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The mammalian cerebral cortex is responsible for higher cognitive functions

such as perception, consciousness, and acquiring and processing information.

The neocortex is organized into six distinct laminae, each composed of a rich

diversity of cell types which assemble into highly complex cortical circuits.

Radial glia progenitors (RGPs) are responsible for producing all neocortical

neurons and certain glia lineages. Here, we discuss recent discoveries emerg-

ing from clonal lineage analysis at the single RGP cell level that provide us

with an inaugural quantitative framework of RGP lineage progression. We

further discuss the importance of the relative contribution of intrinsic gene

functions and non-cell-autonomous or community effects in regulating RGP

proliferation behavior and lineage progression.
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What makes the human cortex unique and how did

the regulatory cell proliferation programs in neural

stem cells (NSCs) evolve to accommodate the genera-

tion of bigger and more complex brains during evolu-

tion? These are key questions that require a clear

understanding of the cellular and molecular processes

controlling the development of the cortical entity from

a relatively simple neuroepithelium. Across most mam-

mals the overall cortical architecture is remarkably

well conserved, however, the relative size and neuropil

density in human has expanded significantly [1–5]. The
cortex is composed of six distinct layers with a diverse

array of cell types including excitatory projection neu-

rons, inhibitory interneurons, and astrocyte- and oligo-

dendrocyte glial cells [5–7]. The cellular and molecular

mechanisms of generating cell type diversity and regu-

lating NSC lineage progression in the dorsal

telencephalon in vivo are mostly unknown. Key ques-

tions include: What is the quantitative and qualitative

output of a single stem cell and how is the output/stem

cell potential modulated over time? Which genetic and

epigenetic factors regulate the temporal progression of

a stem cell along its lineage? What is the relative con-

tribution of cell-intrinsic vs. environmental and/or

niche factors? Here, we focus on the above questions

and discuss recent progress contributing to our con-

ceptual understanding of cortical radial glia progenitor

(RGP) cell lineage progression. For this review we

mainly discuss advances that contribute to our quanti-

tative understanding of the production of cortical pro-

jection neurons which are generated from dorsal

telencephalic RGPs. We refer the reader to excellent

recent reviews for the discussion of interneuron and

glia genesis, and diversity [8–12].
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Radial glia progenitors generating cell
type diversity in the neocortex

In the neocortex, projection neurons are derived from

a common progenitor cell known as the RGP cell [13–
16]. RGP themselves are derived from neural epithelial

stem cells (NESCs) that compose the early embryonic

neuroepithelium. NESCs were first identified by His

over 100 years ago and are defined morphologically by

a long basal process and an apical process that remains

in contact with both the ventricle and the pial surface

[17]. Sauer later confirmed that these cells undergo

mitosis at the lumen surface, and that they contain api-

cal–basal cell polarity. Furthermore, Sauer introduced

the first model for interkinetic nuclear migration

(IKNM) [18], where mitosis occurs near the apical side

of the neural tube and the two daughter cells migrate

away postdivision [19,20]. At approximately embryonic

day (E) 9 in mice and around gestation week (GW) 5–
6 in humans, NESCs begin to transition into RGPs

[3,5,21]. Nascent RGPs initially undergo symmetric

proliferative (aka amplification) divisions resulting in

the expansion of the progenitor pool [5,22,23]. At

around E12, RGPs transition into a neurogenic state

and divide asymmetrically thereby producing cortical

projection neurons [24,25]. The earliest born neurons

(destined to become layer 6 projection neurons) split

the preplate into the superficial marginal zone and the

deeper subplate [26,27]. Through consecutive waves of

neurogenesis, nascent neurons migrate radially along

the RGP cell process into the most superficial layer of

the developing cortex where they mature and differen-

tiate. This process continues with each new wave of

neurons migrating past the previous, resulting in the

formation of distinct cortical laminae in an ‘inside-out’

