底泥内の酸素濃度分布に及ぼす底生動物の影響

佐々木 裕 一* · 中 村 吉 志** · 佐 藤 久***

Effect of bioturbation on oxygen concentration profile in river sediments

Yuichi SASAKI*, Yoshiyuki NAKAMURA** and Hisashi SATOH***

Abstract

The effect of bioturbation on the nitrification rate and the denitrification rate in the sediments was studied by batch experiments and the use of microelectrodes. Oxygen penetration depth was a few mm at the surface of the sediment, whereas there was an oxygen of 70 μ M in the burrow at a depth of 350 mm. Oxygen in the burrows was transported by ventilation of polychaete. Both the nitrification rate and the denitrification rate increased as the density of polychaete increased.

Key words : Sediment, Bioturbation, Nitrification, Denitrification, Microelectrode

1. はじめに

河川底泥への種々の物質の輸送およびこの結 果形成される底泥内の様々な物質の濃度分布は 底泥内の生態系に多大な影響を与える。河川感 潮域の底泥内には多くの底生動物が生息してお り,これら底生動物は底泥内に巣穴を掘ること により底泥の物理的構造に影響を与えている (小池ら,2000)。底泥に形成された巣穴内には 底生動物の活動により O₂ や有機物が積極的に 取り込まれ,また,代謝過程において生産され た NH₄⁺等の代謝産物が河川水中に放出され ることが知られている(西條ら,1996; Boudreau BP and Jorgensen BB, 2001; Glud et al., 2001; Kristensen et al., 1991, 1985, 1983a, 1983b, 1983c, 1981)。従って,底生動物の活動に 伴う河川底泥の生物撹乱(bioturbation)は河川

- 平成 14 年 12 月 26 日受理
- * 大学院工学研究科土木工学専攻 博士前期課 程・1年
- ** 大学院工学研究科土木工学専攻 博士前期課 程・2年
- *** 環境建設工学科·講師

底泥内の生態系に影響を与える重要な要因と考 えられる。

河川底泥内では河川水中から取り込まれた窒 素化合物は,有機態窒素の無機化,硝化反応,脱 窒反応,無機態窒素の同化,等の反応により循 環している。底泥内に底生動物が存在する場合 には,底生動物自体の代謝により直接的に,ま た,底泥内の環境を変化させることにより間接 的に窒素循環に影響を与えることが報告されて いる。しかしながら,窒素循環に与える底生動 物の影響は極めて複雑であり,未知の部分が多 く残されている。

そこで本研究では,河川感潮域の底泥で生ず る生物撹乱が底泥の硝化速度および脱窒速度に 与える影響を解析した。さらに,微小電極を用 いて生物撹乱が生じた底泥内の硝化反応および 脱窒反応の機構を解明することを試みた。

2. 実験方法

本研究では八戸市内を流れる新井田川の河口 から約1.8 km 上流の河川感潮域に存在する底 泥を解析した。底泥は一日の内の数時間干上が り、干上がっている期間に採取した底泥を全て の実験に用いた。

河川底泥の全硝化速度および全脱窒速度を求 めるために回分試験を行った。回分試験は底生 動物個体密度を0 ind./m²~約 4,300 ind./m²ま で変動させて行った。直径114mm, 深さ300 mmの塩化ビニール製円柱型容器に、1mmの ふるいを通過した底泥を容器表面まで入れた 後、容器表面を河川底泥表面と合わせて固定し た。5個の容器には採取した底生動物を投入し、 1個の容器は対照系として底生動物を投入せ ず,底生動物の侵入を防ぐために表面を1mm の金網で覆った。二週間後これら容器を回収し, 実験室に持ち帰り,水温 20°C の河川水 5 L を満 たした容器内に固定し,経時的に NH4+, NO2-, NO₃⁻, DOC, O₂, pH, 水温, 塩分濃度を測定 した。これら濃度の時間変動から単位底泥表面 積あたりの全物質消費速度 [μmol/m²/h] を算 出した。

