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Abstract. We consider partially observable Markov decision processes (POMDPs) with a set of target
states and every transition is associated with an integer cost. The optimization objective we study asks
to minimize the expected total cost till the target set is reached, while ensuring that the target set is
reached almost-surely (with probability 1). We show that for integer costs approximating the optimal
cost is undecidable. For positive costs, our results are as follows: (i) we establish matching lower and
upper bounds for the optimal cost and the bound is double exponential; (ii) we show that the problem
of approximating the optimal cost is decidable and present approximation algorithms developing on
the existing algorithms for POMDPs with finite-horizon objectives. While the worst-case running time
of our algorithm is double exponential, we also present efficient stopping criteria for the algorithm and
show experimentally that it performs well in many examples of interest.

1 Introduction

Partially observable Markov decision processes (POMDPs). Markov decision processes (MDPs)
are standard models for probabilistic systems that exhibit both probabilistic as well as nondeterministic
behavior [11]. MDPs are widely used to model and solve control problems for stochastic systems [10, 26]:
nondeterminism represents the freedom of the controller to choose a control action, while the probabilistic
component of the behavior describes the system response to control actions. In perfect-observation (or perfect-
information) MDPs (PIMDPs) the controller observes the current state of the system precisely to choose
the next control actions, whereas in partially observable MDPs (POMDPs) the state space is partitioned
according to observations that the controller can observe, i.e., given the current state, the controller can
only view the observation of the state (the partition the state belongs to), but not the precise state [22].
POMDPs provide the appropriate model to study a wide variety of applications such as in computational
biology [8], speech processing [21], image processing [7], robot planning [15, 12], reinforcement learning [13],
to name a few. POMDPs also subsume many other powerful computational models such as probabilistic
finite automata (PFA) [27, 24] (since probabilistic finite automata (aka blind POMDPs) are a special case
of POMDPs with a single observation).

Classical optimization objectives. In stochastic optimization problems related to POMDPs, the tran-
sitions in the POMDPs are associated with integer costs, and the two classical objectives that have been
widely studied are finite-horizon and discounted-sum objectives [10, 26, 22]. For finite-horizon objectives, a
finite length k is given and the goal is to minimize the expected total cost for k steps. In discounted-sum
objectives, the cost in the j-th step is multiplied by γj , for 0 < γ < 1, and the goal is to minimize the
expected total discounted cost over the infinite horizon.

Reachability and total-cost. In this work we consider a different optimization objective for POMDPs.
We consider POMDPs with a set of target states, and the optimization objective is to minimize the expected
total cost till the target set is reached. First, note that the objective is not the discounted sum, but the total
sum without discounts. Second, the objective is not a finite-horizon objective, as there is no bound apriori
known to reach the target set, and along different paths the target set can be reached at different time
points. The objective we consider is very relevant in many control applications such as in robot planning:
for example, the robot has a target or goal; and the objective is to minimize the number of steps to reach
the target, or every transition is associated with energy consumption and the objective is to reach the target
with minimal energy consumption.

Our contributions. In this work we study POMDPs with a set of target states, and costs in every transition,
and the goal is to minimize the expected total cost till the target set is reached, while ensuring that the
target set is reached almost-surely (with probability 1). Our results are as follows:



1. (Integer costs). We first show that if the transition costs are integers, then approximating the optimal
cost is undecidable.

2. (Positive integer costs). Since the problem is undecidable for integer costs, we next consider that costs are
positive integers. We first remark that if the costs are positive, and there is a positive probability not to
reach the target set, then the expected total cost is infinite. Hence the expected total cost is not infinite
only by ensuring that the target is reached almost-surely. First we establish a double-exponential lower
and upper bound for the expected optimal cost. We show that the approximation problem is decidable,
and present approximation algorithms using the well-known algorithms for finite-horizon objectives.

3. (Implementation). Though we establish that in the worst-case the algorithm requires double-exponential
time, we also present efficient stopping criteria for the algorithm, and experimentally show that the
algorithm is efficient in several practical examples. We have implemented our approximation algorithms
developing on the existing implementations for finite-horizon objectives, and present experimental results
on a number of well-known examples of POMDPs.

Comparison with Goal-POMDPs. While there are several works for discounted POMDPs [16, 29, 25], as
mentioned above the problem we consider is different from discounted POMDPs. The most closely related
work is Goal-POMDPs [2]. The key differences are as follows: (a) our results for approximation apply to all
POMDPs with positive integer costs, whereas the solution for Goal-POMDPs apply to a strict subclass of
POMDPs (see Remark 5); and (b) we present asymptotically tight (double exponential) theoretical bounds
on the expected optimal costs.

2 Definitions

We present the definitions of POMDPs, strategies, objectives, and other basic notions required for our results.
Throughout this work, we follow standard notations from [26, 17].

Notations. Given a finite set X, we denote by P(X) the set of subsets of X, i.e., P(X) is the power set of X.
A probability distribution f on X is a function f : X → [0, 1] such that

∑
x∈X f(x) = 1, and we denote by

D(X) the set of all probability distributions on X. For f ∈ D(X) we denote by Supp(f) = {x ∈ X | f(x) > 0}
the support of f .