fashion [28–37]. Early born, deep layer neurons (layers

5–6) are largely composed of corticofugal neurons that

innervate brain regions beyond the neocortex including

the thalamus, brainstem, and spinal cord [38,39]. Later

born superficial neurons (layers 2–4) consist of intra-

cortical neurons that project locally, ipsilaterally, or to

the contralateral cortical hemisphere. The neurogenic

expansion occurs in a waxing, surging, and waning

output pattern of neurons, finishing at E17 in mice

and approximately GW20 in humans [40–42]. While

the laminar position allows a rough classification of

projection neurons it also dictates the ultimate

connectivity of cortical projection neurons. Based on

physiological connectivity patterns, the concept of a

canonical microcircuit has been established [43,44]. In

recent years many other criteria have been employed

to enable the classification of cortical cell types ranging

from morphological, physiological to transcriptomic

fingerprints and myelination patterns [45]. In particu-

lar, single-cell RNA sequencing (scRNAseq) has ush-

ered in a revolution in our understanding of the

dynamic gene expression patterns and states; and their

correlation with cellular fate and cortical cell type

diversity [46,47]. Many of the technological advances

related to the current state of the art scRNAseq meth-

ods, and how these advances have expanded our

knowledge of cortical projection neuron heterogeneity

have been recently reviewed [48–52]. Single-cell tran-

scriptomes and methylomes [53] represent a robust

measure to classify distinct cell types and predict lin-

eage trees based on hierarchical clustering algorithms

although the mechanistic principles responsible for

their generation by RGPs in vivo remain to a large

extent enigmatic.

Radial glia progenitors can also produce glia cells

[54], including astrocytes and oligodendrocytes, which

play important roles in the development, maintenance,

and function of neuronal circuits [55,56]. Although gli-

ogenesis has been shown to follow neurogenesis in the

developing brain [57–63], the mechanisms of lineage

progression from neurogenesis to gliogenesis, especially

at the individual RGP cell level remain essentially

unexplored [9,11,54,64].

Shortly after birth, the embryonic neuroepithelium

transforms into the postnatal NSC niche in the ven-

tricular–subventricular zone (V-SVZ) within the lateral

ventricle [54,65,66]. While discrete subpopulations of

RGPs give rise to ependymal cells [67], other RGPs

transform into V-SVZ type B1 cells [68,69]. Type B1

cells represent the principal stem cell progenitors in

adult neurogenesis [70]. Type B1 cells generate type C

cells which represent transit amplifying progenitors

(TAPs). Type C TAPs significantly expand the lineage

and produce neuroblasts destined to populate the

olfactory bulb [54,65,66].

The developmental programs regulating the succes-

sive generation of postmitotic neurons and glia cells,

followed by progressive generation of postnatal pro-

genitor cells by telencephalic RGPs need to be pre-

cisely implemented and regulated. Impairments in

RGP lineage progression lead to alterations in the cor-

tical cytoarchitecture which is thought to represent the

major underlying cause for several neurological disor-

ders including microcephaly or megalencephaly; and

more subtle neurodevelopmental diseases including

schizophrenia, autism, and epilepsy [3,71–74].

RGP lineage diversity and cortex size

The relative increase in size and complexity of the

mammalian cerebral cortex during evolution correlates
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with the acquisition of more sophisticated traits. A

particular intriguing example is the skilled hand use

where the transition from power grip toward precision

grip correlates with the physical addition of new corti-

cal fields involved in proprioception [75]. The culmina-

tion of brain growth (both in size and complexity)

eventually led to the emergence of higher and unique

cognitive traits that are characteristic to the human

brain. In order to begin to understand how the brain

can progressively increase in size, it is essential to

obtain the complete RGP lineage trees in different spe-

cies across evolution. This is a daunting task and cur-

rently the RGP-derived lineage of cortical projection

neurons is best characterized in mice. However, recent

efforts to recapitulate some of the earlier stages of

human brain development, including regional pattern-

ing in vitro using human embryonic stem cells (hESCs)

[76] may promise new insight in the future; at least on

the general cell biological level by inferring lineage tree

branches from cultured cells. Although hESC cultures

have great potential, recent studies have employed

induced pluripotent stem cells (iPSCs) derived from

humans, chimpanzees, and macaques and directed

these cell lines to a dorsal telencephalic fate. While

these systems do not fully recapitulate the in vivo cellu-

lar niche (including environmental factors that may

have a direct role in regulating cellular fate) the cell-

intrinsic potential and putative differences among spe-

cies-specific iPSC lines is interesting. It has been

observed that human iPSCs display more prolonged

symmetric proliferative divisions while in macaque

they transition to an asymmetric neurogenic division

relatively quickly [77]. Once human progenitors

switched to asymmetric neurogenic divisions, they con-

tinued producing neurons for a longer period of time

than macaque. Therefore, it is evident that at the cellu-

lar level fundamental differences and species-specific

progenitor traits may indicate distinct regulatory

mechanisms which may contribute to the evolution of

adapted progenitor proliferation potential and thus

brain size.

