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REVIEW Open Access

Potential applications of curcumin and its novel
synthetic analogs and nanotechnology-based
formulations in cancer prevention and therapy
Murielle Mimeault* and Surinder K Batra*

Abstract

Curcumin has attracted great attention in the therapeutic arsenal in clinical oncology due to its chemopreventive,

antitumoral, radiosensibilizing and chemosensibilizing activities against various types of aggressive and recurrent

cancers. These malignancies include leukemias, lymphomas, multiple myeloma, brain cancer, melanoma and skin,

lung, prostate, breast, ovarian, liver, gastrointestinal, pancreatic and colorectal epithelial cancers. Curcumin mediates

its anti-proliferative, anti-invasive and apoptotic effects on cancer cells, including cancer stem/progenitor cells and

their progenies, through multiple molecular mechanisms. The oncogenic pathways inhibited by curcumin

encompass the members of epidermal growth factor receptors (EGFR and erbB2), sonic hedgehog (SHH)/GLIs and

Wnt/b-catenin and downstream signaling elements such as Akt, nuclear factor-kappa B (NF-!B) and signal

transducers and activators of transcription (STATs). In counterbalance, the high metabolic instability and poor

systemic bioavailability of curcumin limit its therapeutic efficacy in human. Of great therapeutic interest, the

selective delivery of synthetic analogs or nanotechnology-based formulations of curcumin to tumors, alone or in

combination with other anticancer drugs, may improve their chemopreventive and chemotherapeutic efficacies

against cancer progression and relapse. Novel curcumin formulations may also be used to reverse drug resistance,

eradicate the total cancer cell mass and improve the anticarcinogenic efficacy of the current anti-hormonal and

chemotherapeutic treatments for patients with various aggressive and lethal cancers.

Background

The deregulation and sustained activation of multiple

tumorigenic pathways are typically implicated in cancer

development and progression to locally advanced,

aggressive and metastatic stages as well as in treatment

resistance and disease relapse [1-5]. Consequently, the

use of therapeutic agents acting on different deregulated

gene products, alone or in combination therapy, may

represent a potentially better strategy than the targeting

of one specific oncogenic product to overcome treat-

ment resistance and prevent cancer development and

disease recurrence [1-5]. The non-toxic substance cur-

cumin is the major bioactive ingredient extracted from

the rhizome of the plant Curcuma longa Linn, also as

known as turmeric [6,7]. Curcumin has been used as a

dietary supplement as well as a therapeutic agent in

Chinese medicine and other Asian medicines for centu-

ries [6,7]. Recently, curcumin, which is a polyphenolic

compound, has emerged worldwide as a potent thera-

peutic substance for treating diverse human diseases.

Curcumin displays a wide range of pharmacological

properties against various human disorders, such as

metabolic and infectious diseases, diabetes, psoriasis,

rheumatoid arthritis, atherosclerosis, Parkinson’s and

Alzheimer’s diseases and cancer [6-14].

In vitro and in vivo studies have indicated that curcumin

induces chemopreventive and chemotherapeutic effects

against various types of human cancers. More specifically,

curcumin exhibits anticarcinogenic effects on leukemias,

lymphomas, multiple myeloma, brain cancer and mela-

noma as well as skin, cervix, lung, prostate, breast, ovarian,

bladder, liver, gastrointestinal tract, pancreatic and color-

ectal epithelial cancers [2,9,15-36]. Curcumin displays

strong anti-inflammatory, antioxidant, anti-aging, chemo-

preventive, antitumoral, anti-angiogenic, anti-metastatic,

radiosensitizing and chemosensitizing effects in cancer
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cells in a concentration- and cell type-dependent manner

(Figures 1 and 2) [2,7,9,10,22,37-39]. Of therapeutic inter-

est, studies have indicated that curcumin as a single agent

is safe and exhibits no major toxicity and only protects

normal cells and organs at least in part by up-regulating

the nuclear factor erythroid-derived-2 related factor 2

(Nrf2)-induced antioxidant gene products [8,38,40-46].

The anticarcinogenic effects induced by curcumin in can-

cer cells are mediated via the modulation of multiple

oncogenic signaling transduction elements. Potential

mechanisms of anticarcinogenic effects induced by curcu-

min in cancer cells include the down-regulation of the epi-

dermal growth factor receptor (EGFR) family members

(EGFR/erbB1 and erbB2/HER2), insulin-like growth factor

type-1 receptor (IGF-1R), sonic hedgehog (SHH/GLIs)

and Wnt/b-catenin and their downstream signaling effec-

tors (Figures 1 and 2). The intracellular signaling

transduction elements inhibited by curcumin include the

signal transducers and activators of transcription (STATs),

c-jun/activator protein-1 (AP-1), phosphatidylinositol-3’-

kinase (PI3K)/Akt, nuclear factor-kappaB (NF-!B) and its

targeted genes such as interleukin-6 (IL-6), cyclooxygen-

ase-2 (COX-2) and matrix metalloproteinases (MMPs)

(Figures 1 and 2) [2,9,17-21,24-30,47,48]. Other signaling

components modulated through curcumin include the up-

regulation of p21WAP1 and p27KIP1 cyclin-dependent

kinase inhibitors and down-regulation of Bcl-2, Bcl-xL,

survivin, induced myeloid leukemia cell differentiation

protein-1 (Mcl-1) and glyoxalase 1 as well as the activation

of Bax, Bad and caspase cascade-induced apoptosis (Fig-

ures 1 and 2) [2,9,15,17-21,24].

In addition, some pre-clinical investigations have

revealed that the administration of curcumin in the diet,

alone or in combination with current therapeutic

Figure 1 Tumorigenic cascades initiated by different growth factors in cancer cells and the anticarcinogenic effects induced by

dietary curcumin on the transduction signaling elements. The inhibitory effect of curcumin on the expression and/or activity of EGFR, erbB2,

IGF-1R, and their downstream signaling elements, sonic hedgehog (SHH/SMO/GLIs), Wnt/b-catenin and ATP-binding cassette multidrug

transporters such as ABCG2 in cancer cells are indicated. Moreover, the enhanced expression of p21WAP1 and p27KIP1 cyclin-dependent kinase

inhibitors and inhibition of mitotic effects induced by curcumin resulting in a cell cycle arrest and reduced expression levels of different gene

products involved in the growth, invasion and metastasis of cancer cells as well as the activation by curcumin of mitochondrial factors and

caspase pathway-induced apoptosis are also indicated. In addition, the scheme also shows novel nanotechnology-based curcumin delivery

systems consisting of using either a poly(b-cyclodextrin)-curcumin complex formulation, or a polymeric micelle-encapsulated curcumin labeled

with a ligand or monoclonal antibody (mAb) that specifically interacts with a receptor expressing by cancer cells for the selective targeting of

curcumin are also illustrated.
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treatments, reduced cancer incidence, tumor develop-

ment and progression to locally invasive and metastatic

stages in animal models in vivo [2,16,34,49-54]. Impor-

tantly, curcumin and its derivatives can also inhibit pro-

liferation and induce apoptosis on multidrug resistant

cancer cells (eg cancer stem/progenitor cells with stem

cell-like properties) by modulating the expression and/

or activity of distinct survival pathways, ATP-binding

cassette (ABC) multidrug transporters and micro RNAs

(Figures 1 and 2) [15,55-70]. The data from trials with

patients have also corroborated the safety profile and

chemopreventive and chemotherapeutic effects of curcu-

min against diverse diseases and aggressive cancers in

the clinical settings [9,37,69,71-81]. However, the thera-

peutic applications of curcumin in human are limited by

its high metabolic instability as well as poor absorption

and bioavailability. Synthetic analogs and formulations

of curcumin have been developed, including its com-

plexation with polymeric micelles or nanoparticle-based

encapsulation that exhibit greater chemical stability,

systemic bioavailability and antitumoral activities than

naturally occurring curcumin (Figures 1 and 3)

[7,24,82-101].

