance experiments. Rods were voltage clamped at -70 mV and 

stimulated with 200 ms voltage steps to -10 mV. Horizontal cells were voltage clamped 

at -60 mV with an Axopatch 200B amplifier. Horizontal cell pipettes were filled with a 

solution containing the following (in mM): 90 Cs gluconate, 10 TEACl, 3.5 NaCl, 1 CaCl2, 

1 MgCl2, 10 MgATP, 0.5 GTP, 5 EGTA, and 10 HEPES (pH 7.2; 235-240 mOsm). Paired 

recording techniques are described in detail by Van Hook & Thoreson (2013). 

 

3.2c Analysis 

Capacitance traces were analyzed with pClamp 10 software. Data were analyzed 

using GraphPad Prism 4 to determine the mean ± SEM. Statistical significance of 

differences between experimental conditions was determined using two-tailed 

independent or paired Student's t tests with P < 0.05. 
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3.3 Results 

 

3.3a Fast endocytosis in rods 

To study endocytosis in rods, we used capacitance recording techniques.  

Membrane capacitance provides a direct, high temporal resolution method for measuring 

changes in membrane surface area that result from the exocytosis and endocytosis of 

vesicles. Depolarizing test steps applied to voltage clamped rods typically evoked rapid 

endocytic retrieval of membrane. Fig. 9 illustrates the response of a rod to a 100 ms step 

from -70 to -10 mV. This strong stimulus maximally triggers opening of the L-type Ca2+ 

channels beneath the ribbon, allowing an influx of Ca2+ that drives vesicle release 

(Thoreson et al., 2004; Rabl et al., 2006). The step evoked an inward Im followed by an 

outward tail current after the step (Fig. 9: Im). An increase in membrane capacitance due 

to exocytosis was observed when measurements were resumed 30 ms after the step. 

Capacitance declined thereafter due to endocytosis (Fig. 9: Cm).  

We measured the kinetics of endocytosis in two ways. First, we determined Ƭendo 

from a single exponential fit to the decline in Cm (gray line, Fig. 9). Fitting the records 

with two exponentials did not improve the fit. For 5 out of the 6 step durations tested, 

fitting the average trace with a two exponential function produced a negative value for 

the amplitude and/or the time constant. When fits were constrained to positive values for 

amplitude and time constant, fits were not improved significantly by addition of a second 

exponential component (paired comparison of the sum of squared errors for fits to 

average waveforms with 5-200 ms steps, P = 0.38, N = 6). Although there is evidence 

that slower endocytic components also contribute to retrieval with longer steps (Rieke & 

Schwartz, 1996; Thoreson et al., 2004), these results suggest that a single kinetic 

process dominated endocytosis with the relatively short steps used in our experiments.   
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We often observed a brief plateau before capacitance began to decline. Because 

of this plateau, we also characterized endocytosis by the time required for the amplitude 

of the capacitance increase to decline by 50% (t50). The t50 values were typically longer 

than Ƭendo, because they included this initial plateau (Fig. 9).  

The kinetics of endocytosis following a 100 ms step were quite rapid (Ƭendo = 

174.4 ± 33.54 ms, N = 13; t50 = 192.9 ± 23.77 ms, N = 14; 100 ms; -70 to -10 mV). 

Cones often exhibited an endocytic overshoot, in which Cm went below baseline after 

stimulation before returning to the pre-stimulation level (Van Hook & Thoreson, 2012). 

By contrast, in rods we did not see convincing evidence for such an overshoot even with 

200 ms steps. Some individual records appeared to show endocytic overshoot but when 

we averaged multiple records to reduce the influence of baseline noise, we observed no 

evidence for an endocytic overshoot in rods. A similar method of analysis in cones using 

averaged records persisted in demonstrating endocytic overshoot (Van Hook & 

Thoreson, 2012). 

A 100 ms step to -10 mV evoked a capacitance increase averaging 76 fF. The 

diameter of a single vesicle in rods averages 45 nm, equivalent to a Cm of 57 aF 

(Thoreson et al., 2004), suggesting 1333 vesicles were released during the step. 

