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Abstract
We revisit the problem of estimating entropy of discrete distributions from independent samples,
studied recently by Acharya, Orlitsky, Suresh and Tyagi (SODA 2015), improving their upper
and lower bounds on the necessary sample size n. For estimating Renyi entropy of order α, up
to constant accuracy and error probability, we show the following

Upper bounds n = O(1) · 2(1− 1
α )Hα for integer α > 1, as the worst case over distributions

with Renyi entropy equal to Hα.
Lower bounds n = Ω(1) · K1− 1

α for any real α > 1, with the constant being an inverse
polynomial of the accuracy, as the worst case over all distributions on K elements.

Our upper bounds essentially replace the alphabet size by a factor exponential in the entropy,
which offers improvements especially in low or medium entropy regimes (interesting for example
in anomaly detection). As for the lower bounds, our proof explicitly shows how the complexity
depends on both alphabet and accuracy, partially solving the open problem posted in previous
works.

The argument for upper bounds derives a clean identity for the variance of falling-power sum
of a multinomial distribution. Our approach for lower bounds utilizes convex optimization to find
a distribution with possibly worse estimation performance, and may be of independent interest
as a tool to work with Le Cam’s two point method.
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1 Introduction

1.1 Renyi Entropy
Renyi entropy [25] arises in many applications as a generalization of Shannon Entropy [27].
It is also of interests on its right, with a number of applications including unsupervised
learning (like clustering) [30, 12], multiple source adaptation [17], image processing [16, 20,
26], password guessability [3, 24, 10], network anomaly detection [15], quantifying neural
activity [22] or to analyze information flows in financial data [13].

In particular Renyi entropy of order 2, known also as collision entropy, is used in
quality tests for random number generators [14, 29], to estimate the number of random bits
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Algorithm 1: Estimation of Renyi Entropy
Input: entropy parameter α > 1 (integer),

alphabet A = {a1, . . . , aK},
samples x1, . . . , xn from an unknown distribution p on A

Output: number H approximating the α-entropy of p
1 I ← {i : ∃j ai = xj} /* compute the list of occurring symbols1 */
2 for i ∈ I do
3 ni ← #{j : xj = ai} /* compute empirical frequencies */
4 end
5 M ←

∑
i
n
α

i

nα /* bias-corrected power sum estimation by falling powers2 */
6 H ← 1

1−α logM /* entropy from power sums */
7 return H

that can be extracted from a physical source [11, 7], characterizes security of certain key
derivation functions [4, 8], helps testing graph expansion [9] and closeness of distributions to
uniformity [6, 23] and bounds the number of reads needed to reconstruct a DNA sequence [19].

1.2 Estimation and Sample Complexity
Motivated by the discussed applications, algorithms that estimate Renyi entropy of an
unknown distribution from samples were proposed for discrete [31] and also for continuous
distributions [21]. For Shannon entropy, estimators with multiplicative errors were studied
in [5] and follow-up works; the existence of sublinear (in terms of the alphabet size) additive
estimators was proved in [22], and the optimal additive estimator was given in [28]. For the
general case of Renyi entropy, the state of the art was established in [1], with upper and
lower bounds on the sample complexity.

Interestingly, the estimation of Renyi entropy of integer orders α > 1 is sublinear in
the alphabet size. More precisely, to estimate the entropy of an integer order α > 1 of
a distribution over an alphabet of size K, with a constant accuracy and constant error
probability, one needs

n = Θ(K1− 1
α )

samples. On the other hand, the necessary sample size for non-integer α > 1 is

n = Ω(K1−o(1)),

with the upper bound O(K/ logK), for large K and the accuracy sufficiently small [1, 2].
The estimator itself is a biased-reduced adaptation of the naive "plug-in" estimator. Note

that computing empirical frequencies as estimates to true probabilities and putting them
straight into the entropy formula (which we refer to as naive estimation) would yield a biased
estimator. To obtain better convergence properties, one needs to add some corrections to
the formula. In the case of Renyi entropy, one replaces powers of empirical frequencies in the
entropy formula by falling powers, obtaining better estimator with the complexity bounds
discussed above [1]. See Algorithm 1 for the pseudocode.