In this article, we review the most recent advances on

the pharmacological characterization of the anticarcino-

genic properties of curcumin and its novel synthetic

analogs and nanotechnology-based formulations as well

as the molecular mechanisms at the basis of the

observed therapeutic effects induced by these agents.

Search strategy

Literature search for this article was conducted in the

MEDLINE/PubMed central database covering January

2000 to May 2011, with the term ‘curcumin’ alone and

combined with other keywords including ‘dietary

agents’, ‘cancer’, ‘prostate cancer’, ‘brain cancer’, ‘pan-

creatic cancer’, ‘colorectal cancer’, ‘cancer stem cells’,

‘cancer prevention’, ‘cancer therapy’, ‘chemotherapy’,

‘structure-activity study’, ‘curcumin analogues’and ‘cur-

cumin formulation and nanotechnology’. Moreover, the

Figure 2 Potential growth factor pathways, intracellular signal components and drug resistance-associated molecules modulated by

curcumin involved in its chemopreventive and chemotherapeutic effects on cancer cells. The scheme shows the inhibitory effects

induced by curcumin on distinct oncogenic growth factor cascades and their multiple downstream intracellular signaling elements and ABC-

multidrug transporters in cancer cells involved in the mediation of its cancer preventive and anticarcinogenic properties.
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term ‘curcumin and cancer’ was searched on two web-

sites, namely http://www.google.com and http://www.

clinicaltrials.gov. The relevant papers on chemopreven-

tive and chemotherapeutic effects induced by curcumin

or its derivatives, alone or in combination therapy, with

an emphasis on brain, prostate, pancreatic and colorec-

tal cancers were included in the review.

Potential applications of curcumin in cancer prevention

and therapy

Curcumin exhibits in vitro and in vivo chemopreventive

and chemotherapeutic effects on various cancer cell types

and animal models [2,7,16,26,34,50-54,102-114]. For

instance, curcumin in the diet has been shown to prevent

or counteract the inflammation- and carcinogen-promoted

tumorigenesis in vivo in mouse models [16,49,50,

53,112,114]. More specifically, it has been reported that

curcumin triggered the apoptosis on the murine K-Ras-

induced lung adenocarcinoma cell line (LLR-10 and LKR-

13) [112]. Moreover, 1% curcumin in the diet suppressed

the non-typeable Hemophilius influenzae (NTHi)-induced

chronic airway inflammation and lung cancer progression

in mice through anti-inflammatory and anti-tumoral

effects [112]. In the same manner, a topical application of

curcumin also prevented the formation of benzo[a]pyrene-

DNA adducts and its tumorigenic activity in epidermis in

CD-1 mice [49]. A topical application of curcumin was

also effective at inhibiting the skin tumor promotion

mediated by 12-O-tetradecanoylphorbol-13-acetate (TPA)

in 7,12-dimethylbenz[a]anthracene-initiated mouse skin

Figure 3 Chemical structures of naturally occurring curcumin and its novel synthetic analogs. The scheme shows (A) The diketone and

keto-enol forms of curcumin. Curcumin exists as an equilibrium mixture of two tautomeric forms in solution. The enol structure of curcumin,

which is stabilized by intramolecular H-bonding, is the most energetically stabilized and favored form; (B) chemical structures of novel synthetic

analogs of dietary curcumin (dimethoxycurcumin, GO-Y039, EF24, compound 23 and difluorinated-curcumin “CDF”) showing improved chemical

stability and anticarcinogenic properties on different cancer cell lines.
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[49]. It has also been observed that the administration of

0.5-2.0% commercial grade curcumin (77% curcumin, 17%

demethoxycurcumin and 3% bisdemethoxycurcumin) in

the diet inhibited benzo(a)pyrene-induced forestomach

tumorigenesis in A/J mice, N-ethyl-N’-nitro-N-nitrosogua-

nidine-induced duodenal tumorigenesis in C57BL/6 mice

and azoxymethane (AOM)-induced colon tumorigenesis

in CF-1 mice or F344 rats [16,53].

In addition, curcumin has also been shown to sup-

press proliferation while it induced apoptosis and radio-

sensibilizing and chemosensibilizing effects on diverse

human cancer cell types, including leukemia and lym-

phoma cells, multiple myeloma cells and brain, mela-

noma and epithelial cancer cells (Figures 1 and 2)

[17,25,26,34,39,102,110,115-118]. The cytotoxic effects

of curcumin were mediated by down-regulating the sus-

tained activation of PI3K/Akt and/or I!Ba kinase

(I!BaK) and nuclear translocation of NF-!B and STATs

induced by growth factors (Figures 1 and 2)

[17,25,26,34,39,102,110,115-118]. For instance, it has

been observed that curcumin down-regulated the consti-

tutive activation of I!Ba kinase-induced NF-!B and the

expression of these target genes, including IL-6, cyclin

D1, Bcl-2 and Bcl-xL in human multiple myeloma cells

[26]. The curcumin treatment of multiple myeloma cells

was also effective at suppressing the proliferation, indu-

cing apoptosis and improving the sensitivity of these

cancer cells to the cytotoxic effects induced by che-

motherapeutic drugs, vincristine and melphalan [26].

Moreover, curcumin induced antiproliferative and apop-

totic effects on human A375, C32, G-361 and WM 266

melanoma cell lines, all of which have B-Raf mutations,

B16-R melanoma cells resistant to doxorubicin and

novel mouse melanoma cells, whereas curcumin induced

no cytotoxic effect on normal melanocytes [33,119-122].

The cytotoxic effects of curcumin on these melanoma

cell lines were mediated in part through the down-regu-

lation of the constitutive activation of I!Ba kinase-

induced NF-!B in a manner independent of the B-Raf/

MEK/ERK and Akt pathways [33,119-122]. It has been

noticed that a combination of low doses of curcumin

plus tamoxifen resulted in a synergistic induction of

apoptosis and autophagy in chemoresistant melanoma

cells and the silencing of multidrug resistance transpor-

ter ABCA1 in highly tumorigenic and metastatic human

M14 melanoma cells, which are resistant to curcumin

treatment, restored their sensibility to curcumin

[122,123]. Importantly, the results from in vivo studies

consisting of the intraperitoneal injection of curcumin at

doses of 50 and 100 mg/kg every 2 days, respectively

have also indicated that this dietary compound inhibited

the tumor growth and spontaneous metastasis of

B16BL6 melanoma cells in mice at least in part by

down-regulating the expression at the transcriptional

level of an oncogenic product, phosphatase of regenerat-

ing liver-3 (PRL-3) [34]. Furthermore, curcumin also

reduced the invasion and strongly induced apoptosis in

the human estrogen receptor-a (ER-a)-negative and

aggressive MDA-MB-231 breast cancer cell line in vitro

concomitant with a down-regulation of the NF-!B sur-

vival pathway and expression levels of inflammatory

cytokines CXCL1 and CXCL2, CXCR4 and MMP

[35,36]. Moreover, 1% curcumin in the diet decreased

the incidence of lung metastases derived from MDA-

MB-231 cells injected into the heart of immunodeficient

mice [36].

