
Learning from Dependent Data
by

Alexander Zimin

September, 2018

A thesis presented to the
Graduate School

of the
Institute of Science and Technology Austria, Klosterneuburg, Austria

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268226909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Abstract

The most common assumption made in statistical learning theory is the assumption of the

independent and identically distributed (i.i.d.) data. While being very convenient mathemati-

cally, it is often very clearly violated in practice. This disparity between the machine learning

theory and applications underlies a growing demand in the development of algorithms that

learn from dependent data and theory that can provide generalization guarantees similar to

the independent situations.

This thesis is dedicated to two variants of dependencies that can arise in practice. One

is a dependence on the level of samples in a single learning task. Another dependency type

arises in the multi-task setting when the tasks are dependent on each other even though the

data for them can be i.i.d. In both cases we model the data (samples or tasks) as stochastic

processes and introduce new algorithms for both settings that take into account and exploit

the resulting dependencies. We prove the theoretical guarantees on the performance of the

introduced algorithms under different evaluation criteria and, in addition, we compliment the

theoretical study by the empirical one, where we evaluate some of the algorithms on two real

world datasets to highlight their practical applicability.

ii

Acknowledgments

First, I want to thank Christoph for making all this possible, for encouragement to explore

research topics and for keeping my side during the ups and downs of publishing process. Thank

you for tolerance with my articles and for all the late hours we spent editing the submissions

over and over.

I would like to thank my committee members, Jan and Liva. Thank you Liva for agreeing

to come for the qualifying exam and keeping in touch afterwards. Thank you Jan for agreeing

to be the last minute substitute and then actually staying with me for the rest of my PhD.

A lot of great memories are shared with fellow students, post-docs and interns at IST

including, but not limited to Asya, Amélie, Csaba, Emilie, Georg, Harald, Ilja, Jan, Kristóf,

Mary, Nathaniel, Nikola, Tomas, Victoria and all of the members of IST football team that

I spent so much time playing with. Of course, special thanks to Alex and Michal, you have

been the best office mates and I miss all of the things we did together.

I want to give my warmest thanks to my parents, whose vision and unconditional support

made me so far.

My greatest gratitude goes to Anastasiia who shared this toughest journey with me. I am

so lucky to have met such a wonderful and supportive woman.

This thesis was partially funded by the European Research Council under the European

Unions Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 308036.

From 2013 to 2016 I have been an OMV scholar.

iii

About the Author

Alexander Zimin received a Bachelor degree from Yaroslavl State University in Russia. Af-

terwards, he obtained his Master degree from Central European University in 2013 under

supervision of Laszlo Gyorfi and Gergely Neu. Now he is a PhD student at IST Austria work-

ing in the group of Christoph Lampert. His research is focused on various machine learning

scenarios, which involve dependent data. Previously he has also worked on online learning and

reinforcement learning.

iv

Table of Contents

Abstract i

Acknowledgments ii

About the Author iii

List of Figures vii

1 Introduction 1

2 Background 4

2.1 PAC learning . 5

2.2 Complexity measures . 7

2.3 PAC-Bayes framework . 10

2.4 Stochastic processes . 10

2.5 Sequential complexity measures . 12

2.6 Online learning . 13

3 Theory of Conditional Risk Minimization 16

3.1 Learning theory for stochastic processes . 17

3.2 Conditional risk minimization problem . 18

3.3 Prior work on conditional learnability . 20

3.4 Connection to time series prediction . 20

3.5 Limits to learnability . 22

v

3.6 Discrepancies . 22

3.7 Convergent case . 23

3.8 Non-convergent case . 25

3.9 Conclusion . 40

4 Conditional Risk Minimization in Practice 41

4.1 DataExpo Airline dataset . 41

4.2 Breakfast Actions dataset . 44

4.3 Conclusion . 46

5 Online Multi-task learning 49

5.1 Multi-task learning of sequential tasks . 49

5.2 Learning across task boundaries . 50

5.3 Connection to traditional PAC-Bayes bounds 52

5.4 MTLAB for lifelong learning . 52

5.5 Examples . 53

5.6 Per-task bounds . 54

5.7 Conclusion . 59

6 Conclusion and Future Work 60

Bibliography 63

A Proofs from Chapter 3 70

A.1 Technical results regarding the convergence of martingales 71

A.2 Proof of Theorem 3.5.1 . 77

A.3 Proof of Theorem 3.7.2 . 78

A.4 Proof of Lemma 3.7.4 . 78

A.5 Proof of Theorem 3.8.4 . 78

A.6 Proof of Lemma 3.8.6 . 80

A.7 Proof of Theorem 3.8.8 . 80

vi

A.8 Proof of Theorem 3.8.9 . 81

A.9 Proof of Theorem 3.8.10 . 82

A.10 Examples from Sections 3.8.4 and 3.8.5 . 83

B Proofs from Chapter 5 85

B.1 Technical results for MTLAB . 85

B.2 Proof of Theorem 5.2.1 . 85

B.3 Proof of Theorem 5.6.2 . 88

B.4 Technical results for MTLAB.MS . 88

B.5 Proof of Theorem 5.6.3 . 90

B.6 Proof of Theorem 5.6.4 . 91

B.7 Proof of Theorem 5.6.6 . 92

vii

List of Figures

2.1 Online learning protocol . 13

3.1 Weighted ERM algorithm . 26

3.2 MACRO algorithm . 30

4.1 Performance of MACRO with different subroutines on the DataExpo Airline

dataset with the feature-based distance function. Each row corresponds to

a different airport labeled by its IATA code. The y-axes shows error-rates;

the x-axes is labeled by the short name of a subroutine and a threshold used

in MACRO. ERM-FTL, ERM-EWA, VW-FTL and VW-EWA are the online

strategies to choose the threshold. Marginal versions of the subroutines, ERM-

SR and VW-SR, act as baselines. 44

4.2 Performance of MACRO with different subroutines on the DataExpo Airline

dataset with the label-based distance function. Each row corresponds to a

different airport labeled by its IATA code. The y-axes shows error-rates; the

x-axes is labeled by the short name of a subroutine and a threshold used in

MACRO. ERM-FTL, ERM-EWA, VW-FTL and VW-EWA are the online strate-

gies to choose the threshold. Marginal versions of the subroutines, ERM-SR

and VW-SR, act as baselines. 45

viii

4.3 Performance of MACRO with different subroutines on the Breakfast Actions

dataset with feature-based distance function for coarse annotations. Each plot

corresponds to different action. The y-axes shows error-rates averaged over

the persons performing each action. The x-axes is labeled by the short name

of a subroutine and a threshold used in MACRO. G-NB-FTL and G-NB-EWA

represent the online strategies to choose the threshold. The baseline G-NB-SR

is the marginal version of G-NB algorithm. 47

4.4 Performance of MACRO with different subroutines on the Breakfast Actions

dataset with feature-based distance function for fine annotations. Each plot

corresponds to different action. The y-axes shows error-rates averaged over

the persons performing each action. The x-axes is labeled by the short name

of a subroutine and a threshold used in MACRO. G-NB-FTL and G-NB-EWA

represent the online strategies to choose the threshold. The baseline G-NB-SR

is the marginal version of G-NB algorithm. 47

4.5 Performance of MACRO with different subroutines on the Breakfast Actions

dataset with label-based distance function for coarse annotations. Each plot

corresponds to different action. The y-axes shows error-rates averaged over

the persons performing each action. The x-axes is labeled by the short name

of a subroutine and a threshold used in MACRO. G-NB-FTL and G-NB-EWA

represent the online strategies to choose the threshold. The baseline G-NB-SR

is the marginal version of G-NB algorithm. 48

4.6 Performance of MACRO with different subroutines on the Breakfast Actions

dataset with label-based distance function for fine annotations. Each plot

corresponds to different action. The y-axes shows error-rates averaged over

the persons performing each action. The x-axes is labeled by the short name

of a subroutine and a threshold used in MACRO. G-NB-FTL and G-NB-EWA

represent the online strategies to choose the threshold. The baseline G-NB-SR

is the marginal version of G-NB algorithm. 48

5.1 Online multi-task learning protocol . 50

5.2 MTLAB algorithm . 51

5.3 MTLAB.MS algorithm . 56

1

1 Introduction

In the course of its development, the area of machine learning heavily relied on theoretical

analysis of learning problems. It helps us to understand the limits, to explain the behavior of

existing algorithms and even to motivate new algorithms. In the basis of every theoretical study

are the assumptions about the nature of the real world. The most common assumption made

in statistical learning theory is the assumption of the independent and identically distributed

(i.i.d.) data. While very convenient mathematically, it is often very clearly violated in practice.

We can observe this even in the famous textbook example of classifying e-mails into ham or

spam. For example, when multiple emails are exchanged with the same writer, the contents

of later emails depends on the contents of earlier ones. This disparity between the theory

and applications underlies a growing demand in the development of algorithms that learn

from dependent data and theory that can provide generalization guarantees similar to the

independent situations.

This thesis is dedicated to two variants of dependencies that can arise in practice. One is

a dependence on the level of samples, like in the example of e-mail conversations. Another

dependency type arises in the multi-task setting when the task are dependent on each other

even though the data within each task can be i.i.d. For example, different e-mail users

sometimes are modelled as different learning tasks and there can be a group of users whose

e-mails are interdependent: these users can belong to the same mailing lists and receive the

same newsletters or they can send e-mails with similar content to the same addresses (e.g.

registration e-mails for some events).

From a statistical point of view, in both cases we model the data (samples or tasks) as

stochastic processes, i.e. data sources that have a notion of time and usually are observed in

a sequential manner. Many practical problems, even spam classification, are inherently online

and a lot of structure can be observed by taking time into consideration. Contrary to the

2

most prior research, we attempt to analyze the problems for general processes without making

a specific assumptions like stationarity or ergodicity. Note that i.i.d. data sources are trivial

stochastic processes and hence are automatically included in the studies.

In Chapter 3 we use stochastic processes as a model for the samples in the training set.

We turn our attention to the mostly unstudied problem of the conditional risk minimization,

where the goal is to optimize the performance of the learner on each step conditioned on

the observations seen so far. This is contrary to more well studied marginal learning, where

the goal is typically to optimize the performance on the average over all possible realizations

of the process. As the set of the observations we condition on changes at every step of

the learning process, the existing theoretical framework of statistical learning theory does

not fit the problem. Thus, we develop a new framework that focuses on a new notion of

conditional learnability that requires the performance of the algorithm to improve with the

amount of the observed data regardless the changing goals. One of our main insights is the

crucial role of the individual discrepancies, a notion of a distance between the conditional

distributions of the process. We provide a dichotomy of the problem based on the behavior

of these discrepancies. In the convergent case, summarized in Theorem 3.7.2, we show that

the Empirical Risk Minimization (ERM) algorithm is sufficient to achieve learnability, thus

generalizing the existing results for i.i.d. data. In the non-convergent case, in the situations

when we have an additional information in the form of the upper bounds on the discrepancies,

we introduce two new algorithms: weighted empirical risk minimization (WERM) and MACRO.

In Theorem 3.8.4 we prove that WERM is able to achieve conditional learnability in the limit

for wide range of stochastic processes. However, WERM has not very favorable computational

complexity that motivates us to introduce another algorithm, MACRO, that has a linear

runtime complexity in the size of the dataset. Moreover, in Theorems 3.8.8, 3.8.9 and 3.8.10 we

prove that MACRO achieves a modified conditional learnability under weaker assumptions than

WERM. The results of this chapter are based on two papers in collaboration with Christoph

Lampert: "Learning Theory for Conditional Risk Minimization", appeared in AISTATS 2017,

and "MACRO: A Meta-Algorithm for Conditional Risk Minimization".

Chapter 4 shows how the principles of the conditional risk minimization can be applied

in practice. We conduct experiments with two datasets for the MACRO algorithm studied

theoretically in the previous chapter. We compare the performance of MACRO to two algo-

rithms that represent the traditional approaches to learning: statistical learning theory and

3

online learning. For both datasets we show that MACRO is able to improve the classification

accuracy on the given tasks for a wide range of hyper-parameters. In addition, we study em-

pirically two versions of MACRO algorithm that choose the hyper-parameters on the fly and

show that both are viable strategies when the necessary computational resources are available.

The results of this chapter are based on "MACRO: A Meta-Algorithm for Conditional Risk

Minimization", a joint work with Christoph Lampert.

In Chapter 5 we turn our attention to multi-task setting where stochastic processes are

used to model a sequence of tasks that a learner is faced with. We present a new algorithm,

MTLAB, that is based on the idea of running an online learner on the data of all tasks combined

and then performing a specific online-to-batch conversion for each task. In Theorem 5.2.1,

utilizing the PAC-Bayes framework, we prove a regret bound with respect to the best fixed

Gibbs predictor chosen in hindsight. In addition, in Theorems 5.6.4 and 5.6.6 we show that

by estimating the discrepancies between the tasks (either from labelled or un-labelled data),

one can use a MACRO-style algorithm that utilizes MTLAB and prove strong performance

guarantees for each individual task. The results presented in this chapter are based on the

joint work with Christoph Lampert: "Tasks Without Borders: A New Approach to Online

Multi-Task Learning".

4

5

2 Background

In this chapter we introduce all the necessary background on machine learning and stochastic

processes.

2.1 PAC learning

In this section we introduce the standard framework for the statistical learning theory. For

this let us go back to the example of the introduction and formalize its components. We

want to find a predictor that can classify e-mails into spam or ham. Therefore, the input

space, that we denote as X , is considered to be the space of all e-mails. Each message

x ∈ X has an associated label y ∈ Y from some label space Y, that can be {0; 1} in the

spam/ham case. The joint input-label space will be denoted as Z = X × Y. The predictor

(or hypothesis) h is a function that takes an e-mail x as an input and produces an output in

its own output space D, i.e. h : X → D. In the example, D can be taken to be [0; 1]. All

of the possible predictors constitute a space of possible hypotheses H ⊆ {h : X → D}. The

quality of the prediction is assessed by a loss function ‘ : D × Y → [0; 1]. There is a number

of options for the loss functions and often this is a design choice of the problem to choose

an appropriate loss function. The popular choices are l2-loss ‘(d; y) = (d − y)2, log-loss

‘(d; y) = −y log d − (1− y) log(1− d) and, when D = {0; 1}, 0-1 loss ‘(d; y) = I [d ̸= y].

We will however use a shorthand notation for the loss of the hypothesis and write ‘(h; z) =

‘(h(x); y) for a hypothesis h and a sample z = (x; y). In addition, we will often work with

the induced function space L(H) = {‘(h; ·); ∀h ∈ H}.

The standard statistical learning theory assumes that there is an underlying distribution

D that all images (and their labels) are sampled from. Moreover, the standard assumptions

is that the images are sampled independently. The goal of a learner is to find a hypothesis

6

h ∈ H that will have a small loss on a newly sampled data point from the same distribution

D. This is formalized by the notion of a risk :

R(h;D) = Ez∼D [‘(h; z)] : (2.1)

Hence, the ultimate task for the learner is to perform the following optimization:

min
h∈H

R(h;D): (2.2)

However, the learner does not have an access to the distribution D. Rather, we have an access

to a dataset S of images sampled from D: S = {zi}ni=1. Then any learning algorithm A is

defined as a function that takes a dataset S and produces a predictor hA.

The central notion that statistical learning theory studies is learnability of different hypothe-

ses classes. The following definition, introduced in [Valiant, 1984], specifies what learnability

means exactly.

Definition 2.1.1 (PAC-learnability). A class of hypotheses H is called a Probably Ap-

proximately Correct (PAC) learnable if there exists an algorithm A and a function nA :

(0; 1)×(0; 1)→ N, such that for any " > 0 and ‹ > 0, all distributions D and all n ≥ nA("; ‹),

with probability of 1− ‹ over the sampling of S ∼ Dn

R(hA; D) ≤ inf
h∈H

R(h;D) + ": (2.3)

Such an algorithm A is called a PAC-learner.

A typical algorithm that is usually used to prove learnability of a particular hypotheses

class is an Empirical Risk Minimization (ERM). Given a dataset S, ERM learner chooses a

hypothesis that minimizes the empirical risk:

hERM = argmin
h∈H

1

n

X
z∈S

‘(h; z): (2.4)

The standard tool for studying the learnability by ERM learner is a uniform convergence of the

empirical risk from the true risk that is characterized by

Un(H) = sup
h∈H

˛̨̨̨
˛̨R(h;D)− 1

n

X
z∈S

‘(h; z)

˛̨̨̨
˛̨ : (2.5)

In fact, the convergence rate of Un(H) controls the convergence rate of ERM learner that can

be seen from the following result.

7

Lemma 2.1.2. For any hypotheses class H and any sample S ∼ Dn

R(hA; D)− inf
h∈H

R(h;D) ≤ 2Un(H): (2.6)

The answer to the question whether a uniform convergence for a particular class H can

be achieved or not depends on the "richness" of H. There have been a number of ways to

describe richness of a class of functions and we will discuss some of them in the next section.

2.2 Complexity measures

The standard way to show uniform convergence of a certain class of hypotheses relies on

two main technical ingredients: concentration inequalities and finite approximations of the

hypotheses class. In this section we describe the complexity measures that control the quality

of different approximations of H. We start with covering numbers.

Definition 2.2.1. For a function class F ⊆ {f : Z → R} and a metric ∆ on F , every finite

collection of functions f1; : : : ; fN : Z → R with the property that for every f ∈ F , there is a

j ∈ [N] such that

∆(f ; fj) ≤ " (2.7)

is called an "-cover of F with respect to ∆.

The "-covering number of F with respect to ∆ is denoted as N∆(F ; ") and is equal to

the size of the smallest "-cover of F .

In learning theory the most useful metrics are the empirical (pseudo-)metrics based on the

sample. For a sample S of size n we define

∆S
1 (f ; g) =

1

n

X
z∈S
|f (z)− g(z)| (2.8)

and

∆S
∞(f ; g) = sup

z∈S
|f (z)− g(z)| : (2.9)

We will denote by N1(F ; "; S) and N∞(F ; "; S) the covering numbers with respect to ∆S
1 and

∆S
∞ respectively. An example of a bound that can be proven utilizing the covering numbers is

the following theorem, that follows, for example, from Theorem 9.1 in [Györfi et al., 2002].

8

Theorem 2.2.2. For any ‹ > 0, let d = EN1(L(H); 16
r

2 log 1
‹

n
; S). Then, with probability

1− ‹,

Un(H) ≤ 8

s
2 log 8d + 2 log 1

‹

n
; (2.10)

The covering number N1(F ; "; S) can be related to more standard complexity measures

like VC-dimension and fat-shattering dimension. We will start with the former.

Definition 2.2.3 ([Vapnik and Chervonenkis, 1971]). A set of functions F ⊆ {f : Z →

{0; 1}} is said to shatter a set S ∈ 2Z if the image of S under H is all possible 2|S| labellings

of S.

The size of the largest set S that can be shattered by H is called a Vapnik-Chervonenkis

(VC) dimension of H and is denoted as vc(H).

The VC-dimension can be used directly to show uniform convergence for classes with the

finite VC-dimension using direct argument. We, however, will give a bound on the covering

number of L(H) in terms of VC-dimension of H. First, note that if we use 0-1 loss and

the decision space is D = {0; 1}, then we have N1(L(H); "; S) ≤ N1(H; "; S). Second, the

following lemma, that is a corollary of Vapnik-Chervonenkis-Sauer-Shelah lemma, [Sauer, 1972;

Shelah, 1972; Vapnik and Chervonenkis, 1971], gives us the bound on the covering numbers

of H.

Lemma 2.2.4. Let H ⊆ {h : X → {0; 1}}, then for any " ∈ (0; 1) and any n ∈ N

N1(H; "; S) ≤ (n + 1)vc(H): (2.11)

Additionally, for n > vc(H)

N1(H; "; S) ≤

en

vc(H)

!vc(H)

: (2.12)

VC-dimension works only for the classification tasks. For the real-valued predictions, the

corresponding analog is a fat-shattering dimension.

Definition 2.2.5 ([Alon et al., 1997; Bartlett et al., 1996]). A set of functions F ⊆ {f :

Z → [0; 1]} is said to ‚-shatter a set S ∈ 2Z for ‚ > 0 if there exist a function s : Z → [0; 1]

such that for every subset E ⊆ S, there exists a function fE ∈ H satisfying

fE(x) ≤ s(x)− ‚ for x ∈ S \ E (2.13)

fE(x) ≥ s(x) + ‚ for x ∈ E: (2.14)

9

The size of the largest set S that can be ‚-shattered by F is called a fat-shattering dimension

of F at scale ‚ and is denoted as fat‚(F).

Similarly to Lemma 2.2.4, we can provide the bounds on the covering numbers in terms of

the fat-shattering dimension.

Lemma 2.2.6 (Lemma 3.5 from [Alon et al., 1997]). For any " ∈ (0; 1) let d = fat"=4(F),

then we have

N∞(F ; "; S) ≤ 2
„
2n

"2

«d log(2en=(d"))

(2.15)

Of course, covering numbers are not the only way to measure the complexity of a function

class. Another measure that gives tighter bounds is a Rademacher complexity.

Definition 2.2.7. Let ff = {ff1; : : : ; ffn} be independent uniform random variables that take

values in {−1;+1}. For a function class F ⊆ {f : Z → [0; 1]} and a sample S = {z1; : : : ; zn},

the Empirical Rademacher Complexity of F with respect to S is defined as

R̂S(F) = Eff
"
sup
f ∈F

1

n

nX
i=1

ffi f (zi)

#
: (2.16)

For any integer n, the Rademacher complexity of F is defined as

Rn(F) = ES∼Dn
h
R̂S(F)

i
: (2.17)

The following result was first shown in [Koltchinskii, 2001].

Theorem 2.2.8. For any ‹ > 0, with probability 1− ‹ we have

Un(H) ≤ 2Rn(L(H)) +
s
log 1

‹

2n
(2.18)

and

Un(H) ≤ 2R̂S(L(H)) + 3

s
log 1

‹

n
: (2.19)

The Rademacher complexity can be connected back to the covering numbers in various

ways, e.g. using Dudley’s theorem. As these connections are not relevant for the discussion in

the present thesis, we refer the reader to [Bartlett and Mendelson, 2002] for further information.

10

2.3 PAC-Bayes framework

In this section, we consider a theory that is parallel to PAC-learning and that studies prob-

abilistic predictors. A probabilistic Gibbs predictor is defined by a probability distribution Q

over the hypotheses class. Upon receiving a new data point x , the Gibbs predictor samples a

hypothesis h ∼ Q and outputs h(x). The risk of such a predictor is

R(Q;D) = Eh∼Q [R(h;D)] : (2.20)

The PAC-Bayesian theory concerns itself with the uniform bounds on R. The following result,

e.g. from [McAllester, 1999], is an example of such a bound.

Theorem 2.3.1. Let P be a fixed prior distribution over H chosen independently of data.

For any ‹ > 0, with probability 1− ‹ over the sampling of S ∼ Dn, it holds uniformly over all

Q

R(Q;D) ≤ 1

n

X
z∈S

Eh∼Q [‘(h; z)] +
KL(Q|P) + log 1

‹√
n

: (2.21)

Beside being used to provide a performance guarantee for ERM algorithm, Theorem 2.3.1

can be used directly to derive an algorithm that optimizes the right-hand side of the bound.

It may seem on the first sight that the bound of Theorem 2.3.1 lacks the dependence on the

complexity of H, but this is misleading. In fact, the complexity is hidden in the KL-divergence

term KL(Q|P). To see that, consider a case of a finite hypotheses class H and a uniform prior

distribution: P (h) = 1
|H| ; ∀h ∈ H. Then for any Q

KL(Q|P) ≤ 2 log |H| : (2.22)

Therefore, the dependence is same as the one in Theorem 2.2.2 for a finite hypothesis class.