2 Storing and updating empirical frequencies can be implemented with different data structures, we don’t
discuss the optimal solution as our primary interest is in the sample complexity.

2 Here zα stands for the falling α-power of the number z.
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1.3 Our contribution

1.3.1 Results
We revisit the analysis of the minimal number of samples n (sample complexity) needed
to estimate Renyi entropy up to certain additive accuracy, obtaining improvements upon
the result in [1]. In the presentation below we consider the estimation up to constant error
probability, unless stated otherwise.
(a) Better upper bounds for the sample complexity, with a simplified analysis:

n = O
(

2(1− 1
α )Hαδ−2

)
, for integer α > 1

valid for Algorithm 1, any accuracy δ > 0, and all distributions with Renyi entropy of
order α equal to Hα

(b) Lower bounds for non-integer α > 1, explicit w.r.t. both alphabet and accuracy:

n = Ω(1) ·max
(
δ−

1
αK1− 1

α , δ−
1
2K

1
2

)
, for any non-integer α > 1

valid for any estimator, any accuracy δ 6 1 and some distribution over K elements.
(c) Refining the technique for proving lower bounds; we explain how to obtain optimal

bounds for the ideas used in [1]; our construction for lower bounds is also simpler.

The first improvement essentially parameterizes the previous bound by the entropy amount,
and is of interest in medium/low entropy regimes. Note that when the entropy is at most
a half of the maximal amount (Hα 6 1

2 logK) then the complexity drops to n = O(K 1
2 )

even for most demanding min-entropy (α = ∞). The improvements may be relevant for
anomaly detection algorithms based on evaluating entropy of data streams [15]. The precise
statement, which addresses arbitrary accuracy and error probability, appears in Corollary 7.

The lower bounds given in [1] and improved in the journal version [2] depend only on the
alphabet, and are valid for large K and sufficiently small δ. As opposed to that, our lower
bounds apply to all regimes of K and δ and explicitly show that large alphabets and small
accuracy both contribute to the complexity. Thus we make a progress3 towards understanding
how the sample complexity depends on δ and K, which is an open problem except for integer
α [2]. In particular, our results show that the sample complexity may be much bigger than
Ω
(
K1−o(1)) for δ being small depending on K, which is not guaranteed by the previous

results (e.g. Table 1 in [2]).
The technique for lower bound in [1] essentially boils down to the construction of two

statistically close distributions that differ in entropy (the technique known as Le Cam’s
two-point method). The authors obtained implicitly a suboptimal pair with this property.
We instead construct explicitly a simpler pair with much better properties.

1.3.2 Techniques
The original proof of the upper bounds proceeds by estimating the variance of the falling-
power sum in Line 5 in Algorithm 1. This analysis is somewhat difficult because the empirical
frequencies ni in Line 3 are not independent. A workaround proposed in [1] uses Poisson
sampling to randomize the number n in a convenient way (which doesn’t hurt the convergence

3 Our result is worse in the dependency on K, but the added value is the dependency on δ.

APPROX/RANDOM’17



20:4 Renyi Entropy Estimation Revisited

Table 1 Our lower bounds for estimation of Renyi entropy of order α. By K we denote the
alphabet size, δ is the additive error of estimation, Ω(1) is an absolute constant.

Entropy Accuracy Sample Complexity

1 < α < 2 δ 6 1 Ω(1) ·min
(
δ− 1

2K
1
2 , δ−αK1− 1

α

)
δ > 1 Ω(1) ·min

((
2−δK

) 1
2 , 2−(1− 1

α )δK1− 1
α

)
2 6 α

δ 6 1 Ω(1) · δ− 1
αK1− 1

α

δ > 1 Ω(1) ·
(

2−(1− 1
α )δK

)1− 1
α

much), so that the frequencies are independent and the variance of power sums can directly
computed.

We get rid of the Poisson sampling, by showing that the falling-power sum obeys a nice
and clean algebraic identity, that can be further used to compute the variance (see Lemma 4).
We believe that our technique may be of benefit to related problems, e.g. when estimating
moments for streaming algorithms.

The argument for lower bounds in [1] starts by modifying the estimator so that it is a
function of empirical frequencies (called profiles in [1]). Then, by certain facts on zeros of
polynomials and exponential sums, one exhibits two probability distributions with certain
relations between power sums. As a conclusion, again under Poisson sampling, one obtains
two distributions such that their profiles differ much in entropy, yet are close in total variation.
This yields a contradiction unless n is big enough.

