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Abstract 

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature 

monocytes and granulocytes that are potent inhibitors of T cell activation. A role for MDSCs in 

bacterial infections has only recently emerged, and our laboratory was the first to demonstrate a 

functional role for MDSCs during Staphylococcus aureus (S. aureus) biofilm infection. Biofilm 

infections often lead to significant morbidity due to their recalcitrance to antibiotics and ability to 

subvert immune-mediated clearance by skewing the immune response toward an anti-

inflammatory, pro-fibrotic phenotype. Therefore, we examined whether MDSCs could play a role 

in this process. CD11b
+
Gr-1

+
 MDSCs represented the main cellular infiltrate during S. aureus 

orthopedic biofilm infection, and biofilm-associated MDSCs inhibited T cells proliferation and 

cytokine production, which correlated with a paucity of T cell infiltrates at the infection site. 

Importantly, tissues obtained from patients undergoing revision surgery for prosthetic joint 

infections (PJIs) revealed similar patterns of immune cell influx, with increased MDSC-like 

infiltrates and significantly fewer T cells compared to aseptic revisions. Depletion of MDSCs and 

improved bacterial clearance by enhancing the intrinsic proinflammatory attributes of infiltrating 

monocytes and macrophages.  However, the mechanisms responsible for MDSC homing to sites 

of biofilm infection and factors mediating immunosuppression remain unknown. In cancer, 

proinflammatory signals initially induce MDSC recruitment and activation, while the 

immunosuppressive functions of MDSCs are mediated through factors like IL-10, Arg-1 and 

iNOS. IL-12p40 and IL-10 are both significantly elevated during S. aureus biofilm infection. These 

studies demonstrate that IL-12 plays a key role in the recruitment of MDSCs into biofilm infection 

via a chemoattractant that remains to be identified, while IL-10 is produced by infiltrating MDSCs 

at the site of biofilm infection, whereupon it plays a critical role in polarizing 

monocyte/macrophages toward an anti-inflammatory phenotype. Loss of either IL-12 or IL-10 

during the early MDSC recruitment or effector phases, respectively, promotes biofilm clearance, 

implicating key roles for each cytokine at distinct stages of infection. Collectively, these studies 

demonstrate that MDSCs are key contributors to the chronicity of S. aureus biofilm infection, as 
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their immunosuppressive function prevents monocyte/macrophage proinflammatory activity, 

which facilitates biofilm persistence. 

  



19 
 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1: Introduction 



20 
 

1) S. aureus biofilm infection 

a) Methicillin-resistant Staphylococcus aureus 

 Staphylococcus aureus (S. aureus) is a gram-positive bacterium known to colonize the 

skin and nasal mucosa of approximately one-third of people worldwide [1-4]. Since its discovery 

in the 1880s, S. aureus has been regarded as a serious threat to human health, causing a range 

of diseases from superficial skin and soft tissue infections to more invasive infections like 

bacterial pneumonia and sepsis [3]. Prior to the 1960s, these infections were routinely and 

successfully treated with antibiotics.  However, the marked ability of S. aureus to adapt to 

different environments, [5, 6] along with the misuse and overuse of antibiotics, aided bacterial 

evolution and resulted in the rise of methicillin-resistant S. aureus (MRSA) strains [7].  

The emergence of MRSA has not only complicated the treatment of S. aureus infections, 

but has led it to become one of the most frequent causes of hospital- and community-associated 

infection [8, 9] with the ability to cause disease in otherwise healthy individuals [9, 10]. In addition, 

many MRSA isolates have acquired resistance to other antibiotics, including erythromycin 

(macrolide), clindamycin (lincosamide), ciprofloxacin (fluoroquinolone) and tetracycline 

(polyketide) [7]. Due to this widespread resistance to antibiotics and a lack of other alternative 

therapeutics, the glycopeptide vancomycin has become the standard treatment for MRSA [4]. 

Although most MRSA strains are known to be susceptible to vancomycin, there are certain S. 

aureus isolates that are vancomycin intermediate-resistant (VISA) and are only susceptible to 

vancomycin at high concentrations [11]. Full vancomycin resistance is extremely uncommon and 

has developed much slower than resistance to β-lactam antibiotics. However, the continued 

increase of vancomyin use in the U.S. has raised concerns that selective pressure will cause 

vancomycin-resistant S. aureus (VRSA) strains to become more prevalent and result in a return 

to the pre-antibiotic era [3, 4, 6, 12]. Recent U.S. estimates indicate MRSA causes approximately 

95,000 invasive infections and 19,000 deaths per year, a mortality rate higher than that for HIV, 

viral hepatitis, tuberculosis and influenza combined, highlighting a need for more therapeutic 

options to target this elusive pathogen [6]. 
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The mechanism underlying methicillin resistance is the acquisition and insertion of the 

staphylococcal cassette chromosome mec (SCCmec) into the chromosome of susceptible 

strains, protecting these bacteria from the entire class of available β-lactam antibiotics [2, 11]. 

Currently there are 11 SCCmec types, all of which include the mecA gene that encodes for the 

low-affinity penicillin-binding protein PBP2a [13, 14]. β-lactam antibiotics are unable to inhibit 

PBP2a, in contrast to other S. aureus PBP proteins, which leads to resistance. While the high 

frequency of antibiotic resistant strains contributes to its ability to cause disease, S. aureus also 

expresses several other virulence factors that contribute to its ability to cause disease. For 

example, nearly all strains of S. aureus secrete α- and γ-hemolysins and some leukocidins, 

whereas a few secrete superantigen toxic shock syndrome toxin (TSST), and the pore-forming 

toxin Panton-Valentine leukocidin (PVL) [5, 15]. Not only do these virulence determinants aid the 

organism in evading the host immune system, but can also directly damage leukocytes and host 

tissues.  

 Until recently, MRSA cases were mainly the result of healthcare-associated (HA) 

infections and affected compromised hosts who were chronically ill or had implanted medical 

devices [16]. However, the incidence of community-acquired MRSA (CA-MRSA) is increasing and 

affects healthy persons who do not share the same associated risk factors as patients in the 

hospital [10, 13, 16]. CA-MRSA strains carry the smaller staphylococcal cassette chromosome IV, 

and many possess PVL genes [10, 17]. Populations at risk for CA-MRSA infection include 

intravenous drug users, prison inmates, athletes, military personnel, individuals in close contact 

with MRSA carriers as well as those with a history of boils or skin infections [18-20]. The most 

commonly isolated strain of CA-MRSA is pulse-field type USA300 [21], which a recent study 

estimates accounts for about 67% of all invasive CA-MRSA infections [9]. These CA-MRSA 

strains have been characterized for their increased virulence compared to HA-MRSA 

counterparts, allowing for their rapid rise and implication in several outbreaks in the U.S. [22, 23]. 

This increased virulence may be attributed to two prophages not found in other MRSA strains, 

namely prophages ΦSa2 and ΦSa3, with prophage ΦSa2 encoding for the PVL genes [24]. In 

particular, prophage ΦSa2 encodes for staphylokinase, staphylococcal complement inhibitor and 
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S. aureus chemotaxis inhibitory protein (CHIPS), which are all capable of neutralizing innate 

immune mechanisms for bacterial elimination [25].  

 Our laboratory has acquired a USA300 clinical isolate and has used this S. aureus strain 

to strengthen the translational impact of studies in our experimental mouse models of biofilm 

infection. Specifically, this USA300 LAC 13c strain was isolated from a skin and soft tissue 

infection in a detainee from the Los Angeles County Jail (LAC) and cured of the p01(cryptic 

plasmid) and p03 (confers erythromycin resistance) plasmids [9, 26]. The USA300-0114 strains 

are primarily responsible for CA-MRSA infections in the U.S. and  predominantly carry the IVa 

subtype of SCCmec, spatype YHGFMBQBLO, msrA-mediated macrolide resistance and a 

number of virulence genes, including lukS-PV/lukF-PV and arcA, coding for PVL and the arginine 

catabolic mobile element (ACME), respectively [22, 23].  

b) Biofilms 

 In addition to antibiotic resistance, staphylococci have alternative mechanisms of survival 

and virulence, among which is biofilm formation [1, 27-29]. Biofilms are defined as adherent 

communities of bacteria encased within a complex matrix composed of proteins, polysaccharides 

and eDNA [27-33] often surrounded by a host fibrotic response, and staphylococci are recognized 

as the most frequent cause of biofilm-associated infections [34]. Specifically, S. aureus is capable 

of forming biofilms on both natural body surfaces, including the lung and heart, as well as medical 

devices, such as indwelling catheters and prostheses [27, 32, 33, 35]. Although CA-MRSA strains 

are able to form biofilms, and show recalcitrance to antibiotics, it is believed that the biofilm offers 

additional protection against antimicrobial agents, and indeed microorganisms within biofilms 

have a greater resistance to antimicrobial killing than planktonic cells of the same species [32, 

36]. This increased resistance may be related to the reduced growth rate of biofilm 

microorganisms. Cells encased within the biofilm matrix grow much more slowly than planktonic 

cells, and as a result, take up antimicrobial agents more slowly. In addition, many antibiotics 

target cell wall synthesis, which is reduced during biofilm growth, causing them to be less 

effective [28, 33, 36]. Furthermore, the structure of the biofilm and its secreted products interfere 

with host innate immune responses and proper recognition of biofilm-associated bacteria [32]. 
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Taken together, the resistance to available therapies and evasion of host immune responses has 

made biofilm infections a significant human health problem. 

 Biofilm development is a multi-step process that involves initial attachment of bacterial 

cells to biotic or abiotic surfaces, followed by accumulation or maturation of the biofilm before 

single cells or larger cell clusters detach from the biofilm mass [29, 34, 37, 38]. Each of these 

phases are thought to be physiologically different from one another and require phase-specific 

gene regulation [34]. During initial attachment, an individual planktonic cell will reversibly 

associate with a surface, and if the cell does not dissociate, it will bind irreversibly to the surface 

[30]. S. aureus has the ability to attach to nearly any indwelling medical device, and this is 

thought to occur through direct interaction with the device’s polymer surface and host matrix 

proteins that coat implanted devices [37]. Attachment to the plastic or metal surface of an 

indwelling medical device is driven mostly by hydrophobic or electrostatic interactions initially [38]. 

However, almost immediately after implantation these devices are coated in host matrix material 

which greatly enhances bacterial attachment. Staphylococci express microbial surface 

components recognizing adhesive matrix molecules (MSCRAMMs), surface-anchored proteins 

that allow for adherence and colonization of devices and host tissue [29, 38]. In addition to 

MSCRAMMs, teichoic acids and the surface protein autolysin have also been described as being 

involved in the attachment phase of staphylococcal biofilm development [38].  

 Once attachment has occurred, proliferation proceeds through the production of an 

extracellular matrix (ECM) that contributes to intercellular aggregation [29, 37, 38]. 

Polysaccharide intercellular adhesion (PIA), which covers most staphylococcal cells, is a major 

component of the ECM and directly mediates biofilm accumulation [34, 38, 39]. PIA is 

synthesized, exported, and modified by products of the ica locus and its importance in biofilm 

development has been demonstrated in numerous studies [40-43]. Most S. aureus strains have 

the ability to produce PIA; however, some S. epidermidis strains lack the ica genes and thus do 

not produce PIA. These strains are able to form biofilms in vitro and in vivo [39, 44, 45]. In these 

cases, it is apparent that other surface-associated proteins such as protein A, fibrinogen-binding 

proteins (FnBPA and FnBPB), S. aureus surface protein (SasG), biofilm-associated protein (Bap), 
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and clumping factor B (Clf B) are also involved in attachment and accumulation [30]. In addition, 

Aap, teichoic acids, or DNA released from lysed bacteria (eDNA) facilitate cell-cell adhesion [45-

47], further demonstrating the complexity of the biofilm maturation process.  

 Detachment represents the final stage of biofilm development and is often the cause of 

bloodstream infection, emboli and metastatic spread of bacteria [27, 34]. In clinical settings, 

biofilms are often thought of as a reservoir for dissemination of microorganisms to other sites in 

the host. This phase is facilitated by mechanical forces, cessation of the production of biofilm 

adhesion molecules, or enzymes that destroy the matrix [34]. In S. aureus, the rate of biofilm 

dissemination is thought to be primarily controlled by the accessory gene regulator (Agr), a 

quorum-sensing system that controls gene expression in a cell-density dependent manner [38]. 

Agr upregulates the expression of toxins and proteases while downregulating the expression of 

surface adhesion proteins upon entry into the stationary phase of growth through sensing of a 

peptide pheromone, autoinducing peptide (AIP) [38]. Detachment is the result of Agr activation 

expression in the outer layers of the biofilm, while expression in deeper layers could be required 

for efficient formation of channels necessary for nutrient access [37, 48]. 

c)  Prosthetic Joint and Catheter-Associated Infections 

 The risk of infection is increased by the presence of foreign materials [4], and infections 

associated with indwelling medical devices are typically caused by microorganisms that grow in 

biofilms [36]. It is known that only a small number of organisms are needed to colonize an implant 

[49]. Thus, bacterial strains that are able to form biofilms have an advantage in this setting, as 

once they adhere they can proliferate and mature to form a biofilm while avoiding detection by the 

host innate immune system. Often organisms associated with these devices are skin flora 

inoculated at the time of implantation [49]. Indeed, staphylococcal species like S. aureus are 

among the most common etiologic agents of device-related infections [38, 50], with the incidence 

of infection due to resistant strains of staphylococci accounting for up to 50% of prosthetic joint 

infection (PJI) in one study [16]. In some cases, organisms can seed implants hematogenously or 

through compromised local tissues, particularly during indwelling catheter implantation [49, 51].  
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 The number of joint replacement surgeries has been continuously increasing, and as with 

any surgical procedure, complications can arise, including failure due to infection. Currently, the 

rates of PJI following primary procedures range from 1-9% [52]. The seriousness of this 

complication is due to the formation of biofilms on prosthetic devices and their inherent 

recalcitrance to traditional antibiotic therapy. Therefore, these chronic infections often require 

device resection arthroplasty, and two-stage replacement is the current standard-of-care 

treatment in North America [16, 49]. The two-stage exchange begins with removal of the infected 

prosthesis and implantation of an antibiotic-impregnated spacer to control infection during the 

prosthesis-free interval, during which antibiotic therapy is also administered systemically. Six 

weeks to three months following the first stage, a new prosthesis is inserted during a second 

procedure [16, 49]. Despite this lengthy process and continued administration of antimicrobial 

agents, these devices often fail again due to infection. It is estimated that infection rates reach 

40% following revision procedures [52]. This failure can be attributed not only to recurrence of the 

primary organism, but also to infection by novel organisms [16].  

Catheters of all types are used in clinical practice to improve the quality of life of 

chronically and critically ill patients. However, biofilm formation and bloodstream infections are 

major risks associated with catheter placement [53], and can result in CSF shunt infections [54-

56] or catheter-related bloodstream infections in the case of central venous catheters (CVCs). 

Since the presence of a biofilm on the implant subjects the host to constant dispersal of biofilm-

associated cells through the blood stream coupled with the biofilm’s resistance to antibiotic 

therapy, catheter removal is the conventional management for these infections [53]. Although 

removing CVCs and reinserting another in a different vascular access site carries its own 

complications, there are currently a limited number of alternative therapeutic options for 

physicians [53, 57]. 

d) Mouse models of biofilm infection 

 Currently, the two most commonly employed animal models for the study of S .aureus 

biofilm infection are catheter-associated and orthopedic implant-associated infections. These two 

models have been employed in many different tissues and cavities to examine host-pathogen 
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interactions under static or dynamic conditions, including subcutaneous, venous and CNS 

catheter-associated infections [32, 42, 43, 55, 58] as well as orthopedic implants associated with 

the femur or tibia [28, 59-62].  

In general, the orthopedic implant-associated models explore static biofilm growth and 

host-pathogen interactions at the site of a chronic infection with direct access to the bone marrow, 

which could have important immunological implications on the course of infection. Furthermore, 

this model can be used to examine the incidence of implant-associated osteomyelitis, of which S. 

aureus is a leading cause [61]. Careful attention was paid during the development of this model to 

use materials that would allow for accurate representation of several facets of human disease 

seen in the clinical setting. Titanium alloys are the most common metals used in total joint 

arthroplasties, and thus, nickel-titanium wire was selected for the implant material in the 

orthopedic model utilized in the Kielian laboratory [63].  

 The subcutaneous catheter model of S. aureus biofilm infection used in our laboratory is 

a static model, which does not recapitulate the sheer forces that a biofilm would encounter in an 

indwelling intravascular catheter, but does allow for the investigation of various aspects of host-

pathogen interactions. This model can also be highly advantageous due to its easy tissue 

accessibility to monitor infection, straightforward device placement and relatively high-throughput 

nature compared to orthopedic implant models that require much more laborious surgery [60]. 

Collectively, these mouse models of infection have allowed for a better understanding of the 

mechanisms governing the innate immune response to S. aureus biofilm infection [32, 59, 60, 62] 

as well as ways in which bacteria evade this response through the use of bacterial mutant strains 

and mice deficient for various immune-related molecules. Continued use of these models could 

potentially allow for the identification of critical disease determinants as well as therapeutic 

targets to reduce patient morbidity and mortality associated with bacterial biofilm infection.   

2) Innate Immune response to S. aureus infection 

a) Innate immune recognition of S. aureus 

 Innate immunity represents the first line of defense against invading pathogens and all 

cells of the innate immune system rely on a set of germ-line encoded pattern recognition 
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receptors (PRRs) directed against highly conserved pathogen-associated molecular patterns 

(PAMPs) to elicit a rapid immune response [64]. Perhaps the most common class of PRRs are 

Toll-like receptors (TLRs), of which thirteen have been identified in humans, and ten in mice [64, 

65]. Despite the differences in ligands for each of the TLRs, most utilize a common signaling 

pathway through MyD88 and NF-κB/MAPK that leads to the transcriptional activation of 

proinflammatory cytokines and chemokines [66-69]. In terms of gram-positive bacteria and 

staphylococcal species, TLR2, expressed on the surface of innate immune cells such as 

monocytes/macrophages and neutrophils, is involved in the recognition of peptidoglycan (PGN) 

and lipoproteins [70], while TLR9 is an intracellular receptor that recognizes unmethylated CpG 

motifs characteristic of bacterial DNA [31].  

 The involvement of TLRs has been implicated in mediating innate immune recognition 

and elimination of staphylococcal species during planktonic growth [71-75]. TLR2-deficient mice 

exhibit increased mortality rates during S. aureus-induced sepsis, due to a failure in bacterial 

recognition and decreased proinflammatory cytokine production [72]. However, patients with 

mutations inactivating TLR2 have no increased risk of developing post-arthroplasty S. aureus 

infection, which agrees with reports from our laboratory and others that have determined biofilms 

circumvent TLR2 and TLR9 recognition [32, 62].  Unlike during planktonic S. aureus infection, 

TLR2 and TLR9 KO mice display similar biofilm burdens as WT animals and all display 

attenuated inflammatory mediator expression. These observations indicate that, in the context of 

indwelling device-associated biofilm infection, bacteria circumvent traditional PRR recognition 

strategies of innate immune cells and thus also deter downstream proinflammatory responses to 

invading pathogens [32, 62]. Although TLR2 is essential for S. aureus recognition during 

planktonic infection, the altered growth state S. aureus assumes during biofilm infection could 

determine whether these sensing mechanisms are effective.  

Further hindering TLR engagement is the observation that host leukocytes do not form 

intimate associations with biofilms, both in vitro and in vivo. This could be due to the fact that 

biofilms are encased within a complex structure, with few free bacteria exposed on the outer 

surface, thereby avoiding detection by PRRs [32, 61]. In addition, the biofilm matrix contains 
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complex polysaccharide polymers that may interfere with engagement of TLR ligands [76]. S. 

aureus is known to produce staphylococcal superantigen-like (SSL) proteins, of which SSL3 has 

been shown to block TLR2 activation through direct extracellular interaction with the receptor [77]. 

However, it is possible that S. aureus biofilms may be recognized by alternative PRRs. For 

example, both AIM2 and DNA-dependent activator of IFN-regulatory factors (DAI) can sense 

eDNA which is a major component of the S. aureus biofilm ECM [78, 79]. Muramyl peptide, the 

degradation production of staphylococcal PGN, can be sensed by the cytoplasmic PRR 

nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and elicit proinflammatory 

mediator release independent of TLR signaling [80, 81].  

Although TLR2 and TLR9 do not appear to be involved during staphylococcal biofilm 

infections, a role for IL-1β has been revealed in controlling early bacterial burdens during PJI [62]. 

IL-1β KO mice displayed enhanced biofilm formation and decreased neutrophil recruitment, which 

was most pronounced during early time points. This indicates the proinflammatory properties of 

IL-1β may have a protective role early before a robust biofilm has gained a foothold on the 

associated implant. Interestingly, both the IL-1 receptor (IL-1R) and TLRs share a common 

downstream adaptor, myeloid differentiation factor 88 (MyD88), that when activated leads to NF-

κB-mediated transcription. Studies from our laboratory have shown that MyD88 greatly influences 

the course of biofilm infections, as MyD88 KO mice have significantly higher bacterial burdens 

and decreased expression of several proinflammatory mediators necessary for mounting a robust 

immune response against S. aureus [31]. Taken together, in the context of what is known about 

TLR and IL-1β signaling during S. aureus biofilm infection, MyD88 appears to play a dual role 

during biofilm infection. Early MyD88 signals are responsible for biofilm containment and MyD88 

loss decreases the proinflammatory capacity of effector cells, such as macrophages, that 

participate in the clearance of planktonic bacteria that would be encountered during biofilm 

dispersal and dissemination to distant sites in the host [31, 62].  

Altogether the understanding of innate immune signaling to biofilm infection and the 

timing of these signals is poorly understood. There is likely a very concerted series of events 

following inoculation of planktonic bacteria, adherence and maturation into a robust biofilm 
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infection. A better understanding of the innate immune recognition mechanisms that are important 

during all stages of biofilm development is needed in order to determine alternative ways to target 

the innate immune system and develop alternative therapeutics to combat these persistent biofilm 

infections. 

b) Neutrophil response to S. aureus 

 In models of planktonic S. aureus infection, it has been shown that association of TLR2, 

MyD88 and the subsequent production of cytokines and chemokines is involved in the 

recruitment of neutrophils that mediate innate immune responses at infection sites [82]. 

Neutrophils are a phagocytic cell of the innate immune system and are often considered the first 

responder to staphylococcal infection, as they rapidly migrate to sites of inflammation [83, 84]. 

Mediators such as CXCL1 and CXCL2, among others, are produced in response to damage or 

invading pathogens and bind specific surface receptors on neutrophils directing their 

extravasation from the circulation. Specifically, S. aureus surface components like LTA, and 

secreted molecules such as staphylococcal enterotoxins and toxic shock syndrome toxin (TSST)-

1, have been shown to elicit chemokine production by monocytes and epithelial cells, thereby 

recruiting neutrophils to the site of S. aureus infection [83, 85, 86]. In addition, the complement 

component C5a is another potent neutrophil chemotactic molecule and S. aureus PGN has been 

shown to directly activate the complement cascade [87].  

Once at the site of planktonic infection, neutrophils have the capability to phagocytose 

bacteria, including S. aureus. As mentioned previously, all cells of the innate immune system 

express PRRs. In terms of neutrophil responses, engagement of these receptors activates 

pathways critical to microbicidal activity and prolonged cell survival. Neutrophils are perhaps best 

known for their production of large amounts of reactive oxygen species (ROS) and degranulation. 

However, they also secrete proinflammatory cytokines and chemokines, including TNF-α, IL-1β, 

CXCL2, CXCL11 and CCL3 [31, 88, 89], and have a vast arsenal of anti-microbial peptides such 

as α-defensins, cathelicidins, cathepsins, and lysozyme that also play a role in neutrophil-

mediated immunity [83, 90]. Because these cells possess high cytotoxic capacity and 

proinflammatory potential, regulation of cell turnover is essential for maintaining homeostasis. 



30 
 

This is accomplished through apoptosis [83]. In the context of infection, where neutrophils are 

recruited and activated, apoptosis is accelerated and the clearance of apoptotic neutrophils by 

macrophages is thought to play a key role in the resolution of the inflammatory response [83, 91].  

Despite the large arsenal of weapons neutrophils possess to combat invading bacteria, 

many pathogens have evolved mechanisms to evade neutrophil-mediated host defense 

strategies. Indeed, S. aureus can actively avoid destruction by neutrophils and survive to cause 

devastating disease. One of the most fundamental features of S. aureus’ ability to cause infection 

is the secretion of toxins. α-hemolysin (Hla) is the major cytotoxic exotoxin secreted by S. aureus, 

and functions by binding to a disintegrin and metalloprotease 10 (ADAM10), initiating cytolytic 

pore formation [92]. In addition, γ-hemolysin and PVL are known to preferentially target and lyse 

leukocytes [3, 93]. Furthermore, S. aureus expresses extracellular adherence proteins (Eap) that 

bind and inhibit intercellular adhesion molecule-1 (ICAM-1), the endothelial receptor required to 

initiate leukocyte adhesion and diapedisis from the vasculature [93, 94], and about 60% of S. 

aureus strains are known to secrete the chemotaxis inhibitory protein of staphylococci (CHIPS), 

which binds to chemokine receptors and inhibits neutrophil recruitment to sites of infection [3, 93]. 

S. aureus blocks complement activation and resists phagocytosis through the production of 

surface-associated anti-opsonic proteins, like protein A, and a polysaccharide capsule [3, 93]. 

There is also evidence to suggest that CA-MRSA strains can induce programmed necrosis of 

neutrophils following phagocytosis, which some consider to be a component of enhanced 

virulence, since a large proinflammatory response to lysed neutrophils is avoided and the bacteria 

can go undetected longer within the intracellular compartment [95].  

Although S. aureus possesses a wide variety of subversion strategies, neutrophils can 

still exert bactericidal activity under planktonic conditions [70, 96, 97]. However, the direct role of 

these cells in modulating S. aureus biofilm infection is less understood. Some in vitro studies, 

using both static and flow cell biofilms, have suggested that neutrophils are capable of migrating 

toward and clear the biofilm by phagocytosis [98, 99]. But, the extent of clearance depended on 

the maturation state of the biofilm, with developing young biofilms being more sensitive to 

neutrophils than more mature biofilms [99]. It is possible that immature biofilms have more 
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associated planktonic bacteria, as the structure is still developing, which could account for the 

effectiveness of a neutrophils. It would be presumed then that a mature biofilm has fewer 

planktonic cells associated with it and is thereby protected from this response. In addition, many 

of these studies have only been performed in vitro, and our laboratory has shown that several 

inflammatory signals responsible for recruitment and activation of innate immune cells are 

attenuated in vivo and biofilm-infected tissues have limited numbers of infiltrating neutrophils [32, 

59, 60, 100]. This calls into question the in vivo relevance of an effective neutrophil response to 

biofilms. Indeed, studies in our laboratory using adoptive transfer of neutrophils into tissues 

surrounding catheter-associated biofilms in vivo showed these cells were not able to clear biofilm-

associated bacteria. Although there have been reports that increasing numbers of neutrophils are 

present during S. aureus post-arthroplasty infection [62], neutrophils were quantified based on 

H&E staining or EGFP-fluorescent signals from LysM-GFP mice [62]. Furthermore, the use of 

Ly6G alone is not a good marker for neutrophil populations, due to overlap with immature 

precursor populations like MDSCs. Therefore, many of these methods have resulted in possible 

inaccurate quantitation of neutrophil cell numbers present at the site of S. aureus infection.   

c) Macrophage response to S. aureus 

 Along with neutrophils, macrophages are an important innate immune effector cell critical 

for defense against acute planktonic staphylococcal infection. To date, however, the majority of 

studies investigating innate immunity to S. aureus have focused on neutrophils, and therefore 

much less is known about macrophage responses during staphylococcal infection. Neutrophils 

have potent microbicidal activity, but are short-lived and require rapid cell turnover in addition to a 

limited capacity to produce inflammatory cytokines and chemokines. Macrophages, on the other 

hand, have important and diverse roles in regulating tissue homeostasis by eliminating apoptotic 

cells and recycling nutrients by eliminating waste products from tissues [101-103]. Additionally, 

they are critical for an effective immune responses and produce high levels of proinflammatory 

mediators that amplify immune cell recruitment/activation cascades [32, 104, 105]. Macrophages 

are derived from bone marrow precursors of the granulocytic-monocytic lineage that develop into 

monocytes. Monocytes remain in the bone marrow < 24 h before entering the systemic 
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circulation. Only after monocytes cross endothelial venules and enter tissue do they transition into 

macrophages [103]. Unlike neutrophils, nearly all tissues contain resident macrophages and 

these cells can serve as critical first line defenders against invading microbes [32, 106, 107]. 

Normally resident macrophages are relatively quiescent, but they can be readily activated by a 

variety of stimuli during the immune response, in part through their Toll-like and scavenger 

receptors [103].  

 Macrophages can exhibit both pro- and anti-inflammatory properties and are generally 

characterized based on gene expression patterns and cytokine secretion. But these phenotypes 

are driven largely by the environment in which a macrophage is found and stimuli they encounter, 

which results in a great deal of plasticity within a macrophage population [101, 103]. Some 

polarization signals may include apoptotic cells, hormones, immune complexes, cytokines and 

bacteria-associated PAMPs [103]. It is thought that stimulation by microbial products elicits the 

production of proinflammatory cytokines like IL-1, IL-6, IL-12, and TNF-α, as well as nitric oxide 

(NO) and various chemokines, which are generally associated with protective responses and 

bacterial clearance [101, 108-110]. However, inflammation is a tightly regulated process, and 

macrophages can become more anti-inflammatory and pro-fibrotic, producing multiple inhibitors 

and antagonists, like IL-10 and arginase-1 (Arg-1), which suppress activation and 

proinflammatory mediator production in addition to lowering microbicidal activity [111]. Further 

compounding this complexity, pathogenic bacteria have developed mechanisms, including biofilm 

formation, to interfere with or alter macrophage phenotypes in an effort to enhance survival and 

promote persistence within the host, as described below. 

 Previous reports have shown that mixed leukocyte and purified neutrophil populations are 

capable of infiltrating biofilms [98, 112], and our laboratory has demonstrated that macrophages 

are also able to invade these structures to some extent [32]. However, macrophages displayed a 

limited ability to phagocytose S. aureus biofilm-associated bacteria in vitro and in vivo. In fact, the 

majority of macrophages that invaded S. aureus biofilms in vitro were dead compared to those 

that remained above the biofilm surface [31, 32]. The reasons for this could be due to several 

factors. First, biofilms appear to secrete factors that limit the phagocytic potential of 



33 
 

macrophages. Macrophages incubated with conditioned supernatants from S. aureus biofilms in 

vitro were unable to phagocytose latex beads or planktonic bacteria, which were readily 

internalized by untreated macrophages [31]. Second, the sheer size and complex organization of 

the biofilm structure could inhibit phagocytosis of biofilm-associated bacteria, as it exceeds the 

size of a macrophage by several orders of magnitude, and macrophages were capable of 

phagocytosing bacteria from mechanically disrupted biofilms [32]. Even if macrophages do 

phagocytose some bacteria, S. aureus gene products have been associated with the 

detoxification of ROS and RNS. Thus, S. aureus can survive and grow within macrophages [113]. 

These phenomena could have significant implications during biofilm infections, as macrophages 

would be impaired in their ability to scavenge dead cell/debris or contribute to tissue remodeling 

in the vicinity of the biofilm and contribute to biofilm persistence in vivo [31].  

 There is also emerging evidence that suggests staphylococcal biofilms actively skew host 

immunity toward an anti-inflammatory, pro-fibrotic response that favors bacterial persistence [31, 

32, 114]. Studies from our laboratory have shown preferential accumulation of anti-inflammatory 

macrophages in the S. aureus biofilm milieu, both in vitro and in vivo [31, 32, 61]. These cells 

have decreased inducible nitric oxide (iNOS) expression, while Arg-1 is increased. Both iNOS 

and Arg-1 compete for arginine to initiate their respective biosynthetic pathways, and a 

preferential induction of Arg-1 in biofilm-associated macrophages likely results in skewing the 

immune response away from bacterial killing [31, 32]. Increased Arg-1 activity has implications 

beyond innate immune responses as well. For example, Arg-1 leads to L-proline production, 

which is a precursor in the collagen biosynthetic pathway [115, 116], and studies from our 

laboratory have shown increased Arg-1 expression associated with pro-fibrotic macrophage 

responses to S. aureus biofilms in vivo [32, 117].  Arginine can regulate T cell proliferation and 

effector functions; therefore, arginine depletion from the environment results in defective TCR 

signaling through inhibition of CD3ζ expression, cell cycle, and cytokine production. Indeed, our 

laboratory has found few T cell infiltrates associated with different models of biofilm infection, 

including human post-arthroplasty implants and cranial bone flap biofilm infection [32, 59, 100, 

118]. Currently, there is still a lot to learn regarding the bacteria- and host-derived factors that 
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play a role in eliciting macrophage dysfunction and its greater impact on the whole immune 

response to S. aureus biofilm infection. 

