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1 Organization

Before presenting our proofs we first present detailed description of our model and the results. We then present the
formal notations, then our negative results, and finally the positive results.

2 Model and Summary of Results

2.1 Model

The birth-death Moran process. The Moran process considers a population of n individuals, which undergoes re-
production and death, and each individual is either a resident or a mutant [21]. The residents and the mutants have
constant fitness 1 and r, respectively. The Moran process is a discrete-time stochastic process defined as follows: in
the initial step, a single mutant is introduced into a homogeneous resident population. At each step, an individual is
chosen randomly for reproduction with probability proportional to its fitness; another individual is chosen uniformly
at random for death and is replaced by a new individual of the same type as the reproducing individual. Eventually,
this Markovian process ends when all individuals become of one of the two types. The probability of the event that all
individuals become mutants is called the fixation probability.

The Moran process on graphs. In general, the Moran process takes place on a population structure, which is repre-
sented as a graph. The vertices of the graph represent individuals and edges represent interactions between individuals
[17, 22]. Formally, let Gn = (Vn, En,Wn) be a weighted, directed graph, where Vn = {1, 2, . . . , n} is the vertex set
, En is the Boolean edge matrix, and Wn is a stochastic weight matrix. An edge is a pair of vertices (i, j) which is
indicated by En[i, j] = 1 and denotes that there is an interaction from i to j (whereas we have En[i, j] = 0 if there is
no interaction from i to j). The stochastic weight matrix Wn assigns weights to interactions, i.e., Wn[i, j] is positive
iff En[i, j] = 1, and for all i we have

∑
jWn[i, j] = 1. For a vertex i, we denote by In(i) = {j | En[j, i] = 1} (resp.,

Out(i) = {j | En[i, j] = 1}) the set of vertices that have incoming (resp., outgoing) interaction or edge to (resp.,
from) i. Similarly to the Moran process, at each step an individual is chosen randomly for reproduction with probabil-
ity proportional to its fitness. An edge originating from the reproducing vertex is selected randomly with probability
equal to its weight. The terminal vertex of the chosen edge takes on the type of the vertex at the origin of the edge. In
other words, the stochastic matrixWn is the weight matrix that represents the choice probability of the edges. We only
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consider graphs which are connected, i.e., every pair of vertices is connected by a path. This is a sufficient condition
to ensure that in the long run, the Moran process reaches a homogeneous state (i.e., the population consists entirely of
individuals of a single type). See Figure S1 for an illustration. The well-mixed population is represented by a complete
graph where all edges have equal weight of 1/n.

Classification of graphs. We consider the following classification of graphs:

1. Directed vs undirected graphs. A graph Gn = (Vn, En,Wn) is called undirected if for all 1 ≤ i, j ≤ n we have
En[i, j] = En[j, i]. In other words, there is an edge from i to j iff there is an edge from j to i, which represents
symmetric interaction. If a graph is not undirected, then it is called a directed graph.

2. Self-loop free graphs. A graph Gn = (Vn, En,Wn) is called a self-loop free graph iff for all 1 ≤ i ≤ n we have
En[i, i] = Wn[i, i] = 0.

3. Weighted vs unweighted graphs. A graphGn = (Vn, En,Wn) is called an unweighted graph if for all 1 ≤ i ≤ n
we have

Wn[i, j] =

{
1

|Out(i)| j ∈ Out(i);

0 j 6∈ Out(i)

In other words, in unweighted graphs for every vertex the edges are choosen uniformly at random. Note that
for unweighted graphs the weight matrix is not relevant, and can be specified simply by the graph structure
(Vn, En). In the sequel, we will represent unweighted graphs as Gn = (Vn, En).

4. Bounded degree graphs. The degree of a graph Gn = (Vn, En,Wn), denoted deg(Gn), is max{In(i),Out(i) |
1 ≤ i ≤ n}, i.e., the maximum in-degree or out-degree. For a family of graphs (Gn)n>0 we say that the family
has bounded degree, if there exists a constant c such that the degree of all graphs in the family is at most c, i.e.,
for all n we have deg(Gn) ≤ c.

Initialization of the mutant. The fixation probability is affected by many different factors [23]. In a well-mixed
population, the fixation probability depends on the population size n and the relative fitness advantage r of mutants [18,
22]. For the Moran process on graphs, the fixation probability also depends on the population structure, which breaks
the symmetry and homogeneity of the well-mixed population [16, 15, 7, 17, 5, 8, 4, 24, 11]. Finally, for general
population structures, the fixation probability typically depends on the initial location of the mutant [2, 3], unlike the
well-mixed population where the probability of the mutant fixing is independent of where the mutant arises [18, 22].
There are two standard ways mutants may arise in a population [17, 1]. First, mutants may arise spontaneously and
with equal probability at any vertex of the population structure. In this case we consider that the mutant arise at
any vertex uniformly at random and we call this uniform initialization. Second, mutants may be introduced through
reproduction, and thus arise at a vertex with rate proportional to the incoming edge weights of the vertex. We call this
temperature initialization. In general, uniform and temperature initialization result in different fixation probabilities.

Amplifiers, quadratic amplifiers, and strong amplifiers. Depending on the initialization, a population structure can
distort fitness differences [17, 22, 5], where the well-mixed population serves as a canonical point of comparison.
Intuitively, amplifiers of selection exaggerate variations in fitness by increasing (respectively decreasing) the chance
of fitter (respectively weaker) mutants fixing compared to their chance of fixing in the well-mixed population. In a
well-mixed population of size n, the fixation probability is

1− 1/r

1− (1/r)n
.

Thus, in the limit of large population (i.e., as n → ∞) the fixation probability in a well-mixed population is 1− 1/r.
We focus on two particular classes of amplifiers that are of special interest. A family of graphs (Gn)n>0 is a quadratic
amplifier if in the limit of large population the fixation probability is 1 − 1/r2. Thus, a mutant with a 10% fitness
advantage over the resident has approximately the same chance of fixing in quadratic amplifiers as a mutant with a
21% fitness advantage in the well-mixed population. A family of graphs (Gn)n>0 is an arbitrarily strong amplifier
(hereinafter called simply a strong amplifier) if for any constant r > 1 the fixation probability approaches 1 at the
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Figure S1: Illustration of one step of the Moran process on a weighted graph with self-loops. Residents are depicted
as red vertices, and mutants as blue vertices. As a concrete example, we consider the relative fitness of the mutants is
r = 2. In Figure S1(A), the total fitness of the population is F = 1 + 2 = 3, and hence the probability of selecting
resident (resp., mutant) for reproduction equals 1/3 (resp., 2/3). The mutant reproduces along an edge, and the edge
is chosen randomly proportional to the edge weight. Figure S1(B) shows that different reproduction events might lead
to the same outcome.
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limit of large population sizes, whereas when r < 1, the fixation probability approaches 0. There is a much finer
classification of amplifiers presented in [1]. For other amplifiers (such as cubic, polynomial amplifiers) see [1]. We
focus on quadratic amplifiers which are the most well-known among polynomial amplifiers, and strong amplifiers
which represents the strongest form of amplification.

Existing results. We summarize the main existing results in terms of uniform and temperature initialization.

1. Uniform initialization. First, consider the family of Star graphs, which consist of one central vertex and n−1 leaf
vertices, with each leaf being connected to and from the central vertex. Star graphs are unweighted, undirected,
self-loop free graphs, whose degree is linear in the population size. Under uniform initialization, the family of
Star graphs is a quadratic amplifier [17, 22]. A generalization of Star graphs, called Superstars [17, 22, 12, 6],
are known to be strong amplifiers under uniform initialization [9]. The Superstar family consists of unweighted,
self-loop free, but directed graphs where the degree is linear in the population size. Another family of directed
graphs with strong amplification properties, called Megastars, was recently introduced in [9]. The Megastars are
stronger amplifiers than the Superstars, as the fixation probability on the former is a approximately 1 − n−1/2

(ignoring logarithmic factors), and is asymptotically optimal (again, ignoring logarithmic factors). In contrast,
the fixation probability on the Superstars is approximately 1 − n−1/2. In the limit of n → ∞, both families
approach the fixation probability 1.

2. Temperature initialization. While the family of Star graphs is a quadratic amplifier under uniform initialization,
it is not even an amplifier under temperature initialization [1]. It was shown in [1] that by adding self-loops and
weights to the edges of the Star graph, a graph family, namely the family of Looping Stars, can be constructed,
which is a quadratic amplifier simultaneously under temperature and uniform initialization. Note that in contrast
to Star graphs, the Looping Star graphs are weighted and also have self-loops.

Open questions. Despite several important existing results on amplifiers of selection, several basic questions have
remained open:

1. Question 1. Does there exist a family of self-loop free graphs (weighted or unweighted) that is a quadratic
amplifier under temperature initialization?

2. Question 2. Does there exist a family of unweighted graphs (with or without self-loops) that is a quadratic
amplifier under temperature initialization?

3. Question 3. Does there exist a family of bounded degree self-loop free (weighted or unweighted) graphs that is
a strong amplifier under uniform initialization?

4. Question 4. Does there exist a family of bounded degree unweighted graphs (with or without self-loops) that is
a strong amplifier under uniform initialization?

5. Question 5. Does there exist a family of graphs that is a strong amplifier under temperature initialization? More
generally, does there exist a family of graphs that is a strong amplifier both under temperature and uniform
initialization?

To summarize, the open questions ask for (i) the existence of quadratic amplifiers under temperature initialization
without the use of self-loops, or weights (Questions 1 and 2); (ii) the existence of strong amplifiers under uniform
initialization without the use of self-loops, or weights, and while the degree of the graph is small; and (iii) the existence
of strong amplifiers under temperature initialization. While the answers to Question 1 and Question 2 are positive
under uniform initialization, they have remained open under temperature initialization. Questions 3 and 4 are similar
to 1 and 2, but focus on uniform rather than temperature initialization. The restriction on graphs of bounded degree
is natural: large degree means that some individuals must have a lot of interactions, whereas graphs of bounded
degree represent simple structures. Question 5 was mentioned as an open problem in [1]. Note that under temperature
initialization, even the existence of a cubic amplifier, that achieves fixation probability at least 1− (1/r3) in the limit
of large population, has been open [1].
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2.2 Results

In this work we present several negative as well as positive results that answer the open questions (Questions 1-5)
mentioned above. We first present our negative results.

Negative results. Our main negative results are as follows:

1. Our first result (Theorem 1) shows that for any self-loop free weighted graph Gn = (Vn, En,Wn), for any
r ≥ 1, under temperature initialization the fixation probability is at most 1− 1/(r + 1). The implication of the
above result is that it answers Question 1 in negative.

2. Our second result (Theorem 2) shows that for any unweighted (with or without self-loops) graph Gn =
(Vn, En), for any r ≥ 1, under temperature initialization the fixation probability is at most 1 − 1/(4r + 4).
The implication of the above result is that it answers Question 2 in negative.

