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RESEARCH ARTICLE
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Abstract

Type 1A diabetes (T1D) is believed to be caused by immune-mediated destruction of

β-cells, but the immunological basis for T1D remains controversial. Microbial diversity pro-

motes the maturation and activation of certain immune subsets, including CD161bright CD8+

mucosal associated invariant T (MAIT) cells, and alterations in gut mucosal responses have

been reported in type 1 diabetics (T1Ds). We analyzed T cell populations in peripheral

blood leukocytes from juvenile T1Ds and healthy controls. We found that proportion and ab-

solute number of MAIT cells were similar between T1Ds and controls. Furthermore, while

MAIT cell proportions increased with age among healthy controls, this trend was not ob-

served among long-standing T1Ds. Additionally, the CD27- MAIT cell subset is significantly

increased in T1Ds and positively correlated with HbA1c levels. However, after T1Ds are

stratified by age, the younger group has significantly increased proportions of CD27- MAIT

cells compared to age-matched controls, and this proportional increase appears to be inde-

pendent of HbA1c levels. Finally, we analyzed function of the CD27- MAIT cells and ob-

served that IL-17A production is increased in CD27- compared to CD27+ MAIT cells.

Overall, our data reveal disparate MAIT cell dynamics between T1Ds and controls, as well

as signs of increased MAIT cell activation in T1Ds. These changes may be linked to hyper-

glycemia and increased mucosal challenge among T1Ds.

Introduction

Human type 1A diabetes (T1D) is believed to be caused by immune-mediated destruction of

insulin-producing β cells within the pancreatic islets. The disease can be loosely defined as a

state of chronic hyperglycemia coinciding with detectable autoantibodies targeting any of
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several islet antigen-associated constituents [1, 2]. Due to the difficulty of synthetically manag-

ing insulin levels, T1D is associated with a suite of complications resulting from metabolic dys-

function due to imprecise glucose control [3–5]. Although T1D is comparatively well

understood in animal models, the etiology of human disease is relatively unknown in terms of

immunological factors precipitating disease onset and islet cell damage. Furthermore, causal

triggers have not been identified to acceptably explain the modern phenomenon of increasing

disease incidence in multiple regions throughout the globe [6, 7]. While genome-wide associa-

tion studies have implicated several immune-related factors with the risk of clinical disease

[8, 9], such factors are predictive in only a minority of patients [10, 11]. From these results and

multiple epidemiological studies [12], it is widely accepted that environmental stimuli play a

fundamental role in disease onset, and that the face of disease observed in the clinic may in fact

represent heterogeneous ontologies.

Interestingly, several lines of evidence connect gut mucosal responses with T1D, in both the

preclinical and clinical phases of disease. Prior to clinical onset, at-risk subjects have been

shown to possess altered gut microbiotic networks [13–15], increased intestinal permeability

[16], and a perturbed metabolome [17]. Changes in gut microbiota [18–20] and intestinal per-

meability [21–23] persist into clinical disease, and it has been shown that intestinal tissues

from T1D patient show hallmarks of immune activation [24, 25] and altered enterocyte micro-

structure [23]. It is well known that there is dynamic interplay between gut microbiota, intesti-

nal epithelium, and the immune system, with each component regulating and responding to

one another [26, 27]. Microbial diversity promotes the maturation and activation of a number

of interacting innate and adaptive immune cell subsets, including several T cell subsets, such as

mucosal associated invariant T (MAIT) cells, γδ T cells, and Th17 cells. MAIT cells have been

shown to be proinflammatory, microbial-sensing IFN-γ and IL-17-secreting cells in the liver

and gut lamina propria [28, 29] and have been implicated in the involvement of several inflam-

matory and autoimmune disorders [30]. γδ T cells migrate to mucosal surfaces, where they can

rapidly respond to pathogens and inflammatory signals [31]. Th17 cells, also found in the in-

testine, are stimulated by gut microbiota [32] and can participate in the pathogenesis of chronic

inflammatory diseases including T1D [33]. While the contribution of dysregulated gut homeo-

stasis to β-cell destruction and pancreatic autoimmunity is being explored, one possible con-

duit between the pancreas and the gut may be the infusion of proinflammatory factors into the

pancreas via pancreatic ducts, thus inciting cellular stress and immune activation leading to tis-

sue damage and leukocyte influx, as suggested by Korsgren and colleagues [34]. Ultimately,

these and other insults resulting from constituents derived from the gut could lead to immune

activation and autoimmunity.

Because human type 1 diabetes remains controversial etiologically and immunologically

[35, 36], we sought to broadly evaluate T cell compartments from type 1 diabetics (T1Ds). Our

goal was determine which, if any, T cell compartment is altered among T1D. To complete this

goal, we analyzed human peripheral blood leukocytes from T1Ds using multiparameter flow

cytometry. We designed our flow cytometry investigation to sample a wide swath of T cell sub-

sets. By characterizing the responses of multiple subsets, we wanted to maximize our ability to

observe appreciable differences in the immunological terrain of type 1 diabetes. With this in-

formation, we hoped to identify populations that may represent the outcome of pathological

processes or indicate potential environmental responses that may be contributing to disease.