Radial glia progenitors have been shown to not only

give rise to neurons directly but also generate a diverse

range of distinct transient progenitor cell types with

varying degrees of potency. These include intermediate

progenitors (IPs), short neural precursors, TAPs and

outer SVZ progenitors (oSVZ) or also referred to as

outer radial glia cells (oRGs), and have been described

[78–81]. The cellular and molecular features of oRGs

have been discussed at length in recent reviews [82,83],

and here we will only focus on the oRG proliferation

potential with regard to the increase in cortex size dur-

ing evolution. Given the emerging diversity of

progenitor cells originating from RGPs it is important

to analyze not only the total output of RGPs but also

the proliferation potential of every class of IP. What

types of neurons and/or glia cells are produced by

each type of IP and how does the output change dur-

ing overall lineage progression? In other words, what

is the precise contribution of each progenitor and how

do they contribute to quantity and cell type diversity

during development and in different species? These are

challenging questions for the field and in order to

approach them concretely it is critical to observe and

quantify neurogenesis at the single progenitor level. At

the qualitative level, it will be revealing to characterize

and classify the progenitors and their output by using

morphological parameters paired with single-cell tran-

scriptomes.

Elegant work from the Kriegstien lab and others

has shown that human RGPs transit into distinct mor-

photypes during development and lineage progression

[83–85]. For instance, after GW 17, ventrally located

RGPs lose pia-contacting basal processes and transi-

tion into a ‘truncated’ RGP [85] which contribute to

the expansion of the human cortical plate. oRGs

themselves have been shown to have a huge prolifera-

tion and thus output potential since they are capable

of producing several hundred neurons and thereby

amplify the overall output of individual RGPs along

their lineage [86,87]. Based on morphological analyses

oRGs have been suggested to divide into several dis-

tinct classes which may individually exhibit additional

distinctions in their output potential [84]. oRGs exhibit

a unique dynamic mode of locomotion called mitotic

somal translocation (MST) [79]. Immediately before

cytokinesis, the soma rapidly translocates toward the

cortical plate, which is independent of mitosis and

working through an alternate mechanism to that of

IKNM and saltatory nuclear migration [79]. While

MST requires the activation of the Rho effector

ROCK and nonmuscle myosin II the molecular mech-

anisms underlying MST are not well understood [88].

It is tempting to speculate that oRG-specific MST may

be regulated precisely to optimize and/or tune their

proliferation potential along their migration path.

oRGs not only amplify the overall RGP output but

they also constitute a critical scaffold for radially

migrating neurons and their presence and proliferation

properties have been implicated in gyrification [78,89–
93].

Since oRGs are largely absent in the mouse brain,

many studies have used variations of cerebral organoid

systems which to varying degrees recapitulate some of

the cortical structures seen in the human. In order to

rigorously study the cellular properties of oRGs, a
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number of experimental protocols [90,94–97], including
the use of induced LIF/STAT3 signaling [98], have

been continuously optimized. Although culture systems

present certain caveats when it comes to the study of

neurogenesis in human [99], these organoid systems

still enable the study of human neural stem, RGP, and

oRG cells in a short temporal window of human brain

development [100]. Furthermore, they allow the intro-

duction of perturbations into human-derived RGPs

and follow the downstream repercussions. This has

been particularly beneficial in addressing the role of

Zika virus-induced cell death and proliferation deficits

in RGPs which results in microcephaly in prenatal

infants of infected mothers [98,101–103]. In vitro

human iPSC model systems have also been surpris-

ingly robust in recapitulating the temporal order of

cortical neurogenesis in certain disease contexts includ-

ing lissencaphaly [95,104].

Outer radial glia cells are also found in other non-

primates, including ferrets. However, the mechanisms

governing their proliferation and differentiation prop-

erties seem to differ from the ones in primates [78,80].

In mouse there is a small number of oSVZ radial glia-

like cells (also referred to as basal RG or bRG), how-

ever, these differ significantly from oRGs in humans

[81,105]. Under normal physiological conditions,

mouse bRGs are incapable of symmetric proliferative

divisions and express Tbr2 at midneurogenesis, a mar-

ker characteristically expressed by IPs [89]. While

expression of specific genes including TBC1D3 in ven-

tricular cortical progenitors can promote the genera-

tion and expansion of bRGs in mice, the underlying

mechanisms controlling the generation of these cells is

still not entirely clear [106].