2.4 Stochastic processes

As announced in the introduction, we plan to model the generation process of z1:n = {z1; : : : ; zn}

using stochastic processes. While there are different ways to look at and define stochastic pro-

cesses, in this thesis we adopt a generative view. We think of a stochastic process as a

sequence of conditional distributions Dt = P [·| z1; : : : ; zt−1]. Then the sample is generated

by subsequent sampling from these distributions conditioned on the already sampled points,

11

i.e. z1 is sampled from the initial distribution D1, z2 from D2 = P [·| z1] and so on. Techni-

cally, a sequence of conditional distributions completely defines the process by Ionescu Tulcea

Extension Theorem. To simplify the notations, for any time step t, we denote by Et [f (zt+1)]

the expectation of a function f with respect to Dt+1, i.e. E [f (zt+1)| z1:t]. This expectation

also equivalent to the expectation with respect to the sigma algebra Σt that is generated by

z1:t .

As mentioned above, a sequence of conditional distributions completely specifies the joint

distribution of the process. However, there are also other ways we can look at the resulting

joint distribution. Sometimes the marginal distributions are of interest, in which case we

denote them by Mt , i.e. Mt(A) = P [zt ∈ A] for a set A.

The process is called stationary if the vector (zt1+fi ; : : : ; ztk+fi) has the same distribution

for all fi ≥ 0 and for any indices t1; : : : ; tk and any k ∈ N. If the process is stationary, then

the marginals Mt are all the same for all steps t and we denote it by M in this case. We will

sometimes mention ergodic processes. Their discussion goes beyond the scope of the thesis,

we just mention that, informally, a stochastic process is said to be ergodic if its statistical

properties can be deduced from a single, sufficiently long, random sample of the process. We

refer to [Klenke, 2013] for a formal introduction and definitions.

A very useful class of processes that is helpful for analysis is a class of martingale differences.

Definition 2.4.1. A real valued process x1; : : : ; xt ; : : : is called a martingale difference (MD)

sequence with respect to a filtration {Θt} if for all t:

E [xt |Θt−1] = 0: (2.23)

MD sequences seem to be a very special type of processes. However, it appears naturally

in the structure of any other stochastic process. In particular, for an arbitrary process z1:∞

and a function f : Z → R, a sequence xt = f (zt) − Et−1 [f (zt)] forms a natural martingale

difference with respect to Σt . Martingale differences exhibit convergence properties similar

to i.i.d. sequences in the form of Azuma-Hoeffding inequality. This similarity motivates us

to study the uniform deviations similar to Un(H). To this end we will be interested in the

behavior of the following quantity:

Vn(F ; w) = sup
f ∈F

˛̨̨̨
˛
nX
t=1

wt(f (zt)− Et−1 [f (zt)])

˛̨̨̨
˛ ; (2.24)

12

where F ⊆ {f : Z → [0; 1]} and w ∈ Rn. Similarly to i.i.d. situation, the convergence of

Vn(F ; w) is controlled by a complexity measure of F . However, due to different underlying

process, this measures have to be adjusted appropriately and we discuss these adjustments in

the next section.

2.5 Sequential complexity measures

The uniform convergence of martingale difference sequences relies on the sequential complexity

measures that we introduce in this section. In turn, the sequential complexity measures are

based on a notion of Z-valued trees.

Definition 2.5.1. A Z-valued tree v of depth n is a sequence v1:n of mappings vi : {±1}i−1 →

Z. A sequence ff1:n ∈ {±1}n defines a path in a given tree so that vt(ff1:t−1) outputs a value

of a leaf defined by ff1:t−1.

To shorten the notations, vt(ff1:t−1) is denoted as vt(ff) Now we can define covering

numbers.

Definition 2.5.2. A set V = {v 1; : : : ; vN} of R-valued trees of depth n is a sequential

"-cover (with respect to the ‘∞-norm) of F ⊆ {f : Z → R} on a Z-valued tree v of depth

n if

∀f ∈ F ;∀ff ∈ {±1}n;∃j ∈ [N] : max
1≤t≤n

˛̨̨
f (vt(ff))− v jt (ff)

˛̨̨
≤ ": (2.25)

The sequential "-covering number of a function class F on a given tree v is

S∞(F ; „; v) = min{|V | : V is an "-cover w.r.t. ‘∞-norm of F on v}: (2.26)

The maximal sequential "-covering number of a function class F over depth-n trees is

S∞(F ; „; n) = sup
v
S∞(F ; „; v): (2.27)

The sequential covering numbers can be controlled similarly to the standard covering

numbers by a corresponding version of a fat-shattering dimension.

Definition 2.5.3. A Z-valued tree v of depth n is ‚-shattered by a function class F ⊆ {f :

Z → R} if there exists an R-valued tree s of depth n such that

∀ff ∈ {±1}n; ∃f ∈ F : 1 ≤ t ≤ n; fft(f (zt(ff))− st(ff)) ≥ ‚=2: (2.28)

13

At any time point t = 1; 2; : : : :

• output hypothesis ht

• observe the state zt

• suffer the loss ‘(ht ; zt)

Figure 2.1: Online learning protocol

The sequential fat-shattering dimension S-fat‚(F) at scale ‚ is the largest n such that F

‚-shatters a Z-valued tree of depth n.

An important result of [Rakhlin et al., 2014] is the following connection between the

sequential covering numbers and the sequential fat-shattering dimension.

Lemma 2.5.4 (Corollary 1 of [Rakhlin et al., 2014]). Let F ⊆ {f : Z → [−1; 1]}. For any

" > 0 and any n ≥ 1, we have that

S∞(F ; "; n) ≤
„
2en

"

«S-fat"(F)

: (2.29)

Having introduced the sequential covering numbers and their properties, we can show now

how they can be used for uniform convergence of martingale differences.

Theorem 2.5.5 ([Kuznetsov and Mohri, 2015], Theorem 1). For a function class F ⊆ {f :

Z → [0; 1]} and any vector w ∈ Rn, we have for any " > 0

P [Vn(F ; w) > "] ≤ S∞(F ; "=4; n)e
− "2

16∥w∥2
2 : (2.30)

2.6 Online learning

So far we presented the situations when the data generation process is of stochastic nature.

In contrast, the online learning aims to design algorithms that can predict arbitrary sequences

that can be chosen even by an adversary. In standard learning theory the learner is presented

with the whole dataset at once and has to output a hypothesis for all future data. In online

learning, the process goes in steps: at each point the learner outputs a hypothesis for this step

and then receives the next data point (see Figure 2.1). As it is impossible to predict each step

of an arbitrary adversarial sequence, the goal of learning in this case is to perform as well as

14

the best possible hypothesis for the sequence in hindsight. Formally, if we denote the sequence

of the hypothesis produced by the learner by ht , the regret of this learner is defined as follows:

Wn =
nX
t=1

‘(ht ; zt)− inf
h∈H

nX
t=1

‘(h; zt): (2.31)

A desired property of any learner is Hannan consistency.

Definition 2.6.1. An algorithm is called Hannan consistent if the sequence of hypotheses it

produces satisfies

lim sup
n→∞

1

n
Wn ≤ 0: (2.32)

In case the learner produces a randomized hypotheses, the above statement should hold almost

surely.

Now we consider two examples of the algorithms that we will refer to later in the text.

Follow The Leader. Perhaps the simplest algorithm for online learning is the Follow The

Leader (FTL) algorithm that instructs us to choose a hypothesis with the lowest cumulative

risk so far, i.e.

ht = argmin
h∈H

Lt(h) (2.33)

for

Lt(h) =
tX
s=1

‘(h; zs): (2.34)

In general, it is not a very good strategy, however, there are some settings where it can be

quite efficient. An example is given in the following theorem.

Theorem 2.6.2 ([Cesa-Bianchi and Lugosi, 2006], Section 3.2). Let H be a Euclidean ball

in Rd of radius 1 and let zt also take values in this ball. If we run the FTL algorithm with

‘(h; z) = ∥h − z∥22, then its regret satisfies

Wn ≤ 8(1 + log n): (2.35)

This theorem ensures Hannan consistency of FTL for this particular setting.

15

Exponentially Weighted Average. The general form of the Exponentially Weighted Av-

erage (EWA) algorithm can be described as follows: let ıt be a distribution over H that we

use to sample ht , starting from some initial distribution ı1. Having observed zt , the learner

computes the update as

ıt+1(dh) =
e−”‘(h;zt)ıt(dh)R

H e
−”‘(h′;zt)ıt(dh′)

(2.36)

with some ” > 0. The following theorem gives a bound on the expected regret of EWA.

Theorem 2.6.3. Let h? be the minimizer of Ln(h). Then for any loss function ‘ : H×Z →

[0; 1], the EWA algorithm run with ” > 0 satisfies

E [Wn] ≤
”n

8
+
− logı1(h

?)

”
: (2.37)

That gives for ” = 1√
n

E [Wn] ≤
√
n(

1

8
− logı1(h

?)): (2.38)

The expected regret bound can be turned into high-probability statement for a bounded

loss functions. Also, the bound of the theorem can be simplified in the case of finite hypotheses

classes, see [Cesa-Bianchi and Lugosi, 2006] for more details.

16

17

3 Theory of Conditional Risk Minimization

In this chapter we present the problem of conditional risk minimization (CRM). Our goal is to

study what properties of stochastic processes are sufficient to achieve conditional learnability,

a notion of learnability tailored to stochastic processes. First, we characterize the class of

stochastic processes for which the well established algorithms like ERM solve the task. For the

rest we propose to make use of additional structural information (if available) and study the

guarantees obtainable by two new algorithms: WERM and MACRO. These algorithms differ

in the type of learnability they are able to achieve and in computational complexity. While

MACRO is more computationally efficient, WERM is able to achieve a stronger notion of

learnability. We finish the chapter by studying the terms appearing in the proven generalization

bounds for different types of well-known classes of stochastic processes.

3.1 Learning theory for stochastic processes

In this chapter the dataset S is a sequence of observations {zt}nt=1 from a stochastic process

taking values in some space Z. There is a long history of research of the extension of PAC

learning theory to non-i.i.d. situations. When we move away from the i.i.d. assumption, there

is no single distribution D to use in the definition of risk and we have many options with

different notions having different properties and uses.

When one is interested in the long-term behaviour of the process, it is sensible to consider

the marginal distribution M (for stationary and ergodic processes) and solve the problem

of minimizing R(h;M). This makes it possible to reduce the problem again to studying

the uniform deviations of the empirical mean similar to Un(H), but with an expectation with

respect toM, like it done in [Yu, 1994; Meir, 2000]. Typically, this direction does not introduce

new algorithms and rather focuses on conditions and situations when the existing algorithms

18

(like ERM) can be shown to achieve learnability.

In other settings, the short-term behaviour of the process can be of greater interest, as it

was argued in [Pestov, 2010; Shalizi and Kontorovitch, 2013]. In such cases, it makes sense to

use the conditional distributions of the process at every step, Dt , as they are naturally tuned

for the concrete realization of the process at hand, and to minimize R(h;Dt). For some class

of processes, like exchangeable ones, it is possible to show learnability by ERM by studying

the uniform deviations from the conditional means, [Berti and Rigo, 1997].

However, beyond that there is very few studies that look at the learnability with respect

to conditional distributions and a lot of questions are still unanswered. What is the exact

description of the class that can be learned by ERM? If we have a class that can not be

learned by ERM, what can we do? What does learnability even means if we use the conditional

distributions?

In this chapter we give answers to these questions and emphasize an important role of the

discrepancies between conditionals of the process for the characterization of the learnability

with respect to conditional distributions.

3.2 Conditional risk minimization problem

In this chapter we consider the conditional risk minimization problem where the goal at each

step is to find a hypothesis with the minimal conditional risk, i.e. the minimizer of the expected

loss on the next point conditioned on the observed data so far. Formally, the risk at step t is

R(h;Dt) = Et−1 [‘(h; zt)] (3.1)

and at the step n we want to perform the minimization

min
h∈H

R(h;Dn+1): (3.2)

Let consider an example of predicting the next step of discrete valued process with a state

space S. For this we define X = ∅, Y = S and the hypotheses class of constant functions

H = {hs(x) = s;∀s ∈ S}. Let us assume that the process is a Markov chain with a state

space S and fix a transition function ı : S → QS, where QS is a space of distributions over

19

S. Then finding the most probable value on the next step can be stated as a conditional risk

minimization problem with 0-1 loss:

min
h∈H

E [‘(h; zn+1)| z1:n] = min
s∈S

P [s ̸= zn+1| zn] ; (3.3)

which is equivalent to maxs∈S ı(s|zn).

As in the standard learning theory, the distribution of the process is unknown, hence, we

are looking for a method that can perform (3.2) based only on the observed data, i.e. that

produces a sequence of hypotheses hn, where each hn can be computed from the data observed

up to step n and hn approximates the minimum of (3.2). As the target of learning changes

with every step, the standard PAC-learning definition does not makes sense for conditional risk

minimization. Therefore, we need to define a new notion of learnability that is suited for this

setting.

Definition 3.2.1 (Conditional Learnability). For a fixed loss function ‘ and a hypotheses

class H, we call a class of processes C conditionally learnable in the limit if there exists an

algorithm that, for every process P in C, produces a sequence of hypotheses, hn, each based

on z1:n, satisfying

R(hn; Dn+1)− inf
h∈H

R(h;Dn+1)→ 0 (3.4)

in probability over the samples drawn from P . We call an algorithm that satisfies this condition

a limit learner for the class C.

It is also possible to consider almost sure convergence in the definition of learnability with

a minor modifications of our statements.

The above definition concerns itself with the complete convergence. More in line with the

PAC-learnability, we will also use the following notion of learnability.

Definition 3.2.2 ("-conditional Learnability). For a fixed loss function ‘ and a hypotheses

class H, we call a class of processes C "-conditionally learnable for " > 0 if there exists an

algorithm that, for every process P in C, produces a sequence of hypotheses, hn, each based

on z1:n, satisfying

P
»
R(hn; Dn+1)− inf

h∈H
R(h;Dn+1) > "

–
→ 0: (3.5)

An algorithm that satisfies (3.5) we call an "-learner for the class C.

20

Note that this notion of learnability is weaker than conditional learnability. Moreover, a

class of processes is conditionally learnable if and only if it is "-conditionally learnable for all

" > 0.

3.3 Prior work on conditional learnability

A number of classes have been shown to be learnable prior to the work presented in this the-

sis: i.i.d. [Steinwart, 2005], exchangeable [Berti and Rigo, 1997; Pestov, 2010], conditionally

i.i.d. [Berti and Rigo, 2017] and some special cases of stochastic processes [Mohri and Ros-

tamizadeh, 2013]. All these results look at the processes for which the conditional risk can be

estimated by a uniformly weighted average over the previous observations and are covered by

our results from Section 3.7.

[Kuznetsov and Mohri, 2014] looked at the problem of minimizing R(h;Dn+s) for different

values of s. Their approach relied on the estimation of the conditional risk by an empirical

average with the convergence of their bound requiring s → ∞ as n grows. The requirement

on s to grow makes the resulting problem quite different from CRM that corresponds to a

fixed value s = 1 for all n.

Conditional risk minimization was considered in [Kuznetsov and Mohri, 2015] and later

extended in [Kuznetsov and Mohri, 2016]. Without taking the conditional learnability into

account, they consider the behaviour of the empirical risk minimization algorithm at each

fixed time step by taking a non-adaptive estimator of the risk with non-adaptive meaning

the same irrespectively of the observed realization. Unfortunately, the proposed methods can

not be used to show any form of conditional learnability, because the resulting generalization

bounds have a constant term in the upper bound, which prevents it from converging.

3.4 Connection to time series prediction

The CRM framework can be connected to existing theoretical approaches to time series pre-

diction. In particular, we consider two frameworks, which are close enough to conditional risk

minimization. In both cases, we show that the conditional risk minimization solves harder

problem in a sense that its solutions can be used to solve these particular problems, but it

requires more assumptions to be valid.

21

Prediction by learning. We start with a framework of time series prediction by statistical

learning, considered for example in [Alquier et al., 2013; McDonald et al., 2012]. Fixing some

point n in time, we consider a hypotheses class H̃ ⊆ {h : Zn → Z}, where each hypotheses

h gives us a prediction of the next step by evaluating the whole history. For any loss function

‘ : Z × Z → [0; 1], we consider the following risk minimization problem:

min
h∈H̃

E [‘(h(z1:n); zn+1)] : (3.6)

To set up the conditional risk minimization, we define a class of constant functions H =

{hz ′(z) = z ′;∀z ′ ∈ Z}. Then if the process belongs to a class learnable with H and ‘, we can

guarantee that there is an algorithm to choose a point z ′n, such that with probability 1− ‹

E [‘(z ′n; zn+1)| z1:n] ≤ inf
z ′
E [‘(z ′; zn+1)| z1:n] + "n(‹); (3.7)

where "n(‹) is a sequence of errors guaranteed by the algorithm for a given confidence ‹ so

that "n(‹)→ 0. Converting this to the bound on the expectation, we get

E [‘(z ′n; zn+1)] ≤ E
»
inf
z ′
E [‘(z ′; zn+1)| z1:n]

–
+ "n(‹) + ‹: (3.8)

Notice that

E
»
inf
z ′
E [‘(z ′; zn+1)| z1:n]

–
≤ E

"
inf
h∈H̃

E [‘(h(z1:n); zn+1)| z1:n]
#

(3.9)

≤ inf
h∈H̃

E [‘(h(z1:n); zn+1)] : (3.10)

Therefore, if the process is from a learnable class, there is an algorithm that always give good

predictions according to this framework as well.

Online prediction. The second setting, which was considered by [Wintenberger, 2017], is

very close to the online sequence prediction. In order to reduce the notations and simplify the

presentation, we assume that the learner has an access to a (usually finite) hypothesis class

H and at every step t he should choose a distribution ıt over H in a way that minimizes the

following notion of the regret:
nX
t=1

Et−1 [‘(Eıth; zt)]−min
h∈H

nX
t=1

Et−1 [‘(h; zt)] : (3.11)

Again, if the process belongs to a learnable class with H and ‘, then there is an algorithm,

which produce the sequence ht that satisfies with probability 1− ‹

Et−1 [‘(ht ; zt)] ≤ min
h∈H

Et−1 [‘(h; zt)] + "t(‹=n) (3.12)

22

for all 1 ≤ t ≤ n. Summing up over t, we get
nX
t=1

Et−1 [‘(ht ; zt)] ≤
nX
t=1

min
h∈H

Et−1 [‘(h; zt)] +
nX
t=1

"t(‹=n) (3.13)

≤ min
h∈H

nX
t=1

Et−1 [‘(h; zt)] +
nX
t=1

"t(‹=n): (3.14)

Thus giving us
Pn
t=1 "t(‹=n) bound on the regret with high probability. For nice sequences

(like i.i.d.) "t(‹=n) is of order O
„q

log n
t

«
, which gives a regret bound of order O

“√
n log n

”
.

On the downside, we can get guarantees only for a class of learnable processes, while the

results of [Wintenberger, 2017] hold for any stochastic process. The reason for this is that

conditional risk minimization is inherently more difficult problem, since it requires to optimize

at every step and not in the cumulative sense.

3.5 Limits to learnability

As discussed in Section 3.3, a number of classes of stochastic processes was shown to be

conditionally learnable. On the opposite side, the class of all stationary and ergodic binary

processes is not learnable in the particular prediction setting, as we show based on the results

of [Gyorfi et al., 1998].

Theorem 3.5.1. Let X = ∅, Y = {0; 1}, H = [0; 1] and ‘(h; z) = (h − z)2. Also, let C be

a class of all stationary ergodic processes taking values in Z. Then for any learning algorithm

that produces a sequence of hypotheses hn, there is a process P ∈ C such that

P
»
lim sup
n→∞

„
R(hn; Dn+1)− inf

h∈H
R(h;Dn+1)

«
>

1

16

–
≥ 1

8
: (3.15)

3.6 Discrepancies

Having discussed the limits to CRM and its relation to other problems, we start to work

towards solving CRM by introducing a key notion of pairwise discrepancies, a measure of

distance between conditional distributions at different time steps.

Definition 3.6.1 (Pairwise discrepancy). For a sample z1; z2; : : : from a fixed stochastic

process, the pairwise discrepancy between time points i and j is

di ;j = sup
h∈H
|R(h;Di)− R(h;Dj)| : (3.16)

23

As a distance measure between two distributions, it is also known by the name of an

integral probability metric and is studied, for example, in [Zolotarev, 1983; Müller, 1997].

For learning problems it is a very suitable measure of distance, because it is adapted to the

underlying hypothesis set, making it a popular choice in the domain adaptation literature [Kifer

et al., 2004; Ben-David et al., 2007; Mansour et al., 2009; Ben-David et al., 2010; Mohri and

Medina, 2012].

From this point we distinguish between two situations: when the discrepancies exhibit a

special form of convergence and when they do not. In the former case, we show that using the

ERM algorithm is sufficient. For the latter, we present two approaches, one based on weighted

ERM and another based on a new MACRO algorithm, which we introduce later, allowing to

control the discrepancies.

3.7 Convergent case

We start describing the situation when the existing algorithms are sufficient to achieve condi-

tional learnability. The intuition behind this case is that if a sequence (of numbers, random

variables, etc.) is convergent then the average of elements in the sequence also converges to

the same limit. However, in our situation we do not have a single sequence, but rather a

double array of discrepancies, dt;n. We use the following definition of convergence, which is a

modification of standard convergence in probability to our special case of double array.

Definition 3.7.1. A double array of random variables dt;n with n ∈ N and 0 ≤ t < n is

called convergent if

∀" > 0;∀‹ > 0;∃n0; t0 : 0 ≤ t0 < n0;∀n ≥ n0; (3.17)

∀t0 ≤ t < n : P [dt;n > "] ≤ ‹:

With this definition in hand, we can state the following theorem.

Theorem 3.7.2. For any hypotheses class H such that L(H) has a finite sequential fat-

shattering dimension, if every process in the class C has convergent discrepancies, then the

ERM algorithm is a limit learner.

A trivial example of the convergent situation is an i.i.d. process, because all the discrep-

ancies are zero. For a more general example, we consider a class of F-uniformly convergent

24

martingales. This class consists of processes that form martingales for every function f ∈ F

applied to its values, that is Es [Et [f (zt+1)]] = Es [f (zs+1)] for s < t. By standard results in

the theory of martingales, e.g. [Williams, 1991], for every f there is a limit random variable

rf , such that Etf → rf in probability and Etf = Etrf . This motivates the following definition.

Definition 3.7.3. For a functions class F ⊆ {f : Z → [0; 1]}, a martingale process is called

a F-uniformly convergent martingale if

sup
f ∈F
|Etf − rf | → 0 (3.18)

in probability.

For such classes we have the following results.

Lemma 3.7.4. A L(H)-uniformly convergent martingale has convergent discrepancies.

Corollary 3.7.5. If a class C consists of L(H)-uniformly convergent martingales, then it is

conditionally learnable by the ERM algorithm.

As shown in [Berti et al., 2002], a prominent example of uniformly convergent martingales

is a class of exchangeable sequences that is widely used in the statistical literature.

Definition 3.7.6. A process is called exchangeable if (zj1; : : : ; zjn) and (z1; : : : ; zn) have the

same distribution for every n and every n-tuple of distinct indices j1; : : : ; jn.

Exchangeability means that the sampled data has the same distribution irrespectively of

the order of variables. In addition to i.i.d., this assumption also covers an important case

of complete dependence, when one observes copies of the same random variable. From this

perspective, Corollary 3.7.5 can be seen as a generalization of the results proven by [Berti et al.,

2002] for exchangeable sequences and, even further, by [Berti and Rigo, 2017] for conditionally

identically distributed sequences.

