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ABSTRACT 

The objective of this work was to measure the effects of repeated short-
term organic amendments that we termed soil treatment management cycles 
(STMC) on physical and biological properties of a San Antón series soil. 
Each STMC lasted 60 days and consisted of incorporating 5% organic matter 
from coffee pulp compost; the planting, growth and incorporation of an 
intercrop of four green manure species; and the application of mycorrhizae 
and compost tea. The treatments were labeled: CLO, CL1, CL2 and CL3; 
where CLO was the control, CL1 received one STMC, CL2 and CL3 received 
two and three STMC, respectively. The STMC intended to mimic the overall 
effect of a sustainable agricultural system, not to measure the individual 
effects of the practices. All treatments (CL1, CL2, CL3) showed an increase 
in soil organic matter (psO.05). When compared to the CLO control, saturated 
hydraulic conductivity increased and bulk density decreased in all soils. Soil 
macroporosity was significantly increased by CL2 and CL3. Soil aggregate 
stability increased in CL1, CL2 and CL3 plots. Microbial biomass C increased 
in treatment CL3, and microbial biomass N increased in CL2 and CL3. The 
production of stable aggregates was correlated to humic acid content and 
positively influenced all other physical parameters assessed in this study. 
The STMC had a positive impact on soil properties by increasing the soil 
organic matter as well as the humic acid fraction. Soil macroporosity, defined 
as porosity with radius > 38 jum, was significantly increased by treatments 
CL2 and CL3. All of the organic matter fractions, including total organic 
matter, humic acid content, microbial biomass C and microbial biomass N 
were significantly increased by one or more STMC. 

Key words: Mollisol, organic matter, mycorrhizae culture, green manure, 
compost tea, coffee pulp 
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RESUMEN 

Enmiendas orgánicas y sus efectos en las propiedades físicas y biológicas 
de un suelo San Antón 

Se utilizaron varias prácticas de enmiendas orgánicas en un suelo de la 
serie San Antón (Mollisol) y se cuantificaron los cambios respectivos en la 
capacidad física y biológica de este suelo. Al conjunto de estas prácticas le 
dimos el nombre de manejo de ciclos de tratamiento de suelo (en inglés, soil 
treatment management cycles o STMC). Cada STMC duró 60 días y consistía 
en incorporar 5% de materia orgánica proveniente de composta de pulpa de 
café, la plantación, crecimiento e incorporación de cuatro especies como 
abono verde y la aplicación de micorrizas, además de té de composta. Los 
tratamientos fueron: CLO, CL1, CL2 y CL3; donde CLO fue el control, CL1 
tuvo un STMC, CL2 y CL3 tuvieron dos- y tres-STMC, respectivamente. Los 
STMC se efectuaron con el propósito de asimilar el efecto conjunto de un 
sistema agrícola sustentable y no con el propósito de medir los efectos 
individuales de cada práctica. Todos los tratamientos (CL1, CL2 y CL3) 
resultaron en un aumento en la materia orgánica del suelo (psO.05). La 
conductividad hidráulica saturada aumentó y la densidad del suelo se redujo 
al compararlo con el CLO control. La macroporosidad del suelo aumentó 
significativamente en CL2 y CL3. La estabilidad de agregados del suelo 
aumentó en CL1, CL2 y CL3. La biomasa microbiana C aumentó en CL3 y la 
biomasa microbiana N aumentó por CL2 y CL3. La producción de agregados 
estables del suelo se correlacionó con el contenido de ácidos húmicos y 
tuvo efectos positivos en todos los demás parámetros físicos observados 
en este estudio. Los STMC impactaron las propiedades del suelo cambiando 
la cantidad de materia orgánica, así como la cantidad de ácidos húmicos. 
La macroporosidad del suelo, definida como la porosidad de radio > 38 
fjm, incrementó significativamente para los tratamientos CL2 y CL3. Todas 
las fracciones de materia orgánica, incluyendo la materia orgánica total, 
contenido de ácidos húmicos, biomasa microbiana C y biomasa microbiana 
N fueron significativamente superiores con uno o más STMC. 