3. Our third result (Theorem 3) shows that for any bounded degree self-loop free graph (possibly weighted) Gn =
(Vn, En,Wn), for any r ≥ 1, under uniform initialization the fixation probability is at most 1 − 1/(c + c2r),
where c is the bound on the degree, i.e., deg(Gn) ≤ c. The implication of the above result is that it answers
Question 3 in negative.

4. Our fourth result (Theorem 4) shows that for any unweighted, bounded degree graph (with or without self-loops)
Gn = (Vn, En), for any r ≥ 1, under uniform initialization the fixation probability is at most 1 − 1/(1 + rc),
where c is the bound on the degree, i.e., deg(Gn) ≤ c. The implication of the above result is that it answers
Question 4 in negative.

Significance of the negative results. We now discuss the significance of the above results.

1. The first two negative results show that in order to obtain quadratic amplifiers under temperature initialization,
self-loops and weights are inevitable, complementing the existing results of [1]. More importantly, it shows a
sharp contrast between temperature and uniform initialization: while self-loop free, unweighted graphs (namely,
Star graphs) are quadratic amplifiers under uniform initialization, no such graph families are quadratic amplifiers
under temperature initialization.

2. The third and fourth results show that without using self-loops and weights, bounded degree graphs cannot be
made strong amplifiers even under uniform initialization. See also Remark 1.

Positive result. Our main positive result shows the following:

1. For any constant ε > 0, consider any connected unweighted graph Gn = (Vn, En) of n vertices with self-
loops and which has diameter at most n1−ε. The diameter of a connected graph is the maximum, among all
pairs of vertices, of the length of the shortest path between that pair. We establish (Theorem 5) that there is a
stochastic weight matrixWn such that for any r > 1 the fixation probability both under uniform and temperature
initialization is at least 1 − 1

nε/3
. An immediate consequence of our result is the following: for any family of

connected unweighted graphs (Gn = (Vn, En))n>0 graphs with self-loops such that the diameter of Gn is
at most n1−ε, for a constant ε > 0, one can construct a stochastic weight matrix Wn such that the resulting
family (Gn = (Vn, En,Wn))n>0 of weighted graphs is a strong amplifier simultaneously under uniform and
temperature initialization. Thus we answer Question 5 in affirmative.

Our results are summarized in Table 1.

Significance of the positive result. We highlight some important aspects of the results established in this work.

1. First, note that for the fixation probability of the Moran process on graphs to be well defined, a necessary and
sufficient condition is that the graph is connected. A uniformly chosen random connected unweighted graph
of n vertices has diameter at most O(log n), with high probability. Hence, within the family of connected,
unweighted graphs, the family of graphs of diameter at most O(n1−ε), for any constant 0 < ε < 1, has

5



Temperature Uniform?

Loops No Loops Loops No Loops
Weights X × X ×

No Weights × × × ×

Table 1: Summary of our results on existence of strong amplifiers for different initialization schemes (temperature
initialization or uniform initialization) and graph families (presence or absence of loops and/or weights). The “X”
symbol marks that for given choice of initialization scheme and graph family, almost all graphs admit a weight function
that makes them strong amplifiers. The “×” symbol marks that for given choice of initialization scheme and graph
family, no strong amplifiers exist (under any weight function). The asterisk signifies that the negative results under
uniform initialization only hold for bounded degree graphs.

probability measure 1. Our results establish a strong dichotomy: (a) the negative results state that without self-
loops and/or without weights, no family of graphs can be a quadratic amplifier (even more so a strong amplifier)
even for only temperature initialization; and (b) in contrast, for almost all families of connected graphs with
self-loops, there exist weight functions such that the resulting family of weighted graphs is a strong amplifier
both under temperature and uniform initialization.

2. Second, with the use of self-loops and weights, even simple graph structures, such as Star graphs, Grids, and
well-mixed structures (i.e., complete graphs) can be made strong amplifiers.

3. Third, our positive result is constructive, rather than existential. In other words, we not only show the existence
of strong amplifiers, but present a construction of them.

4. Finally, note that in using weights, edges can be effectively removed by assigning to their weight a small value.
However, edges cannot be created. Thus, for complete graphs, desired sub-graphs can be created easily using
weights. Our positive result states that for almost all graphs, one can use weights to create sub-graphs which are
strong amplifiers both under uniform and temperature initialization.

3 Preliminaries: Formal Notations

3.1 The Moran Process on Weighted Structured Populations

We consider a population of n individuals on a graph Gn = (Vn, En,Wn). Each individual of the population is either
a resident, or a mutant. Mutants are associated with a reproductive rate (or fitness) r, whereas the reproductive rate
of residents is normalized to 1. Typically we consider the case where r > 1, i.e., mutants are advantageous, whereas
when r < 1 we call the mutants disadvantageous. We now introduce formal notations related to the process.

Configuration. A configuration of Gn is a subset S ⊆ V which specifies the vertices of Gn that are occupied by
mutants and thus the remaining vertices V \ S are occupied by residents. For a configuration S, we denote by
F(S) = r · |S|+ n− |S| the total fitness of the population in configuration S, and by |S| the number of mutants in the
configuration.

The Moran process. The birth-detah Moran process on Gn is a discrete-time Markovian random process. We denote
by Xi the random variable for a configuration at time step i, and F(Xi) and |Xi| denote the total fitness and the number
of mutants of the corresponding configuration, respectively. The probability distribution for the next configuration
Xi+1 at time i+ 1 is determined by the following two events in succession:

Birth: One individual is chosen at random to reproduce, with probability proportional to its fitness. That is, the
probability to reproduce is r/F(Xi) for a mutant, and 1/F(Xi) for a resident. Let u be the vertex occupied by
the reproducing individual.
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Death: A neighboring vertex v ∈ Out(u) is chosen randomly with probability Wn[u, v]. The individual occupying v
dies, and the reproducing individual places a copy of its own on v. Hence, if u ∈ Xi, then Xi+1 = Xi ∪ {v},
otherwise Xi+1 = Xi \ {v}.

The above process is known as the birth-death Moran process, where the death event is conditioned on the birth event,
and the dying individual is a neighbor of the reproducing one.

Probability measure. Given a graph Gn and the fitness r, the birth-death Moran process defines a probability measure
on sequences of configurations, which we denote as PGn,r[·]. If the initial configuration is {u}, then we define the
probability measure as PGn,ru [·], and if the graph and fitness r is clear from the context, then we drop the superscript.

Fixation event. The fixation event, denoted E , represents that all vertices are mutants, i.e., Xi = V for some i. In
particular, PGn,ru [E ] denotes the fixation probability in Gn for fitness r of the mutant, when the initial mutant is placed
on vertex u. We will denote this fixation probability as ρ(Gn, r, u) = PGn,ru [E ].

3.2 Initialization and Fixation Probabilities

We will consider three types of initialization, namely, (a) uniform initialization, where the mutant arises at vertices with
uniform probability, (b) temperature initialization, where the mutant arises at vertices proportional to the temperature,
and (c) convex combination of the above two.

Temperature. For a weighted graph Gn = (Vn, En,Wn), the temperature of a vertex u, denoted T(u), is∑
v∈In(u)Wn[v, u], i.e., the sum of the incoming weights. Note that

∑
u∈Vn T(u) = n, and a graph is isothermal

iff T(u) = 1 for all vertices u.

Fixation probabilities. We now define the fixation probabilities under different initialization.

1. Uniform initialization. The fixation probability under uniform initialization is

ρ(Gn, r,U) =
∑
u∈Vn

1

n
· ρ(Gn, r, u).

2. Temperature initialization. The fixation probability under temperature initialization is

ρ(Gn, r,T) =
∑
u∈Vn

T(u)

n
· ρ(Gn, r, u).

3. Convex initialization. In η-convex initialization, where η ∈ [0, 1], the initial mutant arises with probability
(1− η) via uniform initialization, and with probability η via temperature initialization. The fixation probability
is then

ρ(Gn, r, η) = (1− η) · ρ(Gn, r,U) + η · ρ(Gn, r,T).

3.3 Strong Amplifier Graph Families

A family of graphs G is an infinite sequence of weighted graphs G = (Gn)n∈N+ .

• Strong amplifiers. A family of graphs G is a strong uniform amplifier (resp. strong temperature amplifier, strong
convex amplifier) if for every fixed r1 > 1 and r2 < 1 we have that

lim inf
n→∞

ρ(Gn, r1, Z) = 1 and lim sup
n→∞

ρ(Gn, r2, Z) = 0 ;

where Z = U (resp., Z = T, Z = η).

Intuitively, strong amplifiers ensures (a) fixation of advantageous mutants with probability 1 and (b) extinction of dis-
advantageous mutants with probability 1. In other words, strong amplifiers represent the strongest form of amplifiers
possible.
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4 Negative Results

In the current section we present our negative results, which show the nonexistence of strong amplifiers in the absence
of either self-loops or weights. In our proofs, we consider weighted graph Gn = (Vn, En,Wn), and for notational
simplicity we drop the subscripts from vertices, edges and weights, i.e., we write Gn = (V,E,W ). We also consider
that Gn is connected and n ≥ 2. Throughout this section we will use a technical lemma, which we present below.
Given a configuration Xi = {u} with one mutant, let x and y be the probability that in the next configuration the
mutants increase and go extinct, respectively. The following lemma bounds the fixation probability ρ(Gn, r, u) as a
function of x and y.
Lemma 1. Consider a vertex u and the initial configuration X0 = {u} where the initial mutant arises at vertex u. For
any configuration Xi = {u}, let

x = PGn,r[|Xi+1| = 2 | Xi = {u}] and y = PGn,r[|Xi+1| = 0 | Xi = {u}] .

Then the fixation probability from u is at most x/(x+ y), i.e.,

ρ(Gn, r, u) ≤ x

x+ y
= 1− y

x+ y
.

Proof. We upperbound the fixation probability ρ(Gn, r, u) starting from u by the probability that a configuration Xt
is reached with |Xt| = 2. Note that to reach fixation the Moran process must first reach a configuration with at
least two mutants. We now analyze the probability to reach at least two mutants. This is represented by a three-
state one dimensional random walk, where two states are absorbing, one absorbing state represents a configuration
with two mutants, and the other absorbing state represents the extinction of the mutants, and the bias towards the
absorbing state representing two mutants is x/y. See Figure S2 for an illustration. Using the formulas for absorption
probability in one-dimensional three-state Markov chains (see, e.g., [13], [22, Section 6.3]), we have the probability
that a configuration with two mutants is reached is

1− (x/y)−1

1− (x/y)−2
=

1

1 + (x/y)−1
=

x

x+ y
.

Hence it follows that ρ(Gn, r, u) ≤ 1− y
x+y .

0 1 2
y x

1− x− y1 1

Figure S2: Illustration of the Markov chain of Lemma 1.

4.1 Negative Result 1

We now prove our negative result 1.
Theorem 1. For all self-loop free graphs Gn and for every r ≥ 1 we have ρ(Gn, r,T) ≤ 1− 1/(r + 1).

