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Abstract: We prove that a system of N fermions interacting with an additional particle
via point interactions is stable if the ratio of the mass of the additional particle to the one
of the fermions is larger than some criticalm∗. The value ofm∗ is independent of N and
turns out to be less than 1. This fact has important implications for the stability of the
unitary Fermi gas. We also characterize the domain of the Hamiltonian of this model,
and establish the validity of the Tan relations for all wave functions in the domain.

1. Introduction

Models of particles with point interactions are ubiquitously used in physics as an ide-
alized description whenever the range of the interparticle interactions is much shorter
than other relevant length scales. They were introduced in the early days of quantum
mechanics as models of nuclear interactions [2,3,14,35,38], but have proved useful in
other branches of physics, like polarons (see [17] and references there) and cold atomic
gases [40].While the two-particle problem ismathematically completely understood [1],
for more than two particles the existence of a self-adjoint Hamiltonian that is bounded
from below and models pairwise point interactions is a challenging open problem. It is
known that such a Hamiltonian can only exist for fermions with at most two components
(or two different species of fermions), due to the Thomas effect [5,30,35,39].

For N ≥ 2, we consider here a system of N (spinless) fermions of mass 1, interacting
with another particle of mass m via point interactions. The latter are characterized by
a parameter α ∈ R, where −1/α is proportional to the scattering length of the pair
interaction [1]. Purely formally, the Hamiltonian of the system can be thought of as

H = − 1

2m
�x0 − 1

2

N∑

i=1

�xi + γ

N∑

i=1

δ(x0 − xi ), (1.1)

where xi ∈ R
3, and γ represents an infinitesimal coupling constant. Models of this kind

have been studied extensively in the literature (see, e.g., [6–11,13,15,18–23,28,37])

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268226952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-017-2980-0&domain=pdf


330 T. Moser, R. Seiringer

and can be defined via a suitable regularization procedure. More precisely, the formal
expression (1.1) can be given a meaning in terms of a suitable quadratic form [7,10,15],
which will be introduced in the next section. However, only in case the quadratic form
is stable, i.e., bounded from below, does it give rise to a unique self-adjoint operator and
hence gives a precise meaning to (1.1). We are interested in this question of stability.
We shall show that there exists a critical mass m∗, independent of N , such that stability
holds for m > m∗. The value of m∗ is determined by a two-dimensional optimization
problem of a certain analytic function. A numerical evaluation of the expression yields
m∗ ≈ 0.36.

In particular, the system under consideration is stable for m = 1. This latter case is
of particular importance, in view of constructing a model of a gas of spin 1/2 fermions
close to the unitary limit, where the scattering length becomesmuch larger than the range
of the interactions. For N + 1 such fermions, our result can be interpreted as proving
the existence of such a model in the sector of total spin (N − 1)/2, i.e., 1 less than the
maximal value. Of course stability holds trivially in the sector of total spin (N + 1)/2,
since the particles do not interact in this case due to the total antisymmetry of the spatial
part of the wave functions. We note that stability in other spin sectors is still an open
problem, whose solution would be of great interest because of the relevance of the model
for cold atomic gases (see [40] and references there). For its solution, it is necessary
to understand the problem of stability for general systems of N + M particles mutually
interacting via point interactions. In the case N = M = 2, a numerical analysis suggests
stability, see [19] for the case m = 1 and [12] for the full range of mass ratios where
stability for the 2 + 1 problem holds, i.e., for 0.0735 < m < (0.0735)−1 ≈ 13.6 [5].

2. Model and Main Results

Because of translation invariance, it is convenient to separate the center-of-mass motion

and to introduce relative coordinates X =
(
mx0 +

∑N
i=1 xi

)
/(m + N ), yi = xi − x0

for 1 ≤ i ≤ N in the usual way. With their aid we can formally write the operator H in
(1.1) as H = Hcm + m+1

2m Hrel, where Hcm = −(2(m + N ))−1�X and

Hrel = −
N∑

i=1

�yi − 2

m + 1

∑

1≤i< j≤N

∇yi · ∇y j + γ̃

N∑

i=1

δ(yi ) (2.1)

for γ̃ = 2mγ /(m + 1). The latter operator acts on purely anti-symmetric functions of N
variables only.

The formal expression (2.1) can be given a meaning in terms of a suitable quadratic
form [7,10,15], which will be introduced in the next subsection.

2.1. Quadratic form and stability. The model under consideration here is defined via a
quadratic form Fα as follows. For μ > 0 and qi ∈ R

3, 1 ≤ i ≤ N , let

G(q1, . . . , qN ) :=
⎛

⎝
N∑

i=1

q2i +
2

m + 1

∑

1≤i< j≤N

qi · q j + μ

⎞

⎠
−1

(2.2)

The quadratic form Fα has the domain

D(Fα) =
{
u ∈ L2

as(R
3N ) | u = w + Gξ,w ∈ H1

as(R
3N ), ξ ∈ H1/2

as (R3(N−1))
}

(2.3)



Stability of a Fermionic N + 1 Particle System 331

where Gξ is short for the function with Fourier transform

Ĝξ(q1, . . . , qN ) = G(q1, . . . , qN )

N∑

i=1

(−1)i+1ξ̂ (q1, . . . , qi−1, qi+1, . . . , qN ) (2.4)

and the subscript “as” indicates functions that are antisymmetric under permutations.
For u ∈ D(Fα), we have

Fα(u) =
〈
w

∣∣∣∣−
∑N

i=1
�i − 2

m + 1

∑
1≤i< j≤N

∇i · ∇ j + μ

∣∣∣∣w
〉
− μ ‖u‖2L2(R3N )

+ N
(
α ‖ξ‖2L2(R3(N−1))

+ Tdiag(ξ) + Toff(ξ)
)

(2.5)

where

Tdiag(ξ) :=
∫

R3(N−1)
|ξ̂ (s, 	q)|2L(s, 	q) ds d	q

Toff(ξ) := (N − 1)
∫

R3N
ξ̂∗(s, 	q)ξ̂ (t, 	q)G(s, t, 	q) ds dt d	q (2.6)

We introduced 	q := (q1, . . . , qN−2) for short, and the function L is given by

L(q1, . . . , qN−1) := 2π2

⎛

⎝m(m + 2)

(m + 1)2

N−1∑

i=1

q2i +
2m

(m + 1)2
∑

1≤i< j≤N−1

qi · q j + μ

⎞

⎠
1/2

(2.7)
Note that since Gξ 
∈ H1(R3N ) for ξ 
= 0, the decomposition of u as u = w + Gξ is
unique. Moreover, while w depends on μ, ξ is independent of the choice of μ.

Clearly Tdiag(ξ) is bounded above and below by ‖ξ‖2
H1/2(R3(N−1))

, and also Toff(ξ)

is bounded in H1/2(R3(N−1)) (see Sect. 3). One readily checks that both D(Fα) and
Fα(u) are actually independent ofμ forμ > 0, even though Tdiag(ξ) and Toff(ξ) depend
on μ. The domain D(Fα) is also independent of α ∈ R. Moreover, under the scaling
u → uλ( · ) = λ3N/2u(λ · ) for λ > 0, Fα changes as Fα(uλ) = λ2Fλ−1α(u). In
particular, F0 is homogeneous of order 2 under scaling.

The quadratic form Fα can be obtained as a limit of a suitably regularized version of
(2.1), see [10] and [7, Appendix A]. As we shall see in the next subsection, the parameter
α equals −2π2/a, where a denotes the scattering length of the pair interaction. We note
that other choices for quadratic forms are possible in the unitary case α = 0 for small
mass m, see [8].

To state our main result, we define, for any m > 0,

	(m)

= sup
s,K∈R3,Q>0

s2 + Q2

π2(1 + m)

m(s, K , Q)−1/2

∫

R3

1

t2

m(t, K , Q)−1/2

× |(s+AK ) · (t+AK )|
[
(s+AK )2+(t + AK )2+ m

1+m (Q2+AK 2)
]2 −

[
2

(1+m)
(s+AK ) · (t+AK )

]2 dt

(2.8)
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where A := (2 + m)−1 and


m(s, K , Q) :=
(

m

(m + 1)2
(s + K )2 +

m

m + 1
(s2 + Q2)

)1/2

(2.9)

A somewhat simpler, equivalent expression for	(m), involving only the supremumover
two positive parameters, will be given in Sect. 7. We shall show in Sect. 6 that 	(m) is
finite, and satisfies the upper bound

	(m) ≤ 4(1 + m)2(2 + 4m + m2)3/2√
2π [m(m + 2)]3

(2.10)

Note that (2.10) implies, in particular, that limm→∞ 	(m) = 0.
Our first main result is the following:

Theorem 1. For any ξ ∈ H1/2
as (R3(N−1)), μ > 0 and N ≥ 2,

Toff(ξ) ≥ −	(m)Tdiag(ξ) (2.11)

In particular, if m is such that 	(m) < 1, then Fα is closed and bounded from below by

Fα(u) ≥
{
0 for α ≥ 0

−
(

α
2π2(1−	(m))

)2 ‖u‖2
L2(R3N )

for α < 0
(2.12)

for all u ∈ D(Fα).