底生動物により形成された巣穴の形状を可視 化するため,幅200mm,高さ450mm,奥行き 9mmの水路を作成した。側面には高さ10 mm, 幅 30 mm の窓が同じ深さに 3 箇所空いて おり、これら窓は高さ3cm間隔で深さ方向に 10列存在する。これらの窓を寒天で塞いだ後、 上記の地点から採取した底泥を敷き詰め、底生 動物を投入した。底泥表面には底泥採取地点の 河川水(約20L)を表面流速約2cm/sで循環さ せた。河川水は3日毎に取り替えた。培養から 5日目以降に微小電極を用いて底泥内の O₂ 濃 度分布および NH₄+ 濃度分布を測定した。底泥 表面の濃度分布を測定する場合には容器上部か ら,深さ5mm以深の底泥内の濃度分布を測定 する場合には寒天窓を通して微小電極を底泥内 に挿入した。本研究で用いた微小電極はクラー クタイプO2 微小電極および LIX タイプ NH4+ 微小電極である (Okabe et al., 2001)。微小電 極の先端径は共に約15 µm であった。90% 応 答時間は 3s 以内 (O2 微小電極) および 10s 以内

(NH₄+ 微小電極) であった。

3. 結 果

3.1 回分試験

河川底泥の全硝化速度および全脱窒速度を求 めるため,回分試験を行った(Fig.1)。回分試 験は底生動物個体密度が0 ind./m²~約4,300 ind./m²の範囲内で行った。個体密度が0 ind./ m²の時, 全硝化速度は 50 µmol/m²/h~1,000 µmol/m²/h (n=3), 全脱窒速度は 500 µmol/ $m^2/h\sim 2,000 \ \mu mol/m^2/h$ (*n*=3) であった。値 に差が見られたのは測定時の季節が異なったた めと考えられる。全硝化速度および全脱窒速度 には共に底生動物の個体密度に比例して増大す る傾向が見られた。個体密度が約4,300 ind./m² の時, 全硝化速度は3,300 µmol/m²/h~4,400 µmol/m²/h(n=2), 全脱窒速度は 8,400 µmol/ $m^2/h \sim 8,600 \ \mu mol/m^2/h$ (n=2) であった。個 体密度と全硝化速度および全脱窒速度に関する 近似直線はそれぞれ y=0.7x+890 (R²=0.72), y=1.7x+1200 (R²=0.88) であった。

Fig. 1 Influence of the density of worms on the nitrification rate and the denitrification rate.

3.2 巣穴内の O₂ 濃度および NH₄+ 濃度

Fig. 2 に微小電極を用いて測定した巣穴入り 口付近の O₂ 濃度分布を示した。底泥表面の O₂ 濃度は河川水中と同程度の約 60 μM であり、

Fig. 2 Vertical section of the sediment with a burrow structure and O_2 distribution.

 O_2 は底泥内に約 1.5 mm 浸入した。これに対し 巣穴内では巣穴壁面の形状に沿って O_2 が分布 しており、見かけの底泥表面である巣穴入り口 から深さ約 5 mm の地点においても河川水中 と同程度の約 60 μ M の O_2 が存在していた。 $O_2=60 \mu$ M の等 O_2 濃度線と同様に、 $O_2=30$ μ M, 10 μ M, 0 μ M の等 O_2 濃度線も底泥表面お よび巣穴壁面に添った形状をしていた。

深さ約5mm以深の巣穴壁面付近の O_2 濃度 分布を検討するため、装置側面の寒天窓を通し て微小電極を底泥内に挿入し、深さ70mmの 巣穴壁面付近の O_2 濃度分布を測定した(Fig. 3)。巣穴壁面から約1mm離れた巣穴内には河 川水中と同程度の約130 μ Mの O_2 が存在して いた。しかしながら O_2 濃度は巣穴壁面(O_2 =約 90 μ M)に向かって減少し、巣穴壁面から約1 mmの地点では O_2 は約20 μ Mに、約2mmの 地点では O_2 は枯渇した。

巣穴内の O_2 濃度をより詳細に検討するた め、河川水中から深さ約 350 mm の地点までの 巣穴内 O_2 濃度分布を測定した(Fig. 4)。河川水 中の O_2 は約 190 μ M であった。深さ約 50 mm の地点でも河川水中と同程度の約 190 μ M の O_2 が存在していた。これに対し深さ約 80 mm の地点では O_2 濃度は約 120 μ M に低下した。 深さ約 80 mm の地点以深の O_2 濃度は約 120 μ M~約 70 μ M の範囲内で変動しており、急激

Fig. 3 O2 concentration profile at the burrow wall.