Proof. Since Gn is self-loop free, for all u we have W [u, u] = 0. Hence T(u) =
∑
v∈In(u)\{u}W [v, u]. Consider

the case where the initial mutant is placed on vertex u, i.e, X0 = {u}. For any configuration Xi = {u}, we have the
following:

x = PGn,r[|Xi+1| = 2 | Xi = {u}] =
r

F(Xi)
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y = PGn,r[|Xi+1| = 0 | Xi = {u}] =
1

F(Xi)
·

∑
v∈In(u)\{u}

W [v, u] =
1

F(Xi)
· T(u) .

Thus x/y = r/T(u). Hence by Lemma 1 we have

ρ(Gn, r, u) ≤ 1− T(u)

T(u) + r
.

Summing over all u, we obtain

ρ(Gn, r,T) =
∑
u

T(u)

n
· ρ(Gn, r, u) ≤ 1

n
·
∑
u

T(u) ·
(

1− T(u)

T(u) + r

)
= 1− 1

n
·
∑
u

T(u)2

T(u) + r
; (1)

since
∑
u T(u) = n. Using the Cauchy-Schwarz inequality, we obtain

∑
u

T(u)2

T(u) + r
≥ (

∑
u T(u))

2∑
u(T(u) + r)

=
n2

n+ n · r =
n

r + 1
;

and thus Eq. (1) becomes

ρ(Gn, r,T) ≤ 1− 1

n
· n

r + 1
= 1− 1

r + 1

as desired.

We thus arrive at the following corollary.
Corollary 1. There exists no self-loop free family of graphs which is a strong temperature amplifier.

4.2 Negative Result 2

We now prove our negative result 2.
Theorem 2. For all unweighted graphs Gn and for every r ≥ 1 we have ρ(Gn, r,T) ≤ 1− 1/(4 · (r + 1)).

Proof. For every vertex u ∈ V , let

T′(u) =
∑

v∈In(u)\{u}

1

|Out(v)| .

We establish two inequalities related to T′. Since Gn is unweighted, we have

T(u) =
∑

v∈In(u)

1

|Out(v)| ≥ T′(u) .

For a vertex u, let sl(u) = 1 if u has a self-loop and sl(u) = 0 otherwise. Since Gn is connected, each vertex u has at
least one neighbor other than itself. Thus for every vertex u with sl(u) = 1 we have that |Out(u)| ≥ 2. Hence

∑
u

T′(u) =
∑
u

 ∑
v∈In(u)

1

|Out(v)| − sl(u)
1

|Out(u)|

 =
∑
u

 ∑
v∈In(u)

1

|Out(v)|

− ∑
u:sl(u)=1

(
1

|Out(u)|

)

≥
∑
u

T(u)−
∑
u

1

2
= n− n

2
=
n

2
. (2)
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Similarly to the proof of Theorem 1, the fixation probability given that a mutant is initially placed on vertex u is at
most

ρ(Gn, r, u) ≤ 1− T′(u)

T′(u) + r

Summing over all u, we obtain

ρ(Gn, r,T) =
1

n
·
∑
u

T(u) · ρ(Gn, r, u) ≤ 1

n
·
∑
u

T(u) ·
(

1− T′(u)

T′(u) + r

)
≤ 1− 1

n
·
∑
u

T′(u)2

T′(u) + r
; (3)

since T(u) ≥ T′(u), and
∑
u T(u) = n. Using the Cauchy-Schwarz inequality and Eq. (2), we obtain

∑
u

T′(u)2

T′(u) + r
≥ (

∑
u T
′(u))

2∑
u(T′(u) + r)

≥ (n/2)2

n+ n · r =
n

4 · (r + 1)

and thus Eq. (3) becomes

ρ(Gn, r,T) ≤ 1− 1

n
· n

4 · (r + 1)
= 1− 1

4 · (r + 1)
;

as desired.

We thus arrive at the following corollary.
Corollary 2. There exists no unweighted family of graphs which is a strong temperature amplifier.

4.3 Negative Result 3

We now prove our negative result 3.
Theorem 3. For all self-loop free graphs Gn with c = deg(Gn), and for every r ≥ 1 we have ρ(Gn, r,U) ≤
1− 1/(c+ r · c2).

Proof. Let Gn = (V,E,W ) and γ = 1/c. For a vertex u, denote by Outγ(u) = {v ∈ Out(u) : W [u, v] ≥ γ}.
Observe that since deg(Gn) = c, every vertex u has an outgoing edge of weight at least 1/c, and thus Outγ(u) 6= ∅
for all u ∈ V . Let V h =

⋃
uOut

γ(u). Intuitively, the set V h contains “hot” vertices, since each vertex u ∈ V h is
replaced frequently (with rate at least γ) by at least one neighbor v.

Bound on size of V h. We first obtain a bound on the size of V h. Consider a vertex u ∈ V and a vertex v ∈ Outγ(u)
(i.e., v ∈ V h). For every vertex w ∈ In(v) such that v ∈ Outγ(w) we can count v ∈ V h and to avoide multiple
counting, we consider for each count of v a contribution of 1

|{w∈In(v): v∈Outγ(w)}| , which is at least 1
c due to the degree

bound. Hence we have

|V h| =
∑
u∈V

∑
v∈Outγ(u)

1

|{w ∈ In(v) : v ∈ Outγ(w)}| ≥
∑
u∈V

∑
v∈Outγ(u)

1

c
≥
∑
u∈V

1

c
=
n

c
;

where the last inequality follows from the fact that Outγ(u) 6= ∅ for all u ∈ V . Hence the probability that the initial
mutant is a vertex in V h has probability at least 1/c according to the uniform initialization.

Bound on probability. Consider that the initial mutant is a vertex u ∈ V h. Consider any configuration Xi = {u}, we
have the following:

x = PGn,r[|Xi+1| = 2 | Xi = {u}] =
r

F(Xi)

y = PGn,r[|Xi+1| = 0 | Xi = {u}] =
1

F(Xi)
·
∑

(v,u)∈E
W [v, u] ≥ 1

F(Xi)
·

∑
v:u∈Outγ(v)

γ ≥ 1

F(Xi)
· γ .
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Thus x/y ≤ r/γ. Hence by Lemma 1 we have

ρ(Gn, r, u) ≤ r · c
1 + r · c .

Finally, we have

ρ(Gn, r,U) =
∑
u∈V h

1

n
· ρ(Gn, r, u) +

∑
u∈V \V h

1

n
· ρ(Gn, r, u)

≤1

c
· r · c

1 + r · c +
c− 1

c
· 1 = 1− 1

c
·
(

1− r · c
1 + r · c

)
= 1− 1

c+ r · c2 .

The desired result follows.

We thus arrive at the following corollary.
Corollary 3. There exists no self-loop free, bounded-degree family of graphs which is a strong uniform amplifier.

4.4 Negative Result 4

We now prove our negative result 4.
Theorem 4. For all unweighted graphsGn with c = deg(Gn), and for every r ≥ 1 we have ρ(Gn, r,U) ≤ 1−1/(1+
r · c).

Proof. Let Gn = (V,E,W ) and consider that X0 = u for some u ∈ V . Consider any configuration Xi = {u}, we
have the following:

x = PGn,r[|Xi+1| = 2 | Xi = {u}] ≤ r

F(Xi)
.

y = PGn,r[|Xi+1| = 0 | Xi = {u}] =
1

F(Xi)
·

∑
v∈In(u)\{u}

W [v, u] ≥ 1

F(Xi)
· 1

c
.

Thus x/y ≤ r · c. By Lemma 1 we have
ρ(Gn, r, u) ≤ r · c

1 + r · c .

Finally, we have

ρ(Gn, r,U) =
1

n
·
∑
u

ρ(Gn, r, u) ≤ r · c
1 + r · c = 1− 1

1 + r · c .

The desired result follows.

We thus arrive at the following corollary.
Corollary 4. There exists no unweighted, bounded-degree family of graphs which is a strong uniform amplifier.

Remark 1. Theorems 3 and 4 establish the nonexistence of strong amplification with bounded degree graphs. A
relevant result can be found in [19] , which establishes an upperbound of the fixation probability of mutants under uni-
form initialization on unweighted, undirected graphs. If the bounded degree restriction is relaxed to average bounded
degree, then recent results show that strong amplifiers (called sparse incubators) exist [10].
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5 Positive Result

In the previous section we showed that self-loops and weights are necessary for the existence of strong amplifiers. In
this section we present our positive result, namely that every family of undirected graphs with self-loops and whose
diameter is not “too large” can be made a strong amplifier by using appropriate weight functions. Our result relies on
several novel conceptual steps, therefore the proof is structured in three parts.

1. First, we introduce some formal notation that will help with the exposition of the ideas that follow.

2. Second, we describe an algorithm which takes as input an undirected graph Gn = (Vn, En) of n vertices, and
constructs a weight matrix Wn to obtain the weighted graph Gw

n = (Vn, En,Wn).

3. Lastly, we prove that Gw
n is a strong amplifier both for uniform and temperature initialization.

Before presenting the details we introduce some notations to be used in this section.

5.1 Undirected Graphs and Notation

We first present some additional notation required for the exposition of the results of this section.

Undirected graphs. Our input is an unweighted undirected graphGn = (Vn, En) with self loops. For ease of notation,
we drop the subscript n and refer to the graph G = (V,E) instead. Since G is undirected, for all vertices u we have
In(u) = Out(u), and we denote by Nh(u) = In(u) = Out(u) the set of neighbors of vertex u. Hence, v ∈ Nh(u) iff
u ∈ Nh(v). Moreover, since G has self-loops, we have u ∈ Nh(u). Also we consider that G is connected, i.e., for
every pair of vertices u, v, there is a path from u to v.

Symmetric weight function. So far we have used a stochastic weight matrix W , where for every u we have∑
vW [u, v] = 1. In this section, we will consider a weight function w : E → R≥0, and given a vertex u ∈ V

we denote by w(u) =
∑
v∈Nh(u) w(u, v). Our construction will not only assign weights, but also ensure symmetry.

In other words, we we construct symmetric weights such that for all u, v we have w(u, v) = w(v, u). Given such a
weight function w, the corresponding stochastic weight matrix W is defined as W [u, v] = w(u, v)/w(u) for all pairs
of vertices u, v. Given a unweighted graph G and weight function w, we denote by Gw the corresponding weighted
graph.

Vertex-induced subgraphs. Given a set of vertices X ⊆ V , we denote by Gw[X] = (X,E[X],w[X]) the subgraph of
G induced by X , where E[X] = E ∩ (X ×X), and the weight function w[X] : E[X]→ R≥0 defined as

w[X](u, v) =

{
w(u, u) +

∑
(u,w)∈E\E[X] w(u,w) if u = v

w(u, v) otherwise

In words, the weights on the edges of u to vertices that do not belong to X are added to the self-loop weight of u.
Since the sum of all weights does not change, we have w[X](u) = w(u) for all u. The temperature of u in G[X] is

T[X](u) =
∑

v∈Nh(u)∩X

w[X](v, u)

w[X](v)
.