These populations could then be used for further mechanistic studies among diagnosed T1Ds,

as well as in the evaluation of prediabetes among at-risk individuals. Here, we present a portion

of our findings from these investigations. Our analysis of human MAIT cells from T1Ds and

healthy controls revealed disparate population dynamics as well as increased proportions of

differentiated CD27- MAIT cells among diabetics. Further analysis of the CD27- population
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revealed that younger type 1 diabetics possessed increased proportions of this subset compared

to age-matched controls. These results suggest increased activation of MAIT cells among T1Ds

compared to controls, which may indicate increased mucosal challenge.

Methods

Patient population information and sample processing

This work on human subjects was approved by the University of Nebraska Medical Center In-

stitutional Review Board (IRB), protocol #107-09-EP. Informed, written consent using an IRB-

approved consent form was documented and obtained from participants and their family or

legal guardians prior to participation in the study. Peripheral venous blood was obtained from

diagnosed type 1 diabetics (presence of �1 autoantibody) and healthy, age-matched controls

without history of autoimmune disorders. Patient data are presented in Table 1. Blood was

held overnight (<18hours) in EDTA-coated BD vacutainers prior to lysis and surface staining.

We lysed red blood cells using ammonium chloride lysis buffer and calculated white blood cells

per milliliter (ml) using a haemocytometer. To label dead cells prior to flow cytometric anti-

body staining, we utilized LIVE/DEAD Fixable Dead Cell Stain (life technologies) according to

manufacturer’s protocol. After LIVE/DEAD labeling, cells were washed twice with PBS, and

then resuspended in a flow cytometry staining buffer (FCSB) comprised of PBS, 0.75% BSA,

0.05% sodium azide, and 1mM EDTA. We then blocked Fc receptors using irrelevant unlabeled

human IgG. After Fc block, cells were incubated with antibody cocktails for 30 minutes at 4ºC

in the dark. The combination of fluorochrome-conjugated antibodies we used in this flow cy-

tometry panel are shown in Table 2. We then washed the cells twice with FCSB and incubated

cells with streptavidin-conjugated fluorochomes for 20 minutes at 4ºC in the dark. Cells were

then washed twice and fixed with 3% paraformaldehyde (PFA) for 20 minutes at room temper-

ature in the dark. Cells were then washed once with FCSB, resuspended in FCSB, and analyzed

on LSR II flow cytometer (BD Biosciences) within 24 hours.

Data analysis and T cell gating

We generated scatterplots and analyzed flow cytometry data using FlowJo analysis software

(v10, Tree Star, Inc.). Events defined as CD8+, CD4-, CD3+, CD45+, LIVE/DEAD-, mononucle-

ar singlets were defined as CD8 T cells for this analysis. See Fig. 1 for an illustrated

gating strategy.

Intracellular flow cytometry

We isolated peripheral blood mononuclear cells (PBMCs) from healthy volunteers (n = 6)

using Ficoll-Paque Plus (GE Healthcare). We then cultured PBMCs at 1 × 106 per ml overnight

in X-VIVO 15 (Lonza) with 2% human AB serum (Corning Cellgro) and 10 units recombinant

human IL-2 (Cell Sciences) per ml. The following morning, we added cell stimulation cocktail

plus protein transport inhibitors (eBioscience, item# 00-4975) to our cultured PBMCs to in-

duce cytokine production. At approximately 5.5 hours after the addition of the cell stimulation

cocktail, the PBMCs were prepared for flow cytometric staining. Surface staining was per-

formed as described above. Following fixation, the cells were permeabilized using Permeabili-

zation Wash Buffer (BioLegend) according to manufacturer’s recommendations. After

blocking cells as described above, we added incubated cells with fluorochrome-conjugated anti-

bodies targeting intracellular proteins for 30 minutes at 4ºC in the dark. The cells were then

washed twice with Permeabilization Wash Buffer, twice with FCSB, and resuspended in FCSB

for analysis as above. The antibodies used for intracellular staining are shown in Table 3.

MAIT-Like Cell Dynamics among Juvenile Type 1 Diabetics
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Statistics

Using FlowJo, we calculated the percent of parent, percent of CD8 T cells, percent of total

T cells, and percent of total leukocytes. The number of circulating cells per milliliter (ml) was

calculated by dividing the percent of total leukocytes by 100, then multiplying this value by the

number of total white blood cells per ml as calculated above. To determine proportional and

numerical differences between subsets for all cohorts, we tested for statistical significance using

the Mann-Whitney U Test. For correlation analysis, we first transformed immune subset data

to logarithmic values. We then performed Pearson product-moment correlation coefficient

(Pearson’s r) analysis to test for strength of correlations. We further performed linear regres-

sion on our correlations to generate trend lines and to compare correlations between experi-

mental groups. For all statistical tests, results were considered significant when p< 0.05. We

used GraphPad Prism v6 to perform statistical tests and to create figures.

Table 1. Patient population data.