We note that (2.12) follows immediately from (2.11) in combination with the
simple estimate Tdiag(ξ) ≥ 2π2√μ‖ξ‖2

L2(R3(N−1))
. For α < 0, one simply chooses

μ = α2(2π2(1 − 	(m))−2, using the independence of Fα(u) of μ. As a closed and
bounded from below quadratic form, Fα gives rise to a unique self-adjoint operator [27,
Thm. VIII.15] for 	(m) < 1. We shall describe it in detail in the next subsection.

The lower bound (2.12) is sharp as m → ∞. For α < 0, −(α/2π2)2 equals the
binding energy of the two-particle problem with point interactions. As m → ∞, only
one of the fermions can be bound, hence the ground state energy becomes independent
of N in that limit.

We emphasize that in contrast to the previous work [7,9] we prove a bound on the
critical mass that is independent of N and, in particular, does not grow as N gets large.
Also the lower bound (2.12) is independent of N .

We shall prove Theorem 1 in Sect. 4 below. The right side of (2.10) turns out to be
less than 1 for m ≥ 1.76, and hence stability holds in that region. For m = 1, it equals
about 2.47, however, and is larger than 1 as a result of the rather crude bounds leading
to (2.10).

In Sect. 7 we evaluate 	(m) numerically and show that it satisfies 	(1) < 1. In fact,
from the numerics we shall see that 	(m) < 1 if m ≥ 0.36 (see Fig. 1). Recall that Fα

is known to be unbounded from below [7, Thm. 2.2] for any N ≥ 2 for m ≤ 0.0735. In
particular, the critical mass for stability satisfies 0.0735 < m∗ < 0.36.
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Fig. 1. Numerical evaluation of 	(m) defined in (2.8). In the region 	(m) < 1, we prove stability of the
system. Asymptotically, 	(m) ≈ 1/(2

√
2m) for large m (and in fact, approximately within a few percent

in the whole region m � 1). For 	1(m) < 1, we prove that the domain of the operator � in (2.13) equals
H1
as(R

3(N−1)). Moreover, for 	2(m) < 1 the boundary condition in (2.18) implies that for every function in

the domain of Hα one has ξ ∈ H3/2
as (R3(N−1))

2.2. Hamiltonian. For 	(m) < 1, Theorem 1 implies that

Tdiag(ξ) + Toff(ξ) = 〈ξ |�ξ 〉 (2.13)

defines a positive selfadjoint operator � on L2
as(R

3(N−1)), with domain D(�) ⊂
H1/2
as (R3(N−1)). In fact,

� ≥ (1 − 	(m)) L ≥ (1 − 	(m)) 2π2√μ (2.14)

where L is short for the multiplication operator in momentum space defined by (2.7).
It is not difficult to see that H1

as(R
3(N−1)) ⊂ D(�) (see Sect. 3), but this inclusion

could possibly be strict. In fact, it was shown in [22,24] in the case N = 2 that �

is not selfadjoint on H1 for certain small m, but admits a one-parameter family of
semi-bounded self-adjoint extensions. In contrast, the following theorem implies that
D(�) = H1

as(R
3(N−1)) for larger m, more precisely for 	1(m) < 1, which is slightly

more restrictive than our regime of stability, 	(m) < 1.
To state our result, we define, analogously to (2.8), for β ≥ 0 and m > 0,

	β(m)

= sup
s,K∈R3,Q>0

s2 + Q2

π2(1 + m)

∫

R3

1

t2

(

m(s, K , Q)(β−1)/2


m(t, K , Q)(β+1)/2
+


m(t, K , Q)(β−1)/2


m(s, K , Q)(β+1)/2

)

× |(s + AK ) · (t + AK )|
[
(s + AK )2 + (t + AK )2 + m

1+m (Q2 + AK 2)
]2 −

[
2

(1+m)
(s + AK ) · (t + AK )

]2 dt

(2.15)

Note that the integrand in (2.15) is increasing and convex in β, hence 	β(m) is, as
a supremum over such functions, also increasing and convex. We have 	β(m) ≥
	0(m) = 2	(m). We shall show in Sect. 6 that 	β(m) is finite for β < 3 and sat-
isfies limm→∞ 	β(m) = 0. In particular, from the convexity it then follows that 	β(m)

is continuous in β for 0 ≤ β < 3.
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Theorem 2. For any ξ ∈ H1
as(R

3(N−1)), μ > 0 and N ≥ 2,

‖�ξ‖2L2(R3(N−1))
≥ (1 − 	1(m)) ‖Lξ‖2L2(R3(N−1))

(2.16)

In particular, if 	1(m) < 1, then D(�) = D(L) = H1
as(R

3(N−1)). More generally, for
0 ≤ β ≤ 2,

‖L(β−1)/2�ξ‖2L2(R3(N−1))
≥ (

1 − 	β(m)
) ‖L(β+1)/2ξ‖2L2(R3(N−1))

(2.17)

for all ξ ∈ H (β+1)/2
as (R3(N−1)).

The proof of Theorem 2 will be given in Sect. 5. A numerical evaluation of 	β(m)

yields 	1(m) < 1 for m ≥ 0.72, while 	2(m) < 1 for m ≥ 0.82 (see Fig. 1).
In terms of D(�), the self-adjoint operator Hα defined by the quadratic form Fα in

(2.5) can be constructed in a straightforward way following the analogous construction
in the two-dimensional case in [10, Sect. 5] (see also [7,15,22,24,34]). The result is

D(Hα) =
{
u ∈ L2

as(R
3N ) | u = w + Gξ,w ∈ H2

as(R
3N ), ξ ∈ D(�),

w �yN=0 = (2π)−3/2(−1)N+1(α + �)ξ
}

(2.18)

and Hα acts on u ∈ D(Hα) as

(Hα + μ) u =
⎛

⎝−
N∑

i=1

�yi − 2

m + 1

∑

1≤i< j≤N

∇yi · ∇y j + μ

⎞

⎠w (2.19)

Note that as an H2-function,w has an L2-restriction to the hyperplane yN = 0, and the
last identity in (2.18) has to be understood as an identity of functions in L2

as(R
3(N−1)).

In fact, the restriction of the H2-function w to the hyperplane yN = 0 is an H1/2

function, and hence we conclude that for any u ∈ D(Hα), the corresponding ξ satisfies
�ξ ∈ H1/2. The last part of Theorem 2 thus implies that for	2(m) < 1, ξ is necessarily
in H3/2.

The last identity in (2.18) encodes the boundary condition satisfied by functions
u ∈ D(Hα) at the origin. To see this, consider the behavior of the function Gξ as
yN → 0 or, equivalently, the integral of (2.4) over qN in a large ball. A short calculation
using (2.4) shows that

lim
K→∞

∫

|qN |<K

(
Ĝξ(q1, . . . , qN ) − 1

q2N
(−1)N+1ξ̂ (q1, . . . qN−1)

)
dqN

=
∫

R3

(
G(q1, . . . , qN )

N−1∑

i=1

(−1)i+1ξ̂ (q1, . . . , qi−1, qi+1, . . . , qN )

)
dqN

+ (−1)N+1ξ̂ (q1, . . . qN−1) lim
K→∞

∫

|qN |<K

(
G(q1, . . . , qN ) − 1

q2N

)
dqN

= (−1)N �̂ξ(q1, . . . , qN−1) (2.20)
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where we have used that

L(q1, . . . , qN−1) = − lim
K→∞

∫

|qN |<K

(
G(q1, . . . , qN ) − 1

q2N

)
dqN (2.21)

We conclude that the boundary condition in (2.18) implies that any u ∈ D(Hα) has the
asymptotic behavior

∫

|qN |<K
û(q1, . . . , qN ) dqN ≈ (4πK + α) (−1)N+1ξ̂ (q1, . . . , qN−1) as K → ∞.

(2.22)
In particular, u diverges as 2π2/|yN |+α as |yN | → 0, and hence α is to be interpreted as
α = −2π2/a with a the scattering length of the point interaction. A precise formulation
of this divergence in configuration space will be given in Proposition 1 in the next
subsection.

As in the case of the corresponding quadratic form, Hα is independent of the
parameter μ used in its construction. Under a unitary scaling of the form Uλψ( · ) =
λ3(N+1)/2ψ(λ · ), it transforms asU−1

λ HαUλ = λ2Hλ−1α . Note that in contrast to D(Fα),
the domain D(Hα) does depend on α.

