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Abstract: Nuclear Power has been available as a relatively clean and reliable energy source 

for several decades. While tokamak engines have been in existence almost as long as 

successful fission-powered nuclear generators, they have not yet reached operational success 

for energy generation. This meta study collates key fusion device parameters and determines 

ideas on the applicability of fusion devices for energy. This paper supports the argument that 

toroidal tokamaks are not limited by volume whereas spherical designs have a potential 

volume limit, spherical tokamaks use a lower magnetic field current than toroidal tokamaks. 

Further scientific and engineering progress is required before tokamak devices can be a 

viable technology to be used for energy generation. 
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1. Introduction 

Tokamak reactors are experimental power generators that use thermonuclear fusion to generate 

energy [1, 2]. While progress on the technology is slow due to many factors, achieving fusion power is 

highly desirable because its fuel, hydrogen, is functionally limitless as hydrogen is the most plentiful 

element in the universe [3], it has no hazardous by-products [4, 5], and if it malfunctions, the reaction 

would simply destabilise and stop [6, 7]. 

Nuclear fusion was discovered to be possible in the 1930’s [8], and has been heavily studied and 

applied in areas such as energy generation [9, 10, 11] and weapons development [12, 13] with varying 

success. The idea that would later become the tokamak reactor was first suggested by Oleg Lavrentiev, 

and later made reality by Soviet physicists Igor Tamm and Andrei Sakharov in the 1950’s [14]. 

In a tokamak reactor, the fusion reaction takes place within a steel constructed vacuum chamber 

[15, 16, 17], either toroidal or spherical in design. This chamber is surrounded by magnetic coils in 

toroidal and poloidal configurations, which generate the magnetic field with sufficient strength to 

contain the plasma, the combination of the two magnetic field orientations causes an induced magnetic 

field in the form of a directional plasma current, maintaining the plasma flow within the magnetic field 

(as seen in diagram 1) and preventing collision with the outer wall [18, 19, 20]. The inside of the 

chamber is usually lined with a heat-resistive element, such as lead, lithium, and boron to help the 

chamber withstand the intense heat generated by the plasma [21, 22, 23]. Tokamak reactors use the 

isotopes of hydrogen, deuterium and tritium, in a fusion reaction to produce helium. [24, 25, 26] The 

reaction is initiated by firing a neutron beam into the chamber to heat, and thus excite the hydrogen 

ions for fusion to take place, while also accelerating the particles further. [27, 28, 29] The reaction is 

initiated and maintained by applying immense atmospheric pressure inside the chamber, this forces the 

atoms together in a similar fashion as gravity in a naturally occurring fusion reaction within a star [30, 

31, 32]. Continual engineering and scientific challenges that face the design of fully operational 

tokamaks for energy generation are extensive. Major examples include issues such as the interior 

coatings used are not currently able to withstand the extreme plasma temperatures for extended periods 

[33, 34], the magnetic confinement field is difficult to keep strong enough whilst still able to 

dynamically change with the continuous plasma reaction [35, 36] and the pressure inside the chamber 

is unstable largely for similar reasons [37, 38]. 
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Diagram 1. basic image of a toroidal tokamak reactor [14] 

 

While tokamaks show great potential, there are many hurdles associated with the technology. These 

problems not only affect the confinement of the plasma; they also affect the stability of the plasma. 

The viability of this technology is under debate [39, 40], as while these generators have been tested 

since the 1950’s [41, 42], a fully functional reactor, that being one that can sustain an economically 

viable amount of energy production, has never been successfully built. 

High confinement mode plasma (H-Mode) plasma is the most stable type of plasma [43, 44], while 

it has been achieved, it cannot be sustained for more than a few minutes at most in tokamak fusion 

devices [45]. H-mode is when magnetically contained plasma is heated until it goes from a state of 

low-containment (L-Mode) to H-Mode state and becomes more stable [46, 47]. This stability of the 

reaction is also what causes the plasma to destabilise as the fusion of hydrogen creates helium, which 

is heavier than hydrogen, and throws off the balance of the pressure in the chamber [48]. 