Control T1D* NT1D* LT1D*

n (n female)* 35 (19) 31 (12) 18 (7) 13 (5)

Mean age in years (range) 10.2 (2–17) 10.0 (2–16) 9.3 (2–16) 11.0 (4–16)

Mean disease duration in months (range) N/A 14.4 (0–57) 4.5 (0–11) 28.1 (14–57)

Mean HbA1c at draw (range) N/A 8.2 (5.55–15) 8.7 (5.5–15) 7.4 (6–9.4)

* T1D—type 1 diabetics; NT1D—new-onset type 1 diabetics (<12 months since diagnosis); LT1D—long-standing type 1 diabetics (� 12 months since

diagnosis); n (n female)—total number of patients per group, n, and number of patients which are female (n female)

doi:10.1371/journal.pone.0117335.t001

Table 2. List of primary antibodies and other reagents in the flow cytometry panel used to generate the data from type 1 diabetics and controls

presented in this study.

Antibody Clone Fluorochrome Source

CCR7 3D12 PE eBioscience

CD3ε HIT3a Alexa Fluor 700 BioLegend

CD4 RPA-T4 BD HorizonV500 BD Biosciences

CD8 3B5 QDot705 life technologies

CD27 O323 APC-Cy7 BioLegend

CD45 HI30 PerCP BioLegend

CD45RA MEM-56 PE-Texas Red life technologies

CD57 HCD57 APC BioLegend

CD62L MEL-14 eFluor 605NC eBioscience

CD127 (IL-7Rα) A019D5 Brilliant Violet 421 BioLegend

CD161 HP-3G10 FITC BioLegend

CD218a (IL-18Rα) H44 Biotin BioLegend

HLA-DR L243 PE-Cy7 BioLegend

Other Fluorochrome Source

Streptavidin QDot655 life technologies

LIVE/DEAD Fixable Dead Cell Stain UV Blue life technologies

doi:10.1371/journal.pone.0117335.t002
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Results

The proportion of CD27- MAIT cells is significantly increased in juvenile
type 1 diabetics

It has been hypothesized that an imbalanced intestinal flora is an environmental trigger that

may promote aberrant mucosal immune responses and contribute to the development of T1D

[37]. Within the CD8 T cell compartment resides a subset of cells expressing high levels of

CD161 (CD161bright, Fig. 2A), which are chiefly mucosal associated invariant T (MAIT) cells

[28, 38]. MAIT cells possess a semi-invariant T cell receptor and can be further phenotypically

identified by expression of high levels of CD127 and IL-18Rα and low levels of CCR7 and

CD45RA (Fig. 2B). We reasoned that if T1Ds suffered from altered intestinal immunity, we

may observe altered proportions and absolute numbers of MAIT cells. However, this was not

the case, as we observed that diabetics and controls possessed similar proportions and numbers

of MAIT cells (Fig. 3A–C). We were also curious if MAIT cell alterations may be associated

Fig 1. Depiction of gating strategy used to identify CD8 T cells in this study.We identified T cells from total leukocytes as shown. We first selected
singlets using forward scatter area (FSC-A) versus forward scatter height (FSC-H) parameters. From the singlet population, we removed dead cells from total
events by gating on LIVE/DEAD- events. Then, we selected total leukocytes from the living, singlet population using the pan-leukocyte marker CD45. To
proceed to T cell selection, we gated on lymphocytes and monocytes based upon FSC and side scatter (SSC) properties. We defined T cells using the
expression level of the pan-T cell marker CD3. Finally, we split T cells into CD4, CD8 and double negative (DN) populations using CD4 and CD8 expression
as shown. In summary, events defined as CD8+, CD4-, CD3+, CD45+, LIVE/DEAD-, mononuclear singlets were defined as CD8 T cells for this analysis.

doi:10.1371/journal.pone.0117335.g001

Table 3. List of primary antibodies and other reagents utilized in the flow cytometry panel used to generate the data on IL-17A expression from

healthy controls presented in this study.

Antibody Clone Fluorochrome Source

CD3ε OKT3 PerCP-Cy5.5 Tonbo Biosciences

CD8α RPA-T8 Brilliant Violet 786 BD Biosciences

CD27 0323 PE-Cy7 BioLegend

CD161 HP-3G10 PE BioLegend

IL-17A BL168 Alexa Fluor 647 BioLegend

Other Fluorochrome Source

LIVE/DEAD Fixable Dead Cell Stain UV Blue life technologies

doi:10.1371/journal.pone.0117335.t003
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with disease duration. Within the first year following diagnosis, T1Ds have demonstrated vari-

ability among physiological parameters [39–41], and this variability could influence immuno-

logical subsets. Therefore, we stratified our diabetic cohort into new-onset (NT1D,<12

months since diagnosis) and long-standing (LT1D, �12 months since diagnosis) subsets.

These stratifications did not reveal significant differences among MAIT cells (Fig. 3A–C). We

further analyzed the MAIT cell compartment for expression of the homing marker CD62L and

costimulatory marker CD27. Although we observed no change in proportion or number

CD62L+/- MAIT cell subsets (data not shown), we did observe that T1Ds possessed a reduced

proportion of CD27+ MAIT cells (data not shown) with a corresponding increase in propor-

tion of CD27- MAIT cells compared to controls (Control vs. T1D, p = 0.0224; Control vs.