2.3. Tan relations. In [31–33], Tan derived a number of identities that should hold for
any system of particles with point interactions (see also the review [4] and the references
there). These can be experimentally tested, see [16,25,26,29,36]. In this section,we shall
present a rigorous version of the Tan relations for the Hamiltonian Hα constructed in
the last subsection. The analysis in this section does not actually use the self-adjointness
and analogous results also hold for the general N +M system, irrespective of its stability
and the self-adjointness of the corresponding Hα . We shall work with the assumption
ξ ∈ H1, however, which is guaranteed to be the case for 	1(m) < 1, by Theorem 2.

In order to state the results, we have to re-introduce the center-of-mass motion. The
Hilbert space for the N + 1 system is thus L2(R3) ⊗ L2

as(R
3N ), and the form domain of

the corresponding quadratic form, which we denote by Fα , equals

D(Fα) =
{
ψ = φ + Gξ | φ ∈ H1(R3) ⊗ H1

as(R
3N ), ξ ∈ H1/2(R3) ⊗ H1/2

as (R3(N−1))
}

(2.23)
where

G(k0, k1, . . . , kN ) :=
(

1

2m
k20 +

1

2

N∑

i=1

k2i + μ

)−1

, (2.24)

Gξ is short for the function with Fourier transform

Ĝξ(k0, k1, . . . , kN )

= G(k0, k1, . . . , kN )

N∑

i=1

(−1)i+1ξ̂ (k0 + ki , k1, . . . , ki−1, ki+1, . . . , kN ) (2.25)

and, compared to (2.3), we have absorbed a factor m+1
2m into the definition of ξ for

simplicity. For ψ ∈ D(Fα), we have
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Fα(ψ) =
〈
φ

∣∣∣∣∣−
1

2m
�x0 − 1

2

N∑

i=1

�xi + μ

∣∣∣∣∣φ
〉

− μ ‖ψ‖2L2(R3(N+1))

+ N

(
2m

m + 1
α ‖ξ‖2L2(R3N )

+ Tdiag(ξ) + Toff(ξ)

)
(2.26)

where

Tdiag(ξ) :=
∫

R3N
|ξ̂ (k0, k1, 	k)|2L(k0, k1, 	k) dk0 dk1 d	k

Toff(ξ) := (N − 1)
∫

R3(N+1)
ξ̂∗(k0 + s, t, 	k)ξ̂ (k0 + t, s, 	k)G(k0, s, t, 	k) dk0 ds dt d	k

(2.27)

and we used 	k = (k2, . . . , kN−1) for short. The function L is given by

L(k0, k1, . . . , kN−1) := 2π2
(

2m

m + 1

)3/2
(

k20
2(m + 1)

+
1

2

N−1∑

i=1

k2i + μ

)1/2

(2.28)

Theorem 1 implies that

Toff(ξ) ≥ −	(m)Tdiag(ξ) for all ξ ∈ H1/2(R3) ⊗ H1/2
as (R3(N−1)). (2.29)

To see this, one can either mimic the proof of Theorem 1, or one simply argues as
follows. Displaying the dependence on μ explicitly via a superscript in the expressions
for Tdiag/off and Tdiag/off in (2.6) and (2.27), respectively, it is straightforward to check
that

T μ
diag/off(ξ) = 2m

m + 1

∫

R3
T μ̃P
diag/off(ηP ) dP (2.30)

where μ̃P = 2m
m+1 (μ + P2

2(m+N )
) and

η̂P (q1, . . . , qN−1) = ξ̂

(
m+1
m+N P −

∑N−1

j=1
q j , q1 + 1

m+N P, . . . , qN−1 + 1
m+N P

)

(2.31)
which is in H1/2

as (R3(N−1)) for almost every P ∈ R
3. Since the bound (2.11) is uniform

in μ, (2.29) follows.
Analogously to the discussion in the previous subsection, for 	(m) < 1 the

quadratic form Tdiag(ξ)+Toff(ξ) defines a positive self-adjoint operator �̃ on L2(R3)⊗
L2
as(R

3(N−1)). Explicitly, �̃ acts as

̂̃
�ξ(k0, k1, . . . , kN−1)

= L(k0, k1, . . . , kN−1)ξ̂ (k0, k1, . . . , kN−1)

+
N−1∑

j=1

(−1) j+1
∫

R3
G(k0 − s, s, k1, . . . , kN−1)

× ξ̂ (k0 + k j − s, s, k1, . . . , k j−1, k j+1, . . . , kN−1) ds (2.32)
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Theorem 2 implies that the domain D(�̃) equals H1(R3) ⊗ H1
as(R

3(N−1)) in the case
	1(m) < 1. The domain of the self-adjoint operatorHα corresponding to the quadratic
form Fα is given by those ψ ∈ D(Fα) where φ ∈ H2(R3) ⊗ H2

as(R
3N ), ξ ∈ D(�̃) and

the boundary condition

φ �xN=x0=
(−1)N+1

(2π)3/2

(
2mα

m + 1
+ �̃

)
ξ (2.33)

is satisfied. The Hamiltonian Hα acts as

(Hα + μ) ψ =
(

− 1

2m
�x0 − 1

2

N∑

i=1

�xi + μ

)
φ (2.34)

It commutes with translations and rotations, and transforms under scaling in the same
way as discussed for Hα at the end of the previous subsection.

The connection between the boundary condition (2.33) and the asymptotic behavior
of ψ ∈ D(Hα) as |xN − x0| → 0 is explored in the following proposition, whose proof
will be given in Sect. 8.

Proposition 1. For any ψ ∈ D(Hα) with ξ ∈ H1(R3N ), we have

ψ
(
R + r

1+m , x1, . . . , xN−1, R − mr
1+m

)

=
(
2π2

|r | + α

)
2m

m + 1

(−1)N+1

(2π)3/2
ξ(R, x1, . . . xN−1)

+ υ(R, x1, . . . , xN−1, r) (2.35)

with υ( · , r) ∈ L2(R3N ) for all r ∈ R
3, and limr→0 ‖υ( · , r)‖L2(R3N ) = 0.

Proposition 1 immediately implies a two-term asymptotics for the two-particle den-
sity

ρ(r) = N
∫

R3N

∣∣ψ
(
R + r

1+m , x1, . . . , xN−1, R − mr
1+m

)∣∣2 dR dx1 · · · dxN−1 (2.36)

as r → 0. In fact, ρ satisfies

ρ(r) = π

2

(
1

|r |2 − 2

|r |a
)
C + g(r) with lim

r→0
|rg(r)| = 0 (2.37)

where a = −2π2/α denotes the scattering length and

C =
(

2m

m + 1

)2

N‖ξ‖2L2(R3N )
(2.38)

In the physics literature, C is called the contact [31–33]. It turns out to play a crucial
role in various other relevant quantities, as we shall demonstrate now.

For general ψ ∈ L2(R3) ⊗ L2
as(R

3N ), the momentum densities of the mass m (spin
up) particle n↑(k) and of the mass 1 (spin-down) particles n↓(k) are defined as

n↑(k) =
∫

R3N
|ψ̂(k, k1, . . . , kN )|2 dk1 · · · dkN ,

n↓(k) = N
∫

R3N
|ψ̂(k0, k, k2, . . . , kN )|2 dk0 dk2 · · · dkN (2.39)

Our rigorous formulation of the Tan relation for the energy is as follows.
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Theorem 3. For ψ ∈ D(Hα) with ξ ∈ H1(R3N ), let C be given in (2.38), and let

p↑ = 2m

m + 1
‖ξ‖−2

L2(R3N )

∫

R3N
k1|ξ̂ (k1, . . . , kN )|2 dk1 · · · dkN , p↓ = 1

m
p↑. (2.40)

Then

k �→ k2n↑(k) − C
|k − p↑|2 ∈ L1(R3) and k �→ k2n↓(k) − C

|k − p↓|2 ∈ L1(R3)

(2.41)
and we have the identity

〈ψ |Hαψ〉 =
∫

R3

[
1

2m

(
k2n↑(k) − C

|k − p↑|2
)
+
1

2

(
k2n↓(k) − C

|k − p↓|2
)]

dk

−m + 1

2m
Cα (2.42)

Since C, p↑ and p↓ are uniquely determined by the momentum densities via (2.41),
Eq. (2.42) expresses the energy solely in terms of the momentum densities. The set of
possible momentum densities arising from wave functions ψ ∈ D(Hα) is not known,
however, and can be expected to depend in a complicated way on both α and N .