Our approach deviates from these techniques. We share the same core idea, that estimation
should be continuous in total variation, yet use it to conclude a clear bound without referring
to profiles: if distributions are γ-close and the entropy differs by δ, the number n must
satisfy n = Ω(γ−1) (see Corollary 9). It remains to construct two such distributions with
possibly small γ and possibly big δ. By solving the related optimization task (which we do
by an elegant application of majorization theory), we conclude that a simpler and better
choice is one distribution being flat, and other being a combination of a flat distribution
with a unit mass (see the proof of Lemma 11). We remark that our optimization approach
not only gives better lower bounds for Renyi entropy, but may be also applied to similar
estimation problems, e.g. lower bounds on the complexity for estimating functionals of a
discrete distribution. The lower bounds are summarized in Table 1.

2 Preliminaries

For any natural α and real number x, by xα def=
∏α−1
i=0 (x − i) we denote the α-th falling

power of x, with the convention x0 = 1. If a discrete random variable X has a probability
distribution p, we denote p(x) = Pr[X = x]. For any distribution X by Xn we denote the
n-fold product of independent copies of X. The moment of a distribution p of order α equals
pα =

∑
x p(x)α. Through the paper, we use logarithms at base 2.

I Definition 1 (Total variation (statistical closeness)). For two distributions p, q over the
same finite alphabet the total variation equals dTV = 1

2
∑
x |p(x)− q(x)|. If dTV (p, q) 6 ε

we also say that p and q are ε-close.
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I Definition 2 (Renyi Entropy). The Renyi entropy of order α for α > 1 equals

Hα(p) def= − 1
α− 1 log

(∑
x

p(x)α
)

= − 1
α− 1 log pα.

Sometimes for shortness we simply say "α-entropy", referring to Renyi entropy of order α.

I Definition 3 (Entropy Estimators). Given an alphabet X and a fixed number n we say that
an algorithm f̂ provides a (δ, ε)-approximation to α-entropy if for any distribution p over X

|f̂(x1, . . . , xn)−Hα(p)| > δ

holds with probability at most ε over samples x1, . . . , xn drawn independently from p.

3 Auxiliary Facts

Define ξi(x) = [Xi = x] and the empirical frequency of the symbol x by

n(x) =
n∑
i=1

ξi(x). (1)

Note that the vector (n(x))x∈X follows a multinomial distribution with sum n and probabilities
(p(x))x∈X . The lemma below states that we have very simple expressions for the falling
powers of n(x).

I Lemma 4 (Falling powers of empirical frequencies). For every x we have

n(x)α =
∑

i1 6=i2 6=...6=iα

ξi1(x)ξi2(x) · . . . · ξiα(x). (2)

In particular, we have

E

[∑
x

n(x)α
]

= nαpα. (3)

The proof appears in Appendix A. We also obtain the following closed-form expressions for
the variance of the sum of falling powers.

I Lemma 5 (Variance of frequency falling powers sums). We have

Var
[∑

x

n(x)α
]

= nα((n− α)α − nα)p2
α +

α∑
`=1

nα(n− α)α−`
(
α

`

)2
l! p2α−`. (4)

The proof appears in Appendix B.

4 Upper Bounds

Similarly as in [1], we observe that to estimate Renyi entropy with additive accuracy O(δ), it
suffices to estimate power sums with multiplicative accuracy O(δ).

I Theorem 6 (Estimator Performance). The number of samples needed to estimate pα up to
a multiplicative error δ and error probability ε equals n = Oα

(
2α−1

α ·Hα(p)δ−2 log(1/ε)
)
.

APPROX/RANDOM’17
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From this result one immediately obtains

I Corollary 7. The number of samples needed to estimate Hα(p), up to an additive error δ
and error probability ε, equals n = Oα

(
2α−1

α ·Hα(p)δ−2 log(1/ε)
)
. The matching estimator is

Algorithm 1.

Proof of Theorem 6. It suffices to construct an estimator with error probability 1
3 . We can

amplify this probability to ε with a loss of a factor of O(log(1/ε)) in the sample size, by
a standard argument: running the estimator in parallel on fresh samples and taking the
median (as in [1]).