Quantitative analysis of RGP lineage
progression at population level

In order to decipher the precise path of RGP lineage

progression the qualitative and quantitative RGP out-

put has to be assessed [23,51,107]. Traditionally, a key

approach to study neuronal output of proliferating

RGPs in the developing cortex was to analyze (by

pulse-chase labeling analysis) the behavior of a popula-

tion of cells and infer the patterns of division down to

the single RGP level [108,109]. These analyses helped

to shape our current model of RGP lineage progres-

sion in the neocortex which is based on the concept

that multipotent RGPs first undergo symmetric prolif-

erative (amplification) divisions followed by sequential

asymmetric divisions generating neurons for distinct

laminae in a defined temporal order [5]. Transplanta-

tion studies [110,111] showed that cortical RGPs

progressively restrict their potential. In other words,

‘late’ RGPs cannot revert back to produce ‘early’

lower layer neurons, whereas ‘early’ RGPs keep their

full potential regardless of the age of the host. Indeed,

the neurons which were produced by the ‘early’ pro-

genitors were those expected based on the recipient’s

stage [110,111]. Interestingly, cortical RGPs retain

their ability to sequentially produce distinct cell types

in culture conditions [61,112,113].

In order to directly measure the dynamics of RGP

proliferation behavior during lineage progression, cri-

teria such as cell cycle length at different developmen-

tal time periods and the proportion of cells that exit

the cell cycle after each division represent two key

measurements. Pioneering experiments from Nowa-

kowski and colleagues predicted that the cardinal

RGP undergoes 11 rounds of division beginning at

E11 and ending at E17 which marks the end of neuro-

genesis in the mouse [109]. There are four variables

which are commonly used when determining the total

RGP output of the neocortex. First, the growth frac-

tion or the proportion of RGP and IP cells that are

actively proliferating [109]. Second, the number of

RGP cell cycles during the cortical neurogenic time

period. Third and fourth, the number of cells exiting

the cell cycle and the number of cells remaining in a

proliferative state after each round of division, respec-

tively [114]. With these variables, Nowakowski and

colleagues were able to very accurately model the

growth of the cortex. For example, the absolute num-

ber of cells undergoing proliferation will change from

one cell cycle to the next. When neurogenesis begins,

the number of proliferating (P) RGP would be close

to a maximum P value of 1, with 1 implying that every

cell in the developing cortex is proliferating. With each

cell cycle, a certain fraction of these daughter cells

would exit the cell cycle and either become quiescent

(Q) or terminally differentiate. The value of Q will

gradually increase from 0 until it eventually reaches 1

at the end of neurogenesis. P and Q are inversely cor-

related and together can be used to calculate the abso-

lute number of cells proliferating during each round of

cell division [114]. Correlating these findings with the

limited human data at the time was challenging. How-

ever, in chimpanzees it appears that similar to mouse

the cell cycle length increases, and fewer proliferating

cells can be observed, in later time windows [40]. These

data led to two major conclusions. First, RGPs gradu-

ally become committed, stop proliferating, and eventu-

ally differentiate. Second, the key factor determining

cortex size across evolution is not only reflected in the

added diversity of progenitors such as oRGs (see

above) but also in the time period of active RGP
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proliferation and the length of the cell cycle at pro-

gressive later times [78–80,84,115]. While this model

accurately accounts for the growth and absolute num-

ber of neocortical neurons, it does not take into con-

sideration more subtle differences such as adjusting for

the proportion of different progenitor cell types. It

also does not allow for small changes in the ratio of

RGP to IP or bRG and how this would affect overall

output as illustrated also above in the previous sec-

tion.

In order to move from population analyses to sin-

gle-cell approaches, many studies used retroviral label-

ing of individual cells. The lineage of single

proliferating RGPs were traced using mainly unicolor

marking to then retroactively infer division patterns

[116–121]. This method was also combined with live

imaging to visualize individual cell divisions in real

time, however, due to the technical limitations of the

explant culture system, this was limited to shorter time

periods of 24–48 h and did not allow for them to fol-

low these cells into their final mature state [16,60].

Nowakowski and colleagues also combined various

approaches and compared cell cycle behavior at the

population level with the lineage analysis of the single

retro-labeled RGP [20,22,40,109]. Their findings were

remarkably robust and through mathematical model-

ing they were able to deduce that multiple populations

of progenitor cells must be proliferating in parallel

albeit not in synchrony. While in vivo lineage analysis

provides a snapshot of clone composition at specific

timepoints in development, it does not always provide

complete information about the birth order of all clon-

ally related cells. By culturing cortical RGPs in vitro,

the temporal order of neurogenesis could be tracked

reliably [61,113,122]. The fate of all progeny was fol-

lowed through long-term live imaging, allowing for the

generation of intricate cell lineage tree models to repre-

sent the birth order of each cell [113]. From these

data, mathematical modeling was used to generate the-

oretical predictive models of cortical neurogenesis and

identify division patterns of progenitor cells.