Another example of a class with convergent discrepancies is a class of processes used in

[Mohri and Rostamizadeh, 2013]. Their assumption (equation 6) states for any hypothesis h

that depends only on z1:t and any n ≥ s > t we have

E [‘(h; zn+1)| z1:s] = E [‘(h; zn+1)| z1:t] : (3.19)

In particular, that means that for any fixed h (not depending on the sample)

E [‘(h; zn+1)| z1:n] = E [‘(h; zn+1)] : (3.20)

25

If the marginal distributions at each step are the same, as assumed in [Mohri and Rostamizadeh,

2013], then (3.20) yields that all dt;n are zero, so they are convergent.

3.8 Non-convergent case

In the case the discrepancies do not converge in the sense of Definition 3.7.1, we need an

additional information about their behaviour. In particular, we show that all that is needed is

a computable upper bound on the discrepancies. This is summarized in the following definitions

of a D-bound and an M-bound. Later we will describe the WERM algorithm that requires

an M-bound to achieve conditional learnability and MACRO algorithm that requires only a

D-bound, but achieves a weaker "-conditional learnability.

Definition 3.8.1 (D-bound). A double array of random variables Mi ;j , with i ; j ∈ N is called

a D-bound if

1. Mi ;j is measurable with respect to Σmax(i ;j)−1

2. di ;j ≤ Mi ;j for all t; j ∈ N.

Trivially, discrepancies themselves form a non-computable D-bound, however, a general

D-bound is a necessary abstraction and differs from the discrepancies by fact that we should

be able to compute it from the sample. For example, in case of discrete-state Markov chains,

a D-bound Mi ;j = I [zi−1 ̸= zj−1] fulfills the necessary conditions. Another, computable but

nonetheless trivial example is a constant sequence Mi ;j = 1. However, this D-bound is not

very useful as we will later see from the additional conditions on the behavior of D-bounds

that allow for conditional learnability.

To prove conditional learnability for the weighted empirical risk minimization the mere

existence of a D-bound is not enough. In addition, we require it to satisfy a special measurability

condition that summarized in the following definition.

Definition 3.8.2 (M-bound). A D-bound Mi ;j with i ; j ∈ N is called a M-bound if there

exists a sequence of functions Ψi(r) for i ; r ∈ N and a sequence of random variables Jr taking

values in N such that

1. Mi ;j = Ψi(Jj) for all j and 1 ≤ i ≤ j ,

26

Input: M-bound Mi ;j , smoothing functions gt
Initialization: S = ∅
At any time point t = 1; 2; : : : :

• compute the weights over current training set S: ws =
gt(Ms;t)Pt−1

j=1
gt(Mj;t)

• output the current hypothesis: ht ← argminh
Pt−1
s=1 ws‘(h; zs)

• observe the next value of the process, zt

• update the current training set: S ← S ∪ {zt}

Figure 3.1: Weighted ERM algorithm

2. Ψi(r) is measurable with respect to Σi−1 for all fixed r ∈ N.

In the example of Markov chain prediction, let s1; s2; : : : ; s|S| be any enumeration of the

state space S. Then we can define Ψi(r) = I [zi−1 ̸= sr] for 1 ≤ r ≤ |S| and set Jj = k for k

that satisfies sk = zj−1.

3.8.1 Weighted ERM

As in standard learning theory, we first focus on the empirical risk minimization principle,

which governs us to construct an estimator of the risk based on the data and use the min-

imizer of the estimator as an output hypothesis. The main question is how to construct

this estimator. In Section 2.1, we used 1
n

Pn
t=1 ‘(h; zt) as an estimator in case of i.i.d. data,

however, for general processes, this quantity is not a good choice as it does not converge to

the conditional risk, except for some special cases, which are covered by Theorem 3.7.2. For

other situations we consider linear estimators of the form
Pn
t=1 wt‘(h; zt) with wt ≥ 0 andPn

t=1 wt = 1 (we omit the dependence of wt ’s on n, but emphasize that at each step the

weights can be different, because we estimate different quantities) and output the minimizer:

hn = argminh
Pn
t=1 wt‘(h; zt). Thus we change to the problem to finding "good" weights w

based on the observed sample that make empirical risk minimization a limit learner. This makes

the weights a function of the observed data, so they must be treated as random variables.

In the case of Markov chain, the estimator for state s has the form
Pn
t=1 wtI [s ̸= zt].

Clearly, there is no fixed choice of weights that would approximate the conditional risk well

for every realization of the process. The empirical average with uniform weights, wt ≡ 1
n
, for

example, converges to the risk with respect to the stationary distribution of the chain, not the

27

conditional one. Instead, we should choose wt to be large, if the (conditional) distribution

of zt is similar to the distribution of zn+1, i.e. ı(·|zt−1) ≈ ı(·|zn). Otherwise, wt should be

small. The same intuition holds for general processes, as we will show later in Section 3.8.

To study the properties of the weighted ERM, we use the fact similar to Lemma 2.1.2 that

R(hn; Dn+1)− inf
h∈H

R(h;Dn+1) ≤ 2 sup
h∈H

˛̨̨̨
˛
nX
t=1

wt‘(h; zt)− R(h;Dn+1)

˛̨̨̨
˛ (3.21)

and, henceforward, focus on the right hand side, i.e. uniform deviations of the estimator.

The starting point to understanding its behaviour is the following decomposition, proposed in

[Kuznetsov and Mohri, 2015]:

sup
h∈H

˛̨̨̨
˛
nX
t=1

wt‘(h; zt)− R(h;Dn+1)

˛̨̨̨
˛ ≤ sup

h∈H

˛̨̨̨
˛
nX
t=1

wt (‘(h; zt)− R(h;Dt))
˛̨̨̨
˛ (3.22)

+ sup
h∈H

˛̨̨̨
˛
nX
t=1

wtR(h;Dt)− R(h;Dn+1)

˛̨̨̨
˛ :

The first term is Vn(L(H); w) introduced in Section 2.4. For the second term, we go further

and observe that for weights that satisfy wt ≥ 0 and
Pn
t=1 wt = 1, we can further upper

bound it as

sup
h∈H

˛̨̨̨
˛
nX
t=1

wtR(h;Dt−1)− R(h;Dn+1)

˛̨̨̨
˛ ≤

nX
t=1

wtdt;n+1: (3.23)

That gives us

sup
h∈H

˛̨̨̨
˛
nX
t=1

wt‘(h; zt)− R(h;Dn+1)

˛̨̨̨
˛ ≤ Vn(L(H); w) +

nX
t=1

wtdt;n+1: (3.24)

For fixed data-independent weights, Vn(L(H); w) represents the stochastic part of the problem

and can be shown to converge under very general conditions using the machinery of Section

2.5. An important fact is that the rate of convergence is determined by ∥w∥2. For example,

uniform weights wt = 1
n

yield an optimal, O(1√
n
), rate. On the contrary, if only one sample

is present, i.e. wt = 1 for some t and wt = 0 for all others, then there is no convergence as

∥w∥2 does not decrease as a function of n.

The second term in 3.22 measures how well Dn+1 is approximated by the previous distri-

butions D1; : : : ; Dn. Opposite to Vn(L(H); w), it is minimized by setting wt = 1 for index

t that has the smallest discrepancy. This creates a natural trade-off between two desirable

properties of the weights: they should offer good statistical power (have small ∥w∥2), while

achieving a high approximation quality (small average discrepancy).

As it can be clearly observed in the example of a Markov chain, in the non-convergent

situation there is no single choice of weights that can be applied irrespectively of the process

28

and the sample. Rather one should adjust the weights to the data at hand. This is where the

notion of D-bounds comes into play. Observe that for a given D-bound, we can further upper

bound (3.23):
nX
t=1

wtdt;n+1 ≤
nX
t=1

wtMt;n+1: (3.25)

This expression would be minimized by setting wt = 1 for the index t with minimal value of

Mt;n+1, while keeping the other weights at 0. However, as discussed above, such a choice is

disastrous for the stochastic part of (3.24). Therefore, we suggest to use a version of soft-min

with some smoothing function gn : R→ [0; 1] that also could be different at each step.

wt =
gn(Mt;n+1)Pn
j=1 gn(Mj;n+1)

(3.26)

for 1 ≤ t ≤ n. A popular smoothing function is gn(x) = e−‚nx for some ‚n > 0. In the

example of a Markov chain, the simpler gn(x) = I [x = 0] = lim
‚→0

e−‚x is sufficient as can be

seen in the next example. The final description of the proposed WERM algorithm is given in

Figure 3.1.

We observe that for the Markov chain the pairwise discrepancies can be written using

the transition function, di ;j = maxs∈S |ı(s|zi−1)− ı(s|zj−1)|. Then it is immediate that

dt;n+1 ≤ I [zt−1 ̸= zn], hence, setting wt =
I[zt−1=zn]Pn

j=2
I[zj−1=zn]

seems like a good choice: it uses

only samples from the distribution we are trying to predict for, and it distributes the mass evenly

among those. Consequently, the discrepancy term in (3.24) is zero and ∥w∥2 is minimal.

Due to the stochastic nature of the process, it may not be possible to have a good bound for

each possible realization. Imagine a situation in a Markov chain when at step n we observe the

state zn for the first time. Then we have no information in the sample about the distribution

of the next step. Nevertheless, if such realizations are rare, the process can still be learnable.

We formalize this idea in an exceptional set of realizations, which we are going to ignore and

require that they appear with small probability.

Definition 3.8.3 (Exceptional set). Let Mi ;j be an M-bound with representation Mi ;j =

Ψi(Jj). For a fixed n, for any k ≥ 1 and 1 ≤ m ≤ n, set

Ek;m =
ȷ
Jn+1 ≤ k ∧

nX
t=1

gn(Mt;n+1) ≥ m
ff
: (3.27)

We define Eck;m, the complement of Ek;m, as an exceptional set of the realizations.

Note that this set is also different at each step, but we omit the index n to avoid cluttering

of the notations. The condition in (3.27) mainly requires to have a lower bound on the

29

denominator of wt ’s, thereby avoiding the situation observed in a Markov chain example. We

will discuss the behaviour of P
h
Eck;m

i
for discrete state Markov chains (and other processes)

in Section 3.8.4.

The following theorem provides guarantees on the performance of empirical risk minimiza-

tion with our proposed choice of weights.

Theorem 3.8.4. For any M-bound Mt;j , let hn be the sequence of hypotheses produced by

the corresponding weighted ERM algorithm. Then for any fixed n, for any k;m ≥ 1, ¸ ∈ [0; 1]

and ˛ ∈ [0; ¸=4] the following inequality holds

P
»
R(hn; Dn+1)− inf

h∈H
R(h;Dn+1)− 2Λn ≥ 2¸

–
≤ 2kS∞(L(H); ˛; n)

(¸− 4˛)2
e−

1
2
m(¸−4˛)2 +P

h
Eck;m

i
;

(3.28)

where Λn =
Pn
t=1 wtMt;n+1.

It may be instructive to look at the different form of Theorem 3.8.4. For any k;m ≥ 1,

any ‹ > P[Eck;m] and ˛ > 0, with probability 1− ‹ the following inequality holds:

R(hn; Dn+1)− inf
h∈H

R(h;Dn+1) ≤ 2Λn + 8˛ + 2

s
2 log 4m

‹
+ 2 log 2kS∞(L(H); ˛; n)

m
: (3.29)

From this form we can read off conditions under which the ERM algorithm becomes a limit

learner. As this means that the right hand side converges to 0, in particular we need that Λn

vanishes in the limit.

Corollary 3.8.5. Assume that for every process P in the class C there exists a sequence of

M-bounds and smoothing functions satisfying Λn → 0. Let L(H) have a finite sequential

fat-shattering dimension. If there exist kn; mn satisfying mn
log n
→ ∞ and P[Eckn;mn] → 0, then

C is conditionally learnable in the limit by the WERM algorithm based on the given M-bounds

and smoothing functions.

Note that the algorithm does not require knowledge of the parameters k and m, merely

the existence of good values.

The above results show that the quality of M-bounds is of crucial importance for establish-

ing conditional learnability. In Section 3.8.3 we highlight constructions of M-bounds based on

prior knowledge (or assumptions) on the processes. Moreover, each process of a class should

not produce unfavorable sequences very often. We will look into this property of processes in

more details in Section 3.8.4.

30

Input: D-bound Mi ;j

Initialization: T ← ∅, N ← 0

At any time point t = 1; 2; : : : :

• choose the active hypothesis from the closest "-close subroutine or a newly started one

– identify all "-close subroutines: J = {1 ≤ j ≤ N : Mt;fij ≤ "}:

– if J = ∅: create a new subroutine, SN+1, and set J = {N+1}; fiN+1 ← t;N ← N+1:

– set the active hypothesis: ha ← output(Sj) for j = argminj∈JMt;fij :

• output the currently active hypothesis, ht ← ha

• observe the next value of the process, zt

• update all "-close subroutines: Sj ← update(Sj ; zt) for all j ∈ J

Figure 3.2: MACRO algorithm

3.8.2 MACRO

The weighted ERM algorithm of the previous section is able to achieve learnability for a wide

class of processes with non-convergent discrepancies. Now, if one wants to apply the algorithm

in practice, then we are faced with a problem: a running time of the algorithm at each step is

at least quadratic in the number of samples. This makes it infeasible to apply it to datasets

even of moderate size. The main goal of the this section is to present an algorithm that has

better computational complexity, while still retaining learnability guarantees in the form of

"-conditional learnability.

We present a Meta Learning Algorithm for Conditional Risk Minimization (MACRO) that

is build on the similar idea to WERM: if two conditional distributions are very similar, we

can use the same hypothesis for both of them. To find these hypotheses, the meta-algorithm

maintains a list of learning subroutines, where each of them is run independently and updated

using a selected subset of the observed data points. Over the course of the algorithms, the

meta-algorithm always maintains an active hypothesis that can immediately be applied when

a new observation arrives. After each observation, one or more of the existing subroutines are

updated, and a new subroutine can be added to the list, if necessary. The meta-algorithm

then constructs a new active hypothesis from the ones produced by the currently running

subroutines, to be prepared for the next step of the process. The schema of the algorithm is

given in Figure 3.2.

Before we proceed to the theoretical properties of the meta-algorithm, we fix further no-

31

tations for its components. At any time step n, we denote by Nn the number of started

subroutines (i.e. the current value of N). The time steps in which the j-th subroutine is up-

dated up to step n form a set Cj;n = {tj;1; : : : ; tj;sj;n} of size sj;n. By hj;i we denote the output

of the j-th subroutine after having been updated i-times. By In ∈ [Nn] we denote the index

of the subroutine that MACRO outputs in step n, i.e. hn = hIn;sIn;n .

Computational considerations. The overall computational complexity of the weighted

ERM principle is proportional to n2 for a dataset of size n, while MACRO is able to reduce it

to nNn with a potential for further reduction. The following lemma considers the quantitative

behavior of Nn.

Lemma 3.8.6. For any D-boundMi ;j , letN (M; n; ") be an "-covering number of {D1; : : : ; Dn}

with respect to Mi ;j ’s. Then for any n = 1; 2; : : : , it holds that

N (M; n; ") ≤ Nn ≤ N (M; n; "=2): (3.30)

Observe that N (M; n; ") is always lower-bounded by N (d; n; "), making it a natural limit

on how many separate subroutines are required to learn a particular sequence.

Exceptional sets. As discussed in Section 3.8 (and resembling the "probably" aspect of

PAC learning), learnability guarantees for stochastic processes may not hold for every possible

realization of the process. Henceforth, we follow the same strategy for MACRO and introduce

a set of exceptional realizations. However, the definition differs from (3.8.3), as it is adapted

to the working mechanisms of the meta-algorithm.

Definition 3.8.7 (Exceptional set for MACRO). For a fixed n, for any k ≥ 1 and 1 ≤ m ≤ n,

set

Xk;m = {|supp(In)| ≤ k ∧ min
j∈supp(In)

sj;n ≥ m}; (3.31)

where supp(In) denotes the support of In. Then X ck;m, the complement of Xk;m, is an excep-

tional set of realizations.

In words, the favorable realizations are the ones that do not force the algorithm to use too

many subroutines (at most k) and, at same time, all used subroutines are updated often enough

(at least m times). The intuition behind this is that a subroutine will be slow in converging

to an optimal predictor if it is updated very rarely. However, the overall performance of the

32

meta-algorithm can suffer only if rarely updated subroutines are nevertheless used from time

to time.

Subroutines. MACRO, as a meta algorithm, relies on the subroutines to perform the actual

learning of hypotheses. In the following, we will go through several option for subroutines and

discuss the resulting theoretical guarantees.

Empirical risk minimization. We start with the simplest choice of a subroutine: an ERM

algorithm. Writing it using the introduced notations, the j-th ERM subroutine outputs

hj;n = argmin
h∈H

1

sj;n

X
t∈Cj;n

‘(h; zt): (3.32)

Consequently, MACRO’s output is hn = hIn;n for which we can prove the following theorem.

Theorem 3.8.8. For any D-bound Mi ;j , if MACRO is run with ERM as a subroutine, then

we have for any k;m ≥ 1; ¸ ∈ [0; 1] and ˛ ∈ [0; ¸=4]

P
»
R(hn; Dn+1)− inf

h∈H
R(h;Dn+1) > 2¸+ 4"

–
≤ 2kS∞(L(H); ˛; n)

(¸− 4˛)2
e−

1
2
m(¸−4˛)2 + P

h
X ck;m

i
:

From this theorem we can read off the conditions for learnability of the meta-algorithm.

First, we consider hypotheses class H so that L(H) has a finite sequential fat-shattering

dimension. If there exist sequences kn; mn, satisfying mn
log n
→∞ and P[X ckn;mn]→ 0, then the

meta-algorithm with ERM as a subroutine is an "-learner (up to a constant). The condition

on the rate of growth of mn comes from the fact that it needs to compensate for the growth

of covering numbers, which is a polynomial of n (see Lemma 2.5.4). The existence of such

sequences kn and mn depends purely on the properties of the process (or class of processes)

that the data is sampled from. Importantly, neither kn nor mn are needed to be known by

MACRO as it automatically adapts to unfavorable conditions and exploits the favorable ones.

Note that the computation of hn can be seen as a minimization of non-uniformly weighted

average over the observed data as done in WERM.

Online learning. ERM as a subroutine is interesting from a theoretical perspective, but it

defeats the main purpose of the meta-algorithm, namely that not all data of the process has to

be stored. Instead, one would prefer to rely on a subroutine that can be trained incrementally,

i.e. one sample at a time, as it is typical in online learning.

33

In the following, by an online subroutine we understand any algorithm that is designed to

control the regret over each particular realization, like we presented in Section 2.6. The regret

of the j-th subroutine at the step n is defined as

Wj;n =
sj;nX
i=1

‘(hj;i−1; ztj;i)− inf
h∈H

sj;nX
i=1

‘(h; ztj;i): (3.33)

The choice of a particular subroutine depends on the loss function and the hypotheses class.

To abstract from concrete bounds and subroutines, we prove a theorem that bounds the

performance of the meta-algorithm in terms of the regrets of the subroutines. Thereby, we

obtain that any regret minimizing algorithm will be efficient as a subroutine for MACRO as

well.

As our goal is not to minimize regret, but the conditional risk, we perform an online-to-

batch conversion to choose the output hypothesis of each subroutine. In this work we consider

two of the many existing online-to-batch conversion methods, one specifically for the convex

losses and the other one for the general case.

Convex losses. For a convex loss function, we set the output of a subroutine to the average

over the hypotheses it produced so far. In this case, MACRO’s output is hn = 1
sIn;n

PsIn;n
i=1 hIn;i .

and we can prove the following theorem.

Theorem 3.8.9. For a convex loss ‘, if the subroutines of MACRO use an averaging for

online-to-batch conversion, we have for any ¸ ∈ [0; 1] and ˛ ∈ [0; ¸=8]

P
»
R(hn; Dn+1)− inf

h∈H
R(h;Dn+1) > ¸+WIn;n=sIn;n + 4"

–
(3.34)

≤ 4kS∞(L(H); ˛; n)
(¸=2− 4˛)2

e−
1
2
m(¸=2−4˛)2 + P

h
X ck;m

i
:

For Hannan-consistent online algorithms, WIn;n=sIn;n vanishes as sIn;n grows. Hence, the

same conditions as the ones given after Theorem 3.8.8 ensures that MACRO is an "-learner

in this case.

Non-convex losses. For non-convex losses, a simple averaging for online-to-batch conver-

sion does not work, so we need to perform a more elaborate procedure. We use a modification

of the method introduced in [Cesa-Bianchi et al., 2004]. As the original method was designed

to work for i.i.d. data, we need to extend it to stochastic processes. The general idea is to

34

assign a score to each of hj;i and choose the hypothesis with the lowest one. For a given

confidence ‹ > 0, the score of hj;i is computed as

un(j; i) =
1

sj;n − i

sj;nX
k=i+1

‘(hj;i ; ztj;k) + cj;‹(sj;n − i); (3.35)

where

cj;‹(t) =

vuut 1

2(t + 1)
log

s3j;n(sj;n + 1)

‹
(3.36)

reflects the uncertainty of this value that is caused by different subroutines having been trained

on different amounts of training data. Setting Jn = argmin1≤i≤sIn;n un(In; i), MACRO’s output

is hn = hIn;Jn : and we are able to prove the following theorem.

Theorem 3.8.10. For any ‹ ∈ [0; 1] and ˛ > 0, denote

U‹(j; ˛) = 2

vuut 1

sj;n
log

s3j;n(sj;n + 1)

‹
+

vuut 1

sj;n
log

s2j;n
‹

+

vuut 1

sj;n
log

s2j;nS∞(L(H); ˛; n)
‹

+ 4˛:

(3.37)

If the subroutines of MACRO use the score-based online-to-batch conversion with confidence

‹, it holds that

P
»
R(hn; Dn+1)− inf

h∈H
R(h;Dn+1) > 2"+WIn;n=sIn;n + U‹(In; ˛)

–
≤ k‹=m + P

h
X ck;m

i
:

(3.38)

The same conditions as before will ensure "-learnability. Note that to perform this form of

online-to-batch conversion neither k nor m need to be known.

3.8.3 Controlling pairwise discrepancies

In this section we give two examples of how D-bounds and M-bounds can be constructed.

We already discussed an example for the problem of predicting the next state of a discrete

state Markov processes in Section 3.8. The construction can be extended to more general

situations, when the discrepancy between two time steps can be related to the similarity of

their histories, namely for all h ∈ H,

|E [‘(h; zi+1)| z1:i]− E [‘(h; zj+1)| z1:j]| ≤ –(z1:i ; z1:j); (3.39)

where – : Z i × Z j → R+ is a form of distance measure. This property can be derived,

e.g., from the continuity of the conditional distribution with respect to the history, which is a

35

common assumption in the literature on nonparametric estimation, e.g. [Györfi et al., 1989;

Hansen, 2008; Linton and Sancetta, 2009]. This makes Mi ;j = –(z1:i−1; z1:j−1) a natural

D-bound.

For an example of M-bound, let us assume that – takes only the q most recent values into

account and is a metric, so that we can rewrite inequality (3.39) as

sup
h∈H
|R(h;Di)− R(h;Dj)| ≤ –(zi−q:i−1; zj−q:j−1): (3.40)

Now, for fixed " > 0 letM be a "-cover of Zq with respect to –. For any z̄ , let c(z̄) denote

the closest element ofM. Then we have

sup
h∈H

˛̨̨
R(h;Di)− RDj (h)

˛̨̨
≤ "+ –(zi−q:i−1; c(zj−q:j−1)): (3.41)

Now, let m̄1; m̄2; : : : be an enumeration ofM, and define Ψi(r) = "+ –(zi−q:i−1; m̄r). Then

we obtain an M-bound by setting Jj = k for k that satisfies mk = c(zj−q:j). In a similar way,

we can obtain D-bounds and M-bounds for related statistical settings, as the assumption of

continuity is a fundamental ingredient for many theoretical results in nonparametric statistics.