5.2 Algorithm for Weight Assignment on G

We start with the construction of the weight function w onG. Since we consider arbitrary input graphs, w is constructed
by an algorithm. The time complexity of the algorithm is O(n · log n). Since our focus is on the properties of the
resulting weighted graph, we do not explicitly analyze the time complexity.
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Steps of the construction. Consider a connected graph G with diameter diam(G) ≤ n1−ε, where ε > 0 is a
constant independent of n. We construct a weight function w such that whp an initial mutant arising under uniform
or temperature initialization, eventually fixates on Gw. The weight assignment consists of the following conceptual
steps.

1. Spanning tree construction and partition. First, we construct a spanning tree T xn of G rooted on some arbitrary
vertex x. In words, a spanning tree of an undirected graph is a connected subgraph that is a tree and includes all
of the vertices of the graph. Then we partition the tree into a number of component trees of appropriate sizes.

2. Sink construction. Second, we construct the sink of G, which consists of the vertices xi that are roots of the
component trees, together with all vertices in the paths that connect each xi to the root x of T xn . All vertices that
do not belong to the sink belong to the branches of G.

3. Weight assignment. Finally, we assign weights to the edges of G, such that the following properties hold:
(a) The sink is an isothermal graph, and evolves exponentially faster than the branches.
(b) All edges between vertices in different branches are effectively cut-out (by being assigned weight 0).

In the following we describe the above steps formally.

Spanning tree T xn construction and partition. Given the graph G, we first construct a spanning tree using the
standard breadth-first-search (BFS) algorithm. Let T xn be such a spanning tree of G, rooted at some arbitrary vertex x.
We now construct the partitioning as follows: We choose a constant c = 2ε/3, and pick a set S ⊂ V such that

1. |S| ≤ nc, and
2. the removal of S splits T xn into k trees T x1

n1
, . . . , T xknk , each T xini rooted at vertex xi and of size ni, with the

property that ni ≤ n1−c for all 1 ≤ i ≤ k.

The set S is constructed by a simple bottom-up traversal of T xn in which we keep track of the size size(u) of the subtree
marked by the current vertex u and the vertices already in S. Once size(u) > n1−c, we add u to S and proceed as
before. Since every time we add a vertex u to S we have size(u) > n1−c, it follows that |S| ≤ nc. Additionally,
the subtree rooted in every child of u has size at most n1−c, otherwise that child of u would have been chosen to be
included in S instead of u.

Sink construction: sink S . Given the set of vertices S constructed during the spanning tree partitioning, we construct
the set of vertices S ⊂ V called the sink, as follows:

1. We choose a constant γ = ε/3.
2. For every vertex u ∈ S, we add in S every vertex v that lies in the unique simple path Pu : x u between the

root x of T xn and u (including x and u). Since diam(G) ≤ n1−ε and |S| ≤ nc, we have that |S| ≤ n1−ε+c ≤
n1−γ .

3. We add n1−γ − |S| extra vertices to S, such that in the end, the vertices of S form a connected subtree of T xn
(rooted in x). This is simply done by choosing a vertex u ∈ S and a neighbor v of u with v 6∈ S, and adding v
to S, until S contains n1−γ vertices.

Branches Bj = T
yj
mj . The sink S defines a number of trees Bj = T

yj
mj , where each tree is rooted at a vertex yj 6∈ S

adjacent to S, and has mj vertices. We will refer to these trees as branches(see Figure S3).
Proposition 1. Note that by construction, we have mj ≤ n1−2/3·ε for every j, and |S| = n1−ε/3, and

∑
jmj =

n− n1−ε/3.
Remark 2. By Proposition 1, the size of each branch is much smaller than the size of the sink; but the sum of the sizes
of all branches is much larger than the size of the sink.

Notation. To make the exposition of the ideas clear, we rely on the following notation.

1. Parent par(u) and ancestors anc(u). Given a vertex u 6= x, we denote by par(u) the parent of u in T xn and by
anc(u) the set of ancestors of u.
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Sink S
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...

...
y1

y2 y3

B1 = T y1
m1

B2 = T y2
m2

B3 = T y3
m3

|Bj | << |S|

|S| <<
∑

j |Bj |

Figure S3: Illustration of the Sink S and the branches T yjmj .

2. Children chl(u) and descendants des(u). Given a vertex u that is not a leaf in T xn , we denote by chl(u) the
children of u in T xn that do not belong to the sink S, and by des(u) the set of descendants of u in T xn that do not
belong to the sink S.

Frontier, distance, and branches. We present few notions required for the weight assignment:

1. Frontier F . Given the sink S, the frontier of S is the set of vertices F ⊆ S defined as

F =
⋃

u∈V \S
Nh(u) ∩ S .

In words, F contains all vertices of S that have a neighbor not in S.
2. Distance function λ. For every vertex u, we define its distance λ(u) to be the length of the shortest path
P : u v in T xn to some vertex v ∈ F (e.g., if u ∈ F , we have (i) λ(u) = 0, and (ii) for every v ∈ Nh(u) \ S
we have λ(v) = 1).

3. Values µ and ν. For every vertex u ∈ S , we define deg(u) = |(Nh(u) ∩ S) \ {u}| i.e., deg(u) is the number of
neighbors of u that belong to the sink (excluding u itself). Let

µ = max
u∈F
|chl(u)| and ν = max

u∈S
deg(u) .

Weight assignment. We are now ready to define the weight function w : E → R≥0.

1. For every edge (u, v) such that u 6= v and u, v 6∈ S and u and v are not neighbors in T xn , we assign w(u, v) = 0.
2. For every vertex u ∈ F we assign w(u, u) = (µ− |chl(u)|) · 2−n + ν − deg(u).
3. For every vertex u ∈ S \ F we assign w(u, u) = µ · 2−n + ν − deg(u).
4. For every vertex u 6∈ S we assign w(u, u) = n−2·λ(u).
5. For every edge (u, v) ∈ E such that u 6= v and u, v ∈ S we assign w(u, v) = 1.
6. For every remaining edge (u, v) ∈ E such that u = par(v) we assign w(u, v) = 2−n · n−4·λ(u).

Figure S4 illustrates the assignment of the symmetric weights w on the Star graph.

The following lemma is straightforward from the weight assignment, and captures that every vertex in the sink has the
same weight.
Lemma 2. For every vertex u ∈ S we have w(u) =

∑
v∈Nh(u) w(u, v) = µ · 2−n + ν.
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w = 3 · 2−6 + 1

2−6

w

Figure S4: Illustration of the weight assignment on a Star graph of 6 vertices. The spanning tree is rooted on the
central vertex of the Star, and the sink consists of the central vertex together with two leaf vertices.

Proof. Consider any vertex u ∈ S \ F . We have

w(u) =w(u, u) +
∑

v∈Nh(u)\{u}
w(u, v)

=µ · 2−n + ν − deg(u) +
∑

v∈Nh(u)\{u}
1

=µ · 2−n + ν − deg(u) + deg(u)

=µ · 2−n + ν (4)

Similarly, consider any u ∈ F . We have

w(u) =w(u, u) +
∑

v∈(Nh(u)∩S)\{u}
w(u, v) +

∑
v∈chl(u)

w(u, v)

=(µ− |chl(u)|) · 2−n + ν − deg(u) +
∑

v∈(Nh(u)∩S)\{u}
1 +

∑
v∈chl(u)

2−n

=µ · 2−n − |chl(u)| · 2−n + ν − deg(u) + deg(u) + |chl(u)| · 2−n

=µ · 2−n + ν (5)

5.3 Analysis of Fixation Probability

In this section we present detailed analysis of the fixation probability and we start with the outline of the proof.

5.3.1 Outline of the proof

Recall Figure 1 of the main article (and also an illustration VIDEO), which illustrates the four stages to fixation, which
we outline here.

(A) In stage 1 we consider the event E1 that a mutant arises in one of the branches (i.e., outside the sink S). We
show that event E1 happens whp.

(B) In stage 2 we consider the event E2 that a mutant occupies a vertex v of the branches which is a neighbor to the
sink. We show that given event E1 the event E2 happens whp.
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(C) In stage 3 we consider the event E3 that the mutants fixate in the sink. We show that given E2 the event E3
happens whp.

(D) In stage 4 we consider the event E4 that the mutants fixate in all the branches. We show that given E3 the event
E4 happens whp.

Crux of the proof. Before the details of the proof we present the main crux of the proof. We say a vertex v 6∈ S hits
the sink when it places an offspring to the sink. First, our construction ensures that the sink is isothermal. Second,
our construction ensures that a mutant appearing in a branch reaches to a vertex adjacent to the sink, and hits the sink
with a mutant polynomially many times. Third, our construction also ensures that the sink reaches a homogeneous
configuration whp between any two hits to the sink. We now describe two crucial events.

• Consider that a mutant is adjacent to a sink of residents. Every time a mutant is introduced in the sink it
has a constant probability (around 1 − 1/r for large population) of fixation since the sink is isothermal. The
polynomially many hits of the sink by mutants ensure that the sink becomes mutants whp.

• In contrast consider that a resident is adjacent to a sink. Every time a resident is introduced in the sink it has
exponentially small probability (around (r − 1)/(r|S| − 1)) of fixation.

Hence, given a sink of mutants, the probability (say, η1 = 2−Ω(|S|)) that the residents win over the sink is exponentially
small. Given a sink of mutant, the probability that the sink wins over a branch Bj is also exponentially small (say,
η2 = 2−O(|Bj |)). More importantly the ratio of η1/η2 is also exponentially small (by Proposition 1 regarding the sizes
of the sink and branches). Using this property, se show that fixation the mutants reach fixation whp. We now analyze
each stage in detail.

5.3.2 Analysis of Stage 1: Event E1

Lemma 3. Consider the event E1 that the initial mutant is placed at a vertex outside the sink. Formally, the event E1
is that X0 ∩ S = ∅. The event E1 happens with probability at least 1−O(n−ε/3), i.e., the event E1 happens whp.

Proof. We examine the uniform and temperature initialization schemes separately.

• (Uniform initialization): The initial mutant is placed on a vertex u 6∈ S with probability∑
u 6∈S

1

n
=
|V \ S|
n

=
n− n1−γ

n
= 1− n1−γ

n
= 1−O(n−ε/3) ;

since γ = ε/3.
• (Temperature initialization): For any vertex u 6∈ S, we have∑

v∈Nh(u)\{u}
w(u, v) ≤

∑
v∈Nh(u)\{u}

2−n = 2−Ω(n) ;

whereas since diam(G) ≤ n1−ε we have

w(u, u) = n−2·λ(u) ≥ n−2·diam(G) ≥ n−O(n1−ε) .

Note that
n−O(n1−ε) = 2−O(n1−ε·logn) >> 2−O(n) .