The contact C thus determines the asymptotic behavior of both n↑(k) and n↓(k), via
n↑(k) ≈ n↓(k) ≈ C|k|−4 for large |k|. In fact, up to terms decaying faster than |k|−5,
we have for large |k|

n↑(k) + n↓(k) ≈ C
|k|2|k − p↑|2 +

C
|k|2|k − p↓|2 ≈ C

|k − P|4 (2.43)

for P = 1
2 (p↑ + p↓) = ‖ξ‖−2

L2(R3N )

∫
R3N k1|ξ̂ (k1, . . . , kN )|2 dk1 . . . dkN . Note also that

due to the fact that limK→∞
∫
|k|<K (|k|−2 − |k − p|−2) dk = 0 for any p ∈ R

3, one can
rewrite the identity (2.42) as

〈ψ |Hαψ〉 = lim
K→∞

∫

|k|<K

[
k2

2m

(
n↑(k) − C

|k|4
)
+
k2

2

(
n↓(k) − C

|k|4
)]

dk

−m + 1

2m
Cα (2.44)

For any stationary state, the contact C can be computed as the derivative of the energy
with respect to α, by the Feynman-Hellmann principle. In fact, for fixed ψ (and hence
fixed ξ ),

∂

∂α
Fα(ψ) = m + 1

2m
C (2.45)

Note that it is important to use the quadratic form formulation here, as the domain of
Hα depends on α and hence ψ cannot be fixed when taking the derivative of 〈ψ |Hαψ〉
with respect to α. Note also the minus sign in front of the last term in (2.42); a naive
derivative of (2.42) would give the wrong sign!

The L1-property (2.41) claimed in Theorem 3 does not make use of the boundary
condition (2.33) satisfied by ψ ∈ D(Hα) and holds more generally, in fact. The identity
(2.42) only holds forψ satisfying (2.33), however; i.e., it holds for all functionsψ in the
domain of Hα . (As already mentioned in the beginning of this section, self-adjointness
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ofHα on this domain is not actually needed here. In particular, Theorem 3 holds for all
m > 0.)

The equations (2.37), (2.41), (2.42) and (2.45) can be interpreted as a rigorous for-
mulation of the Tan relations introduced in [31–33]. There is actually one more relation,
a virial type theorem. It is an immediate consequence of the relation U−1

λ HαUλ =
λ2Hλ−1α for scaling the variables by λ > 0 and we shall not discuss it further here.

The proof of Theorem 3 will be given in Sect. 9.

3. Preliminaries

Before giving the proof of the results in the previous section, we collect here a few
auxiliary facts that will be used in the proofs.

Lemma 1. The operator σ on L2(R3) with integral kernel

σ(s, t) = (s2 + 1)(β−1)/4(t2 + 1)−(β+1)/4 1

s2 + t2 + λs · t + 1
(3.1)

is bounded for −2 < λ < 2 and −2 < β < 2.

Proof. We use the Schur test in the form

‖σ‖ ≤ 1

2
sup
s

h(s)
∫

R3
h(t)−1 (|σ(s, t)| + |σ(t, s)|) dt (3.2)

for any positive function h, which is a consequence of the Cauchy-Schwarz inequality.
Since |λ| < 2, a pointwise estimate of the kernel reduces the problem to the case λ = 0.
Choosing h(t) = (t2 + 1)γ one easily checks that the right side of (3.2) is finite if and
only if (1 + |β|)/4 < γ < (5 − |β|)/4. ��

In the special case β = 0, Lemma 1 can be used to show that, for some
c > 0, |Toff(ξ)| ≤ c(N − 1)Tdiag(ξ) for all ξ ∈ H1/2

as (R3(N−1)). In particular, Fα

is well-defined on its domain (2.3). Similarly, ‖L(β−1)/2�ξ‖L2(R3(N−1)) is finite for

ξ ∈ H (β+1)/2
as (R3(N−1)) for 0 ≤ β < 2. For β = 1, this implies that the domain of

� contains H1
as(R

3(N−1)).

Lemma 2. The operator σ on L2(R3) with integral kernel

σ(s, t) =
(

(s2 + ν)(β−1)/4

(t2 + ν)(β+1)/4
+

(t2 + ν)(β−1)/4

(s2 + ν)(β+1)/4

)
1

s2 + t2 + λs · t + 1
(3.3)

is bounded and non-negative for −2 < β < 2, ν ≥ 1/2 and −2 < λ ≤ 0.

Proof. Boundedness follows immediately from Lemma 1. For β = 0, positivity can be
deduced from the integral representation

(
t2 + s2 + λs · t + 1

)−1 =
∫ ∞

0
e−r(1+λ/2)t2e−r(1+λ/2)s2erλ(t−s)2/2e−r dr , (3.4)
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noting that −2 < λ ≤ 0 and that the Gaussian has a positive Fourier transform. We are
thus left with proving positivity for β 
= 0. Without loss of generality, we may assume
β > 0, since σ is invariant under the transformation β → −β. To this aim, we use

x−β/2 = cβ

∫ ∞

0

1

x + r
r−β/2 dr (3.5)

with cβ = π−1 sin
(

π
2 β

)
for x > 0 and 0 < β < 2 to rewrite the kernel as

σ(s, t) = cβ(s2 + ν)(β−1)/4(t2 + ν)(β−1)/4

×
∫ ∞

0

(
1

s2 + ν + r
+

1

t2 + ν + r

)
r−β/2

s2 + t2 + λs · t + 1
dr (3.6)

Let us rewrite the integrand further as

r−β/2 1

s2 + ν + r

1

t2 + ν + r

s2 + t2 + 2(ν + r)

s2 + t2 + λs · t + 1

= r−β/2 1

s2 + ν + r

1

t2 + ν + r

(
1 +

2(ν + r) − 1 − λs · t
s2 + t2 + λs · t + 1

)
(3.7)

Using again (3.4), as well as 2(ν + r) ≥ 1 and λ ≤ 0, we see that (3.7) defines a
non-negative operator. This completes the proof. ��

Lemma 3. Consider the bounded operator σ on L2(R3) with integral kernel given by
(3.3) for −2 < β < 2, ν ≥ 1/2 and 0 ≤ λ < 2. Its positive and negative parts are the
operators with kernels

σ+(s, t) = 1

2
(σ (s, t) + σ(s,−t))

σ−(s, t) = −1

2
(σ (s, t) − σ(s,−t)) (3.8)

respectively.

Proof. Let R denote the reflection operator (Rϕ)(s) = ϕ(−s) for ϕ ∈ L2(R3). The
operators R and σ clearly commute. Moreover, the product σ R equals the operator with
integral kernel (3.3) and λ replaced by −λ, which was shown to be non-negative in
Lemma 2. One readily checks that this implies that the positive and negative parts of σ

are given by

σ± = ±1

2
σ (1 ± R) , (3.9)

respectively. In fact, clearly σ+σ− = σ−σ+ = 0, and σ± = 1
2σ R(1 ± R), which is a

product of two commuting nonnegative operators. ��
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4. Proof of Theorem 1

We assume N ≥ 3 and define, for fixed 	q ∈ R
3(N−2) and −2 < β < 2, an operator τβ

on L2(R3) via the quadratic form

〈ϕ|τβ |ϕ〉 = 1

2

∫

R6
ϕ∗(s)ϕ(t)

(
L(s, 	q)(β−1)/2

L(t, 	q)(β+1)/2
+
L(t, 	q)(β−1)/2

L(s, 	q)(β+1)/2

)
G(s, t, 	q) ds dt

(4.1)
where L and G are defined in (2.7) and (2.2), respectively. Let K := ∑N−2

i=1 qi , and
recall that A = 1/(m + 2). The following observation is key to our further investigation.
We shall need it here for β = 0 only, but state it more generally for later use in the proof
of Theorem 2.

Lemma 4. The operator τβ defined in (4.1) is bounded on L2(R3). Its positive and
negative parts, τβ

±, are the operators with integral kernels

τ
β
+ (s, t; 	q) = 1

4

(
L(s, 	q)(β−1)/2

L(t, 	q)(β+1)/2
+
L(t, 	q)(β−1)/2

L(s, 	q)(β+1)/2

)
(G(s, t, 	q) + G(s,−t − 2AK , 	q))

τ
β
−(s, t; 	q) = −1

4

(
L(s, 	q)(β−1)/2

L(t, 	q)(β+1)/2
+
L(t, 	q)(β−1)/2

L(s, 	q)(β+1)/2

)
(G(s, t, 	q) − G(s,−t − 2AK , 	q))

(4.2)

respectively.