Salamander rods possess an average of 7 ribbons/terminal (Townes-Anderson et al., 

1985) and each ribbon has an average of 710 vesicles, yielding a total ribbon pool of 

4,970 vesicles (Thoreson et al., 2004). In mammalian rods, 17% of the ribbon pool is 

docked in contact with the plasma membrane (Sterling & Matthews, 2005). Assuming a 

similar proportion in salamander, this suggests an immediately releasable pool of 845 

vesicles. Many vesicles were also probably released from non-ribbon sites (Chen et al., 

2013).   
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Figure 9: Fast endocytosis in rods.  

Whole-cell capacitance recordings from a rod in a salamander retinal slice preparation. 
Changes in membrane current (Im), membrane capacitance (Cm), and access resistance 
(Ra) evoked by a 100 ms depolarizing step to  -10 mV from a mean holding potential of -
70 mV. The increase in Cm caused by fusion of synaptic vesicles was followed, after a 
brief delay, by a decline in capacitance due to compensatory endocytosis. Cm and Ra 
measurements were suspended during the step and for 30 ms afterwards. The light gray 
trace shows an exponential fit (Ƭendo) to the decline with a time constant of 142 ms. 
Endocytosis kinetics were also measured by determining the time at which the 
capacitance increase had declined by 50% (t50), which was 213 ms in this example. 
(Cork & Thoreson, 2014) 
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We performed a number of control experiments to confirm that capacitance 

increases represented synaptic exocytosis. 1) Depletion of the releasable pool of 

vesicles by a 1 s pulse train (25 ms steps to -10 mV at 13.3 Hz) abolished the 

capacitance increase evoked by a subsequent depolarizing test pulse. The left trace in 

Fig. 10A shows a capacitance increase evoked by a depolarizing test step (25 ms to -10 

mV) prior to the train. Immediately after the train, the response was abolished (center 

trace, Fig. 10A). The depolarization-evoked capacitance increase subsequently 

recovered after waiting >1 min for replenishment of the releasable pool of vesicles (right 

trace, Fig. 10A). 2) Capacitance increases were not consistently correlated with the 

presence or absence of tail currents following depolarizing steps. Fig. 10B (left traces) 

shows a recording in which depolarization (25 ms to -10 mV) evoked both a capacitance 

increase and a brief inward tail current. Application of the same depolarizing step later in 

the same cell evoked a similar tail current but no capacitance increase (Fig. 10B, center 

traces). Subsequent application of a 200 ms step evoked a large inward tail current, but 

also did not evoke a capacitance increase (Fig. 10B, right traces). This indicates that the 

small tail current evoked by the 25 ms step applied earlier in the same cell was not 

responsible for the observed capacitance increase (Fig. 10B, left traces). The absence 

of capacitance increases in the two later traces was presumably due to rundown of 

exocytosis (Linton et al., 2010). In some cells, we observed outward rather than inward 

tail currents. These were also not consistently correlated with capacitance increases. 

Together these experiments showed that, in the absence of any significant change in the 

resistance trace, tail currents were not responsible for capacitance increases. However, 

if tail currents were accompanied by large changes in the resistance trace (e.g., the 200 

ms record in Fig. 10B, right trace), we excluded those records out of concern that such 
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large changes in resistance might induce artefacts that could influence capacitance 

measurements. 3) As expected for exocytosis, there was rundown in the amplitudes of 

capacitance responses over time (average slope significantly non-zero, P = 0.0015), 

averaging -5.5 ± 1.3 fF/min (N = 13) for cells stimulated with 10 ms steps (-70 to -10 

mV). 4) Depolarization-evoked capacitance increases were unchanged after blocking 

ICl(Ca) with niflumic acid (10 ms steps: 0.1 mM t50 = 142.7 ± 24.02 ms, N = 8; control t50 = 

115.6 ± 6.85 ms, N = 58; P = 0.19). Two results from earlier studies provide further 

evidence that depolarization-evoked capacitance increases in rods are due to 

exocytosis: 1) The amount of exocytosis measured from capacitance increases was 

linearly correlated with the amount of release measured by postsynaptic currents in 

paired recordings from rods and horizontal cells (Rabl et al., 2005). 2) In a model 

photoreceptor cell, large changes in membrane resistance did not produce a 

capacitance increase (Rabl et al., 2005).  