In vivo model of RGP lineage
progression at single-cell level

While population-based approaches provided a robust

frame work of RGP progenitor proliferation patterns

and properties, high-resolution single-cell approaches

are necessary to establish a definite model of RGP lin-

eage progression in vivo. In order to pursue high-

resolution single-cell lineage tracing, progenitor stem

cells should be marked in a sparse but permanent

manner. In the most optimal case, the marker will be

transferred to the whole lineal progeny and even after

numerous rounds of cell division still robustly mark all

daughter cells. To this end, a large number of methods

and approaches have been developed in the last dec-

ades which afford lineage tracing and clonal studies

[51,123–125]. In particular, a variety of combinatorial

fluorescent systems have been developed for perform-

ing high-resolution in vivo lineage analysis. Very

prominent is the ‘Brainbow’ approach which is widely

used in a variety of systems and which has recently

been used to trace cortical RGP clones [126,127].

Another system, ‘CLoNe’, utilizes transposition vec-

tors for cortical neuron lineage tracing [128,129] and

the astrocyte-specific ‘Star Track’ specifically labels

astrocyte progenitors and progeny [130]. The advan-

tage of all the above systems is that the reporter con-

structs stably integrate into the genome, and thereby

reliably label lineally related daughter cells. Combina-

torial labeling with multiple markers also allows for

the distinction between closely localized or spatially

overlapping clones [127,128].

The monitoring, however, of precise progenitor divi-

sion patterns in situ, and mapping entire lineage trees

originating from an individual progenitor still repre-

sents a substantial challenge in the field. To this end,

we have recently advanced the mosaic analysis with

double markers (MADM) technology which provides

an unprecedented genetic approach for in vivo lineage

tracing in the mouse [131–133]. For MADM, two

reciprocally chimeric marker genes are targeted sepa-

rately to identical loci on homologous chromosomes.

The chimeric marker genes (GT and TG alleles) consist

of partial coding sequences for green (eGFP[G]) and

red (tdT[T], tandem dimer Tomato) fluorescent pro-

teins separated by an intron containing the loxP site.

Following Cre recombinase-mediated interchromoso-

mal recombination during mitosis, functional green

and red fluorescent proteins are reconstituted resulting

in two daughter cells each expressing one of the two

fluorescent proteins (upon G2-X events: recombination

in G2 of the cell cycle followed by X segregation, for

technical details refer to Refs [131–133]). Analysis of

MADM-based G2-X events in conjunction with tem-

porally controlled tamoxifen (TM)-inducible CreER

can provide exact information on birth dates of RGP

(and other stem cell) clones and their cell division pat-

terns (i.e., symmetric vs. asymmetric) [23,132,134]. An

added MADM feature is the possible introduction of

gene mutations allowing clonal two-color labeling with

concomitant genetic manipulation. As such, these

MADM applications permit the tracing of stem cell

lineage progression in genetic mosaics with wild-type

daughter cells labeled with one color (e.g., red) and
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homozygous mutant siblings with the other (e.g.,

green) in an unlabeled heterozygous environment. In

summary, MADM can provide an unambiguous quan-

titative optical readout of the proliferation mode (sym-

metric vs. asymmetric) of progenitors at the single-cell

level and thus permit the determination of the develop-

mental progenitor potential in situ.