Palabras clave: Mollisol, materia orgánica, micorriza, abono verde, té de 
composta, pulpa de café 

INTRODUCTION 

Soil degradation seriously threatens world food security (Pimentel 
et al., 1995; Bumb and Baanate, 1996; Pinstrup-Anderson and Pan-
dya-Lorch, 1998; FAO, 1999; Lai, 2000; Henao and Baanante, 2006). 
Inadequate soil management has been pointed out as one of the main 
causes of worldwide soil degradation (Henao and Baanante, 2006; Lai, 
2007). Deficient management of soil physical properties has led to the 
deterioration of soil fertility, reduction of productivity and has had a 
negative environmental impact (Lai, 2000). Soil organic matter (OM) 
has been described as the most important indicator of soil quality be
cause of its positive impact on physical, chemical and biological soil 
properties (Reeves, 1997; Carter et al., 1999; Lai, 2004). It has been ex
tensively reported that physical properties, most notably structure, are 
largely governed by soil OM content and quality (Khaleel et al., 1981). 
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The management of soil physical properties becomes of major concern 
in the tropics since it has been commonly established that OM decom
poses at a faster rate compared to temperate climates (FAO, 1999). 

Management of organic carbon has been suggested as a primary 
practice to enhance and maintain soil structure in short- and long-
term agricultural operations (Reeves, 1997). In sustainable agriculture 
systems, practices such as compost additions, enhanced fallows, the 
use of compost tea and other organic and biological amendments are 
being adopted with the purpose of improving soil structure and nutri
ent status. The incorporation of organic amendments such as animal 
manures (Annabi et al., 2011), vermicompost (Ferreras et al., 2006), 
cover crops and other agricultural by-products (Tejada et al., 2007; Te
jada et al., 2008b) have been demonstrated to enhance a wide range of 
physical properties directly linked to crop productivity. Composted mu
nicipal solid waste and sewage sludge can also enhance soil structure; 
however, using these materials is potentially hazardous, loading the 
soil with heavy metals (Aggelides and Londra, 2000). 

The use of cover crops in particular has been shown to enhance 
soil physical characteristics (Fischler et al., 1999; Tejada et al., 
2008b; Torres, 2009). Torres (2009) found greater aggregate stability, 
enhanced hydraulic conductivity, greater water retention and lower 
soil bulk density (Bd) after two years of an Arachis spp. cover crop 
establishment in a San Antón soil series (fine-loamy, mixed, super-
active, isohyperthermic Cumulic Haplustolls). Fischler et al. (1999) 
reported increased water infiltration and reduced Bd after incorpora
tion of Crotalaria sp. residues. In an experiment evaluating alterna
tives for restoring degraded soils, Tejada et al. (2008b) found that the 
incorporation of Trifolium pratense L. increased structural stability 
and reduced Bd. 

Soil microbial activity has been reported as another important index 
of soil quality, closely related to the cycling of soil nutrients (Oberson 
et al., 2006; Zhao et al., 2009), pathogen suppression and pest control 
(Drinkwater et al., 1995; Altieri and Nicholls, 2003). Soil microbial ac
tivity is also related to soil physical properties principally by the action 
of microbial products on stabilization of aggregates (Six et al., 2004). 
Mycorrhizae microorganisms are the primary soil biological functional 
group associated with the improvement of soil physical properties, nu
trient uptake and biological quality adding considerable sustainability 
elements to crop production (Cardoso and Kuyper, 2006). However, mi
crobial activity (including the mycorrhizae) is very sensitive to agricul
tural management, specifically, regarding the level of organic carbon 
entering the agro-ecosystem (Angelides and Londra, 2000; Gunapala 
and Scow, 1998; Tejada et al., 2007). 
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The objective of this study was to evaluate the effect of repeated 
soil treatment management cycles (STMC) of coffee pulp compost ap
plications, green manure growth and the addition of compost tea and 
mycorrhizae on the physical and biological properties of a Mollisol soil 
in the semi-arid southern coastal region of Puerto Rico. 

MATERIALS AND METHODS 

Experimental design and treatments 

The experiment was conducted at the University of Puerto 
Rico Agricultural Experiment Station in Juana Díaz, Puerto Rico 
(18°01'45.65"N, 66°31'34.17"W). The soil at this location is a San 
Antón soil series (fine-loamy, mixed, superactive, isohyperthermic 
Cumulic Haplustolls). The experimental plot had a fallow history of 
more than three years. The field experiment consisted of four treat
ments arranged in a complete randomized block design with four rep
lications per treatment, for a total of 16 experimental units. Each ex
perimental unit was a 2.4 x 3.0 m plot. The plots were drip irrigated 
twice a week with well water as needed. The experimental plot was 
mechanically cleared of vegetation and divided based on the random
ized experimental setup described above with four treatments; all 
weeds around the plots were mechanically controlled with a tractor 
mower as needed. 