We tested whether properties of the phase lock amplifier might influence the 

measured kinetics of endocytosis. Changing the gain of the phase tracking feedback 

circuitry (by changing the amplifier gain) changed the rise time of depolarization-evoked 

capacitance increases, quickening it with higher gains, but did not significantly alter 

endocytosis kinetics (10 ms steps: gain 2 t50 = 83.44 ± 5.02 ms, N = 8; gain 5 t50 = 86.43 

± 16.68 ms, N = 8; P = 0.88). Slowing the frequency of the sine wave used for 

capacitance measurements from 500 to 300 Hz also did not significantly alter 

endocytosis kinetics or amplitude (25 ms steps: 500 Hz t50 = 126.6 ± 22.28 ms, 

amplitude = 100.6 ± 21.11 fF, N = 5; 300 Hz t50 = 137.4 ± 25.23 ms, amplitude = 79.9 ± 

12.18 fF, N = 5; t50 P = 0.62; amplitude P = 0.42). Finally, we obtained similar time 

constants for endocytosis following 50 ms steps whether we used the phase tracking 

hardware of the Optopatch amplifier (Ƭendo = 169.5 ± 28.82 ms, N = 15) or the software-
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based, dual sine-wave protocol incorporated into JClamp (Scisoft) (Santos-Sacchi, 

2004) and implemented with a Multiclamp 700A amplifier (Molecular Devices) (Ƭendo = 

176 ± 37 ms, N = 4). 

  



79 

 

[Type text] 
 

 

Figure 10: Capacitance changes were not due to conductance or amplifier 
artifacts.  

A) Emptying the releasable pool of vesicles with a 1 s pulse train (25 ms steps to -10 mV 
at 13.3 Hz) abolished the depolarization-evoked capacitance increase. Three responses 
recorded in the same cell show the membrane capacitance (Cm) and access resistance 
(Ra) evoked by a test step (25 ms to -10 mV) prior to the pulse train (left traces), 
immediately after the pulse train when the vesicle pool was depleted (center traces), and 
following subsequent recovery of the releasable vesicle pool (right traces). This result is 
consistent with capacitance increases being due to vesicle exocytosis. B) Capacitance 
responses are not due to tail currents. A step depolarization (25 ms step to -10 mV) 
induced a capacitance increase and brief inward tail current (left traces). The same test 
step applied later in the same cell evoked a similar tail current but did not evoke a 
capacitance increase (center traces). Subsequent application of a 200 ms test step 
evoked a large tail current but no capacitance increase (right traces). The absence of a 
capacitance increase in later records was presumably due to rundown of exocytosis. 
(Cork & Thoreson, 2014)  
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3.3b Role of calcium in endocytic load 

 Next, we tested two factors that are commonly found to regulate the kinetics of 

endocytosis: the amount of Ca2+ influx and the endocytic load (the amount of membrane 

that needs to be retrieved) (Wu et al., 2014). To do so, we varied Ca2+ influx and 

endocytic load by changing the duration and strength of voltage steps. Longer durations 

and larger voltage steps promote greater influx of Ca2+ and also trigger more exocytosis, 

and thus a greater endocytic load. The single cell and average traces illustrate that as 

the step duration increased, the time for the Cm to return to baseline after the step also 

increased (Fig. 11). Both Ƭendo and t50 values increased for steps from 5 to 50 ms and 

then remained about the same with 100 and 200 ms steps (Fig. 12A-B). Steps longer 

than 200 ms stimulated large tail currents that were accompanied by large resistance 

changes that made capacitance measurements of the endocytosis kinetics unreliable.  

In addition to longer values for Ƭendo, slowing of the kinetics of endocytosis also 

involved a lengthening of the plateau in the capacitance trace prior to endocytic retrieval. 