Importantly, despite the fact that curcumin may act as

a cytotoxic, chemosensitizing and radiosensitizing agent

in cancer cells, it can also protect normal cells and

organs such as brain, intestine, liver, kidney, oral

mucosa, heart and spleen against oxidative stress and

chemotherapy- and radiotherapy-induced toxicity

[38,40-46,73,124]. The protective effects of curcumin

appear to be mediated through its ability to directly sca-

venge free radicals or indirectly by up-regulating the

endogenous cellular antioxidant mechanisms including

the activation of cytoprotective Nrf2-induced target

genes [8,38,40-46,124]. In fact, Nrf2 acts as a transcrip-

tional activator of the antioxidant responsive element

(ARE)-mediated gene expression, including phase II

detoxification and antioxidant stress enzymes such as

hemeoxygenase-1, glutathione peroxidase, modulatory

subunit of gamma-glutamyl-cysteine ligase, which is

involved in glutathione synthesis, and NAD(P)H:quinone

oxidoreductase 1 [38,40-46]. Thus, the modulation of

these gene products by curcumin may contribute in part

to its antioxidant and cytoprotectrive effects in normal

cells including its neuroprotective activity [38,40-46].

Together, these observations suggest that curcumin

may counteract the development of a variety of cancers

and overcome resistance to current radiotherapy and

chemotherapy that may be promoted by oxidative stress

and sustained activation of the survival pathways such

as Akt and NF-!B without major toxicity on normal

cells (Figures 1 and 2). We report in a more detailed

manner the recent advances on in vitro and in vivo stu-

dies of the chemopreventive and chemotherapeutic

effects of curcumin that have been performed on brain,

prostate, pancreatic and colorectal cancers as well as the

characterization of the pharmacological properties of

novel curcumin analogs and formulations with improved

chemical stability and anticarcinogenic properties.

Brain cancer

Medulloblastomas and malignant gliomas are among the

most aggressive primary brain tumors that frequently

occur in children and adults respectively [125-128].

Importantly, curcumin has been shown to suppress the

proliferation, trigger cell cycle arrest at the G2/M phase
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and induce apoptosis in medulloblastoma and glioma

cells in vitro and in an animal model in vivo [129-140].

More specifically, curcumin induced the anti-prolifera-

tive, anti-migratory and apoptotic effects on medullo-

blastoma cells via the down-regulation of the expression

levels of the SHH ligand and the GLI-1 transcriptional

effector of the hedgehog cascade, b-catenin, the phos-

phorylated forms of Akt and NF-!B as well as their

downstream targets such as c-Myc, N-Myc, cyclin D1

and anti-apoptotic factors Bcl-2 and Bcl-xL (Figures 1

and 2) [129,130]. It has been noticed that the curcumin-

resistant medulloblastoma cells, which exhibited no

decrease in the levels of SHH and Bcl-2 levels could be

sensitized to curcumin by a co-treatment with SMO

antagonist, cyclopamine [129]. The apoptotic effect of

curcumin was also enhanced by another dietary sub-

stance, namely piperine, the main alkaloid from black

pepper that acts as an enhancer of curcumin bioavail-

ability in humans [129]. Moreover, curcumin was also

effective at improving the cytotoxic effects induced by

cisplatin and g-rays via the down-regulation of the anti-

apoptotic factor Bcl-2 in medulloblastoma cells [129].

In addition, several studies have indicated that curcu-

min can induce the antiproliferative, apoptotic, radiosen-

sibilizing and chemosensibilizing effects on glioma cells

via the up-regulation of p53, p21WAF1 and the inhibitor

of growth 4 (ING4), inhibition of NF-!B and AP-1 tran-

scriptional activities and stimulation of the caspase cas-

cade [132-135,138-140]. For instance, curcumin induced

a histone hypoacetylation in glioma cells and apoptotic

cell death through a poly (ADP-ribose) polymerase

(PARP)- and caspase 3-mediated pathway while it pro-

moted the neurogenesis in neural progenitor cells (Fig-

ure 1) [132]. Moreover, curcumin was also effective at

attenuating the cell viability of human (T98G, U87MG

and T67) and rat C6 glioma cell lines via the inhibition

of Akt/NF-!B and c-Jun N-terminal kinase (JNK)/AP-1

signaling pathways [133]. Of clinical interest, curcumin

has also been observed to sensitize glioma cells to radia-

tion and several current chemotherapeutic drugs,

including cisplatin, etoposide, camptothecin and doxoru-

bicin through a reduced expression of Bcl-2 and the

inhibitor of apoptosis proteins (IAPs) as well as DNA

repair enzymes such as O6-methylguanine-DNA methyl-

transferase (MGMT), DNA-dependent protein kinase,

Ku70, Ku80 and excision repair cross-complementing

rodent repair deficiency, complementation group 1

(ERCC-1) [133].

Together, these results suggest that curcumin or its deri-

vatives could be used as adjuvant treatment for improving

the anticarcinogenic efficacy of current radiation therapy

and chemotherapy against locally advanced, disseminated

and recurrent medulloblastomas and gliomas, which retain

lethal with the current treatment options.

Prostate cancer

Accumulating experimental lines of evidence have indi-

cated that curcumin is effective in counteracting pros-

tate cancer initiation and progression to locally invasive,

androgen-independent (AI) and metastatic disease stages

[7,16,51,103-109,141]. It has been shown that curcumin

can induce the antiproliferative, anti-invasive, antiangio-

genic and apoptotic effects on human AI PcBra1 cells

from localized prostate cancer and metastatic and

androgen-dependent (AD) LNCaP and AI C4-2B,

DU145 and PC3 prostate cancer cells in vitro and in

vivo, without any toxic effect on normal prostate epithe-

lial cells (PrECs) [7,51,103-109,141]. More specifically,

curcumin may mediate growth inhibitory and apoptotic

effects in AD and AI prostate cancer cells by down-reg-

ulating the expression and/or activity of diverse onco-

genic and survival signaling components, including

EGFR, erbB2, hedgehog, androgen receptor (AR) and

PI3K/Akt, NF-!B, Bcl-2, Bcl-xL and TMPRSS2-ERG

fusion protein (Figures 1 and 2) [107,108]. Curcumin

can also cause DNA damage and apoptotic/necrotic

death of prostate cancer cells by up-regulating diverse

pro-apoptotic factors such as the p53 tumor suppressor

protein, Bax, Bak, Noxa, p53 up-regulated modulator of

apoptosis (PUMA) and/or BCL-2-like 11 (Bim)

[107,108]. For instance, it has been reported that curcu-

min inhibited the growth and triggered the apoptosis of

AD LNCaP and AI PC3 cells in vitro by down-regulat-

ing the expression levels and intrinsic activities of EGFR

and its downstream signaling elements, including PI3K/

Akt and NF-!B (Figures 1 and 2) [141,142]. Moreover,

curcumin effectively inhibited the SHH hedgehog

ligand-stimulated growth of the mouse prostate cancer

cell line derived from transgenic adenocarcinoma of the

mouse prostate (TRAMP) designated as TRAMP-C2,

LNCaP and PC3 cells at least in part, by inhibiting the

hedgehog cascade and GLI-1 expression [51]. Addition-

ally, it has also been reported that the treatment of PC3

cells with curcumin in vitro reduced the expression level

and activity of CC motif ligand 2 (CCL2) and MMP-9

proteolytic activity, thereby suppressing the cell adhe-

sion, motility and invasion [109].

Of particular interest, a combination of low doses of

curcumin and other dietary phytochemicals or antican-

cer drugs also induced greater anticarcinogenic effects

on prostate cancer cells than individual agents [51,52].