3) Myeloid-derived suppressor cells 

 Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid 

progenitor cells, including immature monocytes and granulocytes [119-123]. MDSCs are known 

for their ability to augment Arg-1 expression, which inhibits T cell effector responses, and also 

anti-inflammatory cytokine production that polarizes macrophages toward an immunosuppressive 

phenotype. Our laboratory has shown that S. aureus biofilms augment Arg-1 expression in vivo 

and skew macrophages toward an anti-inflammatory state that correlates with a failure to recruit T 

cells to the site of infection [32]. In addition, T cells are not recruited to sites of PJIs in humans 

[59]. Therefore, MDSC infiltrates could be responsible for promoting the anti-inflammatory milieu 

during S. aureus biofilm infection. 

The role of MDSCs in cancer has been extensively studied; however, accumulation of 

these cells has also been reported during other pathologic conditions, including bacterial, 

parasitic and viral infection, acute and chronic inflammation, and traumatic stress [124, 125], and 

is considered essential to immune regulation [126]. MDSCs can be generated in response to a 

wide variety of cytokines, which has made deciphering the signals required for their induction very 

difficult to ascertain and often context-specific. For example, it has been demonstrated in cancer 

that the precise nature of an MDSC population depends on the tumor itself and host tumor-

derived factors [127]. Some studies have shown that the phenotype and suppressive ability of 

MDSCs is context dependent, and in our studies we have determined that although MDSCs are 

suppressive when recovered from the site of biofilm infection, MDSCs from the spleen of infected 

mice do not have the ability to inhibit T cell proliferation [60]. Therefore, understanding of the 

mechanisms involved in MDSC induction during staphylococcal infection and the role these cells 

play in the local environment as opposed to systemic sites will be critical to developing novel 

targets and therapeutics that limit bacterial persistence.  

a)  History, nomenclature and definition of phenotypic markers 
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There has been an emerging interest in the past five decades in understanding the role of 

suppressor cells as a critical mediator of health and disease, although this has not been without 

some debate. Natural suppressor (NS) cells were first reported in tumor-bearing mice in the mid-

1960s [128, 129], as they actively suppressed anti-tumor responses like T cell proliferation, 

antibody production and CTL induction to promote immune evasion [129]. Interestingly, NS 

activity was a characteristic of multiple cell populations from different hematopoietic sites, 

including the spleen and bone marrow. NS cells were found to be increased by tumor secretions 

as well as exogenous administration of growth factors like GM-CSF and G-CSF, and were 

observed in the bone marrow of naïve mice, although they lacked suppressive activity.  

Over time, similar observations were made in other tissues and types of cancer, which 

led NS cells to also be identified by several other monikers, including immune myeloid cells, 

suppressor macrophages, immature myeloid cells, and most recently MDSCs [130]. This led to 

controversy over whether they really existed at all [129]. Suppressor cells had started to gain 

appreciation in extramedullary hematopoiesis and increased neutrophil numbers in tumor-bearing 

animals, and were later shown to inhibit lymphocyte numbers and cytotoxic activity [131]. But the 

lack of a defined set of markers surface to positively identify MDSCs caused confusion. After the 

Gr-1
+
CD11b

+
 phenotype was suggested a general agreement was reached that these cells do in 

fact exist and are distinct from monocytes and granulocytes based on their suppressive activity 

[32, 132-134]. Finally in 2007, a letter was published by Gabrilovich et al [125] in an effort to end 

the nomenclature controversy for good, and MDSC was chosen as the term for this immature, 

immunosuppressive cell population. 

 Despite the amount of heterogeneity, all MDSCs in mice lack markers of mature myeloid 

cells, but express both Gr-1 and CD11b [120-123, 126, 130, 131, 135, 136]. Although the Gr-

1
+
CD11b

+
 population as a whole displays properties characteristic of MDSCs, this surface marker 

combination makes it difficult to discern the phenotype of the suppressive cell population in a 

given pathologic condition. This is because the Gr-1 epitope encompasses both Ly6G and Ly6C 

molecules, and therefore cannot distinguish between monocyte- and granulocyte-like subsets 

within the whole Gr-1
+
 population [126]. 
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 Based on this differential expression of Ly6G and Ly6C, MDSCs in mice can be divided 

into two main subsets: granulocytic and monocytic MDSCs (G-MDSCs and M-MDSCs, 

respectively). In general, G-MDSCs have a CD11b
+
Ly6G

+
Ly6C

low
 phenotype, whereas monocytic 

MDSCs are CD11b
+
Ly6G

-
Ly6C

high
, although there is some variability in the degree to which these 

markers are expressed [119, 124, 129-131]. In addition to their different surface marker 

expression, it is thought that these two subsets also have alternate mechanisms of suppressing T 

cell responses, utilizing NOS2 and Arg-1 differentially to induce immunosuppression [129, 137].  

b) Human MDSCs 

 MDSCs have also been described in humans, initially in patients with head and neck 

cancer that were identified by CD24 expression and T cell suppression [138-140]. But ultimately, 

this classification of MDSCs rendered them indistinguishable from hematopoietic progenitor cells 

[129]. Unlike mice, humans do not express Gr-1, Ly6G or Ly6C, and therefore, the markers for 

human MDSCs are different and not as straightforward as in the murine system. For quite some 

time the human MDSC phenotype was described by negative expression of human leukocyte 

antigen D-related (HLA-DR) and either or both of the common myeloid markers CD11b or CD33 

[139]. Recently, more specific marker subsets have been defined allowing G- and M-MDSCs to 

be identified in humans. The G-MDSC phenotype in humans is identified as HLA-DR
-

CD11b
+
CD33

+
CD14

-
CD15

+
, whereas M-MDSCs correspond to HLA-DR

-/low
CD11b

+
CD33

+
CD14

+
 

[129, 131].  

c)  Function of MDSCs in health and disease  

 MDSCs are the intermediates of normal myeloid development and differentiation stages. 

The hematopoietic system continually cycles through a small population of pluripotent 

hematopoietic stem cells (HSCs) to balance self-renewal and differentiation [129] as the numbers 

of functionally mature myeloid cells must be maintained. [130]. Immature cells expressing the Gr-

1
+
CD11b

+
 phenotype are maintained at relatively low levels in murine bone marrow (i.e. 20-30%) 

[130, 131]. In healthy individuals MDSCs do not expand, instead, HSCs and immature myeloid 

cells are generated primarily in the bone marrow and quickly differentiate into mature 

granulocytes, macrophages or DCs [129-131, 137]. However, excessive inflammatory mediator 



37 
 

production leads to increased mobilization of mature myeloid cells, which creates niche spaces in 

the bone marrow reservoir and skews differentiation from mature myeloid cells toward MDSC 

expansion.  Therefore, dysregulated myelopoiesis is considered a prerequisite for MDSC 

expansion [130]. 

 Disturbances in cytokine homeostasis induced by cancer, infection, or other immune 

stresses can alter the equilibrium of MDSCs, leading to their accumulation in lymphoid organs 

and blood [120, 130]. Instead of one factor, GM-CSF for instance, being responsible for both the 

differentiation and activation of MDSCs, it is now though that two signals are responsible for 

these processes and are governed by different signal transduction pathways [121, 137]. The first 

process of MDSC expansion is induced by various cytokines and growth factors produced by 

tumors, cells responding to infectious agents, or chronic stimulation. These factors can include 

GM-CSF, M-CSF, G-CSF, IL-6, VEGF, and signals are primarily directed through signal 

transducer and activator of transcription 3 (STAT3) and STAT5. MDSCs then require a second 

activating signal that endows their functional characteristics, which manifests as increased Arg-1, 

NO, and production of immune suppressive cytokines [121]. This type of signaling is provided by 

proinflammtory molecules like IFN-γ, IL-1β, IL-13, TLR ligands, etc., and utilizes STAT1 and NF-

κB transcription factors as well as COX2 [121]. The two-signal model for MDSC expansion and 

activation explains why steady-state activation of STAT3 and STAT5 in response to growth 

factors required for normal hematopoiesis does not result in MDSC accumulation in the absence 

of strong proinflammatory signals, and also explains why acute inflammation, associated with 

release of proinflammatory factors in the absence of growth factors, also does not augment 

MDSC recruitment [121].  

 Activation of MDSCs in pathologic conditions results in their ability to suppress immune 

responses in vitro and in vivo [127, 131, 137], including the inhibition of T cell activation and 

polarization of macrophages toward an anti-inflammatory phenotype .  The mechanisms 

underlying the inhibitory activity of MDSCs range from those requiring cell-cell contact to others 

that are mediated through the modification of the microenvironment. Indeed, MDSCs have been 

shown to suppress immune responses through direct and indirect mechanisms [141].  
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In terms of direct MDSC inhibition, the main proposed mechanisms are NO and  ROS 

production, arginine depletion, secretion of immunosuppressive cytokines such as TGF-β and IL-

10 as well as induction of apoptosis meditated by the FAS-FASL  pathway [119, 124, 132, 142-

145]. In particular, increased iNOS or Arg-1 activity in MDSCs leads to enhanced arginine 

catabolism, thereby depleting this non-essential amino acid from the environment. A shortage of 

L-arg inhibits T cell proliferation through several different mechanisms, including decreasing 

expression of CD3ζ and preventing T cell upregulation of the cell cycle regulators cyclin D3 and 

cyclin-dependent kinase 4 [137]. Furthermore, the hyperproduction of ROS by MDSCs has been 

shown to directly disrupt antigen-specific CD8 T cell responses through nitration of tyrosines that 

interfere with TCR-CD8 complex interaction with MHC [146].  

MDSCs are able to suppress indirectly by inducing the development of other cell types 

with immune suppressor function, including regulatory T cells (Tregs) and anti-inflammatory 

macrophages [120, 147, 148]. The secretion of immunosuppressive cytokines, like IL-10, by 

MDSCs can transform the environment in a way that favors the development of these cell types. 

Tregs and anti-inflammatory macrophages can then go on to produce more anti-inflammatory 

cytokines, including IL-10, representing a positive feedback loop to propagate immune 

suppressive activity. MDSC secretion of IL-10 in other models has been shown to downregulate 

IL-12 production in macrophages [135]. Additionally, cell contact-dependent cross-talk between 

MDSCs and macrophages has also been reported to occur in tumors [135].  

d) MDSCs and S. aureus biofilm infection 

 As MDSCs are found to be involved in more and more areas of health and disease, the 

debate over whether they are beneficial or deleterious to host immunity against invading 

pathogens continues [130]. It is apparent that the immunosuppressive, anti-inflammatory 

properties of MDSCs could be beneficial under certain circumstances but, to date, no one has 

identified the tipping point of when these responses become harmful or ways to intervene. During 

infection it is believed that immature myeloid cells in the bone marrow are recruited to sites of 

inflammation to replace damaged or exhausted cells, but factors within the local environment, 
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host- or pathogen-derived, arrest these cells in an immature state and the inflammatory signals 

present lead to their acquisition of immunosuppressive properties [130]. 

 Our laboratory was the first to demonstrate a role for MDSCs during S. aureus infection 

[60]. MDSCs infiltrating S. aureus biofilms were capable of inhibiting T cell proliferation and 

expressed genes typical of MDSCs described under other pathologic conditions, including Arg-1, 

iNOS and IL-10. Manipulation of MDSCs with Ab depletion strategies demonstrated that their 

immunosuppressive function prevents monocytes/macrophages from eliminating biofilm-

associated bacteria by attenuating their proinflammatory properties. More recent studies have 

shown that IL-12 is critical for MDSC recruitment to the site of S. aureus PJI and that IL-10 is one 

mechanism used by MDSCs to exert immunosuppressive functions. Additional details regarding 

these studies can be found in Chapters 3, 4 and 5 of the dissertation. 

 During initial stages of infection MDSCs could be protective by limiting tissue damage 

during potentially overwhelming inflammation [130, 149]. Indeed, a study has shown that 

depletion of MDSCs during early severe sepsis reduced survival, suggesting they do play an 

immunoprotective role this this disease setting [150]. However, while early sepsis is 

proinflammatory, late sepsis is characterized as an anti-inflammatory state and MDSCs contribute 

greatly to this shift. MDSCs have been observed to secrete copious amounts of IL-10 during late 

sepsis [123]. Furthermore, it has been reported that T cells play a protective role in a model of 

systemic S. aureus infection. However, they lose their ability to respond to bacterial Ags with the 

transition from acute infection to persistence and exhibit a dysfunctional state characteristic of 

suppression by MDSCs [149]. All of these findings demonstrate that MDSCs have a very dynamic 

role during infection and it is not surprising that bacteria have evolved mechanisms to manipulate 

immune-regulatory mechanisms to promote their long-term survival [149, 150].   

4) Overview of Dissertation 

Initial experiments from our laboratory demonstrated that biofilm infections skew the host 

innate immune response toward an anti-inflammatory phenotype that allows them to subvert 

immune clearance mechanisms [32]. Not only do the bacteria circumvent traditional bacterial 

recognition pathways mediated through TLRs, but also alter the macrophage response leading to 
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significant Arg-1 production, which has been associated with bacterial persistence. In addition to 

Arg-1
+
 macrophages being found in close proximity to the catheter surface, other non-

macrophage cells were also Arg-1
+
. This led us to investigate the possibility that biofilms induce 

the immature, immunosuppressive population of MDSCs to accumulate at the site of infection. In 

addition, we have also attempted to augment macrophage proinflammatory responses to biofilm 

infection through therapeutic approaches, including treatment with EP67 and administration of 

pro-inflammatory macrophages to biofilm-infected tissues. 

During the course of my research, I have identified a bona fide MDSC infiltrate during S. 

aureus biofilm infection, which could be a result of the biofilm hijacking the immune response to 

inhibit the formation of mature antimicrobial leukocyte effectors and instead polarize endogenous 

monocytes and macrophages toward an anti-inflammatory phenotype [59, 60, 129]. There is 

evidence to suggest that the combination of MDSC recruitment and anti-inflammatory 

macrophages during S. aureus biofilm infection likely contributes to the biofilm persistence. 

Indeed, we have demonstrated that anywhere from 10
3
-10

5
 viable organisms can be detected 3 

months after infection in both the mouse orthopedic implant- and catheter-associated biofilm 

infection models, which accurately recapitulates the persistent nature of implant-associated 

biofilm infections in humans [59, 60]. Our laboratory has demonstrated that our mouse model of 

orthopedic biofilm infection mimics several aspects of human PJI. For example, very few T cells 

are associated with PJI, whereas the main cellular infiltrate into aseptic tissues are T cells. 

Furthermore, a population of MDSC-like cells expressing genes characteristic of MDSC described 

in other models has been found in human PJI tissues [59]. However, the main objective of this 

research is to identify the mechanisms used by MDSCs to exert their immunosuppressive 

functions. My research demonstrates the complexity of MDSC responses and highlights the role 

of both pro- and anti-inflammatory mediators (IL-12 and IL-10, respectively) during different 

phases of biofilm development.  
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Chapter 2: Materials and Methods 
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1) Mouse strains 

A breeding colony of C57BL/6 mice was established in Dr. Kielian’s laboratory upon purchasing 

animals from the National Cancer Institute (Frederick, MD) or Jackson Laboratories (Bar Harbor, 

ME). These studies were performed in strict accordance with recommendations found in the 

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health (NIH) and 

were reviewed by the Institutional Animal Care and Use Committee of the University of Nebraska 

Medical Center.  

 

IL-12p40 KO mice were purchased from The Jackson Laboratory (Bar Harbor, ME, stock number 

002693, B6.129S1-Il12b
tm1Jm

/J). A targeting vector containing a PGK-neomycin cassette was 

used to disrupt part of exon 3 in the Il12b gene. Homozygous mice have a severely restricted 

ability to mount Th1 responses while Th2 responses are enhanced.  

 

IL-12p35 KO mice were purchased from The Jackson Laboratory (Bar Harbor, ME; stock number 

002692, B6.129S1-Il12a
tm1Jm

/J) and were generated by replacing exons 1 and 2 of the gene with 

a neomycin resistance cassette. These KO mice fail to show any delayed-type hypersensitivity 

(DTH) reaction, and are therefore useful in studying resistance to infection. 

 

IL-23p19 KO mice were provided by Genentech (South San Francisco, CA) 

 

IL-10 KO (stock number 002251, B6.129P2-Il10
tm1Cgn

/J) and IL-10-GFP reporter mice (stock 

number 008379, B6.129S6-Il10
tm1Flv

/J) were purchased from The Jackson Laboratory (Bar 

Harbor, ME). The IL-10 gene was disrupted in 129/Ola-derived embryonic stem (ES) cells by 

replacing codons 5-55 of the first exon by a linker, providing a termination codon and a neo gene, 

and by introducing a termination codon into exon 3. Transfected cells were injected into C57BL/6 

blastocysts. Mice homozygous for the Il10 gene mutation do not produce IL-10 and completely 

lack IL-10 activity [151], which impacts immunosuppressive mechanisms of the innate and 

adaptive immune systems. IL-10-GFP mice have an internal ribosome entry site-green 
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fluorescent protein (IRES-GFP) cassette followed by a loxP-flanked neomycin cassette between 

the stop codon and polyadenylation signal of exon 5 of the gene. This allows for the detection and 

monitoring of cells committed to IL-10 production. 

 

MyD88 KO mice were originally obtained from Dr. S. Akira (Osaka University, Suita, Osaka, 

Japan) and were backcrossed with C57BL/6 mice for > 10 generations [152-154]. The Myd88-

deficient allele encodes a deletion of exon 3 of the myeloid differentiation primary response 88 

gene. MyD88 is a cytosolic adaptor protein that plays a central role in the innate and adaptive 

immune response, and is required to limit bacterial burdens and prolong survival during infection.  

 

CXCR2 KO (stock number 006848, B6.129S2(C)-Cxcr2
tm1Mwm

/J) mice were purchased from The 

Jackson Laboratory (Bar Harbor, ME). The CXCR2 gene was knocked out with a neomycin 

selection cassette that replaced the entire coding sequence of the gene. Homozygous mice have 

several abnormalities, including neurological defects, impaired wound healing, impaired 

angiogenesis, altered growth of induced/implanted tumors, splenomegaly and increased 

susceptibility to various pathogens due to impaired granulocyte recruitment and decreased 

pathogen clearance during innate immune responses.  

 

2) Bacterial strains and microbiological techniques 

Bacterial strains 

The USA300 LAC strain of Staphylococcus aureus (S. aureus) is a community-acquired 

methicillin-resistant (CA-MRSA) isolate kindly provided by Dr. Frank DeLeo (National Institute of 

Allergy and Infectious Diseases Rocky Mountain Laboratories, Hamilton, MT). This strain was 

isolated from the Los Angeles county (LAC) jail inmate with a skin and soft tissue infection and 

was also responsible for the CA-MRSA outbreak of 2002 [26]. This S. aureus strain contains two 

plasmids, p01 and p03 and the USA300 LAC 13c strain used in the Kielian laboratory has been 

cured of the erythromycin-resistance plasmid.  
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For in vitro biofilms, USA300 LAC was transformed with the plasmid pCM11 to express GFP 

driven by the sarA P1 promoter (USA300 LAC-GFP), and plasmid expression was maintained 

with erm selection (10 μg/ml). For in vivo studies, USA 300 LAC 13c chromosomally transduced 

with the bacterial luciferase gene lux was used and will be referred to as USA300 LAC::lux 

throughout. 

Bacterial storage 

Bacterial strains were stored at -80°C in the form of glycerol stocks, prepared by growing bacteria 

to exponential phase in brain-heart infusion broth (BHI, Fisher Scientific, Pittsburgh, PA) followed 

by centrifugation at 2,400 rpm for 10 min, 4°C. The pellet was resuspended in 10ml of ice-cold 1X 

PBS and washed by centrifuging again at 2,400 rpm for 10 min, 4°C. After discarding the 

supernatant, the pellet was resuspended in 20% glycerol in 1X PBS and this bacterial-glycerol 

suspension was aliquoted into appropriately labeled cryovials and stored at -80°C.  

A new streak plate was made prior to each experiment in an effort to avoid mutation of bacteria 

by prolonged dormancy at 4°C.  

Preparation of bacteria for in vitro experiments 

For experimental purposes, overnight cultures were grown by selecting a single bacterial colony 

from the streak plate using a sterile disposable loop and inoculating BHI in a baffled flask at a 

10:1 flask:volume ratio. Inoculations were incubated at 37°C with constant shaking at 250 rpm for 

12-16 h. The following day, bacterial titers were determined by plating onto blood agar plates and 

heat-inactivated bacteria was prepared by incubating a portion of the stock at 55°C for 60 min, 

with vortexing every 15 min. This heat-inactivated stock was aliquoted and stored at -80°C for 

future use. In addition, the heat-killed bacterial suspension was plated onto blood agar plates to 

confirm the absence of growth before being used for experiments. 

In vitro S. aureus biofilms 

Overnight cultures were grown by selecting a single colony from a streak plate and inoculating 4 

ml Complete Biofilm Media (RPMI 1640, 10% FBS, L-glut, Erm10 [for GFP bacteria only], 

HEPES) with overnight incubation at 37°C with constant shaking (250 rpm). Two-well glass-

chamber slides (Nunc, Rochester, NY) were coated with 2 ml per well of 20% human plasma in 
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sterile carbonate-bicarbonate buffer (Sigma-Aldrich, St. Louis, MO) and incubated overnight at 

4°C. The following day, plasma-coating buffer was removed, chambers were inoculated with 

bacteria (diluted to an OD600 of 0.05 in 2 mls) and incubated at 37°C under static aerobic 

conditions for 6 days. Each day following slide inoculation, 700 μl of spent medium was removed 

from each well and 1 ml of fresh biofilm medium was added.  

Preparation of bacteria for in vivo experiments 

A single colony of from a streak plate was grown overnight for 12-16 h at 37°C in a 250 ml baffled 

flask containing 25 ml of autoclaved BHI broth (10:1 flask:volume ratio) with constant shaking 

(250rpm). The overnight culture was diluted 1:10 in BHI and the following day the number of 

planktonic bacteria present was determined by measuring the O.D. (BioMate 3S 

Spectrophotometer, Thermo Scientific, Waltham, MA) at 620 nm. In addition, 1 ml of the overnight 

culture was transferred into a 1.5 ml Eppendorf microcentrifuge tube and centrifuged at 14,000 

rpm, 4°C for 5 min to pellet the bacteria. The supernatant was removed and the pellet was 

resuspended in 1 ml PBS and subsequently washed two more times by centrifuging at 14,000 

rpm for 5 min, 4°C. To prepare inoculum for injection, the washed culture was diluted in sterile 

PBS after estimating the CFU/ml of the overnight culture. If the overnight culture was estimated at 

3.2 x 10
9
 CFU/ml, two subsequent 1:100 dilutions would follow: 

1:100 dilution = 3.2 x 10
7
 CFU/ml 

1:100 dilution = 3.2 x 10
5
 CFU/ml 

 
An equation was then used to determine the amount of diluted culture needed to inject 1 x 10

3
 

CFU in 20 µl (5x10
4
/ml): 

(3.2 x 10
5
 CFU/ml) * x = 5 x 10

4
 CFU/ml * 1ml 

x = 0.156 ml in 0.844ml PBS 
or  

x = 156 µl of diluted 10
5
 culture + 844 µl PBS 

 
The exact concentration of cells/ml in the overnight culture was determined following preparation 

of bacteria for infection by diluting the washed culture in triplicate as follows: 

10
-2

  20µl of the 1ml washed overnight culture into 180 µl PBS 
10

-3 
20 µl of 10

-2
 dilution into 180 µl PBS 

10
-4 

20 µl of 10
-3

 dilution into 180 µl PBS 
10

-5 
20 µl of 10

-4
 dilution into 180 µl PBS 

10
-6 

20 µl of 10
-5

 dilution into 180 µl PBS 
10

-7 
20 µl of 10

-6
 dilution into 180 µl PBS 
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10
-8 

20 µl of 10
-7

 dilution into 180 µl PBS 
 

100 µl of the 10
-7

 and 10
-8

 dilutions were plated onto blood agar plates and counted the following 

day. The number of bacteria was enumerated and plate counts were averaged to determine the 

actual CFU used for infection. 

 

3) Cell culture techniques 

Primary mouse bone marrow-derived macrophage (BMDMΦ) culture 

Adult C57BL/6 WT and MyD88 KO were euthanized with an overdose of inhaled isoflurane 

(Isothesia, VetUS, Dublin, OH) using a euthanasia chamber and cervical dislocation was 

performed as the secondary form of euthanasia. The abdominal surface of the mouse was 

flooded with 70% EtOH, to prevent fur from contaminating specimens and a subcutaneous 

incision was made near the midline of the abdomen. Skin was separated from the peritoneum 

until all hind limbs were exposed and excess muscle was dissected away. Hind limbs were 

removed at the hip joint and immediately submerged in a petri dish containing 70% EtOH before 

being kept  in 1X PBS on ice. Using Kimwipes, excess connective tissue and muscle was 

removed from the bone surface and clean bones were placed in fresh 1X PBS. At this point, the 

entire procedure was carried out under aseptic conditions in a biological safety cabinet with sterile 

autoclaved instruments. Both ends of the bones were cut with scissors and bone marrow was 

flushed with sterile DMEM and a 26-gague needle. The bone marrow effluent was collected in a 

50 ml conical tube. Once all bones were flushed, cells were pipetted to disrupt cell aggregates, 

filtered through a 70 μm cell strainer and centrifuged at 1,200 rpm for 5 min, 4°C. The 

supernatant was aspirated and red blood cells were lysed by adding 500 μl sterile water for 5 sec, 

followed by immediate addition of 100 μl 10X PBS. Next, cells were washed with medium, 

centrifuged, and counted using trypan blue (Lonza, Walkersville, Germany) on a hemacytometer. 

Cells were seeded in 175 mm tissue culture dishes at a density of 1 x 10
7
 cells / plate in 20 mls of 

media. BMDMΦ media was composed of Dulbecco’s modified eagle’s medium (DMEM, 4.5 g/L 

glucose supplemented with 4mM L-glutamine) containing heat-inactivated fetal bovine serum 

(10% v/v FBS, HyClone, Logan, UT; inactivated at 55°C for 30 min, with swirling at 10 min 
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intervals), 20% sL929 (ATCC) supernatant as a source of macrophage colony stimulating factor 

(M-CSF) (Whetton et al Biochim Biophys Acta, 1989), 1% v/v HEPES (1 M stock), 1% v/v 

Glutamine (200 mM stock, both HyClone, South Logan, UT), 0.1% v/v 50 mM Beta-

mercaptoethanol (Fisher Scientific, Pittsburgh, PA) and antibiotic-antimycotic solution (10,000 

IU/ml Penicillin, 10,000 μg/ml Streptomycin, 25 μg/ml Amphotericin B, final 1% v/v, Mediatech 

Inc., Manassas, VA). Medium was replaced on cultures at days 2, 4 and 6 after initial plating and 

cells were harvested on day 7 for subsequent experimentation. 

Primary mouse bone marrow-derived neutrophil culture 

Adult C57BL/6 or MyD88 KO mice were euthanized, bone marrow was isolated as previously 

described and placed on a three-layer Percoll gradient (Amersham Pharmacia Biotech, Uppsala, 

Sweeden). After filtering, cells were centrifuged at 400g for 10 min, 4°C, resuspended in 3ml of 

78% Stock Isotonic Percoll (SIP, 100% SIP [9 parts Percoll to 1 part 10X PBS] in 1X PBS). Next, 

3 ml of 69% SIP was layered on top followed by 3 ml of 52% SIP. This three-layer gradient was 

centrifuged at 1500g for 30 min, 15°C with no brake. Cells from the upper phases were discarded 

and neutrophils were collected from the 68% / 78% interface and upper part of the 78% layer. 

Harvested cells were washed with PBS, centrifuged (400g, 10 min, 4°C), resuspended in 1 ml 1X 

Lysing Buffer (BD Pharm Lyse, BD Biosciences, Franklin Lakes, NJ) and incubated at room 

temperature for 2 min. HBSS with 10% FBS was added to stop lysing reaction and cells were 

centrifuged (400g, 10 min, 4°C) before being  resuspended in 2 ml buffer for magnetic-activated 

cell sorting (MACS, PBS without Ca, Mg, + 2% FBS), vortexed and counted with trypan blue on a 

hemacytometer. Magnetic labeling was done using the Miltenyi anti-Ly6G MicroBead Kit (Miltenyi 

Biotec, San Diego, CA) according to the manufacturer’s instructions. Magnetic separation was 

performed using an MS column on a MACS Separator. Columns were prepared by rinsing with 

500 μl buffer, whereupon the cell suspension was added onto the column. Unlabeled cells were 

collected by washing the column 3X with 500 μl of buffer, then the column was removed from the 

separator and placed over a collection tube. Buffer was flushed through the column with a 

plunger to elute the fraction of labeled cells. Cells were counted and at least 600,000 Ly6G
+
 cells 



48 
 

were removed to check purity by flow cytometry, while the remaining cells were used for co-

cultures with S. aureus biofilms. 

Primary mouse bone marrow-derived MDSC culture 

Adult C57BL/6, IL-10 KO or IL-12p40 KO mice were euthanized and bone marrow was isolated 

as previously described. After lysing RBCs, cells were washed and resuspended RPMI-1640 

medium supplemented with 10% v/v HI FBS, 1% v/v HEPES, 1% v/v L-Glut, 0.1% v/v antibiotic-

antimycotic solution, 40 ng/ml G-CSF and 40 ng/ml GM-CSF (both from Peprotech, Rocky Hill, 

NJ). 10
7 
bone marrow cells were plated into 175mm dishes in 20 mls of media and incubated for 

4 d at 37°C, 5% CO2. The Ly6G
+
Ly6C

+
 MDSC population was purified from the mixed cell 

population by FACS and verified to possess T cell inhibitory activity.  

 

4) Immune cell co-culture with S. aureus biofilms in vitro 

BMDMΦs and neutrophils were labeled with either 5 μM CellTracker Orange or CellTracker Blue 

(both from Molecular Probes, San Diego, CA) depending on the experimental set up. Labeling 

was conducted following the manufacturer’s instructions. After labelling, some BMDMΦ were 

activated toward an M1 phenotype by treating with 10 ng/ml IFN-γ or 100 ng/ml TNF-α and 10 

μg/ml S. aureus-derived peptidoglycan (PGN) for 6 h. Cells were co-cultured with S. aureus 

biofilms by first removing 700 μl of spent medium and then adding 1 ml of fresh biofilm media 

containing 10
7
 neutrophils, nonactivated MΦ or M1-activated MΦ to the biofilms. Co-cultures 

were incubated at  37°C under static conditions and imaged using a Zeiss 510 META laser 

scanning microscope (Carl Zeiss, Oberkochen, Germany) at 2 and 24 h following the addition of 

immune cells. Neutrophil- and MΦ-biofilm co-cultures were harvested 24 h after immune cell 

addition by mechanical disruption, whereupon bacterial enumeration was performed by serial 

dilution on tryptic soy agar plates supplemented with 5% sheep blood (Hemostat Laboratories, 

Dixon, CA).  

  

5) Mouse models of S. aureus biofilm infection 

Subcutaneous catheter-associated biofilm infection 
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Age and sex-matched mice (8-10 weeks old) were used to examine the immune response to S. 

aureus catheter-associated biofilm infection. Mice were weighed and anesthetized with Avertin 

(15 µl/g, 2.5% solution, Sigma-Aldrich, St. Louis, MO) by intraperitoneal (i.p.) injection. Once 

anesthetized, the left flank was shaved and the skin was cleaned and disinfected with povidone-

iodine. Next, a small subcutaneous (s.c.) incision was made in the left flank and a blunt probe 

was used to create a pocket for the insertion of a sterile, 14-gauge teflon intravenous catheter, 1 

cm in length (Exel International, St. Petersburg, FL). The incision was sealed using Vetbond 

Tissue Adhesive (3M, St. Paul, MN) and 10
3
 CFU USA300 LAC::lux in 20 µl of sterile PBS was 

slowly injected through the skin, directly into the catheter lumen using a 27 gauge x ½” needle. 

Eye ointment (LubriFresh™ P.M., Major Pharmaceuticals, Livonia, MI) was placed on all mice 

before they were returned to clean cages and kept under heat lamps to maintain core body 

temperature until fully recovered from anesthesia. Cages were labeled with orange biohazard 

cards and monitored daily throughout the course of infection.  

Orthopedic implant biofilm infection 

Age and sex-matched mice (8-10 weeks old) were used to simulate infectious complications in 

patients following surgical device placement. Animals were weighed and anesthetized with 

ketamine/xylazine (100 mg/kg and 5 mg/kg, respectively) by i.p. injection before the surgical site 

was shaved and disinfected with povidone-iodine. A medial parapatellar arthrotomy with lateral 

displacement of the quandriceps-patella was performed to access the distal femur. Next, the 

femoral intercondylar notch was located and a burr hole was drilled into the intramedullary canal 

using a 26-gague needle, whereupon an orthopedic-grade Kirschner wire (0.6 mm diameter, 

Nitinol [nickel-titanium]; Custom Wire Technologies, Port Washington, WI) precut to 0.8-cm was 

inserted. Approximately 1 mm of K-wire was left protruding into the joint space and a total of 10
3
 

CFU of the USA300 LAC::lux isolate was inoculated at the implant tip. The quadriceps-patellar 

complex was reduced to the midline and the fascia was sutured with 6-0 metric absorbable 

sutures before the skin of the surgical site was closed with 6-0 metric nylon sutures (both from 

Covidien, Mansfield, MA). In some experiments, control mice received sterile implants using an 

identical procedure. All animals received Buprenex, (0.1 mg/kg s.c.; Reckitt Benckiser, Hull, U.K.) 
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for pain relief immediately following the surgical procedure, before being returned to clean cages 

to under a heat lamp to ensure maintenance of core body temperature until fully recovered from 

anesthesia. Cages were labeled with orange biohazard cards and monitored daily. A second 

dose of Buprenex was administered 24 h after surgery and after this interval, all mice exhibited 

normal ambulation and no discernable pain behaviors. 