This plateau tended to increase in length with increasing test step duration (5 ms = 56.1 

± 6.27 ms, N = 14; 10 ms = 54.4 ± 3.12 ms, N = 49; 25 ms = 58.9 ± 8.25 ms, N = 20; 50 

ms = 88.8 ± 8.58 ms, N = 14; 100 ms = 106.8 ± 14.72 ms, N = 13; 200 ms = 103.5 ± 

15.99 ms, N = 11). Because Ca2+ influx increases with longer duration steps, these 

results are consistent with evidence that endocytosis can be inhibited by high Ca2+ 

concentrations and thereby delay the capacitance decline (von Gersdorff & Matthews, 

1994a; Wan et al., 2008; Leitz & Kavalali, 2011). However, another possible explanation 

for lengthening of the plateau is that endocytosis may be balanced by release that 

continues after the end of the voltage step (e.g., Singer and Diamond, 2006; von 

Gersdorff et al., 1998). To examine that possibility we obtained paired whole cell 

recordings from rods and horizontal cells. We stimulated the rod with a depolarizing 
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voltage step to -10 mV for 200 ms and recorded the excitatory postsynaptic current 

(EPSC) evoked in the postsynaptic horizontal cell. Fig. 11C shows an EPSC from a 

single rod/horizontal cell pair as well as the average EPSC from 22 cell pairs. The EPSC 

persisted for an average of 72.7 ± 13.3 ms (N = 22) after the end of the step. This is 

slightly shorter than the average plateau duration in the capacitance response evoked by 

200 ms steps measured with the same pipette solution (5 mM EGTA; 109.4 ± 19.2 ms, N 

= 7; P = 0.17), suggesting that continued release may also contribute to lengthening of 

the plateau with increasing step duration. 
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Figure 11: The kinetics of endocytosis slowed with longer duration test steps.  

Representative traces from an individual cell (A), all responses from the same cell) and 
average traces from multiple cells (B) with different duration steps: 5, 25, 100, and 200 
ms (-70 to 10 mV). Average traces show the mean in black and SEM in gray (5 ms N = 
15, 25 ms N = 21, 100 ms N = 14, 200 ms N = 13). Endocytosis kinetics slowed with 
longer steps. (C) Excitatory post-synaptic currents evoked in a horizontal cell by 
stimulation of rods with a depolarizing step (200 ms, -70 to -10 mV). The trace at the left 
shows an example from a single cell pair and the trace at the right shows the post-
synaptic response averaged from 22 cell pairs. (Cork & Thoreson, 2014) 
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Ca2+ influx and endocytic load were also varied by changing the strength of 50 

ms depolarizing steps. The voltage step was increased from -40 mV, which is near the 

threshold for opening of L-type Ca2+ channels in rods, up to -10 mV. The voltage needed 

for maximal Ca2+ channel activation is near -20 mV. As the probability of Ca2+ channel 

openings increased, the Ca2+ influx and endocytic load also increased. As with 

increasing step duration, increasing the strength of the voltage step resulted in a slowing 

of the kinetics of endocytosis as represented by increasing t50 values (Fig. 12C).   

 



84 

 

[Type text] 
 

 

Figure 12: Effects of test step duration and amplitude on endocytosis kinetics. 

With longer step durations (5, 10, 25, 50, 100, 200 ms) there was a similar increase in 
both t50 (A) and Ƭendo (B) values. (t50: 5 ms = 102.4 ± 10.33 ms, N = 15; 10 ms = 115.6 ± 
6.85 ms, N = 58; 25 ms = 117.9 ± 17.97 ms, N = 20; 50 ms = 157.0 ± 20.19 ms, N = 14; 
100 ms = 179.5 ± 21.72 ms, N = 13; 200 ms = 177.4 ± 23.33 ms, N = 11) (Ƭendo: 5 ms = 
79.20 ± 12.39 ms, N = 15; 10 ms = 96.89 ± 9.036 ms, N = 54; 25 ms = 134.4 ± 20.72 
ms, N = 21; 50 ms = 169.5 ± 28.82 ms, N = 15; 100 ms = 174.4 ± 33.54 ms, N = 13; 200 
ms = 170.3 ± 45.96 ms, N = 12). (C) With increasing voltage steps (-70 to -40, -30, -20, 
and -10 mV; 50 ms) there was an increase in the t50 of endocytosis (-40 mV = 80.50 ± 
12.17 ms, N = 8; -30 mV = 145.0 ± 38.62 ms, N = 8; -20 mV = 170.5 ± 47.32 ms, N = 11; 
-10 mV = 172.9 ± 22.03 ms, N = 28; -40 vs. -10 mV, P < 0.05). (Cork & Thoreson, 2014) 
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 To assess whether the kinetics of endocytosis depend upon the amount of Ca2+ 