In order to gain insight into the precise patterns of

RGP division patterns and proliferation behavior, dur-

ing neuron and glia production we have recently per-

formed MADM-based quantitative clonal analysis

[135]. Our systematic clonal analysis suggests that the

behavior of individual RGPs is remarkably coherent

and predictable across all developmental stages. RGPs

initially undergo symmetric division with a predictable

proliferation potential before transiting to asymmetric

neurogenic division. Importantly, the explicit identifi-

cation of asymmetric neurogenic MADM clones

enabled a quantitative assessment of the neurogenic

potential of individual RGPs as they switch from sym-

metric proliferative division to asymmetric neurogenic

division. We found that RGPs in the neurogenic phase

do not undergo terminal differentiation in a stochastic

manner but rather follow a defined nonrandom pro-

gram of cell cycle exit resulting in a unitary output of

about eight to nine neurons per individual RGP. Per-

haps interestingly, the size of asymmetric neurogenic

clones was similar across neocortical areas with dis-

tinct functions, suggesting that the unitary neuronal

output is a general property of cortical RGPs. Upon

completion of neurogenesis, a defined fraction of indi-

vidual RGPs proceed to gliogenesis, whereby about

one in six neurogenic RGPs proceed to produce

glia—astrocytes and/or oligodendrocytes—indicating a

coupling between gliogenesis and neurogenesis at a

predictable rate. Altogether, these MADM-based clo-

nal analyses revealed definitive ontogeny of neocortical

excitatory neurons and glia [135] (Fig. 1). While the

MADM analysis detailed above provides a quantita-

tive framework of lineage progression at the individual

RGP cell level, the quality of distinct clones with uni-

tary output remains to be determined. In other words,

while the canonical RGP output is approximately eight

to nine neurons, their distribution in the cortical plate

may be fixed or display heterogeneity to various

degrees. Furthermore, the clonal distribution pattern

could differ in distinct functional areas. In order to

address these questions it will be important in the

future to monitor potential clonal heterogeneity at sin-

gle-cell resolution and correlate the neuronal distribu-

tion with the functional areas in the neocortex. While

we focus here mainly on neuronal output from RGPs,

the predictable rate of glia production based on

MADM analysis suggests a specific inherent gliogenic

Fig. 1. Deterministic RGP behavior and unitary production of projection neurons in the neocortex. Systematic clonal analysis suggests that

the behavior of RGPs is coherent and predictable across all developmental stages. RGPs initially undergo symmetric division with a

predictable proliferation potential before transitioning to asymmetric neurogenic divisions. RGPs in the neurogenic phase do not undergo

terminal differentiation in a stochastic manner but rather follow a defined nonrandom program of cell cycle exit resulting in a unitary output

of about eight to nine neurons per individual RGP. Roman numerals VI to II refer to the serial production of neurons destined to cortical

layers which are numbered accordingly. Upon completion of neurogenesis, a defined fraction of individual RGPs proceed to gliogenesis

whereby about one in six neurogenic RGPs proceed to produce glia—astrocytes and/or oligodendrocytes—indicating a coupling between

gliogenesis and neurogenesis at a predictable rate (Adapted from Ref. [135]).
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potential which requires further analysis. Future stud-

ies should also integrate the quantitative concept of

unitary neuron production at the cortical neuronal cir-

cuit level and evaluate the functional implications with

respect to the canonical cortical wiring diagram.

Molecular and cellular mechanisms of
RGP lineage progression

The MADM-based clonal analysis provides an inaugu-

ral quantitative framework of RGP lineage progression

(Fig. 1), but the cellular and molecular mechanisms

are not well understood. Key questions include: How

is the switch from symmetric proliferative RGP divi-

sions to asymmetric neurogenic RGP divisions con-

trolled? Which mechanisms determine the neurogenic

and gliogenic RGP potential? How is the deterministic

mode of cortical neuron production regulated? In

order to address the above questions the MADM sys-

tem provides a platform for directed candidate gene

approaches [132,136–141]. To this end we recently

commenced to functionally analyze the molecular

requirements controlling the first critical step in RGP

lineage progression: the switch from symmetric (ex-

panding) to asymmetric (neurogenic) RGP progenitor

division. One key regulator of the mode of cell division

is the signaling protein LGL1 [aka Llgl1, lethal giant

larvae homolog 1 (Drosophila)], which regulates intra-

cellular polarity in a variety of cellular contexts, and

likely plays an important role in RGPs in mouse

in vivo [142–146]. Albeit being predicted to contribute

to embryonic RGP lineage progression, how Lgl1 con-

trols this process is not entirely clear. Furthermore,

the relationship between LGL1-mediated cell polarity,

ventricular zone architecture, and cortical RGP behav-

ior has not been extensively studied in vivo. The func-

tional requirement of Lgl1 at later stages during NSC

lineage progression, and including gliogenesis, is essen-

tially unknown due to lethality of Lgl1 knockout mice

at birth. The analysis of RGP lineage progression in

Lgl1 mutant mice is somewhat compromised due to

the severe and progressive disruption of the VZ result-

ing in disorganization and tumor-like growth of RGPs

in the form of rosettes [143]. This, however, also raises

the possibility that substantial aspects of the pheno-

type in whole tissue Lgl1 knockout could be the result

of a combination of cell-autonomous and non-

autonomous and/or community effects. In order to

address this issue, and to determine the relative

contribution of cell-autonomous Lgl1 signaling and

non-cell-autonomous mechanisms in RGP lineage pro-

gression, we capitalized on the MADM system. We

developed the following genetic strategy: subtractive

phenotypic RGP analysis in genetic Lgl1 mosaics

(heterozygous, normal background; Lgl1-MADM) and

conditional Lgl1 knockouts (mutant background;

cKO-Lgl1-MADM). In other words, Lgl1 mutant

RGP cells are either surrounded by an environment

with ‘normal’ heterozygous and wild-type cells (Lgl1-

MADM), or by mutant cells (cKO-Lgl1-MADM)