For instance, a treatment of 8-week old TRAMP mice

with a diet supplemented with 2% curcumin or 0.05% b-

phenyethylisothiocyanate (PEITC), or a combination of

1% curcumin plus 0.025% PEITC for a period of 10 or

16 weeks significantly inhibited the incidence of the for-

mation of high-grade prostatic intraepithelial neoplasias

and prostate cancer development, at least in part, by

down-regulating the Akt pathway [51,52]. The
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intraperitoneal injection of a combination of 3 μmol

curcumin plus 2.5 μmol PEITC was also more effective

than a higher dose of 6 μmol curcumin or 5 μmol

PEITC alone at inhibiting the tumor growth of PC3 cell

xenografts in immunodeficient mice by inhibiting Akt

and NF-!B [51,52]. Moreover, curcumin also sensitized

LNCaP and PC3 cells in vitro and LNCaP xenografts to

tumor necrosis factor-related apoptosis-inducing ligand

(TRAIL)-induced apoptosis by up-regulating TRAIL-R1

and R2 (DR4 and DR5), Bax, Bak, p21WAF1 and p27KIP1

and down-regulating pAkt-induced NF-!B and its tar-

geted gene products such as cyclin D1, vascular

endothelial growth factor (VEGF), urokinase-like plasmi-

nogen activator (uPA), MMP-2 and MMP-9 [143-145].

More specifically, a combination of curcumin (30 mg/

kg, three days per week) administered by oral injection

plus TRAIL (15 mg/kg, four times during first three

weeks) administrated by intravenous injection resulted

in greater tumor growth inhibitory and anti-angiogenic

effects on LNCaP cells subcutaneously implanted in

nude mice as compared to individual agents [143-145].

Together, these data support the therapeutic interest

of using curcumin or its derivatives, alone or in combi-

nation with other dietary substances, to improve the

efficacy of the current anti-hormonal and chemothera-

peutic treatments against locally advanced, hormone-

refractory and metastatic prostate cancers.

Pancreatic cancer

Pancreatic cancer is a highly lethal disease with a poor

long-term overall five-year survival rate of less than 5%

for patients diagnosed with locally advanced and meta-

static disease stages [146-148]. The poor prognosis of

patients is in part due to the early occurrence of meta-

static spread and the development of intrinsic and

acquired resistance by cancer cells during drug treat-

ment [146,147,149,150]. This lack of efficacy of the cur-

rent clinical therapies by surgical resection, radiotherapy

and/or gemcitabine-based chemotherapies against

aggressive and metastatic pancreatic cancers underlines

the urgent need to validate novel therapeutic agents for

overcoming treatment resistance. Importantly, curcumin

has been shown to induce the anti-proliferative, apopto-

tic, anti-angiogenic and chemosensibilizing effects on

diverse pancreatic cancer cells in vitro and in vivo

[27,69,70,151-159]. The anticarcinogenic effects of cur-

cumin were mediated through the down-regulation of

the expression and/or activity of distinct signaling ele-

ments, including EGFR, STAT-3, NF-!B and its targeted

genes, multidrug transporters such as multidrug resis-

tance-associated protein 5 (MRP5), and modulation of

the expression levels of different micro RNAs

[27,69,70,151-159]. For instance, curcumin inhibited the

proliferation of Panc28 and L3.6pL pancreatic cancer

cells in vitro by down-regulating NF-kB-dependent gene

transactivation and Sp1, Sp2 and Sp3 transcription fac-

tors, which are overexpressed in pancreatic cancers

[153]. The intraperitoneal injection of curcumin in corn

oil (100 mg/kg/day, each 2nd day for 18 days) also sup-

pressed the tumor growth of L3.6pL cell xenografted in

nude mice [153]. Moreover, curcumin potentiated the

anti-proliferative and apoptotic effects induced by gem-

citabine, a first-line chemotherapeutic drug, on BxPC-3,

Panc-1 and MiaPaCa-2 pancreatic cancer cell lines in

vitro [27,154]. A combination of curcumin (1 g/kg, once

daily), administered orally plus an intraperitoneal injec-

tion of gemcitabine (25 mg/kg, twice weekly) was more

effective than single agents at inducing the tumor

growth inhibitory and anti-angiogenic effects in a pan-

creatic tumor model derived from MiaPaCa-2 pancreatic

cancer cells orthotopically implanted in nude mice

[27,154]. The chemosensibilizing effects of curcumin

were mediated at least in part via the inhibition of

STAT-3 and NF-kB-regulated gene products such as

cyclin D1, c-Myc, Bcl-2, Bcl-xL, cellular IAP-1, COX-2,

MMPs and VEGF in pancreatic cancer cells (Figures 1

and 2) [27,154]. Of particular interest, it has also been

observed that a combination of low doses of curcumin

and other dietary agents (isoflavone, resveratrol and epi-

gallocatechin-3-galate), COX-2 inhibitor (celecoxib) or

an omega-3 fatty acid (docosahexaenoic acid) induced

synergistic growth inhibitory and apoptotic effects on

pancreatic cancer cells in vitro and in vivo [160-162].

Together, these data support the therapeutic interest

of using low doses of curcumin or its derivatives in

combination therapy with other cytotoxic agents acting

on multiple molecular targets as chemopreventive treat-

ment in the diet or to improve the efficacy of the cur-

rent gemcitabine-based chemotherapeutic regimens

against locally advanced, metastatic and recurrent pan-

creatic cancers.

Colorectal cancer

The loss of function by inactivating mutations in the

adenomatous polyposis coli (APC) or axis inhibition pro-

tein (axin) tumor suppressor proteins or activating

mutations in b-catenin concomitant with the activation

of the Wnt signaling pathway and nuclear accumulation

of b-catenin frequently occurs during gastrointestinal

cancers, including colorectal cancer initiation and pro-

gression, and leads to an enhanced expression of diverse

oncogenic products (Figures 1 and 2) [163-165]. More-

over, the activation of several tumorigenic signaling ele-

ments, such as EGFR, erbB2, mucin 1, Ras, PKC-bII and

orphan nuclear receptor peroxisome proliferator-activa-

tor receptor-g (PPAR-g), can promote the release of b-

catenin from the adherens junction complexes with E-

cadherin and/or its nuclear translocation (Figure 1)

[163,166]. Thus, the association of nuclear b-catenin

with the T cell factor (TCF)/lymphoid enhancer factor
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(LEF) family of transcription factors may up-regulate the

expression of several gene products such as c-Myc,

cyclin D1, gastrin, COX-2, MMP-7, uPA receptor, CD44

and P-glycoprotein that are involved in colorectal cancer

development and treatment resistance (Figure 2) [163].

Importantly, it has been reported that the administration

of 0.6% curcumin in the diet prevented the progression

of colorectal cancer associated with colitis in C57BL/6

mice by inhibiting the translocation of b-catenin from

adherens junction complexes to the cytoplasm and

nucleus and reducing the levels of diverse proinflamma-

tory cytokines, inducible nitric oxide synthase (iNOS)

and COX-2 as compared to untreated mice (Figure 1)

[167]. Moreover, the administration of 0.2% or 0.5% cur-

cumin in the diet, approximately equal to 300 and 750

mg/kg curcumin per day respectively, commencing one

week postweaning in APC-/+ mice, also reduced the inci-

dence of adenocarcinoma formation as compared to

untreated APC-/+ mice [2,54]. In the same manner, a

treatment with curcumin (250 mg/kg body weight),

alone or in combination with dasatinib (10 mg/kg body

weight), for five consecutive days a week for 4 weeks,

was also effective at inducing tumor regression in a

familial APC-/+mouse model as compared to untreated

APC-/+ mice [2,54]. Additionally, curcumin was effective

at inhibiting tumor growth, invasion and in vivo metas-

tasis of human RKO and HCT-116 colon cancer cells

(wild-type p53+/+) in the chicken-embryo-metastasis

assay in part by down-regulating the transcriptional

expression of micro RNA-21 and up-regulating the pro-

grammed cell death protein-4 (PDCD4), which is a tar-

get of micro RNA-21 [168].