From Lemma 5 we conclude that the variance of the estimator equals

Var[Est] = −Θα(1) · n−1(pα)2 +
α∑
`=1

Θα(1) · n−`p2α−`,

where Θα(1) are constants dependent on α. Note that we have

p2α−` 6 (pα)
2α−`
α

by elementary inequalities4, and therefore

Var[Est] = Oα(1) · p2
α

α∑
`=1

(
np

1
α
α

)−`
= Oα(1) · n−1p

2− 1
α

α

α−1∑
`=0

(
np

1
α
α

)−`
.

Note that the negative term −Θα(1)n−1(pα)2 we skipped is of smaller order than the term
` = 1 of the sum on the right hand side, so it doesn’t help to improve the bounds. For
n > 2p

1
α
α the right hand side equals Oα(1) · n−1p

1− 1
α

α . By the Chebyszev Inequality

Pr
Xn∼p

[|Est(Xn))− pα| > δpα] < Var[Est]
δ2p2

α

= Oα(1) · n−1p
− 1
α

α δ−2,

which is smaller than 1
3 for some n = Oα(1) · p−

1
α

α δ−2. J

5 Lower Bounds

We will need the following lemma, stated in a slightly different way in [1]. It captures the
intuition that if two distributions differ much in entropy, then they must be far away in total
variation (otherwise the estimator, presumably working well, would distinguish them).

I Lemma 8 (Estimation is continuous in total variation). Suppose that f̂ is a (δ, ε)-estimator
for Hα. Then the following is true:

∀X,Y |Hα(X)−Hα(Y )| > 2δ ⇒ dTV (Xn;Y n) > 1− 2ε. (5)

The proof is illustrated on Figure 1 and appears in Appendix C. By combining Lemma 8
with a simple inequality dTV (Xn, Y n) 6 n · dTV (X,Y ) (which can be proved by a hybrid
argument) we obtain

I Corollary 9. Let X,Y be such that (a) dTV (X;Y ) 6 γ and (b) |Hα(X) −Hα(Y )| > 2δ.
Then any (δ, ε)-estimator for Hα, where ε 6 1

3 , requires
1
3γ
−1 samples.



M. Obremski and M. Skorski 20:7

Hα(X) Hα(Y )

t0 = Hα(X)+Hα(Y )
2

Est

pm
f

Figure 1 Turning estimators into distinguishers in total variation.

We will need the following inequalities, that refine the known Bernoulli-inequality (1 +
u)α > 1 + αu by introducing higher-order terms.

I Proposition 10 (Bernouli-type inequalities). We have

∀α > 1, ∀u > −1 : (1 + u)α > 1 + αu (6)
∀α > 2, ∀u > 0 : (1 + u)α > 1 + αu+ uα (7)

∀α ∈ [1, 2], ∀u ∈ [0, 1] : (1 + u)α > 1 + αu+ α(α− 1)
4 u2 (8)

∀α ∈ [1, 2], ∀u > 1 : (1 + u)α > 1 + αu+ α− 1
3 uα (9)

Proof. To prove Equation (6) consider the function f(u) = (1+u)α. It is convex when α > 1,
hence its graph is above the tangent line at u = 0. This means that f(u) > f(0) + ∂f

∂ (0)u,
and since f(0) = 1 and ∂f

∂u (0) = α the inequality follows.
In order to prove Equation (7), we consider the function f(u) = (1 + u)α − 1− αu− uα.

Its derivative equals ∂f
∂u (u) = α

(
(1 + u)α−1 − uα−1 − 1

)
. If we show it is non-negative for

u > 0, we establish the claimed inequality as then f(u) > f(0) > 0. We calculate the second
derivative ∂2f

∂u2 (u) = α(α− 1)
(
(1 + u)α−2 − uα−2) and see it is positive when u > 0 (here we

use the assumption that α > 2). We conclude that ∂f
∂u (u) is increasing for u > 0 and hence

∂f
∂u (u) > ∂f

∂u (0) = 0, which finishes the proof.
To prove Equation (8) we define f = (1 + u)α − 1 − αu − α(α−1)