LT1D, p = 0.0418; Fig. 4A & B).

The dynamics of MAIT cell proportion associated with aging are altered
among juvenile type 1 diabetics

Human studies have suggested that the circulating MAIT cell population is present in cord

blood and increases in proportion sometime between infancy and adulthood [28, 38], but then

declines with increased age [42]. To our knowledge, the developmental dynamics of MAIT

cells have not been investigated among human diabetic juveniles, nor is it entirely clear if

MAIT cells increase in proportion steadily or abruptly over time among healthy juveniles. To

answer these questions, we tested for correlations between MAIT cells and age of donor among

our experimental groups. We first transformed our proportional data into logarithmic values

Fig 2. Gating of CD161bright CD8 T cells and phenotype suggestingmucosal associated invariant T (MAIT) cell status. A. Representative gating of
CD161bright events among the CD8 T cell compartment. B. CD161brightCD8 T cells expressed high levels of IL-18Rα and CD127 and negligible levels of
CD45RA and CCR7. Combined, this phenotype describes MAIT cells.

doi:10.1371/journal.pone.0117335.g002
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and performed Pearson product-moment correlation coefficient (Pearson’s r) analysis to test

for strength of correlations. We then performed linear regression on our correlations to gener-

ate trend lines and to compare correlations between experimental groups.

Using these approaches, we noted a significant positive correlation between age of donor

and proportion of MAIT cells of total CD8 T cells among controls and total type 1 diabetics

(Fig. 5A & C). Interestingly, when we examined new-onset (NT1D) and long-standing diabet-

ics (LT1D) separately, we observed that while the NT1Ds possessed a robust, significant posi-

tive correlation between age and proportion of MAIT cells of CD8 T cells, this correlation was

not significant among LT1Ds and demonstrated little sign of increasing with time (Fig. 5B–C).

Subsequent analysis revealed that these correlations were significantly different (Fig. 5C). We

observed similar results when we examined the proportion MAIT cells of total T cells (data not

shown). However, upon examination of the proportion MAIT cells of total leukocytes, we ob-

served that the strength of the correlation among total diabetics decreased and lost significance

and that the correlations between the new-onset and long-standing populations were no longer

significantly different (Fig. 6A–C). In contrast, the control population demonstrated a

Fig 3. Controls and diabetics harbor similar proportions and numbers of CD161bright CD8mucosal associated invariant T (MAIT) cells. The
proportion of MAIT cells among total CD8 T cells (A.) and among total leukocytes (B.) is similar between controls and type 1 diabetics (T1D). C. Controls and
diabetics also possess similar numbers of MAIT cells per ml of blood. Stratifying our type 1 diabetics cohort into new-onset (NT1D,<12 months since
diagnosis) and long-standing (LT1D,�12months since diagnosis) diabetics also revealed no differences compared to controls (A— C). Significance was
determined using the Mann-Whitney U Test. Bars represent median. NS = not significant.

doi:10.1371/journal.pone.0117335.g003
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significant positive correlation between age in years and proportion MAIT cells of total leuko-

cytes (Fig. 6A & C). These results demonstrate that MAIT cells increase steadily in proportion

over time from infancy into young adulthood among healthy controls. This increase in propor-

tion was observable among total CD8 T cells, total T cells and total leukocytes. Type 1 diabetics

revealed similar increases in proportion with age among total CD8 T cells and total T cells,

however, the correlation weakened and lost significance when comparing proportion of total

leukocytes. By comparing new-onset and long-standing diabetics, we observed that MAIT cells

among the long-standing group demonstrated little sign of increasing in proportion with age

in stark opposition to the robust positive correlation observed among the new-onset group.

This suggests disparate homeostatic dynamics among MAIT cells influenced by

disease duration.

From the observation that MAIT cells are not expanded among LT1Ds, we reasoned that

proportion of MAIT cells may be altered with time since diagnosis or hyperglycaemia. We did

not observe strong correlations between MAIT proportions and time since diagnosis among di-

abetics (S1 File). Interestingly, correlation analysis revealed an upward trend with time since

diagnosis among the new-onset cohort, while the LT1D group exhibited a downward trend.

However, these correlations were not statistically significant. Finally, we did not observe a sig-

nificant correlation with glycated hemoglobin and MAIT cell proportion (Fig. 7). Unfortunate-

ly, we were unable to investigate a correlation with c-peptide due to an insufficient number of

patients possessing c-peptide values at blood draw.