Proof. Let Q2 := ∑N−2
i=1 q2i , and define λ := 2/(m + 1). A simple calculation shows

that
G(s − AK , t − AK , 	q)−1 = t2 + s2 + λs · t + C (4.3)

where
C = C(	q) = m

m + 1

(
AK 2 + Q2

)
+ μ (4.4)

Similarly,

L(s − AK , 	q) = 2π2
(
m(m + 2)

(m + 1)2
s2 + C

)1/2

(4.5)

In particular, after a unitary translation by AK , the operator τβ becomes the operator σ

with integral kernel

σ(s, t) = m + 1

4π2

([
m(m + 2)s2 + (m + 1)2C

](β−1)/4

[
m(m + 2)t2 + (m + 1)2C

](β+1)/4

+

[
m(m + 2)t2 + (m + 1)2C

](β−1)/4

[
m(m + 2)s2 + (m + 1)2C

](β+1)/4

)

×
(
t2 + s2 + λs · t + C

)−1
(4.6)

After a simple rescaling of the variables by
√
C , this is exactly of the form (3.3), with

ν = (m + 1)2/(m(m + 2)) > 1/2 (in fact, > 1). Hence boundedness of σ follows from
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Lemma 1. Moreover, Lemma 3 applies, which states that the positive and negative parts
of σ are given by

σ± = ±1

2
σ (1 ± R) , (4.7)

where R denotes reflection. Undoing the unitary translation by AK , this leads to the
statement of the lemma. ��

For ξ ∈ H1/2
as (R3(N−1)),wedefineϕ ∈ L2

as(R
3(N−1))byϕ(s, 	q) = L(s, 	q)1/2ξ̂ (s, 	q).

Then Tdiag(ξ) = ‖ϕ‖2
L2(R3(N−1))

, and

Toff(ξ) = (N − 1)
∫

R3N
ϕ∗(s, 	q)ϕ(t, 	q)L(s, 	q)−1/2L(t, 	q)−1/2G(s, t, 	q) ds dt d	q

≥ −(N − 1)
∫

R3N
ϕ∗(s, 	q)ϕ(t, 	q)τ 0−(s, t; 	q) ds dt d	q (4.8)

where we simply dropped the positive part of the operator τ 0 appearing on the right side.
Its negative part, τ 0−, is explicitly identified in Lemma 4. To proceed, we use the fact that
ϕ is antisymmetric. We introduce

τ̃−(s, 	q, t, 	
) = τ 0−(s, t; 	q)δ(	q − 	
) (4.9)

for 	
 ∈ R
3(N−2), and rewrite the term on the right side of (4.8) as

(N − 1)
∫

R3N
ϕ∗(s, 	q)ϕ(t, 	q)τ 0−(s, t; 	q) ds dt d	q

=
N−2∑

i=0

∫

R6(N−1)
ϕ∗(s, 	q)ϕ(t, 	
)τ̃−(qi , q̂i , 
i , 
̂i ) ds dt d	q d	
 (4.10)

where q̂i = (q1, . . . , qi−1, s, qi+1, . . . , qN−2) and 
̂i = (
1, . . . , 
i−1, t, 
i+1, . . . , 
N−2)

for 1 ≤ i ≤ N − 2, as well as q0 = s, q̂0 = 	q , 
0 = t , 
̂0 = 	
. To bound this last
expression, we use the Schwarz inequality, as in (3.2), to obtain

(4.10) ≤ ‖ϕ‖2L2(R3(N−1))
sup
s,	q

h(s, 	q)

N−2∑

i=0

∫

R3(N−1)
h(t, 	
)−1|τ̃−(qi , q̂i , 
i , 
̂i )| dt d	


(4.11)
for any positive function h. Assume that h is symmetric with respect to permutations.
Inserting the special structure (4.9), the expression on the right side of (4.11) then equals

‖ϕ‖2L2(R3(N−1))
sup
s,	q

h(s, 	q)

N−2∑

i=0

∫

R3
h(t, q̂i )

−1|τ 0−(qi , t; q̂i )| dt (4.12)

We shall choose h(s, 	q) = s2
∏N−2

j=1 q2j in (4.12). The resulting bound is then
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(4.10) ≤ ‖ϕ‖2L2(R3(N−1))
sup
s,	q

N−2∑

i=0

∫

R3

q2i
t2

|τ 0−(qi , t; q̂i )| dt

≤ ‖ϕ‖2L2(R3(N−1))
sup
s,	q

(
s2 + Q2

)
max

0≤i≤N−2

∫

R3

1

t2
|τ 0−(qi , t; q̂i )| dt (4.13)

where we again use the notation Q2 = ∑N−2
i=1 q2i , as in the proof of Lemma 4. Since for

any 1 ≤ i ≤ N − 2, s2 + Q2 is symmetric under exchange of s and qi , we can drop the
maximum over i when taking the supremum over s and 	q , and simply take i = 0 (or
any other value of i , in fact). We thus arrive at

(4.10) ≤ ‖ϕ‖2L2(R3(N−1))
sup
s,	q

(
s2 + Q2

) ∫

R3

1

t2
|τ 0−(s, t; 	q)| dt (4.14)

To complete the proof of (2.11), we need to show that the term multiplying
‖ϕ‖2

L2(R3(N−1))
= Tdiag(ξ) on the right side of (4.14) is bounded by 	(m). Recall the

explicit expression of τ 0−(s, t; 	q), given in (4.2) above. We have

|τ0−(s, t; 	q)| = 1

π2(1 + m)

(
m

(m + 1)2
(s + K )2 +

m

m + 1
(s2 + Q2) + μ

)−1/4

×
(

m

(m + 1)2
(t + K )2 +

m

m + 1
(t2 + Q2) + μ

)−1/4

× |(s + AK ) · (t + AK )|
[
(s + AK )2 + (t + AK )2 + m

1+m (Q2 + AK 2) + μ
]2 −

[
2

(1+m)
(s + AK ) · (t + AK )

]2

(4.15)

For an upper bound, we can replace μ by 0. Moreover, we can replace the supremum
over 	q ∈ R

3(N−2) by a supremum over all Q > 0 and K ∈ R
3. This yields (2.11).

To complete the proof of Theorem 1, we have to show that Fα is closed for	(m) < 1.
This was already proved in [7, Thm. 2.1], we include the proof here for completeness.
Given a sequence un ∈ D(Fα) with ‖un − um‖L2(R3N ) → 0 and Fα(un − um) → 0
as n,m → ∞, we need to show that there exists a u ∈ D(Fα) with limn→∞ ‖un −
u‖L2(R3N ) = 0 and limn→∞ Fα(un − u) = 0. We choose any μ > 0 for α ≥ 0, and
μ > α2(2π(1 − 	(m))−2 for α < 0. For such a choice, writing un = wn + Gξn , the
bound (2.11) implies that ‖wn − wm‖H1(R3N ) → 0 and ‖ξn − ξm‖H1/2(R3(N−1)) → 0
as n,m → ∞, and hence wn → w and ξn → ξ for some w and ξ , respectively, in
the corresponding norms. Since ‖G(ξn − ξm)‖L2(R3N ) ≤ const ‖ξn − ξm‖L2(R3(N−1)), un
converges to u = w + Gξ in L2(R3N ). Moreover, since |Fα(un − u)| is bounded from
above by const (‖wn − w‖2

H1(R3N )
+ ‖ξn − ξ‖2

H1/2(R3(N−1))
) (compare with the remark

after Lemma 1 in Sect. 3), the result follows. ��
Remark 1. It is worth pointing out that the antisymmetry of the wave functions enters
our proof of stability in three different ways. The first two concern the very definition
of the model. First, there are no point interactions among the N particles of mass 1
themselves, due to the antisymmetrywhich forces thewave functions to vanish at particle
coincidences. Second, the term Toff in the definition (2.5) of the quadratic form Fα enters
with a plus sign, while it would have a minus sign for bosons. This fact is crucial, as it
allows to work with the negative part of the operator τ 0 in (4.1) instead of the positive
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part, which is larger. And third, we use the symmetry to replace the factor (N − 1) by a
sum over particles in (4.10).

This last step would also work for bosons, only the symmetry of the absolute value
of the wave functions is important. For the first two points, however, the antisymmetry
is crucial. In the bosonic case, there is instability for any N ≥ 2 and any 0 < m < ∞
[5,30,39] (a fact known as the Thomas effect [35]). While Toff can be bounded from
below by −Tdiag, as Theorem 1 shows, it is in fact known that Toff(ξ) ≤ Tdiag(ξ) is false
for suitable ξ for any m [7].