 

6) Computed tomography 

Bone integrity in the context of aseptic implants, S. aureus biofilm infection and Gr-1
+
 cell 

depletion was monitored using live computed tomography (CT) scans. Mice were first 

anesthetized with 1.5% isoflurane in a 70% nitrous oxide/30% oxygen mixture and imaged using 

a FLEX Triumph x-ray CT/single photon emission CT system and software (TriFoil Imaging, 

Northridge, CA). One thousand twenty-four CT projections for each image were acquired at 75 

kVp and reconstructed using Truimph X-0 4.1. CT images were generated using the three-

dimensional image visualization and analysis software VIVID, which is based on Amira 4.1 

(TriFoil Imaging).  

 

7) Recovery of implant-associated tissues for S. aureus enumeration 

Recovery of subcutaneous catheters and surrounding tissues 

Animals were sacrificed by overdose of inhaled isoflurane, followed by cervical dislocation. The 

left flank was sterilized with a povidone-iodine prep pad to prevent potential sample 

contamination with skin microflora. The section of the flank containing the catheter and 

associated tissue was removed, whereupon the catheter was separated from the surrounding 

host tissue and placed in 1 ml PBS on ice. Tissue surrounding the catheter was also collected, 

weighed and placed in 500 μl homogenization buffer (25 ml of 1X PBS q.s., pH 7.4, 1 Complete™ 

protease inhibitor cocktail tablet) on ice. In some experiments, the kidney and heart were also 

collected. These organs were excised, weighed and kept on ice in 500 μl PBS to determine the 

amount of bacterial dissemination. Once all tissues were removed catheters were sonicated for 5 

min on ice while catheter-associated tissue and any organs collected were homogenized using a 
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Bullet Blender (Next Advance, Averill Park, NY). Serial dilutions of the effluents and homogenates 

were plated on TSA supplemented with 5% sheep blood to determine bacterial colonization. 

Bacterial titers were expressed as Log10 CFU/ml for catheters or Log10 cfu/g wet tissue weight for 

catheter-associated tissues and other organs. 

Recovery of orthopedic implants and surrounding tissues 

For collecting inflamed soft tissue surrounding the infected knee joint, animals were euthanized 

by overdose of inhaled isoflurane, followed by cervical dislocation. The flank and left leg were 

then flooded with 70% EtOH and an incision was made in the skin so the skin of the left leg could 

be removed. Next, the subcutaneous tissue dorsal to the patellar tendon was excised, weighed 

and placed in 500 µl 1X PBS + 2% FBS on ice. Muscle and tendon tissues were excluded from 

the analysis. This tissue was dissociated with the blunt end of a plunger from a 30-cc syringe and 

passed through a 35 μm filter (BD Falcon, Bedford, MA). An aliquot of 150 μl was removed at this 

point for quantitation of bacterial burdens and Milliplex analysis of the supernatant. The remaining 

filtrated was further processed for flow cytometer as described below. Next, the muscle was 

cleaned away from the knee joint and femur. The knee joint was separated from the femur 

allowing for removal of the implant, which was extracted from the femur and sonicated for 5 min 

in 1 ml 1X PBS on ice to dislodge adherent bacteria. Both the knee joint and femur were weighed 

and placed in 500 µl homogenization buffer before being homogenized using two sequential 

procedures. First, tissues were homogenized with a Polytron homogenizer at the highest setting 

for approximately 30 s. Then tissues were further dissociated using a Bullet Blender. Serial 

dilutions of effluents from the tissue, joint, femur and implant were plated on TSA supplemented 

with 5% sheep blood to determine bacterial colonization. For some experiments, the spleen, heart 

and kidneys were collected to determine the degree of splenomegaly or bacterial dissemination 

as described above. 

Tissues from human prosthetic joint infections (PJIs) 

Excess tissues from patients undergoing joint revisions for PJI, or aseptic loosening as controls, 

were procured by orthopedic surgeons at the University of Nebraska Medical Center. Informed 

consent was obtained during the presurgical visit and the protocol was approved by the 
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Institutional Review Board (IRB) of the University of Nebraska Medical Center. Upon excision, 

tissues were placed in sterile PBS on ice and dissociated using Nitex mesh and a mortar and 

pestle, before being washed and subsequently stained for FACS analysis as described below. 

 

8) Scanning electron microscopy 

Mice were sacrificed and the whole femur harboring the titanium implant was fixed in 0.1 M 

Sorenson’s phosphate buffer containing 2% glutaraldehyde and 2% paraformaldehyde for 1 h at 

room temperature and held in fixative overnight at 4°C. Fixed specimens were washed three 

times in TBS followed by three rinses in double distilled (dd)H20 and decalcification in 14% EDTA 

for 2d. After rinsing in ddH20, specimens were dehydrated using a graded series of ethanol 

washes and critical point dried in a Pelco CPD2 critical point dryer (Tel Pella, Redding, CA). Dried 

specimens were mounted on aluminum stubs with carbon tabs and colloidal silver paste before 

being sputter coated with gold-palladium using a Hummer VI sputter coater (Anatech, Battle 

Creek, MI). Samples were viewed using a Quanta 200 scanning microscope (FEI, Hillsboro, OR) 

operated at 25 kV. 

 

9) Immunohistochemistry 

Decalcification of femurs for histological evaluation 

In order for histological analysis to be performed in the S. aureus orthopedic implant model of 

infection tissues first had to be decalcified. To this end, the whole right leg (femur/knee/tibia) was 

excised, leaving muscle and soft tissue intact, placed into a tube containing enough 10% formalin 

to completely cover the tissue and fixed for at least 72 h at room temperature. Formalin was 

discarded and tissues were washed thoroughly in distilled water. After washing, tubes were filled 

with enough decalcifier solution (Super Decalcifier I: Delicate, Polysciences, Warrington, PA), to 

cover the tissue and placed on a rocker at room temperature for 4-6 h to completely decalcify 

tissue. Following decalcification, tissue was washed 3X with water, before an incision was made 

in the quadriceps and femur to access and remove the implant. Decalcified tissues were placed in 
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a histo-cassette and kept in 10% formalin or PBS before being embedded in paraffin and cut into 

4 μm sagittal sections.  

Deparaffinizing and antigen retrieval  

Mice were sacrificed and the section of the flank containing the catheter and associated tissue 

was removed as previously described. The catheter and associated tissues were cut in half with a 

razor blade, left intact, and transferred to a cassette. Tissues were fixed in 10% formalin and 

embedded in paraffin, whereupon 10-µm thick sections were cut by the UNMC Histology Core. 

Embedded sections were deparaffinized using the protocol described in Table 9.1.  

Table 2.1. Tissue deparaffinization protocol 

STATION REAGENT TIME 

1 Xylene 5 min 

2 Xylene 5 min 

3 Xylene 5 min 

4 100% EtOH 1 min 

5 100% EtOH 1 min 

6 95% EtOH 1 min 

7 70% EtOH 5-10 dips 

8 Water Clear 

 

This process was followed by antigen retrieval, whereupon deparaffinized slides were placed in 

sodium citrate solution (10 mM sodium citrate [1.47g sodium citrate in 500 ml dH20], 0.05% 

Tween 20, pH 6). Slides were completely submerged in the buffer and placed in a plastic bowl 

filled 1/3 with water and microwaved for 14 min at power 7. Cooled slides were placed in PBS. 

Hematoxylin and Eosin (H&E) staining  

Rapid H&E staining was performed on deparaffinized tissue using the protocol described in Table 

9.2. Coplin jars with screw caps were used for the procedure. 

Alcohol-formalin-acetic acid solution (Fixative) was prepared with 10 ml of 37% formalin, 90 ml of 

80% EtOH and 5 ml of glacial acetic acid. Alcoholic eosin stock (Fisher Scientific, Pittsburgh, PA) 

was diluted 1:3 with 70% EtOH to prepare the working solution. Harris Modified Hematoxylin 

(Fisher Scientific, Pittsburgh, PA) was used undiluted.  

For evaluation of pathological conditions during S. aureus orthopedic biofilm infection H&E-

stained tissues were evaluated for inflammatory changes by a board certified pathologist (Jessica 
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A. Kozel, University of Nebraska Medical Center) with the degree of inflammation determined 

using a scoring scale (0, no observable pathology; 1, minimal pathology; 2, moderate pathology; 

3, severe pathology). Splenic architecture following Ab-mediated cell depletion was also 

performed. Spleens were fixed in 10% formalin, paraffin-embedded and sectioned for H&E 

staining as described above.  

Table 2.2. Rapid Hematoxylin and Eosin staining protocol 

 

 

 

 

 

 

 

 

Gram-staining 

Bacteria associated with infected joints were visualized on deparaffinized tissue sections using 

the protocol described in Table 9.3. 

Table 2.3. Gram-staining protocol 

STATION REAGENT TIME 

1 Crystal Violet 1 min 

2 Water Rinse 

3 Gram’s Iodine Solution 5 min 

4 Water Rinse 

5 100% EtOH 5-6 dips 

6 Water Rinse 

7 Safranin 30-60 sec 

8 Water Rinse 

9 100% EtOH Rinse 

10 100% EtOH Rinse 

11 Xylene Clear 

 

Fluorescence staining and confocal microscopy 

Tissues surrounding infected catheters were processed for immunofluorescence staining using 

primary antibodies specific for the MΦ marker Iba-1 (Biocare Medical, Concord, CA) and 

STATION REAGENT TIME 

1 Fixative 30-60 seconds 

2 70% EtOH Rinse briefly 

3 Water Rinse briefly 

4 Harris hematoxylin 10-15 seconds 

5 Water Rinse briefly 

6 Alcoholic eosin Counterstain 2 min 

7 95% EtOH (fresh) Dehydrate 5-10 dips 

8 95% EtOH (fresh) Dehydrate 5-10 dips 

9 Absolute EtOH Dehydrate 5-10 dips 

10 Absolute EtOH Dehydrate 5-10 dips 

11 Xylene Clear 

12 Xylene Clear 
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arginase-1 (Arg-1, Santa Cruz Biotechnology, San Diego, CA). First, a pap pen was used to mark 

around sections and slides were blocked in 10% donkey serum/PBS for 30 min. Blocking serum 

was drained, primary antibodies were added to sections following dilution in 2% donkey serum 

(Arg-1, 1:50; Iba-1, 1:100) and slides were incubated overnight, 4°C.  The following day, slides 

were washed three times in PBS for 5 min and donkey anti-rabbit FITC (1:100), donkey anti-

rabbit biotin (1:500) (Jackson ImmunoResearch Laboratories, West Grove, PA) with a 

streptavidin-594 conjugate (Invitrogen, Carlsbad, CA) and Hoescht (1:100) secondary antibodies 

were added. Slides were incubated for 30 min in the dark, whereupon the fluorescence labeling 

was shaken off and 0.1% Sudan Black solution was put on top of each section for 15 min in the 

dark. Subsequently, slides were washed 3X with PBS + 0.3% Tween 20 for 10 min per wash and 

then coverslipped with Slow Fade® (Life Technologies, Carlsbad, CA). Confocal imaging was 

performed using a Zeiss 510 META laser scanning microscope (Carl Zeiss). Staining specificity 

was confirmed by incubating tissues with a primary isotype-matched control antibody and 

appropriate secondary antibody. Quantitation of Arg-1 or Iba-1 fluorescence was calculated from 

at least 10 random fields of view using AxioVision software 4.8 (Carl Zeiss). 

 

10) Flow cytometry 

Mouse tissues 

Fluorescence-activated cell sorting (FACS) was used to characterize leukocyte infiltrates in 

inflamed soft tissues surrounding subcutaneous catheter or orthopedic implants during S. aureus 

biofilm infection. Animals were sacrificed with an overdose of inhaled isoflurane, tissues were 

excised as previously described and placed in 500 µl FACS buffer (2% FBS in PBS) on ice. 

Tissues were dissociated with the blunt end of a plunger from a 30cc syringe, and passed 

through a 35 µm filter (BD Falcon, Bedford, MA). Following removal of an aliquot for bacterial 

quantitation and Milliplex analysis, the filtrate was washed with 1X PBS and cells were collected 

by centrifugation (1200rpm, 5 min, 4°C), whereupon RBCs were lysed using BD Pharm Lyse (BD 

Biosciences, San Diego, CA) per manufacturer instructions. After lysis, cells were resuspended in 

500 µl 1X PBS followed by incubation in Fc Block (2 µl / sample, eBioscience, San Diego, CA) for 
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20 min at 4°C to minimize nonspecific antibody binding.100 µl of each sample was pooled and 

subsequently aliquoted into compensation and isotype control tubes to identify gating thresholds 

and assess the degree of nonspecific staining, respectively. The remaining 400 µl was split into 

two tubes and q.s. to 500 µl with 1X PBS. Cells were then stained with directly-conjugated 

antibodies for multi-color flow cytometry analysis, which included two separate panels to identify 

innate immune populations or T cells. Antibodies in the innate immune cell panel included: CD45-

APC, Ly6G-PE, Ly6C-PerCP-Cy5.5, and F4/80 PE-Cy7. Antibodies in the T cell panel included: 

CD3ε-APC, CD4-Pacific Blue, CD8a-FITC, Ly6C-PerCP-Cy5.5, and TCR γδ-PE. All fluorchrome-

conjugated antibodies were purchased from either BD Biosciences or eBioscience. To exclude 

dead cells from analysis, a Live/Dead Fixable Stain Kit (Life Technologies, Eugene, OR) was also 

used, following the manufacturer’s instructions. Analysis was performed using BD FACSDiva 

software with cells gated on the life CD45
+
 leukocyte population. 

Human tissues 

Immediately post-excision, surgical specimens were placed in isotonic saline on ice and rapidly 

processed. Tissues were weighed, and placed on a piece of 250 µm Nitex mesh and dissociated 

with a mortar and pestle in HBSS + 10% FBS. Cells were collected and washed 2X with HBSS + 

10% FBS, whereupon they were resuspended in 4 mls HBSS and layered over 3 ml of Ficoll-

Paque gradient and centrifuged according to manufacturer’s instructions (GE Healthcare, 

Uppsala, Sweden) Leukocytes were collected from the interface, washed 2X in HBSS + 10% 

FBS, resuspended in 500 µl HBSS and counted. Cells were then incubated with Human FcR 

Receptor Binding Inhibitor (eBioscience, San Diego, CA) to minimize non-specific antibody 

binding for 20 min, 4°C. Next, cells were stained with directly-conjugated antibodies for multi-color 

flow cytometry analysis for 30 min, 4°C. Antibodies included anti-human CD66b-FITC 

(BioLegend, San Diego, CA), CD14-PE, CD16-allyphycocyanin, CD33-PECy5, HLA-DR-PE-Cy7, 

CD45-eFluor450, CD3-APC-Cy7, CD11b-BV510 and CD11c-BV605. All fluorochrome-conjugated 

antibodies were purchased from either BD or eBioscience unless otherwise noted. To exclude 

dead cells from analysis, a Live/Dead Fixable Stain Kit (Life Technologies, Eugene, OR) was 

used according to the manufacturer’s instructions. Controls included cells stained with isotype 
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control antibodies to assess the degree of non-specific staining and compensation beads stained 

with the same antibodies were used to identify gating thresholds. Analysis was performed using 

BD FACSDiva software with cells gated on the live CD45
+
 leukocyte population. 

 

11) Recovery of biofilm-associated MDSCs and in vitro assays 

Cells were collected from the soft tissue surrounding infected knee joints as described above, and 

MDSCs were purified by FACS using either Gr-1-PE and CD11b-FITC or Ly6G-PE, Ly6C-PerCP-

Cy5.5 and CD11b-eFluor450 depending on the experimental setup. CD11b
+
Gr-1

+
 MDSCs were 

also FACS-purified from the spleens of naïve and S. aureus-infected animals for comparisons. 

The purity of MDSC populations was not examined after sorting owing to limiting cell numbers. 

However, cytospins and gene expression analysis on sorted populations revealed that sorted 

MDSCs were highly enriched, as they displayed characteristic markers and nuclear morphologies 

consistent with those reported for MDSCs in the literature.  

 In vitro MΦ and MDSC experiments 

To assess differences in proinflammatory responses of MΦ and MDSCs, Ly6G
+
Ly6C

+
 MDSCs 

were isolated from S. aureus implant-associated tissues or spleens at day 14 by FACS as 

described above, while BMDMΦ were prepared as previously outlined. MΦ, tissue MDSCs or 

splenic MDSCs were plated at 5 x 10
4
 cells / well in a round bottom 96-well plate and stimulated 

with either peptidoglycan (10 μg/ml) or heat-inactivated S. aureus (10
7
 / well) for 24 h at 37°C, 

5%CO2. After the 24 h incubation period, supernatants were collected and stored at -80°C until 

Milliplex analysis. 

Polyclonal CD4
+
proliferation assays 

Naïve C57BL/6 WT mice were euthanized with an overdose of inhaled isoflurane, whereupon 

their flanks were flooded with 70% EtOH and spleens were isolated from the peritoneal cavity and 

placed into PBS + 10% FBS on ice. Spleens were then pressed through a 250 µm Nitex filter 

(Genesee, San Diego, CA) to generate a single cell suspension, centrifuged at 1200 rpm for 10 

min, 4°C and RBCs were lysed using BD Pharm Lyse (BD Biosciences, San Diego, CA) per the 

manufacturer’s instructions. After lysis, cells were washed, resuspended in 1X PBS + 2% FBS 
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and incubated in Fc Block (2 µl / 1 x 10
6
 cells) for 20 min, 4°C. Splenocytes were subsequently 

stained with CD4-Alexa700 (BD Biosciences) and the Live/Dead Fixable Stain Kit, per the 

manufacturer’s instructions, for 30 min, 4°C. Viable CD4
+
 T cells were purified by FACS and then 

labeled with eFluor 670 cell proliferation dye (eBioscience) according to the manufacturer’s 

instructions.  

For establishing the functional activity of MDSCs associated with S. aureus orthopedic biofilm 

infections, T cell proliferation assays were performed. eFluor 670-labeled CD4
+
 T cells were 

plated at 1.5 x 10
6
 cells/well in a 96-well round bottom plate in RPMI 1640 with 10% FBS, 

supplemented with 100 ng/ml recombinant mouse IL-2 (Invitrogen, Frederick, MD). FACS-purified 

CD11b
+
Gr-1

+
, Ly6G

high
Ly6C

+
, Ly6G

low
Ly6C

low
, or Ly6G

-
Ly6C

+
 cells were obtained from S. aureus-

infected tissues as described above and added at 1:1 or 5:1 ratios to CD4
+
 T cells. Co-cultures 

were subjected to polyclonal stimulation by adding 4 µl / well CD3/CD28 Dynabeads (Life 

Technologies, Oslo, Norway). Negative controls of labeled T cells only or labeled T cells 

incubated with Dynabeads were also included. Cells were incubated at 37°C for 72 h, whereupon 

the extent of T cell proliferation was determined by flow cytometry and supernatants were saved 

for cytokine evaluation by Milliplex analysis.  

 

12) Adoptive Transfer Experiments 

Macrophage adoptive transfer into biofilm infections in vivo 

The subcutaneous catheter model of S. aureus biofilm infection was used, as previously 

described, to assess the ability of BMDMΦ and neutrophils to attenuate biofilm growth in vivo. 

WT or MyD88 KO BMDMΦ were isolated as previously described. After 7 d of culture, an aliquot 

of WT MΦ was reserved in BMDMΦ media for nonactivated treatment. The remaining WT and 

MyD88 KO MΦ were then activated toward an M1 phenotype by incubating with 10 ng/ml IFN-γ 

and 10 μg/ml S. aureus-derived PGN for 6 h in BMDMΦ media. Meanwhile, neutrophils were 

isolated from WT bone marrow as described above. Mice then received injections of 10
6
 

neutrophils, nonactivated MΦ, or M1-activated WT or MyD88 KO MΦ at four distinct sites (Fig 



59 
 

2.1) surrounding infected catheters beginning at 12 h post-infection, with repeat administration at 

24 and 48 h post-infection.                                              

                                                  

Figure 2.1. Subcutaneous injection sites for treatment of S. aureus biofilms in vivo. 

 

To determine the longevity of early MΦ treatment on inhibiting biofilm growth, a separate cohort 

of animals received injections of M1-activated MΦ at only 48 h post-infection. Furthermore, in 

some experiments, the numbers of injected neutrophils was increased by 1-log (i.e., 10
7
) to 

confirm their inability to impact biofilm clearance.                                              

For treatment of established biofilms, mice received injections of vehicle (PBS), 10
6
 nonactivated 

MΦ, 10
6
 M1-activated MΦ or antibiotic (i.p.; rifampicin and daptomycin; 0.125 and 0.25 mg/kg, 

respectively) on days 7 and 9 post-infection. Animals were sacrificed on day 14 post-infection as 

described above. 

Quantum Dot Labeling of MΦ 

To determine the longevity of M1-activated MΦ following transfer into biofilms in vivo near-

infrared Quantum dots (Qtracker 800; Molecular Probes) were used. BMDMΦ were isolated and 

activated as described above before being labeled with Qdots according to the manufacturer’s 

instructions. Once labeled, mice were given a single s.c. injection of 10
7
 M1-activated MΦ at the 

ends of the catheter at 24 h or 7 d post-infection for the early and established biofilm paradigms, 

respectively. Mice were monitored daily using an in vivo imaging system (IVIS Spectrum; Caliper 

Life Sciences, Hopkinton, MA).    

MDSC Adoptive Transfer Experiments 

MDSCs were generated from the bone marrow of C57BL/6 WT or IL-10 KO mice and the 

Ly6G
+
Ly6C

+
 population was purified by FACS as previously described. Ly6G

+
Ly6C

+
 MDSCs 
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were washed and resuspended in 1X PBS at 2.5 x 10
6
 cells / 5 μl. Depending on the 

experimental setup, WT MDSCs were injected s.c. into IL-12p40 KO mice at the site of implant-

associated infection one day post-infection, or WT and IL-10 KO MDSCs were injected into IL-10 

KO mice at day 7 post-infection. Implant associated tissues from IL-12p40 animals that received 

adoptively transferred MDSCs were recovered at day 7 post-infection, while tissues from IL-10 

KO animals receiving WT or IL-10 KO MDSCs were collected at day 14 post-infection for analysis 

of immune infiltrates by FACS and quantitation of bacterial burdens as described above. 

 

13) EP67 synthesis and treatment 

EP67 is a peptide derived from the C-terminal portion of human C5a and is a well-characterized 

agonist for the mouse C5aR (CD88). EP67 [YSFKDMP(meL)aR] and its inactive scrambled 

sequence [sEP67; (meL)RMYKPa FDS] were generated by a solid-phase Fmoc method of 

orthogonal synthesis and purified by analytical and preparative reverse-phase HPLC in the 

laboratory of Dr. Sam Sanderson at the University of Nebraska Medical Center. The peptide was 

characterized by electrospray mass spectrometry according to previously published methods 

(Phillips et al 2009 Bioconjug Chem). Animals were treated with either 200 μg EP67 or the 

inactive scrambled derivative (sEP67) directly into the catheter lumen at the time of S. aureus 

infecteion followed by 800 μg peptide distributed equally at four different sites surrounding the 

catheter at 24 and 48 h post-infection (Figure 2.1). To limit animal numbers, sEP67 was not used 

in all experiments, because initial studies established that this control peptide did not exert any 

biological activity. Animals were sacrificed at days 3 or 14 post-infection for quantitation of 

bacterial burdens, as well as Milliplex analysis as described above. 

 

14) In vivo depletion studies 

MDSCs were depleted in vivo during S. aureus orthopedic biofilm infection using two approaches. 

Either 1A8 (anti-Ly6G), which effectively depletes neutrophils and MDSCs, or RB6-C85 (anti-Gr-

1), which targets both Ly6G and Ly6C epitopes thereby targeting monocytes, neutrophils, MΦ, 

plasmycytoid dendritic cells and some T Cell populations, antibodies were used. Antibodies were 
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administered i.p. (100 µg / each) 1 d prior to S. aureus infection and continued every 72 h 

thereafter until animals were sacrificed. Control mice received equivalent amounts of isotype-

matched control antibodies (rat IgG2a and IgG2b, respectively) using the same treatment 

regimen. All antibodies were purchased in low endotoxin, azide-free form from BioLegend (San 

Diego, CA).  

Animals were euthanized at 7 or 14 days post-infection to determine the impact of cell depletion 

on S. aureus persistence and tissue-associated leukocyte infiltrates. Bone marrow and 

splenocytes were also collected to determine the efficiency of antibody-mediated depletion. 

 

15) RNA isolation and Quantitative Real-time Polymerase Chain Reaction (qRT-PCR) 

RNA isolation from FACS-purified cell populations 

MDSCs or monocytes were purified from S. aureus-infected tissues by FACS, whereupon total 

RNA was immediately isolated using the TaqMan gene expression cell-to-CT kit (Ambion, Austin, 

TX). RT and Preamplification reactions were conducted according to the manufacturer’s 

instructions using a Bio-Rad CFX Connect™ thermocycler. 

RNA isolation from whole tissue 

RNA isolation was performed on tissue isolated from catheter-associated tissue or orthopedic 

implant associated-tissue and knee joints. Tissues were excised from animals following 

euthanasia and immediately placed in 0.5 ml TriZol reagent (Life Technologies, Grand Island, 

NY), whereupon they were homogenized using a Polytron homogenizer at the highest setting for 

approximately 30 s and immediately cooled on ice. Once homogenized, samples were incubated 

at room temperature for 10 min to disrupt nuclear complexes. Next, 200 μl of chloroform was 

added to each tube, and samples were vortexed for 30 s and incubated at room temperature for 5 

min. Samples were then centrifuged at 10,500 rpm for 15 min, 4°C. Three distinct layers were 

visible, with the top aqueous phase containing RNA. This layer was carefully transferred to a new 

1.5 ml tube and the RNA was precipitated by adding 500 μl of isopropanol to each tube. Samples 

were vortexed for 30 s, incubated at room temperature for 10 min, and centrifuged at 10,500 rpm 

for 10 min, 4°C, which resulted in a compact, white RNA pellet at the side of each tube. The 
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supernatant was carefully removed and the RNA pellets were subsequently washed by adding 

900 μl cold 75% EtOH to each tube, followed by centrifugation at 6,500 rpm for 5 min, 4°C. 

Supernatants were again removed and pellets were air-dried on ice for 5 min before being 

resuspended in 30 μl of Diethylpyrocarbonate (DPEC) water or molecular grade RNase-free 

water. RNA was heated at 55°C for 10 min on a heating block to dissolve the RNA, whereupon 

samples were stored at -80°C. RNA quantification was performed using a NanoDrop Lite 

spectrophotometer (Thermo Scientific, Waltham, MA). 

Fold-changes in gene expression were evaluated by qRT-PCR. First, 2 μg of total RNA was 

treated with DNase (Invitrogen, San Diego, CA). Reaction buffer and RNase-free water was 

added and samples were incubated at room temperature for 15 minutes to degrade any 

contaminating DNA. DNase was inactivated by adding 1 μl of 25 mM EDTA and heating at 65°C 

for 10 min. Reverse transcription (RT) reactions were performed using the iScript™ cDNA 

synthesis kit (Bio-Rad, Hercules, CA) per the manufacturer’s instructions. A Bio-Rad CFX 

Connect™ thermocycler (Bio-Rad, Hercules, CA) was used for cDNA synthesis with the following 

parameters: 5 min, 25°C; 30 min, 42°C; 5 min, 85°C; and hold at 4°C until samples were 

removed. 

qRT-PCR 

cDNA samples or preamplified products were diluted 1:2 or 1:4, depending on number of cells 

recovered by FACS, in molecular grade water. qRT-PCR was performed on diluted samples 

using ABI “Assays on Demand” Taqman primer/probe sets for each specified gene. Universal 

PCR cycling conditions optimized for ABI primer/probe sets were utilized (95°C, 10 min; 95°C, 15 

s; 60°C, 1 min – 40 cycles of steps 2 and 3). For accurate calculation of expression levels, the 

cycle threshold for a particular gene was normalized against the housekeeping gene GAPDH, 

and was represented as a fold-induction (2
-ΔΔCt

) value relative to the control sample for a 

particular experiment. 

 

16) MILLIPLEX multi-analyte bead array 

Mouse 
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To evaluate a variety of cytokines/chemokines in the supernatants of catheter-associated tissues, 

or orthopedic implant-associated tissues, knee joints and femurs, a custom-designed microbead 

array was utilized according to the manufacturer’s instructions (Milliplex; Millipore, Billerica, MA). 

The particular array used allows for the simultaneous detection of 25 different inflammatory 

molecules in a single homogenate, and include: G-CSF (Granulocyte colony-stimulating factor), 

GM-CSF (Granulocyte macrophage colony-stimulating factor), IFN-γ, IL-1α, IL-1β, IL-2, IL-4, IL-5, 

IL-6, IL-7, IL-9, IL-10, IL-12p70, IL-13, IL-15, IL-17, CCL2 (Monocyte chemoattractant protein 1, 

MCP-1), CCL3 (Macrophage inflammatory protein 1α, MIP-1α), CCL5 (Regulated upon activated 

T cell expressed and secreted, RANTES), CXCL1 (Keratinocyte chemoattractant, KC), CXCL2 

(MIP-2), CXCL9 (Monokine induced by IFN-γ, MIG), CXCL10 (IFN-induced protein 10, IP-10), 

TNF-α, and VEGF (Vascular endothelial growth factor). Results were analyzed on the Bio-Plex 

workstation (Bio-Rad, Hercules, CA) and adjusted based on the total amount of protein extracted 

from tissue homogenates, determined by a Bicinchoninic acid assay (BCA, Bio-Rad).  

Human 

For analysis of human PJI tissue specimens, a human 38-plex panel was used to evaluate a 

variety of cytokines/chemokines in the supernatants of tissue associated with aseptic or infected 

implants and included: epidermal growth factor, fibroblast growth factor-2, Flt-3L, G-CSF, GM-

CSF, IFN-α2, IFN-γ, IL-1α, IL-1β, IL-1ra, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-

12p40, IL-12p70, IL-13, IL-15, IL-17, CX3CL1, CCL2, CCL3, CCL4, CCL7, CCL11, CCL22, 

CXCL1, CXCL10, soluble CD40L, TGF-α, TGF-β, TNF-α, and vascular endothelial growth factor. 

Results were analyzed using a Bio-Plex Workstation (Bio-Rad, Hercules, CA) and normalized 

based on the amount of total protein to account for differences in tissue sampling size. The level 

of sensitivity for most analytes in the array was 3.2 pg/ml. 

 

17) Enzyme-linked Immunosorbent Assay (ELISA)  

In addition to the MILLIPLEX assay, cytokine detection was also performed using ELISAs. For 

these assays, samples were diluted to fall within the standard curve and the procedure was 

conducted according to the manufacturers protocol (DuoSet, R&D Systems, Minneapolis, MN; 
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OPtEIA set, BD Pharmingen, San Diego, CA). In general, 96-well ELISA plates were coated with 

antibody diluted in a coating solution and incubated overnight at 4°C. The following day, the 

coating solution was removed and the plate was washed 3X using the appropriate washing buffer 

specified for each ELISA kit. After a blocking step, wells were washed and samples or standards 

were added for 2 h at room temperature. The solutions were decanted and the plate was 

thoroughly washed before incubation with a secondary antibody preparation in combination with 

streptavidin-horseradish peroxidase (HRP) enzyme solution diluted in assay buffer for 1 h. 

Following another thorough wash, the enzyme substrate (TMB substrate reagent, BD OPtEIA, 

San Diego, CA) was added, resulting in color change within 15-20 min. The reaction was stopped 

by adding 50 µl of 2N H2SO4 (Fisher Scientific, Pittsburgh, PA) and the plate was read at 

specified wavelengths using a spectrophotometer (iMark plate reader, Biorad, Hercules, CA). For 

PGE2 ELISAs, a pre-coated plate, washing buffer and other reagents were provided by the 

manufacturer (Enzo Life Sciences, Inc,. Farmingdale, NY), and the provided protocol was 

followed. All ELISA values were corrected for total protein content of homogenates.  
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Abstract 

 Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature 

monocytes and granulocytes that are potent inhibitors of T cell activation. A role for MDSCs in 

bacterial infections has only recently emerged, and nothing is known about MDSC function in the 

context of Staphylococcus aureus (S. aureus) infection. Because S. aureus biofilms are capable 

of subverting immune-mediated clearance, we examined whether MDSCs could play a role in this 

process. CD11b
+
Gr-1

+
 MDSCs represented the main cellular infiltrate during S. aureus orthopedic 

biofilm infection, accounting for >75% of the CD45
+
 population. Biofilm-associated MDSCs 

inhibited T cell proliferation and cytokine production, which correlated with a paucity of T cell 

infiltrates at the infection site. Analysis of FACS-purified MDSCs recovered from S. aureus 

biofilms revealed increased arginase-1, inducible NO synthase and IL-10 expression, key 

mediators of MDSC suppressive activity. Targeted depletion of MDSCs and neutrophils using the 

mAb 1A8 (anti-Ly6G) improved bacterial clearance by enhancing the intrinsic proinflammatory 

attributes of infiltrating monocytes and macrophages. Furthermore, the ability of 

monocytes/macrophages to promote biofilm clearance in the absence of MDSC action was 

revealed in significantly increased S. aureus burdens both locally and in the periphery, because 

effector Ly6C monocytes and, by extension, mature macrophages were also depleted. 