influx, we changed intracellular Ca2+ buffering to vary the local Ca2+ levels near release 

sites. In our standard pipette solution we used 1 mM BAPTA, which is a relatively rapid 

chelator of Ca2+ and confines Ca2+ to within 100 nm of open Ca2+ channels (Van Hook & 

Thoreson, 2012). We compared this to stronger buffering with 10 mM BAPTA, which 

abolished endocytosis entirely in mature calyx of Held neurons (Yamashita et al., 2010). 

We also used the slower Ca2+ chelator EGTA at 5 and 0.5 mM concentrations, which 

allows Ca2+ to spread further away from sites of Ca2+ entry. These different buffering 

conditions should produce significant differences in Ca2+ concentration at more distant 

regions of the terminal where endocytosis occurs (Logiudice et al., 2009; Wahl et al., 

2013; Fuchs et al. 2014).  

For a given Ca2+ buffer the amount of release increased with longer step 

durations up to 200 ms (Fig. 13A). In addition, at a given step duration, decreasing the 

amount of Ca2+ buffering from 10 mM BAPTA to 0.5 EGTA tended to increase the t50 

value of endocytosis (Fig. 13B). Fast endocytosis persisted with use of 10 mM BAPTA, 

although the amount of exocytosis was diminished. With weak intracellular Ca2+ 

buffering using 0.5 mM EGTA, test steps longer than 50 ms evoked large tail currents 

that prevented accurate capacitance measurements. The lengthening of t50 values with 

the shift from a high concentration of the fast buffer BAPTA to a low concentration of the 

slow buffer EGTA suggests that elevation of cytosolic Ca2+ slows endocytosis.   

Decreasing Ca2+ buffering also increased the amplitude of exocytotic capacitance 

responses (Fig. 13A), perhaps by stimulating greater release at sites relatively far from 

the ribbon (Chen et al., 2013, 2014). We therefore tested whether the kinetics of 

membrane retrieval might also be influenced by endocytic load by plotting t50 values 

against the amount of release (endocytic load) for the different test conditions described 
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above: different durations, voltage steps, and Ca2+ chelators. As shown in Fig. 13C, 

there was a linear correlation between the slowing of endocytosis and the increase in 

endocytic load (r2 = 0.66; Fig. 13C) over a range of experimental conditions. This 

correlation between endocytic load and kinetics held even under conditions where 

perisynaptic Ca2+ levels should be quite different due to the use of different Ca2+ buffers. 

This suggests that endocytic load also regulates the kinetics of endocytosis in rods.  
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Figure 13: Changes in step duration and Ca2+ buffering altered the kinetics of 
endocytosis.  

 

(A) The amplitude of capacitance increases observed with different test step durations 
and intracellular Ca2+ buffers (10 mM BAPTA, 1 mM BAPTA, 5 mM EGTA, and 0.5 mM 
EGTA). (B) Average t50 for steps of increasing duration measured using the same 
intracellular Ca2+ buffers. (C) There was a linear correlation between t50 and the 
amplitude of exocytosis, which is proportional to endocytic load (r2 = 0.66; slope 
significantly nonzero, P < 0.0001). (Cork & Thoreson, 2014)  
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3.4 Discussion  

 

Our results indicate that endocytosis in rods involves “ultrafast” retrieval with time 

constants of less than 300 ms and an onset delay that lengthened with greater release. 