5. Proof of Theorem 2

Let us define the operator J by � = L + J , i.e., Toff(ξ) = 〈ξ |Jξ 〉 for ξ ∈ H1
as(R

3(N−1)).
For 0 ≤ β < 2, we have

‖L(β−1)/2�ξ‖2L2(R3(N−1))
= ‖L(β+1)/2ξ‖2L2(R3(N−1))

+ 〈ξ |(J Lβ + Lβ J )ξ 〉 + ‖L(β−1)/2 Jξ‖2L2(R3(N−1))

≥ ‖L(β+1)/2ξ‖2L2(R3(N−1))
+ 〈ξ |(J Lβ + Lβ J )ξ 〉 (5.1)

for all ξ ∈ H (β+1)/2
as (R3(N−1)). The result (2.17) thus follows if we can show that

〈ξ |(J Lβ + Lβ J )ξ 〉 ≥ −	β(m)‖L(β+1)/2ξ‖2L2(R3(N−1))
(5.2)

With ϕ = L(β+1)/2ξ this reads, equivalently,

〈ϕ|(L−(β+1)/2 J L(β−1)/2 + L(β−1)/2 J L−(β+1)/2)ϕ〉 ≥ −	β(m)‖ϕ‖2L2(R3(N−1))
(5.3)

for all ϕ ∈ L2
as(R

3(N−1)). The left side equals

(N − 1)
∫

R3N
ϕ̂∗(s, 	q)ϕ̂(t, 	q)

(
L(t, 	q)(β−1)/2

L(s, 	q)(β+1)/2
+
L(s, 	q)(β−1)/2

L(t, 	q)(β+1)/2

)
G(s, t, 	q) ds dt d	q

(5.4)
where 	q ∈ R

3(N−2) and L and G are defined in (2.7) and (2.2), respectively.
The above integral over s and t , for fixed 	q , is the expectation of (twice) the operator

τβ defined in (4.1). Lemma 4 identifies its negative and positive parts. Dropping the
latter, we thus have

(5.4) ≥ (N − 1)
∫

R3N
ϕ̂∗(s, 	q)ϕ̂(t, 	q)

(
L(t, 	q)(β−1)/2

L(s, 	q)(β+1)/2
+
L(s, 	q)(β−1)/2

L(t, 	q)(β+1)/2

)

× 1

2
(G(s, t, 	q) − G(s,−t − 2AK , 	q)) ds dt d	q (5.5)

The remainder of the proof proceeds in exactly the sameway as in the proof ofTheorem1,
Eqs. (4.9)–(4.14), and we shall not repeat it here. The result is (2.17), for any 0 ≤ β < 2.
The limiting case β = 2 is then obtained by monotone convergence, using that 	β(m)

is convex and thus continuous in β. (Note that for β = 2, the left side of (2.17) need not
be finite, a priori.) ��
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6. Upper Bound on �β(m)

In this section we shall prove an upper bound on	β(m). While only the case 0 ≤ β ≤ 2
is of interest here, our bound is actually valid for all 0 ≤ β < 3. We start with proving
the bound (2.10) on 	(m). Recall the definitions of 	(m) and 
m in (2.8) and (2.9),
respectively, as well as A = (2 + m)−1. We shall use that


m(s, K , Q) ≥
√
m(m + 2)

m + 1
|s + AK | (6.1)

and that

[
(s + AK )2 + (t + AK )2 +

m

1 + m
(Q2 + AK 2)

]2 −
[

2

(1 + m)
(s + AK ) · (t + AK )

]2

≥ m(m + 2)

(1 + m)2

[
(s + AK )2 + (t + AK )2 +

m

1 + m
(Q2 + AK 2)

]2

≥ m(m + 2)

(1 + m)2

[
m(2 + m)

2 + 4m + m2 (s2 + t2) +
m

1 + m
Q2

]2
(6.2)

Together with the simple bound

|s + AK |1/2|t + AK |1/2 ≤
√
1

2
(s + AK )2 +

1

2
(t + AK )2 (6.3)

this gives

	(m) ≤ (1 + m)2√
2π2 [m(m + 2)]3/2

sup
s∈R3,Q>0

∫

R3

1

t2
s2 + Q2

[
m(2+m)

2+4m+m2 (s2 + t2) + m
1+m Q2

]3/2 dt

= 4(1 + m)2(2 + 4m + m2)3/2√
2π [m(m + 2)]3

sup
s∈R3,Q>0

s2 + Q2

s2 + 2+4m+m2

(2+m)(1+m)
Q2

(6.4)

Since 2 + 4m + m2 > (2 + m)(1 + m), the last supremum equals 1, and we obtain the
bound (2.10).

The same strategy can be used to derive an upper bound on 	β(m) in (2.15), for
β ≤ 1. Instead of (6.3), one uses

|s + AK |(1+β)/2|t + AK |(1−β)/2 + |s + AK |(1−β)/2|t + AK |(1+β)/2

≤
√
2(s + AK )2 + 2(t + AK )2 (6.5)

(which follows fromconvexity of the exponential function, xy ≤ 1
p x

p+ 1
q y

q for x, y ≥ 0,

p > 1, 1
p + 1

q = 1), resulting in

	β(m) ≤ 4
√
2(1 + m)2(2 + 4m + m2)3/2

π [m(m + 2)]3
for β ≤ 1. (6.6)

For 1 < β < 3, we need an upper bound on 
m , and we shall simply use


m(s, K , Q) ≤
√

(s + AK )2 +
m

m + 1
(Q2 + AK 2) (6.7)



346 T. Moser, R. Seiringer

For a lower bound, we shall use (6.1) for one power of 
m , and


m(s, K , Q) ≥
√

m

m + 1
(s2 + Q2) (6.8)

for the remaining 

(β−1)/2
m . This leads to

	β(m) ≤ 1

π2

(m + 1)(β+7)/4

m(β+5)/4(2 + m)3/2
sup

s∈R3,Q>0

∫

R3

1

t2

(
1

|t |(β−1)/2
+

1

(s2 + Q2)(β−1)/4

)

× s2 + Q2

[
m(2+m)

2+4m+m2 (s2 + t2) + m
1+m Q2

](7−β)/4
dt

= 4

π

(m + 1)(β+7)/4

m3(2 + m)(13−β)/4

(
2 + 4m + m2

)(7−β)/4
(

2

3 − β
+

√
π

2

�((5 − β)/4)

�((7 − β)/4)

)

(6.9)

for 1 < β < 3, where� denotes the gamma-function in the last expression. In particular,
	β(m) is finite for β < 3, and decays at least like m−1 for large m.

7. Numerical Evaluation of �β(m)

Recall the definition of 	(m) in (2.8). In order to obtain a numerical value for 	(m),
it is convenient to simplify this expression a bit. As a first step, we claim that, given
s, the supremum over K in (2.8) is attained at some K of the form K = −bs for
0 ≤ b ≤ 1/A = 2 + m. To see this, we substitute s̃ = s + AK , t̃ = t + AK , and rewrite
(2.8) as

	(m) = sup
s̃,K∈R3,Q>0

(s̃ − AK )2 + Q2

π2(1 + m)

(
m(m + 2)

(m + 1)2
s̃2 +

m

m + 1
(Q2 + AK 2)

)−1/4

×
∫

R3

1

(t̃ − AK )2

(
m(m + 2)

(m + 1)2
t̃2 +

m

m + 1
(Q2 + AK 2)

)−1/4

×
∣∣s̃ · t̃∣∣

[
s̃2 + t̃2 + m

1+m (Q2 + AK 2)
]2 −

[
2

(1+m)
s̃ · t̃

]2 dt̃ (7.1)

Since the term on the last line is invariant under the reflection t̃ �→ −t̃ , the integral above
is equal to

∫

R3

t̃2 + A2K 2

(t̃2 + A2K 2)2 − 4A2(t̃ · K )2

(
m(m + 2)

(m + 1)2
t̃2 +

m

m + 1
(Q2 + AK 2)

)−1/4

×
∣∣s̃ · t̃∣∣

[
s̃2 + t̃2 + m

1+m (Q2 + AK 2)
]2 −

[
2

(1+m)
s̃ · t̃

]2 dt̃ (7.2)

When optimizing over the orientation of s̃ and K , the very first factor after the supremum
in (7.1) is clearly largest if s̃ and K are antiparallel. That the same is true for the integral
(7.2) is the content of the following lemma, whose proof is an easy exercise.
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Lemma 5. Let f and g be measurable functions on [−1, 1] that are non-negative, even,
and increasing on [0, 1]. For a, b ∈ S

2,
∫

S2
f (ω · a)g(ω · b) dω (7.3)

is largest if a and b are either parallel or antiparallel (as vectors in R
3).

Proof. We can represent the functions f and g by their level sets, and write

(7.3) =
∫

S2×R
2
+

χ{ f>x}(ω · a)χ{g>y}(ω · b) dω dx dy (7.4)

The support of the function ω �→ χ{ f >x}(ω · a) consists of the union of two spherical
caps, centered at ±a, respectively, and similarly for χ{g>y}(ω · b). If ±a is parallel to
b, the integral over S2 in (7.4) (for fixed x and y) is clearly largest, since one of the
characteristic functions simply equals 1 on the support of the other in this case. This
completes the proof. ��

The angular part of the integral in (7.2) is exactly of the form (7.3). We thus conclude
that we can restrict the supremum in (7.1) to the set where K = −κ s̃ for some κ ≥ 0
or, equivalently, K = −bs for some 0 ≤ b = κ/(1 + κA) ≤ 1/A.