Younger type 1 diabetics possess greater proportions of CD27-MAIT
cells than older type 1 diabetics

Our data revealing altered proportions of CD27 expression by MAIT cells among diabetics sug-

gested there may be developmental differences among these populations over time. We

Fig 4. Type 1 diabetics possess increased proportions of CD27-MAIT cells compared to controls. A. Representative gating of CD27- events among
the MAIT cell compartment. B. Type 1 diabetics (T1D) have significantly increased proportions of CD27- MAIT cells compared to controls. Stratifying the type
1 diabetic cohort into new-onset (NT1D,<12 months since diagnosis) and long-standing (LT1D,�12months since diagnosis) revealed a significant increase
among the LT1D population, with a trend toward significance among the NT1D population. Significance was determined using the Mann-Whitney U Test.
Bars represent median. * = p< 0.05, NS = not significant.

doi:10.1371/journal.pone.0117335.g004
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investigated this hypothesis by performing correlation analysis between proportion of CD27+

or CD27- MAIT cells of CD8 T cells and age of donor. The control group revealed a steady de-

crease of CD27+ MAIT cells and increase of CD27- MAIT cells with age, though neither corre-

lation was significant (Fig. 8A–C). In sharp contrast, total T1Ds exhibited a significant increase

in proportion of CD27+ MAIT cells with age of donor, while proportion of CD27- MAIT cells

significantly decreased with age of donor (Fig. 8A–C). Analysis of the correlations revealed that

the trends between the controls and diabetics were significantly different for both CD27+ and

CD27- MAIT subsets (Fig. 8C).Correlation analysis between proportion of CD27+ or CD27-

MAIT cells of CD8 T cells and age of donor for type 1 diabetics divided into new-onset or

long-standing subsets revealed comparable trends to those seen in Fig. 8 (S2 File).

After analyzing the correlation data in Fig. 8, we observed that younger T1Ds appeared to

possess increased proportions of CD27- MAIT cells (and, conversely, decreased proportions of

Fig 5. The proportion of MAIT cells of total CD8 T cells is significantly and positively correlated with age in years among controls, total type 1

diabetics (T1D), and new-onset diabetics (NT1D), but not among long-standing diabetics (LT1D). A. Correlation of log(%MAIT cells of total CD8 T
cells) versus age in years among controls and total type 1 diabetics (T1D). Controls values are represented by solid circles and a solid trend line. Values for
T1D are represented by open circles and a dotted trend line. B. Correlation of log(%MAIT cells of total CD8 T cells) versus age in years among new-onset
T1D (NT1D) and long-standing T1D (LT1D). Values for NT1D are represented by solid triangles and a solid trend line. Values for LT1D are represented by
open squares and a dotted trend line. C. Results of Pearson’s r analysis and linear regression. * = p<0.05, ** = p<0.01, *** = p<0.001

doi:10.1371/journal.pone.0117335.g005
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CD27+ MAIT cells) compared to controls (red circles on Fig. 8), suggesting maturational or ac-

tivation differences between younger and older type 1 diabetics and controls. To investigate

this further, we stratified our data into 4 subsets: healthy controls of less than 11 years of age

(Control<11y.o.), type 1 diabetics of less than 11 years of age (T1D<11y.o.), healthy controls

of 11 years of age or more (Control�11 y.o.) and type 1 diabetics of 11 years of age or more

(T1D�11y.o.). These age-based, synthetic stratifications roughly partition children and pre-ad-

olescents from adolescents and teenagers. Demographic and physiological data for these strati-

fications are presented in Table 4. Next, we compared these subsets for proportional

differences among CD27- MAIT cells. This comparison revealed that our cohort of T1D<11y.

o. possessed significantly increased proportions of CD27- MAIT cells compared to Con-

trol<11y.o. (p = 0.012) and Control�11 y.o. (p = 0.038) groups (Fig. 9). Follow-up correlation

analysis on these four cohorts revealed a significant negative correlation between increasing

Fig 6. The proportion of MAIT cells of total leukocytes is significantly and positively correlated with age in years among controls and new-onset
diabetics (NT1D), but not total type 1 diabetics (T1D) or long-standing diabetics (LT1D). A. Correlation of log(%MAIT cells of total leukocytes) versus
age in years among controls and total type 1 diabetics (T1D). Controls values are represented by solid circles and a solid trend line. Values for T1D are
represented by open circles and a dotted trend line. B. Correlation of log(%MAIT cells of total leukocytes) versus age in years among new-onset T1D (NT1D)
and long-standing T1D (LT1D). Values for NT1D are represented by solid triangles and a solid trend line. Values for LT1D are represented by open squares
and a dotted trend line. C. Results of Pearson’s r analysis and linear regression. * = p<0.05

doi:10.1371/journal.pone.0117335.g006
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age and proportion of CD27- MAIT cells among T1D<11y.o., while Control<11y.o. possessed

a positive though insignificant trend for the same parameters (Fig. 9B & C). Comparison of lin-

ear regression models for Control<11y.o. and T1D<11y.o. yielded a significant difference be-

tween the two models (Fig. 9C). Our correlation analysis and comparison of the linear

regressions of the T1D�11y.o. and Control�11 y.o. groups yielded correlations that were not

significant for either group and slopes that were not significantly different (Fig. 9C). Combined,

these data demonstrate that younger diabetics have increased proportions of CD27- MAIT

cells compared to healthy, age-matched controls. The mechanistic basis for these differences is

not yet clear. However, MAIT cells have been shown to be uniquely activated by riboflavin me-

tabolites and precursors that are derived from specific bacteria and yeasts [43]. Thus, alter-

ations within this compartment could be directly related to microbiotic differences between

diabetics and controls, as has been demonstrated previously [13–15].