Collectively, these results demonstrate that MDSCs are key contributors to the chronicity of S. 

aureus biofilm infection, as their immunosuppressive function prevents monocyte/macrophage 

proinflammatory activity, which facilitates biofilm persistence.  
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Introduction 

 Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature 

monocytes and granulocytes that are potent inhibitors of T cell activation [122]. In mice, MDSCs 

are characterized by their expression of CD11b and Gr-1, but can be further subdivided into 

monocyte- and granulocyte-like subsets based on their differential expression of Ly6C and Ly6G, 

which are referred to as M-MDSC and G-MDSCs, respectively [120, 135]. CD11b
+
Gr-1

+
 cells 

normally reside in the bone marrow prior to their differentiation into mature granulocytes, 

macrophages or dendritic cells. However, MDSCs can be recruited into lymphoid and inflamed 

tissues during pathologic conditions by the actions of growth factors, such as G-CSF, GM-CSF, 

and VEGF, where disturbances in cytokine homeostasis block their differentiation into mature 

myeloid effector cells, resulting in MDSC expansion [135, 137].Several factors influence MDSC 

activation, including proinflammatory cytokines driven by MyD88-dependent signaling (i.e. IL-6), 

reactive oxygen species (ROS), and cyclooxygenase-2 (COX-2). These proinflamatory molecules 

induce the expression of arginase-1 (Arg-1) and several anti-inflammatory cytokines that not only 

contribute to the inhibition of T cell responses, but may also play a role in macrophage 

polarization towards an alternatively activated M2 phenotype [137]. Although MDSCs are well-

recognized for their role in tumor immunosuppression [122, 137, 155], recent evidence suggests 

that MDSCs can also regulate immune responses during bacterial infections [123, 156-159]. 

 Staphylococcus aureus (S. aureus) is a leading cause of community-acquired and 

nosocomial infections [29, 160]. Infection risk is increased by the presence of foreign materials, 

and S. aureus is a leading cause of biofilm infections on indwelling medical devices and 

orthopedic implants [28]. Biofilms are heterogeneous bacterial communities encased in a self-

produced matrix that represent a serious health care concern based on their chronicity and 

recalcitrance to antibiotic therapy [33]. Previous work from our laboratory has shown that S. 

aureus biofilms skew macrophages toward an alternatively activated M2 anti-inflammatory 

phenotype, typified by robust Arg-1 expression that correlates with the failure to recruit T cells to 

the site of infection[32]. However, Arg-1 expression was also detected in other cell types, leading 

us to examine the identity of alternative Arg-1
+ 

cells associated with S. aureus biofilms. In the 
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current study, we have identified a predominant CD11b
+
Gr-1

+
Arg-1

+
 MDSC infiltrate that 

contributes to the anti-inflammatory environment typical of S. aureus biofilm-associated 

infections. 

 Here we sought to examine the functional role of MDSCs in shaping the anti-

inflammatory milieu during S. aureus orthopedic biofilm infection. Although we identified MDSCs 

using well-established markers [121, 126, 161], their ability to attenuate T cell proliferation was 

required to establish their identity as a bona fide MDSC population. Indeed, we found that 

MDSCs infiltrating S. aureus biofilms were capable of inhibiting T cell proliferation, which 

represents the first report of MDSCs in any type of staphylococcal infection. Furthermore, qRT-

PCR analysis of FACS-purified MDSCs revealed increased expression of typical MDSC 

molecules, including Arg-1, iNOS, and IL-10. Administration of mAb 1A8 (anti-Ly6G), which 

specifically depleted the immunosuppressive MDSC population and mature neutrophils, 

significantly increased monocyte and macrophage proinflammatory activity, which translated into 

decreased S. aureus burdens in the infected joint. Independent evidence to support the 

importance of monocytes/macrophages in biofilm containment in the absence of MDSCs was 

demonstrated by the finding that RB6-C85 (anti-Gr-1 or anti-Ly6G/Ly6C) treatment, which 

depleted effector monocytes and macrophages in addition to MDSCs and granulocytes, 

significantly increased S. aureus burdens and proinflammatory mediator expression as well as 

bacterial dissemination to peripheral organs. These results indicate that MDSCs establish an anti-

inflammatory milieu during S. aureus biofilm infection that thwarts monocyte and macrophage 

proinflammatory activity, leading to persistent colonization. This prominent MDSC infiltrate also 

explains the paucity of T cells associated with S. aureus biofilms. Collectively, these studies 

demonstrate a role for MDSCs during staphylococcal biofilm infection and preventing their 

immunosuppressive actions may offer novel treatment strategies to thwart these devastating, 

chronic infections. 
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Results 

Accumulation of CD11b
+
Gr-1

+
 cells during S. aureus orthopedic biofilm infection. We 

recently reported that S. aureus biofilms skew infiltrating macrophages toward an alternatively 

activated M2 state typified by Arg-1 expression [31, 32]. However, other Arg-1
+
 cells distinct from 

macrophages were also observed, which led us to investigate their identity. A likely candidate 

was MDSCs based on their robust Arg-1 expression and well-described anti-inflammatory 

attributes in cancer [120, 137, 155]. In the present study, we used a mouse model of orthopedic 

biofilm infection [162] to demonstrate the presence and functional importance of MDSCs in 

shaping the anti-inflammatory biofilm milieu in an immunocompetent host. Biofilm formation on 

the orthopedic implant was confirmed by scanning electron microscopy, which revealed S. aureus 

attachment to a dense matrix deposited on the implant surface and bacterial tower formation (Fig. 

3.1). A prominent CD11b
+
Gr-1

+
 infiltrate was observed, which accounted for ~75% of the total 

CD45
+
 leukocyte population by day 14 post-infection (Fig. 3.2A, 2B). Coexpression of CD11b and 

Gr-1 is used to define MDSCs, and cytospin preparations of FACS-purified CD11b
+
Gr-1

+
 cells 

recovered from the site of S. aureus biofilm infection confirmed their heterogeneous composition 

of both granulocytic and monocytic morphologies (Fig. 3.2C). In particular, cells with ringed nuclei 

suggested the presence of immature granulocytes, and immature monocytes with large rounded 

nuclei and little cytoplasm were also observed (Fig. 3.2C). CD11b
+
Gr-1

+
 cells were also detected 

in mice receiving sterile implants, which was not unexpected, because MDSCs have been 

reported in virtually every inflammatory environment and are associated with wound healing 

responses under normal conditions [150, 161]; however, their numbers were significantly lower 

compared with S. aureus-infected animals (Fig. 3.2B). The abundance of CD11b
+
Gr-1

+
 cells 

during early S. aureus orthopedic infection may be one mechanism that contributes to the 

establishment of chronic disease.  
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Figure 3.1 

 

                    

 

Demonstration of S. aureus biofilm formation in vivo on orthopedic implants. Titanium 

orthopedic implants were isolated from C57BL/6 mice at day 45 following S. aureus infection and 

processed for scanning electron microscopy analysis. Left, Biofilm formation is visible on the 

concave surface of the implant (original magnification X300) demonstrating the irregular pattern 

of the biofilm surface with tower structures visible (arrows). Right, Higher magnification of the 

biofilm surface revealing numerous cocci interspersed with matrix material (original magnification 

X20,000). The image has been pseudocolored to highlight S. aureus (gold).  
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Figure 3.2

 

 

Accumulation of CD11b
+
Gr-1

+
 cells during S. aureus orthopedic biofilm infection. Implant-

associated tissues were collected from sterile and infected mice and analyzed by flow cytometry 

for CD11b
+
Gr-1

+
 cells at the indicated time points. (A) Representative contour plots and (B) 

CD11b
+
Gr-1

+
 infiltrates expressed as a percentage of the total CD45

+
 leukocyte population. (C) 

Cytospin preparations of FACS-purified CD11b
+
Gr-1

+
 cells from infected tissues at day 14 were 

stained with Wright-Giemsa (original magnification X20). Arrowheads and arrows indicate cells 

suggestive of immature granulocytes and monocytes, respectively. Results are representative of 

three sterile and five infected mice per group. ***p < 0.001, unpaired two-tailed Student t test.  
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CD11b
+
Gr-1

+
 MDSCs recruited to the site of S. aureus orthopedic biofilm infection inhibit T 

cell activation. A hallmark of MDSCs is their ability to inhibit Ag-specific and polyclonal T cell 

activation [121, 137]. This is a critical attribute based on the promiscuity in surface marker 

expression between MDSCs and other myeloid lineages [150, 163]. To determine whether S. 

aureus biofilm-associated CD11b
+
Gr-1

+
 infiltrates were bona fide MDSCs, we examined their 

ability to inhibit polyclonal CD4
+
 T cell activation, because S. aureus immunodominant TCR 

epitopes have not yet been identified. MDSCs were recovered from tissues at day 14, which 

coincided with maximum cell numbers at the infection site (Fig. 3.2B). CD11b
+
Gr-1

+
 cells from S. 

aureus-infected tissues significantly expressed T cell proliferation (Fig. 3.3A), establishing their 

identity as MDSCs. The inhibitory activity of biofilm-associated MDSCs was further demonstrated 

by their ability to significantly impair T cell cytokine secretion, including TNF-α, IFN-γ, IL-17, and 

IL-4 (Fig. 3B-E).  

 We next determined whether the immunosuppressive nature of MDSCs was restricted to 

the biofilm site or whether they were also suppressive in the periphery, which has been reported 

for MDSCs in tumor-bearing animals [164]. CD11b
+
Gr-1

+
 cells from the spleens of either naïve or 

infected animals were unable to suppress CD4
+
 T cell proliferation (data not shown). It was not 

unexpected that MDSCs from naïve animals failed to inhibit T cell activation, as pathologic 

conditions are known to elicit MDSC expansion and activation [120, 127, 136, 137]. Several 

groups have reported that MDSCs only acquire suppressive function after exposure to factors in 

inflammatory environments [150, 164, 165], and our results suggest that these signals are only 

present in the local biofilm milieu. 

 Because the Gr-1 Ab RB6-C85 recognizes both Ly6G and Ly6C epitopes [166], we 

stained for both markers and identified three distinct populations associated with S. aureus 

orthopedic biofilms, namely Ly6G
high

Ly6C
+
, Ly6G

low
Ly6C

low
, and Ly6G

-
Ly6C

+
 (Fig. 4A). Each 

subset was purified by FACS to determine which was responsible for the observed CD4
+
 T cell 

proliferation in a ratio-dependent manner, confirming their identity as MDSCs (Fig. 3.4E). Similar 

to the observations with the bulk CD11b
+
Gr-1

+
 population (Fig. 3), Ly6G

high
Ly6C

+
 cells decreased 

TNF-α and IL-17 expression (Fig. 3.4F and 3.4G, respectively). Cytospins of the Ly6G
high

Ly6C
+
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population revealed an immature granulocytic morphology characterized by numerous ringed 

nuclei (Fig. 3.4B), which, when taken together with their suppressive action is highly suggestive of 

these cells as granulocytic MDSCs. The Ly6G
-
Ly6C

+
 population was typified by a relatively 

homogenous monocyte-like morphology that was unable to suppress CD4
+
 T cell activation (Fig. 

3.4D, 3.4E), suggesting that these cells are inflammatory monocytes. Collectively, these results 

demonstrate the recruitment of a bona fide MDSC population in staphylococcal biofilm infection.  

 Studies by other groups have reported neutrophil infiltrates in mouse models of S. aureus 

orthopedic infection [167-169]. However, these reports used either immunostaining with Ly6G, 

Ly6G depletion or LysM-GFP mice to identify neutrophils and, as our results demonstrate, these 

approaches cannot differentiate between neutrophils and MDSCs [170]. It is possible that the 

Ly6G
low

Ly6C
low

 cells observed in our model of S. aureus orthopedic biofilm infection are 

neutrophils based on their cytospin morphology, revealing fewer immature cells compared with 

the MDSC population (Fig. 3.4C and 3.4B, respectively) and lack of T cell suppressive activity 

(Fig. 3.4E).  

  



74 
 

Figure 3.3  

 

 

CD11b
+
Gr-1

+
 infiltrates from the site of S. aureus biofilm infection inhibit T cell 

proliferation. FACS-purified CD11b
+
Gr-1

+
 cells recovered from infected joint tissues at day 14 

were immediately cultured ex vivo with eFluor 670-labled CD4
+
 T cells at a 1:1 ratio for 

proliferation assays. (A) Representative histograms of fluorescence intensity, with percentage 

proliferation reported. (B-E) Supernatants from MDSC/CD4
+
 T cell cocultures were collected at 

72 h to quantitate TNF-α (B), IFN-γ (C), IL-17 (D), and IL-4 (E) by Milliplex. Results are 

representative of three to nine independent experiments *p < 0.05, ***p < 0.001, unpaired two-

tailed Student t test. (-), T cells only; (+) T cells incubated with CD3/CD28 Dynabeads; ND, not 

detected. 
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Figure 3.4 

 

 

Ly6G
high

Ly6C
+
 cells infiltrating S. aureus biofilms are bona fide MDSCs. Leukocyte infiltrates 

associated with S. aureus-infected joints were collected at day 14 and analyzed for Ly6C and 

Ly6G expression by flow cytometry. Representative conour plot (A) and Wright-Giemsa-stained 

cytospin preparations of FACS-purified Ly6G
high

Ly6C
+
 (B), Ly6G

low
Ly6C

low
 (C), and Ly6G

-
Ly6C

+
 

(D) cells are shown (original magnification X100). (E) Analysis of ex vivo polyclonal CD4
+
 T cell 

proliferation following a 1:1 and 1:5 coculture with Ly6G
high

Ly6C
+
, Ly6G

low
Ly6C

low
, Ly6G

-
Ly6C

+
 

cells for 72 h, whereupon conditioned supernatants were assessed for TNF-α (F) and IL-17 (G) 

expression by Milliplex. Results are representative of three to nine replicates. *p < 0.05, ***p < 

0.001, one-way ANOVA with Bonferroni’s multiple comparison post hoc analysis. (-), T cells only; 

(+), T cells incubated with CD3/CD28 Dynabeads; ND, not detected.  
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Ly6G
high

Ly6C
+
 cells recruited to sites of S. aureus orthopedic biofilm infection express 

genes characteristic of MDSCs. Owing to the differential immunosuppressive properties of the 

Ly6G
high

Ly6C
+
 and Ly6G

-
Ly6C

+
 subsets associated with S. aureus orthopedic biofilm infection, 

we next examined gene expression profiles of FACS-purified populations immediately ex vivo by 

qRT-PCR as further confirmation of their identity. The Ly6G
high

Ly6C
+
 MDSC subset displayed 

increased iNOS, Arg-1, COX-2, and IL-10 concomitant with reduced IL-12p40 expression 

compared with the Ly6G
-
Ly6C

+
 monocytic fraction (Fig. 3.5), similar to MDSC profiles described 

in other disease models [122, 171-174].  

 MDSCs play an important role in regulating inflammatory processes through their 

production of several pro- and anti-inflammatory cytokines [123, 150]. To assess the inflammatory 

status of MDSCs, cells were recovered from the site of biofilm infection or the spleen and 

immediately stimulated ex vivo with heat-inactivated S. aureus or peptidoglycan. We found that 

regardless of their origin, Ly6G
high

Ly6C
+
 MDSCs were inherently less proinflammatory than 

macrophages (Supplemental Fig. S3.1). Collectively, these results provide further evidence to 

support the identity of infiltrating Ly6G
high

Ly6C
+
 cells into S. aureus orthopedic biofilm infections 

as MDSCs. 
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Figure 3.5 

 

 

Ly6G
high

Ly6C
+
 biofilm-associated infiltrates express genes characteristic of MDSCs. FACS-

purified Ly6G
high

Ly6C
+
 MDSCs and Ly6G

-
Ly6C

+
 inflammatory monocytes were recovered from 

infected joint tissues at day 14, whereupon RNA was immediately isolated for qRT-PCR analysis. 

Gene expression levels in Ly6G
high

Ly6C
+
 MDSCs were calculated after normalizing signals 

against GAPDH and are presented as the fold change relative to the Ly6G
-
Ly6C

+
 monocyte 

population. Results represent the means ± SEM of three independent experiments. 

  



78 
 

Depletion of Ly6G
+
 MDSCs increases monocyte infiltrates and their intrinsic 

proinflammatory activity, resulting in enhanced S. aureus biofilm clearance. To assess the 

functional role of Ly6G
high

Ly6C
+
 MDSCs in orchestrating the anti-inflammatory biofilm milieu to 

facilitate bacterial persistence, mice were treated with the mAb 1A8 to target Ly6G
+
 cells [171, 

175, 176]. This approach would deplete MDSCs, leaving the Ly6C
+
 monocyte and macrophages 

populations intact and able to combat S. aureus infection, presumably in the absence of 

immunosuppression. We confirmed that 1A8 was effective at depleting the Ly6G
high

Ly6C
+
 MDSC 

population, which was more robust at day 7 compared with day 14 (Fig. 3.6A, 6B). Interestingly, 

the frequency of Ly6C
+
 monocytes was significantly increased at day 7 (Fig. 3.6C), and we 

predicted that the absence of immunosuppressive Ly6G
+
 MDSCs would promote the 

proinflammatory attributes of these Ly6C
+
 mononuclear phagocytes. To address this possibility, 

we examined the activation state of FACS-purified Ly6G
-
Ly6C

+
 cells from the infection site of 

1A8-treated versus isotype control mice by qRT-PCR. In the context of MDSC depletion with 1A8, 

expression of iNOS, IL-12p40, and IL-6 was increased in Ly6G
-
Ly6C

+
 cells at day 7 (Fig. 3.7). 

Increased Arg-1 and IL-10 expression was also observed in Ly6G
-
Ly6C

+
 cells (Fig. 3.7), and 

although both possess anti-inflammatory properties, they may be important in maintaining a 

balanced inflammatory environment at the site of infection owing to the absence of normally 

immunosuppressive MDSCs. 

 Because Ly6C
+
 monocyte infiltrates were increased in the context of MDSC depletion 

and displayed intrinsic proinflammatory activity, we next examined whether this would translate 

into superior anti-biofilm activity. This prediction was confirmed, because Ly6G
+
 cell depletion 

with 1A8 significantly reduced S. aureus burdens in both the tissue and knee joint at days 7 and 

14 compared with isotype control animals (Fig. 3.8B), which correlated with less gross evidence 

of exudate formation in MDSC-depleted mice (Fig. 3.8A). Ly6G
+
 cell depletion did not cause S. 

aureus dissemination from the primary site of infection (Fig. 3.8C), and histopathologic analysis of 

H&E-stained tissues showed no dramatic differences in the degree of joint inflammation or 

splenic architecture (as a measure of extramedullary hematopoiesis) between 1A8-treated and 

istoype control animals (data not shown).  
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 To investigate the impact of Ly6G
+
 cell depletion on the inflammatory milieu during S. 

aureus orthopedic biofilm infection, soft tissues surrounding the knee, knee joint, and femur were 

analyzed using Milliplex arrays. Several cytokines (G-CSF, IL-1β, and IL-6) and chemokines 

(CXCL1, CXCL9, and CCL3) were dramatically reduced in 1A8-treated compared with isotype 

control mice primarily at day 7 (Fig. 3.9), in agreement with increased bacterial clearance in the 

former (Fig. 3.8B). Collectively, these results demonstrate that during S. aureus orthopedic biofilm 

infection, Ly6G
high

Ly6C
+
 MDSCs elicit a local microenvironment that restricts 

monocyte/macrophage proinflammatory activity, facilitating the establishment of an anti-

inflammatory environment that favors bacterial persistence. We propose that these effects were 

not significantly influenced by neutrophil loss following 1A8 treatment, because most Ly6G
+
 

leukocytes infiltrating infected joints (i.e., ~75%) were MDSCs. 
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Figure 3.6 

 

 

MDSC depletion augments monocyte recruitment during S. aureus orthopedic biofilm 

infection. Implant-associated tissues from 1A8- and isotype control-treated mice were collected 

at the indicated time points after infection and analyzed by flow cytometry. (A) Representative 

contour plots of Ly6C and Ly6G staining and (B) quantitation of Ly6G
+
Ly6C

+
 MDSCs and (C) 

Ly6C
+
 inflammatory monocytes. Results are presented as a percentage of the total leukocyte 

infiltrate and are representative of two independent experiments (n = 10 mice/group). **p < 0.01, 

***p < 0.001, unpaired two-tailed Student t test. 
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Figure 3.7 

 

 

MDSC depletion enhances intrinsic proinflammatory gene expression in Ly6C
+
 monocytes 

during S. aureus biofilm infection. Ly6G
-
Ly6C

+
 monocytes were purified from tissues 

surrounding the infected joints of 1A8- and isotype control-treated mice at days 7 and 14 post-

infection by FACS, whereupon RNA was immediately isolated for qRT-PCR analysis. Gene 

expression levels in Ly6G
-
Ly6C

+
 monocytes recovered from MDSC-depleted animals were 

calculated after normalizing signals against GAPDH and are presented as the fold change 

relative to Ly6G
-
Ly6C

+
 cells from isotype control mice. Results represent the means ± SEM of two 

independent experiments. 
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Figure 3.8  

 

 

MDSC depletion reduces S. aureus burdens during orthopedic biofilm infection. (A) Gross 

appearance of infected tissues from animals receiving 1A8 or an isotype-matched IgG. (B) 

Bacterial burdens associated with the knee joint, surrounding soft tissue, femur, and orthopedic 

implant and (C) heart and kidney of IgG control- or 1A8-treted animals at days 7 and 14 post-

infection. Results are expressed as the number of CFU per milliliter for orthopedic implants or 

CFU per gram tissue to correct for alterations in tissue sampling sizes. Significant differences in 

bacterial burdens between IgG- and 1A8-treated mice are denoted as *p < 0.05 and **p < 0.01 

(unpaired two-tailed Student t test). 
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Figure 3.9 

 

 

1A8 treatment attenuates proinflammatory mediator production during S. aureus 

orthopedic biofilm infection. Tissue homogenates surrounding orthopedic implants were 

prepared at days 7 and 14 postinfection from 1A8- and isotype-treated mice, whereupon 

expression of G-CSF (A), IL-1β (B), IL-6 (C), CXCL1 (D), CXCL9 (E), and CCL3 (F) was 

quantitated by Milliplex. Results were normalized to the amount of total protein recovered to 

correct for alterations in tissue sampling size. Results are representative of five mice per group. 

*p < 0.05, unpaired two-tailed Student t test. 
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Gr-1
+
 cell depletion confirms the inhibitory action of MDSCs on monocyte/macrophages to 

prevent S. aureus biofilm clearance. Our results have established that MDSC depletion with 

1A8 facilitated S. aureus biofilm clearance, in part due to decreased immunosuppressive effects 

that promoted the proinflammatory attributes of infiltrating monocytes and macrophages. To 

further demonstrate that monocyte/macrophages were critical for anti-biofilm activity in the 

absence of an MDSC infiltrate, we treated mice with the mAb RB6-C85. Similar to 1A8, RB6-C85 

depletes Ly6G
+
 MDSCs and neutrophils, but it also targets monocytes based on its reactivity with 

Ly6C, which would also impact macrophage numbers by default [136, 171, 175-177]. Therefore, 

any differences between 1A8 and RB6-C85 depletion would further support a role for 

monocytes/macrophages in mediating biofilm clearance without the suppressive MDSC 

population. As previously demonstrated, Ly6G/Ly6C staining detected three cell populations in 

implant-associated tissues of isotype control animals at days 7 and 14 following infection, namely 

Ly6G
high

Ly6C
+
 MDSCs, a Ly6G

low
Ly6C

low
 granulocyte-like population, and a Ly6G

-
Ly6C

+
 

inflammatory monocyte subset (Fig. 3.10A). However, at day 7 RB6-C85-treted animals only 

displayed one cell population that shifted from Ly6G
low

Ly6C
low

 to Ly6G
high

Ly6C
+
 at day 14 post-

infection (Fig. 3.10B). The percentage of Ly6G
low

Ly6C
low

 cells in RB6-C85-treated animals was 

significantly higher than isotype-treated controls at day 7; however, no differences were apparent 

at day 14, because the population had shifted to Ly6G
high

Ly6C
+
 (Fig. 3.10B). Although Ly6C

+
 

infiltrates were increased in RB6-C85-treated animals at day 14 post-infection (Fig. 3.10B), they 

were unable to inhibit T cell proliferation (Supplemental Fig. S3.2), and as such they do not 

represent a true MDSC phenotype. Therefore, we suggest that the presence of Ly6G
low

Ly6C
low

 

and Ly6G
high

Ly6C
+ 

populations in the infected joint of RB6-C85-treated mice results from 

increased demand from the overwhelming infection (Fig. 3.11), which agrees with the results to 

follow that demonstrate extensive extramedullary hematopoiesis in the spleens of these animals. 

This is supported by the finding that Ly6G
+
Ly6C

+
 cells were significantly lower in RB6-C85-

treated mice receiving sterile implants compared with isotype control Ab (data not shown). 

 We also examined CCR2 and F4/80 expression as markers for inflammatory monocytes 

and macrophages, respectively [178-180]. Because RB6-C85 also recognizes the Ly6C epitope, 
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we expected both of these populations to be decreased, as CCR2
+
 inflammatory monocytes 

express Ly6C and differentiate into F4/80
+
 macrophages once they have migrated into tissues 

[179]. As expected, the percentage of Ly6C
+
CCR2

+
 cells was significantly decreased in RB6-

C85-treated animals compared with isotype controls at days 7 and 14 postinfection (Fig. 10C). 

Likewise, there were significantly fewer F4/80
+
 macrophages in RB6-C85-depleted mice at day 7 

post-infection, and only a very small percentage of cells remained at day 14 (Fig. 3.10C). 
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Figure 3.10 

 

 

RB6-C85 administration alters leukocyte infiltrates during S. aureus orthopedic biofilm 

infection. Implant-associated tissues from RB6-C85- and isotype control-treated mice were 

collected at the indicated time points after infection and analyzed by flow cytometry. (A) 

Representative contour plots of Ly6C and Ly6G staining and quantitation of (B) Ly6G
high

Ly6C
+
 

MDSCs and Ly6G
low

Ly6C
low

 neutrophils and (C) inflammatory monocytes (CCR2
+
) and 

macrophages (F4/80
+
) present in infected animals receiving RB6-C85 or isotype control Ab. 

Results are expressed as a percentage of the total CD45
+
 leukocyte population. Results are 

representative of 10 mice per group from two independent experiments. *p < 0.05, **p < 0.01, 

unpaired two-tailed Student t test. 
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Gr-1
+
 cell depletion exacerbates S. aureus orthopedic biofilm infection owing to the loss of 

monocyte/macrophage effectors. Strikingly, S. aureus-infected mice treated with RB6-C85 

displayed grossly visible caseous exudate (Fig. 3.11A), which was typified by significantly 

increased bacterial burdens in the knee joint, surrounding soft tissue, and femur at days 7 and 14 

postinfection compared with infected animals receiving an isotype-matched control Ab (Fig. 

3.11B). Histological analysis of tissues collected from RB6-C85-treated mice revealed increased 

inflammation in the joint space, surrounding soft tissue, and bone compared with isotype control 

animals (Table 3.1). Furthermore, the degree of osteolysis was more severe in RB6-C85-treated 

animals, as evidenced by CT imaging (Fig. 3.12), and femurs were more brittle upon harvest. 

These results are in stark contrast with those obtained during 1A8 depletion where biofilm 

burdens were reduced, indicating that monocytes and macrophages are able to promote bacterial 

clearance in the absence of an immunosuppressive MDSC population, because the only 

difference between the Ab depletion strategies was the targeting of monocyte/macrophages.  

 

Table 3.1 Degree of inflammation and extramedullary hematopoiesis associated with RB6-

C85 mAb treatment during S. aureus orthopedic infection. 

 

RB6-C85 administration not only increased bacterial burdens and inflammation at the site 

of S. aureus orthopedic biofilm infection, but it also led to significant systemic effects. First, Gr-1
+
 

depletion enhanced S. aureus dissemination, as bacterial burdens in the heart, kidney, and 

spleen of RB6-C85-treated animals were significantly elevated at day 7 post-infection compared 
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with the isotype control group (Fig. 3.11C). Second, RB6-C85-treated animals displayed 

significant splenomegaly (Fig. 3.13A, 13B). Histopathology revealed marked expansion of the 

splenic sinuses and red pulp with extensive extramedullary hematopoiesis, typified by numerous 

erythroid islands, megakaryocytes, and leukocyte islands in RB6-C85-treated animals, which was 

not observed in infected isotype control mice (Fig. 3.13C). 

To examine changes in the inflammatory milieu after RB6-C85 treatment, inflammatory 

mediator expression was assessed. Numerous cytokines (IL-1β, G-CSF, and IL-17) and 

chemokines (CXCL1, CXCL2, and CCL3) were significantly increased at days 7 and 14 in RB6-

C85-treated animals compared with isotype controls (Fig. 3.14). Similar changes were observed 

in the infected knee joint and femur (data not shown). Taken together with the results from 1A8 

depletion, these finding demonstrate that MDSCs are critical for limiting the proinflammatory 

activity of monocytes and macrophages during S. aureus biofilm infection, which sets the stage 

for bacterial persistence. 
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Figure 3.11 

 

RB6-C85 treatment enhances S. aureus biofilm burdens and dissemination. (A) Gross 

appearance of infected tissues from animals receiving RB6-C85 or an isotype-matched IgG 

revealed a marked caseous exudate in the former. (B) Bacterial burdens associated with the 

knee joint, surrounding soft tissue, femur and orthopedic implant and (C) heart, kidney, and 

spleen of control IgG- or RB6-C85-treated animals at days 7 and 14 postinfection. Results are 

expressed as CFU per milliliter for orthopedic implants or CFU per gram of tissue to correct for 

differences in tissue sampling size. Results are representative of 10 mice per group from two 

independent experiments. Significant differences between IgG and RB6-C85 animals are denoted 

as *p < 0.05, **p < 0.01, and ***p < 0.001 (unpaired two-tailed Student t test). 
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Figure 3.12 

 

 

RB6-C85 administration results in increased osteolysis during S. aureus orthopedic 

biofilm infection. CT images (dorsal view) are presented at day 14 postinfection from mice 

receiving RB6-C85 or isotype control Ab. Arrows indicate the region of bone loss near the implant 

tip at the patella. Color intensity is indicative of bone density, where white indicates most dense 

and dark orange indicates least dense. Images are representative of four individual animals per 

group. 
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Figure 3.13  

 

 

RB6-C85 treatment leads to splenomegaly and extramedullary hematopoiesis during S. 

aureus orthopedic biofilm infection. Gross appearance (A) and weight (B) of spleens from 

RB6-C85- or IgG-treated mice at days 7 and 14 after S. aureus orthopedic biofilm infection (n = 

10/group). (C) H&E-stained sections of spleens from IgG- and RB6-C85-treated mice at day 14 

postinfection (n = 3/group; original magnification X40; zoomed images [original magnification, 

X60] depict areas delineated by rectangles in the X40 field of view). Arrows indicate presence of 

megakaryocytes in RB6-C85-treated spleens. Significant differences between IgG and RB6-C85 

animals are denoted as ***p < 0.001 (unpaired two-tailed Student t test). 
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Figure 3.14  

 

 

RB6-C85 administration exacerbates inflammatory mediator production during S. aureus 

orthopedic biofilm infection. Tissue homogenates surrounding orthopedic implants were 

prepared at days 7 and 14 postinfection from RB6-C85- and isotype control-treated mice, 

whereupon IL-1β (A), G-CSF (B), IL-17 (C), CXCL1 (D), CXCL2 (E), and CCL3 (F) expression 

was quantitated by Milliplex. Results were normalized to the amount of total protein recovered to 

correct for alterations in tissue sampling size. Results are representative of five mice per group. 

*p < 0.05, **p < 0.01, ***p < 0.001, unpaired two-tailed Student t test). 
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Supplemental Figure S3.1 

 

 

MDSCs exhibit less inherent proinflammatory activity than macrophages. Bone marrow-

derived macrophages (MΦ) and FACS-purified Ly6G
high

Ly6C
+
 MDSCs recovered from the site of 

S. aureus orthopedic biofilm infection (tissue MDSC) or the spleen (spleen MDSC) of infected 

animals were stimulated with 10
7
 heat-inactivated (HI) S. aureus or PGN (10 μg/ml). 