Fig. 4 O_2 concentration profile in the burrow of worms.

に濃度が変化することはなかった。深さ約50 mmの地点のO₂濃度が比較的高かった理由と して,底泥表面から深さ約50mmの部分では 巣穴の直径が比較的大きく,水平方向の巣穴が 存在したことが考えられる。

巣穴内に O_2 が存在する理由を検討するため、巣穴内への O_2 輸送機構を解明することを 試みた。深さ約70 mmの地点に約50分間 O_2

Fig. 5 O_2 concentration during 50 min. in the burrow of the worms.

微小電極を固定し経時的に O_2 濃度を測定した (Fig. 5)。実験開始 (t=0 min.) から約 2 分間 は巣穴内の O_2 濃度は約 90 μ M で安定してい た。しかしながらその後 O_2 濃度は急激に低下 し、t=約5 min. の時に最も低い約 50 μ M と なった。その後 O_2 濃度は再び増大し始め、t=約 10 min. では t=0 min. の時の約 90 μ M まで 増大した。その後約 35 分間 O_2 濃度は変動しな かった。t=約0 min. $\sim t=$ 約 10 min. の間に、深 さ約 200 mm の地点に存在していた底生動物 が蠕動運動をしたことを目視により確認した。

底泥表面の硝化速度と巣穴壁面の硝化速度を 比較するため、微小電極を用いて底泥表面およ び巣穴壁面の NH4+ 濃度分布を測定した (Fig. 6)。河川水中に約20 μM 存在した NH₄+ は底 泥表面から深さ方向に増大し、深さ約3mmの 地点では約30 µM となった。このように表面付 近では NH4+ 濃度の減少は見られなかった。こ れに対し、巣穴壁面では河川水中に約180 μM 存在した NH4+ は壁面から深さ方向に減少し、 深さ約1.5 mm の地点で最小(約110 µM)とな り、それ以深では増大した。これらの結果から 求めたNH4+消費速度は底泥表面では約0 µmol/m²/h, 巣穴壁面では約 400 µmol/m²/h であった。巣穴壁面の NH4+ 濃度分布は形状を 崩さぬように底泥を割り,現れた壁面に微小電 極を適用し測定したため,壁面の NH₄+ 消費速 度は実際の速度ではなく硝化ポテンシャルを表 している。

Fig. 6 The average NH₄⁺ concentration profiles at the sediment surface (A) and at the burrow wall (B).

4. 考 察

4.1 底生動物による巣穴内への O₂ 輸送

一般に底泥表面からの O₂ 浸入深さは数 100 μm~3 mm 程度であり、それより深部は嫌気的 環境となっている (Boudreau and Jorgensen, 2001)。本研究で解析した底泥についても、O2浸 入深さは表面から約 1.5 μm であり(Fig. 2), 深 さ約70mmの底泥内部にもO2は存在しな かった (Fig. 3)。しかしながら、巣穴入り口付 近や巣穴内の深さ約50mmの地点では河川水 中と同程度の O₂ が存在し、巣穴内の深さ約 350 mmの地点においても河川水中の約40%に相 当する約70 μMのO₂が存在していた (Fig. 4)。以上の結果から、河川底泥内に形成された 底生動物の巣穴内にはO2 が供給されることが 明らかとなった。Gundersen et al. および Glud et al. は、O2 微小電極を用いて深さ約6mm~ 約11mm および深さ約80mmの地点に存在 する巣穴内に O2 が存在したことを報告してい る。(Boudreau and Jorgensen, 2001)。これら 巣穴内のO₂ 濃度は河川水中の数 %~80% で あった。また Glud et al. (2001) は, 底泥断面 に planar O2 optode を適用し, 深さ約15mm の巣穴内にも O2 が存在することを報告してい 3.