In addition, curcumin has also been reported to cause

p53- and p21-independent G2/M phase arrest, caspase-

3-mediated cleavage of b-catenin, decreased transactiva-

tion of gene products such as c-Myc induced by b-cate-

nin/TCF/LEF complex, and an enhanced rate of

apoptosis in HCT-116 (p53+/+), HCT-116 (p53-/-) and

HCT-116 (p21-/-) colon cancer cell lines (Figure 1)

[169]. A combination of curcumin with another dietary

resveratrol, pan-erbB inhibitor (EGF-R related protein,

ERRP), Src inhibitor dasatinib, 5-fluorouracil and/or

oxaliplatin also induced greater anti-proliferative, anti-

invasive and/or apoptotic effects on diverse colorectal

cancer cell lines than individual drugs in vitro and in

vivo [2,170-172]. The therapeutic effects of these combi-

nation therapies were mediated through a reduction of

the activated EGFR, erbB2, IGF-1R and Src phosphory-

lated forms and decreased expression levels and activ-

ities of extracellular signal-regulated kinases (ERKs),

pAkt, NF-!B, Bcl-xL and/or COX-2 and caspase activa-

tion (Figures 1 and 2) [2,171,172]. For instance, it has

been observed that a combination of curcumin with the

current chemotherapeutic drugs, namely 5-fluorouracil

and/or oxaliplatin used for treating patients with

advanced colorectal cancer, synergistically inhibited the

growth of colon cancer cells in vitro [172]. A combina-

tion of curcumin plus diverse chemotherapeutic drugs

such as cisplatin, doxorubicin, danorubicin and vinscri-

tin was also accompanied by an enhanced intracellular

accumulation and improved cytotoxic effects of drugs

on colorectal cancer cells [173]. Importantly, a com-

bined treatment of curcumin given orally (1 g/kg once

daily) with capecitabine given by gavage (60 mg/kg

twice weekly) was also more effective than single agents

at inhibiting tumor growth, angiogenesis and metastases

at ascites and distant tissues such as the liver, intestine,

lung, rectum and spleen of HCT-116 colon cancer cells

orthotopically implanted in nude mice [116]. The sensi-

bilizing effects of curcumin on the antitumoral and anti-

metastatic properties of capecitabine were mediated

through a decreased expression of NF-kB-regulated gene

products such as c-Myc, Bcl-2, Bcl-xL, cIAP-1, COX-2,

intercellular adhesion molecule 1 (ICAM-1), MMP-9,

CXC chemokine receptor 4 (CXCR4) and VEGF (Figure

2) [116].

Thus, it appears that curcumin and its derivatives are

promising agents to target Wnt/b-catenin and NF-kB in

colorectal cancer cells, thereby counteracting cancer

initiation and progression and improving the efficacy of

the current chemotherapeutic treatments. Consistent

with this, the results from some recent investigations

have revealed that curcumin and its derivatives are also

effective at inducing the cytotoxic effects on chemoresis-

tant cancer cells, including cancer stem/progenitor cells

from colorectal cancer cell lines and other cancer cell

types.

Cytotoxic effects of curcumin on cancer stem/progenitor

cells

A growing body of experimental evidence has revealed

that self-renewing and tumorigenic cancer stem/pro-

genitor cells endowed with stem cell-like properties, also

designated as cancer- and metastasis-initiating cells, can

provide critical functions for cancer initiation and pro-

gression, treatment resistance and disease recurrence

[4,174]. Of great therapeutic interest, curcumin has been

reported to inhibit the clonogenecity and induce the

anti-proliferative and apoptotic effects on drug-resistant

and sphere-forming cancer cells expressing stem cell-

like markers as well as reverse the chemoresistance and

improve the cytotoxic effects induced by diverse che-

motherapeutic drugs on these immature cancer cells

[59-61]. For instance, curcumin, alone or in combination

with piperine, inhibited the mammosphere formation

and decreased the number of aldehyde dehydrogenase-

expressing cells detected in non-malignant and malig-

nant MCF-7 and SUM159 breast cells through the inhi-

bition of Wnt signaling cascade [59]. This suggests the
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possibility of using a dietary curcumin supplement as a

chemopreventive agent for breast cancer. Moreover, the

treatment of HCT-116 or HT-29 colon cancer cells with

5-fluorouracil and oxaliplatin also resulted in an enrich-

ment of cancer cells with stem cell-like phenotypes as

evidenced by an increased proportion of cancer cell

fractions expressing high levels of CD133, CD44, CD166

and/or EGFR levels [60]. By contrast, curcumin, alone

or in combination with 5-fluorouracil and oxaliplatin,

induced a marked reduction in cancer stem cell-like

cells, as indicated by a decrease in the expression levels

of CD133, CD44, CD166 and EGFR as well as their abil-

ity to impair the colonosphere formation in vitro of che-

mosurviving HCT-116 or HT-29 colon cancer cells [60].

On the other hand, among the other methods fre-

quently used for the enrichment of a small population

of cancer stem/progenitor cells from cancer cell lines,

there is the Hoechst dye efflux technique that is particu-

larly useful when the stem cell-like markers are not

well-established [1,175,176]. In fact, the analysis of the

total cancer cell mass by Hoechst 33342 dye efflux tech-

nique can detect a small fraction of cancer cells with

stem cell-like properties designated as a side population

(SP) that possesses a higher ability to actively efflux the

fluorescent DNA-binding dye, Hoechst 33342 than the

non-SP cell fraction due to its elevated expression levels

of ATP-binding cassette (ABC) multidrug efflux pumps

[1,175,176]. In the regard, numerous studies have

revealed that the SP cell fraction detected in various

cancer cell lines, including leukemia, brain cancer, mela-

noma and epithelial cancers possesses the stem cell-like

properties [1,175,176]. Curcumin and its major metabo-

lite, namely tetrahydrocurcumin, have also been

reported to down-regulate the expression and/or activity

of multiple ABC multidrug transporters, including

ABCG2, multidrug resistance 1 (MDR-1) encoding P-

glycoprotein (ABCB1) and multidrug resistance protein-

1 (MRP-1; ABCC1) in parental cancer cell lines and

their derivatives that are resistant to multiple drugs, the

SP cell fraction and patient leukemic cells in vitro and

in mice in vivo [61-68]. Thus, curcumin can improve

the bioavailability and intracellular accumulation of

diverse chemotherapeutic drugs, reverse the chemoresis-

tance and act in cooperation with the other drugs to

induce greater cytotoxic effects (Figures 1 and 2). For

instance, it has been reported that the treatment of rat

C6 glioma cells with curcumin for 3-10 days or during

the Hoechst 33342 dye exclusion assay, resulted in a sig-

nificant decrease in the number C6 glioma cells detected

in the SP cell fraction by flow cytometry, suggesting that

curcumin can inhibit multidrug resistance transporters

in stem cell-like glioma cells [61].

Additional studies are, however, required to corrobo-

rate these results on the cancer stem/progenitor cell

subpopulations isolated cancer cell lines and those

detected in the patients in clinical settings.

Clinical trials of curcumin

The results from phase I/II clinical trials including the

dose-escalation studies with pure curcumin or curcumin

extract have indicated that oral administration of this

dietary compound as single agent is generally well-toler-

ated, non- or little toxic and induced the chemopreven-

tive and chemotherapeutic effects on some types of

diseases and aggressive cancers [69,71-81]. More specifi-

cally, it has been reported that the administration of

curcumin as single agent at dose levels of up to 100-

8000 mg/day was associated with no discernible or only

minimal toxicity while a highest dose of 12,000 mg/day

was not acceptable to some patients because of the large

amount of the curcumin capsules necessary to reach

this high dose [69,71-74,76-81,177]. The potential toxi-

city and side effects that have been observed with the

use of curcumin as a single agent given orally to the

patients include mild diarrhea and nausea, headache,

rash and yellow stool [71-73,76,79]. Despite these clini-

cal data suggesting that oral curcumin as single agent is

little toxic, further studies using escalating dose levels of

curcumin on a greater number of patients are necessary

to confirm its tolerability and safety profile after long-

term use, and more particularly in combination thera-

pies with other drugs. In this regard, we are reporting

accumulating lines of evidence that have indicated the

feasibility and safety to use the curcumin, alone or in

combination with other chemotherapeutic agent, in can-

cer prevention and therapies.