The rates of retrieval observed in rods were much faster than the fast endocytic 

component observed in many neurons including bipolar cells (Neves & Lagnado, 1999; 

Wan & Heidelberger 2011), the calyx of Held (Sun & Wu, 2001), and frog auditory hair 

cells (Cho et al., 2011). However, ultrafast endocytosis has been observed previously in 

cones (Van Hook & Thoreson, 2013); mammalian inner hair cells (Beutner et al., 2001), 

hippocampal neurons (Gandhi & Stevens, 2003; Watanabe et al., 2013a), 

neuromuscular junction (Watanabe et al., 2013b), and neuroendocrine cells (Thomas et 

al., 1994; Artalaejo et al., 1995; Hsu & Jackson, 1996). Kiss-and-run fusion is one 

potential mechanism for ultrafast endocytosis, but unlike ultrafast endocytosis in rods 

(Van Hook and Thoreson, 2012) kiss-and-run fusion is not thought to be sensitive to 

dynamin inhibitors. Furthermore, imaging of single vesicle fusion events suggested that 

most fusion events in rods involve full collapse of vesicles (Chen et al., 2013).   

Most cell types, including bipolar cells and the calyx of Held, exhibit at least two 

kinetic components to membrane retrieval (von Gersdorff & Matthews, 1994b; Neves & 

Lagnado, 1999; Wu et al., 2005; Dittman & Ryan, 2009). We found that endocytosis in 

rods following steps up to 200 ms in duration was better fit by a single exponential. 

Nevertheless, previous studies in enzymatically isolated rods and with longer test steps 

have shown evidence for a second slower component of retrieval (Rieke & Schwartz, 

1996; Thoreson et al., 2004). The presence of clathrin and related endocytic proteins in 

rod terminals is also consistent with the presence of a slower component of retrieval by 
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clathrin-mediated endocytosis (Wahl et al., 2013; Fuchs et al., 2014). It is possible that 

small, slow components of endocytosis may have been obscured by unrelated slow 

baseline capacitance changes in our recordings. In addition, slow retrieval is typically 

more prominent after longer steps that stimulate greater Ca2+ influx and greater release. 

In our experiments, such long steps stimulated large Ca2+-activated tail currents and 

large resistance changes that made measurements of endocytosis unreliable.  

Both the amount of preceding exocytosis (endocytic load) and cytosolic Ca2+ 

levels have been shown to promote endocytosis (Yamashita, 2012; Wu et al., 2014). 

Increases in Ca2+ speed endocytosis in many cell types (Wu et al., 2014), but increasing 

Ca2+ influx can also slow endocytosis (Hsu & Jackson, 1996 ; Wu & Betz, 1996 ; Sun & 

Wu, 2001 ; Sun et al., 2002 ; Oltedal & Hartveit, 2010 ; Cho et al., 2011). Slowing of 

endocytosis may be caused by global elevation of cytosolic Ca2+, whereas enhancement 

of endocytosis may be triggered by localized elevation of synaptic Ca2+ (Wu & Wu, 

2014). In retinal bipolar cells, Ca2+ slows the time constant of the slow mode of 

endocytosis (von Gersdorff & Matthews, 1994a; Wan et al., 2008), but can also increase 

contributions from fast endocytosis without altering the fast time constant (Neves et al., 

2001). Mammalian inner hair cells show a similar enhanced contribution from fast 

endocytosis with increasing Ca2+ influx (Beutner et al., 2001; Neef et al., 2014). We 

found that shifting from high concentrations of the fast Ca2+ buffer BAPTA to low 

concentrations of the slower Ca2+ buffer EGTA, which promotes greater increases in 

perisynaptic Ca2+, was accompanied by a slowing of endocytosis in rods. While this 

suggests that Ca2+ regulates endocytosis kinetics in rods, greater Ca2+ influx also 

stimulates greater release. Unlike other neurons that show a marked cooperativity 

between Ca2+ influx and release, the amount of exocytosis in rods increases linearly with 

the amount of Ca2+ influx (Thoreson et al., 2004). This makes it especially difficult to 
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distinguish the contributions of endocytic load and intracellular Ca2+ in shaping 

endocytosis kinetics in rods. However, we found that the slowing of endocytosis 

paralleled increases in endocytic load over a variety of different conditions, including 

conditions where perisynaptic Ca2+ levels should differ considerably (Fig. 13).  This is 

similar to data from other cell types showing that slowing of endocytosis is linearly 

related to the amount of preceding exocytosis (Sankaranarayanan & Ryan, 2000; Wu et 

al., 2005; Renden & von Gersdorff, 2007). Slowing of endocytosis with greater release 

may be due to saturation of endocytic capacity (Wu et al., 2014). Taken together, our 

results suggest that both Ca2+ and endocytic load play a role in regulating endocytosis in 

rods, similar to other systems (Wu et al., 2014).  