Another example of an M-bound can be given in the scenario of rarely changing dis-

tributions. In this case we observe independent samples, however, the distribution from

which these are sampled may occasionally change [Tartakovsky et al., 2014]. Formally, for

a fixed sequence of distribution Q1; : : : ; Qk and change points, 1 = c1 < · · · < ck+1 =

n + 1, the samples zci :ci+1−1 are drawn independently from the distribution Qi , for i =

1; : : : ; k , i.e. Dci ; : : : ; Dci+1−1 are equal to Qi . A simple strategy for this task is to perform

change point detection, for example [Tartakovsky et al., 2014; Khaleghi and Ryabko, 2016;

Kifer et al., 2004], and then distribute the weight uniformly over the samples since the last

change, i.e. wt = 0 for t = 1; : : : ; ck−1 and wt = 1
n−ck+1

for t = ck ; : : : ; n. A more elaborate

scheme in this situation would be to estimate the discrepancies between segments and use

the estimates in the place of real discrepancies. A similar approach was studied in the active

learning scenario by [Pentina and Lampert, 2017].

3.8.4 Controlling the exceptional set for WERM

For classes of processes with non-convergent discrepancies, learnability of WERM requires not

just the existence of an M-bound, but also control of the exceptional set (Corollary 3.8.5). In

this section, we connect this property to some well-known properties of stochastic processes.

36

To isolate the properties of the process from the assumptions required to get an M-bound,

we will analyze the ERM algorithm with a universal (though unfortunately incomputable) M-

bound: we assume that we have access to the individual discrepancies di ;j and define the

bound in the following way. Fix a time step n, some "n > 0 and let

Jn+1 = inf {t ≥ 1 : dt;n+1 ≤ "n} : (3.42)

Then, for t ≥ Jn+1

dt;n+1 ≤ dJn+1;n + dt;Jn+1 ≤ "n + dt;Jn+1; (3.43)

by a triangle inequality. This gives us a M-bound as we can set Ψt(r) = " + dt;r for t ≥ r

and Ψt(r) = 1 for t < r .

In addition, we choose gn(x) = I [x ≤ "n] as smoothing function so that we can guar-

antee that Λn ≤ "n if Jn+1 < n and for "n → 0, we only need to show the existence

of kn and mn → ∞ such that mn
log n

→ ∞ and P[Eckn;mn] → 0. Now we consider a few

different classes of processes and analyze the behaviour of P[Eckn;mn] for the defined M-

bound. We repeatedly use that P[Eck;m] = P[Ak] + P[Bk;m] for Ak = {Jn+1 > k} and

Bk;m =
n
Jn+1 ≤ k ∧

Pn
t=Jn+1

I [dt;Jn+1 ≤ "n] < m
o
. Hence, we can consider the two events

separately if needed. The first two examples were already covered by the convergent case, but

we still mention them for illustrative purposes.

I.i.d. As noticed above, in this case di ;j = 0 for all i ; j . This means that Jn+1 always equals

to 1 and we can guarantee that P[Eck;m] = 0 for k = 1 and m = n − 1.

Complete dependence. Let z1 be a random variable and zt = z1 for t > 1. Then after the

first step, the conditional distributions are just delta measures concentrated on the previous

point and we always get Jn+1 = 2, so that we obtain P[Eck;m] = 0 for k = 2 and m = n − 2.

Periodic sequences. Consider a periodic deterministic sequence with a fixed period T ∈ N,

like the one obtained by observing the trajectory of a pendulum. Because of periodicity, we

know that every conditional distribution occurs at least once within each cycle, therefore,

Jn+1 ≤ T is guaranteed and, hence, P[Eck;m] = 0 for k = T and m = ⌊ n
T
⌋ − 1.

37

Discrete state Markov chains. For discrete state Markov chains the bounds on the prob-

ability of Eck;m are deeply connected to the notion of recurrence times. For a state s ∈ S let Ts

be the recurrence time to this state: Ts = inf {t > 1 : zt = s|z1 = s}− 1. Then the following

connection holds:

P [Bk;m] ≤ |S|mmax
s

P
»
Ts > ⌊

n − k
m
⌋
–
: (3.44)

Therefore, the bound can be devised from the concentration properties of the recurrence times.

For the other part of Eck;m we can show that

P [Ak] ≤ |S|max
s

P [Fs > k] ; (3.45)

where Fs = inf {t ≥ 1 : zt = s} are the first passage times, which also play an important role

in the theory of Markov chains, because they reflect how fast the chain explores its state space.

In combination,

P
h
Eck;m

i
≤ |S|max

s
P [Fs > k] + |S|mmax

s
P
»
Ts > ⌊

n − k
m
⌋
–
: (3.46)

For an example of an obtainable rate, we apply Markov’s inequality to (3.44),

P [Bk;m] ≤
|S|m2

n − k max
s

E [Ts] : (3.47)

One of the basic results from the theory of finite-state Markov chains [Norris, 1998] tells us

that some particular state s can be either recurrent or transient, depending on whenever E [Ts]

is finite or not. If all E [Ts] are finite, then all we need is m growing slower than
√
n − k . This

offers a nice connection of the recurrence properties of Markov chains to their learnability.

Dynamical systems. Let (Z;Σ; —; F) be a dynamical system, where Σ is a ff-algebra on

Z, — is some measure on (Z;Σ) and F : Z → Z is a measure-preserving transformation,

meaning that for any set A ∈ Σ we have —(F−1(A)) = —(A). The evolution of a system

is as follows: first z1 ∼ — is sampled and then any subsequent point is obtained through

the iteration zt+1 = F (zt) = F t(z1). Consequently, di ;j = suph∈H |‘(h; F (zi))− ‘(h; F (zj))|.

We assume di ;j ≤ –(zi ; zj) for some metric – on Z. Let Cj = {z ∈ Z : –(z; zj) ≤ "n} be a

ball around zj with radius "n, then P
h
Eck;m

i
is controlled by the first passage times and the

recurrence times to the sets Cj (analogously to the discrete Markov chain case). Formally, the

recurrence time from a point z ∈ Z to a set C is defined as T (z; C) = inf {t ≥ 1 : F t(z) ∈ C}.

Then, the first passage time to the set is defined as F (C) = T (z1; C) and the recurrence time

38

to a set from itself is T (C) = ess supz∈C T (z; C). Similarly to the Markov chain case, the

following bound holds

P
h
Eck;m

i
≤ P [F (Cn) > k] + k max

1≤j≤k
P
»
T (Cj) > ⌊

n − j
m
⌋
–
: (3.48)

Poincaré’s theorem, e.g. [Katok and Hasselblatt, 1997], tells us that any of the sets Cj will

be visited infinitely often. A quantitative characterization of the behaviour of the recurrence

times for dynamical systems can be found, for example, in [Barreira et al., 2008].

General stationary processes. To relate the setting to the existing work in the nonpara-

metric prediction, assume that the process is stationary and ergodic and di ;j ≤ –(zi−q:i−1; zj−q:j−1)

for some integer q and metric – on Zq. For z̄ ∈ Zq let C(z̄) = {ȳ ∈ Zq : –(ȳ ; z̄) ≤ "n}.

Along the lines of the previous examples, define F (C) = inf {t > q : zt−q:t−1 ∈ C} as a first

passage time to a set C. Then we have for k > q

P
h
Eck;m

i
≤ P [F (C(zn−q+1;n)) > k]+k max

q+1≤j≤q+1+k
P

24 nX
t=q+k+1

I [zt−q:t−1 ∈ C(zj−q;j−1)] < m

35 :
(3.49)

In case of mixing processes, it is possible to determine the rate of recurrence for the second

term. More concretely, it can be shown that

nX
t=k+1

I [zt−q:t−1 ∈ C(zj−q;j−1)] ≈
nX

t=k+1

P [zt−q:t−1 ∈ C(zj−q;j−1)] (3.50)

≥ inf
z̄
(n − k)P [zt−q:t−1 ∈ C(z̄)] ; (3.51)

see for example [Caires and Ferreira, 2005]. Therefore, for mixing processes m can be chosen

proportionally to n.

Distribution drift. [Bartlett, 1992] introduced the setting of distributional drift: there is

a deterministic sequence of distributions D1; : : : ; Dn+1 and samples are drawn independently

from the corresponding distribution: zi ∼ Di . Therefore, any conditional expectations is the

expectation with respect to the marginal distribution of a point. Since in the distribution

drift scenario the samples are independent, the values of Jn+1 and
Pn
t=Jn+1

I [dt;Jn+1 ≤ "n] in

the definitions of Ek;m are deterministic. Hence, we can ensure that P
h
Eck;m

i
= 0 by trivially

setting k = Jn+1 and m =
Pn
t=Jn+1

I [dt;Jn+1 ≤ "n].

39

3.8.5 Controlling the exceptional set for MACRO

Similarly to the previous section, we now study the behavior of the exceptional set for MACRO.

Since MACRO requires only a D-bound, we can just use Mi ;j = di ;j to isolate the properties

of the process from the D-bound assumption. Introduce Ak = {|supp(In)| > k} and Bk;m =

{|supp(In)| ≤ k ∧ minj∈supp(In) sj;n > m} so that P
h
X ck;m

i
= P [Ak] + P [Bk;m]. In general,

the behavior of the P
h
X ck;m

i
is very similar to that of P

h
Eck;m

i
with slight differences that we

highlight on some examples of the previous section.

I.i.d. As all di ;j = 0, MACRO uses only a single subroutine, hence for k = 1 and m = n we

get P
h
X ck;m

i
= 0.

Complete dependence. In this case, for sufficiently small " MACRO will initialize two

subroutines: one for the initial distribution and one for all conditional ones. However, the

former will not be used after the first step anymore, hence for k = 1 and m = n − 1 we get

P
h
X ck;m

i
= 0.

Periodic sequences. For a periodic sequence, the number of the subroutines that MACRO

creates is bounded by the length of period T . Hence, we get P
h
X ck;m

i
= 0 for k = T and

m = ⌊ n
T
⌋ − 1.

Discrete state Markov chains. For a Markov chain, MACRO creates at most |S| sub-

routines, therefore P [Ak] = 0 for k = |S|. The bound for Bk;m can be obtained by the same

argument as for WERM, so we get

P [Bk;m] ≤ |S|mP
»
Ts > ⌊

n

m
⌋
–
; (3.52)

that has the same behavior as in the case of WERM. Together, these bounds give us

P
h
X c|S|;m

i
≤ |S|mP

»
Ts > ⌊

n

m
⌋
–
: (3.53)

Dynamical systems. Let us use the notation and the assumption from the corresponding

discussion for WERM. Now set M(‚) to be ‚-cover of Z with respect to –. Then from

Lemma 3.8.6 we know that the number of subroutines that MACRO creates can be bounded

40

byM("=2), thus for k =M("=2) we are guaranteed that P [Ak] = 0. If we denote by G‚ an

arbitrary ‚-ball in Z, we can bound

P [Bk;m] ≤M("=2) sup
G"⊆Z

P
»
T (G") > ⌊

n

m
⌋
–
: (3.54)

That together gives us

P
h
X cM("=2);m

i
≤M("=2) sup

G"⊆Z
P
»
T (G") > ⌊

n

m
⌋
–
: (3.55)

Distribution drift. Since the sequence of distributions is fixed, the Lemma 3.8.6 gives us

the best characterization of the number of subroutines initialized by MACRO. Hence, if we

consider such a "=2-cover of the sequence of D1; : : : ; Dn, k can be set to its size and we

can approximate m by the smallest number of distributions that a single element of the cover

covers.

3.9 Conclusion

In this chapter we studied the problem of conditional risk minimization. We showed a di-

chotomy of all stochastic processes into two groups. For one the existing algorithm provably

perform well. For another we presented two new algorithms with different characteristics and

provable performance guarantees. Additionally, we discussed how the presented bounds behave

for a range of well-known classes of stochastic processes.

41

4 Conditional Risk Minimization in Practice

In the previous chapter we studied the theoretical properties of the algorithms for conditional

risk minimization. The goal of the present chapter is to show the practical applicability of these

algorithms. In particular, our focus is on the MACRO algorithm as it tackles the computational

challenges that arise with weighted empirical risk minimization. We present the two datasets

of different characteristics: a binary classification of the delays of the flights and the action

recognition on the video streams. In all experiments the goal is to compare MACRO with

more traditional approaches, like online learning and standard i.i.d. learning. That being said,

we do not focus on achieving the best accuracy for the tasks in favor of fair comparison of the

approaches.

We adopt a classification setting: X = Rd , Y is a set of discrete labels, and ‘ is the

0=1-loss. Following the discussions of Section 3.8.3, we use a distance between histories for

the D-bound and for each experiment we describe the choice in detail. The version of the

algorithm used for theoretical analysis is oblivious to the fact how we initialize the subroutines.

In the implementation, however, whenever we start a new subroutine, we give it a warm start

by initializing it with the parameters of the closest subroutine in terms of discrepancies.

4.1 DataExpo Airline dataset

The first set of experiments we present uses the DataExpo Airline dataset 1, which contains

entries about all commercial flights in the United States between 1987 and 2008. Out of these,

we select the most recent year with complete data, 2007, and a number of the most active

airports at that time, which gives, for example, more than 300000 flights for the Atalanta

airport (ATL). The task is a binary classification: predict if a flight is delayed (y = 1) or not

1http://stat-computing.org/dataexpo/2009/

http://stat-computing.org/dataexpo/2009/

42

(y = 0), where flights count as delayed if they arrive more than 15 minutes later than their

scheduled arrival time. Clearly, the temporal order creates dependencies between flight delays

that a CRM approach can try to exploit for higher classification accuracy. Observations are

defined by grouping the flights into 10 minute chunks, so that at each time step, the task is

to output a predictor that is applied to all flights in the next chunk. Formally, the original

sequence of flights can be represented as a double sequence of pairs (xi ; ti) with xi being a

feature vector representing the flight and ti the real time when the flight departs. We define

chunks by grouping the features from the double sequence together if their departure times

ti ’s fall into the same 10 minute period (in a histogram manner) and then the final stochastic

process is a sequence of such grouped feature vectors.

We perform experiments for both types of subroutines that we introduced in Section 3.8.2

and which reflect the go-to choices for online classification problems in practice.

ERM As tractable approximations for ERM we use logistic regression classifiers that are

trained incrementally using stochastic gradient descent, i.e.

!t+1 ← !t + ¸t∇! logP [yt | xt ; !] ; (4.1)

where !t are the parameters of the model at step t and ¸t is a learning rate. Since

we do not optimize the actual performance, but aim to fairly compare MACRO with a

baseline of pure SGD, we set a fixed ¸t = 0:05 in all runs for both. The conditional

probability in (4.1) is a usual logistic regression model:

P [y = 1| x; !] = 1

1 + e−⟨w;x⟩ : (4.2)

VW As an online learning subroutine, we use Vowpal Wabbit2, a popular software package

for large-scale online learning tasks. We set VW to use logistic loss as well with the

default choice of hyper parameters.

As both algorithms are also typical representatives of the classes of algorithms we compare

MACRO to, we also use both algorithms when they are run using the whole dataset as baselines.

This ensures the fair comparison between the approaches and allows to highlight the effect of

using the CRM approach.

2https://github.com/JohnLangford/vowpal_wabbit

https://github.com/JohnLangford/vowpal_wabbit

43

As announced above, we use distances between histories of the process as D-bounds for

the experiments. We try out two options: feature- and label-based distances. For the feature-

based distance we choose a bottleneck distance, as the number of flights in each chunk

changes with time, and approximate it for efficiency in the following way: to compare two sets

of vectors, S and T , we compute all pairwise ‘2-distances between the elements of S and T ,

take the smallest max{|S| ; |T |} ones and compute their average. Denoting this approximate

bottleneck distance as ∆̄1, the final distance between two chunks is computed as

∆1(S; T) =
1

2
∆̄1(S

0; T 0) +
1

2
∆̄1(S

1; T 1); (4.3)

where Sy and T y are the subsets of S and T with label y .

For the second distance, ∆2, we only make use of the labels of the points in the histories.

For any history S, define p(S) = (p1; p2)
T with pi being the fraction of the class i in S. Then

we set ∆2(S; T) = ∥p(S)− p(T)∥2.

Figures 4.1 and 4.2 show the results of the evaluating the MACRO with ERM and VW

as subroutines comparing to a single ERM and VW algorithms run on the whole data. We

see that in all of the presented airports MACRO achieves a better accuracy than the marginal

versions of the corresponding algorithms for a wide range of thresholds ". The effect is most

profound with VW subroutine, where MACRO is able to achieve the performance on the level

of MACRO with ERM subroutine, even though the VW subroutine itself seems to perform

sub-optimally.

In addition to evaluating MACRO for a range of fixed thresholds, we show results for two

methods that do not require to fix this parameter. Both methods run a number of MACRO

instances with different thresholds in parallel. Formally, we denote by Hi the corresponding

instances, i.e. Hi is MACRO run with "i , for a range of thresholds "1; : : : ; "K, and by Lt(Hi)

the cumulative loss of the Hi at step t. We then use two standard online learning strategies:

Follow The Leader (FTL) and Exponentially Weighted Average (EWA). FTL strategy chooses

the hypothesis produced by the algorithm with the smallest loss, i.e. at step t it chooses

argmini=1;:::;K Lt(Hi). EWA strategy samples the instance proportionally to e−Lt(Hi)=t at each

step. The results for these algorithms are presented togehter with the rest in Figures 4.1

and 4.2. Both strategies generally achieve good results, in particular better than marginal

training, with the online FTL strategy usually outperforming the EWA strategy and in all

cases achieving an error-rate close to the best fixed threshold. Even though both strategies use

44

17

21
IAH

20

25
DFW

22

24
PHX

22

25
DEN

22

28
ORD

20

26
ATL

ER
M

(
=0

.1
5)

ER
M

(
=0

.1
7)

ER
M

(
=0

.1
9)

ER
M

(
=0

.2
2)

ER
M

(
=0

.2
5)

ER
M

(
=0

.2
8)

ER
M

(
=0

.3
1)

ER
M

(
=0

.3
4)

ER
M

(
=0

.3
7)

ER
M

(
=0

.4
)

ER
M

(
=0

.4
5)

ER
M

(
=0

.4
7)

ER
M

-S
R

ER
M

-F
TL

ER
M

-E
W

A

22

25
LAS

VW
(

=0
.1

5)

VW
(

=0
.1

7)

VW
(

=0
.1

9)

VW
(

=0
.2

2)

VW
(

=0
.2

5)

VW
(

=0
.2

8)

VW
(

=0
.3

1)

VW
(

=0
.3

4)

VW
(

=0
.3

7)

VW
(

=0
.4

)

VW
(

=0
.4

5)

VW
(

=0
.4

7)

VW
-S

R

VW
-F

TL

VW
-E

W
A

Figure 4.1: Performance of MACRO with different subroutines on the DataExpo Airline

dataset with the feature-based distance function. Each row corresponds to a different airport

labeled by its IATA code. The y-axes shows error-rates; the x-axes is labeled by the short name

of a subroutine and a threshold used in MACRO. ERM-FTL, ERM-EWA, VW-FTL and VW-

EWA are the online strategies to choose the threshold. Marginal versions of the subroutines,

ERM-SR and VW-SR, act as baselines.

much more resources than a single instance of MACRO, they have the advantage of making the

learning process completely parameter-free, and are therefore attractive if sufficient resources

are available.

4.2 Breakfast Actions dataset

In this set of experiments we present MACRO in a quite different setting. We use the Breakfast

Actions Dataset3, which consists of videos of 52 people performing 10 actions related to

breakfast preparation. The task is a multi-class classification. The dataset comes with two

types of annotations: coarse- and fine-grained. The number of labels differs depending on

the action and the level of labelling (coarse/fine), For example, the cereals task has 4 coarse

labels, while scrambled egg task has 10. Each combination of a person and an action is

treated as a separate learning task and the performance is measured by per frame error rate.

Following the usage of a Gaussian assumption by previous approaches [Kuehne et al., 2014;

Kuehne et al., 2016], we use Gaussian Naive Bayes classifiers trained online as subroutines.

3http://serre-lab.clps.brown.edu/resource/breakfast-actions-dataset/

http://serre-lab.clps.brown.edu/resource/breakfast-actions-dataset/

45

17

21
IAH

20

25
DFW

21

23
PHX

22

24
DEN

22

27
ORD

20

26
ATL

ER
M

(
=0

.0
05

)

ER
M

(
=0

.0
1)

ER
M

(
=0

.0
5)

ER
M

(
=0

.1
)

ER
M

(
=0

.2
)

ER
M

(
=0

.3
)

ER
M

(
=0

.4
)

ER
M

(
=0

.5
)

ER
M

-S
R

ER
M

-F
TL

ER
M

-E
W

A

22

24
LAS

VW
(

=0
.0

05
)

VW
(

=0
.0

1)

VW
(

=0
.0

5)

VW
(

=0
.1

)

VW
(

=0
.2

)

VW
(

=0
.3

)

VW
(

=0
.4

)

VW
(

=0
.5

)

VW
-S

R

VW
-F

TL

VW
-E

W
A

Figure 4.2: Performance of MACRO with different subroutines on the DataExpo Airline

dataset with the label-based distance function. Each row corresponds to a different airport

labeled by its IATA code. The y-axes shows error-rates; the x-axes is labeled by the short name

of a subroutine and a threshold used in MACRO. ERM-FTL, ERM-EWA, VW-FTL and VW-

EWA are the online strategies to choose the threshold. Marginal versions of the subroutines,

ERM-SR and VW-SR, act as baselines.

G-NB The algorithm tracks the running average in the feature space for each class separately

and predicts the class with the closest mean. After receiving a new point, the algorithm

incrementally updates the mean of the corresponding class.

The version of G-NB that is run on the whole data is used as a baseline. As for the airports

dataset, we present the results for both feature- and label-based distances. For the feature-

based one we fix a finite length history, compute the ‘2-distance between the vectors on the

same position and take the average. Formally, let xt be the sequence of features and q the

history length, then we use 1
q

Pq
t=1 ∥xi−t − xj−t∥2 as the D-bound between steps i and j . In

the experiments we used the histories of length 5, however, we tried other values and found

that the results are not very sensitive to the actual length. The label-based distance defined

in the same way as ∆2, but using the modified embedding p(S) = (p1; : : : ; pK), where pi is

a fraction of the class i in the history S and K is the number of classes.

The results are presented in Figures 4.3, 4.4, 4.5 and 4.6. The Figures 4.3 and 4.4 show

the performance of MACRO with feature-based distance for coarse and fine annotations. The

fine annotations present a bigger challenge, hence explaining the higher overall error rates.

46

However, the trend is the same in both cases: there is always a region of thresholds where

MACRO clearly outperforms the baseline, sometimes by more than 70%. We also evaluate

the FTL and EWA strategies for threshold selection that are described in the previous section.

Both threshold-selection strategies show excellent performance achieving the error rates close

to MACRO with the best fixed threshold. At the same time, FTL consistently outperforms

EWA strategy.

The Figures 4.5 and 4.6 show the performance of MACRO with label-based distance. The

common feature is more uniform performance of MACRO over the range of thresholds that can

be explained by the discrete nature of the distance. Nevertheless, there is always a threshold

where MACRO improves over the baseline with FTL and EWA strategies being able to recover

the best error rate.

4.3 Conclusion

In this chapter, devoted to the practical aspects of conditional risk minimization, we presented

two different practical learning problems and showed that MACRO consistently outperforms

the traditional online algorithms for both datasets. This illustrates two facts: CRM is indeed a

promising approach to sequential prediction problems, and MACRO’s favorable computational

complexity allows applying CRM principles to large real-world datasets that WERM is unable

to handle.