The proportion of CD27- MAIT cells is associated with HbA1c levels
among juvenile type 1 diabetics

In order to evaluate the contribution of hyperglycaemia to alterations among CD27- MAIT

cells, we tested to see if CD27- MAIT cell proportional differences correlated with HbA1c. We

observed a significant positive correlation between the two variables among total T1Ds

(Fig. 10A & B), indicating that increasing circulating glucose levels may directly or indirectly

influence MAIT cell differentiation. Since the proportional expansion of CD27- MAIT cells ap-

peared most pronounced in younger T1Ds, we were curious if this could be explained simply

by increased HbA1c levels among this group. However, there was no significant difference in

HbA1c levels between older and younger T1Ds (Fig. 11A). Furthermore, while the CD27-

MAIT cells proportions were significantly and positively correlated with HbA1c among

T1D�11y.o., this correlation was not significant among T1D<11y.o. (Fig. 11B & C). These in-

triguing results suggest that although hyperglycaemia may contribute to increased proportions

Fig 7. The proportion of MAIT cells of both CD8 T cells and total leukocytes is negatively but not significantly correlated with HbA1c among type 1
diabetics (T1D). A. Correlation of log(%MAIT cells of CD8 T cells) versus HbA1c among total T1D. B. Results of Pearson’s r analysis and linear regression.
C. Correlation of log(%MAIT cells of total leukocytes) versus HbA1c among total T1D. D. Results of Pearson’s r analysis and linear regression. For both A
and C, open circles and dotted trend line represent T1D.

doi:10.1371/journal.pone.0117335.g007
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Fig 8. In contrast to controls, the proportion CD27+ of MAIT cells is significantly and positively correlated with age among total type 1 diabetics
(T1D), while the proportion CD27- of MAIT cell proportion is significantly and negatively correlated with age among T1D. A. Correlation of log(%
CD27+ of MAIT cells) versus age in years among controls and T1D. Controls values are represented by solid circles and a solid trend line. Values for T1D are
represented by open circles and a dotted trend line. B. Correlation of log(%CD27- of MAIT cells) versus age in years among controls and T1D. Controls
values are represented by solid circles and a solid trend line. Values for T1D are represented by open circles and a dotted trend line. C. Results of Pearson’s r
analysis and linear regressions for CD27+ and CD27-MAIT cells. * = p<0.05, ** = p<0.01

doi:10.1371/journal.pone.0117335.g008

Table 4. Patient population data after age stratification.

Control <11 y.o.* T1D* <11 y.o. Control �11 y.o. T1D �11 y.o.

n (n female)* 15 (9) 16 (7) 18 (9) 15 (5)

Mean age in years (range) 6.3 (3–10) 6.9 (2–10) 13.3 (11–17) 13.3 (11–16)

Mean disease duration in months (range) N/A 11.6 (0–57) N/A 17.4 (0–40)

NT1D/LT1D* N/A 12/4 N/A 6/9

Mean HbA1c at draw (range) N/A 8.3 (5.5–15) N/A 8.1 (5.5–12.1)

* T1D—type 1 diabetics; y.o.—years old; n (n female)—total number of patients per group, n, and number of patients which are female (n female); NT1D/

LT1D—ratio of new-onset type 1 diabetics (NT1D, <12 months since diagnosis) to long-standing type 1 diabetic (LT1D, �12 months since diagnosis)

doi:10.1371/journal.pone.0117335.t004
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of CD27- MAIT cells among older juveniles, alternate explanations are necessary to fully ex-

plain the increased CD27- MAIT cell proportions we observed in T1D<11y.o.

IL-17A production is substantially greater among the CD27- subset of
CD161bright CD8 T cells compared to the CD27+ subset

As stated above, functional differences between CD27- and CD27+ MAIT cells have not been

investigated. It is known that the MAIT cell compartment contains IL-17A, TNF-α, and IFN-γ

producing subsets [28]. To investigate differences among cytokine production by CD27- or

CD27+ MAIT cells, we performed intracellular flow cytometry on PMA and ionomycin-stimu-

lated peripheral blood mononuclear cells (PBMCs) from healthy donors (n = 6). Our results re-

vealed that neither the CD27+ nor the CD27- subsets were consistently polarized towards

greater IFN-γ or TNF-α expression, though in all cases the majority of cells from both subsets

expressed each cytokine (data not shown). Interestingly, we observed that CD27- MAIT cells

consistently possessed a greater proportion (median = 2.6 fold greater) of IL-17A+ events com-

pared to CD27+ MAIT cells (Fig. 12A & B). These data demonstrated that IL-17A production

is enhanced among CD27- MAIT cells. Thus, the loss of CD27 expression on MAIT-like cells

appears to denote further differentiation than among the CD27+ MAIT compartment, an ob-

servation in accordance with that seen among other T cell subsets. These results also suggest

Fig 9. Younger type 1 diabetics (T1D) possess increased proportions of CD27-MAIT cells compared to age-matched controls. A. T1D<11 years old
(y.o.) have significantly increased proportions of CD27- MAIT cells compared to age-matched controls (Control<11y.o.) and older controls (Control�11y.o.),
and approach a significant increase compared to T1D�11 y.o. Significance was determined using the Mann-Whitney U Test. Bars represent median, * = p<
0.05, NS = not significant. B. Correlation of log(%CD27- of MAIT cells) versus age in years splitting controls and type 1 diabetics at< 11 years of age and�

11 years of age. C. Results of Pearson’s r analysis and linear regression. * = p<0.05

doi:10.1371/journal.pone.0117335.g009
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that the CD27- MAIT-like subset harbors more IL-17A-producing cells than their CD27-ex-

pressing counterparts. Thus, the expansion of CD27- MAIT-like cells observed among T1Ds

may likewise harbor a greater proportion of proinflammatory IL-17A producers, a hypothesis

which is currently under investigation.