To evaluate	(m), we thus have to find the supremum over s̃ ∈ R
3, κ ≥ 0 and Q ≥ 0

of

s̃2(1 + κA)2 + Q2

π2(1 + m)

(
m(m + 2)

(m + 1)2
s̃2 +

m

m + 1
(Q2 + Aκ2s̃2)

)−1/4

×
∫

R3

t̃2 + A2κ2s̃2

(t̃2 + A2κ2s̃2)2 − 4A2κ2(t̃ · s̃)2
(
m(m + 2)

(m + 1)2
t̃2 +

m

m + 1
(Q2 + Aκ2s̃2)

)−1/4

×
∣∣s̃ · t̃∣∣

[
s̃2 + t̃2 + m

1+m (Q2 + Aκ2s̃2)
]2 −

[
2

(1+m)
s̃ · t̃

]2 dt̃ (7.5)

After carrying out the angle integration, this becomes

2
s̃2(1 + κA)2 + Q2

π(1 + m)

(
m(m + 2)

(m + 1)2
s̃2 +

m

m + 1
(Q2 + Aκ2s̃2)

)−1/4

×
∫ ∞

0

t2

t2 + A2κ2s̃2

(
m(m + 2)

(m + 1)2
t2 +

m

m + 1
(Q2 + Aκ2s̃2)

)−1/4

× |s̃|t
[
s̃2 + t2 + m

1+m (Q2 + Aκ2s̃2)
]2

ln(1 − λ1) − ln(1 − λ2)

λ2 − λ1
dt (7.6)

where

λ1 = 4A2κ2t2s̃2

(t2 + A2κ2s̃2)2
, λ2 = 4

(m + 1)2
t2s̃2

(t2 + s̃2 + m
m+1 (Q

2 + Aκ2s̃2))2
(7.7)

By the overall scale invariance, we can set s̃2 = 1, and hence we are left with two
parameters to optimize over, Q ≥ 0 and κ ≥ 0 or, equivalently, 0 ≤ b ≤ 1/A = 2 + m.
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Fig. 2. Numerical evaluation of the expression (7.6) (for s̃2 = 1),whosemaximal value is	(1). Themaximum
is attained at Q = 0 and b ≈ 0.82, and has a value 	(1) ≈ 0.34

It is not difficult to see that (7.6) tends to zero as Q → ∞ (uniformly in b) and thus
the optimization is effectively over a compact set. The result of a numerical integration
of (7.6) in the case m = 1 is shown in Fig. 2. The supremum is attained at Q = 0
and b ≈ 0.82, and equals 	(1) ≈ 0.34. In particular, it is less than 1. Moreover, the
numerical evaluation yields 	(m) < 1 for all m ≥ 0.36, i.e., the critical mass for
stability is less than 0.36, as shown in Fig. 1.

The same analysis applies to 	β(m) in (2.15). For β = 1 and β = 2, the graph of
these functions is plotted in Fig. 1.

8. Proof of Proposition 1

Let ψ ∈ D(Hα), and consider the partial Fourier transform

η(P, k1, . . . , kN−1, r)

= 1

(2π)3/2

∫

R3
ψ̂

( m
1+m P + q, k1, . . . , kN−1,

1
1+m P − q

)
eir ·q dq (8.1)

With the aid of (2.25) and (2.28)–(2.33) we can write

η(P, k1, . . . , kN−1, r) =
(
2π2

|r | + α

)
2m

m + 1

(−1)N+1

(2π)3/2
ξ̂ (P, k1, . . . kN−1)

+
3∑

j=1

κ j (P, k1, . . . , kN−1, r) (8.2)
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where

κ1(P, k1, . . . , kN−1, r)

= 1

(2π)3/2

∫

R3
φ̂
( m
1+m P + q, k1, . . . , kN−1,

1
1+m P − q

) (
eir ·q − 1

)
dq (8.3)

and

κ2(P, k1, . . . , kN−1, r)

= 1

(2π)3/2

∫

R3
G
( m
1+m P + q, k1, . . . , kN−1,

1
1+m P − q

) (
eir ·q − 1

)

×
N−1∑

j=1

(−1) j+1ξ̂
( m
1+m P + q + k j , k1, . . . , k j−1, k j+1 . . . , kN−1,

1
1+m P − q

)
dq

(8.4)

Introducing the function f (t) = t−1(e−t − 1 + t) for t > 0 we further have

κ3(P, k1, . . . , kN−1, r) = (−1)N+1

(2π)3/2
f

( |r |
2π2

1 + m

2m
L(P, k1, . . . , kN−1)

)

× L(P, k1, . . . , kN−1)ξ̂ (P, k1, . . . kN−1) (8.5)

Since φ ∈ H2(R3(N+1)), one readily checks that limr→0 ‖κ1( · , r)‖L2(R3N ) = 0.
Moreover, since ξ ∈ H1(R3N ) by assumption, limr→0 ‖κ3( · , r)‖L2(R3N ) = 0 by dom-
inated convergence, using limt→0 f (t) = 0. The same holds true for κ2 if we can show
that

∫

R3
G
( m
1+m P + q, k1, . . . , kN−1,

1
1+m P − q

)

×
∣∣∣ξ̂

( m
1+m P + q + k1, k2, . . . , kN−1,

1
1+m P − q

)∣∣∣ dq (8.6)

is an L2(R3N ) function. For this purpose, pick a function ν ∈ L2(R3)⊗L2
as(R

3(N−1)) and
integrate the expression (8.6) against ν(P, k1, . . . kN−1). After a change of integration
variables, this gives

∫

R3(N+1)
ν(k0 + kN , k1, . . . , kN−1)G (k0, k1, . . . , kN )

×
∣∣∣ξ̂ (k0 + k1, k2, . . . , kN )

∣∣∣ dk0 dk1 · · · dkN (8.7)

Since ξ ∈ H1(R3N ) by assumption, Lemma 1 (for β = 1) implies that (8.7) is finite.
This shows that also ‖κ2( · , r)‖L2(R3N ) goes to 0 as r → 0, and thus completes the proof
of Proposition 1. ��
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9. Proof of Theorem 3

We start with n↑. For ψ = φ + Gξ ∈ D(Hα), we have

k2n↑(k) − C
|k − p↑|2

= k2
∫

R3N
|φ̂(k, k1, k2, 	k)|2 dk1 dk2 d	k

− k2N (N − 1)
∫

R3N
G(k, k1, k2, 	k)2ξ̂∗(k + k1, k2, 	k)ξ̂ (k + k2, k1, 	k) dk1 dk2 d	k

+ N
∫

R3N

(
k2G(k, k1, k2, 	k)2 −

(
2m

m + 1

)2 1

|k − p↑|2
)

|ξ̂ (k + k1, k2, 	k)|2 dk1 dk2 d	k

+ 2k2N Re
∫

R3N
φ̂∗(k, k1, k2, 	k)G(k, k1, k2, 	k)ξ̂ (k + k1, k2, 	k) dk1 dk2 d	k (9.1)

where 	k ∈ R
3(N−2), as before. We write the right side as

∑4
j=1 M

↑
j (k), with M↑

j cor-

responding to the term on the j th line on the right side. The first term M↑
1 is clearly in

L1(R3). Using (2.24) the second term can be bounded as

|M↑
2 (k)| ≤ N (N − 1)

∫

R3N

4m

k21 + k22
|ξ̂ (k + k1, k2, 	k)||ξ̂ (k + k2, k1, 	k)| dk1 dk2 d	k (9.2)

After integrating over k and using the Cauchy-Schwarz inequality for the (k, 	k) integra-
tion, we get

∫

R3
|M↑

2 (k)| dk

≤ N (N − 1)
∫

R3N

4m

k21 + k22
‖ξ̂ ( · , k1)‖L2(R3(N−1))‖ξ̂ ( · , k2)‖L2(R3(N−1)) dk1 dk2

≤ 4mcN (N − 1)2‖ξ‖2H1/2(R3N )
(9.3)

where c equals the norm of the operator with integral kernel |k1|−1/2|k2|−1/2(k21 +k
2
2)

−1,
which can easily be shown to be finite (and, in fact, equals 2π2 [15, Lemma 2.1]).