Supernatants were collected at 24 h, whereupon G-CSF (A), CCL5 (B), CCL3 (C) and IL-6 (D) 

expression was quantitated by Milliplex. Significant differences are denoted by asterisks (*p < 

0.05; **p < 0.01; ***p < 0.001; one-way ANOVA with Bonferroni’s multiple comparison post-hoc 

analysis) and are representative of three independent replicates. 
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Supplemental Figure S3.2 

 

 

RB6-C85 treatment reduces Ly6G
high

Ly6C
+
 MDSC infiltrates in mice receiving sterile 

orthopedic implants. Implant-associated tissues, blood and spleens from RB6-C85- and isotype 

control-treated mice were collected at the indicated time points after placement of sterile 

orthopedic devices and analyzed by flow cytometry. Ly6G
high

Ly6C
+
 or Gr-1

+
 MDSCs are 

expressed as a percentage of the total CD45
+
 leukocyte infiltrate. Significant differences are 

denoted by asterisks (*p < 0.05; unpaired two-tailed Student t test) and are representative of two 

mice per group. 
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Supplemental Figure S3.3  

 

 

CD11b
+
Gr-1

+
 MDSC infiltrates are observed during S. aureus catheter-associated biofilm 

infection. Mice (n = 4 per time point) were infected with 10
3
 CFU of USA300 LAC::lux in the 

lumen of surgically implanted catheters to establish biofilm infection. Catheter-associated tissues 

were collected from mice at the indicated time points, whereupon CD11b
+
Gr-1

+
 infiltrates were 

quantified by flow cytometry. Results are presented as the percentage of the total CD45
+
 infiltrate. 
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Supplemental Figure S3.4

 

 

RB6-C85 treatment during S. aureus catheter-associated biofilm infection results in 

increased bacterial burdens and dissemination. Mice (n = 4 IgG and 5 RB6-C85 per time 

point) were infected with 10
3
 CFU of USA300 LAC::lux in the lumen of surgically implanted 

catheters to establish biofilm infection. Animals received i.v. injections of 100 μg RB6-C85 or IgG 

isotype control Ab at days -1, 2, and 5 following S. aureus exposure, whereupon bacterial 

burdens associated with infected catheters, surrounding tissue, and dissemination to the kidney 

were quantitated at day 7 post-infection. Significant differences between groups are denoted by 

asterisks (*p < 0.05, **p < 0.01; unpaired two-tailed Student t test). 

  



97 
 

Discussion 

 An emerging role for MDSCs has been described in several diseases aside from cancer, 

most recently to include bacterial infections [123, 157-159, 176, 181]. Using a mouse model of S. 

aureus orthopedic biofilm infection, we demonstrate that a population of CD11b
+
Gr-1

+
 MDSCs 

accumulates in the joint tissue and depletion of this population results in improved bacterial 

clearance by promoting the proinflammatory attributes of infiltrating monocytes and 

macrophages. These findings suggest that MDSCs are key contributors to the chronicity of S. 

aureus biofilms through their modulation of the host immune response. 

 Our previous studies have shown that S. aureus biofilms augment Arg-1 expression and 

polarize macrophages toward an M2 anti-inflammatory state [32]. The present study has 

expanded the repertoire of immune suppressive effectors to include MDSCs. MDSCs are notable 

for their robust Arg-1 expression, which depletes extracellular arginine, causing T cell dysfunction 

at multiple levels, including cell cycle arrest, reduced expression of the CD3ζ chain, and a global 

reduction in several proteins essential for T cell activity [182-184]. Limited numbers of CD4
+
 T 

cells were detected in implant-associated tissues during S. aureus biofilm infection (i.e., 2-5%). 

We expected T cell infiltrates to be enhanced following Gr-1 and Ly6G depletion originating from 

the loss of MDSC activity; however, this was not the case. One possibility to explain this finding is 

that the combined action of MDSCs and regulator cytokines serve to limit T cell numbers at the 

site of biofilm infection, which remains to be determined. Besides actions on T cells, arginine 

depletion via MDSC Arg-1 activity reduces its availability for iNOS, which thwarts M1 classical 

macrophage activation, as we have previously shown in S. aureus biofilms [32]. By extension, the 

significant MDSC infiltrate associated with S. aureus biofilms in vivo is likely an important factor in 

skewing monocyte/macrophages toward a M2 anti-inflammatory phenotype that promotes 

bacterial persistence, and our studies confirmed that MDSCs recovered from the site of 

orthopedic biofilm infection express Arg-1 and IL-10. By further extension, we predicted that 

depletion of the suppressive MDSC population would allow infiltrating monocytes to act as true 

effector cells. This was confirmed by the finding that Ly6C
+
 monocytes recovered from MDSC-

depleted animals expressed more proinflammatory genes compared with monocytes recovered 
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from IgG-treated mice where the MDSC population remained intact. Additionally, MDSC depletion 

significantly decreased biofilm burdens, confirming the importance of this population in 

orchestrating the anti-inflammatory biofilm milieu to facilitate infection persistence. Besides 

MDSCs, regulatory T cells also possess anti-inflammatory attributes similar to MDSCs [185]. 

However, we did not detect any CD4
+
CD25

+
Foxp3

+ 
cells associated with S. aureus biofilm 

infections (data not shown), whereas another group has reported regulatory T cell involvement in 

biofilm clearance [28]. The reasons for these discrepancies are not clear but may arise from 

differences in experimental models and/or S. aureus strains tested. Based on our analysis, we 

propose that MDSCs represent the main immunosuppressive effector cell during S. aureus 

orthopedic biofilm infection. The signals controlling MDSC recruitment, activation, and 

suppressive activity during S. aureus biofilm infection remain ill-defined and are ongoing topics of 

investigation in our laboratory.  

 Our RB6-C85 depletion studies revealed significant increases in bacterial dissemination 

from the orthopedic infection site. As mentioned previously, RB6-C85 recognizes both Ly6G and 

Ly6C epitopes, effectively depleting MDSCs, neutrophils, monocytes, and by extension, 

macrophages. Therefore, although MDSC infiltrates were reduced, effector populations were also 

targeted, leaving fewer leukocytes either locally or systemically to prevent S. aureus 

dissemination to peripheral organs. By extension, we propose that the function of each leukocyte 

subset differs depending on the local microenvironment; namely, although the inhibitory actions of 

MDSCs were negated following RB6-C85 treatment, this coincided with a local reduction in 

inflammatory monocytes/macrophages, such that biofilm growth could not be held in check at the 

primary infection site (i.e., joint). When biofilm-associated bacteria seeded peripheral sites, the 

paucity of systemic neutrophils likely accounted for the failure to effectively clear the infection, 

which is essential because neutrophils are a main effector cell against planktonic S. aureus [83, 

97, 186, 187]. Dissemination was not observed with anti-Ly6G Ab treatment, which was attributed 

to the local monocyte/macrophage population that remained intact and exhibited heightened 

proinflammatory activity. MDSC infiltrates were also detected in a S. aureus catheter-associated 

biofilm infection model (Supplemental Fig. S3.3), and RB6-C85 treatment similarly increased 
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bacterial burdens and dissemination (Supplemental Fig. S3.4), providing independent 

confirmation that MDSCs are a hallmark of S. aureus biofilm infection. 

 One notable finding in the present study was the extensive extramedullary hematopoiesis 

observed in the spleens of RB6-C85-treated animals compared with isotype controls. 

Extramedullary hematopoiesis is frequently seen during chronic inflammatory diseases and 

cancer [161] and expansion of CD11b
+
Gr-1

+
 MDSCs has been reported in tumor and 

polymicrobial sepsis models [123, 188, 189]. During infection, the requirement for myeloid cells 

dramatically increases in response to an expanding infectious burden, which creates a need for 

emergency myelopoiesis and the mobilization of immature myeloid cells from the bone marrow 

and spleen [161]. The targeted reduction in Gr-1
+
 cells coincident with increasing biofilm burdens 

with RB6-C85 treatment likely explains the extensive extramedullary hematopoiesis observed in 

the spleens of these animals. Another unexpected finding was that Gr-1
+
 (Ly6G/Ly6C) infiltrates 

were increased at the site of orthopedic infection following RB6-C85 administration. However, this 

was likely a compensatory mechanism in response to elevated bacterial burdens both locally and 

systemically in Gr-1-depleted mice, because these newly recruited Ly6G
+
Ly6C

+
 cells were unable 

to suppress CD4
+
 T cell proliferation, which agrees with reports of polymicrobial sepsis [123]. 

Additionally, we also observed enhanced levels of G-CSF, IL-6 and VEGF in the serum of RB6-

C85-treated mice, all of which contribute to the expansion of immature myeloid populations [120, 

137]. Alternatively, the failure to deplete Ly6G
+
Ly6C

+
 infiltrates at later intervals could be 

explained by the induction of anti-rat IgG Abs that would be expected to impair the efficacy of 

RB6-C85 treatment (rat anti-mouse Gr-1). However, this appears less likely because RB6-C85 

was still capable of significantly reducing inflammatory monocyte and macrophage infiltrates into 

S. aureus-infected joints 2 wk after repeated Ab administration. 

 Live CT scans revealed significantly more osteolysis in the femurs of RB6-C85-treated 

animals compared with 1A8 and isotype control mice, which may be attributed to the increased 

bacterial burdens in the former. The exact mechanisms of osteolysis are still not completely 

understood, and they differ depending on pathologic conditions [190, 191]. However, several 

studies suggest that proinflammatory mediators, such as IL-1β, could play a role in the initiation 
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and progression of osteolysis [192-194], and numerous proinflammatory mediators were 

significantly elevated in the joint and surrounding soft tissue following RB6-C85 treatment, 

including IL-1β, that coincided with increased bone destruction. Additionally, S. aureus is not only 

capable of colonizing the bone matrix, but it can also invade osteoblasts, which could contribute 

to chronicity [195]. Interestingly, a recent study identified phenol-soluble modulins as a key 

inducer of osteoblast proliferation in and S. aureus osteomyelitis model [196]; however, effects on 

osteoclasts remain to be defined. 

 Our studies are just beginning to explore the role of MDSCs during S. aureus infection. 

By manipulating these cells with Ab depletion strategies, we demonstrated that their 

immunosuppressive function prevents monocytes/macrophages from eliminating biofilm-

associated bacteria by attenuating their proinflammatory properties. Our findings do not exclude 

the possibility that the biofilm matrix may also play a role in thwarting immune recognition in vivo; 

however, this remains an area of debate. Although it is clear that intact biofilms do afford some 

degree of protection against macrophage phagocytosis as previously shown by our laboratory 

and others [32, 100, 114, 197-199], it is clear that neutrophils are fully capable of invading and 

phagocytosing biofilm-associated bacteria [61, 100, 112, 200], yet there is no apparent impact on 

biofilm growth. The fact that staphylococcal biofilms polarize macrophages toward an alternatively 

activated M2 phenotype does suggest that macrophage surface receptors are triggered to elicit 

this programming event; however, the identity of these receptors remains unknown. Future 

studies examining a S. aureus biofilm-defective mutant would be valuable for determining 

whether signals from the biofilm itself are responsible for MDSC recruitment and 

immunosuppressive activities. Preventing the presumed immunosuppressive action of infiltrating 

MDSCs may offer a novel therapeutic strategy to thwart these devastating chronic infections.  
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Abstract 

Staphylococcus aureus is a leading cause of human prosthetic joint infections (PJIs) typified by 

biofilm formation. We recently identified a critical role for myeloid-derived suppressor cells 

(MDSCs) in S. aureus biofilm persistence. Proinflammatory signals induce MDSC recruitment and 

activation in tumor models; however, the mechanisms responsible for MDSC homing to sites of 

biofilm infection are unknown. In this study, we report that several cytokines (IL-12p40, IL-1β, 

TNF-α, and G-CSF) and chemokines (CXCL2, CCL5) were significantly elevated in a mouse 

model of S. aureus PJI. This coincided with significantly increased MDSC infiltrates concomitant 

with reduced monocyte, macrophage, and T cell influx compared with uninfected animals. Of the 

cytokines detected, IL-12 was of particular interest based on its ability to possess either pro- or 

anti-inflammatory effects mediated through p35-p40 heterdimers, respectively. MDSC recruitment 

was significantly reduced in both p40 and p35 knockout mice, which resulted in enhanced 

monocyte and neutrophil influx and bacterial clearance. Adoptive transfer of wild-type MDSCs 

into infected p40 knockout animals worsened disease outcome, as evidenced by the return of S. 

aureus burdens to level typical of wild-type mice. Tissues obtained from patients undergoing 

revision surgery for PJI revealed similar patterns of immune cell influx, with increased MDSC-like 

cells and significantly fewer T cells compared with aseptic revisions. These findings reveal a 

critical role for IL-12 in shaping the anti-inflammatory biofilm milieu by promoting MDSC 

recruitment. 
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Introduction 

 The number of patients undergoing primary total hip and knee arthroplasties has steadily 

increased over the past decade, with nearly 800,000 procedures being performed in the United 

States each year [49]. Prosthetic joint infection (PJI) is a serious complication following 

arthroplasty, with S. aureus being a common inciting pathogen [49]. A recent study using National 

Inpatient Sample data from 1990-2003 projected the infection incidence following total hip 

revision to increase from 3,400 in 3005 to 46,000 in 2030, and for total knee replacements from 

6,400 in 2003 to 175,500 in 2030 based on the increased volume of prosthetic joint replacement 

procedures with an aging population [201]. The majority of PJIs are thought to occur during 

surgery, likely originating from skin commensals. This has led to increased screening for S. 

aureus carriage to ensure that patients undergo decolonization regimens prior to their surgical 

procedure in an attempt to minimize infection risk [13, 202, 203]. Only a small number of bacteria 

are required to seed an implanted prosthesis; however, once adherent they can establish a 

biofilm, affording protection from conventional antimicrobial agents as well as the host immune 

system [1, 31, 61]. In addition to biofilm formation on prostheses, PJIs are often associated with 

chronic osteomyelitis, reflecting biofilm growth on a native surface [36, 204]. Due to the difficulty 

in treating PJIs, patients are often subjected to a staged protocol requiring two surgeries, the first 

being removal of the infected prosthetic joint and placement of a temporary spacer impregnated 

with high doses of antibiotics for several weeks, followed by a second surgery for prosthetic joint 

re-implantation [205-207]. However, patients experiencing a prior PJI are at increased risk for 

subsequent infections after the placement of a new prosthesis [36, 208]. The significant disease 

burden associated with PJIs and the increasing prevalence of antibiotic-resistant strains, such as 

methicillin-resistant and vancomycin intermediate S. aureus (MRSA and VISA, respectively), 

highlights the importance of investigating alternative treatment paradigms. Our approach has 

been to understand how the host innate immune response is altered during biofilm-associated 

PJI, with the goal of re-directing this response to facilitate bacterial clearance in combination with 

conventional antibiotic therapy. This would provide an opportunity for either nonsurgical or one-
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stage re-implantation, where removal of the infected prosthesis and reinsertion of the new implant 

occur simultaneously. 

 A number of animal models examining S. aureus osteomyelitis have shown an elevation 

of inflammatory cytokines that have been implicated in bone remodeling as well as pathology 

[209-212]. In contrast, the inflammatory events associated with S. aureus PJI remain to be fully 

elucidated. In particular, the presence of a foreign body may alter the kinetics and/or dynamics of 

the host immune response to inadvertently facilitate biofilm formation and persistence. Although a 

recent report described a key role for IL-1β in a mouse model of S. aureus post-arthroplasty 

infection [162], the cellular source of IL-1β and a detailed analysis of infiltrating leukocytes was 

not assessed. Other investigations using a mouse S. aureus tibial implant model have suggested 

the involvement of Th2 and Treg cells in bacterial clearance [167]; however, an in-depth analysis 

of innate immune mechanisms was not conducted. A detailed evaluation of the inflammatory 

events during S. aureus PJI is warranted to identify mechanisms whereby the organism is able to 

subvert host innate immunity to establish chronic disease.  

Our recent report documented an important role for myeloid-derived suppressor cells 

(MDSCs) in S. aureus persistence during PJI [60]. In particular, MDSC depletion facilitated biofilm 

clearance by augmenting the proinflammatory properties of infiltrating monocytes. The objective 

of the current report was to identify critical cytokines responsible for MDSC action during biofilm 

formation in vivo. One candidate was IL-12p40, which was markedly elevated during S. aureus 

biofilm formation. IL-12p40 pairs with the p35 or p19 polypeptides to form the heterodimeric 

cytokines IL-12 and IL-23, respectively [213, 214]. However, it is well known that IL-12p40 is 

produced in excess of the other IL-12 family subunits and can exert negative regulatory effects as 

a homodimer by competitively binding the IL-12 receptor [215-217]. A recent report demonstrated 

a role for IL-12p40 in S. aureus orthopedic implant infection after treatment with a neutralizing Ab 

[167]. However, the only readout reported was a reduction in the percentage of mice that 

remained infected after 21 days; no information pertaining to bacterial burdens, inflammatory 

infiltrates, or the cytokine’s mechanism of action was described. In the current study, we found 

that both p40 and p35 KO mice displayed significant reductions in MDSC infiltrates during S. 
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aureus PJI, which coincided with significantly increased monocyte and macrophage infiltrates and 

improved bacterial clearance. A direct role for MDSCs in this process was revealed by the ability 

of adoptively transferred wild type MDSCs to significantly increase S. aureus biofilm burdens in 

IL-12p40 KO mice, implicating a key role for IL-12 in shaping the local inflammatory milieu to 

favor MDSC accumulation and biofilm persistence. These effects were not observed in p19 KO 

mice, demonstrating that IL-23 does not play a role in shaping the biofilm inflammatory milieu. 

Examination of tissues obtained from patients undergoing revision surgery for PJI revealed 

increased MDSC-like infiltrates and a paucity of T cells compared with aseptic revisions, along 

with dramatic increases in a variety of pro-inflammatory mediators. These findings recapitulate 

what is observed in our mouse model of orthopedic implant infection, demonstrating its utility for 

deciphering mechanisms of biofilm evasion of host immunity during PJI and therapeutic 

interventions. 
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Results 

S. aureus orthopedic implant infections are typified by immune skewing and chronicity. 

One complication after joint replacement surgery is persistent biofilm-associated PJI, with S. 

aureus being a frequent etiological agent [36, 218, 219]. Here we utilized a mouse model of S. 

aureus post-arthroplasty joint infection that mimics PJI [220, 221]. Prior studies from our 

laboratory and others have demonstrated ultrastructural evidence of biofilm formation on infected 

implants in this mouse model by SEM [162, 213](Goriely et al 2008, Bernthal et al 2010). Biofilm 

formation is typified by bacterial persistence, which was demonstrated in the knee joint, 

surrounding soft tissue, and femur until day 28 postinfection (Fig. 4.1) with bacterial burdens still 

evident at 3 mo (data not shown). Fewer bacteria were associated with the implant (10-1000 

CFU; data not shown), despite the continued colonization of neighboring sites. This suggests that 

our model has features of chronic osteomyelitis, which is a common sequelae of PJI [36, 204]. 

However, the possibility remains that PJI-associated bacteria were dislodged from the implant 

upon removal from the medullary cavity because of the constricted space. Bacterial growth was 

never detected in animals receiving aseptic implants in any of the tissues examined (data not 

shown). 

 Histological evaluation revealed dramatic inflammation of the soft tissues surrounding 

infected joints at day 7, which was increased by day 28 (Supplemental Fig. S4.1B and D). Gram 

stains revealed bacterial localization along the implant-tissue interface in S. aureus-infected 

animals suggestive of biofilm formation (Supplemental Fig. S4.1E). CT analysis revealed 

substantial bone loss at the distal tip of infected implants near the patella, which was most 

discernable at later stages of infection (Supplemental Fig. 4.2). In contrast, animals receiving 

aseptic implants showed no evidence of bone destruction. Collectively, these features 

demonstrate good fidelity of the mouse model to pathology that occurs during PJIs in humans. 

 A better understanding of the inflammatory processes that ensue during persistent PJI is 

needed to develop more effective treatment paradigms. To this end, we first examined the 

production of inflammatory mediators in the knee joint, surrounding soft tissue, and femur in the 

mouse model. Several proinflammatory cytokines, including IL-12p40, IL-1β, TNF-α, and G-CSF, 
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were increased in all tissue regions from S. aureus-infected mice throughout the 28 d time course 

(Fig. 4.2). Likewise, numerous chemokines, such as CXCL2 and CCL5, were also markedly 

elevated in infected tissues (Fig. 4.2). Aseptic implants elicited transient inflammatory mediator 

production (Fig. 4.2), which most likely originated from the trauma generated during the surgical 

procedure. To evaluate whether enhanced chemokine production in S. aureus-infected joints 

translated to increased leukocyte infiltrates, FACS analysis was performed at weekly intervals for 

1 mo postinfeciton. Of the total CD45
+
 leukocyte infiltrate, the predominant cell type detected was 

Ly6G
high

Ly6C
+
, which we have recently identified as functional MDSCs (Fig 4.3A and B) [60]. 

Contrary to the significant influx of MDSCs into S. aureus-infected tissues, monocyte (Ly6G
-

Ly6C
+
), macrophage (F4/80

+
), and neutrophil (Ly6G

low
Ly6C

low
) infiltrates were significantly 

decreased compared with mice receiving aseptic implants (Fig 4.3C, D and F) despite the 

heightened expression of numerous chemokines that target these specific cell populations (Fig 

4.2). In addition to these innate leukocyte populations, CD3
+
 T cells were significantly decreased 

in infected tissues, whereas T cell infiltrates were elevated in animals receiving aseptic implants, 

particularly during the first two weeks post-surgery (Fig 4.3G). Collectively, these results 

demonstrate that S. aureus PJIs actively augment MDSC influx while suppressing the recruitment 

of numerous leukocyte subsets. 
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Figure 4.1 

 

 

S. aureus persistence during orthopedic implant infection. The femur, knee joint, and 

surrounding soft tissue associated with S. aureus-infected titanium implants were collected at the 

indicated intervals for quantitation of bacterial burdens. Animals receiving aseptic implants did not 

display any bacterial growth and are not shown. Results are expressed as CFU per gram of 

tissue to normalize for differences in sampling size and are presented from individual animals 

combined from three independent experiments (n = 12-24 mice/group). 
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Figure 4.2  

 

 

 

S. aureus orthopedic implant infection elicits sustained cytokine and chemokine 

production. Tissues surrounding the knee joint of mice with S. aureus-infected (n = 6) or aseptic 

(n = 8) implants were collected at the indicated time points, whereupon IL-12p40, IL-1β, TNF-α, 

G-CSF, CXCL2, and CCL5 production was measured by multi-analyte bead arrays. Results are 

normalized to the amount of total protein to correct for differences in tissue sampling size (*p < 

0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; unpaired Student’s t test). ND, not detected 
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Figure 4.3  

 

 

S. aureus orthopedic implant infections are typified by a robust MDSC infiltrate. Soft 

tissues surrounding the knee joint of mice with S. aureus-infected (n = 6-8) or aseptic (n = 8) 

implants were analyzed by flow cytometry for leukocyte infiltrates at the indicated time days after 

infection. Results were calculated after gating on the CD45
+
 population. (A) Representative 

contour plots of Ly6G and Ly6C-stained cells and quantitation of (B) Ly6G
high

Ly6C
+
 MDSCs; (C) 

Ly6G
-
Ly6C

+
 monocytes; and (D) Ly6G

low
Ly6C

low
 neutrophils. (F) Representative contour plots of 

CD45 and F4/80-stained cells and quantification of (E) F4/80
+
 macrophages. (G) Quantification of 

CD3
+
 T cells. Results are representative of three independent experiments (*p < 0.05; ***p < 

0.001; ****p < 0.0001; unpaired Students t test).  



111 
 

Tissues from human PJIs display increased MDSC-like and reduced T cell infiltrates with 

elevated pro-inflammatory mediator expression. To determine whether the patterns of 

leukocyte infiltration and inflammatory mediator production observed in our mouse model 

translated to human infection, these parameters were assessed in tissue samples from patients 

undergoing revision surgeries for PJIs or aseptic loosening as a control (Fig 4.4A). Of the infected 

tissues analyzed in this study, three were confirmed group B streptococcus and two were S. 

epidermidis. Here we report findings with S. epidermidis, since it is most closely related to S. 

aureus, which was utilized throughout our mouse studies. Compared with mice, human MDSC 

markers are less well-defined, with some reports describing this population as CD33
+
HLA-DR

-
 

[129, 222]. Similar to our mouse model, a population of MDSC-like cells (CD33
+
HLA-DR

-
) was 

detected in tissues from a patient with confirmed S. epidermidis PJI, whereas few of these cells 

were observed in aseptic samples (Fig 4.4C). In contrast, T cell influx was minimal in infected 

specimens, whereas T cells were the most abundant infiltrate associated with tissues recovered 

from aseptic orthopedic revisions (Fig 4.4B). Additional CD45
+
 leukocyte populations were also 

detected in infected patient tissues, including CD33
-
HLA-DR

+
 (Fig 4.4C) as well as CD66

+
CD14

-
 

and CD66
-
CD14

+
 cells (Fig 4.4D). To better define these leukocyte populations and examine their 

activation status, subsets were purified from infected patient tissues by FACS, whereupon RNA 

was immediately isolated to examine gene expression by qRT-PCR. The CD33
+
HLA-DR

-
 

population recovered from the confirmed S. epidermidis infection expressed several genes 

characteristic of MDSCs, including Arg-1, iNOS, and IDO-1, further strengthening the 

classification of these cells as MDSC-like (Fig 4.4E) [139, 222]. Interestingly, none of the genes 

analyzed were detected in CD33
-
HLA-DR

-
CD66b

+
 neutrophil-like cells, whereas CD33

-
HLA-DR

+
 

monocyte/macrophage infiltrates expressed iNOS, IDO-1, and TNF-α (Fig 4.4E). Analysis of 

inflammatory mediator expression revealed elevated levels of G-CSF, IL-1β, IL-6, IL-8, and 

soluble CD40 ligand (sCD40L) in S. epidermidis-infected tissues compared to aseptic specimens 

(Fig. 4.4F). These results confirm that similar leukocyte infiltration patterns are observed between 

our mouse post-arthroplasty infection model and human PJI tissues; namely, increased MDSC-

like cells and a paucity of T cells. In addition, human PJI tissues were typified by elevated 



112 
 

inflammatory mediator expression as was seen in the mouse. These findings demonstrate the 

utility of the mouse model for deciphering mechanisms of biofilm evasion of host immunity during 

human PJI and therapeutic interventions. 
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Figure 4.4 

 

 

Tissues from human PJIs display increased MDSC-like and reduced T cell infiltrates. (A) 

Tissues surrounding aseptic and S. epidermidis-infected knee prostheses were collected for flow 

cytometric analysis, qRT-PCR, and inflammatory mediator production. Representative contour 

plots of (B) CD3
+
 T cells; (C) MDSC-like infiltrates (CD33

+
HLA-DR

-
); (D) CD66b

+
 granulocytes 

and CD14
+
 mononuclear cells gated on the CD45

+
 population. (E) qRT-PCR analysis of genes 

that were detected (+) versus absent (-) in each sorted cell population and (F) quantitation of G-

CSF, IL-1β, IL-6, IL-8 and sCD40L expression in tissues shown in (A). Results were normalized 

to the amount of total protein to correct for differences in tissue sampling size. ND, not detected. 
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IL-12 is critical for MDSC recruitment and attenuating innate immune cell influx during S. 

aureus orthopedic implant infection. The IL-12 family of cytokines possesses pro-inflammatory 

properties that regulate macrophage and T cell activation [223-225]. In addition, pro-inflammatory 

cytokines have been reported to recruit and activate MDSCs [121, 226], which are significantly 

elevated in our S. aureus orthopedic implant infection model (Fig 4.3) and inhibit T cell activation 

[60]. Based on the increases in IL-12p40 expression in human PJI tissues (data not shown) and 

our mouse model (Fig 4.2) and its ability to exert either pro- or anti-inflammatory activity mediated 

by p35-p40 heterodimers or p40 homodimers, respectively, we examined the importance of IL-12 

family members during early S. aureus orthopedic infection using IL-12p40 and p35 KO mice. 

 Examination of leukocyte recruitment in S. aureus-infected IL-12p40 and p35 KO animals 

revealed significant decreases in Ly6G
high

Ly6C
+
 MDSCs (Fig 4.5A and B). To determine whether 

these residual MDSC infiltrates retained suppressive activity, MDSCs from IL-12p40 and p35 KO 

mice were purified by FACS at days 7 and 14 after infection and examined for their ability to 

inhibit polyclonal T cell activation. MDSCs recovered from both IL-12p40 and p35 KO mice were 

capable of inhibiting T cell proliferation (Fig 4.5C and D, respectively). However, IL-12p40 KO 

mice do not display any evidence of defects in MDSC development, and analysis of MDSCs from 

the spleens of WT and IL-12p40 KO mice reveal similar percentages in both naïve animals and 

following S. aureus PJI (data not shown).This finding suggests that IL-12 promotes MDSC 

recruitment rather than functional activity. Our recent report demonstrated that MDSC depletion 

during S. aureus PJI enhanced monocyte recruitment and intrinsic pro-inflammatory activity 

(Heim et al 2014). Similarly, the nearly 70-80% reduction in MDSC infiltrates observed in IL-

12p40 and p35 KO mice translated into significant increases in Ly6G
-
Ly6C

+
 monocyte recruitment 

(Fig 4.6) and improved bacterial clearance in both IL-12p40 and p35 KO mice compared with WT 

animals (Fig 4.7). Coincident with reduced bacterial burdens, the production of numerous 

inflammatory mediators, including IL-1β, TNF-α, G-CSF, and CXCL2 was decreased in IL-12p40 

and p35 KO mice (Fig 4.8). Since IL-23p19 also shares the common p40 subunit [227], we 

examined S. aureus infection in p19 KO mice but found no differences in inflammatory indices in 

comparison with WT animals (data not shown). 



115 
 

 To further implicate MDSCs as the key cell type responsible for inhibiting innate immune 

cell influx and promoting S. aureus persistence during PJI, bone marrow-derived MDSCs from 

WT mice were adoptively transferred into IL-12p40 KO animals one day after infection, 

whereupon bacterial burdens were assessed 7 and 14 days later (Fig 4.9). MDSCs for these 

experiments were expanded from bone marrow in vitro and confirmed for their ability to inhibit T 

cell proliferation (Supplemental Fig S4.3). The adoptive transfer of WT MDSCs into IL-12p40 KO 

animals restored bacterial burdens to those typically observed in WT mice and reduced monocyte 

and neutrophil infiltrates (Fig. 4.9). These effects are likely the result of MDSC activity and not IL-

12 release per se, since MDSCs are not a major source of IL-12. This experiment was not 

performed in p35 KO animals, since all of our prior studies demonstrated a concordance in 

phenotypes between p40 and p35 KO mice (Figs 4.5-8). Collectively, these findings demonstrate 

that IL-12 plays a key role in MDSC recruitment during S. aureus PJI to actively suppress 

monocyte and neutrophil influx and promote bacterial persistence. 
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Figure 4.5 

 

Recruitment of T cell-suppressive MDSCs during S. aureus orthopedic infection is 

regulated by IL-12. LyG
high

Ly6C
+
 MDSCs associated with knee joint of S. aureus-infected wild-

type (WT) and (A) IL-12p40 or (B) IL-12p35 knockout (KO) mice (n = 8/group) were quantified by 

flow cytometry at the indicated times after infection. Results were calculated after gating on the 

CD45
+
 population and represent the mean ± SEM of three independent experiments. MDSCs 

were purified from infected knee tissues of WT and (C) IL-12p40 or (D) IL-12p35 KO mice at days 

7 and 14 post-infection for T cell proliferation assays. Results are expressed as the % 

proliferation with T cells alone (-) and CD3/CD38-stimulated T cells (+) as controls. Results 

represent two independent experiments. (*p < 0.05; **p < 0.01; ***p < 0.001; unpaired Student’s t 

test). 
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Figure 4.6 

 

IL-12 deficiency increases monocyte influx during S. aureus orthopedic implant infection. 

Ly6G
-
Ly6C

+
 monocytes associated with the knee joint of S. aureus-infected WT and (A) IL-12p40 

or (B) IL-12p35 KO mice (n = 8/group) were quantified by flow cytometry at the indicated times 

after infection. Results were calculated after gating on the CD45
+
 population and are 

representative of three independent experiments (*p < 0.05; **p < 0.01; ***p < 0.001; unpaired 

Student’s t test). 
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Figure 4.7 

 

 

IL-12 is critical for the establishment of S. aureus implant-associated infection. A titanium 

implant was place in the femur of WT and IL-12p40 or IL-12p35 KO mice (n = 8/group) followed 

by inoculation with 10
3
 CFU S. aureus. The femur, knee joint, and surrounding soft tissue were 

collected at the indicated intervals after infection for quantitation of bacterial burdens. Results are 

expressed as CFU per gram of tissue to normalize for differences in sampling size and are 

combined from the three independent experiments (*p < 0.05; **p <0.01; ***p < 0.001; Wilcoxon 

rank sum test).  
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Figure 4.8  

 
 

IL-12 regulates inflammatory mediator production during S. aureus orthopedic implant 

infection. Tissues surrounding the knee joint of S. aureus-infected WT (n = 8) and IL-12p40 (n = 

8) or IL-12p35 KO (n = 8) mice were collected at days 7 and 14 post-infection, whereupon IL-1β, 

TNF-α, G-CSF and CXCL2 production was measured using multi-analyte bead arrays. Results 

are representative of two independent experiments and are normalized to the amount of total 

protein to correct for differences in tissue sampling size (*p < 0.05; **p < 0.01; ***p < 0.001; 

unpaired Student’s t test). ND, not detected. 
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Figure 4.9 

 

 

MDSCs are responsible for S. aureus persistence and inhibition of immune cell influx 

during orthopedic implant infection. WT and IL-12p40 KO mice (n = 10/group) were infected 

with S. aureus, whereupon IL-12p40 KO animals received an adoptive transfer of 2.5 x 10
6
 

purified WT MDSCs s.c. at the implant site one day post-infection, whereas WT and a separate 

group of IL-12p40 KO animals received s.c. injections of PBS. (Left) The femur, knee joint and 

surrounding soft tissue were collected at day 7 after infection for quantitation of bacterial burdens. 