Discussion

In this investigation, we observed several abnormalities associated with CD161bright MAIT-like

CD8 T (MAIT) cells among type 1 diabetics. For example, we observed unique MAIT cell de-

velopmental dynamics among type 1 diabetics compared to our control group. Our assessment

of human MAIT cells from healthy controls indicates that among non-diabetic conditions, the

MAIT cell compartment expands steadily from infancy to young adulthood as implied by pre-

vious reports [28, 38]. From birth onward, children can harbor a wide range of gut microbes

and the inflation in this population may be indicative of this exposure. Nevertheless, it has re-

cently been shown that a somewhat stable flora assemblage of higher-order taxonomic groups

can be seen in children by around 3 years of age [44], correlating with the introduction of solid

food. Therefore, if microbiotic species assemblages become proportionately constant early in

childhood, it is currently unclear what could be promoting this expansion of MAIT cells over

time. One possibility is that increasing mucosal surface area during growth and development

Fig 10. The proportion CD27- of MAIT cells is significantly and positively correlated with HbA1c
among total type 1 diabetics (T1D). A. Correlation of log(%CD27- of MAIT cells) versus HbA1c among T1D.
Values for T1D are represented by open circles and a dotted trend line. B. Results of Pearson’s r analysis
and linear regression. * = p<0.05

doi:10.1371/journal.pone.0117335.g010
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creates additional habitable space for microbiota, and a greater proportion of responsive im-

mune cells are needed to address this stimulus. Our data also demonstrate that among healthy

controls, this subset is given increased niche space among CD8 T cells, total T cells (total CD3+

events), and total leukocytes (total CD45+ events: B, T, and NK cells, monocytes and granulo-

cytes). However, this does not appear to be correlated with increased proportions of CD8

T cells, T cells or leukocytes with age among healthy controls or type 1 diabetics (data not

shown). Thus, the increased proportion of MAIT cells must come with proportional decreases

amongst other leukocyte subsets, and coincide with positive feedback mechanisms for the

MAIT cell compartment signaling lineage proliferation and/or survival.

Compared to healthy controls, we observed a similar increased proportion of MAIT cells

with increasing age among our type 1 diabetic group among CD8 T cells and T cells, although

this correlation was not significant among total leukocytes. Upon stratification of the diabetics

into new-onset (<12 months) and long-standing (�12 months—57 months) groups, we found

that new-onset diabetics possessed significant expansions of MAIT cells among CD8 T cells,

T cells, and total leukocytes, yet long-standing diabetics showed no evidence of increasing pro-

portion of MAIT cells with age among any cellular compartment. These data suggest that

among new-onset diabetics, MAIT cell expansions are similar to those observed in healthy con-

trols, while MAIT cells from long-standing diabetics do not appear to expand with age. We are

Fig 11. HbA1c levels are similar between age-stratified type 1 diabetic (T1D) populations, yet HbA1c is positively and significantly correlated with
CD27- proportions among older T1D (�11 years old (y.o.)) and not with younger T1D (<11 years old (y.o.)). A. Comparison of HbA1c levels between
T1D<11 y.o. and T1D� 11 y.o. Significance was determined using the Mann-Whitney U Test. Bars represent median, NS = not significant. B. Correlation of
log(%CD27- of MAIT cells) versus HbA1c among T1D<11 y.o. and T1D� 11 y.o. Values for T1D<11 y.o. are represented by asterisks and a solid trend line,
while T1D� 11 y.o. are represented by open diamonds and a dotted trend line. C. Results of Pearson’s r analysis and linear regression. * = p<0.05

doi:10.1371/journal.pone.0117335.g011
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currently uncertain as to the cause of these limits observed among long-standing diabetics. Sev-

eral factors, such as increased gut permeability, altered gut flora, and altered intestinal mor-

phology, may be contributing to our observations. Indeed, several studies have demonstrated

an increase in gut permeability among type 1 diabetics [21–23]. This could result in increased

exposure to microbes and microbial products within the mucosa, thereby inciting inflamma-

tion. In this scenario, the changes we are observing in long-standing T1D could be due to in-

creased rates of apoptosis after bacterial encounter as suggested by Cosgrove and colleagues

[45] and/or due to more MAIT cells residing within inflamed mucosa and thus less

in circulation.