4 u2. We note that
∂f
∂u (u) = α(1 + u)α−1 − α − α(α−1)

2 u. This function is concave because α ∈ [1, 2]. Since
∂f
∂u (0) = 0 and ∂f

∂u (1) = α(1 + 1)α−1 − α − α(α−1)
2 > α2 − α − α(α−1)

2 = 1
2 (α2 − α) > 0

(we have used the Bernouli inequality (1 + 1)α−1 > 1 + α − 1), by concavity we conclude
that the ∂f

∂u (u) > 0 on the whole interval u ∈ [0, 1]. This means that f is decreasing and
f(u) > f(0) = 0 for u ∈ [0, 1], which establishes the claimed inequality.

4 We use the fact that α-norms, defined by ‖p‖α =
(∑

i
|pi|α

) 1
α , are decreasing in α. The same inequality

is applied in [1], the proof of Lemma 2.1.

APPROX/RANDOM’17
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To obtain Equation (9) we consider the function f(u) = (1 + u)α − 1− αu− Cuα. Its
derivative equals ∂f

∂u (u) = α
(
(1 + u)α−1 − 1− Cuα−1). It suffices to choose C such that

f(1) > 0 and ∂f
∂u (u) > 0 for u > 1 as then f(u) > 1 for u > 1. The second derivative

equals ∂2f
∂u2 (u) = α(α − 1)

(
(1 + u)α−2 − Cuα−2), and we conclude that, for 1 6 α 6 2

and u > 1, it bigger than zero when C 6 2α−2. Thus the first derivative increases and is
non-negative if, in addition, ∂f∂u (1) > 0, that is C 6 2α−1−1. We conclude that f(u) > 0 with
C = min

(
2α−2, 2α−1 − 1, 2α − α− 1

)
, that is when ∂2f

∂u2 (1), ∂f∂u (1), f(1) are all non-negative.
Under the assumption α 6 2 this can be simplified to C = 2α − 1− α. We notice further
that 2α−1 − 1 − α > (ln 4 − 1)(α − 1) when α ∈ (1, 2) which shows that we can take
C = 0.38(α− 1). J

I Lemma 11 (Distributions with different entropy yet close in total variation). For any real
α > 1 and any set S of size K > 2 there exist distributions on S that are γ-close but with
Renyi α-entropy different by at least ∆, for any parameters satisfying the following

For any ∆ 6 1, any α ∈ [1, 2] and γ = O
(

max
(

∆ 1
2K−

1
2 ,K−1+ 1

α∆ 1
α

))
For any ∆ 6 1, any α > 2 and γ = O

(
∆ 1

αK−1+ 1
α

)
For any ∆ > 1, any α ∈ [1, 2] and γ = max

(
2(1− 1

α∆)K−1+ 1
α , 2 1

2 ∆K−
1
2

)
For any ∆ > 1, any α > 2 and γ = O

(
2(1− 1

α )∆K−1+ 1
α

)
In particular, by applying Corollary 9 to the setting in the lemma above, we obtain the

lower bounds on the sample complexity.

I Corollary 12 (Estimating entropy with constant additive error). For any constant α > 1,
estimating α-entropy with additive error at most 1 requires at least Ω(1) ·max

(
K

1
2 ,K1− 1

α

)
samples. More generally bounds (for any accuracy ∆) apply as shown in Table 1.

Proof of Lemma 11. Fix aK-element set S and a parameter ε > 0 and consider the following
pair of distributions (given the choice of X, the choice of Y is close to the “worst” choice as
shown in Section D):
(a) X is uniform over S,
(b) Y puts a mass of 1

K + γ on one fixed point of S and 1
K −

γ
K−1 on the remaining points

of S,
where the exact value of the parameter γ is to be optimized later. We calculate that∑

x

(PY (x))α =
(
K−1 + γ

)α + (K − 1)
(
K−1 − γ(K − 1)−1)α

and

Kα ·
∑
x

(PY (x))α = (1 +Kγ)α + (K − 1)
(

1− γ K

K − 1

)α
.