The present results provide further evidence that endocytosis mechanisms differ 

in rod and cone photoreceptors. Endocytosis in both cell types involves ultrafast 

retrieval. However, ultrafast endocytosis in rods is dynamin-dependent, whereas it is 

dynamin-independent in cones (Van Hook & Thoreson, 2012). Furthermore, we found 

that endocytosis in rods slowed with greater Ca2+-triggered release, whereas the time 

constant of membrane retrieval in cones was independent of both Ca2+ and endocytic 

load. Cones also showed an endocytic overshoot that appeared to be absent from rods 

(Van Hook & Thoreson, 2012). The molecular mechanisms responsible for rod/cone 

differences in endocytosis remain to be elucidated.  It is possible that rod-cone 

differences in endocytosis may relate to rod-cone differences in the sites at which 

release occurs.  Release from cones occurs almost exclusively at ribbons (Snellman et 

al., 2011), whereas a significant amount of release from rods can occur at non-ribbon 

locations (Chen et al., 2013, 2014). It is plausible that vesicles released at ribbon sites 

may be retrieved by different mechanisms than vesicles released at non-ribbon sites. 

Differences in retrieval at ribbon and non-ribbon release sites might also contribute to 
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differences in kinetics observed within rods under different experimental conditions. In 

rods, shorter steps and Ca2+ increases that remain confined near the ribbon favor more 

ribbon release, whereas longer steps and greater spread of intraterminal Ca2+ favor 

more non-ribbon release (Chen et al., 2013, 2014). Thus, the faster kinetics of 

endocytosis observed in rods with shorter steps and stronger Ca2+ buffering might reflect 

a faster retrieval mechanism for ribbon release compared to non-ribbon release.  

 Exocytosis in rods is continually balanced by endocytosis (Rieke & Schwartz, 

1996). Ongoing endocytosis is essential at the rod synapse in order to maintain synaptic 

signaling, especially during darkness when there is continuous vesicle release for hours 

at a time. The fast rate of endocytosis may facilitate this balance by helping to rapidly 

clear previously exocytosed proteins from release sites, readying them for a subsequent 

round of release (Neher, 2010). 
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Chapter 4 

 

Summary of exocytosis and endocytosis  

 

 The studies in Chapters 2 and 3 characterized exocytosis and endocytosis.  

Exocytosis and endocytosis are fundamental cellular processes vital to the function of 

many cell types.  Exocytosis allows cells to release molecules to signal to neighboring 

cells or to interact with the environment.  Exocytosis allows cells to secrete many 

different proteins including enzymes, peptide hormones, and antibodies (Lo Cicero et al., 

2015).  Exocytosis can also release other molecules including lipids and RNA.  In 

addition, exocytosis delivers proteins to the cell membrane, for example during antigen 

presentation and recycling of plasma membrane-bound receptors.  After exocytosis, 

endocytosis retrieves the vesicle membrane from the cellular membrane.  The 

endocytosis process that follows exocytosis maintains the structure of the cell and allows 

for its ongoing function.   

 These studies focused on the function of exocytosis and endocytosis 

photoreceptor neurons.  Neurons contain synaptic vesicles filled with neurotransmitter.  

When the neuron is stimulated, synaptic vesicles at the active zone undergo exocytosis 

thereby releasing neurotransmitter into the synaptic cleft.  The neurotransmitter then 

binds to receptors on the post synaptic neuron, passing the signal downstream.  In 

neurons, the coupling of exocytosis and endocytosis is necessary to maintain the vesicle 

pool for ongoing signaling.  If vesicles were not returned to the synapse after exocytosis 

via endocytosis, there would not be sufficient vesicles available to be released in 

response to subsequent stimulation.  This would impede the neurons’ ability to rapidly 

and reliably transfer information downstream within the neuronal network.  The coupling 

of exocytosis and endocytosis in neurons also maintains the structure of the synapse.  
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Proteins localized at the synapse that comprise the cytomatrix at the active zone are 

vital for neuronal signaling.  As exocytosis occurs, the vesicular membrane fuses with 

the presynaptic membrane.  Endocytosis then removes the vesicular membrane 

restoring the structure of the presynaptic membrane.  Without endocytosis the 

presynaptic membrane would expand and protein localization would be disrupted.   