47

0

35

friedegg coffee

0

35

sandwich cereals

0

35

pancake tea

0

35

juice salat

G-
NB

(
=1

)

G-
NB

(
=5

)

G-
NB

(
=7

)

G-
NB

(
=1

0)

G-
NB

(
=1

5)

G-
NB

(
=1

7)

G-
NB

(
=2

0)

G-
NB

(
=2

5)

G-
NB

(
=3

0)

G-
NB

(
=3

5)

G-
NB

(
=4

0)

G-
NB

-S
R

G-
NB

-F
TL

G-
NB

-E
W

A

0

35

scrambledegg

G-
NB

(
=1

)

G-
NB

(
=5

)

G-
NB

(
=7

)

G-
NB

(
=1

0)

G-
NB

(
=1

5)

G-
NB

(
=1

7)

G-
NB

(
=2

0)

G-
NB

(
=2

5)

G-
NB

(
=3

0)

G-
NB

(
=3

5)

G-
NB

(
=4

0)

G-
NB

-S
R

G-
NB

-F
TL

G-
NB

-E
W

A

milk

Figure 4.3: Performance of MACRO with different subroutines on the Breakfast Actions

dataset with feature-based distance function for coarse annotations. Each plot corresponds

to different action. The y-axes shows error-rates averaged over the persons performing each

action. The x-axes is labeled by the short name of a subroutine and a threshold used in

MACRO. G-NB-FTL and G-NB-EWA represent the online strategies to choose the threshold.

The baseline G-NB-SR is the marginal version of G-NB algorithm.

0

35

friedegg coffee

0

35

sandwich cereals

0

35

pancake tea

0

35

juice salat

G-
NB

(
=1

)

G-
NB

(
=5

)

G-
NB

(
=7

)

G-
NB

(
=1

0)

G-
NB

(
=1

5)

G-
NB

(
=1

7)

G-
NB

(
=2

0)

G-
NB

(
=2

5)

G-
NB

(
=3

0)

G-
NB

(
=3

5)

G-
NB

(
=4

0)

G-
NB

-S
R

G-
NB

-F
TL

G-
NB

-E
W

A

0

35

scrambledegg

G-
NB

(
=1

)

G-
NB

(
=5

)

G-
NB

(
=7

)

G-
NB

(
=1

0)

G-
NB

(
=1

5)

G-
NB

(
=1

7)

G-
NB

(
=2

0)

G-
NB

(
=2

5)

G-
NB

(
=3

0)

G-
NB

(
=3

5)

G-
NB

(
=4

0)

G-
NB

-S
R

G-
NB

-F
TL

G-
NB

-E
W

A

milk

Figure 4.4: Performance of MACRO with different subroutines on the Breakfast Actions

dataset with feature-based distance function for fine annotations. Each plot corresponds to

different action. The y-axes shows error-rates averaged over the persons performing each

action. The x-axes is labeled by the short name of a subroutine and a threshold used in

MACRO. G-NB-FTL and G-NB-EWA represent the online strategies to choose the threshold.

The baseline G-NB-SR is the marginal version of G-NB algorithm.

48

0

35

friedegg coffee

0

35

sandwich cereals

0

35

salat tea

0

35

juice pancake

G-
NB

(
=0

.0
1)

G-
NB

(
=0

.0
5)

G-
NB

(
=0

.1
)

G-
NB

(
=0

.2
)

G-
NB

(
=0

.5
)

G-
NB

(
=1

)

G-
NB

-S
R

G-
NB

-F
TL

G-
NB

-E
W

A

0

35

scrambledegg

G-
NB

(
=0

.0
1)

G-
NB

(
=0

.0
5)

G-
NB

(
=0

.1
)

G-
NB

(
=0

.2
)

G-
NB

(
=0

.5
)

G-
NB

(
=1

)

G-
NB

-S
R

G-
NB

-F
TL

G-
NB

-E
W

A

milk

Figure 4.5: Performance of MACRO with different subroutines on the Breakfast Actions

dataset with label-based distance function for coarse annotations. Each plot corresponds to

different action. The y-axes shows error-rates averaged over the persons performing each

action. The x-axes is labeled by the short name of a subroutine and a threshold used in

MACRO. G-NB-FTL and G-NB-EWA represent the online strategies to choose the threshold.

The baseline G-NB-SR is the marginal version of G-NB algorithm.

0

35

friedegg coffee

0

35

sandwich cereals

0

35

salat tea

0

35

juice pancake

G-
NB

(
=0

.0
1)

G-
NB

(
=0

.0
5)

G-
NB

(
=0

.1
)

G-
NB

(
=0

.2
)

G-
NB

(
=0

.5
)

G-
NB

(
=1

)

G-
NB

-S
R

G-
NB

-F
TL

G-
NB

-E
W

A

0

35

scrambledegg

G-
NB

(
=0

.0
1)

G-
NB

(
=0

.0
5)

G-
NB

(
=0

.1
)

G-
NB

(
=0

.2
)

G-
NB

(
=0

.5
)

G-
NB

(
=1

)

G-
NB

-S
R

G-
NB

-F
TL

G-
NB

-E
W

A

milk

Figure 4.6: Performance of MACRO with different subroutines on the Breakfast Actions

dataset with label-based distance function for fine annotations. Each plot corresponds to

different action. The y-axes shows error-rates averaged over the persons performing each

action. The x-axes is labeled by the short name of a subroutine and a threshold used in

MACRO. G-NB-FTL and G-NB-EWA represent the online strategies to choose the threshold.

The baseline G-NB-SR is the marginal version of G-NB algorithm.

49

5 Online Multi-task learning

In this chapter we turn our attention to a multi-task setting where the learner faces a number

of possibly related task in online manner. We present a new algorithm, MTLAB, and prove a

true risk regret bound in the PAC-Bayes setting. After considering a few exemplar instances

of the algorithm, we discuss how to achieve an individual task bounds. Similarly to CRM, the

discrepancies between tasks play an important role and we prove that whenever they can be

estimated from data it is possible to use the estimates inside MACRO-style algorithm that

achieves a favorable per-task performance.

5.1 Multi-task learning of sequential tasks

We face a sequence of tasks k1; : : : ; kn; : : : , where each kt is from a task environment K, and

the sequence is a random realization of a stochastic process over K. Note that this general

formulation includes the situations most commonly studied in the literature: the case of finitely

many fixed tasks (in which case the distribution over the tasks sequence is a delta peak) and

the lifelong learning setting with i.i.d. [Baxter, 2000; Pentina and Lampert, 2014] or non-i.i.d.

tasks [Pentina and Lampert, 2017].

All tasks share the same input set X , output set Y, and hypothesis set H. Each task kt ,

however, has its own associated joint probability distribution, Dt , over Z = X×Y, conditioned

on kt . Whenever we observe a task kt , we receive a set St = {zt;i}mti=1 sampled i.i.d. from

the task distribution Dt , and we are given a loss function, ‘t : H×Z → [0; 1] that measures

the quality of predictions. Alternatively, one can assume that all tasks share the same, a priori

known, loss function.

Learning a task kt means to identify a hypothesis h ∈ H with as small as possible per-

task risk R(h;Dt). We follow the PAC-Bayes framework described in Section 2.3 that stud-

50

At any time point t = 1; 2; : : : :

• receive dataset St

• output predictor Q̂t

• suffer the loss R(Q̂t ; Dt)

Figure 5.1: Online multi-task learning protocol

ies the performance of stochastic (Gibbs) predictors. A stochastic predictor is defined by a

probability distribution Q over the hypotheses set with the corresponding risk R(Q;Dt) =

Eh∼Q [R(h;Dt)].

We do not require that data for all tasks is available at the same time. Instead, we adopt

an online learning protocol for tasks: at step t we observe the dataset St for task kt , and we

output the distribution Q̂t .

5.2 Learning across task boundaries

Our first goal at any step n is to bound the regret of a learned sequence of predictors Q̂1; : : : ; Q̂n

with respect to any fixed reference distribution Q from some set, ∆, of distributions, i.e.

Rn(Q) =
nX
t=1

R(Q̂t ; Dt)−
nX
t=1

R(Q;Dt): (5.1)

This setting resembles online learning discussed in Section 2.6 and is summarized in Figure

5.1. However, there are two striking differences: the learner observes the data for the task

before it outputs the predictor for the current step and the regret is defined using true risks,

that we do not observe, in contrast to empirical ones.

The main idea of the algorithm is to run an online learning algorithm on the samples

from all tasks, essentially ignoring the task structure of the problem, and then use a properly

defined online-to-batch conversion to obtain predictors for the individual tasks. We work with

a Proximal Point Algorithm [Martinet, 1970] run on the level of samples. Let P be some prior

distribution over H. We set Q1;0 = P and, once we receive a dataset St = {zt;1; : : : ; zt;mt}

on step t, we compute

Qt;i = argmin
Q̃∈∆

{ ”
mt

Eh∼Q̃ [‘t(h; zt;i)] + KL(Q̃|Qt;i−1)}; (5.2)

51

Input: decision set ∆, initial distribution P , learning rate ”
Initialization: Q1;0 = P

At any time point t = 1; 2; : : : :

• receive dataset St of size mt

• compute Qt;i = argminQ̃∈∆{
”
mt
Eh∼Q̃ [‘t(h; zt;i)] + KL(Q̃|Qt;i−1)} for i = 1; : : : ; mt

• output the batch solution: Q̂t ← 1
mt

Pmt
i=1Qt;i

• set prior of the next task: Qt+1;0 ← Qt;mt

Figure 5.2: MTLAB algorithm

for all i = 1; : : : ; mt with ” > 0. Afterwards, the algorithm outputs a predictor Q̂t =

1
mt

Pmt
i=1Qt;i for task t, and sets Qt+1;0 = Qt;mt , to be used as a starting distribution for the

next task.

As an example, when ∆ is the set of all probability distributions, the minimizer of (5.2)

has the explicit form

dQt;i(h) =
e−

”
mt
‘t(h;zt;i)dQt;i−1(h)R

e−
”
mt
‘t(h′;zt;i)dQt;i−1(h′)

: (5.3)

We call the above procedure MTLAB (multi-task learning across task boundaries) and

summarize it in Figure 5.2. Our first result is a regret bound for the true risks of the sequence

of distributions that it produces.

Theorem 5.2.1. Let m̄ = n=(
Pn
t=1 1=mt) be the harmonic mean of m1; : : : ; mn and let P be

a fixed prior distribution that is chosen independently of the data. The predictors produced by

MTLAB satisfy with probability 1− ‹ (over the random training sets) uniformly over Q ∈ ∆

Rn(Q) ≤
”n

4m̄
+

2KL(Q|P) + log 2
‹

”
: (5.4)

Corollary 5.2.2. Set ” =
q
m̄
n
. Then, with probability 1− ‹, it holds uniformly over Q ∈ ∆

1

n
Rn(Q) ≤

1√
nm̄

(
1

4
+ 2KL(Q|P) + log

2

‹
): (5.5)

To put this result into perspective, we compare it to the average regret bounds given in

[Alquier et al., 2017], where the goal is find the best possible data representation for tasks.

Even though the settings are a bit different, it gives a good idea of the qualitative nature of

our result. [Alquier et al., 2017] provides O(1√
n
+ 1√

m
) bound (if all tasks are of the same

size m) that can be sometimes improved to O(1√
n
+ 1

m
). In either case, convergence happen

52

only in the regime that the number of tasks and the amount of data for each task both tend

to infinity. In contrast to this, the right hand side of inequality (5.5) converges to zero even

if only one of the two quantities grows, so in particular for the most common case that the

number of tasks grows to infinity, but the amount of data per task remains bounded.

5.3 Connection to traditional PAC-Bayes bounds

We obtain further insight into the behavior of MTLAB by comparing it to the situation in

which each task is learned independently. A more traditional PAC-Bayes bound, like the one

in Theorem 2.3.1, gives us the following bound with probability 1− ‹

R(Q;Dt) ≤
1

mt

mtX
i=1

EQ [‘t(h; zt;i)] +
KL(Q|P) + log 1

‹√
mt

: (5.6)

This inequality suggests a learning algorithm, namely to minimize the upper bound with

respect to Q. In principle, MTLAB is based on a similar objective, but it acts on the sample

level and it automatically provides relevant prior distributions for each task. Thereby it is able

to achieve better guarantee than one could get by combining separate bounds of the form (5.3)

for multiple tasks.

5.4 MTLAB for lifelong learning

The bound of Theorem 5.2.1 holds for any stochastic process over the tasks. In particular, it

holds in special case where tasks are sampled independently from a hyper distribution over the

task environment, which is usually called lifelong learning [Baxter, 2000; Pentina and Lampert,

2014]. In this setting, we have a fixed distribution T over K, and the sequence k1; : : : ; kn is

an i.i.d. sample from this distribution. One can then define the lifelong risk as

E(h) = Ek∼T [Ez∼Dk [‘k(h; z)]] ; (5.7)

where Dk and ‘k are the distribution and loss function for a task k , respectively. The risk of

the Gibbs predictor is then E(Q) = Eh∼Q [E(h)]. Let Q̂1; : : : ; Q̂n be the output of MTLAB,

then we define the corresponding batch solution as Q̄n = 1
n

Pn
t=1 Q̂t and observe

E(Q̄n) =
1

n

nX
t=1

E(Q̂t) = E
"
1

n

nX
t=1

R(Q̂t ; Dt)

#
: (5.8)

Using Theorem 5.2.1 we obtain the following guarantee.

53

Theorem 5.4.1. In the lifelong learning setting, if we run MTLAB with ” =
√
m̄√
n
, for any

fixed prior distribution P that is chosen independently from the data, with probability 1 − ‹

uniformly over Q ∈ ∆

E(Q̄n)− E(Q) ≤
1√
nm̄

(
1

4
+ 2KL(Q|P) + log

2

‹
): (5.9)

Typical results for this setting, such as shown in [Pentina and Lampert, 2014; Maurer et al.,

2016; Alquier et al., 2017], show the convergence rate O(1√
n
+ 1√

m̄
), which goes to zero only

in the case of infinite data and infinite tasks. In contrast, the generalization error for MTLAB

converges in the most realistic scenario of finite data per task and increasing number of tasks.

5.5 Examples

Before continuing our theoretical analysis by providing performance bounds for individual tasks,

we would like to provide two illustrative examples on how real-world implementations of MT-

LAB could look like.

Stochastic Neural Networks We first illustrate an implementation of MTLAB in a deep

learning context. Following the presentation in [Amit and Meir, 2017], we make use of stochas-

tic neural networks. Let H = {h!; ! ∈ Rd}, and assume that the loss function is differentiable

with respect to !. We think of h! as a neural network with d weights and we take ∆ as the

set of distributions over ! of the form

Q(!) =
dY
j=1

N (!j |—j ; ff2
j); (5.10)

where N (!|—; ff2) is a Gaussian distribution with mean — and variance ff2. The main question

is how to perform the optimization step (5.2). First, we note that the KL-divergence has a

closed form expression in this case: for two distributions Q1(!) =
Qd
j=1N (!j |—1;j ; ff

2
1;j) and

Q2(!) =
Qd
j=1N (!j |—2;j ; ff

2
2;j), it holds

KL(Q1|Q2) =
1

2

dX
j=1

(log
ff2
2;j

ff2
1;j

+
ff2
1;j + (—1;j − —2;j)

2

ff2
2;j

− 1): (5.11)

Second, to be able to differentiate E!∼Q [‘t(h!; zt;i)] with respect to the parameters of Q,

we employ the re-parameterization trick [Kingma et al., 2015], that converts a function with

stochastic behavior into a deterministic function of an additional stochastic input. MTLAB

54

tells us to perform the optimization for all data points within one task and to then average

the resulting distributions. While the resulting mixture distribution does not have a simple

parametric form, it is easy use as a Gibbs predictor: to sample from it one first samples a

random index from 1 to mt and then samples network parameters from the corresponding

Gaussian distribution.

Linear predictors A second practical setting for MTLAB is classification with linear pre-

dictors. Let X = Rd , Y = {−1; 1} and H = {h(x) = sign⟨!; x⟩; ! ∈ Rd} with ‘t(a; b) =

I [a ̸= b]. Following [Germain et al., 2009], we restrict ∆ to Gaussian distributions with

unit variance and we use P = N (0; Id) and Qt;i = N (—t;i ; Id). Then KL(Qt;i |Qt;i−1) =

∥—t;i−—t;i−1∥22
2

and EQ [‘t(h; (xt;i ; yt;i))] = Φ(yt;i ⟨—;xt;i ⟩∥xt;i∥2
) with Φ(a) = 1√

2ı

R+∞
a exp(−1

2
x2)dx .

Therefore, MTLAB computes as each step

min
—∈Rd

”

mt

Φ(
yt;i⟨—; xt;i⟩
∥xt;i∥2

) +
∥—− —t;i−1∥22

2
: (5.12)

Note that, as commonly done in algorithms inspired by PAC-Bayes theory, after learning one

can convert the randomized predictors into deterministic ones, by using the distribution’s

mean parameters, —, as weight vectors. This preserves the guarantees up to a constant factor,

see [Langford and Shawe-Taylor, 2003] for details.

5.6 Per-task bounds

The results of Section 5.2 provide guarantees on MTLAB’s multi-task regret. In this section we

compliment those results by presenting a modification that provides guarantees for individual

risks of each task.

As a start, let us consider a bound that can be obtained immediately from Theorem 5.2.1.

We make use of the following notion of relatedness between tasks that is similar to Definition

3.6.1.

Definition 5.6.1. For a fixed hypothesis class H, the discrepancy between tasks ki and kj is

defined as

disc(ki ; kj) = sup
h∈H
|R(h;Di)− R(h;Dj)| : (5.13)

The following theorem is an immediate corollary of Theorem 5.2.1.

55

Theorem 5.6.2. Let P be a fixed prior distribution that is chosen independently of the

data. Let Q̂t be a sequence of predictors produced by MTLAB run with ” =
q
m̄
n

and let

Q̄n = 1
n

Pn
t=1 Q̂t . Then the following inequality holds with probability 1 − ‹, uniformly over

Q ∈ ∆

R(Q̄n; Dn) ≤ R(Q;Dn) +
2

n

nX
i=1

disc(ki ; kn) +
1√
nm̄

(
1

4
+ 2KL(Q|P) + log

2

‹
): (5.14)

This bound resembles the guarantees typical in the setting of learning from drifting distri-

butions [Mohri and Medina, 2012]. It converges if 1
n

Pn
i=1 disc(ki ; kn)→ 0 with n, so if either

tasks are identical to each other, or if tasks get suitably more similar on average with growing

n. This resembles the convergent case of CRM (Section 3.7).

The main question of this section is if we can improve upon the bound of Theorem 5.6.2

in the case when 1
n

Pn
i=1 disc(ki ; kn) does not vanish over time. Consider, for example, a

simple case of two alternating tasks, i.e. 1
n

Pn
i=1 disc(ki ; kn) → 1

2
for n → ∞. If we split the

sequence of tasks into two subsequences, one for tasks with even and one for tasks with odd

indices, and then run MTLAB separately for each sequence, we could nevertheless guarantee

the convergence of the error rate for the resulting procedure.

Unfortunately, it is rather easy to construct examples in which convergence to zero is not

achievable, even with the best possible split of the sequence of tasks into subsequences: for

example, if simply all tasks differs by at least " from each other in the discrepancy sense,

then no matter what split we use, it will not be possible to achieve an upper bound below ".

Consequently, we redefine our goal to prove error rates that converge below a given threshold

".

We present an online algorithm, MTLAB.MS (for MTLAB with Multiple Sequences), that

splits the tasks into subsequences on the fly given some distance dist(k; k ′) between tasks. In

Sections 5.6.1 and 5.6.2 we will discuss two ways to construct such distances and we will prove

the risk bounds for MTLAB.MS run with the corresponding distance. Following the MACRO

methodology, Section 3.8.2, we keep a representative task for each subsequence, and we use

the distances to the representatives to decide which subsequence to extend with the new task,

or if a new subsequence needs to be initialized.

Pseudo-code for MTLAB.MS is provided in Figure 5.3. The notation Q̃; P ′ = MTLAB(S; P)

denotes a single run of MTLAB that takes a dataset S, runs its learning procedure starting

from distribution P and outputs two distributions: the final distribution P ′ to be used in the

56

Input: task distance dist, prior distribution P , threshold "
Initialization: set of representative tasks R = ∅, set of priors P = ∅
At any time point t = 1; 2; : : : :

• receive dataset St .

• set I = {r ∈ R : dist(kr ; kt) ≤ "}

• if I = ∅ then

– add t to the set of representatives R

– set P(t) = P

• choose the closest representatives r ? = argminr∈I dist(kr ; kt)

• run the transfer algorithm: Q̄t ; P ′ = MTLAB(St ;P(r ?))

• set P(r ?) = P ′

• output Q̄t

Figure 5.3: MTLAB.MS algorithm

subsequent runs and the aggregate distribution Q̃ that is a final predictor for the task. Fur-

ther notation used are: In are the indices of the tasks in the subsequence chosen at step n,

sn = |In| is the size of this subsequence, m̄n is the harmonic average of the sizes of tasks

in the chosen subsequence and ”n is the learning rate of MTLAB associated with the chosen

subsequence.

The following theorem shows that if MTLAB.MS is (could be) run with the task discrep-

ancies as distances, it would, for any given threshold ", yield subsequences with generalization

error below ".

Theorem 5.6.3. Let P be a fixed prior distribution that is chosen independently of the data.

If we run MTLAB.MS with dist(ki ; kj) = disc(ki ; kj), we get with probability 1− ‹, uniformly

over Q ∈ ∆

R(Q̄n; Dn) ≤ R(Q;Dn) + 2"+
2”n
m̄n

+
2KL(Q|P) + log n

‹

”nsn
: (5.15)

In practice, however, the true discrepancy values are unknown. Therefore, we present two

approaches for estimating them: based on labelled and based on unlabelled data.

57

5.6.1 Estimation from labelled data

The most direct method to determine the right subsequence for each task is to estimate the

discrepancies from the data and use the estimates in the MTLAB.MS algorithm. However,

choosing the subsequence is equivalent to choosing a prior distribution for the next task. For

the guarantees of the theory to hold, that step needs to be done independently of the labeled

data used for learning that task. We overcome this problem by splitting the labeled data into

two subsets: one for estimating the discrepancy (denoted by Ŝt) and one for learning (denoted

by St). With m̂t = |Ŝt | and mt = |St | we define the discrepancy estimates as

ddisci ;j = sup
h∈H

˛̨̨̨
˛̨̨ 1
m̂i

X
z∈Ŝi

‘i(h; z)−
1

m̂j

X
z∈Ŝj

‘j(h; z)

˛̨̨̨
˛̨̨ : (5.16)

The standard uniform convergence bounds can be leveraged to guarantee the quality of this

estimation. For example, using Theorem 8 of [Bartlett and Mendelson, 2002] we can show

that with probability 1− ‹

disc(ki ; kj) ≤ ddisci ;j + BL(Ŝi ; Ŝj ; ‹); (5.17)

where the estimation error BL is defined as

BL(Ŝi ; Ŝj ; ‹) = R̂Ŝi
(Li(H)) + R̂Ŝj

(Lj(H)) + 3

vuut8 log 2
‹

|Ŝi |
+ 3

vuut8 log 2
‹

|Ŝj |
(5.18)

with Lt(H) = {(x; y) → ‘t(h; x; y);∀h ∈ H}. Now we can prove the following theorem for

MTLAB.MS used with ddisci ;j as task distances.

Theorem 5.6.4. Let P be a fixed prior distribution that is chosen independently of the data.