 

2. Methods  

The meta study into the applicability of fusion reactors as a technology for energy generation was 

undertaken with the decision made that magnetic confinement fusion devices would be the main focus 

of our investigations.  

The scientific databases used to search for reactors includes Scopus, ResearchGate, Google Scholar 

and Web of Science Core collection using keywords such as ‘tokamak’, ‘fusion’ and names of 

operational tokamaks found in preliminary research. The data collected only includes measured 
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tokamak design parameters from papers on experimentally built tokamaks and excludes theoretical 

data. We did not discriminate devices based upon year in which they were built or published, however 

referenced background information was preferred to have been published within the past fifteen years. 

 

To proceed with the research on the tokamak design parameters, the data was compiled into a 

spreadsheet and sorted based upon either spherical or toroidal plasma chamber designs. The 

parameters were then analysed to determine any correlations that could be found between them with 

particular emphasis on Plasma Current, Volume and applied magnetic field. A study into the 

significance of the vacuum chamber as a variable in other aspects of the design parameters was 

undertaken with the assumption that all devices had uniform geometry. The equations that follow 

illustrate what geometrical assumptions were made for toroidal and spherical geometries respectively. 

  

𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = (𝜋𝜋𝑎𝑎2)(2𝜋𝜋𝑅𝑅2)   

𝑉𝑉𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �
4
3
𝜋𝜋𝑅𝑅3� − �𝜋𝜋𝑎𝑎2(2𝑅𝑅)� 

 

Where ‘R’ and ‘a’ are considered the major and minor radii respectively. All calculations were 

performed in Microsoft Office Excel 2016.  

 

3. Results 

3.1 Toroidal and Spherical Tokamak data points 

The tokamak design parameters obtained are listed against their respective device in order of the 

calculated assumed volumes. Tabulated data has been included for selected parameters to increase the 

clarity of the results and to match said parameters with their respective device without reducing the 

visibility of the graphical results. Parameters listed include name of the tokamak fusion device, major 

device radius R measured in metres, minor device radius a measured in metres, toroidal magnetic field 

strength BT measured in Teslas, Plasma current IP measured in mega amperes and calculated assumed 

volume V in cubic metres. In addition to the data set listed below, additional parameters including fusion 

power, mean electron density and calculated aspect ratio were obtained how they have not been included 

as there were not analysed for the purpose of inclusion in this meta report. 
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Table 1. Table volume, toroidal magnetic field and plasma current of Toroidal Tokamaks [49-72] 

 

 
  

 
 
 
Table 2. Table volume, toroidal magnetic field and plasma current of Spherical Tokamaks [73-93] 
 

Device R (m) a (m) BT (T) IP 
(MA) 

V (m3) 

Medusa-
CR 

0.14 0.1 0.5 0.04 0.02029 

GUTTA 0.16 0.084 1.5 0.15 0.024251 

GLAST 0.2 0.1 0.4 0.05 0.046077 

ST25 0.25 0.125 0.2 0.02 0.089994 

LATE 0.25 0.2 0.12 0.004 0.128282 

ETE 0.3 0.2 0.8 0.44 0.188496 

HIT 0.3 0.2 0.46 0.15 0.188496 

CPD 0.3 0.2 0.3 0.15 0.188496 

SUNIST 0.3 0.23 1.15 0.05 0.212811 

 
 

3.2 Plasma current against toroidal magnetic field strength analysis 

Data points contained in the following series of graphs depict parameters listed in the above tables 

for each respective tokamak fusion device.  

Device R (m) a (m) BT 
(T) 

IP 
(MA) 

V (m3) 

GOLEM 0.4 0.085 0.8 0.025 0.057046 

EGYPTOR 0.3 0.1 1.2 0.1 0.059218 

ISTTOK 0.46 0.085 0.6 0.1 0.065603 

STOR-M 0.46 0.12 0.15 0.004 0.130753 

IR-T1 0.45 0.125 1 0.04 0.138791 

COMPASS 0.56 0.21 2.1 0.4 0.48748 

Alcator C-
Mod 

0.67 0.22 8.1 2 0.640103 

SST-1 1.1 0.2 3 0.22 0.868525 

ADITYA 0.75 0.25 0.9 0.08 0.925275 

TEXT 1.05 0.255 1.8 0.16 1.347719 

FTU 0.935 0.3 8 1.6 1.661054 

Device R (m) a (m) BT (T) IP 
(MA) 