Each STMC lasted 60 days and included the following three prac
tices: 1) incorporation of 5% OM from coffee pulp compost; 2) planting, 
growth and incorporation of a cover crop mixture of four legume spe
cies Crotalaria júncea (sunn hemp), Canavalia ensiformis (jack bean), 
Vigna unguiculata (cowpea) and Mucuna pruriens (velvet bean); and 
3) the addition of mycorrhizae (MycoApply ® Soluble Endo)7 and com
post tea. The control CLO did not receive any STMC. Each STMC was 
either not performed (CLO), or performed one time (CL1), or twice con
secutively (CL2) or three times consecutively (CL3). The STMC were 
scheduled starting with CL3, followed by another cycle with CL2 and 
CL3 applied at the same time, and the final STMC with CL1, CL2 and 
CL3 at the same time. The CLO treatment never received any STMC, 
but the soil was tilled when the other treatments were tilled. After 
all treatments were established, eggplants were grown and the yield 
quantified in each of the experimental plots. 

'Company or trade names in this publication are used only to provide specific infor
mation. Mention of a company or trade name does not constitute an endorsement by the 
Agricultural Experiment Station of the University of Puerto Rico, nor is this mention a 
statement of preference over other equipment or materials. 
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The purpose of the treatments was to mimic the overall effect on 
the soil of a sustainable agricultural system and not to measure the 
individual effects of each practice. The coffee pulp compost was made 
with a passively aerated static pile method (Rynk, 1992). The chemi
cal properties of the coffee pulp compost are shown in Table 1. At the 
beginning of each STMC, exempting the control, an equivalent of 5% of 
OM as coffee pulp compost was till-incorporated into the top 15 cm of 
soil of each plot. Right after till-incorporating the compost, four legume 
seeds were broadcast over the experimental plots at rates of 42, 14, 
13 and 13 kg/ha for Canavalia ensiformis, Crotalaria júncea, Mucuna 
pruriens and Vigna unguiculata, respectively. Three weeks after the le
gumes were planted, each plot was inoculated with a 2,400 ml/L aque
ous suspension of commercially available mycorrhizae (MycoApply® 
Soluble Endo), which contained four endomycorrhizal species (21,450 
propagules/kg each). At the end of each STMC, at 60-day intervals, the 
different legume species were cut at the soil line, chopped, weighed 
and till-incorporated into the top 15-cm soil depth. On the same date, 
control plots (receiving none of the above management practices) were 
tilled as well. Once the different legumes were incorporated into the 
soil 7.5 L of compost tea was applied to each plot with a watering can. 
The compost tea was prepared by mixing 11.5 kg of mature wood chip 
compost obtained from a local distributor and 120 mL of unsulfured 
molasses in 80 L of water, which was aerated continuously with an 
aquarium pump for 24 h. Each new STMC was started seven days after 
the latest compost tea addition. The STMC corresponding to the CL3, 
CL2 and CL1 treatments were established at 60-day intervals, so that 
all treatments were concluded at the same time (Table 2). 

TABLE 1. —Chemical properties of coffee pulp compost used in each soil treatment man
agement cycle. 

Parameter Coffee pulp compost 

Organic matter (%) 60 
pH 7.13 
Total organic N (% N) 1.61 
Available nutrients 

NH4-N (mg/kg) 77 
NOs (mg/kg) 14,699 
P (mg/kg) 309 
K (mg/kg) 4,781 
Ca (mg/kg) 4,020 
Mg (mg/kg) 562 
Na (mg/kg) ND 

ND = non detectable 
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TABLE 2.—Representation of treatment application every 60 days starting with CL3, then 
CL2 and CL3 at 120 days from eggplant planting. Followed by CLl, CL2 and 
CL3 60 days before eggplant plantings. 

Days to plant 

180 

120 

60 

0 

CLO 

Treatments 

CLl 

STMC 

Soil sampled and 

CL2 

STMC 

STMC 

eggplants planted 

CL3 

STMC 

STMC 

STMC 

STMC is soil treatment management cycles. CLO represents the control where no STMC were 
applied, CLl the application of one STMC, CL2 the application of two STMC and CL3 the application 
of three STMC prior to eggplants planted. 