If we run MTLAB.MS with distki ;kj =
ddisci ;j , we get with probability 1 − 2‹ uniformly over

Q ∈ ∆

R(Q̄n; Dn) ≤ R(Q;Dn) + 2"+
2”n
m̄n

+
2KL(Q|P) + log n

‹

”nsn
+

1

sn

X
t∈In

BL(Ŝt ; Ŝn;
‹

n
): (5.19)

Remark. Theorem 5.6.4 works when the transfer algorithm uses a fixed learning rates ” for

each subsequence. It is possible to prove a similar statement for the case when the parameters

are optimized for the length of each subsequence using the machinery developed in Section

3.8. However, the final statement gets more complicated and adds little to the discussions in

the current chapter. Therefore, we leave this extension for future work.

58

5.6.2 Estimation from unlabelled data

In many situations labeled data is scarce and setting aside a part of the training set for

discrepancy estimation would leave us with too little data for training. In such situations,

however, it might be rather easy to obtain at least unlabelled data. In the case that learning

tasks are deterministic realizable, this additional data can be used to estimate the discrepancy

between tasks before we observe the labeled data for the new task. The deterministic case

assumes Dt to be a distribution over X only, while the target is determined by a fixed labelling

function ft : X → Y. The loss of a hypothesis then can be written as ‘t(h; (x; y)) =

‘t(h; (x; ft(x))) = ‘t(h; ft ; x) and we will stick to that notation for this section. The realizable

scenario assumes ft ∈ H. For this setting, we use the following definition of discrepancies

[Ben-David et al., 2007; Mohri and Medina, 2012].

Definition 5.6.5. The symmetric discrepancy between tasks ki and kj is defined as

e(ki ; kj) = sup
h1;h2∈H

˛̨̨
Ex∼Di [‘i(h1; h2; x)]− Ex∼Dj [‘j(h1; h2; x)]

˛̨̨
: (5.20)

Let Ui and Uj be i.i.d. unlabelled sample sets from the task distributions Di and Dj ,

respectively. Then we can estimate the symmetric discrepancies by [Kifer et al., 2004]

ê(ki ; kj) = sup
h1;h2∈H

˛̨̨̨
˛̨ 1

|Ui |
X
x∈Ui

‘i(h1; h2; x)−
1

|Uj |
X
x∈Uj

‘j(h1; h2; x)

˛̨̨̨
˛̨ : (5.21)

We then pass these estimates as values of distki ;kj to MTLAB.MS. Similarly to the setting

with labelled data, the proposed estimates can be proven to estimate e(ki ; kj) quite closely.

Proposition 2 from [Mansour et al., 2009] gives us that with probability 1− ‹:

e(ki ; kj) ≤ ê(ki ; kj) + BU(Ui ; Uj ; ‹); (5.22)

with

BU(Ui ; Uj ; ‹) = R̂Ui (Lsi (H)) + R̂Uj (Lsj (H)) +
3 log 4

‹q
2 |Ui |

+
3 log 4

‹q
2 |Uj |

; (5.23)

where Lst(H) = {x → ‘(h; h′; x); h; h′ ∈ H}. To compensate for the lack of label information,

we additionally need the notion of an ideal joint hypothesis, i.e. the one that minimizes joint

error for two tasks:

–i ;j = min
h∈H
{R(h;Di) + R(h;Dj)}: (5.24)

Overall, we obtain the following performance guarantee for MTLAB.MS when run in this

setting.

59

Theorem 5.6.6. Let P be a fixed prior distribution that is chosen independently of the data.

In the deterministic realizable case, if we run MTLAB.MS with distki ;kj = êi ;j , we get with

probability 1− 2‹, uniformly over Q ∈ ∆:

R(Q̄n; Dn) ≤ R(Q;Dn) + 2"+
2”n
m̄n

+
2KL(Q|P) + log n

‹

”nsn
+

1

sn

X
t∈In

–t;n +
1

sn

X
t∈In

BU(Ut ; Un;
‹

n
):

(5.25)

5.7 Conclusion

In this chapter we presented a new algorithm for online mutli-task learning and proved a true

risk regret bound for it. The main feature of the bound is that it is sublinear simultaneously in

the number of the tasks and their sizes. In addition, we presented a version of the algorithm

that achieves favorable per-task bounds utilizing the estimates of the discrepancies between

the tasks.

60

61

6 Conclusion and Future Work

In this thesis we made a further step towards bridging the gap between the theory and practice

in machine learning. We challenged the most fundamental assumption made in statistical

learning theory that is the independence of the data. We studied different learning settings

that involve dependence, giving a particular focus to stochastic processes, and introduced new

algorithms in single- and multi-task frameworks. Our main contributions include the theoretical

guarantees on the performance of new algorithms as well as their empirical evaluation.

There is a number of directions for extension of the present thesis. Stochastic processes

is only a single model for the data generation process. There are other models that are better

suited for particular applications: spatial models (e.g. [Banerjee et al., 2008]), dependency

graphs (e.g. [Ralaivola et al., 2010]), graphical models (e.g. [London et al., 2013]), etc.

In all the learning settings in this work the prediction made by the learning algorithm do not

affect the future values of the data. However, this is not always the case, with reinforcement

learning being a good example. It is an interesting direction to consider an intermediate setting

that allows to consider general stochastic processes (generalizing RL) with the predictions

affecting the future (generalizing CRM).

The conditional risk minimization problem itself is far from being solved. For example, an

interesting question is to come up with an algorithm that is practical and is able to achieve

conditional learnability. The key assumption we explored for CRM is the existence of a D-

bound, however, it is an open question of how to choose a D-bound in a particular application.

A data driven approach for this would be great step towards the wide applicability of CRM

principle. On a more general note, an interesting study is to determine the algorithm-oblivious

properties of a process that characterize conditional learnability. For example, so far, WERM

and MACRO use different notions of exceptional sets that are tailored for each algorithm

specifically. We believe that there is a fundamental characterization of these sets that is

62

independent of the algorithm and made a first step towards such characterization in Lemma

3.8.6 by connecting MACRO computational complexity to process properties.

63

Bibliography

[Alon et al., 1997] Noga Alon, Shai Ben-David, Nicolo Cesa-Bianchi, and David Haussler,

“Scale-sensitive dimensions, uniform convergence, and learnability,” Journal of the ACM

(JACM), 44(4):615–631, 1997.

[Alquier et al., 2013] Pierre Alquier, Xiaoyin Li, and Olivier Wintenberger, “Prediction of time

series by statistical learning: general losses and fast rates,” Dependence Modeling, 1:65–93,

2013.

[Alquier et al., 2017] Pierre Alquier, The Tien Mai, and Massimiliano Pontil, “Regret Bounds

for Lifelong Learning,” In International Conference on Artificial Intelligence and Statistics

(AISTATS), 2017.

[Amit and Meir, 2017] Ron Amit and Ron Meir, “Meta-Learning by Adjusting Priors Based

on Extended PAC-Bayes Theory,” arXiv preprint arXiv:1711.01244, 2017.

[Banerjee et al., 2008] Sudipto Banerjee, Alan E Gelfand, Andrew O Finley, and Huiyan Sang,

“Gaussian predictive process models for large spatial data sets,” Journal of the Royal Sta-

tistical Society: Series B (Statistical Methodology), 70(4):825–848, 2008.

[Barreira et al., 2008] Luis Barreira, A Weinstein, H Bass, and J Oesterl, Dimension and

recurrence in hyperbolic dynamics, Springer, 2008.

[Bartlett, 1992] Peter L Bartlett, “Learning with a slowly changing distribution,” In Proceed-

ings of the fifth annual workshop on Computational learning theory, pages 243–252. ACM,

1992.

[Bartlett et al., 1996] Peter L Bartlett, Philip M Long, and Robert C Williamson, “Fat-

shattering and the learnability of real-valued functions,” Journal of Computer and System

Sciences, 52(3):434–452, 1996.

64

[Bartlett and Mendelson, 2002] Peter L Bartlett and Shahar Mendelson, “Rademacher and

Gaussian complexities: Risk bounds and structural results,” Journal of Machine Learning

Research, 3:463–482, 2002.

[Baxter, 2000] J. Baxter, “A model of inductive bias learning,” Journal of Artificial Intelligence

Research (JAIR), 12:149–198, 2000.

[Ben-David et al., 2010] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fer-

nando Pereira, and Jennifer Wortman Vaughan, “A theory of learning from different do-

mains,” Machine Learning, 79(1-2):151–175, 2010.

[Ben-David et al., 2007] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira,

“Analysis of representations for domain adaptation,” In Conference on Neural Information

Processing Systems (NIPS), 2007.

[Berti et al., 2002] Patrizia Berti, A Mattei, and Pietro Rigo, “Uniform convergence of em-

pirical and predictive measures,” Atti del Seminario Matematico e Fisico dell’Universita’ di

Modena, 50(2):465–478, 2002.

[Berti and Rigo, 1997] Patrizia Berti and Pietro Rigo, “A Glivenko-Cantelli theorem for ex-

changeable random variables,” Statistics & Probability Letters, 32(4):385–391, 1997.

[Berti and Rigo, 2017] Patrizia Berti and Pietro Rigo, “Asymptotic predictive inference with

exchangeable data,” Brazilian Journal of Probability and Statistics, 2017.

[Caires and Ferreira, 2005] S Caires and JA Ferreira, “On the non-parametric prediction of

conditionally stationary sequences,” Statistical inference for stochastic processes, 8(2):151–

184, 2005.

[Catoni, 2004] Olivier Catoni, Statistical learning theory and stochastic optimization: Ecole

d’Eté de Probabilités de Saint-Flour XXXI-2001, Springer, 2004.

[Cesa-Bianchi et al., 2004] Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile, “On the

generalization ability of on-line learning algorithms,” IEEE Transactions on Information

Theory, 50(9):2050–2057, 2004.

[Cesa-Bianchi and Lugosi, 2006] Nicolo Cesa-Bianchi and Gabor Lugosi, Prediction, learning,

and games, Cambridge University Press, 2006.

65

[Csiszár, 1975] Imre Csiszár, “I-divergence geometry of probability distributions and minimiza-

tion problems,” Annals of Probability, pages 146–158, 1975.

[Germain et al., 2009] Pascal Germain, Alexandre Lacasse, François Laviolette, and Mario

Marchand, “PAC-Bayesian learning of linear classifiers,” In International Conference on

Machine Learing (ICML), 2009.

[Gyorfi et al., 1998] L Gyorfi, Gusztáv Morvai, and Sidney J Yakowitz, “Limits to consistent

on-line forecasting for ergodic time series,” IEEE Transactions on Information Theory,

44(2):886–892, 1998.

[Györfi et al., 1989] László Györfi, Wolfgang Härdle, Pascal Sarda, and Philippe Vieu, Non-

parametric curve estimation from time series, volume 60, Springer-Verlag Berlin, 1989.

[Györfi et al., 2002] László Györfi, Adam Krzyzak, Michael Kohler, and Harro Walk, A

distribution-free theory of nonparametric regression, Springer, 2002.

[Hansen, 2008] Bruce E Hansen, “Uniform convergence rates for kernel estimation with de-

pendent data,” Econometric Theory, 24(03):726–748, 2008.

[Katok and Hasselblatt, 1997] Anatole Katok and Boris Hasselblatt, Introduction to the mod-

ern theory of dynamical systems, volume 54, Cambridge University Press, 1997.

[Khaleghi and Ryabko, 2016] Azadeh Khaleghi and Daniil Ryabko, “Nonparametric multiple

change point estimation in highly dependent time series,” Theoretical Computer Science,

620:119–133, 2016.

[Kifer et al., 2004] Daniel Kifer, Shai Ben-David, and Johannes Gehrke, “Detecting change in

data streams,” In International Conference on Very Large Data Bases (VLDB), volume 30,

pages 180–191, 2004.

[Kingma et al., 2015] Diederik P Kingma, Tim Salimans, and Max Welling, “Variational

dropout and the local reparameterization trick,” In Conference on Neural Information Pro-

cessing Systems (NIPS), 2015.

[Klenke, 2013] Achim Klenke, Probability theory: a comprehensive course, Springer Science

& Business Media, 2013.

66

[Koltchinskii, 2001] Vladimir Koltchinskii, “Rademacher penalties and structural risk mini-

mization,” IEEE Transactions on Information Theory, 47(5):1902–1914, 2001.

[Kuehne et al., 2014] Hilde Kuehne, Ali Arslan, and Thomas Serre, “The language of actions:

Recovering the syntax and semantics of goal-directed human activities,” In Conference on

Computer Vision and Pattern Recognition (CVPR), pages 780–787, 2014.

[Kuehne et al., 2016] Hilde Kuehne, Juergen Gall, and Thomas Serre, “An end-to-end gener-

ative framework for video segmentation and recognition,” In IEEE Winter Conference on

Applications of Computer Vision (WACV), 2016, pages 1–8. IEEE, 2016.

[Kuznetsov and Mohri, 2014] Vitaly Kuznetsov and Mehryar Mohri, “Generalization Bounds

for Time Series Prediction with Non-stationary Processes,” In Algorithmic Learning Theory

(ALT), pages 260–274. Springer, 2014.

[Kuznetsov and Mohri, 2015] Vitaly Kuznetsov and Mehryar Mohri, “Learning Theory and Al-

gorithms for Forecasting Non-Stationary Time Series,” In Conference on Neural Information

Processing Systems (NIPS), pages 541–549, 2015.

[Kuznetsov and Mohri, 2016] Vitaly Kuznetsov and Mehryar Mohri, “Time Series Prediction

and Online Learning,” In Workshop on Computational Learning Theory (COLT), pages

1190–1213, 2016.

[Langford and Shawe-Taylor, 2003] John Langford and John Shawe-Taylor, “PAC-Bayes &

margins,” In Conference on Neural Information Processing Systems (NIPS), 2003.

[Linton and Sancetta, 2009] Oliver Linton and Alessio Sancetta, “Consistent estimation of

a general nonparametric regression function in time series,” Journal of Econometrics,

152(1):70–78, 2009.

[London et al., 2013] Ben London, Bert Huang, Ben Taskar, and Lise Getoor, “Collective

stability in structured prediction: Generalization from one example,” In International Con-

ference on Machine Learning (ICML), pages 828–836, 2013.

[Mansour et al., 2009] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh, “Domain

adaptation: Learning bounds and algorithms,” In Workshop on Computational Learning

Theory (COLT), 2009.

67

[Martinet, 1970] B. Martinet, “Régularisation d’inéquations variationnelles par approximations

successives,” Rev. FranÃğaise Informat. Recherche Opérationnelle, pages 154–158, 1970.

[Maurer et al., 2016] Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes,

“The benefit of multitask representation learning,” Journal of Machine Learning Research,

17(1):2853–2884, 2016.

[McAllester, 1999] D.A. McAllester, “PAC-Bayesian model averaging,” In Proceedings of

the twelfth annual conference on Computational Learning Theory (COLT), pages 164–170.

ACM, 1999.

[McDonald et al., 2012] Daniel J. McDonald, Cosma Rohilla Shalizi, and Mark Schervish,

“Time series forecasting: model evaluation and selection using nonparametric risk bounds,”

arXiv preprint arXiv:1212.0463, 2012.

[Meir, 2000] Ron Meir, “Nonparametric time series prediction through adaptive model selec-

tion,” Machine Learning, 39(1):5–34, 2000.

[Mohri and Medina, 2012] Mehryar Mohri and Andres Munoz Medina, “New analysis and

algorithm for learning with drifting distributions,” In Algorithmic Learning Theory (ALT),

pages 124–138. Springer, 2012.

[Mohri and Rostamizadeh, 2013] Mehryar Mohri and Afshin Rostamizadeh,

“Stability Bounds for Stationary ’-mixing and ˛-mixing Processes,”

http://www.cs.nyu.edu/~mohri/pub/niidj.pdf, 2013, (Oct 10, corrected version of

[JMLR (11), 2010]).

[Müller, 1997] Alfred Müller, “Integral probability metrics and their generating classes of

functions,” Advances in Applied Probability, pages 429–443, 1997.

[Norris, 1998] James R Norris, Markov chains, Cambridge University Press, 1998.

[Pentina and Lampert, 2014] A. Pentina and C.H. Lampert, “A PAC-Bayesian bound for Life-

long Learning,” International Conference on Machine Learning (ICML), 2014.

[Pentina and Lampert, 2017] Anastasia Pentina and Christoph H. Lampert, “Multi-task Learn-

ing with Labeled and Unlabeled Tasks,” In International Conference on Machine Learning

(ICML), 2017.

68

[Pestov, 2010] Vladimir Pestov, “Predictive PAC learnability: A paradigm for learning from

exchangeable input data.,” In IEEE International Conference on Granular Computing (GrC),

pages 387–391, 2010.

[Rakhlin et al., 2011] Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari, “Online

Learning: Stochastic, Constrained, and Smoothed Adversaries,” In Conference on Neu-

ral Information Processing Systems (NIPS), pages 1764–1772, 2011.

[Rakhlin et al., 2014] Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari, “Sequential

complexities and uniform martingale laws of large numbers,” Probability Theory and Related

Fields, pages 1–43, 2014.

[Ralaivola et al., 2010] Liva Ralaivola, Marie Szafranski, and Guillaume Stempfel, “Chromatic

PAC-Bayes bounds for non-iid data: Applications to ranking and stationary ˛-mixing pro-

cesses,” Journal of Machine Learning Research, 11:1927–1956, 2010.

[Sauer, 1972] Norbert Sauer, “On the density of families of sets,” Journal of Combinatorial

Theory, Series A, 13(1):145–147, 1972.

[Shalizi and Kontorovitch, 2013] Cosma Rohilla Shalizi and Aryeh Kontorovitch, “Predictive

PAC Learning and Process Decompositions,” In Conference on Neural Information Process-

ing Systems (NIPS), pages 1619–1627, 2013.

[Shelah, 1972] Saharon Shelah, “A combinatorial problem; stability and order for models and

theories in infinitary languages,” Pacific Journal of Mathematics, 41(1):247–261, 1972.

[Steinwart, 2005] Ingo Steinwart, “Consistency of support vector machines and other regular-

ized kernel classifiers,” IEEE Transactions on Information Theory, 51(1):128–142, 2005.

[Tartakovsky et al., 2014] Alexander Tartakovsky, Igor Nikiforov, and Michèle Basseville, Se-

quential analysis: Hypothesis testing and changepoint detection, CRC Press, 2014.

[Valiant, 1984] Leslie G Valiant, “A theory of the learnable,” Communications of the ACM,

27(11):1134–1142, 1984.

[Vapnik and Chervonenkis, 1971] Vladimir Vapnik and Alexey Chervonenkis, “On the uniform

convergence of relative frequencies of events to their probabilities,” Theory of Probability

& Its Applications, 16(2):264–280, 1971.

69

[Williams, 1991] David Williams, Probability with martingales, Cambridge University Press,

1991.

[Wintenberger, 2017] Olivier Wintenberger, “Optimal learning with Bernstein online aggrega-

tion,” Machine Learning, 106(1):119–141, 2017.

[Yu, 1994] Bin Yu, “Rates of convergence for empirical processes of stationary mixing se-

quences,” Annals of Probability, pages 94–116, 1994.

[Zolotarev, 1983] Vladimir Mikhailovich Zolotarev, “Probability metrics,” Teoriya Veroyatnos-

tei i ee Primeneniya, 28(2):264–287, 1983.

70

71

A Proofs from Chapter 3

A.1 Technical results regarding the convergence of

martingales

In this section presenting a few technical results regarding uniform convergence of martin-

gales. We start by introducing some additional notations. For a double sequence u1:n; u′1:n

of points in Z, we define fflt(ff) as ut if ff = 1 and u′t if ff = −1. Also define distribu-

tions pt(ff1:t−1; u1:t−1; u
′
1:t−1) over Z as a conditional distribution of zt conditioned on history

{z1 = ffl1(ff1); : : : ; zt−1 = fflt−1(fft−1)}. Then we can define a distribution ȷ over two Z-valued

trees v and v ′ as follows: v1 and v ′1 are sampled independently from the initial distribution

of the process and for any path ff1:n for 2 ≤ t ≤ n, vt(ff) and v ′t(ff) are sampled inde-

pendently from pt(ff1:t−1; v1:t−1(ff); v
′
1:t−1(ff)). Now we are ready to introduce a notion of

symmetrization.

Definition A.1.1. Let z1:n be a sample from a process and z ′1:n its decoupled sequence.

Let ‰ be a random variable that is measurable with respect to Σn (a ff-algebra generated by

z1:n). Due to measurability, we know that there exists a measurable function such that

‰ = (z1; : : : ; zn). Then we define its symmetrized counterpart ‰̃ = (ffl1(ff1); : : : ; ffln(ffn)),

where ff1:n are i.i.d. Rademacher random variables and ffl1:n uses a double sequence z1:n; z ′1:n.

Lemma A.1.2. Let z1:n be a sample from a process, z ′1:n its decoupled sequence and F ⊆

{f : Z → R}. Let v and v ′ be two Z-valued trees with the distribution ȷ over them as

described above. Then for any process y1:n such that each yt ∼ Σt−1, for any measurable

72

functions ’ : R→ R and : Zn → R, we have

E
"
’

sup
f ∈F

˛̨̨̨
˛
nX
t=1

yt (f (zt)− f (z ′t))
˛̨̨̨
˛
!
 (z1:n)

#
(A.1)

= E(v;v ′)∼ȷEff
"
’

sup
f ∈F

˛̨̨̨
˛
nX
t=1

ỹtfft (f (vt(ff))− f (v ′t(ff)))
˛̨̨̨
˛
!
 ̃

#
; (A.2)

where ̃ is a symmetrized version of (z1:n) and ff1:n are i.i.d. Rademacher random variables.

Proof of Lemma A.1.2. The proof is direct extension of Theorem 3 from [Rakhlin et al., 2011].

Let us denote F = ’ (supf ∈F |
Pn
t=1 yt (f (zt)− f (z ′t))|) (z1:n). We start by using the tower

property of conditional expectations and the definition of a decoupled sequence.

E [F] = Ez1;z ′1∼D1Ez2;z ′2∼D2(z1) : : :Ezn;z ′n∼Dn(z1:n−1) [F] ; (A.3)

where we denoted be Dt(z1:t) a conditional distribution of the process at step t given z1:t .

Observe that we can we can rename z1 and z ′1 in (A.3) to get

E [F] = Ez1;z ′1∼D1Ez2;z ′2∼D2(z ′1)
: : :Ezn;z ′n∼Dn(z ′1;z2:n−1) [F

′] ; (A.4)

where

F ′ = ’

sup
f ∈F

˛̨̨̨
˛−y1(f (z1)− f (z ′1)) +

nX
t=2

y ′t (f (zt)− f (z ′t))
˛̨̨̨
˛
!
 (z ′1; z2:n) (A.5)

with y ′t being the value of yt as if the process has taken values z ′1; z2; : : : ; zt−1. Let us fix

ff ∈ {±1}n that will indicate whenever we swap zt with z ′t or not. Using this notation and

recalling the definition of fflt , we get

E [F] = Ez1;z ′1∼D1Ez2;z ′2∼D2(ffl1(1)) : : :Ezn;z ′n∼Dn(ffl1(1);:::;ffln−1(1)) [F] (A.6)

= Ez1;z ′1∼D1Ez2;z ′2∼D2(ffl1(ff1)) : : :Ezn;z ′n∼Dn(ffl1(ff1);:::;ffln−1(ffn−1)) [F
ff] ; (A.7)

where in the second line we introduced

F ff = ’

sup
f ∈F

˛̨̨̨
˛
nX
t=1

fft ỹt (f (zt)− f (z ′t))
˛̨̨̨
˛
!
 ̃: (A.8)

Since (A.7) holds for any fixed value ff, we can now consider ff to be an i.i.d. Rademacher

random variables and get

E [F] = EffEz1;z ′1∼D1Ez2;z ′2∼D2(ffl1(ff1)) : : :Ezn;z ′n∼Dn(ffl1(ff1);:::;ffln−1(ffn−1)) [F
ff] : (A.9)

The proof finishes by recalling the definition of a Z-valued tree and the distribution ȷ over the

trees introduced at the beginning of the section.