Let A = w(u, u) and B =
∑
v∈Nh(u)\{u} w(u, v), and we have

w(u, u)

w(u)
=

A

A+B
= 1− B

A+B
= 1− 2−Ω(n)

n−O(n1−ε) + 2−Ω(n)
= 1− 2−Ω(n)

n−O(n1−ε)
= 1− 2−Ω(n) .
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Then the desired event happens with probability at least∑
u6∈S

PT[X0 = {u}] =
∑
u6∈S

T(u)

n
=

1

n
·
∑
u 6∈S

∑
v∈Nh(u)

w(u, v)

w(v)
≥ 1

n
·
∑
u 6∈S

w(u, u)

w(u)
≥ 1

n
·
∑
u6∈S

(
1− 2−Ω(n)

)
=
|V \ S|
n

·
(

1− 2−Ω(n)
)

=
n− n1−γ

n
·
(

1− 2−Ω(n)
)

= (1− n−γ) ·
(

1− 2−Ω(n)
)

=1−O(n−ε/3)

since γ = ε/3. The desired result follows.

5.3.3 Analysis of Stage 2: Event E2

The following lemma states that if a mutant is placed on a vertexw outside the sink, then whp the mutant will propagate
to the ancestor v of w at distance λ(v) = 1 from the sink (i.e., the parent of v belongs to the sink). This is a direct
consequence of the weight assignment, which guarantees that for every vertex u 6∈ S, the individual occupying u will
place an offspring on the parent of u before some neighbor of u places an offspring on u, and this event happens with
probability at least 1−O(n−1).
Lemma 4. Consider that at some time j the configuration of the Moran process on Gw is Xj = {w} with w 6∈ S. Let
v ∈ anc(w) with λ(v) = 1, i.e., v is the ancestor of w and v is adjacent to the sink. Then a subsequent configuration
Xt with v ∈ Xt is reached with probability 1−O(n−1), i.e., given event E1, the event E2 happens whp.

Proof. Let t be the first time such that v ∈ Xt (possibly t =∞, denoting that v never becomes mutant). Let si be the
random variable such that

si =

{
|Xi ∩ anc(w)| if i < t
|anc(w)| if i ≥ t

In words, si counts the number of mutant ancestors of u until time t. Given the current configuration Xi with 0 < si <
|anc(w)|, let u = arg minz∈Xi∩anc(w) λ(z). The probability that si+1 = si+1 is lowerbounded by the probability that
u reproduces and places an offspring on par(u). Similarly, the probability that si+1 = si − 1 is upperbounded by the
probability that (i) par(u) reproduces and places an offspring on u, plus (ii) the probability that some z ∈ des(u) \ Xi
reproduces and places an offspring on par(z).

We now proceed to compute the above probabilities. Consider any configuration Xi, and and let z be any child of u
and z′ any child of z. The above probabilities crucially depend on the following quantities:

w(u, par(u))

w(u)
;

w(u, par(u))

w(par(u))
;

∑
zi∈des(u)

w(par(zi), zi)

w(zi)
.

Recall that

• w(u, par(u)) = 2−n · n−4·λ(par(u))

• w(u, x) = 2−n · n−4·λ(u)

• w(z, z′) = 2−n · n−4·λ(z)

• w(par(u), par(par(u))) = 2−n · n−4·λ(par(par(u)))

• w(u, u) = n−2·λ(u)

• w(par(u), par(u)) = n−2·λ(par(u))

• w(z, z) = n−2·λ(z)

Thus, we have
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w(u, par(u))

w(u)
=

w(u, par(u))

w(u, u) + w(u, par(u)) + |chl(u)| · w(u, x)
=

2−n · n−4·(λ(u)−1)

O(n−2·λ(u))

=Ω(2−n · n−2·(λ(u)−2)) (6)

w(u, par(u))

w(par(u))
=

w(u, par(u))

w(par(u), par(u)) + w(par(u), par(par(u))) + |chl(par(u))| · w(u, par(u))

=
2−n · n−4·(λ(u)−1)

Ω(n−2·(λ(u)−1))
= O(2−n · n−2·(λ(u)−1)) (7)

∑
zi∈des(u)

w(par(zi), zi)

w(zi)
=|des(u)| · w(u, z)

w(z, z) + w(u, z) + |chl(z)| · w(z, z′)

≤|des(u)| · 2−n · n−4·λ(u)

Ω(n−2·(λ(u)+1))
= n ·O(2−n · n−2·(λ(u)−1))

=O(2−n · n−2·λ(u)+3) (8)

Thus, using Eq. (6), Eq. (7) and Eq. (8), we obtain

P[si+1 = si + 1]

P[si+1 = si − 1]
≥

r
F(X′) ·

w(u,par(u))
w(u)

1
F(X′) ·

(
w(u,par(u))
w(par(u)) +

∑
zi∈des(u)

w(par(zi),zi)
w(zi)

)
=

Ω(2−n · n−2·(λ(u)−2))

O(2−n · n−2·(λ(u)−1)) +O(2−n · n−2·λ(u)+3)
= Ω(n) (9)

Let α(n) = 1 − O(n−1) and consider a one-dimensional random walk P : s′0, s
′
1, . . . on states 0 ≤ i ≤ |anc(w)|,

with transition probabilities

P[s′i+1 = `|s′i] =

 α(n) if 0 < s′i < |S| and ` = s′i + 1
1− α(n) if 0 < s′i < |S| and ` = s′i − 1
0 otherwise

(10)

Using Eq. (9), we have that

P[s′i+1 = s′i + 1]

P[s′i+1 = s′i − 1]
=

α(n)

1− α(n)
= Ω(n) ≤ P[si+1 = si + 1]

P[si+1 = si − 1]
.

Hence the probability that s∞ = |anc(w)| is lowerbounded by the probability that s′∞ = |anc(w)|. The latter event
occurs with probability 1−O(n−1) (see e.g., [13], [22, Section 6.3]), as desired.
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5.3.4 Analysis of Stage 3: Event E3

We now focus on the evolution on the sink S, and establish several useful results.

1. First, we show that Gw[S] is isothermal (Lemma 5)
2. Second, the above result implies that the sink behaves as a well-mixed population. Considering advantageous

mutants (r > 1) this implies the following (Lemma 6).
(a) Every time a mutant hits a sink of only residents, then the mutant has at least a constant probability of

fixating in the sink.
(b) In contrast, every time a resident hits a sink of only mutants, then the resident has exponentially small

probability of fixating in the sink.
3. Third, we show that an initial mutant adjacent to the sink, hits the sink a polynomial number of times (Lemma 7).
4. Finally, we show that an initial mutant adjacent to the sink ensures fixating in the sink whp (Lemma 8), i.e., we

show given event E2 the event E3 happens whp.

We start with observing that the sink is isothermal, which follows by a direct application of the definition of isothermal
(sub)graphs [17].
Lemma 5. The graph Gw[S] is isothermal.

Proof. Consider any vertex u ∈ S \ F . We have

T[X](u) =
∑

v∈Nh(u)∩S

w[S](v, u)

w[S](v)
=

w[S](u, u)

w[S](u)
+

∑
v∈(Nh(u)\{u})∩S

w[S](v, u)

w[S](v)

=
w(u, u)

w(u)
+

∑
v∈(Nh(u)\{u})∩S

w(v, u)

w(v)

=
1

µ · 2−n + ν
·

w(u, u) +
∑

v∈(Nh(u)\{u})∩S
1


=

1

µ · 2−n + ν
· (µ · 2−n + ν − deg(u) + deg(u))

=1

since by Lemma 2 we have w(u) = µ · 2−n + ν. Similarly, consider any u ∈ F . We have

T[X](u) =
∑

v∈Nh(u)∩S

w[S](v, u)

w[S](v)
=

w[S](u, u)

w[S](u)
+

∑
v∈(Nh(u)\{u})∩S

w[S](v, u)

w[S](v)

=
w(u, u) +

∑
v∈Nh(u)\S w(u, v)

w(u)
+

∑
v∈(Nh(u)\{u})∩S

w(v, u)

w(v)

=
1

µ · 2−n + ν
·

w(u, u) +
∑

v∈Nh(u)\S
2−n +

∑
v∈(Nh(u)\{u})∩S

1


=

1

µ · 2−n + ν
· ((µ− |chl(u)|) · 2−n + ν − deg(u) + |chl(u)| · 2−n + deg(u))

=1

Thus for all u ∈ S we have T[X](u) = 1, as desired.

Lemma 6. Consider that at some time j the configuration of the Moran process on Gw is Xj .
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1. If with |S ∩ Xj | ≥ 1, i.e., at least one mutant in the sink, then a subsequent configuration Xt with S ⊆ Xt will
be reached with probability at least 1− r−1 − 2−Ω(n) (mutants fixate in the sink with constant probability).

2. If |S \ Xj | = 1, i.e., exactly one resident in the sink, then a subsequent configuration Xt with S ⊆ Xt will be
reached with probability at least 1 − 2−Ω(m), where m = n1−γ (mutants fixate in the sink with probability
exponentially close to 1).

Proof. Given a configuration Xi, denote by si = |S ∩ Xi|. Let Xi be any configuration of the Moran process with
0 < si < |Xi|, u be the random variable that indicates the vertex that is chosen for reproduction in Xi, and Xi+1 be the
random variable that indicates the configuration of the population in the next step. By Lemma 5, the subgraph Gw[S]
induced by the sink S is isothermal, thus

P[si+1 = si − 1|u ∈ S]

P[si+1 = si + 1|u ∈ S]
=

1

r
. (11)

Additionally,

P[si+1 = si − 1|u 6∈ S] ≤
∑
v∈F

u∈chl(v)

(
1

F(Xi)
· w(u, v)

w(u)

)
≤ n−1 ·

∑
v∈F

u∈chl(v)

2−n

n−2

≤n−1 · n · 2−n · n2 = O(n2 · 2−n) (12)

since 1/F(Xi) ≤ n−1, w(u, v) = 2−n and w(u, u) = n−2. Moreover, as S is heterogeneous, it contains at least a
mutant vertex v and a resident vertex w ∈ Nh(v), and v reproduces with probability r/F(Xi) ≥ n−1, and replaces the
individual v ∈ S with probability at least 1/w(v). Hence we have

P[si+1 = si + 1|u ∈ S] · P[u ∈ S] ≥ 1

w(u)
· r

F(Xi)
≥ 1

µ · 2−n + ν
· n−1 ≥ 1

n · 2−n + n
· n−1 = Ω(n−2) (13)

since by Lemma 2 we have w(v) = µ · 2−n + ν. Using Eq. (11), Eq. (12) and Eq. (13), we have

P[si+1 = si − 1]

P[si+1 = si + 1]
=
P[si+1 = si − 1|u ∈ S] · P[u ∈ S] + P[si+1 = si − 1|u 6∈ S] · P[u 6∈ S]

P[si+1 = si + 1|u ∈ S] · P[u ∈ S] + P[si+1 = si + 1|u 6∈ S] · P[u 6∈ S]