[147]. The above genetic strategy represents a unique

experimental paradigm (Fig. 2) which can be applied

in principle to any candidate gene of interest to deter-

mine the relative contribution of intrinsic gene func-

tion and the effect of non-cell-autonomous effect on

the overall phenotype in vivo. Interestingly, in cKO-

Lgl1-MADM (but not Lgl1-MADM) the formation of

heterotopic masses or subcortical band heterotopias

was a predominant phenotype correlating with the

downregulation of basolateral adherens junctional

components similar like in the full knockout of Lgl1

[143]. The cKO-Lgl1-MADM appeared to phenocopy

Numb/Numbl double mutants [148–150]. NUMB local-

izes to the basolateral cadherin–catenin adhesion com-

plex and is thought to control the trafficking of

components such as N-cadherin (CDH2) [150]. Intrigu-

ingly, the loss of CDH2 [151] or aE-catenin [152], both

resulted in the formation of heterotopias. A recent

study observed that nonphosphorylated LGL1 strongly

bound CDH2, whereas LGL1 with amino acid substi-

tutions that mimicked phosphorylation did not interact

with CDH2 [153]. These data suggest that LGL1 plays

a critical role in adherens junction formation by regu-

lating junctional CDH2 integrity presumably by regu-

lating its internalization and/or intracellular trafficking

[153]. Since Lgl1 has also been suggested to play a role

in polarized secretion and exocytosis regulation [154] it

will be interesting to determine any putative functional

relationship of Lgl1 and Numb in regulating adherens

junctional integrity and/or in controlling RGP prolifer-

ation dynamics. In mosaic Lgl1-MADM mice, where

Lgl1 was deleted only sparsely and/or removed from

single RGPs, the mutant progenitors did proliferate

normally with a unitary neuron output. These data

indicate that wild-type progenitors surrounding mutant

ones, maintain their integrity in the VZ in a non-

cell-autonomous manner and that the exuberant RGP

proliferation (and thus disturbed RGP lineage progres-

sion) in cKO-Lgl1-MADM and heterotopia formation

is the result of community effects rather than the

consequence of cell-autonomous Lgl1 deficit.

One striking observation in individual Lgl1-MADM

clones was that loss of Lgl1 did not change the unitary

neuron output but led to a massive increase in clonally

related parenchymal astrocytes. However, it is cur-

rently not clear whether the increased proliferation of
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astrocyte intermediate progenitor cells [54] solely is

responsible for the increased number of Lgl1�/� corti-

cal astrocytes. The loss of Lgl1 could in addition also

lead to changes of the inherent gliogenic potential in

RGPs. It will thus be informative to determine

whether the fraction of gliogenic RGPs (1/6 in wild-

type) is increased in Lgl1-MADM. Furthermore, the

increased astrocyte production in RGPs lacking Lgl1

was dependent on Egfr suggesting a functional rela-

tionship. In this regard, it is tempting to speculate that

astrocyte overproduction could reflect the loss of a

specific Lgl1-dependent function in polarized secretion

and/or exocytosis, in order to regulate cell surface

abundance of astrocyte production-stimulating (such

as for instance EGFR) and/or -inhibiting factors. It is

intriguing to speculate that the control of polarized

secretion, exocytosis [154,155], and possibly further

intracellular trafficking events, could actually represent

one unifying function of Lgl1 in the control of prolif-

erating RGPs during several sequential stages in their

lineage progression (Fig. 3). Indeed, the loss of Lgl1

also compromises postnatal neurogenesis in a cell-

autonomous manner although the underlying mecha-

nisms remain to be clarified [147].

Outlook and perspectives

A rough framework of RGP lineage progression has

been defined based on clonal analyses but a number of

outstanding questions need to be addressed in the

future. First, what is the degree of progenitor cell type

diversity in the developing neuroepithelium and later

in the VZ and SVZ? Do all RGPs harbor the same

quantitative and qualitative potential for neuron/glia

output? Recent lineage tracing and fate-mapping

experiments employing distinct Cre/CreER-based

approaches in combination with defined promoter ele-

ments suggest a significant level of progenitor cell type

diversity [156–160]. While many promoters driving

Cre/CreER recombinases lead to clones spanning all

Fig. 2. Mosaic analysis with double markers-based genetic dissection of cell-autonomous gene function and non-cell-autonomous effects

regulating RGP lineage progression. The genetic assay relies on comparative analysis of multiple MADM paradigms to distinguish cell-

autonomous genetic functions from non-cell-autonomous effects. MADM-based genetic dissection of a gene of interest (Gene X) requires

mutant alleles to be introduced distal to the MADM cassettes via meiotic recombination (for details how to introduce mutant alleles into the