(Right) Quantitation of Ly6G
high

Ly6C
+
 MDSCs, Ly6G

-
Ly6C

+
 monocytes, and Ly6G

low
Ly6C

low
 

neutrophils. Results were calculated after gating on the CD45
+
 population and represent two 

independent experiments (*p < 0.05; **p < 0.01; ***p < 0.001; unpaired Student’s t test). 
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Supplemental Figure S4.1 

 

 

S. aureus orthopedic implant infections are typified by robust and persistent inflammation. 

H&E-stained sections of tissues surrounding the knee joint of animals receiving aseptic (A and C) 

or S. aureus-infected (B and D) implants at days 7 (A and B) and 28 (C and D) after 

placement/infection (10x magnification). (E) Gram stain of S. aureus-infected knee tissue 7 days 

after infection (40x magnification; arrows indicate S. aureus at the implant-tissue interface). 

Representative images are presented from mice receiving aseptic (n = 2) and S. aureus-infected 

(n = 6) implants.
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Supplemental Figure S4.2 

 

 

Chronic S. aureus orthopedic implant infection results in marked bone loss. Comparison of 

bone integrity in mice with aseptic or S. aureus-infected orthopedic implants 28 days after 

placement/infection using live CT imaging (ventral view). Color intensity is indicative of bone 

density, where white = most dense and dark orange = least dense. Arrows indicate the implant 

protruding into the joint space. Representative images are presented from mice receiving aseptic 

(n = 2) and S. aureus-infected (n = 4) implants.  
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Supplemental Figure S4.3 

 

 

In vitro generated MDSCs inhibit polyclonal CD4
+
 T cell proliferation. Bone marrow-derived 

Ly6G
+
Ly6C

+
 MDSCs were purified by FACS and cultured with efluor670-labeled CD4

+
 T cells at 

either a 1:1 or 5:1 ratio for proliferation assays. (A) Representative contour plot depicting Ly6G 

and Ly6C expression in the expanded population. (B) Representative histograms of fluorescence 

intensity and (C) % proliferation compared with T cells alone (-) or CD3/CD28-stimulated T cells 

(+). Each treatment was performed in triplicate and results represent two independent 

experiments (*p < 0.05; unpaired Student’s t test).  
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Discussion 

 Despite extensive antiseptic precautions, most PJIs are thought to occur by hardware 

contamination from skin microflora during surgical insertion [36, 228]. As such, PJIs often take 

several months to years to manifest and most are attributed to S. aureus and S. epidermidis [27, 

229, 230]. The paramount obstacle for effective treatment of PJIs is their recalcitrance to 

antibiotic therapy coupled with the ability to skew the immune response towards an anti-

inflammatory, pro-fibrotic state [31, 61]. Therefore, the current standard-of-care to treat chronic 

PJIs requires removal of all foreign material, intravenous antibiotics for four to six weeks, and re-

implantation of the prosthetic joint. This treatment does carry a high success rate of 80-90%; 

however, the morbidity and mortality associated with the patient’s infection and its treatment is 

one of the most catastrophic complications in orthopedics [220, 231, 232]. Another important 

point is that the majority of prosthetic joint replacement surgeries are performed in the elderly, a 

population known to have waning immunity compared with younger patients [233, 234]. 

Therefore, with the expanding aging population, the frequency of PJIs is projected to increase. 

Collectively, these facts highlight the need for a better understanding of the underlying 

mechanisms involved in immune deviation during PJIs, which facilitate the development of novel 

therapeutics. 

 Importantly, our mouse model of PJI utilizes a very low infectious inoculum (i.e. 1,000 

bacteria), which represents a realistic level of bacterial exposure that might occur following the 

inadvertent transfer of organisms during prosthesis insertion in patients. The ability of the mouse 

model to recapitulate features of human PJI was substantiated by our analysis of tissues 

collected from patients undergoing revision surgeries for the treatment of PJI. Namely, cells with 

markers and gene expression profiles indicative of MDSCs (i.e. CD33
+
HLA-DR

-
) were evident 

with few/no T cell infiltrates detected. Both infected human and mouse tissues were typified by 

heightened inflammatory mediator expression compared with aseptic specimens; however, this 

was not sufficient to program infiltrating phagocytes for anti-biofilm activity, since infections 

persisted. We show that this results from MDSC action, which actively inhibits phagocyte 

microbicidal activity. Of the tissues collected from patients undergoing revision surgeries for PJI in 
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this study, three were confirmed group B streptococcus and two were S. epidermidis. In general, 

immune profiles were similar among these patient samples, suggesting that common immune 

responses are elicited during chronic PJI regardless of the inciting pathogen. This is important, 

since it implies that identifying methods to augment anti-biofilm immunity for the treatment of PJI 

might be efficacious against numerous bacterial species. 

 In these studies, IL-12 was critical for organizing the local inflammatory milieu as 

revealed by the significant reduction in MDSC infiltrates at the site of PJI in both p40 and -35 KO 

mice. Impaired MDSC recruitment coincided with increased phagocyte influx, including 

monocytes and neutrophils, which resulted in enhanced biofilm clearance. A direct role for 

MDSCs in this process was confirmed by the ability of adoptively transferred WT MDSCs to 

worsen disease outcome in IL-12p40 KO animals, as evidenced by the return of S. aureus 

burdens to levels of WT mice concomitant with significant reductions in monocyte and neutrophil 

recruitment. Previously, we have reported that IL-12p40 expression is dramatically reduced in 

MDSCs isolated from PJIs (Heim et al 2014); however, in the current report, we failed to detect 

IL-12p40 expression in MDSCs recovered from PJIs of WT mice by qRT-PCR (data not shown), 

indicating that MDSCs are not a major source for IL-12 production. The finding that immune 

phenotypes were similar in p40 and p35 KO mice and not evident in p19 KO animals suggests 

that IL-12p70 is important for organizing the immune permissive biofilm response. However, we 

cannot rule out the potential contribution of inhibitory p40 homodimers, since p40 is secreted in 

large excess of p40-p35 heterodimers and has recently been shown to bind to other polypeptides 

distinct from the IL-12 family that may also impact the local biofilm inflammatory milieu. The 

requirement for IL-12 was unexpected given its prominent role in Th1 polarization, since few T 

cell infiltrates were detected at the site of infection in both the mouse model and human PJI 

tissues. Instead, our findings suggest that IL-12 induces MDSC recruitment, as revealed by the 

70-80% reduction in MDSC influx into S. aureus-infected IL-12p40 and p35 KO properties argues 

against a role for IL-12 in MDSC activation. Although seemingly counterintuitive based on the 

suppressive properties of MDSCs, proinflammatory signals have been reported to induce MDSC 

recruitment and activation in the two-step model proposed by Gabrilovich [121, 226, 235]. 
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Impaired MDSC recruitment and activation in IL-12p35 and p40 KO mice likely accounted for 

improved bacterial clearance due to the removal of this suppressive population in conjunction 

with elevated granulocytic and monocytic infiltrates, which was confirmed by our adoptive transfer 

studies. Similar to our findings, a recent report demonstrated a role for IL-12p40 in S. aureus 

orthopedic implant infection after treatment with a neutralizing Ab [28]; however, the only readout 

described in this study was a reduction in the percentage of mice that remained infected after 21 

days; no information pertaining to bacterial burdens, inflammatory infiltrates, or the effect on other 

cytokines/chemokines at the infection site was reported. Therefore, our studies provide important 

mechanistic information regarding the role of IL-12 in the establishment of a local inflammatory 

microenvironment that is favorable for bacterial persistence. In addition, the proposed mechanism 

of IL-12 action between this earlier study and our report is strikingly different. Namely, 

Prabhakara et al. suggested that IL-12p40 promotes Th1/Th17 action to favor infection 

persistence; however, this is likely not the case in our model, since few T cell infiltrates were 

observed. Instead, we propose that IL-12 induces MDSC recruitment, leading to the diminished 

influx of professional phagocytes and impaired bacterial clearance. In addition, a few differences 

in the models utilized in these studies may account for these distinct findings. For example, 

Prabhakara et al. inserted implants that were precoated with S. aureus [28], whereas our devices 

were infected after surgical placement and the location of implants was distinct (femur versus 

tibia).  

 One question that remains is how does IL-12 promote MDSC recruitment to sites of S. 

aureus PJI? The most plausible explanation is that IL-12 acts indirectly by inducing the 

expression of a chemokine(s) with actions on MDSCs. Potential candidates include CXCL2 and 

CCL2 that are elevated at the site of S. aureus PJI and MDSCs have been reported to express 

the associated chemokine receptors CXCR2 and CCR2, respectively [236-240]. Of note, both 

CXCL2 and CCL2 expression were significantly reduced in S. aureus-infected IL-12p40 and p35 

KO mice in agreement with the minimal MDSC infiltrates observed in these animals. Alternatively, 

it is possible that IL-12 plays a non-canonical role in eliciting MDSC recruitment during the course 

of S. aureus post-arthroplasty infection such as augmenting PGE2 expression, which has also 
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been shown to be a potent MDSC attractant [148, 241-243]. These possibilities remain 

speculative at the present time and warrant investigation in future studies. 

 Another intriguing finding in this study was the apparent disconnect between the 

prolonged elevation of monocyte/macrophage chemokines and cell recruitment in S. aureus-

infected animals. Specifically, CCL2, CCL3, and CCL5 were chronically elevated during S. aureus 

PJI (Fig. 4.2 and data not shown), yet monocyte/macrophage influx was significantly reduced 

compared with animals receiving aseptic implants. This could be explained by differential MDSC 

fates based on the local environment. For example, it is known that MDSCs are recruited to sites 

of injury where they differentiate into macrophages and neutrophils to protect against potential 

infection during the wound healing process [150, 161]. However, in the case of tumors or S. 

aureus infection as we recently showed, MDSCs remain arrested in their immature state and 

exert potent immunosuppressive activity [60, 137]. In the current report, it is challenging to 

definitively assign this suppressive activity to either MDSC subset, based on the inability to 

accurately identify each population for downstream analysis. However, our findings to date 

suggest that G-MDSCs may represent the main effector, based on the propensity of infiltrating 

MDSCs to express higher levels of the granulocytic marker Ly6G compared with the monocytic 

marker Ly6C. Our results here suggest that S. aureus biofilms play an active role in arresting 

MDSCs in their suppressive state to foster infection persistence. Indeed, MDSCs can thwart 

monocyte/macrophage proinflammatory activity [148, 163], which may negatively affect their 

numbers at the infection site as we observed. Similarly, although neutrophil chemokines were 

significantly increased throughout the course of infection, little evidence of neutrophil influx (i.e. 

Ly6G
+
Ly6C

-
) was detected. Instead, lesions were dominated by MDSCs, which are responsive to 

similar chemokines [137]. 

 In conclusion, we have identified that IL-12 is critical for MDSC recruitment to the site of 

S. aureus PJI, where they impair phagocyte influx and biofilm clearance. Analysis of tissues from 

patients undergoing revision surgeries for PJIs revealed similar immune profiles as our mouse 

model, reflecting the utility of the mouse system to evaluate the efficacy of anti-biofilm 

therapeutics. Elucidating the mechanisms whereby bacterial biofilms thwart protective immunity 
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may lead to the development of novel immune-mediated approaches to facilitate PJI clearance in 

combination with conventional antibiotics. 
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Abstract 

 Staphylococcus aureus (S. aureus) is known to establish biofilms on medical devices. We 

recently demonstrated that Ly6G
high

Ly6C
+
 MDSCs are critical for allowing S. aureus biofilms to 

subvert immune-mediated clearance; however, the mechanisms whereby MDSCs promote 

biofilm persistence remain unknown. IL-10 expression was significantly increased in a mouse 

model of S. aureus orthopedic implant biofilm infection with kinetics that mirrored MDSC 

recruitment. Since MDSCs produce IL-10, we explored whether it was involved in orchestrating 

the non-productive immune response that facilitates biofilm formation. Analysis of IL-10-GFP 

reporter mice revealed that Ly6G
high

Ly6C
+
 MDSCs were the main source of IL-10 during the first 

two weeks of biofilm infection, whereas monocytes had negligible IL-10 expression until day 14. 

MDSC influx into implant-associated tissues was significantly reduced in IL-10 KO mice at day 14 

post-infection, concomitant with increased monocyte and macrophage infiltrates that displayed 

enhanced proinflammatory gene expression. Reduced MDSC recruitment facilitated bacterial 

clearance as revealed by significant decreases in S. aureus burdens in the knee joint, 

surrounding soft tissue, and femur of IL-10 KO mice. Adoptive transfer of IL-10 WT MDSCs into 

S. aureus infected IL-10 KO mice restored the local biofilm-permissive environment, as evidenced 

by increased bacterial burdens and inhibition of monocyte proinflammatory activity. These effects 

were both IL-10-dependent and –independent, as MDSC-derived IL-10 was required for 

promoting biofilm growth and anti-inflammatory gene expression in monocytes, but was not 

involved in monocyte recruitment to biofilm-infected tissues. These results demonstrate that IL-10 

production by MDSCs contributes to the persistence of S. aureus orthopedic biofilm infections. 
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Introduction 

 Staphylococcus aureus (S. aureus) is a major cause of healthcare- and community-

associated infections and due to the increased prevalence of methicillin-resistant S. aureus 

(MRSA) strains, this pathogen has become an even greater therapeutic challenge [4, 16, 244, 

245]. The risk of infection increases in the presence of a foreign body, and S. aureus is known for 

its ability to colonize and form biofilms on medical devices, such as indwelling catheters and 

orthopedic implants [34, 36, 49, 246]. Biofilm-associated bacteria exhibit distinct properties 

compared to planktonic growth phases of the same species, and it is becoming clear that the 

composition and kinetics of the host immune response to S. aureus biofilms inadvertently 

facilitates biofilm persistence, whereas planktonic infections, such as abscesses, are often 

resolved [187, 247]. Our laboratory was the first to identify myeloid-derived suppressor cells 

(MDSCs) during S. aureus biofilm infection, which represents a key immunosuppressive 

mechanism that supports chronic infection [60]. 

 MDSCs are a heterogeneous population of immature monocytes and granulocytes that 

are intermediates of normal myeloid development and differentiation [130]. Under typical 

conditions, MDSCs differentiate at the site of inflammation or injury to generate mature myeloid 

populations, including neutrophils, macrophages (MΦs) and dendritic cells [130, 135, 137]. 

However, in pathological situations, such as tumors, chronic inflammation, and bacterial biofilm 

infection, MDSCs become arrested in an immature state where they negatively regulate 

inflammatory mechanisms through their suppressive actions [248, 163]. In cancer, MDSC 

expansion can be induced by various cytokines and growth factors, such as IL-6, G-CSF, GM-

CSF, and VEGF; however, it is currently unknown what host or bacterial products promote MDSC 

propagation during S. aureus biofilm infection or their arrest in the immature state. Following 

MDSC expansion, inflammatory stimuli provide activation signals and induce the acquisition of 

immunosuppressive properties [121]. Our recent report demonstrated that IL-12 facilitates MDSC 

accumulation at the site of S. aureus biofilm infection, which is likely an indirect effect, since the 

cytokine is not a chemoattractant [59]. However, IL-12 is not required for MDSC activation during 

S. aureus biofilm infection, as MDSCs from both IL-12p40 and p35 KO mice still inhibited CD4+ T 
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cell proliferation. Therefore, other inflammatory factors must be involved in inducing the 

expression Arg-1, IL-10, and other anti-inflammatory mediators expressed by MDSCs that 

contribute to their immunosuppressive functions during S. aureus biofilm infection. 

 IL-10 is an anti-inflammatory cytokine known for its role in controlling inflammatory 

responses [249, 250], including inhibiting T cell activation and polarization, and IL-10 secretion by 

MDSCs has been implicated in programming MΦs toward an anti-inflammatory phenotype [145, 

251-254]. Previously, we have shown that IL-10 expression is increased in FACS-purified MDSCs 

recovered from S. aureus biofilms in a mouse orthopedic infection model [60]. Here we sought to 

identify the role of IL-10 in MDSC-mediated immune suppression during biofilm infection and 

determine whether its actions contribute to bacterial persistence. The use of IL-10-GFP reporter 

mice revealed that Ly6GhighLy6C+ MDSCs were the main source of IL-10 during S. aureus 

biofilm infection. To demonstrate the functional importance of IL-10 in shaping the inflammatory 

milieu typical of biofilm infection, we performed studies in IL-10 knockout (KO) mice. Fewer 

MDSCs infiltrated implant-associated tissues of IL-10 KO mice at day 14 post-infection 

concomitant with enhanced monocyte and MΦ infiltrates. The reduction in MDSCs translated into 

bacterial clearance, as revealed by significant decreases in S. aureus burdens in the knee joint, 

surrounding soft tissue, and femur of IL-10 KO mice, which coincided with increased monocyte 

proinflammatory gene expression. The adoptive transfer of IL-10 WT MDSCs into IL-10 KO mice 

during S. aureus infection resulted in fewer monocyte infiltrates and attenuated proinflammatory 

gene expression, which consequently restored bacterial burdens to levels reminiscent of WT 

animals. In contrast, the adoptive transfer of IL-10 KO MDSCs into IL-10 KO mice did not 

augment bacterial biofilm growth, indicating that MDSC-derived IL-10 is important for promoting 

biofilm persistence. Collectively, these data demonstrate that IL-10 production by MDSCs is one 

mechanism to promote S. aureus orthopedic biofilm formation by limiting monocyte/MΦ 

recruitment and proinflammatory activity. 
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Results 

MDSCs are the main source of IL-10 during S. aureus orthopedic implant biofilm infection.  

IL-10 has been shown to inhibit T cell activation and polarize MΦs toward an anti-inflammatory 

phenotype (Perrin, Taga, Letterio, Sinha). We recently reported that FACS-purified Ly6G
high

Ly6C
+
 

MDSCs recovered from S. aureus biofilm infections had increased IL-10 gene expression 

compared to Ly6G
-
Ly6C

+
 monocytes from the same region [60]. However, it remained unclear 

how much IL-10 was present at the infection site and whether MDSCs or other leukocytes were 

responsible for its production. In the present study, we used a mouse model of S. aureus 

orthopedic implant biofilm infection [59, 60, 62] to determine the contribution of MDSC-derived IL-

10 in shaping the anti-inflammatory biofilm milieu. We first evaluated the kinetics of IL-10 

production associated with sterile and S. aureus-infected implants (Fig 1). IL-10 levels were 

similar at day 3, the earliest time point examined; however, by day 5, IL-10 expression was 

significantly increased in biofilm-infected tissues and remained elevated at day 14 (Fig 1). 

 To determine which cell types were producing IL-10 in infected tissues, IL-10-GFP 

reporter mice were utilized, since our previous study only compared IL-10 mRNA expression in 

sorted MDSCs and monocytes and the FACS panels here were designed to also monitor 

neutrophils, MΦs, and T cells in addition to MDSCs and monocytes. FACS analysis revealed that 

Ly6G
high

Ly6C
+
 MDSCs were the main source of IL-10, since nearly 70% were GFP

+
 at day 5 

post-infection (Fig 2C). The frequency of IL-10-GFP
+ 

MDSCs progressively decreased to 

approximately 55% and 20% by days 7 and 14 post-infection, respectively (Fig 2C). Previous 

studies from our laboratory have shown that MDSC infiltrates progressively increase in S. aureus 

infected tissues from days 3 to 14 and remain relatively stable as the infection persists [59]. 

Interestingly, GFP levels in the Ly6G
-
Ly6C

+
 monocyte population were low throughout the first 

week of S. aureus infection (Fig 2D); however, as the percentage of IL-10-GFP
+
 MDSCs 

decreased there was a significant increase in IL-10-GFP
+
 monocytes at day 14 post-infection (Fig 

2D). These results establish MDSCs as the main source of IL-10 during early S. aureus 

orthopedic implant biofilm infection.  
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Figure 5.1 

                   

 

 

IL-10 production is increased during S. aureus orthopedic biofilm infection. Implant-

associated tissues from sterile and S. aureus infected mice (n = 4-5/group) were collected at the 

indicated time points, whereupon IL-10 expression was quantitated by ELISA. Results were 

normalized to the amount of total protein recovered to correct for variances in tissue sampling 

size and are representative of five mice per group. Statistical differences are denoted by asterisks 

(*, p < 0.05; unpaired two-tailed Students t-test). 
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Figure 5.2 

 

 

Figure 2. Ly6G
high

Ly6C
+
 MDSCs are the main source of IL-10 during S. aureus orthopedic 

implant biofilm infection. Implant-associated tissues were collected from IL-10-GFP reporter 

mice at the indicated intervals following infection and processed for flow cytometry. The 

CD45
+
GFP

+
 leukocyte population from S. aureus biofilm infected tissues (A) was gated to identify 

IL-10-GFP expressing Ly6C
+
 and Ly6G

+
 cells (B). The percentage of CD45

+
GFP

+
Ly6G

high
Ly6C

+
 

MDSCs (C) and CD45
+
GFP

+
 Ly6G

-
Ly6C

+
 monocytes (D) is shown. Results are representative of 

two independent experiments (n = 10 mice/time point). Statistical differences are denoted by 

asterisks (*, p < 0.05; **, p < 0.01; unpaired two-tailed Student’s t-test). 

  



136 
 

IL-10 is critical for organizing the anti-inflammatory biofilm milieu and maintaining S. 

aureus orthopedic implant infection. Since MDSCs are the primary cell type responsible for IL-

10 production, we next determined the importance of this cytokine to the immunosuppressive 

function of MDSCs and its role in regulating the anti-inflammatory milieu that allows for biofilm 

persistence. Examination of leukocyte recruitment in S. aureus-infected IL-10 KO animals 

revealed a significant decrease in Ly6G
high

Ly6C
+
MDSCs at day 14 post-infection compared to WT 

(Fig 3A) concomitant with increased Ly6G
-
Ly6C

+
 monocytes (Fig 3B) and F4/80

+
 MΦs (Fig 3C). 

No differences in neutrophil or T cell infiltrates were observed in the absence of IL-10 and both 

leukocyte populations represented a minor fraction of the CD45
+
 infiltrate (i.e. < 5%; data not 

shown). Biofilm-associated MDSCs from IL-10 KO mice maintained their ability to inhibit CD4
+
 T 

cell proliferation (Fig 4), demonstrating that MDSC-mediated T cell suppression during S. aureus 

orthopedic infection is IL-10-independent. 

Our recent report demonstrated that MDSC depletion with the Ly6G Ab 1A8 led to 

significant increases in Ly6C
+ 
monocyte infiltrates with heightened pro-inflammatory activity [60]. 

By extension, we predicted that the reduced MDSC population in IL-10 KO mice at day 14 post-

infection would also promote monocyte proinflammatory attributes. This possibility was assessed 

by monitoring gene expression profiles of FACS-purified IL-10 KO and WT monocytes 

immediately ex vivo by qRT-PCR. Ly6G
-
Ly6C

+
 cells recovered from IL-10 KO tissues at day 14 

post-infection displayed increased expression of iNOS, IL-1β, IL-12p40 and TNF-α and 

decreased Arg-1 compared with Ly6G
-
Ly6C

+
 monocytes from WT tissues (Fig 5). Since MDSCs 

are a main source of IL-10 at day 14 post-infection when monocyte proinflammatory attributes 

were heightened, this finding suggests that both the presence of MDSCs as well as their 

expression of IL-10 polarizes infiltrating monocytes towards an anti-inflammatory phenotype 

during S. aureus biofilm formation. 

The ability of IL-10 to promote biofilm persistence was confirmed by significant reductions 

in S. aureus burdens in the tissue, knee joint, and femur of IL-10 KO animals by days 7 to 14 

post-infection depending on the site (Fig 6).  In addition, IL-10 KO mice displayed altered 

cytokine/chemokine expression patterns during S. aureus biofilm infection. For example, G-CSF 
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levels in IL-10 KO animals were significantly decreased at day 14 (Fig 7A). G-CSF has been 

implicated in initiating granulocytic MDSC accumulation [255] and the decrease in G-CSF in IL-10 

KO tissues at day 14 was concomitant with reduced MDSC infiltrates (Fig 3A), indicating that G-

CSF may play a critical role in the expansion and accumulation of this population. In addition, IL-

1β and CCL3 levels were significantly decreased at day 14 post-infection (Fig 7C and F), 

whereas IL-1α and CCL2 levels were significantly increased in IL-10 KO tissues at day 3 (Fig 7B 

and E). Interestingly, IL-9 levels were significantly increased in IL-10 KO mice at day 14 post-

infection (Fig 7D) even though there is a paucity of T cell infiltrates in this model as determined by 

CD3
+
CD4

+
 or CD3

+
CD8

+ 
staining (data not shown) [32, 59, 60]. 
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Figure 5.3 

 

IL-10 loss augments monocyte/macrophage recruitment during S. aureus orthopedic 

biofilm infection. Implant-associated tissues from IL-10 KO and WT mice (n = 10/group) were 

collected at the indicated time points after infection and analyzed by flow cytometry. (A) 

Quantitation of Ly6G
high

Ly6C
+
 MDSCs, (B) Ly6G

-
Ly6C

+
 monocytes, and (C) F4/80

+
 macrophages 

from the total CD45
+
 leukocyte infiltrate. Results are presented from two independent 

experiments where significant differences between WT and IL-10 KO animals are denoted with 

asterisks (***, p < 0.001; unpaired two-tailed Student’s t-test).  
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Figure 5.4 

 

S. aureus biofilm-associated MDSCs inhibit T cell activation in and IL-10-independent 

manner. MDSCs were purified by FACS from infected WT and IL-10 KO mice at day 14 post-

infection for T cell proliferation assays at a 1:1 or 5:1 ratio (T cell:MDSC). Results are expressed 

as the % proliferation with T cells alone (-) and CD3/CD28-stimulated T cells (+) as controls. 

Results represent two independent experiments with significant differences denoted by asterisks 

(***, p < 0.001; ****, p < 0.0001; unpaired Student’s t –test).  
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Figure 5.5 

 

 

Loss of IL-10 augments proinflammatory gene expression in Ly6C
+
 monocytes during S. 

aureus biofilm infection. Ly6G
-
Ly6C

+
 monocytes were purified from tissues surrounding the 

infected joints of IL-10 WT and KO mice (n = 10/group) at days 3, 7 and 14 post-infection by 

FACS, whereupon RNA was immediately isolated for qRT-PCR analysis. Gene expression levels 

in IL-10 KO monocytes were calculated after normalizing signals against GAPDH and are 

presented as the fold-change relative to WT monocytes. 
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Figure 5.6 

 

 

IL-10 is critical for S. aureus persistence during orthopedic biofilm infection. Bacterial 

burdens associated with the implant-associated tissue, femur, and knee joint of WT and IL-10 KO 

mice (n = 10/group) were determined at days 3.7 and 14 post-infection. Results are expressed as 

the number of CFU per gram tissue to correct for alteration in tissue sampling sizes. Significant 

differences in bacterial burdens between WT and IL-10 KO mice are denoted by asterisks (*, p < 

0.05; **, p < 0.01; ***, p < 0.001; unpaired two-tailed Student’s t-test) and are from two 

independent experiments.  
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Figure 5.7 

 

 

IL-10 KO mice have altered cytokine and chemokine expression patterns. Tissues 

surrounding the knee joint of WT or IL-10 KO mice (n = 10/group) with S. aureus-infected 

implants were collected at the indicated time points, whereupon (A) G-CSF, (B) IL-1α, (C) IL-1β, 

(D) IL-9, (E) CCL2, and (F) CCL3 production was measured by multi-analyte bead arrays. Results 

are normalized to the amount of total protein to correct for differences in tissue sampling size and 

are representative of two independent experiments. Significant differences are denoted by 

asterisks (*, p < 0.05; **, p < 0.01; unpaired two-tailed Student’s t-test). 
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MDSCs influence bacterial burdens and monocyte infiltrates during S. aureus orthopedic 

implant biofilm infection via both IL-10-dependent and –independent mechanisms. To 

directly assess the contribution of MDSC-derived IL-10 in inhibiting innate immune cell function 

and promoting S. aureus persistence during orthopedic implant biofilm infection, bone marrow-

derived MDSCs from either WT or IL-10 KO mice were adoptively transferred into IL-10 KO 

animals 7 days after infection, whereupon bacterial burdens were assessed at day 14. This timing 

strategy was selected since most differences in IL-10 KO mice were observed at day 14. In vitro-

derived MDSCs have been previously used in our laboratory and were confirmed to inhibit T cell 

proliferation [59].  The adoptive transfer of WT MDSCs into WT mice failed to significantly alter 

bacterial burdens or immune cell infiltrates at the site of S. aureus biofilm infection (data not 

shown), which eliminated this approach as a control. This is likely because MDSCs already 

represent approximately 50% of the total CD45
+
 population at day 7 [59], and the adoptive 

transfer of additional MDSCs does not exacerbate S. aureus infection. Instead, the reduced 

numbers of MDSCs in IL-10 KO mice at day 14 post-infection allowed us to detect the impact of 

adoptively transferred MDSCs in these animals. Therefore, WT MDSCs represented the control 

cell population, whereas IL-10 KO MDSCs were the experimental group, with both populations 

being transferred to IL-10 KO mice to monitor effects on bacterial burdens and leukocyte 

infiltrates. Indeed, the utility of WT MDSCs as a control was demonstrated by the finding that 

bacterial burdens were restored to levels typically observed in WT mice following the adoptive 

transfer of WT MDSCs into IL-10 KO animals (Fig 8A), which coincided with an increase in 

Ly6G
high

Ly6C
+
 MDSCs (Fig 8B) and reduced Ly6G

-
Ly6C

+
 monocytes compared to IL-10 KO mice 

that did not receive MDSCs (Fig 8C). 

To determine whether IL-10 produced by MDSCs is solely responsible for promoting 

biofilm growth and inhibiting monocyte recruitment, we also performed adoptive transfers of IL-10 

KO MDSCs into S. aureus infected tissues of IL-10 KO mice at day 7 post-infection. The results 

demonstrated the complex involvement of both IL-10-dependent and –independent mechanisms. 

With regard to the former, MDSC-derived IL-10 was required for promoting bacterial biofilm 

growth in the tissue, joint, and femur, since the transfer of IL-10 KO MDSCs had no impact on 
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these measures compared to IL-10 KO animals that did not receive MDSCs (Fig 8A). However, 

the effect of MDSCs on monocyte recruitment was found to be IL-10-independent, since the 

adoptive transfer of both WT and IL-10 KO MDSCs into IL-10 KO mice resulted in similar 

changes in monocyte infiltrates (Fig 8C). 

Monocytes recovered from infected tissues of IL-10 KO animals have increased pro-inflammatory 

gene expression (Fig 5), which is likely not only due to the absence of IL-10 but also decreased 

MDSCs. To further validate these findings, gene expression profiles of FACS-purified Ly6G
-
Ly6C

+
 

monocytes following adoptive transfer were performed. The adoptive transfer of WT MDSCs into 

IL-10 KO mice decreased monocyte proinflammatory gene expression, with reductions in iNOS, 

IL-1β, IL-12p40, and TNF-α, demonstrating a direct effect of MDSCs on monocyte activation state 

(Fig 9). 
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Figure 5.8 

 

 

MDSCs influence bacterial burdens and monocyte infiltrates during S. aureus orthopedic 

implant biofilm infection via both IL-10-dependent and –independent mechanisms. S. 

aureus orthopedic implant infection was established in IL-10 KO and WT mice, whereupon IL-10 

KO animals received an adoptive transfer of 2.5 x 10
6
 purified IL-10 WT or IL-10 KO MDSCs s.c. 

at the implant site at day 7 post-infection, whereas WT and a separate group of IL-10 KO animals 

received s.c. injections of PBS (n = 10/group). (A) Implant-associated tissue, knee joint, and 

femur were collected at day 7 following MDSC transfer (day 14 after infection) for quantitation of 

bacterial burdens. (B) Quantitation of Ly6G
high

Ly6C
+
 MDSCs and (C) Ly6G

-
Ly6C

+
 monocytes at 

day 7 following MDSC adoptive transfer (day 14 post-infection). Results were calculated after 

gating on the CD45
+
 population and represent two independent experiments. Significant 

differences are denoted by asterisks (*, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; 

unpaired two-tailed Student’s t-test). 
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Figure 5.9 

           

 

 

Monocyte proinflammatory gene expression is reduced following adoptive transfer of WT 

MDSCs. Ly6G
-
Ly6C

+
 monocytes were purified from infected tissues of WT and IL-10 KO mice ± 

MDSC adoptive transfer at day 14 post-infection by FACS (n = 10/group), whereupon RNA was 

immediately isolated for qRT-PCR analysis. Gene expression levels in monocytes from IL-10 KO 

animals or IL-10 KO mice receiving WT MDSCs were calculated after normalizing signals against 

GAPDH and are presented as the fold-change relative to monocytes recovered from IL-10 WT 

animals. 
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Figure 5.10 

 

Temporal relationship between IL-10 and IL-12 actions during S. aureus orthopedic 

implant biofilm infection. IL-12 plays a key role in MDSC recruitment during biofilm infection via 

a chemoattractant that remains to be identified. IL-10 is produced by infiltrating MDSCs at the site 

of S. aureus biofilm infection, whereupon it plays a critical role in polarizing monocytes towards 

an anti-inflammatory phenotype, thereby promoting bacterial persistence. Loss of either IL-12 or 

IL-10 during the early MDSC recruitment or effector phases, respectively, promotes biofilm 

clearance, implicating key roles for each cytokine at distinct stages of infection. 
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DISCUSSION 

MDSCs are emerging as a critical player in the anti-inflammatory response to S. aureus 

and promote chronic infection [59, 60, 149, 257]. Biofilm infections are known to skew the host 

innate immune response towards an anti-inflammatory phenotype [32, 100, 167]. In this setting, 

IL-10 could facilitate the establishment of persistent infection and allow organisms to subvert 

traditional mechanisms of bacterial clearance. Although IL-10 production has been implicated as 

an immunosuppressive mechanism by MDSCs [145, 258], to date there are no reports examining 

whether MDSC function is dependent on IL-10 during biofilm infection. This study is the first to 

demonstrate that MDSCs express significant amounts of IL-10 in response to biofilm-associated 

bacteria, which limits monocyte proinflammatory gene expression and directly contributes to S. 

aureus biofilm persistence during later stages of infection. Of note, the consequences of IL-10 

action are likely context-dependent, since several studies have reported a beneficial role for IL-10 

during S. aureus sepsis by controlling damaging inflammation and minimizing pathology [209, 

250, 251, 259-262]. In contrast, our study suggests a deleterious role for IL-10 in preventing the 

genesis of an effective microbicidal response to facilitate biofilm clearance. 