Kristensen et al. (1991, 1983a, 1983b, 1983c, 1981)は、底生動物の蠕動運動に伴う換水作用により巣穴内のO₂濃度が増加し、NH₄+濃度

が減少することを詳細に調査している。本研究 でも約50分の内の約8分の間,巣穴内の O_2 濃 度が約90 μ Mから約50 μ Mまで減少した (Fig. 5)。 O_2 濃度が低下したのは,深層の低酸 素水が巣穴を介して河川水中へ放出されたため と考えられる。培養槽中には複数の巣穴が形成 されており,この時他の巣穴では河川水中から 高酸素水が底泥深層へ輸送されていたと考えら れる。巣穴内の流速は測定していないが,濃度 が低下した期間に底生動物が蠕動運動をしてい たことを確認した。以上の結果より,巣穴内に O_2 が輸送される理由の一つとして,底生動物の 蠕動運動に伴い生ずる水流が挙げられることが わかった。

4.2 河川底泥の硝化速度および脱窒速度に 及ぼす底生動物の影響

河川底泥中に底生動物が存在することにより 底泥の全硝化速度および全脱窒速度は著しく増 大した(Fig.1)。このことは、巣穴内に O₂ が供 給されていたことからもわかるように,河川水 中の NH₄+, NO₃-, 有機物, その他の基質も巣 穴を介し底泥深部に輸送されていたことを示し ている。この結果より,底生動物は底泥内の環 境を変化させることが明らかとなった。底生動 物が巣穴を形成することにより、好気反応であ る硝化反応と無酸素条件下で起こる脱窒反応が ともに促進されたことから, 巣穴壁面には薄い 酸化層が,その深部には無酸素層が形成され,酸 化層と無酸素層の両方に物質(主に O₂, NH₄+, NO₃-、有機物)が供給されたものと推測され る。底泥断面の写真(掲載せず)から、巣穴壁 面は黄土色を呈する厚さ数 mm の層と, その深 部の黒色の層からなることがわかった。この結 果は以上の推測の正当性を裏付けるものであ る。

Fig. 2 および Fig. 3 のデータを基に計算した 結果,巣穴壁面の O_2 消費速度(約 280 μ mol/ m²/h)は底泥表面の O_2 消費速度(約 440 μ mol/ m²/h)の約 60% であった。また,Fig. 6 のデー タから、底泥表面のNH₄+ 消費速度が約0 μ mol/m²/hであったのに対し、巣穴壁面の NH₄+消費速度は約400 μ mol/m²/hであった ことがわかった。Mayer et al. (1995)は、巣 穴壁面の硝化ポテンシャルが底泥表面のそれに 比べて1.5~61倍高かったことを報告してい る。Reichardt (1998)は巣穴壁面の微生物活性 (tritiated thymidine のDNA への取り込み量, グルコースおよび酢酸の同化量および分解量, alkaline phosphatase および sulfatase 分泌 量)が底泥表面のそれよりも高かったことを報 告している。以上の結果より、底生動物の巣穴 壁面は底泥表面よりも高い O₂ 消費速度,硝化 速度および脱窒速度を有している場合があるこ とが明らかとなった。

底泥の全硝化速度および全脱窒速度には底生 動物の個体密度に比例して増大する傾向が見ら れた (Fig. 1)。個体密度と反応速度に関する近 似式から,個体密度が約4,300 ind./m²の場合, 底生動物が存在しない底泥に比べて, 全硝化速 度および全脱窒速度はそれぞれ約3倍および約 4倍増大することがわかった。Pelegri and Blackburn (1995) は、個体密度約 50,000 ind./ m²以下の底泥において,個体密度の増大に伴い 全脱窒速度が約3倍に、全NH4+生成速度が約 26倍に増大したことを報告している。また Pelegri et al. (1994) は, 底生動物個体密度が 約 6,600 ind./m²,河川水中 NO₃⁻ 濃度が約 150 μM の条件において, 底泥の全 NO₃- 消費速度 が約150 µmol/m²/h であり,底生動物が存在し ない底泥の全 NO3⁻ 消費速度よりも約 2.7 倍高 かったことを報告している。また Kristensen (1985) は、底生動物個体密度が約 600 ind./m² の条件において,全無機態窒素消費速度が約 132 µmol/m²/h であり, 底生動物が存在しない 底泥の速度よりも約1.5倍高かったことを報告 している。この場合,NH4+生成速度は底生動物 が存在しない底泥で約 21 µmol/m²/h であった のに対し、底生動物が存在する底泥では約100 μmol/m²/h に増大した。このように、底生動物 が底泥内の硝化速度および脱窒速度に与える影響は底生動物の種,河川水水質,等の様々な要因により異なると考えられる。