Clinical investigations of the chemopreventive and

chemotherapeutic effects of curcumin

Recent studies have indicated that curcumin exhibits

chemopreventive and chemotherapeutic effects on some

patients with pre-malignant lesions or different cancers

including oral, breast, prostate, pancreatic and colorectal

cancers (Additional file 1) [71-73,76-81,177,178]. More

particularly, the data from a phase I dose-escalation

study performed with 25 patients at high risk of devel-

oping cancer or with precancerous lesions and consist-

ing of the administration of 500-12,000 mg/day of oral

curcumin for 3 months have indicated that curcumin

was well-tolerated, non-toxic at doses of 8000 mg or

lower and induced a histolological improvement of pre-

cancerous lesions in some patients [71]. A histolological

improvement has been observed in one patient with

recently resected bladder cancer, two patients with oral

leucoplakia, one patient with intestinal metaplasia of the

stomach, one patient with uterine cervical intraepithelial

neoplasm and two patients with Bowen’s disease [71].

Moreover, the results from a pilot study on 15 patients

with advanced colorectal cancer refractory to standard
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chemotherapies have also revealed that five patients had

stable disease after treatment with 2200 mg daily of oral

curcuma extract equivalent to 180 mg of curcumin for

2-4 months [72]. The data from a phase II trial carried

out with 21 evaluable pancreatic cancer patients, which

consisted of a treatment with 8000 mg of curcumin by

month daily until disease progression, with restaging

every two months, have also indicated that curcumin

was detectable in the peripheral circulation under glu-

curonide and sulfate conjugate forms [77]. These results

suggest that a high rate of metabolic transformation and

poor tissue distribution of curcumin may occur in can-

cer patients. Although curcumin is highly metabolic

instable with poor bioavailability, two pancreatic cancer

patients showed clinical biological response to curcumin

according to Response Evaluation Criteria in Solid

Tumors Group (RECIST) [77,179]. More specifically,

one patient had ongoing stable disease for more than 18

months and another additional patient had a brief but

marked tumor regression (73%) while no toxicity was

observed [77].

Other clinical trials have also confirmed the safety and

feasibility to use curcumin in combination therapy with

current chemotherapeutic treatments (Additional file 1)

[81,177,178]. For instance, the results from a phase I/II

study on 21 patients with disease progression with gem-

citabine-based chemotherapy have indicated that the

median overall survival time of the patients after a treat-

ment with curcumin plus gemcitabine or gemcitabine/S-

1 combination was 161 days and 1-year survival rate of

19% (95% confidence interval) (Additional file 1) [81].

Despite no partial or complete response of pancreatic

cancer patients was noted in this study, five patients

showed a stable disease according to RECIST criteria

[81,179]. Moreover, the results from another study on

17 patients with advanced pancreatic cancer, who were

treated with a dose of 8000 mg of curcumin by month

daily plus gemcitabine, have indicated that the time to

tumor progression was 1-12 months (median 2 1/2),

and overall survival was 1-24 months (median 5) [178].

Among 11 evaluable patients in this study, one patient

had a partial response, four had stable disease and six

showed tumor progression [178]. In addition, the data

from a phase I trial of dose-escalating curcumin that

was given orally plus docetaxel administrated as intrave-

nous infusion, which was carried out on 14 patients

with advanced and metastatic breast cancer, have also

indicated that five patients showed a partial tumor

response and three patients had a stable disease with

this combination therapy according to RECIST criteria

(Additional file 1) [177,179]. The grades 3-4 hematologi-

cal toxicity such as neutropenia and leucopenia was

observed after docetaxel treatment in most patients in

this study including a grade 4 neutropenia with a dose-

limiting toxicity (DLT) as well as two grade 3 diarrhea

with DLTs in two patients, grade 1 mucositis of oral

cavity in three patients, grade 1 hand-foot syndrome in

two patients and dermatological and lymphatic toxicity

in four patients [177]. The observations of two DLTs,

including one grade 4 neutropenia and one grade 3 diar-

rhea at a dose of 8000 mg/day of curcumin, combined

with the poor acceptability of this high dose of curcu-

min (16 capsules/day) by two patients has led to define

the maximal tolerated dose (MTD) of the curcumin at

8000 mg/day for this combination therapy [177].

Additional clinical trials are however necessary to

more precisely establish the toxicity and antitumoral

effects induced by combined docetaxel plus curcumin

versus the docetaxel or curcumin alone in a greater

number of the locally advanced and metastatic breast

cancer patients. Based on these encouraging results,

phase I/II/III clinical trials are now ongoing to investi-

gate the antitumoral activity of curcumin, alone or in

combination with the current chemotherapeutic drugs,

in patients diagnosed with a variety of cancers, including

multiple myeloma and non-small cell lung, advanced

breast, pancreatic and colorectal cancers. Thus, the

results from these additional clinical trials with curcu-

min or its derivatives should confirm their pharmacody-

namic and pharmacokinetic profiles and therapeutic

efficacy, alone or in combination therapy, for treating

patients with a wide range of aggressive and recurrent

cancers.

Together, these observations indicate that curcumin is

generally well-tolerated and without major toxicity and

displays anticarcinogenic activity on different cancer cell

types and some cancer patients without secondary

effects on normal tissues. This natural dietary com-

pound, however, exhibits a poor absorption and meta-

bolic instability which may limit its delivery and

biological activity in the tumoral tissues when admini-

strated orally. In this regard, we discuss here novel stra-

tegies that have been elaborated to optimize the

formulations and mode of administration of curcumin

for improving its bioavailability, selective delivery to

tumoral tissues and anticarcinogenic effects in cancer

patients.

New strategies for improving the physical and metabolic

stability, bioavailability and antitumoral effects of

curcumin

Although free curcumin [1,7-bis(4-hydroxy-3-methoxy-

phenyl)-1,6-heptadiene-3,5-dione] (also designated as

diferuloylmethane, Figure 3) possesses multiple thera-

peutic effects, the major disadvantages associated with

its oral administration are its high physical and meta-

bolic instability and poor aqueous solubility at neutral

and basic pH values limiting its systemic bioavailability
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and efficacy under physiological conditions

[77,78,180-182]. As mentioned previously, the data from

preclinical and clinical studies have indicated that curcu-

min displays chemopreventive and chemotherapeutic

effects and is safe even at high doses in animal models

and humans. In counterbalance, curcumin typically

exhibits a high metabolic instability, poor tissue distribu-

tion and systemic bioavailability. These chemical fea-

tures of curcumin limit its clinical applications to treat

gastrointestinal tract malignancies that are exposed to

unmetabolized and active forms of curcumin

[11,77,78,183,184]. The main reasons that may contri-

bute to the low plasma level, limited tissue distribution

and decreased therapeutic efficacy of curcumin are as

follows: (1) poor absorption in the gastrointestinal tract

across the gut, (2) extensive metabolism through oxida-

tion, reduction, glucuronidation and sulfation, yielding

less active metabolites, and (3) rapid elimination from

the body [78,181-185]. The major metabolic products of

curcumin detected in hepatocytes in suspension in vitro

as well as in vivo after curcumin treatment in rodent

and human comprise dihydrocurcumin, tetrahydrocur-

cumin, hexahydrocurcumin, hexahydrocurcuminol and

their glucuronide and sulfate conjugates [72,78,181,183].