Exocytosis and endocytosis are linked process.  The mechanisms involved in the 

coupling between exocytosis and endocytosis are not currently well characterized and 

may differ between different types and kinetic components of exocytosis and 

endocytosis (Haucke et al., 2011).  Intracellular Ca2+ concentration is a likely contributor 

to exocytosis and endocytosis coupling.  High Ca2+ concentrations trigger evoked 

exocytosis of vesicles.  Chapter 2 showed that Ca2+ can also trigger spontaneous 

exocytosis in rod and cone photoreceptors.  Chapter 3 demonstrated that the kinetics of 

endocytosis depend upon the intracellular Ca2+ concentration.  Coupling of exocytosis 

and endocytosis by Ca2+ provides functional benefits.  Intracellular Ca2+ is tightly 

regulated by buffering, extrusion, and sequestration.  Therefore, Ca2+ can serve as a 

spatially and temporally constrained mediator of exocytosis and endocytosis.  The 

increase in intracellular Ca2+ is proportional to the degree of neuronal stimulation, so 

Ca2+ could serve to link the amount of exocytosis and endocytosis to the activity state of 

the cell.  The gradient of Ca2+ within the terminal may allow for differential regulation of 

exocytosis and endocytosis.  The rapid influx of Ca2+ following opening of Ca2+ channels 

produces a high concentration of Ca2+ at the active zone where vesicles are docked prior 

to exocytosis.  This Ca2+ then diffuses within the synaptic terminal and can then regulate 

endocytosis that occurs after exocytosis in the perisynaptic region around the active 

zone.  Proteins involved in exocytosis and endocytosis including synaptotagmin, 

synaptobrevin synaptophysin, and dynamin serve as a physical link between the two 
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processes (Yao et al., 2011; Wu et al., 2014).  Ca2+ can also play a role in protein- 

mediated coupling, as many proteins involved in exocytosis and endocytosis can bind 

Ca2+, triggering changes in their conformation and function.  Future work can help clarify 

the mechanisms that link exocytosis and endocytosis.  One method by which these two 

processes can be studied is by selectively inhibiting endocytosis in order to determine 

the functional impact on continued exocytosis.   
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Appendices 

 

Appendix A: Abbreviations 

 

 

Abbreviation  Term 

 

BAPTA  1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid 

 

[Ca2+]   concentration of calcium ions 

 

cGMP   cyclic guanosine monophosphate 

 

Cm   membrane capacitance  

 

EAATs   excitatory amino acid transporters  

 

EGTA   ethylene glycol-bis(β-aminoethyl ether)-N,N,N’,N’-tetraacetic acid 

 

GABA    gamma-aminobutyric acid 

 

GDP    guanosine diphosphate  

 

GTP   guanosine triphosphate 

 

GTPγS   guanosine 5'-O-[gamma-thio]triphosphate 

 

mEPSC  miniature excitatory postsynaptic current 

 

mM   millimolar 

 

mV   millivolt 

 

MΩ   megaohm 
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NAD   nicotinamide adenine dinucleotide 

 

NSF   N-ethylmaleimide sensitive fusion protein 

 

pF    picofarad 

 

pHrodo  10 kD-dextra-conjugated, pH-sensitive form of rhodamine 

 

SNAP-25   synaptosomal associated protein-25 

 

SNARE  soluble NSF attachment protein receptor 

 

t50   time for the increase in Cm following stimulation to decline by 50% 

 

Ƭendo   single exponential fit to the decline in Cm 

 

TIRFM   total internal reflection fluorescence microscopy 

 

VGCCs   voltage-gated Ca2+ channels 
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