Soil sampling and analysis 

Four disturbed soil samples were collected per plot at a depth of 
0-15 cm, 12 weeks after treatments were established. The four sam
ples were pooled to form a single sample per plot to test for aggregate 
stability (AS). At the same time, undisturbed soil cores, one per repli
cation, were gathered to determine water retention (WR) curves. The 
cores were obtained by driving aluminum cylinders (7.5 cm long and 5 
cm in diameter) into the ground and extracting the cores with a shovel. 

The soil organic matter was determined by using the Walkley-Black 
dichromate oxidation technique as described in Nelson and Sommers 
(1982). Humic acids (HA) were extracted based on their solubility in 
acids. Briefly, 6 g of soil was first treated with 0.1M HCL to extract the 
fulvic acids. The soil was further treated with 0.1M NaOH to obtain the 
HA. The HA were precipitated by adding sufficient 6N HCl solution to 
reach a pH of 1. After centrifuging and removing the supernatant, the 
HA precipitates were re-dissolved in a O.IN KOH solution. Samples 
were then re-precipitated with 6N HCl, centrifuged, and re-dissolved 
with a solution of O.IN HCl + 0.3N hydrofluoric acid. Hydrofluoric acid 
was included in the last dissolution process to remove silicates. The 
HA were purified with a cation exchange resin (Dowex 50WX8-100), 
freeze-dried and quantified by weighing on an analytical balance. 

Soil microbial biomass C (MB-C) was quantified by the fumiga
tion-extraction method (Vance et al., 1987) using the equation MB-
C=Ec/0.45, where E c is the difference between organic-C extracted by 
K2S04 from fumigated and un-fumigated soil, respectively (Beck et al., 
1997). The analyses were performed after wetting the soil to field ca
pacity when laminar water was seen at the top of the samples. The wet
ted samples were split into two equal portions (40 g fresh weight), one 
of which was fumigated and incubated with ethanol-free chloroform in 
glass desiccators at room temperature. The other portion was incubat-
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ed without fumigation for the same period at the same temperature. 
After 24 h the chloroform was removed by suction, and 15 g of soil was 
extracted with 40 mL of 0.5 M KjSC^. For soil microbial C flush de
termination, dissolved organic C in the filtered extract was measured 
with a Rosemount Analytical Dorhmann DC 190 total organic carbon 
analyzer. For microbial biomass nitrogen (MB-N), total nitrogen was 
measured after Kjeldahl digestion of the KjSC^ extract, according to 
Brookes et al. (1985), using the equation Biomass N= Fj/0.54, where FN 

is the N mineralized from the biomass (Brookes et al., 1985). 
Aggregate stability was determined by the wet sieving method 

(Kemper and Rosenau, 1986). The soil was air-dried, sieved, and the 
1.65 to 4.7 mm sieve fraction was retained. The air-dried aggregate 
samples were placed on top of a sieve nest of two sieves of 1.65 and 
0.68 mm and agitated in water for 15 min at a rate of 30 cycles per 
minute with a wet sieving machine. Fractions of aggregates retained in 
the sieves were oven-dried at 105° C for 24 h and corrected for sand to 
obtain the real proportion of soil aggregates (Nyamangara et al., 2001). 

Water retention curves were determined on the intact soil cores by 
placing them on a pressure plate. The hanging water column technique 
was used to measure WR at hydraulic tension heads of 0, -20, -40, -80, 
-160 and -320 cm H20 (Hall, 1991). A five-bar pressure plate extractor 
(Dane and Hopmans, 2002) was used to measure WR at -0.5, -0.6 and 
-1.0 bar (approximately -500, -600 and 1,000 cm H20, respectively). 
Pore size distribution was obtained from the WR curve by using the 
capillary rise equation (Kutilek and Nielsen, 1994). Bulk density was 
determined by measuring the volume and the oven-dried weight of the 
undisturbed soil cores used for the WR curve. 

Pore-size distributions were inferred from moisture release curves 
using the capillary rise equation (Kutilek and Nielsen, 1994) 

/ ^ 1500 „ Mn 
r(¡jm) = Eq. [1] 

h(cm) 

where, r is pore radius in /um and h is the matric potential (expressed 
in hydraulic head units or cm H20) required to drain water out of that 
pore. By Eq. [1], the change in volumetric water content between any 
two-matric potentials hx and h2, determined from the moisture release 
curves, can be interpreted as the fraction of soil volume occupied by 
pores with radius between rx and r2. By making these determinations 
for different ranges in h and corresponding pore radii r, pore size dis
tributions may be constructed to indicate the relative contribution of 
pores of different sizes to the total porosity of the soil. 