Since
∑
x(PX(x))α = K1−α we get∑

x(PY (x))α∑
x(PX(x))α = K−1

(
(1 +Kγ)α + (K − 1)

(
1− γ K

K − 1

)α)
. (10)

Now if either Kγ 6 1 and α ∈ (1, 2) or α > 2, by Proposition 10 we obtain

(1 +Kγ)α + (K − 1)
(

1− γ K

K − 1

)α
> K + Ωα(1) min

(
(Kγ)2, (Kγ)α

)
(11)



M. Obremski and M. Skorski 20:9

for some constants depending on α, where we have used Equation (6) to lower-bound(
1− γ K

K−1

)α
and Equations (8) and (7) to lower-bound (1 +Kγ)α. More precisely, we have

(1 +Kγ)α + (K − 1)
(

1− γ K

K − 1

)α
>


K + α−1

3 (Kγ)α if α ∈ (1, 2) ∧Kγ > 1

K + α(α−1)
4 (Kγ)2 if α ∈ (1, 2) ∧Kγ 6 1

K + (Kγ)α if α > 2

Using this bound in the right-hand side of Equation (10), we obtain

(∑
x(PY (x))α∑
x(PX(x))α

) 1
α−1

>


1 + α−1

3 Kα−1γα if α ∈ (1, 2) ∧Kγ > 1

1 + α(α−1)
4 Kγ2 if α ∈ (1, 2) ∧Kγ 6 1

1 +Kα−1γα if α > 2

(12)

It remains to choose the parameter γ, remembering about the assumptions on γ and α made
in Equation (11). We may choose it the following ways:

Case 1: for ∆ ∈ (0, 1) and α > 2 we will choose: 1
α−1 ·K

α−1γα < 1. By taking the
logarithm of Equation (12) and dividing by α− 1 we obtain

Hα(Y )−Hα(X) > 1
α− 1 log

(
1 +Kα−1γα

)
.

Now the elementary inequality log(1 + u) > u valid for 0 6 u 6 1 yields

Hα(Y )−Hα(X) > 1
α− 1 ·K

α−1γα.

Thus we achieve the entropy gap ∆ = 1
α−1 ·K

α−1γα and the distance γ = ((α− 1)∆)
1
α K−1+ 1

α

for any ∆ between 0 and 1.

Case 2: for ∆ 6 1 and α ∈ (1, 2) we choose min
(
Kγ2,Kα−1γα

)
< 1. Using

Equation (12), taking the logarithm of both sides and dividing by α− 1 we obtain

Hα(Y )−Hα(X) > 1
α− 1 log

(
1 + α(α− 1)

4 ·min
(
Kγ2,Kα−1γα

))
.

Now the elementary inequality log(1 + u) > u valid for 0 6 u 6 1 yields

Hα(Y )−Hα(X) > α

4 ·min
(
Kγ2,Kα−1γα

)
.

Hence we can have the entropy gap ∆ = α
4 · min

(
Kγ2,Kα−1γα

)
and the distance γ =

max
(
K−1+ 1

α

( 4∆
α

) 1
α ,K−

1
2
( 4∆
α

) 1
2
)
. The number ∆ can be arbitrary between 0 and 1.

Case 3: for ∆ > 1 and α > 2 we choose 1
α−1 ·K

α−1γα > 1. Under this assumption,
Equation (12) holds with the term Kα−1γα on the right-hand side. By taking the logarithm
in Equation (12) and dividing by α− 1 we obtain

Hα(Y )−Hα(X) > 1
α− 1 · log

(
1 +Kα−1γα

)
.

APPROX/RANDOM’17
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Now the inequality log(1 + u) > log u implies

Hα(Y )−Hα(X) > 1
α− 1 log

(
Kα−1γα

)
.

Thus, we can have the entropy gap ∆ = 1
α−1 log

(
Kα−1γα

)
and the distance γ = 2∆(1− 1

α )K−1+ 1
α ,

for any 1 6 ∆ 6 logK −O(1) (the upper bound follows by substituting γ = K−1
K which is

the maximal value).

Case 4: for ∆ > 1 and α ∈ (1, 2) we choose min
(
Kγ2,Kα−1γα

)
> 1. Recall, as for

Case 2, that for α < 2 we have Kα−1γα > Kγ2 when Kγ > 1. Using this in Equation (12),
taking the logarithm of both sides and dividing by α− 1 we obtain

Hα(Y )−Hα(X) > 1
α− 1 log

(
1 + α(α− 1)

4 ·min
(
Kγ2,Kα−1γα

))
.