Of great clinical interest, it has been observed that the

combination of 2000 mg/day curcumin with an inhibitor

of hepatic and intestinal glucuronidation, piperine (20

mg/kg) resulted in higher curcumin concentrations in

serum and substantially improved bioavailability of cur-

cumin in healthy human volunteers [186]. Moreover,

several synthetic analogs of curcumin have been

designed and shown to exhibit a greater metabolic stabi-

lity and biological activity than those of curcumin itself

and are without increased toxicity (Figure 3)

[7,32,82-88,185,187-212]. A variety of experimental stra-

tegies and carrier systems have also been developed to

improve the selective and sustained delivery of curcumin

into cancer cells. These strategies include the use of cur-

cumin phospholipid complexes, the inclusion of curcu-

min in liposomes/lipidic micelles or the curcumin

encapsulation in diverse polymeric nanoparticle-based

formulations which may be unconjugated or conjugated

to a ligand or antibody that specifically targets the can-

cer cell receptor or epitopes (Figure 1)

[24,89-101,213,214].

New synthetic analogs of curcumin

A potential strategy to enhance the anticarcinogenic effi-

cacy and overcome the high physical and metabolic

instability and poor bioavailability of curcumin may be

the use of the synthetic chemical analogs of this natural

dietary compound endowed with improved physico-

chemical and pharmacological properties. Structure-

activity studies based on the tautomeric forms of natu-

rally occurring curcumin have led to the development of

some synthetic analogs endowed with a better chemical

stability and showing more potent anti-inflammatory,

anti-oxidant, anti-carcinogenic and/or anti-angiogenic

effects on diverse human cancer cell lines than curcu-

min (Figure 3) [7,32,82-88,185,187-212,215,216]. For

instance, it has also been observed that the protection of

the 4-OH groups of curcumin through methylation

yielded a dimethoxycurcumin analog exhibiting an

enhanced metabolic stability in vitro and in vivo as well

as greater anti-proliferative and apoptotic effects on

HCT-116 colorectal cancer cells and anti-proliferative

activity on breast and prostate cancer cell lines as com-

pared to curcumin (Figure 3) [185,187]. Moreover,

another synthetic analog of curcumin with a pyrazole

ring mimicking the enol form of curcumin, designated

as compound 12, was three to four-folds more effective

than curcumin at inducing the anti-proliferative effects

and showed the anti-angiogenic and anti-androgenic

activities on breast and prostate cancer cell lines

[187,189,192,204].

In addition, other synthetic analogs of curcumin also

include FLLL11, FLLL12, FLLL32 and GO-Y030 (Figure

3), which are more potent than curcumin at inhibiting

the growth, migration and/or colony formation in soft

agar of melanoma cells, hepatocellular carcinoma cells

and breast, prostate, pancreatic and colorectal cancer

cell lines [196-198,201,205-207]. It has been reported

that the anticarcinogenic effects of these structural ana-

logs of curcumin were mediated, in part, via the down-

regulation of the expression levels and activities of

erbB2, Akt and STAT-3 phosphorylated forms

[196-198,205,206]. Importantly, a non-toxic fluorinated

curcumin analog, namely EF24, has also been reported

to display improved pharmacokinetic profile and bioa-

vailability and greater growth inhibitory and apoptotic

effects than those of curcumin on lung, breast and pros-

tate cancer cell lines in vitro and animal models in vivo

(Figure 3) [82,83,86-88,208]. Based on the observations

indicating that the transmembrane receptor, tissue fac-

tor (TF) for coagulation factor VIIa is aberrantly and

abundantly expressed on many cancer cells, a new deliv-

ery system has also been developed to specifically target

the TF-expressing cancer cells with the curcumin ana-

log, EF24 [209]. This drug delivery system consists of

using a complex EF24-linker-Phe-Phe-Arg-mk-factor

VIIa, which can associate with TF on the surface of can-

cer cells and release the cytotoxic agent in the cyto-

plasm after endocytosis. This EF24 deliver system was

more effective at causing a cell cycle arrest on human

RPMI-7951 melanoma cells and MDA-MB-231 breast

cancer cells than the free EF24 compound [209].

Another study on a series of curcumin analogs has led

to the design of a novel synthetic analog containing a

pentadieone moiety, designated as compound 23, which
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was more potent than curcumin at inducing the growth

inhibitory activity on MCF-7 and MDA-MB-231 breast

cancer cells, and LNCaP and PC3 prostate cancer cell

lines while it showed no significant effect on the immor-

talized but non-malignant MCF-10A mammary epithe-

lial cell line (Figure 3) [187]. Interestingly, a novel non-

toxic curcumin analog, namely 5-bis (4-hydroxy-3-meth-

oxybenzylidene)-N-methyl-4-piperidine (PAC), also

exhibited higher water solubility and stability in blood

and greater biodistribution and bioavailability than cur-

cumin [210]. PCA also displayed higher efficiency than

curcumin at inducing apoptosis on ER-a negative-

MDA-MB-231 breast cancer cells and antitumoral effect

on MDA-MB-231 cell xenografts in vivo by inhibiting

p21WAP1, survivin and NF-!B and its downstream effec-

tors, including cyclin D1 and Bcl-2, and activating cas-

pase cascade [210]. Another potent isozazole analog of

curcumin was also effective at inducing the cytotoxic

effects on hormone-dependent and ER-a expressing

MCF-7 breast cancer cells and hormone-independent

and multidrug resistant MCF-7R variant which lacks

aromatase and ER-a [55].

On the other hand, various chemical analogs of curcu-

min, including ASC-J9 and its derivatives, have been

shown to inhibit prostate cancer cell proliferation by

enhancing AR degradation or by acting as the pure AR

antagonist [84,204,211]. For instance, the characteriza-

tion of a series of curcumin analogs, which can function

as a 17a-substituted dihydrotestosterone (DHT), has

indicated that these compounds display potent anti-

androgenic activities superior to current clinical anti-

androgenic drug, hydroxyflutamide on AI PC3 and

DU145 cells transfected with wild-type AR or mutant

LNCaP AR and ARA70 co-activator respectively [204].

Moreover, a chemical hybrid molecule with two bulky

side chains, designated as compound 6, which has been

derived by a combination of curcumin and b-ionone

backbone, was also effective at inhibiting the wild-type

or mutant AR activity and induce the cytotoxic effects

on AD and AI prostate cancer cell lines in vitro [211].

More recently, some chemically stable curcumin deri-

vatives have also been shown to be more effective than

free curcumin for eradicating chemoresistant cancer

cells with the stem cell-like features from diverse cancer

cell lines. For instance, the difluorinated analog of cur-

cumin, 3,4-difluoro-benzo-curcumin, designated as CDF,

alone or in combination with 5-fluorouracil and oxali-

platin, was more potent than curcumin at reducing the

number of chemoresistant HCT-116 and HT-29 colon

cancer cells expressing CD44 and CD166 stem cell-like

markers as well as inhibiting the growth and inducing

the apoptosis and disintegration of colonospheres in

vitro (Figure 3) [212]. The anticarcinogenic effects of

this difluorinated curcumin analog were mediated

through the down-regulation of the expression and/or

activity of EGFR, IGF-1R, NF-!B, c-Myc, b-catenin,

COX-2 and Bcl-xL signaling components and ABCG2

multidrug transporter combined with an activation of

the mitochondrial pro-apoptotic factor Bax [212]. In

addition, this difluorinated curcumin analog or CDF was

more effective than curcumin at inhibiting the sphere-

forming ability and increasing pancreatosphere disinte-

gration of parental and gemcitabine-resistant AsPC-1

and MIAPaCa-2 pancreatic cancer cells in vitro [216]. A

combination of CDF plus gemcitabine also induced

greater tumor growth inhibitory effects on MiaPaCa-2-

derived subcutaneous xenografts in severe combined

immunodeficient (SCID) mice than curcumin plus gem-

citabine through the down-regulation of the NF-!B

activity, COX-2 and miR-21 expression and increased

expression of phosphatase tensin homolog deleted on

chromosome 10 (PTEN) and miR-200 expression [216].