Next we shall consider M↑
3 (k), which we rewrite as

M↑
3 (k) = N

∫

R3N

(
k2G(k, k1 − k, k2, k)2 −

(
2m

m + 1

)2 1

|k − p↑|2
)

×|ξ̂ (k1, k2, k)|2 dk1 dk2 dk (9.4)

Since ξ ∈ L2(R3N ), M↑
3 is clearly in L1

loc(R
3) and we only have to investigate its

behavior for large k. If we write

k2G(k, k1 − k, k2, 	k)2 −
(

2m

m + 1

)2 1

|k − p↑|2

=
(

2m

m + 1

)2 2

|k|4 k ·
(

2m

m + 1
k1 − p↑

)
+ R↑(k, k1, k2, 	k) (9.5)
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the first term on the right side gives zero after integration when inserted in (9.4), by the
definition of p↑ in (2.40). That is,

M↑
3 (k) = N

∫

R3N
R↑(k, k1, k2, 	k)|ξ̂ (k1, k2, 	k)|2 dk1 dk2 d	k (9.6)

Moreover, in the region where |k|2 ≥ const (μ + p2↑) we have

|R↑(k, k1, k2, . . . , kN )|

≤ const
1

|k|3

⎛

⎝μ + p2↑ +
N∑

j=1

k2j

⎞

⎠
1/2

min

⎧
⎪⎨

⎪⎩
1,

1

|k|

⎛

⎝μ + p2↑ +
N∑

j=1

k2j

⎞

⎠
1/2

⎫
⎪⎬

⎪⎭

(9.7)

for suitable constants. Ifwe integrate R↑ over k in this regionwe thus obtain an expression
that is bounded from above by const (μ + p2↑ +

∑N
j=1 k

2
j )
1/2 ln(1 +μ + p2↑ +

∑N
j=1 k

2
j ),

and we conclude, in particular, that ‖M↑
3 ‖L1(R3) ≤ const ‖ξ‖2

H1(R3N )
. Finally, using the

simple pointwise bound

|M↑
4 (k)| ≤ 4mN‖φ̂(k, · )‖L2(R3N )‖ξ‖L2(R3N ) (9.8)

and the assumption that φ ∈ H2(R3(N+1)), the Cauchy-Schwarz inequality readily
implies that M↑

4 ∈ L1(R3). This concludes the proof that k2n↑(k) − C|k − p↑|−2

is integrable.
Similarly we have for n↓

k2n↓(k) − C
|k − p↓|2 =

7∑

j=1

M↓
j (k) =

= Nk2
∫

R3N
|φ̂(k0, k, k2, k)|2 dk0 dk2 dk

− k2N (N − 1)(N − 2)
∫

R3N
G(k0, k, k2, . . . , kN )2ξ̂∗(k0 + k2, k, k3, . . . , kN )

× ξ̂ (k0 + k3, k, k2, k4, . . . , kN ) dk0 dk2 · · · dkN
− 2k2N (N − 1)

∫

R3N
G(k0, k, k2, k)

2ξ̂∗(k0 + k, k2, k)ξ̂ (k0 + k2, k, k) dk0 dk2 dk

+ k2N (N − 1)
∫

R3N
G(k0, k, k2, k)

2|ξ̂ (k0 + k2, k, k)|2 dk0 dk2 dk

+ N
∫

R3N

(
k2G(k0, k, k2, k)

2 −
(

2m

m + 1

)2 1

|k − p↓|2
)

|ξ̂ (k0 + k, k2, k)|2 dk0 dk2 dk

+ 2k2N Re
∫

R3N
φ̂∗(k0, k, k2, k)G(k0, k, k2, k)ξ̂ (k0 + k, k2, k) dk0 dk2 dk

+ 2k2N (N − 1)Re
∫

R3N
φ̂∗(k0, k, k2, k)G(k0, k, k2, k)ξ̂ (k0 + k2, k, k) dk0 dk2 dk (9.9)
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The terms M↓
1 , M

↓
2 , M

↓
3 , M

↓
5 and M↓

6 can be treated in the same way as the analogous

terms in (9.1) above. Eq. (9.6) holds with M↓
5 in place of M↑

3 with R↑ replaced by

R↓(k, k1, k2, 	k) = k2G(k1 − k, k, k2, 	k)2 −
(

2m

m + 1

)2 1

|k − p↓|2

−
(

2m

m + 1

)2 2

|k|4 k ·
(

2

m + 1
k1 − p↓

)
(9.10)

which also satisfies the bound (9.7). The expression M↓
4 equals

M↓
4 (k) = k2N (N − 1)

∫

R3N
G(k0 − k2, k, k2, 	k)2|ξ̂ (k0, k, 	k)|2 dk0 dk2 d	k (9.11)

Performing the integration over k2, one readily checks that

M↓
4 (k) ≤ const |k|N (N − 1)

∫

R3N
|ξ̂ (k0, k, 	k)|2 dk0 d	k (9.12)

which is in L1(R3) since ξ ∈ H1/2(R3N ). Finally, using Cauchy-Schwarz in (k, k2, 	k),
∫

R3
|M↓

7 (k)| dk ≤ 4N (N − 1)‖ξ‖L2(R3N )

∫

R3
‖φ̂(k0, · )‖L2(R3N ) dk0 (9.13)

which is finite for φ ∈ H2(R3(N−1)), as remarked above. We conclude, therefore, that
also k2n↓(k) − C|k − p↓|−2 is integrable.

Since all the terms in (9.1) and (9.9) are integrable, we can do the integration over
k term by term. For all the terms except M↑

3 and M↓
5 , we have actually shown that the

L1-property holds even if the respective integrands are replaced by their absolute value,
and hence we can freely use Fubini’s theorem for these terms. In the form (9.6) (and the
analogous expression for M↓

5 ) the same applies to M↑
3 and M↓

5 , in fact.
For the norm of ψ , we shall write

‖ψ‖2L2(R3(N+1))
=

4∑

j=1

n j = ‖φ‖2L2(R3(N+1))
+ 2Re〈φ|Gξ 〉

− N (N − 1)
∫

R3N
G(k0, k1, k2, 	k)2ξ̂∗(k0 + k1, k2, 	k)ξ̂ (k0 + k2, k1, 	k) dk0 dk1 dk2 d	k

+ N
∫

R3N
G(k0, k1, k2, 	k)2|ξ̂ (k0 + k1, k2, 	k)|2 dk0 dk1 dk2 d	k (9.14)

We have

∫

R3

(
1

2m
M↑

1 (k) +
1

2
M↓

1 (k)

)
dk + μn1 =

〈
φ

∣∣∣∣∣−
1

2m
�x0 − 1

2

N∑

i=1

�xi + μ

∣∣∣∣∣φ
〉

(9.15)

and
∫

R3

[
1

2m
M↑

2 (k) +
1

2

(
M↓

2 (k) + M↓
3 (k)

)]
dk + μn3 = −NToff(ξ) (9.16)
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Moreover, we claim that

∫

R3

[
1

2m
M↑

3 (k) +
1

2

(
M↓

4 (k) + M↓
5 (k)

)]
dk + μn4 = −NTdiag(ξ) (9.17)

To see this, note that we can replace M↑
3 (k) by its symmetrized version 1

2 (M
↑
3 (k) +

M↑
3 (−k)), and likewise for M↓

5 . Then (9.17) follows from the fact that

∫

R3

(
1

4m

(
R↑(k, k1, . . . , kN ) + R↑(−k, k1, . . . , kN )

)

+
1

4

(
R↓(k, k1, . . . , kN ) + R↓(−k, k1, . . . , kN )

)

+
1

2

∑N

j=2
k2jG(k1 − k, k, k2, . . . , kN )2

)
dk = −L(k1, . . . , kN ) (9.18)

which, in turn, uses that

∫

R3

(
2

|k|2 − 1

|k − p|2 − 1

|k + p|2
)

dk = 0 (9.19)

for any p ∈ R
3 (which can be proved, e.g., by computing the Fourier transform). Finally,

∫

R3

[
1

2m
M↑

4 (k) +
1

2

(
M↓

6 (k) + M↓
7 (k)

)]
dk + μn2

= 2N Re
∫

φ̂∗(k0, k1 − k0, k2, 	k)ξ̂ (k1, k2, 	k) dk0 dk1 dk2 d	k (9.20)

In Fourier space, the boundary condition (2.33) satisfied by φ reads

∫
φ̂(k0, k1 − k0, k2, 	k) dk0 =

(
2m

m + 1
αξ̂ + ̂̃

�ξ

)
(k1, k2, 	k) (9.21)

and hence

(9.20) = 2N

(
Tdiag(ξ) + Toff(ξ) +

2m

m + 1
α‖ξ‖2L2(R3N )

)
(9.22)

A combination of (9.15), (9.16), (9.17), (9.22) with (2.26) establishes (2.42) and thus
completes the proof of Theorem 3. ��
Remark 2. The proof of Theorem 3 does not actually make use of the assumption ξ ∈
H1(R3N ), it is only used that

∫

R3N

⎛

⎝1 +
N∑

j=1

|k j |2
⎞

⎠
1/2

ln

⎛

⎝2 +
N∑

j=1

|k j |2
⎞

⎠ |ξ̂ (k1, . . . , kN )|2 dk1 · · · dkN < ∞
(9.23)

By Theorem 2, this is actually the case if 	0(m) = 2	(m) < 1 (instead of 	1(m) < 1)
since then, by continuity, 	β(m) < 1 for some β > 0, and hence ξ ∈ H (1+β)/2(R3N ).
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