Now the inequality log(1 + u) > log u implies

Hα(Y )−Hα(X) > 1
α− 1 log

(
α(α− 1)

4 ·min
(
Kγ2,Kα−1γα

))
.

Thus, for the entropy gap ∆ = 1
α−1 log

(
α(α−1)

4 ·min
(
Kγ2,Kα−1γα

))
we get the distance

γ = 4
α(α−1) ·max

(
2∆(1− 1

α )K−1+ 1
α , 2 1

2 ∆K−
1
2

)
, for for any 1 6 ∆ 6 1

α−1 logK −O(1) (the
upper bound follows by substituting γ = K−1

K which is the maximal value). J

6 Conclusion

This paper offers stronger upper and lower bounds on the complexity of estimating Renyi
entropy. Except quantitative improvements, it also provides simplifies the analysis, and
provides more insight into the technique used to prove lower bounds.

Applying this technique to related problems, e.g. estimating different properties of
discrete distributions besides entropy, is an interesting problem for future research.

We also emphasize that our construction for the lower bounds can be somewhat improved
in two aspects: firstly, in Lemma 11 the choice of Y is optimal but X may be not - we
assumed for simplicity that it is flat; secondly, there may be need for a more carefull bound
on the variational distance between n-fold product distributions Lemma 8.

As for upper bounds, it remains an intriguing question if we can obtain improvements
also for Shannon entropy estimation in low or medium entropy regimes.
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A Proof of Lemma 4

Proof. The proof of Equation (2) goes by induction. It is clearly valid for α = 1. Assuming
that it is valid for some α > 1, we obtain

n(x)α+1 = n(x)α · (n(x)− α)

=
∑

i1 6=i2 6=...6=iα

ξi1(x)ξi2(x) · . . . · ξiα(x) ·
∑
iα+1

(ξiα+1(x)− α)

= −α
∑

i1 6=i2 6=... 6=iα

ξi1(x)ξi2(x) · . . . · ξiα(x)+

+
∑

i1 6=i2 6=...6=iα 6=iα+1

ξi1(x)ξi2(x) · . . . · ξiα(x)

+
∑

i1 6=i2 6=...6=iα
iα+1∈{i1,...,iα}

ξi1(x)ξi2(x) · . . . · ξiα(x)ξiα+1(x).

Since ξi are boolean we have∑
i1 6=i2 6=...6=iα
iα+1∈{i1,...,iα}

ξi1(x)ξi2(x) · . . . · ξiα(x)ξiα+1(x) =

α ·
∑

i1 6=i2 6=... 6=iα

ξi1(x)ξi2(x) · . . . · ξiα(x)

By putting together the last two equations we end the proof of Equation (2). To get
Equation (3) we simply take the expectation and use independence. J

B Proof of Lemma 5

Proof. Note that(∑
x

n(x)α
)2

=
∑
x,y

∑
i1 6=i2 6=... 6=iα
j1 6=j2 6=... 6=jα

α∏
r=1

ξir (x)ξjr (y)

=
∑
x 6=y

∑
i1 6=i2 6=... 6=iα 6=j1 6=j2 6=... 6=jα

α∏
r=1

ξir (x)ξjr (y)+

+
∑
x

∑
i1 6=i2 6=...6=iα
j1 6=j2 6=...6=jα

α∏
r=1

ξir (x)ξjr (x).

Now we have

I1 = E

∑
x 6=y

∑
i1 6=i2 6=... 6=iα 6=j1 6=j2 6=... 6=jα

α∏
r=1

ξir (x)ξjr (y)


= n2α

∑
x 6=y

p(x)αp(y)α

= n2α ((pα)2 − p2α
)
.
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Also

I2 = E

∑
x

∑
i1 6=i2 6=...6=iα
j1 6=j2 6=...6=jα

α∏
r=1

ξir (x)ξjr (x)



= E


∑
x∈X

α∑
`=0

∑
i1 6=i2 6=...6=iα
j1 6=j2 6=...6=jα

|{i1 6=i2 6=...6=iα}∩{j1 6=j2 6=... 6=jα}|=`

α∏
r=1

ξir (x)ξjr (x)