≤P[si+1 = si − 1|u ∈ S] · P[u ∈ S] + P[si+1 = si − 1|u 6∈ S] · P[u 6∈ S]

P[si+1 = si + 1|u ∈ S] · P[u ∈ S]

≤P[si+1 = si − 1|u ∈ S]

P[si+1 = si + 1|u ∈ S]
+O(n2) · P[si+1 = si − 1|u 6∈ S] =

1

r
+ 2−Ω(n) (14)

Hence, sj , sj+1, . . . performs a one-dimensional random walk on the states 0 ≤ i ≤ |S|, with the ratio of transition
probabilities given by Eq. (14). Let α(n) = r/(r + 1 + 2−Ω(n)) and consider the one-dimensional random walk
ρ : s′j , s

′
j+1, . . . on states 0 ≤ i ≤ |S|, with transition probabilities

P[s′i+1 = `|s′i] =

 α(n) if 0 < s′i < |S| and ` = s′i + 1
1− α(n) if 0 < s′i < |S| and ` = s′i − 1
0 otherwise

(15)

Using Eq. (14) we have that

P[s′i+1 = s′i − 1]

P[s′i+1 = s′i + 1]
=

1− α(n)

α(n)
=

1

r
+ 2−Ω(n) ≥ P[si+1 = si − 1]

P[si+1 = si + 1]
.
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Let ρ1 (resp. ρ2) be the probability that the Moran process starting on configuration Xj with |S ∩ Xj | ≥ 1 (resp.
|S \ Xj | = 1) will reach a configuration Xt with S ⊆ Xt. We have that ρ1 (resp. ρ2) is lowerbounded by the
probability that ρ gets absorbed in s′∞ = |S| when it starts from s′j = 1 (resp. s′j = |S| − 1). Let

β =
P[s′i+1 = s′i − 1]

P[s′i+1 = s′i + 1]
=

1

r
+ 2−Ω(n) < 1 ;

and we have (see e.g., [13], [22, Section 6.3])

ρ1 ≥
1− β

1− β|S| ≥ 1− β = 1− 1

r
− 2−Ω(n) ;

and

ρ2 ≥ 1− 1− β−1

1− β−|S| ≥ 1− β−1

β−|S|
= 1− β|S|−1 = 1−

(
1

r
+ 2−Ω(n)

)n1−γ−1

= 1− 2−Ω(n1−γ) ;

since β−|S| > β−1 and thus (β−1 − 1)/(β−|S| − 1) ≤ β−1/β−|S|. The desired result follows.

Lemma 7. Consider that at some time j the configuration of the Moran process on Gw is Xj such that v ∈ Xj for
some v 6∈ S that is adjacent to the sink (λ(v) = 1). Then a mutant hits the sink at least n1/3 times with probability
1−O(n−1/3).

Proof. For any configuration Xi occurring after Xj , let

1. A be the event that v places an offspring on par(v) in Xi+1, and
2. B be the event that a neighbor of v places an offspring on v in Xi+1,

and let ρA and ρB be the corresponding probabilities. Using Eq. (6), we have

ρA =
r

F(Xi)
· w(v, par(v))

w(v)
= Ω

(
n · 2−n

)
; (16)

and using Eq. (7) and Eq. (8)

ρB ≤
r

F(Xi)
·

w(v, par(v))

w(par(u))
+

∑
z∈chl(v)

w(v, z)

w(z)

 ≤ r

n
·
(
2−n +O

(
n · 2−n

))
= 2−Ω(n) . (17)

since par(u) ∈ S and by Lemma 2 we have w(par(u)) ≥ 1. Let X be the random variable that counts the time
required until event A occurs n1/3 times. Then, for all ` ∈ N we have P[X ≥ `] ≤ P[X ′ ≥ `] where X ′ is a random
variable that follows the negative binomial distribution on n1/3 failures with success rate ρX′ = 1−O(n · 2−n) ≤ ρA
(using Eq. (16)). The expected value of X ′ is

E[X ′] =
ρX′ · n1/3

1− ρX′
= O

(
1− n · 2−n
n2/3 · 2−n

)
.

Let α = 2n · n−1/3, and by Markov’s inequality, we have

P[X ′ ≥ α] ≤ E[X ′]
α

=
O
(

1−n·2−n
n2/3·2−n

)
2n · n−1/3

= O(n−1/3) .

Similarly, let Y be the random variable that counts the time required until event B occurs. Then, for all ` ∈ N, we
have P[Y ≤ `] ≤ P[Y ′ ≤ `], where Y ′ is a geometrically distributed variable with rate ρY ′ = 2−Ω(n) ≥ ρB (using
Eq. (17)). Then

P[Y ′ ≤ α] = 1− (1− ρY ′)α = O(n−1/3) ;
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and thus
P[Y ≤ X] ≤ P[Y ≤ α] + P[X ≥ α] ≤ P[Y ′ ≤ α] + P[X ′ ≥ α] = O(n−1/3) . (18)

Hence, with probability at least 1−O(n1/3), the vertex v places an offspring on par(v) at least n1/3 times before it is
replaced by a neighbor. The desired result follows.

Lemma 8. Consider that at some time j the configuration of the Moran process on Gw is Xj with v ∈ Xj for some
v 6∈ S that is adjacent to the sink (λ(v) = 1). Then a subsequent configuration Xt with S ⊆ Xt (mutants fixating in
the sink) is reached with probability 1−O(n−1/3), i.e., given event E2, the event E3 happens whp.

Proof. By Lemma 7, we have that with probability at least Ω(n1/3), the vertex v places an offspring on par(v) at
least n1/3 times before it is replaced by a neighbor. Let ti be the time that v places its i-th offspring on par(v), with
1 ≤ i ≤ n1/3. Let Ai be the event that a configuration Xt is reached, where t ≥ ti and such that S ⊆ Xt. By
Lemma 6, we have P[Ai] ≥ 1 − r−1 − 2−Ω(n). Moreover, with probability 1 − 2−Ω(n), at each time ti the sink is in
a homogeneous state, i.e., either S ⊆ Xti or S ∩ Xti = ∅. The proof is similar to that of Lemma 9, and is based on
the fact that every edge which has one end on the sink and the other outside the sink has exponentially small weight
(i.e., 2−n), whereas the sinkGw[S] resolves to a homogeneous state in polynomial time with probability exponentially
close to 1. It follows that with probability at least p = 1− 2−Ω(n), the events Āi are pairwise independent, and thus

P[A1∩A2 · · ·∩An1/3 ] ≤ p ·
n1/3∏
i=1

P[Ai]+(1−p) ≤
n1/3∏
i=1

(1−P[Ai])+2−Ω(n) ≤
(
r−1 + 2−Ω(n)

)n1/3

+2−Ω(n) . (19)

Finally, starting from X0 = {u}, the probability that a configuration Xt is reached such that S ⊆ Xt is lowerbounded
by the probability of the events that

1. the ancestor v of u is eventually occupied by a mutant, and
2. v places at least n1/3 offsprings to par(v) ∈ S before a neighbor of v places an offspring on v, and
3. the event A1 ∩A2 · · · ∩An1/3 does not occur.

Combining Lemma 4, Eq. (18) and Eq. (19), we obtain that the goal configuration Xt is reached with probability at
least

(1−O(n−1)) · (1−O(n−1/3)) ·
(
1− P[A1 ∩A2 · · · ∩An1/3 ]

)
= 1−O(n−1/3) ;

as desired.

5.3.5 Analysis of Stage 4: Event E4

In this section we present the last stage to fixation. This is established in four intermediate steps.

1. First, we consider the event of some vertex in the sink placing an offspring in one of the branches, while the
sink is heterogeneous. We show that this event has exponentially small probability of occurring (Lemma 9).

2. We introduce the modified Moran process which favors residents when certain events occur, more than the
conventional Moran process. This modification underapproximates the fixation probability of mutants, but
simplifies the analysis.

3. We define a set of simple Markov chainsMj and show that the fixation of mutants on the j-th branch T yjmj is
captured by the absorption probability to a specific state of Mj (Lemma 11). This absorption probability is
computed in Lemma 10.

4. Finally we combine the above steps in Lemma 12 to show that if the sink is occupied by mutants (i.e., given that
event E3 holds), the mutants eventually fixate in the graph (i.e., event E4 holds) whp.

We start with an intermediate lemma, which states that while the sink is heterogeneous, the probability that a node
from the sink places an offspring to one of the branches is exponentially small.
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Lemma 9. For any configuration Xj with |S \ Xj | = 1, let t1 ≥ j be the first time such that S ⊆ Xt1 (possibly
t1 = ∞), and t2 ≥ j the first time in which a vertex u ∈ F places an offspring on some vertex v ∈ Nh(u) \ S . We
have that P[t2 < t1] = 2−Ω(m), where m = n1−γ .

Proof. Given a configuration Xi, denote by si = |S ∩ Xi|. Recall from the proof of Lemma 8 that sj , sj+1, . . .
performs a one-dimensional random walk on the states 0 ≤ i ≤ |S|, with the ratio of transition probabilities given by
Eq. (14). Observe that in each si, the random walk changes state with probability at least n−2, which is a lowerbound
on the probability that the walk progresses to si+1 = si + 1 (i.e., the mutants increase by one). Consider that the
walk starts from sj , and let Ha be the expected absorption time, Hf the expected fixation time on state |S|, and
He the expected extinction time on state 0 of the random walk, respectively. The unlooped variant of the random
walk ρ = si, si+1, . . . has expected absorption time O(n) [14], hence the random walk sj , sj+1, . . . has expected
absorption time

Ha ≤ n2 ·O(n) = O(n3) ;

and since by Lemma 6 for large enough n we have P[s∞ = |S|] ≥ P[s∞ = 0], we have

Ha = P[s∞ = |S|] ·Hf + P[s∞ = 0] ·He =⇒ Hf ≤ 2 ·Ha = O(n3) .