結 論

本研究では回分試験による全消費速度の測定 および微小電極を用いた各種物質濃度の測定を 行い,底生動物が河川底泥内の O₂ 消費速度,硝 化速度および脱窒速度に及ぼす影響を検討し た。底泥表面における O₂ 浸入深さは数 mm 以 下であったものの,巣穴内では深さ約 350 mm の地点においても河川水中の約 40% に相当す る約 70 µM の O₂ が存在していた。巣穴内の O₂ は底生動物の蠕動運動に伴う換水作用により増 大したと考えられる。巣穴を介して底泥内に物 質が輸送されるため,河川底泥中に底生動物が 存在することにより底泥の全硝化速度および全 脱窒速度は著しく増大した。底泥の全硝化速度 および全脱窒速度には底生動物の個体密度に比 例して増大する傾向が見られた。

参考文献

- 小池勲夫編:2000. 海底境界層における窒素循環の解 析手法とその実際 (社) 産業環境管理協会.
- 西條八束,奥田節夫編:1996,河川感潮域 (社)名古 屋大学出版会。
- Boudreau BP, Jorgensen BB. 2001. The benthic boundary layer. OXFORD UNIVERSITY PRESS.
- Glud RN, Tengberg A, Kuhl M, Hall POJ, Klimant I. 2001. An in situ instrument for planar O₂ optode measurements at benthic interfaces. Limnol Oceanogr, 46, 2073-2080.
- Kristensen E, Jensen MH, Aller RC. 1991. Direct measurement of dissolved inorganic nitrogen exchange and denitrification in individual polychaete (*Nereis* spp.) burrows. Journal of Marine Research, 49, 355-377.

- Kristensen E. 1985. Oxygen and inorganic nitrogen exchange in a Nereis virens (polychaeta) bioturbated sediment-water system. Journal of Coastal Research, 1(2), 109-116.
- Kristensen E. 1983a. Ventilation and oxygen uptake by three species of Nereis (annelida: polychaeta). 1. effects of hypoxia. Marine Ecology Progress Series, 12, 289-297.
- Kristensen E. 1983b. Ventilation and oxygen uptake by three species of Nereis (annelida: polychaeta). 2. effects of temperature and salinity. Marine Ecology Progress Series, 12, 299-306.
- Kristensen E. 1983c. Comparison of polychaete (*Nereis* spp.) ventilation in plastic tubes and natural sediment. Marine Ecology Progress Series, 12, 307–309.
- Kristensen E. 1981. Direct measurement of ventilation and oxygen uptake in three species of tubicolous polychaetes (*Nereis* spp.). Journal of Comparative Physiology B, 145, 45–50.
- Mayer MS, Schaffner L, Kemp WM. 1995. Nitrification potentials of benthic macrofaunal tubes and burrow walls: effects of sediment NH₄⁺ and animal irrigation behavior. Marine Ecology Progress Series, 121, 157-169.
- Okabe S, Satoh H, Watanabe Y. 2001. Analysis of microbial structure and function of nitrifying biofilms. In *Methods in enzymology*, Academic Press, Edited by Doyle, R. J., Vol. 337, 213-224.
- Reichardt W. 1988. Impact of bioturbation by Arenicola marina on microbiological parameters in intertidal sediments. Marine Ecology Progress Series, 44, 149-158.
- Pelegri SP, Blackburn TH. 1995. Effect of *Tubifex tubifex* (oligochaeta: tubificidae) on N -mineralization in freshwater sediments, measured with ¹⁵N isotopes. Aquatic Microbial Ecology, 9, 289-294.
- Pelegri SP, Nielsen LP, Blackburn TH. 1994. Denitrification in estuarine sediment stimulated by the irrigation activity of the amphipod *Corophium volutator.*. Marine Ecology Progress Series, 105, 285–290.