=
∑
x∈X

α∑
`=0

nα(n− α)α−`
(
α

`

)2
l! · p(x)2α−`

=
α∑
`=0

nα(n− α)α−`
(
α

`

)2
l! · p2α−`

= n2αp2α +
α∑
`=1

nα(n− α)α−`
(
α

`

)2
l! · p2α−`,

where we observed that if the sets {i1, . . . , iα} and {j1, . . . , jα} have exactly ` common
elements then E

∏α
r=1 ξir (x)ξjr (x) = p(x)2α−`, and that there are nα(n−α)α−`

(
α
`

)2
l! choices

for the such sets {i1, . . . , iα} and {j1, . . . , jα}5. Putting this all together we obtain

Var
[∑

x

n(x)α
]

= n2α(pα)2 +
α∑
`=1

nα(n− α)α−`
(
α

`

)2
l! · p2α−` − (nαpα)2

= nα((n− α)α − nα)(pα)2 +
α∑
`=1

nα(n− α)α−`
(
α

`

)2
l! · p2α−`

which completes the proof. J

C Proof of Lemma 8

Proof. We will use the fact that if two distributions are ε-close (i.e. dTV (X ′, Y ′) < ε) then
no distinguisher can distinguish between them with advantage greater then ε

2 . Let us assume
that |Hα(X)−Hα(Y )| > 2δ, then by using estimator f̂ as part of the distinguisher i.e. if
|f̂(.)−Hα(X)| ≤ δ then distinguisher "guesses" that initial distribution was Xn, else "guesses"
Y n. Now we notice that initial distribution was Xn distinguisher will "guess" correctly with
probability 1− ε, and if the initial distribution was Y n then estimator with probability 1− ε
will output value in [Hα(Y )− δ ; Hα(Y ) + δ] thus distinguisher will guess correctly again.
Our distinguisher achieves 1/2− ε advantage thus we deduce that dTV (Xn;Y n) > 1−2ε. J

5 For a quick sanity check of this formula, note that when pi = 1 (a constant random variable) then
we should get (nα)2 =

∑α

`=0 n
α(n− α)α−`(α

`

)2
l!. For α = 2 this reduces to the identity n(n− 1) =

(n− 2)(n− 3) + 4(n− 2) + 2.
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D Maximizing entropy gap within variational distance constraints

I Theorem 13. Let q be a fixed distribution over k elements, and α > 1, ε ∈ (0, 1) be fixed.
Suppose that q1 > q2 > . . . > qk. Then the distribution p which is ε-close to q and has
minimal possible α-entropy is given by

qi =



p1 + ε i = 1

pi 1 < i < i0

pi0 −
∑
j>i0

pj i = i0

0 i > i0

(13)

where i0 is the biggest number such that
∑
i>i0

pi > ε, for some x0 such that p(x0) is the
biggest mass, and for some ε′ < ε.

Proof. We will apply majorization techniques [18]. Let q be optimal. Suppose that q(x1) >
p(x1) and q(x2) > p(x2) where x1 6= x2. Since q has the biggest possible power sum
S(q) =

∑
x q(x)α we see that p(x1) and p(x2) are two biggest probability masses. Assume,

without loss of generality, that q(x1) > q(x2). For some small δ > 0 we perturb q into q′ such
that q′(x1) = q(x1) + δ and q′(x1) = q(x1)− δ and q′(x) = q(x). Note that for small δ the
distance between q′ and p is at most as between p and q, and that q′ majorizes q (considered
as vectors) and the power sum S(q) is Schur convex, hence S(q) > S(q′). The contradiction
means that q(x) > p(x) for only one x = x0.

Consider now the smallest values q(x1), q(x2) such that 0 < q(x1) < p(x1), 0 < q(x2) <
p(x2) for x1 6= x2 that are strictly bigger than zero. For some small δ > 0 we perturb q into
q′ such that q′(x1) = q(x1) + δ and q′(x1) = q(x1)− δ and q′(x) = q(x). We see that for δ
small enough the distance from q′ to p is at most as from q to p and that q′ majorizes q
which means S(q′) > S(q). The contradiction means that 0 < q(x) < p(x) for at most one
x = x0. J
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