Let t′1 be the random variable defined as t′1 = t1 − j, and we have

E[t′1|t′1 <∞] = Hf = O(n3) ;

i.e., given that a configuration Xt1 with S ⊆ Xt1 is reached (thus t1 <∞ and t′1 <∞), the expected time we have to
wait after time j for this event to happen equals the expected fixation time Hf of the random walk sj , sj+1, . . . . Let
α = 2

n
2 , and by Markov’s inequality, we have

P[t′1 > α|t′1 <∞] ≤ E[t′1|t′1 <∞]

α
= n3 · 2−n2 . (20)

Consider any configuration Xi. The probability p that a vertex u ∈ F places an offspring on some vertex v ∈ Nh(u)\S
is at most

p ≤ r

F(Xi)
·
∑
u∈F

∑
v∈Nh(u)\S

w(u, v)

w(u)
≤ r · n−1 · n1−γ · 2−n ≤ r · n2 · 2−n .

since w(u, v) = 2−n and by Lemma 2 we have w(u) > 1. Let t′2 = t2 − i, and we have P[t′2 ≤ α] ≤ P[X ≤ α],
where X is a geometrically distributed random variable with rate ρ = r · n2 · 2−n. Since P[t2 < t1] = P[t′2 < t′1], we
have

P[t2 < t1] =P[t′2 < t′1|t′1 <∞] · P[t′1 <∞] + P[t′2 < t′1|t′1 =∞] · P[t′1 =∞]

≤P[t′2 < t′1|t′1 <∞] + P[t′1 =∞]

≤P[t′2 < t′1|t1 <∞] + 2−Ω(n1−γ)

≤P[t′2 ≤ α|t′1 <∞] + P[t′1 > α|t′1 <∞] + 2−Ω(n1−γ)

≤P[t′2 ≤ α|t′1 <∞] + n3 · 2−n2 + 2−Ω(n1−γ)

≤P[X ≤ α] + 2−Ω(n1−γ)

≤1− (1− ρ)α + 2−Ω(n1−γ)

≤1− (1− r · n2 · 2−n)2n/2 + 2−Ω(n1−γ)

=2−Ω(n1−γ)

The second inequality holds since by Lemma 6 we have P[t′1 = ∞] = 2−Ω(n1−γ). The fourth inequality comes from
Eq. (20).
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To simplify the analysis, we replace the Moran process with a modified Moran process, which favors the residents
(hence it is conservative) and allows for rigorous derivation of the fixation probability of the mutants.

The modified Moran process. Consider the Moran process on Gw, and assume there exists a first time t∗ < ∞
when a configuration Xt∗ is reached such that S ⊆ Xt∗ . We underapproximate the fixation probability of the Moran
process starting from Xt∗ by the fixation probability of the modified Moran process Xt∗ ,Xt∗+1, . . . , which behaves as
follows. Recall that for every vertex yj with λ(yj) = 1, we denote by T yjmj the subtree of T xn rooted at yj , which has
mj vertices. Let Vi be the set of vertices of T yimi , and note that by construction mi ≤ n1−c, while there are at most n
such trees. The modified Moran process is identical to the Moran process, except for the following modifications.

1. Initially, Xt∗ = S.
2. At any configuration Xi with S ∈ Xi, for all trees T yjmj , if a resident vertex u ∈ Vj places an offspring on some

vertex v with u 6= v, then Xi+1 = Xi \ Vj and |S \ Xi+1| = 1 i.e., all vertices of T yjmj become residents and the
sink is invaded by a single resident.

3. If the modified process reaches a configuration Xi with Xi ∩ S = ∅, the process instead transitions to configu-
ration Xi = ∅, i.e., if the sink becomes resident, then all mutants go extinct.

4. At any configuration Xi with S\Xi 6= ∅, if some vertex u ∈ F places an offspring on some vertex v ∈ Nh(u)\S,
then the process instead transitions to configuration Xi = ∅, i.e., if while the sink is heterogeneous, an offspring
is placed from the sink to a vertex outside the sink, the mutants go extinct.

Note that any time a case of Item 1-Item 4 applies, the Moran and modified Moran processes transition to configura-
tions Xi and Xi respectively, with Xi ⊆ Xi. Thus, the fixation probability of the Moran process on Gw

n is underapprox-
imated by the fixation probability of the modified Moran process (i.e., we have P[X∞ = V |t∗ <∞] ≥ P[X∞ = V ]).
It is easy to see that Lemma 6 and Lemma 9 directly apply to the modified Moran process.

The Markov chainMj . Recall that T yjmj refers to the j-th branch of the weighted graph Gw, rooted at the vertex yj
and consisting of mj vertices. We associate T yjmj with a Markov chain Mj of mj + 3 vertices, which captures the
number of mutants in T yjmj , and whether the state of the sink. Intuitively, a state 0 ≤ i ≤ mj of Mj represents a
configuration where the sink is homogeneous and consists only of mutants, and there are i mutants in the branch T yjmj .
The stateH represents a configuration where the sink is heterogeneous, whereas the stateD represents a configuration
where the mutants have gone extinct in the sink, and thus the modified Moran process has terminated. We first present
formally the Markov chainMj , and later (in Lemma 11) we coupleMj with the modified Moran process.

Consider any tree T yjmj , and let α = 1/(n3 + 1). We define the Markov chainMj = (Xj , δj) as follows:

1. The set of states is Xj = {H,D} ∪ {0, 1, . . . ,mj}
2. The transition probability matrix δj : Xj ×Xj → [0, 1] is defined as follows:

(a) δj [i, i+ 1] = α for 0 ≤ i < mj ,
(b) δj [i, 0] = 1− α for 1 < i < mj ,
(c) δj [0,H] = 1− α,
(d) δj [H, 0] = 1− 2−Ω(m), and δj [H,D] = 2−Ω(m), where m = n1−γ ,
(e) δj [mj ,mj ] = δj [D,D] = 1,
(f) δj [x, y] = 0 for all other pairs x, y ∈ Xj

See Figure S5 for an illustration. The Markov chain Mj has two absorbing states, D and mj . We denote by ρj
the probability that a random walk onMj starting from state 0 will be absorbed in state mj . The following lemma
lowerbounds ρj , and comes from a straightforward analysis ofMj .
Lemma 10. For all Markov chainsMj , we have ρj = 1− 2−Ω(m), where m = n1−γ .

Proof. Given a state a ∈ Xj , we denote by xa the probability that a random walk starting from state awill be absorbed
in state mj . Then ρj = x0, and we have the following linear system
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D H 0 1 2 . . . nj

2−Ω(m)

1− 2−Ω(m)

1− α

α

1− α

α

1− α
1 1

Figure S5: The Markov chainMj given a tree T xjnj .

xH =δ[H, 0] · x0 =
(

1− 2Ω(n1−γ)
)
· x0

xi =δ[i,H] · xH + δ[i, i+ 1] · xi+1 = (1− α) · xH + α · xi+1 for 0 ≤ i < mj

xmj =1

and thus

xH =
(

1− 2−Ω(n1−γ)
)
·
(
xH · (1− α) ·

mj∑
0=1

ai + amj

)
=⇒ xH =

(
1− 2−Ω(n1−γ)

)
·
(
xH ·

(
1− amj−1

)
+ amj

)
=⇒ xH

(
1−

(
1− 2−Ω(n1−γ)

)
·
(
1− amj−1

))
= amj (21)

Note that
1−

(
1− 2−Ω(n1−γ)

)
·
(
1− anj−1

)
≤ 2−Ω(n1−γ) + an

j

;

and from Eq. (21) we obtain

xH ≥
αnj

2−Ω(n1−γ) + αnj
= 1− 2−Ω(n1−γ)

2−Ω(n1−γ) + αnj
≥ 1−2−Ω(n1−γ)·α−nj = 1−2−Ω(n1−γ)·(n3+1)n

1−c
= 1−2−Ω(n1−γ) ;

since a = 1/(n3 + 1) and by construction nj ≤ n1−c and γ = ε/3 < ε/2 = c. Finally, we have that ρj = x0 ≥
xH = 1− 2−Ω(n1−γ), as desired.

Given a configuration Xk of the modified Moran process, we denote by ρj(Xk) the probability that the process reaches
a configuration Xt with S ∪ Vj ⊆ Xt. The following lemma states that the probability ρj(X`) is underapproximated
by the probability ρj . The proof is by a coupling argument, which ensures that

1. every time the run onMj is on a state 0 ≤ i ≤ mj , there are at least i mutants placed on T yjmj , and
2. every time the modified Moran process transitions to a configuration where sink is heterogeneous (i.e., we reach

a configuration X with S \ X 6= ∅), the run onMj transitions to stateH.
Lemma 11. Consider any configuration X` of the modified Moran process, with S ⊆ X`, and any tree T yjmj . We have
ρj(X`) ≥ ρj .

Proof. The proof is by coupling the modified Moran process and the Markov chainMj . To do so, we let the modified
Moran process execute, and use certain events of that process as the source of randomness for a run in Mj . We
describe the coupling process in high level. Intuitively, every time the run onMj is on a state 0 ≤ i ≤ mj , there are
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at least i mutants placed on T yjmj . Additionally, every time the modified Moran process transitions to a configuration
where sink is heterogeneous (i.e., we reach a configuration X with S \ X 6= ∅), then the run onMj transitions to state
H. Finally, if the modified Moran process ends on a configuration X = ∅, then the run onMj gets absorbed to state
D. The coupling works based on the following two facts.

1. For every state 0 < i < mj , the ratio δj [i, i + 1]/δj [i, i − 1] is upperbounded by the ratio of the probabilities
of increasing the number of mutant vertices in T yjmj by one, over decreasing that number by one and having the
sink being invaded by a resident. Indeed, we have

δj [i, i+ 1]

δj [i, i− 1]
=

α

1− α =
1

n3
;

while for every mutant vertex x of G with at last one resident neighbor, the probability that x becomes mutant
in the next step of the modified Moran process over the probability that x becomes resident is at least 1/n3 (this
ratio is at least 1/n2 for every resident neighbor y of x, and there are at most n such resident neighbors). The
same holds for the ratio δj [0, 1]/δj [0,H].

2. The probability of transitioning from stateH to state 0 is upperbounded by the probability that once the mutant
sink gets invaded by a resident the modified Moran process reaches a configuration where the sink consists of
only mutants (using Lemma 6 and Lemma 9).

The following lemma captures the probability that the modified Moran process reaches fixation whp. That is, whp a
configuration Xi is reached which contains all vertices ofGw. The proof is based on repeated applications of Lemma 11
and Lemma 10, one for each subtree T yjmj .
Lemma 12. Consider that at some time t∗ the configuration of the Moran process on Gw is Xt∗ with S ⊆ Xt∗ . Then,
a subsequent configuration Xt with Xt = V is reached with probability at least 1 − 2−Ω(m) where m = n1−γ , i.e.,
given event E3, the event E4 is happens whp.

Proof. It suffices to consider the modified Moran process on G starting from configuration Xt∗ = S, and showing
that whp we eventually reach a configuration Xt = V . First note that if there exists a configuration Xt′ with Vi ⊆ Xt′
for any Vi, then for all t′′ ≥ t′ with Xt′′ 6= ∅ we have Vi ⊆ Xt′′ . Let t1 = t∗. Since S ⊆ Xt1 , by Lemma 11, with
probability ρ1(Xt1) ≥ ρ1 there exists a time t2 ≥ t1 such that S ∪ V1 ⊆ Xt2 . Inductively, given the configuration Xti ,
with probability ρi(Xti) ≥ ρi there exists a time ti+1 ≥ ti such that S∪V1∪· · ·∪Vi ⊆ Xti+1

. Since V = S∪(
⋃k
i=1 Vi),

we obtain

P[X∞ = V ] ≥
n∏
i=1

ρi =

n∏
i=1

(
1− 2−Ω(n1−γ)

)
≥
(

1− 2−Ω(n1−γ)
)n

= 1− 2−Ω(m) ;

as by Lemma 10 we have that ρi = 1− 2−Ω(m) for all i. The desired result follows.