Together, these data suggest that this difluorinated

curcumin analog or CDF may be effective at eradicating

the total colon or pancreatic cancer cell mass including

drug-resistant cancer cells with stem cell-like properties.

Novel nanotechnologies and delivery systems of curcumin

Diverse curcumin formulations have been developed

with different nanotechnologies consisting of its encap-

sulation or conjugation with nanoparticles, polymeric

micelles or liposomes to improve its stability, bioavail-

ability and specific and sustained delivery into cancer

cells and, consequently, its anticarcinogenic effects (Fig-

ure 1) [24,89-101,213,214]. For instance, it has been

shown that the curcumin encapsulation in biodegradable

and biocompatible poly(lactic-co-glycolic acid) (PLGA)

nanospheres resulted in an enhanced intracellular

uptake of curcumin-loaded polymeric nanospheres and

improved cytotoxic effects of curcumin on metastatic

LNCaP, PC3 and DU145 prostate cancer cell lines in

vitro relative to free curcumin, via the inhibition of NF-

!B activity [24,91,94]. Similarly, a PLGA nanoparticle

formulation of curcumin conjugated with a monoclonal

antibody specific for ovarian cancer cells also sensibi-

lized the cisplatin-resistant A2780CP ovarian cancer

cells to the anti-proliferative and cytotoxic effects

induced by cisplatin or radiation via the down-regula-

tion of the expression of b-catenin, Bcl-xL and Mcl-1

pro-survival proteins [95]. The complexation of poly-b-

cyclodextrin (PCD) and curcumin was also effective at

improving the intracellular uptake of curcumin into C4-

2, DU145 and PC3 prostate cancer cells and its cyto-

toxic effects on these cancer cells as compared to free

curcumin [93]. Moreover, the cyclodextrin-curcumin

complex formulation was more effective than the free

curcumin at blocking NF-!B-induced gene expression

such as cyclin D1, MMP-9 and VEGF, mediating the

anti-inflammatory and anti-proliferative effects on
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various cancer cell lines and inducing apoptosis in leu-

kemia cells [96]. Moreover, the loading of curcumin into

the copolymeric micelles of poly(ethylene oxide)-b-poly

(epsilon-caprolactone) (PEO-PCL) has also been shown

to be an effective strategy to enhance its solubility,

metabolic stability and delivery in diverse cancer cells

[92].

In addition, novel curcumin formulations have also

been shown to improve the therapeutic effects induced

by different chemotherapeutic drugs. For instance, the

systemic administration of gemcitabine plus polymeric

micelle-encapsulated curcumin formulation displaying

higher bioavailability in plasma and tissues as compared

to free curcumin, induced greater tumor growth inhibi-

tory and antimetastatic effects than curcumin on pan-

creatic cancer cells subcutaneously or orthotopically

implanted in nude mice via an inhibition of NF-kB and

its targeted genes [101]. Moreover, the co-administra-

tion by oral gavage of liposomal forms of curcumin or

resveratrol, prepared by mixing the phytochemical with

the liposomal lipid 1, 2-dimyristoyl-rac-glycero-3-phos-

phocholine, cooperatively reduced the incidence of pro-

static adenocarcinoma development in prostate-specific

PTEN knockout mice as compared to a single liposomal

curcumin or resveratrol formulation [89]. It has also

been shown that curcumin or resveratrol, alone or in

combination, induced the growth inhibitory and apopto-

tic effects on PTEN-CaP8 prostate cancer cells derived

from PTEN-knockout mice model of PC by the down-

regulation of the expression levels of pAkt, cyclin D1,

the mammalian target of rapamycin (mTOR) and AR

proteins [89].

Hence, the use of these novel chemical analogs and

nanotechnology-based formulations of curcumin repre-

sents a potential alternative strategy of great clinical

interest for overcoming the high metabolic instability

and poor bioavailability of curcumin, which are among

the principal factors limiting its therapeutic effects when

administrated orally.

Concluding remarks

Taken together, these studies carried out in the last ten

years have indicated that curcumin may act on multiple

oncogenic targets frequently deregulated in cancer cells,

including cancer stem/progenitor cells with stem cell-

like properties, during the progression of most human

aggressive cancers. Despite great interest in using the

curcumin as chemopreventive or therapeutic agent, its

high metabolic instability and poor systemic bioavailabil-

ity constitute the major obstacles to its applications in

human. Of clinical importance, recent studies have led

to the development and validation of novel curcumin

formulations with improved pharmacodynamic and

pharmacokinetic properties and anticarcinogenic efficacy

that offer great promise for overcoming treatment resis-

tance and curing cancer patients at different stages of

disease progression. Especially, these novel curcumin

formulations could be used to simultaneously target dif-

ferent tumorigenic cascades initiated by different growth

factors such as EGFR family members, hedgehog, Wnt/

b-catenin and their downstream signaling elements such

as PI3K/Akt and NF-!B as well as multidrug resistance

transporters that may cooperate for the acquisition of

an aggressive behavior by cancer cells during disease

progression, treatment resistance and disease relapse.

Selective delivery of curcumin or its synthetic analogs

to tumors, alone or in combination with other antican-

cer drugs, may improve their chemopreventive and che-

motherapeutic efficacies against cancer progression and

relapse. Novel curcumin formulations may also be used

to reverse drug resistance, eradicate the total cancer cell

mass and improve the anticarcinogenic efficacy of the

current anti-hormonal and chemotherapeutic treatments

for patients with various cancers.

Additional structure-activity relationship studies of

curcumin and characterization of the pharmacokinetic

and anticarcinogenic proprieties of novelty identified

synthetic analogs and nanotechnology-based formula-

tions of curcumin, however, are essential to optimize

their physicochemical and anticancer properties and

selective delivery to tumor before they can be safely

used in the clinics. More particularly, the selective tar-

geting of nanoparticle-encapsulated curcumin formula-

tions to tumors could be further improved by their

conjugation to ligand or monoclonal antibodies (Figure

1). Future pre-clinical studies are also required to more

precisely establish the mechanisms of absorption, distri-

bution, mode of action and antitumoral, anti-metastatic

and chemosensibilizing effects of curcumin and its deri-

vatives on diverse animal models in vivo. Particularly, it

will be important to determine the therapeutic benefit

and chemosensibilizing effects of combining low doses

of curcumin and its derivatives with other nutraceuticals

and/or chemotherapeutic drugs used in the clinics.

Furthermore, the results from randomized, double blind

and placebo-controlled clinical trials carried out with

more cancer patients and after a long-term treatment

with curcumin and its derivatives, alone or in combina-

tion with the current therapies, are also necessary to

confirm their bioavailability, chemopreventive and thera-

peutic effects, drug interactions and potential synergy of

action on distinct cancer subtypes.

Thus, these future investigations should lead to more

chemically stable and effective curcumin formulations

that could be used as dietary substances, in safe condi-

tions for cancer prevention. These therapeutic agents

also could be used, alone or in combination with cur-

rent cancer therapies, for treating the patients diagnosed
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at the early and late stages with diverse types of aggres-

sive and recurrent cancers, and thereby prevent disease

relapse and the death of cancer patients.

Additional material

Additional file 1: Clinical trials on the evaluation of the safety, and

chemopreventive and chemotherapeutic effects of curcumin alone

or in combination therapy. Clinical trial data on the safety,

chemopreventive and chemotherapeutic effects of curcumin alone or in

combination therapy.
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