Saturated hydraulic conductivity (Ks) was measured in situ by in
serting a sharpened cylinder 10 cm in diameter and 15 cm long into the 
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soil at a 5-cm depth. Water was added to the cylinder and allowed to 
infiltrate the soil, maintaining a constant head of 5 cm inside the core 
with a Guelph permeameter. Saturated hydraulic conductivity was de
termined from the steady state water outflow rate from the permeam
eter (Reynolds and Elrick, 1985). 

Data were analyzed by ANOVA according to a Randomized Com
plete Block Design, using Fisher's least significant difference (p < 0.05) 
for comparison of means. Correlation analyses were performed using 
the Pearson Coefficient Analysis. The analyses were performed using 
Infostat Statistical Software (Di-Rienzo et al., 2011). 

RESULTS AND DISCUSSION 

Soil Organic Matter 

The coffee pulp organic matter added at every STMC was equiv
alent to 5%. This totaled zero OM added for control CLO, 5% in CL1, 
10% in CL2 and 15% in CL3. The OM tested amount was 1.01% in 
CLO, 2.5% in CL1, 4.11% in CL2 and 4.97% in CL3 (Table 3). This 
shows that about 50 to 67 percent of the added OM mineralized 
during the experimental period. This is consistent with other re
sults (Rivero et al., 2004; Bernal et al., 1998), which showed that 
even though composting produced stable OM, a portion of this OM 
becomes labile during the first two months after incorporation into 
the soil. In addition to the compost, fresh residues from the cover 
crops were incorporated during each STMC, which also contributed 
to the increase of soil OM. However, since compost and cover crops 
did not vary independently in our experiments, it is not possible to 

TABLE 3.—The effects of soil treatment management cycles (STMC) on the soil organic 
matter, humic acids content, aggregate stability, bulk density and hydraulic 
conductivity. 

Treatment 

CLO2 

CL1 

CL2 

CL3 

OM1 

--(%)--

1.01 d3 

2.50 c 

4.11b 

4.97 a 

HA 
--(g/kg)~ 

2.5 d 

7.1c 

9.7 b 

15.0 a 

AS 
--(%)--

2.65 d 

10.87 c 

16.93 b 

24.01 a 

Bd 
-(g/cm3)-

1.59 a 

1.34 b 

1.22 c 

1.08 d 

K 
--(cm/h)-

0.463 c 

3.212 b 

6.467 a 

5.576 a 

1OM=organic matter, HA=humic acids, AS=aggregate stability, Bd=bulk density, and K =hydrau-
lic conductivity. 

2CL0=no STMC, CLl=one STMC, CL2=two consecutive STMC, and CL3=three consecutive 
STMC. 

3Means within columns followed by the same letter are not significantly different at/>< 0.05 using 
Fisher's least significant difference (LSD). 
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infer their relative effects on changes in soil OM with our data. The 
total oven-dried biomass production of the green manures for STMC 
ranged from 5,560 to 6,402 kg/ha (data not shown). These values are 
considerably larger than those reported for biomass production of in
dividual legume species. In 20 trials at five localities in Puerto Rico, 
Carlo (2009) reported biomass production ranges of 822 to 4,175 kg/ 
ha for Canavalia ensiformis, 821 to 2,509 kg/ha for Crotalaria jún
cea, 482 to 2,721 kg/ha for Mucuna pruriens and 340 to 1,461 kg/ha 
for Vigna unguiculata. These results indicate that mixed plantings 
of these tropical legume cover crops can produce more biomass and 
possibly more fixed N than individual plantings of the same crops. 
In the present study, the HA fraction of OM in amended soils ranged 
from 23.6% to 30.1% without any specific trend. All organic treat
ments reported an increase of HA (CL3 > CL2 > CLl > CLO) over 
non-amended soil (Table 3). The HA content ranged from 2.5 g/kg in 
the CLO to 15 g/kg in CL3. 