V (m3) 

HT-7 1.22 0.29 2.5 0.25 2.025282 

EAST 1.75 0.4 2 0.5 5.526978 

TCV 0.88 0.7 1.4 1.2 8.511547 

KSTAR 1.8 0.5 3.5 2 8.882644 

DIII-D 1.74 0.56 1.9 1.1 10.77098 

ASDEX 1.65 0.8 3.1 2 20.8446 

Tore 
Supra 

2.25 0.7 9 1.7 21.76248 

TFTR 3.1 0.96 6 3 56.39413 

UCLA-
ET 

5 1 0.25 0.045 98.69604 

JET 2.96 2.1 3.45 3.2 257.6677 

Device R 
(m) 

a (m) BT 
(T) 

IP 
(MA) 

V (m3) 

START 0.32 0.26 0.4 0.25 0.273176 

Globus-
M 

0.36 0.24 0.65 0.5 0.32572 

UTST 0.39 0.24375 0.3 0.31 0.394066 

LTX 0.4 0.27 0.4 0.4 0.4513 

FBX-II 0.47 0.33 0.5 0.1 0.756485 

Pegasus 0.45 0.375 0.18 0.3 0.779311 

QUEST 0.68 0.4 0.25 0.02 2.0007 

KTM 0.9 0.45 1 0.75 4.198739 

NSTX-
U 

0.934 0.6227 1 2 5.688485 
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Figure 3. Plasma Current (IP) vs Toroidal Magnetic field (BT) where the Plasma current is measured 

in mega Amps (MA) and magnetic field in Teslas (T). Graph 3a, which is on the right, is based on 
conventional tokamaks whereas 3b, which is on the left, is based on spherical tokamaks. The outlier in 

3b is NSTX-U with an IP of 2MA. 
 
3.3 Volume against plasma current analysis 

 
Figure 4. Toroidal Tokamak Volume vs Plasma current with IP in (MA) and V in (m3). Graph 4a, 

which is on the right, is based on conventional tokamaks whereas 4b, which is on the left, is based on 
spherical tokamaks. The outliers for 4a are UCLA-ET with an IP of 0.045MA and a volume of 98.7m3. 

 
 

4. Discussion 

The tokamak machine radius parameters for often varied between journal articles by around 

±0.05m, this increases the uncertainty in our volume assumptions however based on the variety of 

results any observed trends should only be affected by a negligible amount. In addition to the 

assumption that all geometries of both spherical and toroidal geometries are the same throughout their 

respective machine type designs, the assumption was also applied that any inserts or technology 

differences such as Langmuir probes or variances in materials used for the chamber coating or heat 

shield. 

In addition to the varying measurements, data on the tokamaks often had to be taken from more 

than one paper as the required parameters were not always reported from a singular source.   

Additionally, it should be noted that spherical tokamaks have not been practically researched to the 

same degree as traditional torus shaped designs, this is not represented in our research as we have 
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obtained an amount of data on the parameters of spherical designs that is similar to the torus tokamak 

data obtained. Furthermore, the data used is not indicative of the parameters of the machines at the 

present but it only an indication as to the parameters of the machine used in the research papers listed, 

this means that any changes to the parameters over time are not represented in our analysis but could 

be the subject of further research.   

During the fusion reaction in the tokamaks, there is an increasing change in enthalpy as the 

hydrogen is converted to helium and neutral beams, or electron cyclotron heating, increase the speed 

and temperature of the reaction which also increases the density and pressure. The reaction speed is 

also increased by the magnetic field coils as the current in the magnetic coils is increased until it 

reaches a maximum [94]. The variation between the time taken for the tokamaks to reach the 

maximum coil current is dependent on each tokamak design parameters and varies between them. 