 In terms of kinetics, IL-10 levels in S. aureus biofilm tissues were not significantly 

increased compared to animals receiving sterile orthopedic implants until day 5. This delay in IL-

10 elevation implies that the biofilm is directing cytokine production and our results indicate that 

MDSCs are responsible for IL-10 synthesis. Here we demonstrate that nearly 70% of the MDSCs 

recruited to the site of S. aureus biofilm infection at day 5 expressed IL-10, whereas monocytes 

represented a minor fraction in comparison. Our recent publication reported a progressive 

increase in the percentages of Ly6G
high

Ly6C
+
 MDSCs until day 21 post-infection that was 

significantly more pronounced compared to mice receiving sterile implants [59]. It is important to 

note that in addition to the percentages of MDSC infiltrates, their activation status is also 

influenced by biofilm infection. Indeed, we previously reported that only MDSCs recovered from 

S. aureus biofilm infected animals, but not those receiving sterile implants, were capable of 

attenuating T cell proliferation, reflecting the inhibitory nature of MDSCs specifically recruited to 

the biofilm infection site. Therefore, MDSC levels are only one aspect of the equation, with their 
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inhibitory capacity and gene expression profiles representing other important attributes, both of 

which were studied in the current report. MDSC-derived IL-10 began to decline by day 7 post-

infection, which coincided with the decrease in total IL-10 measured in infected tissues by ELISA. 

However, tissue IL-10 levels exhibited a bi-phasic increase at day 14, which may reflect cytokine 

production by both MDSCs and monocytes, the latter which exhibited a late rise in IL-10 

expression. It is currently unclear what causes MDSC-derived IL-10 to decrease after day 5 post-

infection while the percentage of MDSCs remains constant (data not shown). Although we 

currently have no evidence of regulatory T cells at the site of S. aureus biofilm infection as 

determined by CD4 and FoxP3 staining (data not shown), IL-10 production by MDSCs has been 

shown to induce Tregs that can produce IL-10 [258], which could perpetuate the anti-

inflammatory circuit. It remains possible that the number of Tregs associated with S. aureus 

biofilms in our orthopedic model remain below the limit of detection by FACS. Alternatively, 

synovial cells could contribute to sustained IL-10 levels during S. aureus biofilm infection when IL-

10 producing MDSCs have begun to decline (i.e. day 14 post-infection). It has been shown that 

cultured fibroblast-like synoviocytes constitutively express IL-10 along with functional IL-10 

receptors and could modulate cellular responses in the joint. However, these and other tissue 

resident populations would need to be analyzed during S. aureus biofilm infection to determine if 

they contribute to IL-10 production and potentially assist in bacterial persistence. 

A direct role for MDSC-derived IL-10 in setting the stage for S. aureus biofilm persistence 

at later time points was supported by our observations in IL-10 KO mice. In general, in the 

absence of IL-10, infiltrating monocytes acquired a proinflammatory gene expression profile that 

translated into improved biofilm clearance at days 7 and 14 post-infection. These changes 

coincided with significant decreases in MDSC infiltrates and the adoptive transfer of MDSCs from 

WT but not IL-10 KO mice were capable of reversing these changes. In terms of mechanism, S. 

aureus could be co-opting MDSCs to promote their immunosuppressive activity during acute 

infection, which occurs via an IL-10-independent manner. When IL-10 expression peaks in 

MDSCs (i.e. day 5) we begin to see a reduction in biofilm burdens in IL-10 KO mice at day 7 and 

an inability to effectively skew monocytes toward an anti-inflammatory phenotype, which 
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altogether demonstrate that MDSC-derived IL-10 is critical for the chronicity of S. aureus biofilm 

infection.  

 Currently, the signals responsible for eliciting IL-10 production by MDSCs during biofilm 

infection have yet to be identified. It is known that IL-10 can be induced by Toll-like receptor 

(TLR) stimulation [263-265], that MDSCs express TLRs [163, 266], and TLR ligands can induce 

MDSC accumulation in tumor-bearing and septic mice [123, 124, 267]. However, this possibility 

appears less plausible in the context of biofilm infection, since we and others have reported that 

S. aureus biofilms circumvent recognition by TLR2 [187, 32, 62], although MDSCs were not 

examined in these studies. Regardless of the inciting signal that triggers IL-10 production, the 

cytokine can then signal through the IL-10R to activate signal transducer and activator of 

transcription 3 (STAT3), a critical factor for driving MDSC development as well as polarizing 

monocytes/MΦs toward an anti-inflammatory phenotype [125, 268-270]. In addition, STAT3 

activation can augment IL-10 production [271]. The role of IL-10 in inducing STAT3 activation 

during S. aureus biofilm infection and its subsequent contribution to the anti-inflammatory biofilm 

milieu are current topics of investigation in our laboratory. 

 G-CSF preferentially signals through STAT3, where it induces MDSC expansion and 

accelerates the proliferation and release of granulocytic precursors in tumor-bearing mice in 

addition to its well-known ability to direct neutrophilic granulocyte differentiation [255, 272]. We 

have previously reported that G-CSF is significantly increased in S. aureus-infected tissues 

during the time when MDSCs represent the main cellular infiltrate in implant-associated tissue 

[59]. Interestingly, in the current study, G-CSF levels were reduced in IL-10 KO mice at day 14 

post-infection, concomitant with reduced MDSC infiltrates. By extension, it is possible that G-CSF 

contributes to MDSC expansion and accumulation during S. aureus biofilm infection and that IL-

10 loss may limit STAT3 activation and subsequent G-CSF production. However, this possibility 

remains speculative. 

 Both IL-10 and STAT3 are known to inhibit IL-12 production, and MDSCs are traditionally 

thought to secrete IL-10 to down-regulate IL-12 release from monocytes/MΦs. This relationship 

appears to be operative during S. aureus biofilm infection; however, unlike planktonic infections, 
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MDSCs persist and maintain the biofilm milieu in an anti-inflammatory state. For example, our 

recent report showed that IL-12 was increased in S. aureus infected tissues over a one month 

period and IL-12p40 and p35 KO animals had significantly fewer MDSC infiltrates concomitant 

with reduced bacterial burdens as early as day 7 post-infection [59]. In the current study, because 

IL-10 is not elevated in infected tissues until day 5 and MDSC infiltrates are not significantly 

reduced in IL-10 KO animals until day 14, this indicates that IL-10 operates downstream of MDSC 

recruitment and IL-12 action (Fig 10). Indeed, IL-12p40 gene expression was increased in 

monocytes from IL-10 KO mice beginning at day 7 post-infection, revealing a negative effect of 

MDSC-derived IL-10 on monocyte IL-12 expression. This was also directly demonstrated by the 

ability of adoptively transferred WT MDSCs to inhibit IL-12 in monocytes from IL-10 KO animals. 

Despite these cell type-specific changes, IL-12p40 levels in tissue homogenates of both IL-10 KO 

and WT animals were similar at days 3, 7 and 14 post-infection (data not shown) and since 

MDSC recruitment was unaffected during the first week of S. aureus orthopedic biofilm infection, 

this suggests the delayed action of an alternative chemoattractant that is IL-12-independent. 

Taken together, it appears that IL-12 produced during early S. aureus biofilm infection is key for 

MDSC recruitment, which is likely an indirect effect mediated by chemoattractants that remain to 

be defined, whereupon MDSCs produce IL-10 that dampens the proinflammatory immune 

response of monocytes/macrophages and contributes to biofilm persistence (Fig 10). These 

studies assessing the role of IL-10 in regulating innate immune responses have focused on 

monocytes, as they represent the most numerous population after MDSCs in our S. aureus 

orthopedic biofilm infection model. It remains possible that MDSCs could be influencing neutrophil 

responses; however, neutrophils represent a very minor infiltrate and no significant differences 

were observed between IL-10 KO and WT animals. Therefore, we did not explore the possible 

effects of MDSCs and IL-10 on neutrophil function. 

 Recently, we and others have shown that the adoptive transfer of MDSCs significantly 

exacerbates S. aureus infection [59, 149]; however, the mediators released by MDSCs that are 

responsible for this effect remain to be defined. Here we show that IL-10 is one factor, since the 

adoptive transfer of MDSCs from IL-10 KO mice did not exacerbate biofilm growth, whereas WT 
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MDSCs significantly increased biofilm burdens in the joint, surrounding soft tissue, and femur. 

However, it is apparent that IL-10 is not the only immunosuppressive mechanism of MDSCs 

during S. aureus biofilm infection, since IL-10 KO MDSCs still impacted monocyte recruitment 

during biofilm infection, reflecting an IL-10-independent mechanism of action. Originally, IL-10 

was defined by its ability to inhibit Th1 activation and cytokine production; however, it is now 

recognized that the biological effects of IL-10 are also directed at monocytes/MΦs [273]. Indeed, 

we found that MDSC inhibition of CD4
+
 T cell proliferation was IL-10-independent, in agreement 

with another recent report [149], again indicating the existence of additional inhibitory effector 

mechanisms for MDSCs. A potential candidate is Arg-1, which we have previously shown is 

elevated in MDSCs recovered from the site of S. aureus orthopedic biofilm infection in both our 

mouse model and in tissue specimens from humans with prosthetic joint infections [32, 59, 60]. A 

role for Arg-1 in the anti-inflammatory response to S. aureus biofilms is a topic of ongoing 

investigation in our laboratory. 

Inflammatory mediator analysis in infected IL-10 KO mice revealed some interesting 

disparities, particularly with respect to the timing of when differences were apparent. For 

example, both IL-1α and CCL2 were significantly increased in IL-10 KO animals at day 3 post-

infection but not at later time points. In contrast, more differences were evident at day 14, which 

coincided with the significant decrease in biofilm burdens in IL-10 KO mice, namely reductions in 

G-CSF, IL-1β, and CCL3. However, not all mediators were reduced, since IL-9 production was 

significantly elevated in IL-10 KO animals at this later interval. The fact that IL-9 was detected is 

intriguing, since this cytokine is only produced by select T cell subsets; however, minimal T cell 

infiltrates (CD3
+
CD4

+
 or CD3

+
CD8

+
) were observed in either IL-10 KO or WT mice in this and our 

prior reports, making it difficult to predict the source of IL-9 production. Another interesting finding 

is that IL-9 has been reported to promote Treg expansion, yet we have not been able to detect 

CD4
+
FoxP3

+ 
cells in any of our S. aureus biofilm infection models (data not shown) [32, 59, 60]. 

However, IL-9 is known to stimulate mast cell expansion from the bone marrow [274-276] and 

mast cells have been shown to release several cytokines and nitric oxide into the knee joint 

during osteoarthritis [277] and drive tissue metaplasia and heterotrophic ossification in patients 
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following total knee arthroplasty [278]. It is possible that the absence of IL-10 at later time points 

allows the proinflammatory activities of IL-9 to be heightened, although the presence of mast cells 

and their role during S. aureus orthopedic biofilm infection have not yet been examined. 

 The role of MDSCs during S. aureus biofilm infection and the mechanisms involved in 

their expansion, accumulation, and effector functions are only beginning to be explored. By 

manipulating the ability of these cells to exert their immunosuppressive pressure, we have 

demonstrated that they directly attenuate monocyte proinflammatory properties. However, there 

are still many areas of MDSC-biofilm interaction that remain to be examined. For instance, we 

know that IL-12 is involved in MDSC recruitment to biofilm infections, but it is unclear whether 

biofilm-derived products directly contribute to MDSC accumulation by interfering with myeloid 

precursor differentiation. In addition, whether MDSCs can recognize S. aureus PAMPs through 

TLRs or other PRRs to activate genes essential for their effector functions could contribute to our 

understanding of their role during infection. Our findings to date do not exclude the possibility that 

S. aureus biofilms cooperate with MDSCs to directly inhibit monocyte/MΦ effector functions and 

studies are ongoing in our laboratory to address these interactions. However, preventing the 

immunosuppressive action of infiltrating MDSCs may offer a novel therapeutic strategy to treat 

chronic biofilm infections. 
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Abstract 

 Biofilm infections often lead to significant morbidity due to their chronicity and 

recalcitrance to antibiotics. We have demonstrated that methicillin-resistant Staphylococcus 

aureus (MRSA) biofilms can evade macrophage (MΦ) antibacterial effector mechanisms by 

skewing MΦ toward an alternatively activated M2 phenotype. To overcome this immune evasion, 

we have used two complimentary approaches. In the first, a proinflammatory milieu was elicited 

by local administration of classically activated M1 MΦs and in the second by treatment with the 

C5a receptor (CD88) agonist EP67, which invokes MΦ proinflammatory activity. Early 

administration of M1-activated MΦ or EP67 significantly attenuated biofilm formation in a mouse 

model of MRSA catheter-associated infection. Several proinflammatory mediators were 

significantly elevated in biofilm-infected tissues from MΦ- and EP67-treated animals, revealing 

effective reprogramming of the biofilm environment to a proinflammatory milieu. A requirement for 

MΦ proinflammatory activity was demonstrated by the fact that transfer of MyD88-deficient MΦ 

had minimal impact on biofilm growth. Likewise, neutrophil administration had no effect on biofilm 

formation. Treatment of established biofilm infections with M1-activated MΦ also significantly 

reduced catheter-associated biofilm burdens compared with antibiotic treatment. Collectively, 

these results demonstrate that targeting MΦ proinflammatory activity can overcome the local 

immune inhibitory environment created during biofilm infections and represents a novel 

therapeutic strategy. 
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Introduction 

 Biofilms are heterogeneous bacterial communities that can form on both natural body 

surfaces as well as foreign devices, such as indwelling catheters and orthopedic implants [27, 

33]. The presence of a foreign body increases the likelihood of infection and drastically lowers the 

threshold for device colonization [279]. Methicillin-resistant Staphylococcus aureus (MRSA) is a 

common etiologic agent of biofilms and often causes chronic and recurrent infections when 

associated with indwelling medical devices [1, 246]. The current therapeutic option for managing 

device-associated biofilm infections is a staged-replacement of the hardware, either as a single 

step exchange, whereby the entire implant is replaced in a single procedure, or, more commonly, 

as a two-stage exchange [49]. In the latter case, patients receive extended antibiotic regimens in 

addition to surgical management, which generally consists of device removal and replacement 

with an antibiotic-impregnated temporary spacer, followed by insertion of a new prosthesis after a 

2 to 8 week period. This long and debilitating process is associated with significant morbidity and 

economic impact for patients. Further complicating available treatment strategies is that 

antibiotics alone are generally ineffective for biofilm eradication [36, 280], which is thought to 

result from altered metabolism during biofilm growth [281, 282]. The difficulties of biofilm 

treatment are further underscored in the context of more permanent implants such as artificial 

hips and knees, procedures that are particularly common in the elderly, who grow increasingly 

less immune responsive over time [283].  

 Based on these challenges, an urgent need exists for developing novel paradigms to 

prevent and/or facilitate biofilm eradication without the need for radical surgical interventions. One 

promising approach involves the exploitation of natural host immune mechanisms for therapeutic 

benefit. Targeting the host response rather than the pathogen itself offers certain advantages by 

largely avoiding selective pressures for the evolution of microbial resistance. Indeed, stimulating 

adaptive immunity through vaccination has remained resilient to microbial resistance over 

decades of clinical use, although not all pathogens have been amenable to vaccination 

strategies, most notable Staphylococcus aureus (S. aureus) [284, 285]. Furthermore, the fact that 

innate immune defenses are geared to rapidly recognize an infinite pathogen repertoire, suggests 
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that their modulation will afford broad-spectrum protection against a range of microbial 

pathogens, including S. aureus, and enable prophylactic use in high-risk groups or provide early 

treatment options prior to the identification of the causative infectious agent(s). 

 Earlier views regarding the host immune response to biofilm infections suggested that 

biofilms evaded immune recognition altogether [197, 286]. Recent reports by our group and 

others have proposed an alternative possibility, namely that biofilms can skew the immune 

response to favor anti-inflammatory and pro-fibrotic pathways, which contribute to biofilm 

persistence [32, 162]. Specifically, although macrophages (MΦs) are a prominent infiltrate in S. 

aureus biofilm infections, their penetration into the biofilm itself is impeded by a robust fibrotic 

response surrounding the infection. In addition, biofilm-associated MΦ are polarized towards an 

alternatively activated M2 phenotype that possess anti-inflammatory and pro-fibrotic properties 

that limit bacterial clearance [32]. By extension, the programming of MΦs towards a microbicidal 

M1 response is diverted, which led us to examine whether the exogenous administration of M1-

activated MΦs directly into sites of biofilm infection would overcome the local immune inhibitory 

environment and fibrotic barrier associated with biofilms. As a complementary approach to 

augment MΦ proinflammatory activity, we administered the MΦ activating peptide EP67, to 

facilitate bacterial clearance by inducing a proinflammatory milieu. EP67 (Tyr-Ser-Phe-Lys-Asp-

Met-Pro-(N-methylLeu)-D-Ala-Arg, or YSFKDMP(MeL)aR) is a response-selective agonist of the 

human C5a receptor (C5aR/CD88) that preferentially elicits proinflammatory mediator production 

from CD88
+
 MΦ without any effects on CD88

+
 neutrophils [287, 288]. Here we demonstrate that 

targeting MΦ activity with EP67 or the introduction of exogenous M1-activated MΦ inhibits S. 

aureus biofilm formation and provides a novel therapeutic treatment for these persistent 

infections. This therapeutic approach is not afforded by neutrophils, which agrees with our 

findings that neutrophils are not a prominent infiltrate in this model of S. aureus biofilm infection 

[31]. Collectively, these finding suggest that immune cell-based therapy using M1-acitvated MΦ 

may overcome the current confounds associated with biofilm treatment and control. 

  



158 
 

Results 

Activated MΦs exhibit S. aureus biofilm bactericidal activity in vitro. We have previously 

demonstrated that MRSA biofilms are capable of attenuating traditional proinflammatory 

responses explaining, in part, why these infections persist in an immunocompetent host [32]. To 

determine whether MΦs that were preprogrammed towards a proinflammatory M1 phenotype 

were capable of overcoming the immune inhibitory aspects of biofilms, MΦs were stimulated with 

IFN-γ or TNF-α and S. aureus-derived peptidoglycan (PGN) for 6 h prior to their addition to S. 

aureus-GFP biofilms or planktonic cultures. Several attributes characteristic of M1-activated MΦs 

were detected using this treatment paradigm, including significant increases in CD86 and reactive 

oxygen species production (Supplemental Fig. S6.1). All MΦ populations were capable of 

phagocytosing planktonic bacteria regardless of their activation state (Fig. 6.1A, left column, 

“Planktonic”), whereas only M1-acitvated MΦs stimulated with either IFN-γ or TNF-α + PGN were 

capable of phagocytosing biofilm-associated organisms (Fig. 6.1A, right column, “Biofilm”), which 

resulted in significant reductions in bacterial burdens following a 24 h co-culture period (Fig. 

6.1B). In contrast, non-activated MΦs displayed no indication of intracellular bacteria when 

incubated with biofilms, confirming our earlier report [32], but were still able to decrease biofilm 

bacterial burdens (Fig. 6.1B). The ability of non-activated MΦs to reduce biofilm burdens without 

any evidence of phagocytic activity, suggests that antimicrobial mediator(s) are secreted upon 

contact with either organisms dispersed from the biofilm and/or bacterial components shed during 

biofilm growth. The ability of M1-activated MΦs to reduce biofilm burdens required MyD88-

dependent signals, since MyD88 KO MΦs treated with IFN-γ and PGN had no impact on biofilm 

growth (Fig. 6.1B). 

 To compare the efficacy of MΦ versus neutrophils in regulating MRSA biofilm growth, 

neutrophils were isolated from murine bone marrow and co-cultured with biofilms. Unlike MΦs, 

neutrophils were not activated prior to biofilm addition, wince this would lead to rapid 

degranulation and reduced cell viability. Interestingly, neutrophils were able to phagocytose 

MRSA biofilms, yet this did not translate into reduced bacterial numbers (Supplemental Fig. 

S6.2), revealing disconnect between the two processes. This may result from additional virulence 
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determinants released by S. aureus during biofilm growth, since the organism is known to 

produce numerous factors that interfere with neutrophil function [200, 289, 290]. Alternatively, S. 

aureus can survive inside neutrophils, which could explain why phagocytosis was observed 

without concomitant reductions in bacterial burdens [291]. On a comparative basis, biofilm 

formation did afford some protection against phagocytic uptake compared to planktonic growth 

conditions, since both MΦs and neutrophils actively phagocytosed planktonic S. aureus but were 

less capable of internalizing biofilm-associated bacteria (Fig. 6.1A and Supplemental Fig. S6.2). 
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Figure 6.1  

 

 

M1 macrophage polarization enhances phagocytosis and killing of S. aureus biofilms. (A) 

Non-activated macrophages (MΦs) and M1-activated MΦs (10 ng/ml IFN-γ or 100 ng/ml TNF-α + 

10 μg/ml PGN) from C57BL/6 mice, as well as MyD88 knockout (KO) MΦs were labeled with 

CellTracker Blue (blue) and co-cultured with S. aureus-GFP (green) during biofilm or planktonic 

growth for 2 h and imaged to observe their phagocytic ability. (B) After 24 h, biofilms were 

sonicated to quantitate bacterial burdens to evaluate the ability of the various MΦ populations to 

attenuate biofilm growth. Biofilms without MΦs were used as untreated controls. White arrows 

indicated phagocytic cells and significant difference are denoted by asterisks (**p < 0.01; ***p < 

0.001). Results are representative of at least three independent experiments. 



161 
 

M1-activated MΦs limit MRSA biofilm formation in vivo. Based on our in vitro studies 

demonstrating the ability of M1-polarized MΦs to phagocytose biofilm-associated S. aureus and 

reduce bacterial burdens, we next examined whether this could translate in vivo. These 

experiments utilized a mouse model of MRSA catheter-associated biofilm infection that we have 

previously shown limits MΦ invasion into biofilms and skews these cells toward an alternatively 

activated M2 phenotype [32]. We first employed an approach where M1-activated MΦs were 

administered beginning at 12 h following MRSA infection, with repeat injections occurring at 24 

and 48 h after bacterial exposure. The introduction of M1-activated MΦs directly into the biofilm 

infection site significantly reduced bacterial burdens on both infected catheters and in surrounding 

tissues at day 3 post-infection (Fig. 6.2A and 2B). More importantly this early intervention with 

M1-activated MΦs led to long-term effectiveness against biofilm formation, since catheters 

showed minimal evidence of biofilm growth at day 14 without any additional MΦ treatment and 

although some bacteria were observed in the surrounding tissues, this was significantly reduced 

compared to vehicle treatment (Fig. 6.3A and 3B). Interestingly, the introduction of non-activated 

MΦs also reduced biofilm burdens, although significant differences were only observed at day 14 

post-infection (Figs. 6.2 and 6.3). To better illustrate the superior efficacy of M1-activated 

compared to non-activated MΦs, a dose-response experiment was performed where animals 

were treated with increasing numbers (10
4
, 10

5
, or 10

6
) of either non-activated or M1-activated 

MΦs. Results from this experiment indicated that 10
5
 or 10

6
 M1-activated MΦs were capable of 

significantly reducing biofilm burdens compared to vehicle controls, whereas non-activated MΦs 

were not statistically effective at any dose (Fig. 6.4). Similar to the in vitro studies, MyD88-

dependent mechanisms were critical, since MΦs from MyD88 KO mice did not demonstrate any 

efficacy in controlling biofilm burdens on either infected catheters or surrounding tissues in vivo 

(Fig. 6.5). In addition, neutrophils had no impact on biofilm formation, even when the number of 

cells was increased to 10
7
 per injection (Fig. 6.2, and data not shown), which confirmed our in 

vitro findings and the fact that neutrophils are not a significant infiltrate in the MRSA catheter-

associated biofilm model utilized here (Supplemental Fig. S6.3). 
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 Previous work from our laboratory demonstrated that MRSA biofilms attenuated the 

expression of numerous proinflammatory mediators compared to a sterile foreign body [32]. The 

introduction of M1-activated, but not non-activated MΦs significantly increased CXCL9, CCL5, 

and IFN-γ expression within biofilm-infected tissues (Fig. 6.6) revealing the successful re-

direction towards a proinflammatory milieu. CXCL9 is an IFN-γ-induced T cell chemoattractant, 

whereas CCL5 recruits a broader array of leukocytes, including T cells, eosinophils, and 

basophils, although the influx of these target populations was not further examined in these 

studies following M1 MΦ treatment. The proinflammatory activity of M1-activated MΦs is likely a 

key mechanism responsible for limiting biofilm growth. Interestingly, no significant changes in IL-

10 were detected following M1 MΦ transfer (Fig. 6.6D), which suggests that the broader balance 

of pro- versus anti-inflammatory factors may be a better predictor of inflammatory outcome 

compared to individual mediators. 
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Figure 6.2 

 

 

Activated macrophages, but not neutrophils, impair MRSA biofilm formation in vivo. 

C57BL/6 mice were infected with 10
3
 colony forming units (cfu) of USA300 LAC in the lumen of 

surgically implanted catheters to establish biofilm infection. Animals were treated with vehicle, 10
6
 

neutrophils (PMN), 10
6
 non-activated macrophages (MΦs), or 10

6
 M1-activated MΦs at 12, 24, 

and 48 h post-infection, whereupon catheters (A) and surrounding tissues (B) were collected at 

72 h to quantitate bacterial burdens. Results are expressed as the number of cfu per ml for 

catheters or cfu per mg tissue, to correct for differences in tissue sampling size. Significant 

differences are denoted by asterisks (*p < 0.05). Results are presented from individual animals 

combined from at least two independent experiments. 
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Figure 6.3  

 

 

Activated macrophages provide long-lasting defense from MRSA biofilm infections in vivo. 

C57BL/6 mice were infected with 10
3 
colony forming units (cfu) of USA300 LAC in the lumen of 

surgically implanted catheters to establish biofilm infection. Animals were treated with vehicle, 10
6
 

non-activated or 10
6
 M1-activated macrophages (MΦs) at 12, 24, and 48 h post-infection, 

whereupon catheters (A) and surrounding tissues (B) were recovered at day 14 to quantitate 

bacterial burdens. Results are expressed as the number of cfu per ml for catheters or cfu per mg 

tissue, to correct for differences in tissue sampling size. Significant differences in bacterial 

burdens between vehicle and MΦ-treated mice are denoted by asterisks (*p < 0.05).  
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Figure 6.4  

 

 

M1-polarized macrophages display superior efficacy at impairing MRSA biofilm formation. 

C57BL/6 mice were infected with 10
3
 colony forming units (cfu) of USA300 LAC in the lumen of 

surgically implanted catheters to establish biofilm infection. Animals were treated with either 

vehicle or increasing numbers of non-activated or M1-activated macrophages (MΦs) at 12, 24, 

and 48 h post-infection, whereupon catheters (A) and surrounding tissues (B) were recovered at 

day 3 to quantitate bacterial burdens. Results are expressed as the number of cfu per ml for 

catheters of cfu per mg tissue, to correct for differences in tissue sampling size. Significant 

differences in bacterial burdens between vehicle and MΦ-treated mice are denoted by asterisks 

(*p < 0.05). 
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Figure 6.5 

 

 

The ability of M1-polarized macrophages to impair MRSA biofilm development is mediated 

by MyD88-dependent signals. C57BL/6 mice were infected with 10
3
 colony forming units (cfu) 

of USA300 LAC in the lumen of surgically implanted catheters to establish biofilm infection. 

Animals were treated with vehicle or 10
6
 M1-activated macrophages (MΦs) derived from wild type 

(WT) or MyD88 knockout (KO) mice at 12, 24, and 48 h post-infection, whereupon catheters (A) 

and surrounding tissues (B) were recovered at day 3 to quantitate bacterial burdens. Results are 

expressed as the number of cfu per ml for catheters or cfu per mg tissue, to correct for 

differences in tissue sampling size. Results are presented from individual animals combined from 

at least two independent experiments. Significant differences are denoted by asterisks (*p < 

0.05). 
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Figure 6.6 

 

 

M1-activated macrophage therapy augments the local proinflammatory milieu during 

MRSA biofilm infection. Tissues surrounding S. aureus biofilms of vehicle, non-activated 

macrophage (NA MΦ), and M1-activated MΦ (A MΦ) treated mice were collected at day 3 (early 

treatment) or day 10 (established biofilm treatment) post-infection and homogenized to quantitate 

CXCL9 (A and E), CCL5, (B), IFN-γ (C), IL-10 (D), IL-17 (F), CXCL2 (G) and IL-6 (H) expression 

by Milliplex analysis. Results were normalized to the amount of total protein recovered to correct 

for differences in tissue sampling size. Significant differences are denoted by asterisks (*p < 0.05) 

and are representative of 5-8 mice/group (N.D. = not detected). 
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Introduction of M1-activated MΦs for the treatment of established MRSA biofilm infections. 

Based on the efficacy of our M1 MΦ early treatment paradigm, we next examined whether this 

would extend to attenuate bacterial growth in established MRSA biofilm infections. We employed 

a similar strategy to the early treatment regimen for MΦ administration except that M1 MΦs were 

initially given at day 7 following S. aureus infection, a point where robust biofilm has formed [32], 

with a repeat injection occurring at day 9. Similar to the early treatment paradigm, the introduction 

of M1-activated MΦs directly into the biofilm infection site led to significant reductions in bacterial 

burdens on infected catheters at day 10 post-infection, although no effect was seen in 

surrounding tissues (Fig. 6.7A and B, respectively). In contrast to M1 MΦ delivery, antibiotic 

treatment had no effect on biofilm formation (Fig. 6.7). As expected, Iba-1 immunofluorescence 

was significantly increased following the administration of both non-activated and M1-activated 

MΦs compared to the endogenous MΦ population in vehicle-treated mice (Fig. 6.8H). 

Importantly, arginase-1 expression surrounding biofilms was significantly decreased only 

following M1 MΦ treatment, whereas non-activated MΦs had no effect (Fig. 6.8G). In addition, 

the introduction of M1-activated MΦs into established biofilms augmented CXCL9, CXCL2, IL-7 

and IL-6 expression (Fig. 6.6E-H), although only IL-17 reached statistical significance. 

Collectively, these results demonstrate the successful re-direction towards a proinflammatory 

milieu following M1 MΦ transfer. 