Microbial biomass 

After the incorporation of three consecutive STMC (CL3), microbial 
biomass C (MB-C) increased 3.8 times (366.6 ug C/g dry soil) relative 
to the non-amended soil treatment CLO (96.6 ug C/g dry soil) (Table 4). 
Treatments CLl and CL2, though higher than CLO, were not statisti
cally different because of the high variability of the results. The CL2 
(80.3 ug C/g dry soil) and CL3 (117.1 ug C/g dry soil) treatments pro
duced significantly higher levels of microbial biomass N (MB-N) than 
the non-amended soil (10.2 ug C/g dry soil) (CL3 > CL2 > CLl = CLO). 
In treatments CL2 and CL3, MB-N increased 7.9 and 11.5 times, re
spectively, over the non-amended soils. The increase of microbial activ
ity after the application of organic residues has been attributed to the 
input of easily degradable materials (Blagodatsky et al., 2000; Car
penter et al., 2000; Franchini et al., 2007). Other authors have noted 

TABLE 4.—Microbial biomass carbon and nitrogen after the implementation of the soil 
treatment management cycles of compost application, planting, growth and in
corporation of four green manure species, mycorrhizae and compost tea. 

Identification 

CLO 

CLl 

CL2 

CL3 

Microbial Biomass-C 
(ug C/g dry soil) 

96.62 b 

207.4 ab 

212.1 ab 

366.6 a 

Microbial Biomass-N 
(ug N/g dry soil) 

10.2 c 

40.6 c 

80.3 b 

117.1a 

Means within columns followed by the same letter are not significantly different at/>< 0.05 using 
Fisher's least significant difference (LSD). 
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a direct relation between the enhanced soil physical properties like 
structure and porosity and an increase in biological activity after or
ganic amendments are added (Marinari et al., 2000; Tejada et al., 2006; 
Annabi et al., 2011). The microbial population of the compost could 
partially explain the increase in soil microbial biomass (Beffa et al., 
1995). However, the effect of legume and non-legume cover crops in en
hancing microbial activity has also been reported (Schulz, 2003; Tilak, 
2004; Tejada et al., 2008a). 

Aggregate stability 

The STMC increased AS percentage at every level of the consecu
tive treatments. The increase was 2.65%, 10.87%, 16.93% and 24.01% 
for CLO, CL1, CL2 and CL3, respectively (Table 3). Correlations were 
observed between AS and organic amendment components such as OM 
(Figure 1), humic acid (Figure 2), microbial biomass C and microbial 
biomass N (Figure 3). Other published results concur with this data 
as to the importance of OM and its various components as cementing 
agents of soil particles (Nyamangara et al., 2001; Ferreras et al., 2006; 
Abiven et al., 2009). Mature compost has been related to long-term 
increases in AS principally through the effect of humic substances (An
nabi et al., 2011). On the other hand, green manures have been related 
to short-term effects on AS associated with the production of microbial 
exudates (Golchin et al., 1994; Liu et al., 2005; Abiven et al., 2009). 
From our data, however, it is difficult to separate the effects of compost 
on AS from those of legume cover crops because the two parameters 
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FIGURE 1. Water stable aggregates in relation to soil organic matter content (r=0.94). 
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were not varied independently. Regressions between AS and OM, HA, 
MB-C and MB-N are shown in Figures 1 to 3. The regressions in all cas
es were significant. However, it is difficult to establish which of these 
parameters had the greatest effect on AS, because OM, HA, MB-C and 
MB-N are all strongly correlated to each other (see correlation matrix 
in Table 5). Also, the experimental design did not allow discriminating 
between individual effects of compost and cover crops on AS. 

Bulk density 

Table 3 shows the effects of the STMC on soil Bd. As the STMC 
increased the soil Bd was reduced from 1.59 g/cm3(CL0) to 1.34 g/cm3 

(CL1) then to 1.22 g/cm3 (CL2) and finally to 1.08 g/cm3 in CL3. These 
results concurred with Khaleel et al. (1981), who reviewed experiments 
of organic residue application and found a constant positive relation
ship between reduction of Bd and application of organic residues in 21 
soil types and eight different organic residues evidencing the generally 
positive effect of the organic amendment in Bd. The reduction in Bd 
after the addition of an organic amendment is attributed to the dilu
tion of denser soil particles and to an increase in porosity resulting 
from the enhanced structural stability (Tejada et al., 2009). As seen 
here, all treatments reflected an increase in soil OM content (Table 
3), increasing the proportion of less-dense material in the soil matrix. 
The reduction of Bd cannot be attributed solely to the decrease in the 
proportion of denser particles. Bulk density has previously been re-
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FIGURE 3. Water retention curves of soils after the implementation of different 
numbers of soil treatment management cycles (STMC) of compost application, planting 
and incorporation of four green manure species, mycorrhizae and compost tea. CL0=no 
STMC, CLl=one STMC, CL2=two consecutive STMC, and CL3=three consecutive STMC. 

ported to decrease in response to an increase in AS and porosity due 
to the addition of composted organic residues (Marinari et al., 2000) 
and the incorporation of green manures (Fischler et al., 1999). In our 
experiments AS gradually increased with increasing STMC, which was 
accompanied by a decrease in Bd. Our results are in accordance with 
those of other studies that have reported reductions in Bd by incorpo
rating green manures and compost (Tejada and Gonzalez 2006; Tejada 
et al., 2006; Tejada et al., 2009). 