5.3.6 Main Positive Result

We are now ready to prove the main theorem of this section. First, combining Lemma 3, Lemma 4, Lemma 8 and
Lemma 12, we obtain that if r > 1, then the mutants fixate Gn whp.
Lemma 13. For any fixed ε > 0, for any graph Gn of n vertices and diameter diam(Gn) ≤ n1−ε, there exists a
weight function w such that for all r > 1, we have ρ(Gw

n, r,U) = 1−O(n−ε/3) and ρ(Gw
n, r,T) = 1−O(n−ε/3).

It now remains to show that if r < 1, then the mutants go extinct whp. This is a direct consequence of the following
lemma, which states that for any r > 1, the fixation probability of a mutant with relative fitness 1/r is upperbounded
by one minus the fixation probability of a mutant with relative fitness r, in the same population.
Lemma 14. For any graphGn and any weight function w, for all r ≥ 1, we have that ρ(Gw

n, 1/r,U) ≤ 1−ρ(Gw
n, r,U).
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Proof. Let σ be any irreflexive permutation of V (i.e., σ(u) 6= u for all u ∈ V ), and observe that for every vertex u,
the probability that a mutant of fitness 1/r arising at u fixates in Gn is upperbounded by one minus the probability
that a mutant of fitness r arising in σ(u) fixates in Gn. We have

ρ(Gw
n, 1/r,U) =

1

n

∑
u

ρ(Gw
n, 1/r, u)

≤ 1

n
·
∑
u

(1− ρ(Gw
n, r, σ(u)))

=1− 1

n
·
∑
σ(u)

ρ(Gw
n, r, u)

=1− ρ(Gw
n, r,U)

A direct consequence of the above lemma is that under uniform initialization, for any graph family where the fixation
probability of advantageous mutants (r > 1) approaches 1, the fixation probability of disadvantageous mutants (r < 1)
approaches zero. Since under our weight function w temperature initialization coincides with uniform initialization
whp, Lemma 13 and Lemma 14 lead to the following corollary, which is our positive result.
Theorem 5. Let ε > 0 and n0 > 0 be any two fixed constants, and consider any sequence of unweighted, undirected
graphs (Gn)n>0 such that diam(Gn) ≤ n1−ε for all n > n0. There exists a sequence of weight functions (wn)n>0

such that the graph family G = (Gwn
n ) is a (i) strong uniform, (ii) strong temperature, and (iii) strong convex amplifier.

6 Simulation Results

In this section we present the details of computer simulation results.

6.1 Figure 3 of Main article

Figure 3 of main article shows how simple structures can be turned into strong amplifiers under uniform initialization
by assigning weights according to our algorithm. Unless stated otherwise, the values plotted are obtained by simulating
the process 10 000 times. For completeness, in Figure S7 we also present analogous comparisons for temperature
initialization.

Figure 3(A). A Star on N vertices, denoted SN , consists of a single vertex in the center and N − 1 so-called leaf
vertices connected to it. We consider N = 10, 20, . . . , 500.

1. Unweighted star: Exact fixation probability for a star under both uniform and temperature initialization follows
from formula in [20].

2. Weighted star: The sink consists of the center vertex and b
√
Nc other leaf vertices called sink-leafs. We use the

following weights:

w(u, u) =


0 if u is the center,
(N − |S|) · 2−N + |S| − 2 if u is a sink-leaf,
N−2 if u is outside the sink,

w(u, v) =

{
1 if u, v ∈ S,
2−N otherwise.

See Figure S6(a) for illustration.
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(c) Sunflower
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Figure S7

Figure 3(B). An a × b Grid graph, denoted by Ga,b, is a graph on N = a · b vertices aligned in a grid fashion with
a rows and b columns where each vertex is connected to four other vertices (one above, below, to the left, and to the
right). In order to avoid boundary conditions, the grid “wraps around”, i.e. the vertices in the first row are connected
to the vertices in the last row and the same holds for columns. We consider n×n and n× (n+ 1) Grid graphs of sizes
N = 9, 12, 16, 20, . . . , 100.

1. Unweighted grid: Unweighted grid is isothermal so the fixation probability under both uniform and temperature
initialization is given by ρ(Ga,b, r,U) = ρ(Ga,b, r,T) = (1− 1/r)/(1− 1/rab).

2. Weighted grid: For odd n the sink consists of vertices in the middle row and the rest is split into branches by
assigning weight 0 to all the remaining horizontal edges. For even n we choose either of the two middle rows
and proceed analogously. The weights on the remaining edges are defined as follows (recall that λ(u) is the
distance from vertex u to the sink):

w(u, u) =

{
0 if u ∈ S,
N−(l−1) if λ(u) = l,

w(u, v) =

{
1 if u, v ∈ S,
2−N ·N−2l if λ(u) + 1 = λ(v) = l.

See Figure S6(b) for illustration.

Figure 3(C). An (n, k)-Sunflower graph is a graph on N = n(k + 1) vertices: a complete graph of size n in
the center, and n surrounding petals which are complete graphs of size k each. Each petal is connected with all
its vertices to a unique vertex from the center. We consider (n, n − 1) and (n, n − 2)-Sunflower graphs of sizes
N = 6, 9, 12, 16, . . . , 182.

1. Unweighted sunflower: The values plotted are computed by simulating the process 10 000 times.

2. Weighted sunflower: We define sink S as the complete graph in the center and assign zero weights to all edges
within petals. We define the weights of the remaining edges as follows:

w(u, u) =

{
0 if u ∈ S,
kn2 otherwise,

w(u, v) =

{
k2n2 if u, v ∈ S,
1 otherwise.

See Figure S6(c) for illustration.

6.2 Figure 4 of Main article

In Figure 4(A),(B),(C) we compare two realistic structures: the Mainland-island graph and the classical Well-mixed
population modelled by a complete graph.
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Figure S8

A complete graph onN vertices, denoted byKN , consists ofN vertices, all possible edges, and all possible self-loops.

An (n, k)-Mainland-island graph is a weighted graph on N = n(k + 1) vertices: a complete graph of size n in the
center (“mainland”, denotedM), and n surrounding complete graphs of size k each (“islands”). Every vertex from
the mainland is connected to every vertex of every island and no two vertices from different islands are connected.

In order to ensure that most of the time the offspring stays in the same land, the edge-weights on (n, k)-Mainland-
island are defined as follows:

w(u, u) = 0, w(u, v) =


k2n4 if u, v ∈M,

n3 if u 6∈ M, v 6∈ M,

1 otherwise.

Note that (n.k)-Mainland-island graph is not a strong amplifier – since it is self-loop free, this follows, for example,
from Theorem 1.

Figure 4(A). We consider (n, 3)-Mainland-island graphs of sizes N = 4, 8, 12, . . . , 88. The values plotted are
computed by simulating Moran process 1 000 times with the mutant being initialized uniformly at random to one of
the islands.

For complete graphs KN , N = 4, 8, 12, . . . , 88, the fixation probability is given by (1− 1/r)/(1− 1/rN ).

Note that even though Mainland-island graphs are not strong amplifiers, still they provide significant improvement
over the well-mixed population.

Figure 4(B). In experiment Selection of initial diversity, given a range [r1, r2] of relative fitness values and a pop-
ulation of N individuals, we first select N values r1 = α1 < α2 < · · · < αN = r2 uniformly spaced in the range
[r1, r2] (i.e. αi = r1 + (i − 1)(r2 − r1)/(N − 1)). In each run, these values are randomly shuffled, assigned to the
N individuals and the Moran process is executed until one individual fixates. Its fitness value is recorded. Figure
4(B) shows the distribution of this final fitness value as a probability density function over 1 000 trials. We consider
N = 60, the range [r1, r2] = [0.9, 1.1] and two different graphs: the (15, 3)-Mainland-island graph (green) and the
complete graph K60 (orange). The vertical line is the mean.

Here we present additional computer simulation data. Figure S8 shows the distribution of the fixating fitness value as a
probability density function over 1 000 trials for different regimes and structures with N = 60. In (a) we compare the
Weighted Star (blue) and the Star Graph (red). We again set [r1, r2] = [0.9, 1.1]. In (b) and (c) we compare the Well-
mixed population (orange), Mainland-island graph (green), Weighted Star (blue) and Star Graph (red) under a different
initialization scheme – the starting fitness values are selected independently at random from a normal distribution with
mean µ = 1 and standard deviation σ = 0.05.
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Figure S9

Figure 4(C). In experiment Accumulation of mutants, we investigate how average fitness of a population evolves
over time if the Moran process is enriched by mutations. We start with a population of individuals with fitness 1 each.
The simple case is characterized by a pair (u, x), where u is a mutation rate x is the relative advantage. During each
reproduction event, a mutation happens with probability u. If it does, the fitness of the offspring produced by the event
equals (1 + x)-times the fitness of the parent. Note that x > 0 corresponds to advantageous mutations and x < 0
to disadvantageous mutations. The general case is characterized by pair (u,X) where X is a probability distribution
over values of x, hence different relative advantages can appear with different rates that add up to u. Figure 4(C)
presents the results of mutation-accumulation experiment for u = 10−6 and P[x = 0.01] = P[x = −0.01] = 0.5. The
experiment is run on Weighted (15, 3)-Mainland-island graph and on the complete graphK60 (N = 60), and averaged
over 100 trials.

Here we present additional computer simulation data. Figure S9 shows results of the mutation-accumulation experi-
ment for four different structures of size N = 60 and different probability distributions X1, X2. The four structures
we compare are: Complete graph K60 (orange), (15, 3)-Mainland-island graph (green), Star graph S60 (red), and the
Weighted Star (blue). Figure S9(a) shows results for distribution X1 given by P[x = 0.01] = 1 (i.e. only positive
mutations). Figure S9(b) shows results for distribution X2 given by P[x = 0.01] = 1/3, P[x = −0.02] = 2/3 (i.e.
fewer relatively weaker advantageous mutations and more relatively stronger disadvantageous mutations).
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[5] M. Broom and J. Rychtář. An analysis of the fixation probability of a mutant on special classes of non-directed
graphs. Proc. R. Soc. A Math. Phys. Eng. Sci., 464(2098):2609–2627, Oct. 2008.

31



[6] J. Dı́az, L. A. Goldberg, G. B. Mertzios, D. Richerby, M. Serna, and P. G. Spirakis. Approximating fixation
probabilities in the generalized moran process. Algorithmica, 69(1):78–91, 2014.

[7] R. Durrett and S. A. Levin. Stochastic spatial models: a user’s guide to ecological applications. Philos. Trans.
R. Soc. London. Ser. B Biol. Sci., 343(1305):329–350, 1994.

[8] M. Frean, P. B. Rainey, and A. Traulsen. The effect of population structure on the rate of evolution. Proc. R. Soc.
B Biol. Sci., 280(1762):20130211, July 2013.
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