73

Lemma A.1.3. Let z1:n be a sample, F ⊆ {f : Z → [0; 1]} and y1:n be any process such

that each yt ∼ Σt−1. Denote E =
Pn
t=1 |yt | and V =

Pn
t=1 y

2
t . Then for a fixed –; ˛ > 0 and

c = ln 2S∞(F ; ˛; n)

E
»
e– supf∈F |

Pn

t=1
yt(f (zt)−Et−1[f])|−–2V−2–˛E−c

–
≤ 1: (A.10)

Proof of Lemma A.1.3. Let z ′1:n be a decoupled tangent sequence to z1:n, i.e. a sequence that

satisfies

Et−1 [f (zt)] = Et−1 [f (z
′
t)] = E [f (z ′t)| z1:n] : (A.11)

Then

E
»
e– supf∈F |

Pn

t=1
yt(f (zt)−Ei−1[f])|−–2V−2–˛E−c

–
≤ E

»
e– supf∈F |

Pn

t=1
yt(f (zt)−f (z ′t))|−–2V−2–˛E−c

–
:

(A.12)

The Lemma A.1.2 gives us that (A.12) equals to

E(v;v ′)∼ȷEff
»
e– supf∈F |

Pn

t=1
ỹtfft(f (vt(ff))−f (v ′t(ff)))|−–2Ṽ−2–˛Ẽ−c

–
(A.13)

≤ Ev∼ȷEff
»
e2– supf∈F |

Pn

t=1
ỹtfft f (vt(ff))|−–2Ṽ−2–˛Ẽ−c

–
; (A.14)

where each ỹt is a symmetrized version of yt , Ẽ =
Pn
t=1 |ỹt |, Ṽ =

Pn
t=1 ỹ

2
t and we used

Jensen inequality to get the second line. Now we take a sequential ˛-cover of F with respect

to ‘∞-norm to get the following bound on (A.14)

Ev∼ȷS∞(F ; ˛; n)Eff
»
e2–|

Pn

t=1
ỹtfft f (vt(ff))|−–2Ṽ−c

–
=

1

2
Ev∼ȷEff

»
e2–|

Pn

t=1
ỹtfft f (vt(ff))|−–2Ṽ

–
:

(A.15)

Introduce events Y+ = {Pn
t=1 ỹtfftf (vt(ff)) ≥ 0} and Y− = {Pn

t=1 ỹtfftf (vt(ff)) < 0}. Then

the last line is equal to

1

2
Ev∼ȷEff

»
e2–|

Pn

t=1
ỹtfft f (vt(ff))|−–2Ṽ I [Y+]

–
+

1

2
Ev∼ȷEff

»
e2–|

Pn

t=1
ỹtfft f (vt(ff))|−–2Ṽ I [Y−]

–
(A.16)

≤ 1

2
Ev∼ȷEff

h
e2–

Pn

t=1
ỹtfft f (vt(ff))−–2Ṽ

i
+

1

2
Ev∼ȷEff

h
e−2–

Pn

t=1
ỹtfft f (vt(ff))−–2Ṽ

i
(A.17)

≤ 1; (A.18)

where the last line follows by the standard martingale argument, since ỹtfftf (vt(ff)) is a mar-

tingale difference sequence (for a fixed tree v).

In all of the proofs for MACRO, we use the following technical lemma about the meta-

algorithm. The notations are introduced in Section 3.8.

74

Lemma A.1.4. For any subroutine algorithm used by MACRO, for any ¸ ∈ [0; 1] and ˛ ∈

[0; ¸=4], we have

P

24sup
h∈H
| 1

sIn;n

X
t∈CIn;n

(‘(h; zt)− R(h;Dt))| > ¸ ∧ Xk;m

35 ≤ 2kS∞(L(H); ˛; n)
(¸− 4˛)2

e−
1
2
m(¸−4˛)2:

(A.19)

Moreover, for any ¸ ∈ [0; 1] with gj;i = ‘(hj;i−1; ztj;i)− R(hj;i−1; Dtj;i)

P
"
| 1

sIn;n

sIn;nX
i=1

gIn;i | > ¸ ∧ Xk;m
#
≤ 2k

¸2
e−

1
2
m¸2

:

Proof of Lemma A.1.4. Introduce events Ai = {In = i} for i = 1; : : : ; k and Bi ;j = {sj;n = i}

(we suppress the dependence on n to increase readability). Observe that Xk;m = {∪i≥1Ai} ∧

{∪i≥mBi ;In}. Denoting Λ(j) = suph∈H | 1
sj;n

P
t∈Cj;n(‘(h; zt)− R(h;Dt))|, we have

P [Λ(In) > ¸ ∧ Xk;m] ≤
X

j∈supp(In)
P [Λ(j) > ¸ ∧ {∪i≥mBi ;j}] : (A.20)

Each of the last probabilities can be bounded using a union bound:

P [Λ(j) > ¸ ∧ {∪i≥mBi ;j}] ≤
X
i≥m

P [Λ(j) > ¸ ∧ Bi ;j] : (A.21)

Now observe that a sequence wt = 1
i
I [t ∈ Cj;n] is adapted is Σt−1 and we can also re-write

Λ(j) on the event Bi ;j :

sup
h∈H
| 1
sj;n

X
t∈Cj;n

(‘(h; zt)− R(h;Dt))| = sup
h∈H
|
nX
t=1

wt(‘(h; zt)− R(h;Dt))| (A.22)

Let us introduce E =
Pn
t=1 wt and V =

Pn
t=1 w

2
t , then Lemma A.1.3, tells us for –; ˛ > 0

E
h
e–Λ(j)−–

2V−2–˛E−ln 2S∞(L(H);˛;n)
i
≤ 1: (A.23)

That translates into

P [Λ(j) > ¸ ∧ Bi ;j] ≤ 2S∞(L(H); ˛; n)e− 1
2
i(¸−4˛)2: (A.24)

Summing the probabilities, we obtain the first statement of the lemma.

For the second part of the lemma, denote Λ(j) = | 1
sj;n

Psj;n
i=1 gj;i | and, after applying the

same decomposition as above, we end up bounding P [Λ(j) > ¸ ∧ Bi ;j]. Observe that each

hj;i is adapted to the filtration generated by {ztj;i}∞i=1, hence, gj;i behaves like a martingale

difference sequence. However, there is a technical difficulty in the fact that the indices tj;i are,

in fact, stopping times. To get around it, observe that we can write Λ(j) as a sum over all the

75

data with the adapted weights. Set wj;t to 1 if we updated the algorithm j at step t and to 0

otherwise. Correspondingly, define h̄j;t as the last chosen hypothesis by the j-th algorithm up

to step t. This way, both wj;t and h̄j;t depend only on z1:t−1. Then

sj;nX
i=1

gj;i =
sj;nX
i=1

(‘(hj;i−1; ztj;i)− R(hj;i−1; Dtj;i)) =
nX
t=1

wj;t(‘(h̄j;t ; zt)− R(h̄j;t ; Dt)): (A.25)

At this point we can again use Lemma A.1.3 and get the second statement of the lemma.

The next result is an analogue of Toeplitz lemma for the definition of convergent double

array from Section 3.7.

Lemma A.1.5. If double array dt;n is convergent in a sense of Definition 3.7.1, then 1
n

Pn
t=1 dt;n+1

converges to 0 in probability.

Proof of Lemma A.1.5. The proof is similar to that of the Toeplitz lemma, but adapted to

our notion of convergence. Fix " > 0 and ‹ > 0. Then, by the definition of a convergent

array, for "′ = ‹′ = ‹"
4

∃n0;∃t0 : 0 ≤ t0 < n0;∀n ≥ n0; ∀t0 ≤ t < n : P [dt;n > "′] ≤ ‹′: (A.26)

In particular, this means that for any n ≥ n0 and ∀t0 ≤ t < n we have E [dt;n+1] ≤ "′+‹′ = ‹"
2
,

because of the boundedness of dt;n.

Now, choose any n1 ≥ n0 that satisfies n0
n1
≤ "

2
. Then for any n ≥ n1 we get

P
"
1

n

nX
t=1

dt;n+1 > "

#
≤ P

241
n

nX
t=n0+1

dt;n+1 >
"

2

35 (A.27)

≤ 2

Pn
t=n0+1 E [dt;n+1]

n"
(A.28)

≤ ‹; (A.29)

where the last line follows from the bound on the expectations.

The MACRO with online subroutine in the non-convex case relies on the analogue of the

online-to-batch conversion from [Cesa-Bianchi et al., 2004]. The following lemma is a version

of Lemma 3 from [Cesa-Bianchi et al., 2004] proved for the case of dependent data and the

conditional risk.

76

Lemma A.1.6. For the setting of Theorem 3.8.10, let

v(j; i) = R(hj;i ; Dn+1) + 2cIn;‹(sIn;n − i): (A.30)

Then we have

P
"
R(hn; Dn+1) > min

1≤i≤sIn;n
v(In; i) + 2" ∧ Xk;m

#
≤ k‹

m
: (A.31)

Proof. Introduce events Ar = {|supp(In)| ≤ k ∧ sIn;n = r}. Using a union bound, we have

P
"
R(hn; Dn+1) > min

1≤i≤sIn;n
v(In; i) + 2" ∧ Xk;m

#
(A.32)

≤
X
r≥m

P
"
R(hn; Dn+1) > min

1≤i≤sIn;n
v(In; i) + 2" ∧ Ar

#
: (A.33)

Now we will focus on the last probabilities for each r . Let J?n = argmin1≤i≤sIn;n v(In; i) and

also introduce events Bi = {un(In; i) ≤ un(In; J
?
n)}. Then, since un(In; Jn) ≤ un(In; J

?
n) is

always true by the definition of Jn, we get

P
"
R(hn; Dn+1) > min

1≤i≤sIn;n
v(In; i) + 2" ∧ Ar

#
(A.34)

≤
rX
i=1

P [R(hIn;i ; Dn+1) > v(In; J
?
n) + 2" ∧ Bi ∧ Ar] : (A.35)

Observe that if Bi is true, then at least one of the following events is also true.

T1;i = {un(In; i) ≤ R(hIn;i ; Dn+1)− 2"}; (A.36)

T2;i = {R(hIn;i ; Dn+1) < v(In; J
?
n) + 2"}; (A.37)

T3 = {un(In; J?n) > v(In; J
?
n)}: (A.38)

From this we get

P [R(hIn;i ; Dn+1) > v(In; J
?
n) + 2" ∧ Bi ∧ Ar] (A.39)

≤ P [R(hIn;i ; Dn+1) > v(In; J
?
n) + 2" ∧ T1;i ∧ Ar] (A.40)

+ P [R(hIn;i ; Dn+1) > v(In; J
?
n) + 2" ∧ T2;i ∧ Ar] (A.41)

+ P [R(hIn;i ; Dn+1) > v(In; J
?
n) + 2" ∧ T3 ∧ Ar] : (A.42)

First, notice that

P [R(hIn;i ; Dn+1) > v(In; J
?
n) + 2" ∧ T2;i ∧ Ar] = 0: (A.43)

77

Moreover, since ˛̨̨̨
˛̨R(hIn;i ; Dn+1)−

1

sIn;n − i

sIn;nX
s=i+1

R(hIn;i ; DtIn;s)

˛̨̨̨
˛̨ ≤ 2"; (A.44)

we have

P [T1;i ∧ Ar] = P [un(In; i) ≤ R(hIn;i ; Dn+1)− 2" ∧ Ar] (A.45)

≤ P

24un(In; i) ≤ 1

sIn;n − i

sIn;nX
s=i+1

R(hIn;i ; DtIn;s) ∧ Ar

35 (A.46)

≤
X

j∈supp(In)
P

24un(j; i) ≤ 1

sj;n − i

sj;nX
s=i+1

R(hj;i ; Dtj;s) ∧ Ar

35 : (A.47)

From Lemma A.1.4 we get that

P

24un(j; i) ≤ 1

sj;n − i

sj;nX
s=i+1

R(hj;i ; Dtj;s) ∧ Ar

35 ≤ ‹

r 3(r + 1)
: (A.48)

And, hence,

P [T1;i ∧ Ar] ≤
k‹

r 3(r + 1)
: (A.49)

Similarly, from Lemma A.1.4,

P [T3 ∧ Ar] ≤
k‹

r 2(r + 1)
: (A.50)

Combining these two together, we get

P
"
R(hn; Dn+1) > min

1≤i≤sIn;n
v(In; i) + 2" ∧ Ar

#
≤ k‹

r 2
; (A.51)

which gives us the statement on the lemma.

A.2 Proof of Theorem 3.5.1

Using the fact that the minimizer of En [(h − zn+1)
2] is Enzn+1, we can rewrite for any hn

measurable from z1:n:

R(hn; Dn+1)− inf
h∈H

R(h;Dn+1) = En
h
(hn − zn+1)

2
i
− inf

h∈H
En
h
(h − zn+1)

2
i

(A.52)

= En
h
(hn − zn+1)

2
i
− En

h
(Enzn+1 − zn+1)

2
i

(A.53)

= (hn − Enzn+1)
2: (A.54)

78

A minor modification of the proof of Theorem 1 of [Gyorfi et al., 1998] gives that for every

algorithm that produces a sequence hn of hypotheses, there is a stationary and ergodic process

such that

P
»
lim sup
n→∞

(hn − Enzn+1)
2 >

1

16

–
≥ 1

8
; (A.55)

which shows that no algorithm can be a limit learner for the class of all stationary and ergodic

binary processes.

A.3 Proof of Theorem 3.7.2

Recall the upper bounds discussed in Section 3.8.1.

R(hn; Dn+1)− inf
h∈H

R(h;Dn+1) ≤ 2 sup
h∈H

˛̨̨̨
˛1n

nX
t=1

‘(h; zt)− R(h;Dn+1)

˛̨̨̨
˛ (A.56)

≤ 2Vn(L(H); u) +
2

n

nX
t=1

dt;n+1; (A.57)

where u ∈ Rn is a vector of uniform weights, i.e. (1
n
; : : : ; 1

n
). The convergence in probability

of Vn(L(H); u) is guaranteed by Theorem 2.5.5 for any stochastic process. The convergence

of 1
n

Pn
t=1 dt;n+1 follows from the definition of the convergent discrepancies and is a content

of Lemma A.1.5.

A.4 Proof of Lemma 3.7.4

The proof follows from the following bound

dt;n = sup
f ∈L(H)

|Etf − En [xf]| ≤ En
"

sup
f ∈L(H)

|Etf − xf |
#
: (A.58)

Then the convergence of the discrepancies follows from the Definition 3.7.3 of the uniformly

convergent martingale.

A.5 Proof of Theorem 3.8.4

First, recall the definition of an M-bound and introduce the following explicit notation for the

weights:

wt(r) =
gn(Ψt(r))Pn
j=1 gn(Ψj(r))

: (A.59)

79

Using this notation, the weighted ERM uses the weights wt(Jn+1), see equation (3.26). The

starting point of the proof is the decomposition discussed in Section 3.8.1.

R(hn; Dn+1)− inf
h∈H

R(h;Dn+1) ≤ 2 sup
h∈H

˛̨̨̨
˛
nX
t=1

wt(Jn+1)‘(h; zt)− R(h;Dn+1)

˛̨̨̨
˛ (A.60)

≤ 2 sup
h∈H

˛̨̨̨
˛
nX
t=1

wt(Jn+1)(‘(h; zt)− R(h;Dt))
˛̨̨̨
˛ (A.61)

+ 2
nX
t=1

wt(Jn+1)dt;n+1 (A.62)

≤ 2Θ(L(H); Jn+1) + 2Λn; (A.63)

where at the last line we introduced

Θ(F ; r) = sup
f ∈F

˛̨̨̨
˛
nX
t=1

wt(r) (f (zt)− Et−1 [f])

˛̨̨̨
˛ : (A.64)

for some function class F ⊆ {f : Z → [0; 1]} and an integer r . We are left to prove the

high probability bound for Θ(F ; Jn+1). To this end, let us define events Ar = {Jn+1 = r} and

Bi(r) = {i ≤ Pn
t=1 gn(Ψt(r)) ≤ i + 1}, so that the exceptional set decomposes as Ek;m =

{∪r≤kAr} ∩ {∪i≥mBi(Jn+1)}. Then we have

P [Θ(F ; Jn+1) ≥ ¸] ≤ P [Θ(F ; Jn+1) ≥ ¸ ∧ Ek;m] + P
h
Eck;m

i
: (A.65)

Now we can take a union bound for the first summand over Ar ’s and get

P [Θ(F ; Jn+1) ≥ ¸ ∧ Ek;m] ≤
kX
r=1

P [Θ(F ; r) ≥ ¸ ∧ {∪i≥mBi(r)}] : (A.66)

Taking another union bound for each r , we end up with

P [Θ(F ; r) ≥ ¸ ∧ {∪i≥mBi(r)}] ≤
X
i≥m

P [Θ(F ; r) ≥ ¸ ∧ Bi(r)] : (A.67)

Now we study the last probability for a fixed r and i . On Bi(r) we can lower bound the

denominator of the weights:
Pn
t=1 gn(Ψt(r)) ≥ i , leading to

Θ(F ; r) ≤ Θi(F ; r) =
1

i
sup
f ∈F

˛̨̨̨
˛
nX
t=1

gn(Ψt(r)) (f (zt)− Et−1 [f])

˛̨̨̨
˛ : (A.68)

Let – > 0 and denote E = 1
i

Pn
t=1 gn(Ψt(r)) and V = 1

i2
Pn
t=1 g

2
n (Ψt(r)). Then, since

1
i
gn(Ψt(r)) ∼ Σt−1 by the definition of an M-bound, Lemma A.1.3 gives us

E
h
e–Θi (F ;r)−–

2V−2–˛E−ln 2S∞(F ;˛;n)
i
≤ 1: (A.69)

80

Let C = {Θi(F ; r) ≥ ¸ ∧ Bi(r)} and note that E ≤ i+1
i
≤ 2 and V ≤ i+1

i2
≤ 2

i
on Bi(r) by

the boundedness of gn. Then we have the following chain of inequalities

1 ≥ E
h
e–Θi (F ;r)−–

2V−2–˛E−ln 2S∞(F ;˛;n)
i

(A.70)

≥ E
h
e–Θi (F ;r)−–

2V−2–˛E−ln 2S∞(F ;˛;n)I [C]
i

(A.71)

≥ e–¸−–2 2
i
−4–˛−ln 2S∞(F ;˛;n)P [C] : (A.72)

Hence, by optimizing over –, we get

P [Θ(F ; r) ≥ ¸ ∧ Bi(r)] ≤ 2S∞(F ; ˛; n)e− 1
2
i(¸−4˛)2: (A.73)

Now, coming back to (A.67), we can evaluate it by computing the sum to obtain

P [Θ(F ; Jn+1) ≥ ¸ ∧ Ek;m] ≤
2kS∞(F ; ˛; n)
(¸− 4˛)2

e−
1
2
m(¸−4˛)2: (A.74)

And this finishes the proof.

A.6 Proof of Lemma 3.8.6

The lower bound comes from the fact that MACRO constructs an "-covering.

For the upper bound, observe that a new subroutine is started if and only if its associated

conditional distribution differs by more than " from the ones of all previously created sub-

routines. Therefore, the set of conditional distribution associated with subroutines form an

"-separated set with respect to Mi ;j ’s (no two elements are closer than " to each other). The

maximal size of such a set is at most the covering number of half the distance.

A.7 Proof of Theorem 3.8.8

We start by the usual argument for the empirical risk minimization that allows us to focus on

the uniform deviations.

R(hn; Dn+1)− inf
h∈H

R(h;Dn+1) ≤ 2 sup
h∈H
|R(h;Dn+1)−

1

sIn;n

X
t∈CIn;n

‘(h; zt)|: (A.75)

81

Now we can upper bound the last term.

sup
h∈H
|Rn(h)−

1

sIn;n

X
t∈CIn;n

‘(h; zt)| (A.76)

≤ sup
h∈H
|Rn(h)−

1

sIn;n

X
t∈CIn;n

R(h;Dt)| (A.77)

+ sup
h∈H
| 1

sIn;n

X
t∈CIn;n

R(h;Dt)−
1

sIn;n

X
t∈CIn;n

‘(h; zt)| (A.78)

≤ 1

sIn;n

X
t∈CIn;n

dt;n+1 + sup
h∈H
| 1

sIn;n

X
t∈CIn;n

(‘(h; zt)− R(h;Dt))| (A.79)

≤ 1

sIn;n

X
t∈CIn;n

Mt;n+1 + sup
h∈H
| 1

sIn;n

X
t∈CIn;n

(‘(h; zt)− R(h;Dt))| (A.80)

≤ 2"+ sup
h∈H
| 1

sIn;n

X
t∈CIn;n

(‘(h; zt)− R(h;Dt))|; (A.81)

where the last bound follows from the way the meta-algorithm chooses In. Hence, we get

P
»
R(hn; Dn+1)− inf

h∈H
R(h;Dn+1) > ¸+ 2"

–
≤ P

24sup
h∈H
| 1

sIn;n

X
t∈CIn;n

(‘(h; zt)− R(h;Dt))| > ¸

35 :
(A.82)

The last probability can be bounded using Lemma A.1.4 giving us the statement of the theorem.

A.8 Proof of Theorem 3.8.9

Note that by the way In is chosen, we get for any h ∈ H that

R(h;Dn+1)− R(h;DtIn;i) ≤ 2": (A.83)

Therefore, by using the convexity of the loss,

R(hn; Dn+1) ≤
1

sIn;n

sIn;nX
i=1

R(hIn;i ; Dn+1) ≤
1

sIn;n

sIn;nX
i=1

R(hIn;i ; DtIn;i) + 2": (A.84)

Similarly, for any fixed h

R(h;Dn+1) ≥
1

sIn;n

sIn;nX
i=1

R(h;DtIn;i)− 2": (A.85)

Therefore,

R(hn; Dn+1)− inf
h∈H

R(h;Dn+1) ≤ 4"+
1

sIn;n

sIn;nX
i=1

R(hIn;i ; DtIn;i)− inf
h∈H

1

sIn;n

sIn;nX
i=1

R(h;DtIn;i):

(A.86)

82

We split the last difference into the following three terms and deal with them separately.

T1 =
1

sIn;n

sIn;nX
i=1

(R(hIn;i ; DtIn;i)− ‘(hIn;i ; ztIn;i)) (A.87)

T2 =
1

sIn;n

sIn;nX
i=1

‘(hIn;i ; ztIn;i)− inf
h∈H

sIn;nX
i=1

‘(h; ztIn;i) (A.88)

T3 = inf
h∈H

sIn;nX
i=1

‘(h; ztIn;i)− inf
h∈H

1

sIn;n

sIn;nX
i=1

R(h;DtIn;i): (A.89)

T2 is in fact just WIn;n. For T3 observe that

inf
h∈H

1

sIn;n

sIn;nX
i=1

R(h;DtIn;i) ≥ inf
h∈H

1

sIn;n

sIn;nX
i=1

‘(h; ztIn;i) (A.90)

+ inf
h∈H

(
1

sIn;n

sIn;nX
i=1

(R(h;DtIn;i)− ‘(h; ztIn;i)): (A.91)

Therefore, T3 is bounded by T̃3:

T̃3 = sup
h∈H

(
1

sIn;n

sIn;nX
i=1

(‘(h; ztIn;i)− R(h;DtIn;i)): (A.92)

Combining everything together,

P
»
R(hn; Dn+1)− inf

h
R(h;Dn+1) > ¸+ 4"+WIn;n

–
(A.93)

≤ P
h
T1 + T̃3 > ¸ ∧ Xk;m

i
+ P

h
X ck;m

i
(A.94)

≤ P [T1 > ¸=2 ∧ Xk;m] + P
h
T̃3 > ¸=2 ∧ Xk;m

i
+ P

h
X ck;m

i
: (A.95)

The terms involving T1 and T̃3 can be bounded using Lemma A.1.4 giving us the statement

of the theorem.