Water retention curves and pore size distributions 

Figure 3 shows the WR curves for the 0 to -1 bar matric poten
tial range, corresponding to the different treatments. As the number 
of STMC of combined practices increased from CLl to CL3, there was 
an increase in WR at all tensions as shown by an approximately paral
lel upward displacement of curves. The CLO WR was similar to that 
of CLl at any tension. An analysis of variance at each tension applied 
was carried out, and results showed that treatments CL2 and CL3 in
creased WR capacity for all tensions studied. Treatment CL3 was more 
efficient than CL2, increasing WR capacity at all tensions except for 
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TABLE 5.—Correlation matrix (r) of soil parameters affecting aggregate stability. 

AS OM HA MB-C MB-N 

AS 
OM 
HA 
MB-C 
MB-N 

1.00 
0.94 
0.92 
0.59 
0.89 

1.00 
0.96 
0.64 
0.92 

1.00 
0.68 
0.89 

1.00 
0.48 1.00 

AS= aggregate stability; OM= organic matter; HA=humic acid; MB-C=soil microbial biomass car
bon; MB-N= soil microbial biomass nitrogen. 

-0.0196 and -0.0392 bar, which were not significantly different. Treat
ments CL2 and CL3 increased WR at saturated conditions about 15.5% 
and 23.0%, respectively. This finding represents the greater potential 
of rainwater conservation since the water storage of this soil increased 
with the application of two (CL2) and three (CL3) consecutive STMC. 
The observed increase in OM content (Table 3) explains the enhance
ment in WR capacity. The contribution of OM on WR itself explains 
water dynamics retained at high suctions (Rawls et al., 2003), but the 
structure forming effect of OM is more likely to explain the WR dynam
ics between 0 to -1 bar (Snyder et al., 1993; Sharma and Uehara, 1968). 

An increase in AS is expected to be accompanied by an enhance
ment in WR since it has been demonstrated that inter-aggregate pores 
play a major role in WR at suctions between 0 to -0.3 bar (Sharma and 
Uehara, 1968). Soil pore size distributions produced by the experimen
tal treatments CLO - CL3 are shown in Table 6, indicating fractions 
of soil pore space corresponding to pores in the radius ranges 2 to 5, 
5 to 9, 9 to 19, 19 to 38 and > 38 um. The greatest treatment effect 
was on porosity associated with pores >38 um (Table 6). Treatments 
CL1, CL2, and CL3 caused increases in >38 um porosity which were 
respectively 1.6, 2.1, and 2.2 times the value for the CLO treatment. 
Pores of radius >38 um are commonly considered macropores associ
ated with inter-aggregate space produced by aggregation (Hillel, 2004). 
The greater changes in pore size distribution were reported in this pore 
size category, evidencing the role of inter-aggregate porosity in WR in 
0 to -1 bar suctions. Our results are in accordance with those authors 
who have reported a direct relationship between a reduced Bd (Madan-
kumar, 1985) as the result of organic amendments, and the increase of 
WR capacity (Pérez-de-los-Reyes et al., 2011). An opposite trend was 
observed for porosities corresponding to pore-size ranges smaller than 
38 um (Table 6). In most of these cases, porosities decreased with an 
increasing number of STMC. This indicates that within the domain 
of pore radii studied (>2 um), the increase in porosity associated with 



1 3 6 P A G á N - R O I G E T A L . / O R G A N I C A M E N D M E N T S 

TABLE 6.—Pore size distribution as affected by soil treatment management cycles (STMC) 
of compost application, planting, growth and incorporation of four green ma
nure species, mycorrhizae and compost tea. 