 To investigate the longevity of M1-activated MΦs after introduction into biofilm infection 

sites, MΦs were labeled with near-infrared Quantum Dots (Qtracker® 800) and injected either at 

the time of infection or on day 7, representing early and established treatment paradigms, 

respectively. Animals were subjected to IVIS imaging immediately following MΦ transfer and 

every 24 h thereafter. Qdot-labeled M1 MΦs were still visible at 4 days post-injection (Fig. 6.9), 

which likely accounts for their ability to significantly limit MRSA biofilm formation. Although it is 

well established that Qdots are retained in intact cells, it remains possible that they could be 

internalized by neighboring phagocytic cells if donor macrophages are dying in situ. 
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Figure 6.7 

 

 

M1-activated macrophages attenuate established MRSA biofilm infection. C57BL/6 mice 

were infected with 10
3
 colony forming units (cfu) of USA300 LAC in the lumen of surgically 

implanted catheters to establish infection. On days 7 and 9 post-infection, animals received 

injections of vehicle, antibiotic (rifampicin + daptomycin), 10
6
 non-activated macrophages (MΦs), 

or 10
6
 M1-activated MΦs, whereupon catheters (A) and surrounding tissues (B) were recovered 

at day 10 to quantitate bacterial burdens. Significant differences between groups are denoted by 

asterisks (*p < 0.05) and represent animals from two independent experiments. 
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Figure 6.8 

 

 

Administration of M1-activated macrophages attenuates arginase-1 expression in 

established biofilms. Mice received injections of vehicle (A & D), 10
6
 non-activated 

macrophages (B & E) or 10
6
 M1-activated macrophages (C & F) beginning at days 7 and 9 post-

infection, whereupon tissues surrounding infected catheters were collected at day 10 and 

subjected to immunofluorescence staining with Iba-1 to identify MΦs (red), arginase-1 (green), 

and nuclear staining with DAPI (blue). Asterisks represent the original location of the catheter, 

which is non-adherent to glass slides. (G & H). Quantitation of arginase-1 and Iba-1 

immunofluorescence staining associated with S. aureus biofilms of vehicle-, non-activated- or M1 

MΦ-treated animals. Significant differences are indicated with asterisks (*p < 0.05; **p < 0.01; 

***p < 0.001) and are representative of two independent experiments with 8 mice per group. 
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Figure 6.9 

 

 

M1-activated macrophages remain localized at the site of biofilm infection and maintain a 

M1 phenotype. Mice received one dose of 10
7
 Quantum Dot-labeled M1-activated macrophages 

(MΦs; red) either at the time of S. aureus challenge (A) or at day 7 following infection (B), 

representing early and established therapies, respectively. The same cohort of animals was 

subjected to daily IVIS imaging to visualize MΦ persistence. Results are representative of 10 

individual animals per group. 
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EP67 attenuates MRSA biofilm formation in vivo and stimulates local proinflammatory 

responses. As a complimentary approach to the introduction of exogenous M1-activated MΦs, 

we next examined whether the CD88 agonist EP67 would re-program the endogenous MΦ 

infiltrates associated with MRSA biofilms in vivo from an anti-inflammatory M2 to a 

proinflammatory M1 phenotype to facilitate bacterial clearance. Animals were initially treated with 

EP67 at the time of infection with additional injections occurring at 24 and 48 h. Bacterial burdens 

associated with biofilm-infected catheters as well as surrounding tissues were significantly 

decreased following EP67 treatment compared to animals receiving an inactive scrambled 

sequence of EP67 (sEP67) or vehicle control (Fig. 6.10). Importantly, early EP67 treatment was 

key to restricting MRSA biofilm establishment, since minimal bacterial growth was detected at day 

14 following infection, even though the last dosing interval of EP67 occurred at 48 h (Fig. 6.10C 

and 10D).  

 To determine whether EP67 could skew the biofilm environment to a proinflammatory 

state, we evaluated cytokine and chemokine expression in biofilm-infected tissues. Several 

inflammatory mediators predominantly expressed by activated MΦs, such as IL-12p40 and 

RANTES, were significantly increased in EP67- compared to vehicle-treated animals (Fig. 6.11A 

and 11B). To further investigate mechanisms of EP67 action during biofilm infections, we 

compared the degree of MΦ influx into tissues surrounding MRSA biofilms using two 

complementary approaches. Immunofluorescence staining revealed that MΦ accumulation into 

EP67-treated biofilms was significantly increased at day 3 post-infection compared to vehicle 

(Fig. 6.12A). Importantly, while only a few MΦs were recruited to the biofilm surface in vehicle 

treated mice, EP67 administration dramatically increased the numbers of MΦs that migrated into 

the biofilm (Fig. 6.12B). The ability of EP67 to augment MΦ infiltrates in MRSA biofilms was 

confirmed by FACS (Fig. 6.12C). Collectively, these findings demonstrate that EP67 induces a 

proinflammatory milieu by augmenting MΦ recruitment and cytokine/chemokine production, which 

effectively counteracts the anti-inflammatory environment elicited by MRSA biofilms. We also 

investigated whether EP67 treatment could impact established biofilms; however, the peptide did 
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not exert any beneficial effects in this setting, suggesting its optimal use as a prophylactic 

modality under the conditions used in this study. 

 Collectively, our results have identified a previously unappreciated role for signals 

provided by M1-activated MΦs in biofilm containments and bacterial clearance. By extension, it is 

not unexpected that MRSA biofilms have the capacity to thwart this response by skewing MΦs 

away from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype, which ensures biofilm 

persistence in an immunocompetent host. 
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Figure 6.10 

 

 

The macrophage activating peptide EP67 attenuates S. aureus biofilm growth in vivo. Mice 

were infected with 10
3
 cfu of USA300 LAC in the lumen of surgically implanted catheters to 

establish biofilms. Animals were treated with vehicle, EP67, or a biologically inactive scrambled 

derivative peptide (sEP67), beginning at the time of infection and again at 24 and 48 h, 

whereupon catheters (A & C) and surrounding tissues (B & D) were recovered to quantitate 

bacterial burdens at days 3 or 14 after infection. Data are expressed as the number of cfu per ml 

for catheters or cfu per mg host tissue for normalization. Results are presented from individual 

animals from at least two independent experiments. Significant differences are denoted by 

asterisks (*p < 0.05). 
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Figure 6.11 

 

 

EP67 augments proinflammatory mediator expression in biofilm infected tissues. Mice 

were infected with 10
3
 cfu of USA300 LAC in the lumen of surgically implanted catheters to 

establish biofilms. Animals were treated with vehicle or EP67 beginning at the time of infection 

and again at 24 and 48 h, whereupon tissues were collected at day 3 to quantitate the effects of 

EP67 treatment on IL-12p40 (A), CCL5, (B), IL-17 (C), IL-1α (D) and IFN-γ (E) expression by 

MIlliplex analysis. Results were normalized to the amount of total protein recovered to correct for 

differences in tissue sampling size. Results are presented from individual animals combined from 

two independent experiments (n = 14 per group). Significant differences between EP67- vs. 

vehicle-treated tissues are denoted by asterisks (*p < 0.05). 
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Figure 6.12 

 

 

EP67 augments macrophage infiltration into MRSA biofilms. (A & B) Mice were infected with 

10
3
 cfu of USA300 LAC in the lumen of surgically implanted catheters to establish biofilms. 

Animals were treated with vehicle or EP67 beginning at the time of infection and again at 24 and 

48 h, whereupon tissues surrounding infected catheters were collected at day 3 and subjected to 

immunofluorescence staining with Iba-1 to identify macrophages (MΦs; red) and nuclear staining 

with DAPI (blue). Asterisks represent the original location of the catheter, which is non-adherent 

to glass slides. (C) Macrophage (F4/80
+
) infiltrates in tissues surrounding infected catheters from 

vehicle- or EP67-treated animals were quantitated by FACS. Results are expressed as the 

percentage of cells after correction for isotype control staining and are representative of three 

independent experiments with 8 mice per group (*p < 0.05; ***p < 0.001).   
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Supplemental Figure S6.1 

 

 

M1 macrophage polarization enhances co-stimulatory molecule and reactive oxygen 

species (ROS) production. Bone marrow-derived macrophages (MΦs) from C57BL/6 mice were 

stimulated with 10 ng/ml IFN- γ + 10 µg/ml PGN for 6 h to induce M1-activation or medium alone 

(non-activated MФs). Expression of the cell surface markers MHC Class II and CD86 was 

assessed by FACS analysis (A). MФs were also incubated with MitoSOX (B) or CM-H2DCFDA 

(C) to measure mitochondrial superoxide (mROS) and determine total cellular H2O2, respectively. 

Significant differences are denoted by asterisks (*p < 0.05; **p < 0.01; ***p < 0.001). 

  



178 
 

Supplemental Figure S6.2 

 

 

Neutrophils are capable of phagocytosing S. aureus biofilms but do not reduce bacterial 

burdens. (A) Neutrophils (PMN) were isolated from the bone marrow of C57BL/6 mice, labeled 

with CellTracker Orange (orange-yellow), and co-cultured with S. aureus-GFP (green) during 

biofilm or planktonic growth for 2 h and imaged to observe their phagocytic ability. (B) After 24 h, 

biofilms were sonicated to quantitate bacterial burdens to evaluate the ability of PMNs to 

attenuate biofilm growth. Biofilms without PMNs were used as untreated controls. White arrows 

indicate phagocytic cells. 
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Supplemental Figure S6.3 

 

 

Neutrophil infiltrates into catheter-associated biofilms are minimal compared to 

abscesses. C57BL/6 mice were infected with 5x10
5
 CFU USA300 LAC either in the lumen of 

surgically implanted catheters or s.c. in the absence of any indwelling device to establish biofilm 

and abscess infections, respectively. Animals were sacrificed at days 3, 7, or 14 following S. 

aureus exposure, whereupon tissues surrounding infected catheters or s.c. injection sites were 

collected to quantitate neutrophil infiltrates by FACS. Results are expressed as the percent of 

Ly6G
+
 neutrophils after correction for isotype control staining and represent the mean ± SEM of 

three independent experiments. 
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Discussion 

 S. aureus is a frequent etiological agent of biofilm infections on indwelling devices and 

orthopedic implants [36, 292] and recent reports by our group and others have demonstrated that 

biofilms can skew the immune response to favor anti-inflammatory and pro-fibrotic pathways, 

which likely contribute to biofilm persistence [32, 162]. To overcome this immune deviation and 

provide a novel treatment strategy for biofilm infections, we augmented antimicrobial activity 

through the local administration of classically-activated M1 MΦs or treatment with the CD88 

agonist EP67, which invokes MΦ proinflammatory responses. Early administration of M1-

activated MΦs or EP67 limited biofilm formation, and treatment of established biofilm infections 

with M1-activated MΦ also significantly reduced catheter-associated biofilm burdens. Based on 

this evidence, we have identified a novel therapeutic strategy to limit S. aureus catheter-

associated biofilm infections by targeting MΦ activation, which may extend to other artificial 

implants. 

 The greatest therapeutic benefit of both MΦ targeting strategies in this study was 

achieved with early interventions to boost proinflammatory activity against biofilm infections. By 

extension, targeting MΦ proinflammatory activity may prove useful when administered to patients 

undergoing orthopedic surgery or other device-related implants to prevent nosocomial infections, 

particularly for individuals who are at high-risk for developing infectious complications. Although 

our M1-activated MΦ therapy did not completely eliminate established biofilms on infected 

devices, this strategy may prove beneficial in combination with antibiotics for patients who are 

unable or unwilling to undergo additional surgeries to manage the infection and maintain the 

implanted device. The significance of this approach is even more pronounced against the 

backdrop of the rapidly increasing elderly population, which becomes progressively less immune 

responsive and represents the primary recipients of hip and knee replacements. To achieve 

enhanced efficacy against established biofilms we are currently refining our M1-acitvated MΦ 

delivery; nonetheless, these results clearly demonstrate proof-of-principle that induction of a 

proinflammatory milieu during MRSA biofilm infection is beneficial for bacterial clearance. 



181 
 

 The therapeutic potential of activated MΦs is supported by our results demonstrating that 

early treatment with proinflammatory M1-activated MΦs significantly limited S. aureus biofilm 

growth in vivo and provided long-term protection from biofilm colonization. Likewise, activated 

MΦs were also effective at reducing S. aureus burdens in established biofilms. The 

cytokine/chemokine milieu elicited following M1-activated MΦ transfer reflects products derived 

from both T cells (i.e. IFN-γ and IL-17) and MΦs (i.e. CXCL9, CCL5, and IL-1), suggesting the 

coordinate activity of both cell types. This complex profile was only significant in the early 

intervention paradigm with M1-activated MΦs and the functional impact of these mediators on 

biofilm burdens remains to be determined. When querying the inflammatory milieu associated 

with established biofilms following M1 MΦ injection, only IL-17 was significantly increased. 

Although the other mediators examined did not show statistically significant increases, the trends 

towards elevated production may translate into increased efficacy when considering their 

combined action. This may explain why bacterial burdens were decreased on the catheter itself 

but not in the surrounding tissue because heightened inflammatory mediator levels may be 

required to impact the latter. It was not feasible to measure all of the microbicidal effectors 

associated with biofilm infections; therefore, it is likely that alternative factors not examined here 

could be significantly elevated after M1 MΦ treatment to account for the decreased bacterial 

burdens observed on infected catheters. It was unexpected that M1-activated MΦ transfer had no 

effect on tissue burdens in established biofilms. One explanation to account for this finding is that 

the number of MΦs injected was not sufficient to effectively manage bacterial burdens within the 

infected tissue. It is clear that M1-activated MΦs limit biofilm growth on the catheter itself; 

however, it remains to be determined whether this results from direct killing of the biofilm and/or 

enhanced dispersal of organisms from the biofilm into the surrounding tissue. In the latter case, 

this would lead to increased tissue-associated bacteria, which would likely overwhelm the 

microbicidal capacity of M1-activated MΦs injected at the infection site. In future studies, it would 

be interesting to determine whether M1-activated MΦs display synergy with antibiotics to facilitate 

biofilm clearance, since the former facilitates the dispersal of organisms from the biofilm, which, in 
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turn, would restore their metabolic activity and potential susceptibility to antibiotics. However, this 

is beyond the scope of the current report. 

One interesting finding from this study was that non-activated MΦs demonstrated a trend 

towards reduced biofilm burdens in vivo, although most of these differences did not reach 

statistical significance. This suggests that MΦ activation signals are present at sites of biofilm 

infection; however, additional stimuli are required to achieve maximal MΦ microbicidal action. 

One such signal could be direct MΦ contact with the biofilm, which is impeded by the host-

derived fibrotic matrix deposited around the infected device. Another possibility is that the degree 

of endogenous MΦ recruitment is insufficient to prevent biofilm establishment and therefore, the 

injection of a large number of MΦs at the site of infection is sufficient to limit biofilm growth, 

regardless of their activation state. Nonetheless, the superior action of M1-activated compared to 

non-activated MΦs at thwarting S. aureus biofilm formation was demonstrated by the ability of the 

former to significantly reduce bacterial burdens in vivo. 

 The use of EP67 may overcome the principal issues of biofilm immune dysfunction, as 

EP67 appears to provide the correct activation signals to CD88
+
 MΦs (and perhaps other APCs) 

[293],  to engage a robust microbicidal response in the developing biofilm and surrounding 

tissues. Indeed, EP67 has been shown to enhance the immune status of aged mice by re-

establishing an immunologically productive Th1/Th2 balance [294], indicating that this peptide 

may be a valuable therapeutic option in the aged population where multiple surgeries to manage 

infected devices is not desirable. However, unlike M1-activated MΦ transfer, EP67 treatment did 

not impact established biofilms, suggesting that additional therapeutic obstacles are present. One 

such hurdle is the fibrotic capsule that typically surrounds biofilm infections [295-297]. Although it 

is presumed that biofilm encapsulation by the host represents a protective response to contain 

the infection, this process may inadvertently provide survival advantages to the bacteria [298, 

299]. The signals responsible for eliciting this fibrotic response are currently under investigation; 

nonetheless in the current study the injection of MΦs immediately adjacent to the biofilm 

bypasses this fibrotic barrier and enables MΦ activation to occur. 
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Neutrophils represent a first line of defense against bacterial infections and possess a 

potent arsenal of bactericidal compounds, including defensins, cathelicidins, and lysozyme [300, 

301]. In terms of their bactericidal activity, neutrophils are most notable for their ability to produce 

large amounts of reactive oxygen intermediates catalyzed by NADPH oxidase. In addition, 

neutrophils also degranulate and generate neutrophil extracellular traps (NETs), a meshwork of 

DNA and enzymes that lead to the extracellular killing of S. aureus and other bacteria [302]. 

Despite these microbicidal mechanisms, neutrophil transfer did not attenuate S. aureus biofilm 

growth even when higher numbers of cells were injected. One possibility to explain this finding is 

that neutrophils rapidly degranulated following in vivo transfer and did not survive long enough to 

provide a measurable effect on biofilm growth. Nevertheless, it is important to acknowledge that 

neutrophils may contribute to biofilm clearance at other sites of infection, which remains to be 

determined. The reasons responsible for differential neutrophil recruitment in various biofilm 

models may be influenced by the degree of tissue vascularization and/or extent of biofilm 

development. Another factor to consider is the type of device. For example, bacteria colonizing 

the lumen of a hollow catheter are initially shielded from immune recognition by the catheter wall, 

which may afford additional protection. In the case of a solid device, bacteria are immediately 

exposed to host tissues, in theory enabling an immediate proinflammatory response. We are 

currently investigating these possibilities utilizing other in vivo models of staphylococcal biofilm 

infection. 

Collectively, these studies have identified a previously unappreciated role for M1-

activated MΦs in biofilm containment and bacterial clearance. By extension, it is not unexpected 

that S. aureus biofilms have the capacity to thwart this response by skewing MΦs away from a 

pro-inflammatory M1 to an anti-inflammatory M2 phenotype, which ensures biofilm persistence in 

an immunocompetent host. The implementation of our “M1-activated MΦ Transfer" therapy would 

allow MΦs to be “on board” to neutralize potential device contamination from normal skin flora 

during surgical insertion. While conventional antibiotics are ineffective for treating biofilms, they 

are commonly used to control bacteria that escape the biofilm matrix to prevent their colonization 

of other tissue sites. Such use of antibiotics imposes mutational pressures on the bacteria and 
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portends the possibilities of developing antibiotic resistance. MΦ-based immune cell therapy is 

not only efficacious at controlling biofilm infections, but has the added advantage of doing so by 

utilizing the host’s endogenous innate immune cells, thus eliminating mutational pressures 

imposed directly on the bacteria and decreasing the likelihood of the emergence of antibiotic 

resistant strains. 
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Key Findings and Conclusions: 

 The innate immune system is the first line of defense against invading pathogens. 

Macrophages are a critical component of this response, as they exhibit potent antibacterial 

properties and link innate and adaptive immunity with the capability to present antigen to T cells. 

However, bacteria like S. aureus have developed sophisticated ways to evade traditional immune 

mechanisms of clearance by developing biofilms on native tissues and indwelling medical 

devices. A key component of this subversion is the induction of MDSCs. MDSCs use a variety of 

mechanisms to alter macrophage phenotypes, suppress T cell responses, and dramatically alter 

the biofilm milieu, all of which play a role in the chronicity of biofilm infection [59, 60]. 

 Our laboratory has found that when S. aureus is seeded at a low inoculum (i.e. 10
3
 CFU) 

onto either titanium implants or into subcutaneous catheters, bacteria is able to adhere and 

accumulate, forming a biofilm with the ability to persist for several months [59, 60]. There is a 

divergence between these two models though in the degree of the inflammatory response that 

occurs following infection. Catheter-associated S. aureus biofilms attenuate proinflammatory 

mediator expression compared to sterile catheter implantation [32], whereas we have now shown 

that S. aureus orthopedic implant infection elicits sustained cytokine and chemokine production 

[59](Heim et al 2015). In large part this can be attributed to the site of the implanted device. The 

subcutaneous catheter is implanted into the flank where more mature tissue-resident populations, 

such as macrophages, elicit initial responses [32]. Furthermore, it is known that S. aureus biofilms 

elicit exaggerated macrophage infiltrates compared to abscesses and soon after encountering 

biofilms macrophages acquire anti-inflammatory characteristics and readily die [32]. However, the 

orthopedic implant infection is being established in close proximity to the bone marrow, which is 

rich in progenitor cells that can elicit a rapid inflammatory response following bacterial assault. 

This is not without consequence though, as we have shown that these immature cells become 

stuck in their differentiation and develop immunosuppressive properties allowing the biofilm to 

establish itself on the device and persist for long periods of time [59, 60]. Indeed, MDSCs rather 

than neutrophils or monocyte/macrophage populations are the primary immune infiltrate to the 

site of orthopedic implant-associated infection. In addition, only a very small percentage of CD3
+
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T cells are observed in infected tissue [59, 60]. Although MDSCs also accumulate during 

subcutaneous catheter biofilm infection, their numbers are greater in the orthopedic model and 

therefore we chose to use it for the majority of our studies characterizing the mechanisms of 

MDSC immunosuppression.  

 To determine the clinical significance of this model, and determine whether similar 

patterns of leukocyte infiltration and inflammatory mediator production occur in mice and humans, 

these parameters were assessed in tissue samples from patients undergoing revision surgeries 

for PJIs or aseptic loosening as a control. MDSCs in humans can be identified as CD33
+
HLA-DR

-

, and a population with this MDSC-like phenotype was detected in tissues from a patient with a 

confirmed S. epidermidis PJI, whereas few of these cells were observed in aseptic samples [59]. 

The CD33
+
HLA-DR

-
 population recovered from the S. epidermidis-infected tissue expressed 

genes characteristic of MDSCs, including Arg-1, iNOS, and IDO-1. Although we did not recover 

enough CD33
+
HLA-DR

-
 cells from these tissues to confirm their suppressive ability in vitro; they 

do exhibit MDSC-like characteristics. In addition, T cell influx was minimal in infected tissues, 

while T cells represented the most abundant infiltrate associated with aseptic orthopedic revisions 

[59]. Ultimately these results demonstrate the utility of our mouse model for understanding 

mechanisms involved in evasion of host immunity during PJI and potentially identify therapeutic 

targets. To this point we have not seen major discrepancies between immune profiles of tissues 

infected with different pathogens, although this is something we are paying close attention to in 

an effort to determine whether staphylococcal species are unique in the responses they elicit or if 

this is a consistent response. 

In comparing the number of Gr-1
+
CD11b

+
MDSC infiltrates in sterile and S. aureus-

infected tissues and found sterile tissues contained cells resembling MDSCs even though 

numbers were significantly increased in the presence of an infection [60]. This was an important 

finding, because although MDSCs isolated from sterile implants were unable to inhibit T cell 

proliferation, it suggested that an immature myeloid population is recruited to sites of injury with 

the capability to differentiate into effector populations if needed. However, S. aureus-derived 
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products could elicit proinflammatory mediator production which then causes these immature 

cells to acquire immunosuppressive function and remain arrested in an immature state.  

 Early studies were performed using the Gr-1 Ab, as it is a common marker for mouse 

MDSCs. However, Gr-1 recognizes both the Ly6G and Ly6C epitopes and therefore cannot 

discern between subsets of MDSCs. Staining for Ly6G and Ly6C revealed three distinct 

populations, namely Ly6G
high

Ly6C
+
, Ly6G

low
Ly6C

low
, and Ly6G

-
Ly6C

+
, of which only the 

Ly6G
high

Ly6C
+
 cells significantly inhibited CD4

+
 T cell proliferation [60]. In addition, FACS-purified 

Ly6G
high

Ly6C
+
 infiltrates expressed genes characteristics of MDSCs, and cytospins revealed the 

Ly6G
high

Ly6C
+
 population of suppressive cells had immature granulocyte morphology, 

characterized by numerous ringed nuclei. Together, these results are highly suggestive of these 

cells as G-MDSCs. The Ly6G
-
Ly6C

+
 population displayed monocyte-like morphology, and the 

Ly6G
low

Ly6C
low

 cells had some characteristics of neutrophils, including multi-lobed nuclei [60]. 

Both G- and M-MDSC subsets are found in a variety of pathologic conditions, and are thought to 

arise due to differences in the cytokine milieu during differentiation. In our laboratory’s mouse 

model of S. aureus PJI large amounts of G-CSF are produced relative to sterile implants, while 

very low levels of GM-CSF are detected [59], which could account for the favored G-MDSC 

response in this setting. A recent study comparing the phenotype of MDSCs in sepsis patients 

found that G-MDSCs are favored in patients with gram-positive sepsis, while M-MDSCs are 

expanded during infection gram-negative bacteria [303]. Currently, it is unclear whether this 

observation is true for PJI, but would correlate with our observations thus far. 

 There is currently no direct way to deplete only MDSCs in vivo, due in large part to the 

surface markers shared with other myeloid populations. In our model, the immunosuppressive 

MDSCs express the highest levels of Ly6G, whereas the monocyte population was Ly6G
-
. 

Therefore, we attempted to assess the functional role of MDSCs by using the anti-Ly6G Ab 1A8. 

Ly6G
+
 cells were depleted during the entire course of S. aureus biofilm infection, which led to 

increased monocyte recruitment at days 7 and 14 post-infection, potentially as a compensation 

mechanism due to depletion. Interestingly, monocytes isolated from infected tissues of Ly6G 

depleted mice had increased expression of iNOS, IL-1β, IL-12p40 and IL-6 compared to 
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monocytes from IgG-treated mice (Heim et al 2014). This increased proinflammatory profile was 

concomitant with significantly reduced bacterial burdens in the tissue and knee joint of Ly6G-

treated mice. For the first time, we were able to show that MDSCs are negatively regulating 

innate immune responses to S. aureus biofilm infection, which includes the active inhibition of 

monocyte proinflammatory responses that contribute to bacterial clearance. These conclusions 

were confirmed when mice were treated with the Gr-1 Ab, which targets and depletes MDSCs, 

neutrophils and monocyte macrophage populations. With this strategy, higher bacterial burdens 

were observed in implant-associated tissues in the absence of MDSCs and 

monocyte/macrophage effector populations [60]. 

 Interestingly, during Gr-1 Ab treatment, we observed an increase in Gr-1
+
 (Ly6G/Ly6C) 

infiltrates [60]. This was likely, a compensatory mechanism in response to increased bacterial 

burdens at the implant site and systemically, as bacteria disseminated to the heart, kidney and 

spleen. In addition, there was extensive extramedullary hematopoiesis occurring in the spleens of 

mice treated with Gr-1 Ab, which could contribute to the compensatory increase in Gr-1
+
 cells 

during infection. Extramedullary hematopoiesis is a phenomenon that is common during chronic 

inflammatory diseases and cancer. During infection the requirement for myeloid cells dramatically 

increases and creates a need for emergency myelopoiesis and subsequent mobilization of 

immature cells from the bone marrow and spleen. Once again, this data suggests that the 

accumulation of MDSCs is a direct result of signals derived from the establishing S. aureus 

biofilm infection.  

 During the initial characterization of immune infiltrates to S. aureus orthopedic biofilm 

infection, we observed FACS-purified MDSCs had increased expression of IL-10 relative to 

monocytes [60]. In addition, IL-10 expression was increased in implant-associated tissues of S. 

aureus infected mice. IL-10 is an anti-inflammatory cytokine important in regulating immune 

responses and has been shown to be secreted by MDSCs to polarize macrophages toward an 

anti-inflammatory phenotype and induce Treg accumulation. IL-10-GFP reporter mice enabled us 

to demonstrate that Ly6G
high

Ly6C
+
 MDSCs are indeed a major source of IL-10 during infection, 

and the loss of IL-10 enhances monocyte/macrophage recruitment to implant-associated tissues. 
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Although during S. aureus biofilm infection MDSCs do not suppress T cell proliferation via IL-10, 

which agrees with another recent report using a different model of S. aureus infection [149], 

production of IL-10 does influence the phenotype and effector functions of monocyte/macrophage 

populations. We observed increased proinflammatory gene expression in Ly6G
-
Ly6C

+
 monocytes 

in IL-10 KO mice, which paralleled significantly reduced bacterial burdens by day 14 post-

infection. Adoptive transfer experiments revealed that the effects of MDSCs on bacterial burdens 

and leukocyte influx into S. aureus biofilm infections are only partially dependent on IL-10. It was 

not surprising that the effects of MDSCs were not mediated solely through IL-10. There are a 

number of other factors implicated in MDSC immunosuppressive function, including Arg-1 

expression which is currently an area of investigation in our laboratory. 

In addition to the function of MDSCs, we were also interested in understanding how host- 

or bacteria-derived factors influence the recruitment and activation of MDSCs that ultimately 

permit biofilm establishment and promote chronicity. The accumulation and subsequent activation 

of MDSCs is thought to occur in a two-step manner. The first process of MDSC expansion being 

induced by various cytokines and growth factors produced by tumors, cells responding to 

infectious agents, or chronic stimulation, and the second signal provided by proinflammatory 

molecules. In our model of S. aureus orthopedic biofilm infection, we observed significantly fewer 

MDSC infiltrates in IL-12p40 and p35 KO tissues compared to WT [59]. However, FACS-purified 

MDSCs from KO mice retained their ability to suppress CD4
+
 T cell proliferation in vitro, indicating 

that in this model IL-12 is not a proinflammatory signal associated with MDSC activation. Rather, 

IL-12 appears to regulate MDSC recruitment, and the absence of MDSCs in IL-12-deficient mice 

results in increased monocyte influx and significantly reduced bacterial burdens in implant-

associated tissues. Adoptive transfer of WT MDSCs into IL-12p40 KO animals worsened disease 

outcome and confirmed a direct role for MDSCs in the inhibition of biofilm clearance and 

suppression of monocyte/macrophage responses [59]. Importantly, these studies demonstrate 

that IL-12p70 is important for this organization of the biofilm permissive response. Similar 

phenotypes were observed in both p40 and p35 KO mice but not in p19 KO animals.  
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Although our findings do not exactly follow the two-step model for MDSC expansion and 

activation as proposed by Gabrilovich et al [121], IL-12 appears to play a key role in the 

recruitment of MDSCs into biofilm infection via a chemoattractant that remains to be identified. It 

is possible that the induction of a proinflammatory cytokine like IL-12 induces COX-2 production 

of PGE2 and subsequent generation of MDSCs. Once recruited, MDSCs are activated and 

produce significant amounts of IL-10 by day 5 post-infection, which plays a critical role in 

polarizing monocytes/macrophages toward an anti-inflammatory phenotype. It could be argued 

that IL-10 does not play a critical role because differences were only observed at two weeks post-

infection. However, IL-10 could be modulating inflammation in a manner that was not examined in 

these studies. Ultimately, the loss of either IL-12 or IL-10 during the early MDSC recruitment 

(days 3-7) or effector phases (days 7-14), respectively, promotes biofilm clearance and implicates 

a role for each cytokine at distinct stages of infection. Collectively, these findings point to the 

complexity in the MDSC response to S. aureus biofilms, and the identification of other 

mechanisms contributing to this response is ongoing in our laboratory.  

As our understanding of MDSCs and their immunosuppressive mechanisms during S. 

aureus biofilm infection develop, we hope to be able to identify potential therapeutic targets to 

treat these devastating and chronic infections. Of particular interest, is the manipulation of the 

innate immune response to promote clearance. Although complex, this approach would bypass 

the need to identify elusive S. aureus epitopes to induce a memory response and eliminate the 

evolution of more antibiotic resistant strains of bacteria. Previously, the Kielian laboratory 

demonstrated that upon co-culture with S. aureus biofilms in vitro macrophages acquired an anti-

inflammatory phenotype characterized by increased Arg-1 expression and were readily killed 

before any clearance could take place [32]. These results were also confirmed in vivo using the 

mouse model of subcutaneous catheter biofilm infection.  More recent experiments have shown 

that M1-activated macrophages stimulated with IFN-γ plus PGN were capable of phagocytizing 

biofilm-associated organisms resulting in significant reductions in bacterial burdens following 24 h 

of co-culture [100]. To assess the ability of M1-activated macrophages to attenuate biofilm 

formation in vivo, animals were treated with 10
6
 neutrophils, nonactivated macrophages, or M1-
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activated macrophages at 12, 24 and 48 h post-infection. The introduction of M1-activated 

macrophages at the site of biofilm infection significantly reduced bacterial burdens on catheters 

and in surrounding tissues at day 3 post-infection and perhaps more importantly, led to long-term 

effectiveness against biofilm formation, as catheters showed minimal evidence of biofilm growth 

at day 14 without any additional macrophage treatment [100]. This ability of M1-polarized 

macrophages to impair biofilm development is mediated by MyD88-dependent signals, further 

emphasizing that the production of proinflammatory cytokines is critical for bacterial clearance at 

early stages of infection. Addition of neutrophils had no impact on biofilm formation. These 

experiments indicate that the introduction of S. aureus near an implanted device rapidly alters the 

environment to promote a biofilm-permissive setting, which includes the skewing of macrophage 

phenotypes that prevent bacterial clearance. 

 Based on the efficacy of this early treatment paradigm, where animals received 

treatment at 12, 24 and 48 h post-infection, we wanted to determine whether the introduction of 

M1-activated macrophages could attenuate growth of established biofilm infections. Macrophages 

were administered on days 7 and 9 post-infection; however, significant reductions in bacterial 

burdens were only observed on infected catheters at day 10 post-infection, no effect was seen in 

surrounding tissues. The addition of M1 macrophages was associated with reductions in Arg-1
+
 

macrophages surrounding biofilms and augmented inflammatory cytokine and chemokine 

expression [100]. This suggests that the transfer of M1-macrophages is able to begin 

transforming the environment toward one that would promote bacterial clearance, but the biofilm 

is still a formidable force. We thought that perhaps this limited ability to clear bacteria could be 

due to exhausted cells following administration into the already established biofilm. However, 

labeling M1-activated macrophages with Quantum Dots showed that these cells remain localized 

at the site of biofilm infection 96 h and 4 days after being injected at the time of infection or day 7, 

respectively [100]. It is likely that the prolonged signal was due to quantum dots within 

macrophages, as they are relatively stable. However, it is possible that some of the continued 

signal is due to residual dots in the extracellular milieu following macrophage death.  
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Collectively, these studies demonstrate that S. aureus biofilm infections skew the local 

milieu to promote immunosuppression which favors bacterial persistence. This is achieved 

through the induction of MDSCs, which rapidly accumulate at the infection site following 

inoculation and skew the activation of monocyte/macrophage infiltrates toward an anti-

inflammatory phenotype that renders them unable to clear bacteria. Additionally, there is a 

paucity of T cell infiltrates associated with these biofilm infections, which could be a direct result 

of MDSC suppressive activity and have severe implications on the success of vaccines currently 

in development. We have found that manipulation of MDSCs by limiting their recruitment to the 

site of infection, or alternatively their function once accumulated, does allow for some degree of 

proinflammatory immune responses and clearance of biofilm-associated bacteria. Although the 

host immune system-biofilm interaction is multi-faceted and complex, these results demonstrate 

that targeting the host immune response to biofilm could lead us toward novel therapeutic 

interventions to treat these chronic infections. 
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