A.9 Proof of Theorem 3.8.10

From Lemma A.1.6 we get that with probability at least 1− k‹
m

on Xk;m

R(hn; Dn+1) ≤ min
1≤i≤sIn;n

v(In; i) + 2": (A.96)

Hence, we focus on bounding min1≤i≤sIn;n v(In; i). Observe that

min
1≤i≤sIn;n

v(In; i) ≤
1

sIn;n

sIn;nX
i=1

(R(hIn;i ; Dn+1) + cIn;‹=2(sIn;n − i)) (A.97)

≤ 1

sIn;n

sIn;nX
i=1

(R(hIn;i ; DtIn;i) + 2"+ cIn;‹=2(sIn;n − i)) (A.98)

≤ 1

sIn;n

sIn;nX
i=1

R(hIn;i ; tIn;i) + 2"+ 2

vuut 1

sIn;n
log

s3In;n(sIn;n + 1)

‹
: (A.99)

83

Similarly to Lemma A.1.4, we have that with probability at least 1− k‹
m

on Xk;m:

1

sIn;n

sIn;nX
i=1

R(hIn;i ; DtIn;i) ≤
1

sIn;n

sIn;nX
i=1

‘(hIn;i ; ztIn;i) +

vuut 1

sIn;n
log

s2In;n
‹
: (A.100)

As in the proof of Theorem 3.8.9, we get with probability at least 1− k‹
m

on Xk;m:

− inf
h∈H

R(h;Dn+1) ≤ − inf
h

1

sIn;n

sIn;nX
i=1

‘(h; ztIn;i)+

vuut 1

sIn;n
log

s2In;nS∞(L(H); ˛; n)
‹

+4˛: (A.101)

Therefore, we can conclude that

P
»
R(hn; Dn+1)− inf

h∈H
R(h;Dn+1) > 2"+WIn;n + U‹(In; ˛) ∧ Xk;m

–
≤ 3k‹

m
: (A.102)

A.10 Examples from Sections 3.8.4 and 3.8.5

Markov chains. First, we bound the probability of Ak using a union bound:

P [Ak] = P [Jn+1 > k] ≤ P [Fzn > k] ≤ |S|max
s

P [Fs > k] : (A.103)

On the event Bk;m we have the following chain of inequalities.
nX

t=Jn

I [dt;Jn+1 ≤ "n] ≥
nX
t=k

I [dt;Jn+1 ≤ "n] ≥
nX
t=k

I [dt;Jn+1 = 0] ≥
nX
t=k

I [zt = zJn+1] ; (A.104)

which gives us

P [Bk;m] = P

24Jn ≤ k ∧ nX
t=Jn+1

I [dt;Jn+1 ≤ "n] < m

35 (A.105)

≤ P
"
Jn ≤ k ∧

nX
t=k

I [zt = zJn+1] < m

#
(A.106)

≤ |S|max
s

P
"
Jn+1 ≤ k ∧

nX
t=k

I [zt = s] < m ∧ zJn+1 = s

#
: (A.107)

Now, for a given state s,
Pn
t=k I [zt = s] can be lower bounded by the number of times we

hit the state s again. Let T is ; i ≥ 1; be independent copies of the recurrence times. ThenPn
t=k I [zt = s] ≥ m for any m ≥ 0, such that

Pm
i=1 T

i
s ≤ n − k . We also have the following

sequence of inclusions.(
1 ≤ i ≤ m : T is ≤ ⌊

n − k
m
⌋ ∧ Jn+1 ≤ k ∧ zJn+1 = s

)
(A.108)

⊆
(

mX
i=1

T is ≤ n − k ∧ Jn+1 ≤ k ∧ zJn+1 = s

)
(A.109)

⊆
(

nX
t=k

I [zt = s] ≥ m ∧ Jn+1 ≤ k ∧ zJn+1 = s

)
: (A.110)

84

And this gives us

P
"
Jn+1 ≤ k ∧

nX
t=k

I [zt = s] < m ∧ zJn+1 = s

#
(A.111)

≤ P
"
∃ 1 ≤ i ≤ m : T is > ⌊

n − k
m
⌋
#

(A.112)

≤ mP
"
Ts > ⌊

n − k
m
⌋
#
: (A.113)

Dynamical systems. The bound on P [Ak] follows from the fact that Jn+1 ≤ F (Cn). For

the Bk;m we get

P [Bk;m] ≤ k max
1≤j≤k

P

24Jn = j ∧
nX
t=j

I [dt;j ≤ bn]
35 : (A.114)

And similarly to the Markov chain example, we can obtain for each fixed j

P

24Jn = j ∧
nX
t=j

I [dt;j ≤ "n]
35 ≤ P

»
T (Cj) > ⌊

n − j
m
⌋
–
: (A.115)

General stationary processes. The bound for this case is done analogously to the previous

two examples.

85

B Proofs from Chapter 5

B.1 Technical results for MTLAB

General results for KL-divergence

Lemma B.1.1 (e.g. [Catoni, 2004], 5.2.1). For any function f : H→ R and any distribution

P over H, we have

sup
Q
{Eh∼Q [f (h)]− KL(Q|P)} = logEh∼P

h
e f (h)

i
: (B.1)

Definition B.1.2. Given a set ∆ of distributions and an arbitrary distribution P , we define

Π∆(P) = argmin
Q∈∆

KL(Q|P) (B.2)

as a KL-projection of P onto ∆.

Lemma B.1.3 (Pythagorean inequality for KL divergence, e.g. [Csiszár, 1975], Theorem 2.2).

Let ∆ be a convex subset of distributions, then for any distribution P and Q ∈ ∆

KL(Q|P) ≥ KL(Q|Π∆(P)) + KL(Π∆(P)|P): (B.3)

B.2 Proof of Theorem 5.2.1

Step 1. We start by proving the following fact.

For any sequence of distributions {Qt;i} such that Qt;i depends only on the samples before

and including (xt;i ; yt;i), for any – > 0, we have with probability 1− ‹
nX
t=1

mtX
i=1

1

mt

R(Qt;i ; Dt) ≤
nX
t=1

mtX
i=1

1

mt

EQt;i [‘t(h; zt;i)] +
1

–

nX
t=1

mtX
i=1

KL(Qt;i |Qt;i−1) (B.4)

+
–n

8m̄
+

1

–
log

1

‹
: (B.5)

86

The same holds for the reverse statement. Let

ut;i(h) = ‘t(h; zt;i)− R(h;Dt) (B.6)

and apply Lemma B.1.1 to
Pn
t=1

Pmt
i=1

1
mt
EQt;i [ut;i(h)] to get for any – > 0:

nX
t=1

mtX
i=1

1

mt

EQt;i [ut;i(h)] ≤
1

–

nX
t=1

mtX
i=1

KL(Qt;i |Qt;i−1) (B.7)

+ logE{ht;i∼Qt;i−1}t;i exp(
nX
t=1

mtX
i=1

–

mt

ut;i(ht;i)): (B.8)

Now let vt;i = e
–
mt
ut;i (ht;i) and we write

E
"
E{ht;i∼Qt;i−1}t;i

nY
t=1

mtY
i=1

vt;i

#
(B.9)

= E
"
E
"
E{ht;i∼Qt;i−1}t;i

nY
t=1

mtY
i=1

vt;i

˛̨̨̨
˛ k1:n; S1:n−1

##
(B.10)

= E
"
E{ht;i∼Qt;i−1}t<n;i

"
n−1Y
t=1

mtY
i=1

vt;i

#
E
"
E{hn;i∼Qn;i−1}i

mnY
i=1

vn;i

˛̨̨̨
˛ k1:n; S1:n−1

##
: (B.11)

Conditioned on k1:n, un;i(hn;i) forms a martingale difference sequence when hn;i is sampled

from Qn;i−1. Therefore, we can bound

E
"
E{hn;i∼Qn;i−1}i

mnY
i=1

vn;i

˛̨̨̨
˛ k1:n; S1:n−1

#
≤ exp(

–2

8mn

): (B.12)

Applying the same argument iteratively, we obtain

E
"
E{ht;i∼Qt;i−1}t;i

nY
t=1

mtY
i=1

vt;i

#
≤

nY
t=1

exp(
–2

8mt

) = exp(
–2n

8m̄
): (B.13)

We get the final statement of the theorem by using Markov inequality. The reverse statement

can be obtained by applying the same arguments to −ut;i .

Step 2. The next fact is similar fact to the previous one, but for a fixed posterior distribution.

Let P be a fixed prior distribution that is independent of the data. Then for any – > 0,

we have with probability 1− ‹ uniformly over Q

nX
t=1

mtX
i=1

1

mt

R(Q;Dt) ≤
nX
t=1

mtX
i=1

1

mt

EQ [‘t(h; zt;i)] +
1

–
KL(Q|P) (B.14)

+
–n

8m̄
+

1

–
log

1

‹
: (B.15)

The same holds for the reverse statement.

87

Observe that
nX
t=1

mtX
i=1

1

mt

R(Q;Dt)−
nX
t=1

mtX
i=1

1

mt

EQ [‘t(h; zt;i)] (B.16)

= EQ
"
nX
t=1

mtX
i=1

1

mt

R(h;Dt)−
nX
t=1

mtX
i=1

1

mt

‘t(h; zt;i)

#
: (B.17)

Now we can apply the lemma B.1.1 to the whole sum under the expectation to get for any

– > 0

EQ
"
nX
t=1

mtX
i=1

1

mt

R(h;Dt)−
nX
t=1

mtX
i=1

1

mt

‘t(h; zt;i)

#
(B.18)

≤ 1

–
KL(Q|P) + 1

–
logEP e

Pn

t=1

Pmt
i=1

–
mt
R(h;Dt)−

Pn

t=1

Pmt
i=1

–
mt
‘t(h;zt;i) (B.19)

and the second term can be bounded in the same way as in the step 1.

Step 3. Now we focus on the empirical regret of the MTLAB algorithm.

The sequence of distributions produced by MTLAB satisfies for any Q ∈ ∆:
nX
t=1

mtX
i=1

1

mt

EQt;i [‘t(h; zt;i)]−
nX
t=1

mtX
i=1

1

mt

EQ [‘t(h; zt;i)] +
1

”

nX
t=1

mtX
i=1

KL(Qt;i |Qt;i−1) (B.20)

≤ 1

”
KL(Q|P): (B.21)

We start by proving that the optimization in 5.2 can be performed in two steps: first computing

a minimizer over the set of all distributions and then taking a KL-projection onto ∆. Let

Q̃t;i = argmin
Q
{ ”
mt

Eh∼Q [‘t(h; zt;i)] + KL(Q|Qt;i−1)}; (B.22)

where the minimization is over the set of all distributions. We claim that Qt;i = Π∆(Q̃t;i). To

prove this, first observe that Q̃t;i can be computed explicitly, see e.g. [Catoni, 2004], Chapter

5.2,

dQ̃t;i(h) =
e−

”
mt
‘t(h;zt;i)dQt;i−1(h)R

e−
”
mt
‘t(h′;zt;i)dQt;i−1(h′)

=
e−

”
mt
‘t(h;zt;i)dQt;i−1(h)

Wt

: (B.23)

Moreover, from this can compute for any Q

KL(Q|Q̃t;i) = logWt +
”

mt

Eh∼Q [‘t(h; zt;i)] + KL(Q|Qt;i−1); (B.24)

hence, any minimizer of one side also minimizes the other and Qt;i = Π∆(Q̃t;i). Now, using

again (B.24), we can write

”

mt

EQt;i [‘t(h; zt;i)]−
”

mt

EQ [‘t(h; zt;i)] (B.25)

= KL(Qt;i |Q̃t;i)− KL(Qt;i |Qt;i−1)− KL(Q|Q̃t;i) + KL(Q|Qt;i−1): (B.26)

88

Notice that from Lemma B.1.1: −KL(Q|Q̃t;i) ≤ −KL(Q|Qt;i)−KL(Qt;i |Q̃t;i) and, hence, we

get

1

mt

EQt;i [‘t(h; zt;i)]−
1

mt

EQ [‘t(h; zt;i)] (B.27)

≤ 1

”
KL(Q|Qt;i−1)−

1

”
KL(Q|Qt;i)−

1

”
KL(Qt;i |Qt;i−1): (B.28)

Summing both sides from 1 to n, we obtain a telescoping sum on the right-hand side and get

the statement of the theorem.

Step 4. Now we combine the steps above to get the final theorem statement. Steps 1 and

2 with – = ” get us

Rn(Q) ≤
nX
t=1

mtX
i=1

1

mt

EQt;i [‘t(h; zt;i)]−
nX
t=1

mtX
i=1

1

mt

EQ [‘t(h; zt;i)] (B.29)

+
1

”

nX
t=1

mtX
i=1

KL(Qt;i |Qt;i−1) +
1

”
KL(Q|P) + ”n

4m
+

1

”
log

2

‹
: (B.30)

And then Step 3 bounds :

nX
t=1

mtX
i=1

1

mt

EQt;i [‘t(h; xt;i ; yt;i)]−
nX
t=1

mtX
i=1

1

mt

EQ [‘t(h; xt;i ; yt;i)] (B.31)

≤ 1

”
KL(Q|P)− 1

”

nX
t=1

mtX
i=1

KL(Qt;i |Qt;i−1): (B.32)

B.3 Proof of Theorem 5.6.2

From the definition of discrepancies we can bound

R(Q̄n; Dn) =
1

n

nX
t=1

R(Q̂t ; Dn) ≤
1

n

nX
t=1

R(Q̂t ; Dt) +
1

n

nX
t=1

disc(kt ; kn): (B.33)

Similarly,

−R(Q;Dn) ≤ −
1

n

nX
t=1

R(Q;Dt) +
1

n

nX
t=1

disc(kt ; kn): (B.34)

Then the statement follows from Corollary 5.2.2.

B.4 Technical results for MTLAB.MS

We will use the following notations for the MTLAB.MS algorithm:

89

• J (j) is the set of indices assigned to j-th subsequence.

• sn(j) = |J (j)|.

• In is the index of the subsequence chosen at the step n.

• Qt;i(j) is the distribution produced by the transfer algorithm on the subsequence j on

the i-th sample of t-th task.

• m̄(j) is the harmonic mean of the sizes of tasks in the j-th subsequence.

• Q̂t(j) the distribution outputted by the transfer algorithm for t-th task of j-th subse-

quence.

Lemma B.4.1. For each subsequence produced by MTLAB.MS, for any – > 0

E
"
E{ht;i∼Qt;i−1(j)}e

P
t∈J (j)

Pmt
i=1

–
mt

(R(ht;i ;Dt)−‘t(ht;i ;zt;i))− ”2sn(j)
m̄(j)

#
≤ 1: (B.35)

Proof of Lemma B.4.1. This a simpler version of Lemma A.1.3.

The next lemma is an analog of Step 1 in the proof of Theorem 5.2.1 adjusted to the fact

that we use only a randomly chosen subsequence of the tasks.

Lemma B.4.2. The sequence of distributions produced by the MTLAB.MS algorithm for the

chosen subsequence satisfies for any –(j) > 0;∀j with probability 1− ‹

X
t∈J (In)

mtX
i=1

1

mt

(R(Qt;i(In); Dt)− EQt;i (In) [‘t(h; zt;i)]) (B.36)

≤ 1

–(In)

X
t∈J (In)

mtX
i=1

KL(Qt;i |Qt;i−1) +
–(In)sn(In)

m̄(In)
+

1

–(In)
log

n

‹
: (B.37)

The same holds for the reverse statement.

Proof of Lemma B.4.2. We start with the Lemma S1, which applies even if the distributions

are random, to get

X
t∈J (In)

mtX
i=1

1

mt

(R(Qt;i(In); Dt)− EQt;i (In) [‘t(h; zt;i)]) (B.38)

≤ 1

–(In)

X
t∈J (In)

mtX
i=1

KL(Qt;i |Qt;i−1) (B.39)

+
1

–(In)
logE{ht;i∼Qt;i−1(In)}e

P
t∈J (In)

Pmt
i=1

–(In)
mt

(R(ht;i ;Dt)−‘t(ht;i ;zt;i)): (B.40)

90

Now

1

–(In)
logE{ht;i∼Qt;i−1(In)}e

P
t∈J (In)

Pmt
i=1

–(In)
mt

(R(ht;i ;Dt)−‘t(ht;i ;zt;i)) (B.41)

≤ 1

–(In)
logE{ht;i∼Qt;i−1(In)}e

P
t∈J (In)

Pmt
i=1

–(In)
mt

(R(ht;i ;Dt)−‘t(ht;i ;zt;i))−–2(In)sn(In)
m̄(In) (B.42)

+
–(In)sn(In)

m̄(In)
: (B.43)

Denote

Ω(j) = E{ht;i∼Qt;i−1(j)}e
P

t∈J (j)

Pmt
i=1

–(j)
mt

(R(ht;i ;Dt)−‘t(ht;i ;zt;i))−–2(j)sn(j)
m̄(j) ; (B.44)

so that from Lemma B.4.1 we get E [Ω(j)] ≤ 1. To finish the proof we need to bound
1

–(In)
log Ω(In). For this observe

P [Ω(In) > ¸] ≤
X
j

P [Ω(j) > ¸] ≤
X
j

E [Ω(j)]

¸
≤ n

¸
: (B.45)

This gives us that with probability 1− ‹:

log Ω(In) ≤ log
n

‹
(B.46)

and finishes the proof.

Lemma B.4.3. Let P be a fixed prior distribution independent of the data. For any –(j) >

0; ∀j it holds with probability 1− ‹ uniformly in Q

X
t∈J (In)

mtX
i=1

1

mt

(R(Q;Dt)− EQ [‘t(h; zt;i)]) ≤
1

–(In)
KL(Q|P) + –(In)sn(In)

m̄(In)
+

1

–(In)
log

n

‹
:

(B.47)

The same holds for the reverse statement.

Proof. The proof is an analogue of Step 2 of the proof of Theorem 5.2.1, but using arguments

from Lemma B.4.2 for the last part.

B.5 Proof of Theorem 5.6.3

Observe that from the definition of discrepancies we get.

R(Q̄n; Dn)− R(Q;Dn) ≤
1

sn

X
t∈J (In)

(R(Q̂t(In); Dt)− R(Q;Dt)) +
2

sn

X
t∈J (In)

disc(kt ; kn):

(B.48)

91

From the way MTLAB.MS constructs the subsequences, we have 1
sn

P
t∈J (In) disc(kt ; kn) ≤ ".

Using Lemma B.4.2 and B.4.3 with –(In) = ”n, we get with probability 1− ‹

X
t∈J (In)

(R(Q̂t(In); Dt)− R(Q;Dt)) ≤
X

t∈J (In)

mtX
i=1

1

mt

(EQt;i [‘t(h; zt;i)]− EQ [‘(h; zt;i)])

(B.49)

+
1

”n

X
t∈J (In)

mtX
i=1

KL(Qt;i |Qt;i−1) +
1

”n
KL(Q|P) (B.50)

+ 2
”nsn
m̄n

+
1

”n
log

n

‹
: (B.51)

The final statement follows from the regret bound of Step 2 in the proof of Theorem 5.2.1.

B.6 Proof of Theorem 5.6.4

Proof of Theorem 5. Observe that from the definition of discrepancies we get.

R(Q̄n; Dn)− R(Q;Dn) ≤
1

sn

X
t∈J (In)

(R(Q̂t(In); Dt)− R(Q;Dt)) +
2

sn

X
t∈J (In)

disc(kt ; kn):

(B.52)

From (22) we get with probability 1− ‹ that

2

sn

X
t∈J (In)

disc(kt ; kn) ≤ 2"+
2

sn

X
t∈J (In)

BL(t; n;
‹

n
): (B.53)

Using Lemma B.4.2 and Lemma B.4.3 with –(In) = ”n, we get with probability 1− ‹

X
t∈J (In)

(R(Q̂t(In); Dt)− R(Q;Dt)) ≤
X

t∈J (In)

mtX
i=1

1

mt

(EQt;i [‘(h; zt;i)]− EQ [‘(h; zt;i)]) (B.54)

+
1

”n

X
t∈J (In)

mtX
i=1

KL(Qt;i |Qt;i−1) +
1

”n
KL(Q|P) (B.55)

+ 2
”nsn
m̄n

+
1

”n
log

n

‹
: (B.56)

The final statement follows from the regret bound of Step 2 in the proof of Theorem 5.2.1.

92

B.7 Proof of Theorem 5.6.6

Proof of Theorem 6. We start by applying the standard arguments from the transfer learning

literature, see e.g. [Ben-David et al., 2007].

R(Q̄n; Dn)− R(Q;Dn) ≤
1

sn

X
t∈J (In)

(R(Q̂t(In); Dt)− R(Q;Dt)) (B.57)

+
2

sn

X
t∈J (In)

e(kt ; kn) +
2

sn

X
t∈J (In)

–t;n: (B.58)

MTLAB.MS is specifically designed to control the estimated discrepancies, so that we get with

probability 1− ‹

2

sn

X
t∈J (In)

e(kt ; kn) ≤ 2"+
2

sn

X
t∈J (In)

BU(Ut ; Un;
‹

n
): (B.59)

Using Lemma B.4.2 and Lemma B.4.3 with –(In) = ”n, we get with probability 1− ‹

X
t∈J (In)

(R(Q̂t(In); Dt)− R(Q;Dt)) ≤
X

t∈J (In)

mtX
i=1

1

mt

(EQt;i [‘(h; ft;i ; xt;i)]− EQ [‘(h; ft;i ; xt;i)])

(B.60)

+
1

”n

X
t∈J (In)

mtX
i=1

KL(Qt;i |Qt;i−1) +
1

”n
KL(Q|P) (B.61)

+ 2
”nsn
m̄n

+
1

”n
log

n

‹
: (B.62)

The final statement follows from the regret bound of Step 2 in the proof of Theorem 5.2.1.

	Abstract
	Acknowledgments
	About the Author
	List of Figures
	Introduction
	Background
	PAC learning
	Complexity measures
	PAC-Bayes framework
	Stochastic processes
	Sequential complexity measures
	Online learning
	Theory of Conditional Risk Minimization
	Learning theory for stochastic processes
	Conditional risk minimization problem
	Prior work on conditional learnability
	Connection to time series prediction
	Limits to learnability
	Discrepancies
	Convergent case
	Non-convergent case
	Conclusion

	Conditional Risk Minimization in Practice
	DataExpo Airline dataset
	Breakfast Actions dataset
	Conclusion

	Online Multi-task learning
	Multi-task learning of sequential tasks
	Learning across task boundaries
	Connection to traditional PAC-Bayes bounds
	MTLAB for lifelong learning
	Examples
	Per-task bounds
	Conclusion

	Conclusion and Future Work
	Bibliography
	Proofs from Chapter 3
	Technical results regarding the convergence of martingales
	Proof of Theorem 3.5.1
	Proof of Theorem 3.7.2
	Proof of Lemma 3.7.4
	Proof of Theorem 3.8.4
	Proof of Lemma 3.8.6
	Proof of Theorem 3.8.8
	Proof of Theorem 3.8.9
	Proof of Theorem 3.8.10
	Examples from Sections 3.8.4 and 3.8.5

	Proofs from Chapter 5
	Technical results for MTLAB
	Proof of Theorem 5.2.1
	Proof of Theorem 5.6.2
	Technical results for MTLAB.MS
	Proof of Theorem 5.6.3
	Proof of Theorem 5.6.4
	Proof of Theorem 5.6.6