Pore size ( radius) 

Identif ication >38 u m 19 to 38 u m 9 to 19 u m 5 to 9 u m 2 to 5 u m 

— percent of soil volume corresponding to pores in the given size range — 

CLO 7.9 b 7.7 a 7.3 a 6.9 a 4.2 a 

CL1 12.2 a b 7.0 a b 5.2 b 7.3 a 3.3 ab 

CL2 16.3 a 4.9 be 4.2 be 6.7 a 3.5 ab 

CL3 17.5 a 3.8 c 3.5 c 6.9 a 3.6 b 

Means within columns followed by the same letter are not significantly different at/>< 0.10 using 
Fisher's least significant difference (LSD). CL0=no STMC, CLl=one STMC, CL2=two consecutive 
STMC, and CL3=three consecutive STMC. 

pores >38 um occurred at the expense of a decrease in porosity associ
ated with the smaller pores. 

Hydraulic conductivity 

All treatments showed significantly higher values of Ks compared 
with that of the non-amended soil (Table 3). The CL1 treatment 
(Ks=3.212 cm/h) was seven times greater than the CLO (Ks=0.463 cm/h) 
while CL2 (6.467 cm/h) and CL3 (5.576 cm/h) reported a 14- and 12-fold 
increase, respectively. However, no statistical differences were encoun
tered between the CL2 and CL3 treatments. These results are in ac
cordance with those of various authors (Khaleel et al., 1981; Aggelides 
and Londra, 2000) who have reported increases in Ks as the result of 
increased porosity after OM additions. As supported by the enhance
ment in AS (Table 3) and the increase in the proportion of macropores 
(Table 6), the enhancement of water conductivity is attributed to great
er production and connectivity of macro-pores due to more stable ag
gregates (Zhang et al., 2011). As pointed out, the incorporation of green 
manures promotes the development of microbial-associated enhance
ment of AS favoring the development of inter-aggregate pores. Fischler 
et al. (1999) reported a 51% increase of water infiltration in a tropical 
soil associated with an increase in the number of macropores after the 
incorporation of Crotalaria sp. cover crop residues. In our experiment, 
the presence of undecayed legume residues mixed within the soil was 
still obvious eight weeks after the incorporation of the green manures, 
which may have contributed to the stabilization of aggregates. The ef
fect of undecayed cover crop roots and stalks and the biological action 
protecting macropores has already been pointed out (Strudley et al., 
2008). These results are transcendent for this soil since efforts have 
been made in this soil series to increase K in order to reduce the in-
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cidence of soil-borne diseases during the rainy season (Torres, 2009). 
For optimum crop development a balance should be reached between 
hydraulic soil properties, where Ks values should be high enough to fa
vor the drainage of excess water. However, WR should be high enough 
to provide the plant with a source of water in non-saturated condi
tions (Keller et al., 2012). The combined sustainable practices assessed 
in this study demonstrated the capacity to enhance soil hydraulic dy
namics where Ks was enhanced and at the same time, WR capacity in
creased as a result of implementing STMC compared with that of CL0. 

CONCLUSION 

The STMC of combined practices promoted a general enhancement 
in soil properties expressed by a reduction in Bd and an increase in AS, 
OM content, microbial activity and Ks. Two STMC (CL2) were usually 
sufficient and three STMC (CL3) changed all the physical and biologi
cal parameters assessed in this study (OM, AS, Ks, WR capacity, Bd, 
MB-C and MB-N). In this manner, the establishment of two STMC 
(CL2) was enough to attain the most desirable improvement for ag
ricultural soil development. Even one STMC significantly increased 
OM content, Ks, and decreased Bd. The incorporation of STMC of com
bined sustainable practices presented in this study may be considered 
a soil improvement tool since the adoption of these practices had a cu
mulative positive effect on soil physical parameters. Since all organic 
amendments were applied in a confounding manner to mimic the over
all effect of a sustainable agricultural system (i.e., they were not varied 
independently of each other), it is difficult to establish which specific 
amendment had the greatest effect on soil physical properties. Simi
larly, it is difficult to establish which of the OM components (total OM, 
HA, MB-C or MB-N) had the strongest influence on AS and associated 
physical properties. The fraction which best correlated with AS was 
HA, but HA also co-varied strongly with other indicators such as total 
OM and microbial C and N, which introduces confounding elements. 
Organic matter was the key element that triggered the betterment ef
fect of our treatments, but the HA fraction had the strongest influence 
on AS. The production of stable aggregates positively influenced the 
other physical parameters assessed in this study by modifying pore 
size distribution. These results point out the importance of OM man
agement in agroecosystems. However, regardless of the specific mech
anisms involved, this study clearly shows that organic amendments 
can have very strong positive effects on soil physical properties, which 
influence agronomical factors that can enhance crop yields. Effects on 
yields are documented in a companion paper (Pagán-Roig et al., 2016). 
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