4.1 Plasma current and toroidal magnetic field 

4.1.1 Conventional tokamak 

The trend suggested Figure 3a shows a possible parabolic relationship between the plasma current 

and the magnetic field, with a maximum magnetic field turning point around 6 Tesla's with an 

equivalent current of 3 MA. This correlates with the theoretical aspect of plasma physics in which to 

maintain the plasma current, it operates in pulse mode until the poloidal coils reach their maximum 

current. When the maximum current is reached, induction of the plasma current ceases. To increase the 

current induction efficiency for conventional tokamaks, superconducting coils are used, as seen in the 

Tore Supra [32] which has a BT of 9T. 

4.1.2 Spherical tokamak 

The tighter magnetic field of spherical tokamaks compared to conventional tokamaks seem to point 

to an outcome that spherical tokamaks can achieve a higher plasma pressure. This is seen in Figure 3b 

where the spherical magnetic field range of the coils is between 0.12-1.5T, whereas in comparison to 

the conventional tokamak in Figure 3a, the toroidal magnetic field range is between 0.15-9T. 

However, the outlying plasma current factor tokamak NSTX-U does not follow the trend as it has a 
plasma current of 2MA which is greater than the more frequently observed values of plasma current 
strength in spherical tokamaks. This could potentially be because the NSTX-U has a greater volume 
and can therefore allow for a greater plasma current. 

 
4.2 Plasma current and volume 

4.2.1 Conventional tokamaks 

Torus shaped tokamaks have a larger area from their inherent shape, than a spherical tokamak. As 

seen in figure 4a, the increase in plasma current for volume is linear. The equation for this is 

y=30.729x-5.173, hence the increase is measurable at about 30 cubic meters for every Mega Ampere. 
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For this reason, it is recommended that future generation tokamaks be larger size to for a larger desired 

plasma current output. 

The exception to this being the UCLA-ET, with the second largest measured volume of currently 

operational Tokamak. Although it has a large volume of 98.7m3, due to parameters such as its weaker 

magnetic field strength of 0.25T, UCLA-ET has a lower induced plasma current of 0.045MA. JET 

however, is the world’s largest tokamak for its volume as seen in the upper right corner of figure 4a, is 

a perfect example of proportionality expected with volume and plasma current. 

4.2.2 Spherical tokamak 

Spherical tokamaks are designed to operate using smaller chamber volumes. Since the coils need to 

be cooled to maintain efficiency, if the volume is too large, the coils will not be cooled sufficiently as 

they pass through the narrow core and the plasma current will not be maintained well due to decreased 

efficiency of the magnetic coils. In figure 4b, the volumes are between 0.2-5.7m3 which differ greatly 

to conventional tokamaks which range between 0.13-258m3. Although the relationship seems linear, 

that is due to the lower volumes used for the spherical tokamaks. Increasing the volume further than 

what has been shown in figure 4b will likely show a curved graph with the gradient decreasing until it 

reaches a point where the heat affecting the coils passing through the narrow core is too great and the 

combined magnetic fields are no longer at angle to maintain the motion of the plasma inside the 

reactor, inhibiting the reactor’s operation. 

The points on the graph that appear to be outliers are not deemed as outliers as the parameters per 

tokamak differ, affecting the plasma current induction and maintenance. Not all the parameters that 

affect the plasma current are mentioned in the tables above, such as the temperature of the system. 

Another point to be noted is due to the vast difference in range between spherical and conventional 

tokamaks, the graph points for spherical tokamaks will appear to have greater variance than what is 

expected. It would be recommended to accommodate for the overheating of the coils in order to 

manage spherical tokamaks with larger volumes. 

5. Conclusion 

Energy generation via the use of nuclear technology has been a triumph of modern science however 

fusion based nuclear power from tokamak reactors has not yet been accomplished with any large scale 

practical application outside scientific research. There is a trend of spherical tokamak fusion devices to 

be developed with small scale operating parameters. Tokamaks of the traditional torus design have a 

peak in their ability to generate plasma current as the size increases, supporting the argument that 

toroidal tokamaks are not limited by volume whereas spherical have a potential volume limit. Further 

scientific engineering needs to be developed further upon before tokamak devices will be a viable 

technology to be used for energy generation. 
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