In animal models, it has been shown that MAIT cell development is reliant upon gut micro-

biota [46] and several studies have demonstrated that the gut microbiome is altered prior to di-

abetes onset [13–15] and well as after diagnosis [18–20]. Nevertheless, additional studies are

required to determine how gut microbial diversity, not just presence or absence, may impact

MAIT cell development among both diabetics and healthy controls. As postulated above, re-

duced quantity and quality of mucosal surface area may impact MAIT cell development by of-

fering less habitable space for microbial symbionts. Although reduced pancreatic weight and

volume have been found in type 1 diabetics [47, 48], we know of no study exhibiting any

changes in mucosal surface area or intestinal size among human T1Ds. However, at least one

study has demonstrated morphological abnormalities among T1D enterocytes [23]. Further-

more, mucosal responses to insulin among T1D revealed reduced protein production from

Fig 12. CD27- CD161bright CD8 T cells contain a greater proportion of IL-17A-producing cells than the CD27+ subset. PBMCs freshly isolated from
healthy human donors (n = 6) were cultured overnight and then stimulated for 5.5 hours in the presence of PMA and ionomycin with protein transport
inhibitors. Following stimulation, we performed surface and intracellular staining to quantitate IL-17A expression by CD27+/-CD161brightCD+MAIT cells.
A. Representative gating of CD27+/-MAIT cells from total stimulated PBMCs. CD3+ events were selected from pregated Live/Dead- singlets.
B. Representative gating showing IL-17A expression on CD27+ and CD27-MAIT cells. Gates were set according to background determined by appropriate
isotype control. C. CD27- MAIT cells contain a greater portion of IL-17A-producing cells than the CD27+MAIT cell subset. Bar represents median.

doi:10.1371/journal.pone.0117335.g012
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insulin-deprived type 1 diabetics [49] and disturbed gastrointestinal motility has been associat-

ed with T1D [50]. Combined, these results suggest the intestinal environment is altered among

T1Ds. This could contribute to alterations in gut flora and, consequently, to MAIT

cell abundance.

Our analysis also indicates that MAIT cells from diabetics possess an increased proportion

of CD27- cells and this appeared most sharply in diabetics under 11 years of age. Although we

are uncertain if the CD27- MAIT cells represents an activated or terminally differentiated phe-

notype, our analysis of cytokine production from CD27+/- MAIT cells revealed both subsets

are capable of producing IFN-γ, TNF-α, and IL-17A, consistent with previous reports. Howev-

er, the CD27- compartment appears to harbor a greater proportion of IL-17A producers than

the CD27+ compartment. While the presence and absence of CD27 on MAIT cells has been re-

ported [51, 52], the functional status and ontology of CD27- MAIT cells are unresolved. Never-

theless, Leeansyah and colleagues associated the loss of CD27 expression with a history of

activation, consistent with current thinking among human T cell subsets [53]. Thus, CD27-

MAIT cells may be further differentiated than their CD27+ expressing counterparts, suggesting

that type 1 diabetics are experiencing increased activation among the MAIT cell compartment.

Assuming that the lack of CD27 expression is associated with terminal differentiation and ef-

fector function as it is among other T cell subsets, we can conclude that younger diabetics have

increased proportions of terminally differentiated MAIT cells. MAIT cells have been reported

to be uniquely activated by microbial-derived vitamin B metabolites [43, 54] which are pre-

sented in an MR1-dependent fashion. Thus, activation or increased differentiation among

MAIT cells should be microbially-based.

We are currently investigating the mechanistic basis for the transition from CD27+ to

CD27- among MAIT cells in order to better infer the causes of the increases we observe among

younger diabetics. Since we observed a significant correlation between increasing CD27- MAIT

cell proportions and increasing HbA1c levels, we cannot exclude the possibility that changes

we observed in this compartment are related to hyperglycemia. However, the relative contribu-

tion of hyperglycemia to increasing CD27- MAIT cells proportions seems to show a stronger

relationship between older diabetics, rather than younger. Considering that hyperglycemic

conditions may directly or indirectly affect intestinal permeability, gut microbiotic composi-

tion, and MAIT cell maturation, further investigations will be necessary to gauge the relative

contribution of these and other potential causes for the MAIT cell alterations observed in dia-

betics. One further possible outcome of hyperglycemia could involve the cytokine IL-18. It is

known that elevated glucose levels have been associated with the release of IL-18 among

healthy individuals and those with impaired glucose tolerance [55]. Furthermore, it is know

that T1Ds possess increased levels of circulating IL-18 [56, 57], and that IL-18, in combination

with IL-12, can strongly activate MAIT cells [58]. These results suggest that early metabolic

changes associated with T1D may contribute to the development of terminally differentiated

MAIT cells. Together with microbial metabolites, these signals could exert the stimulation nec-

essary to advance the maturation of this cell compartment.

Ultimately, the factors driving the expansion of CD27- MAIT cells among younger patients

remain to be determined. Our data suggest a profound MAIT cell differentiation event among

young type 1 diabetics, which would imply enhanced exposure to bacterially-derived MAIT

cell activating factors. While it appears that this response subsides somewhat with age, further

analysis of patient populations will be necessary to understand the dynamics of this subset

among diabetics. Furthermore, the results from this study suggest that the analysis of juvenile

diabetics should take into consideration time since diagnosis as well as patient age, since differ-

ent disease-associated patterns are observable based upon alternate patient stratification.
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