MADM system see also Ref. [132]). (A–C) Schematic illustration of experimental paradigm in control-MADM (A, wild-type), Gene X-MADM

(B, genetic mosaic), and cKO-Gene X-MADM (C, conditional/full knockout). In control-MADM, GFP+ (green), tdT+ (red), and unlabeled (vast

majority) cells are all WT. In Gene X-MADM, GFP+ (green) cells are Gene X�/�, tdT+ (red) cells are Gene X+/+, and unlabeled cells are Gene

X+/�. In cKO-Gene X-MADM, GFP+ (green), tdT+ (red), and the vast majority of unlabeled cortical projection neurons are all Gene X�/�. By
phenotypically comparing the GFP+ Gene X�/� cells in Gene X-MADM (B, D) to the genotypically identical GFP+ Gene X�/� cells in cKO-

Gene X-MADM (C, E) the cell-autonomous gene functions and relative contribution of non-cell-autonomous effects can be identified and

quantified at single-cell resolution (Adapted from Ref. [147]).
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cortical layers, others appear to mark clones with

more restricted laminar distribution. In most of the

above studies, however, the analysis was not carried

out at the single progenitor cell level. It thus remains

an open question how diverse the RGP population

really is with regard to the neurogenic and gliogenic

inherent potential. The intrinsic RGP output potential

could also be adjusted along the path of lineage pro-

gression and distinct RGP populations could respond

differently to such regulation. It is interesting to note

in this regard that once RGPs switch from symmetric

to asymmetric neurogenic division about five of six

RGPs lose the capacity to produce glia [135]. The

advancement of scRNA-seq technologies holds great

promise that in the near future the transcriptional pro-

files of large fractions of RGPs can be mapped in

more detail, and the level of RGP cell diversity deter-

mined, at least at the level of gene expression. Building

upon such data it will be important to correlate the

gene expression profile with neuro- and gliogenic

potential at the individual RGP level to evaluate the

full spectrum of RGP cell type diversity.

What are the cellular and molecular mechanisms in

cortical RGPs regulating the fine balance between pro-

liferation and differentiation into neurons and/or glia

cells, to specify the cerebral cortex of the correct size

and cellular composition? While previous efforts

greatly contributed to our current framework of neo-

cortical genesis, experimental paradigms addressing the

function of specific genes were mostly based upon

whole population approaches (e.g., full and/or condi-

tional knockout studies). However, the lack of true

single-cell resolution of progeny fate vital for dissect-

ing progenitor division patterns has previously often

precluded a definitive understanding. MADM offers a

promising solution and permits quantitative clonal

analysis, concurrent with genetic manipulation, of pre-

cise division patterns and lineage progression at

unprecedented individual progenitor cell resolution.

With MADM it is also possible to define and quantify

the relative contributions of molecular genetic cell-

autonomous and non-cell-autonomous mechanisms

controlling lineage progression in RGPs at single-cell

resolution [147]. Future MADM analyses hold the

potential to systematically analyze lineage progression

in any stem cell and tissue, and probe the relative con-

tributions of the intrinsic and extrinsic components of

any gene function to the overall phenotype.

While lineage analysis in higher order mammals

remains technically challenging, recent studies have

cleverly utilized naturally occurring endogenous

retroelements, to create lineage maps in the human

brain [51,161]. However, it is still unclear whether the

deterministic and/or unitary mode of neuron production

Fig. 3. Discrete sequential functions of Lgl1 in regulating RGP behavior in the developing neocortex. Schematic model of RGP lineage

progression and Lgl1 functions at distinct stages of cortex development. See text for details (Adapted from Ref. [147]).
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in RGPs represents a general principle. Thus, it will be

important to establish models or RGP lineage progres-

sion at high single-cell resolution in other species than

the mouse and especially in human. Recent studies have

begun using cerebral organoids to approach the above

issue [90,162–164] but complementary approaches

beyond culture systems will be needed to obtain a more

realistic model reflecting the in vivo condition.

Ultimately, the combination of multidisciplinary

approaches in cell culture and in vivo, and involving dis-

tinct species including human may promise a deeper

understanding of the molecular mechanisms controlling

(a) RGP lineage progression; (b) regulation of brain size

in general; and (c) why human brain development is so

sensitive to disruption of particular signaling pathways

in pathological neurodevelopmental microcephaly,

megalencephaly, or psychiatric disorders. In a broader

context, the anticipated results will likely contribute to

our knowledge of cortical neuron and/or glia specifica-

tion and may potentially reveal a logic that can generate

neuronal/glia diversity, thus providing a possible foun-

dation for prospective future embryonic stem cell-based

approaches in the context of directed brain repair

[165–168].
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