POMDPs. A Partially Observable Markov Decision Process (POMDP) is a tuple G = (S,A, δ,Z,O, λ0)
where: (i) S is a finite set of states; (ii) A is a finite alphabet of actions; (iii) δ : S × A → D(S) is a
probabilistic transition function that given a state s and an action a ∈ A gives the probability distribution
over the successor states, i.e., δ(s, a)(s′) denotes the transition probability from s to s′ given action a; (iv) Z is
a finite set of observations; (v) O : S → Z is an observation function that maps every state to an observation;
and (vi) λ0 is a probability distribution for the initial state, and for all s, s′ ∈ Supp(λ0) we require that
O(s) = O(s′). If the initial distribution is Dirac, we often write λ0 as s0 where s0 is the unique starting
(or initial) state. Given s, s′ ∈ S and a ∈ A, we also write δ(s′|s, a) for δ(s, a)(s′). A state s is absorbing
if for all actions a we have δ(s, a)(s) = 1 (i.e., s is never left from s). For an observation z, we denote by
O−1(z) = {s ∈ S | O(s) = z} the set of states with observation z. For a set U ⊆ S of states and Z ⊆ Z of
observations we denote O(U) = {z ∈ Z | ∃s ∈ U. O(s) = z} and O−1(Z) =

⋃
z∈Z O−1(z). A POMDP is a

perfect-observation (or perfect-information) MDP if each state has a unique observation.

Plays and cones. A play (or a path) in a POMDP is an infinite sequence (s0, a0, s1, a1, s2, a2, . . .) of states
and actions such that for all i ≥ 0 we have δ(si, ai)(si+1) > 0 and s0 ∈ Supp(λ0). We write Ω for the set of
all plays. For a finite prefix w ∈ (S · A)∗ · S of a play, we denote by Cone(w) the set of plays with w as the
prefix (i.e., the cone or cylinder of the prefix w), and denote by Last(w) the last state of w.

Belief-support and belief-support updates. For a finite prefix w = (s0, a0, s1, a1, . . . , sn) we denote by
O(w) = (O(s0), a0,O(s1), a1, . . . ,O(sn)) the observation and action sequence associated with w. For a finite
sequence ρ = (z0, a0, z1, a1, . . . , zn) of observations and actions, the belief-support B(ρ) after the prefix ρ is
the set of states in which a finite prefix of a play can be after the sequence ρ of observations and actions,
i.e.,

B(ρ) = {sn = Last(w) | w = (s0, a0, s1, a1, . . . , sn), w is a prefix of a play, and for all 0 ≤ i ≤ n. O(si) = zi}.
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The belief-support updates associated with finite-prefixes are as follows: for prefixes w and w′ = w · a · s the

belief-support update is defined inductively as B(O(w′)) =
(⋃

s1∈B(O(w)) Supp(δ(s1, a))
)
∩ O−1(O(s)), i.e.,

the set
(⋃

s1∈B(O(w)) Supp(δ(s1, a))
)

denotes the possible successors given the belief-supprt B(O(w)) and

action a, and then the intersection with the set of states with the current observation O(s) gives the new
belief-support set.

Strategies (or policies). A strategy (or a policy) is a recipe to extend prefixes of plays and is a function
σ : (S · A)∗ · S → D(A) that given a finite history (i.e., a finite prefix of a play) selects a probability
distribution over the actions. Since we consider POMDPs, strategies are observation-based, i.e., for all histories
w = (s0, a0, s1, a1, . . . , an−1, sn) and w′ = (s′0, a0, s

′
1, a1, . . . , an−1, s

′
n) such that for all 0 ≤ i ≤ n we have

O(si) = O(s′i) (i.e., O(w) = O(w′)), we must have σ(w) = σ(w′). In other words, if the observation sequence
is the same, then the strategy cannot distinguish between the prefixes and must play the same. A strategy
σ is belief-support based stationary if it depends only on the current belief-support, i.e., whenever for two
histories w and w′, we have B(O(w)) = B(O(w′)), then σ(w) = σ(w′).

Strategies with memory and finite-memory strategies A strategy with memory is a tuple σ =
(σu, σn,M,m0) where:(i) (Memory set). M is a denumerable set (finite or infinite) of memory elements
(or memory states). (ii) (Action selection function). The function σn : M → D(A) is the action selection
function that given the current memory state gives the probability distribution over actions. (iii) (Memory
update function). The function σu : M×Z×A → D(M) is the memory update function that given the current
memory state, the current observation and action, updates the memory state probabilistically. (iv) (Initial
memory). The memory state m0 ∈M is the initial memory state. A strategy is a finite-memory strategy if
the set M of memory elements is finite. A strategy is pure (or deterministic) if the memory update function
and the action selection function are deterministic, i.e., σu : M ×Z ×A →M and σn : M → A. The general
class of strategies is sometimes referred to as the class of randomized infinite-memory strategies.

Probability and expectation measures. Given a strategy σ and a starting state s, the unique probability
measure obtained given σ is denoted as Pσs (·). We first define the measure µσs (·) on cones. For w = s we
have µσs (Cone(w)) = 1, and for w = s′ where s 6= s′ we have µσs (Cone(w)) = 0; and for w′ = w · a · s we
have µσs (Cone(w′)) = µσs (Cone(w)) · σ(w)(a) · δ(Last(w), a)(s). By Carathéodory’s extension theorem, the
function µσs (·) can be uniquely extended to a probability measure Pσs (·) over Borel sets of infinite plays [1].
We denote by Eσs [·] the expectation measure associated with the strategy σ. For an initial distribution λ0 we
have Pσλ0

(·) =
∑
s∈S λ0(s) · Pσs (·) and Eσλ0

[·] =
∑
s∈S λ0(s) · Eσs [·].

Objectives. We consider reachability and total-cost objectives.

– Reachability objectives. A reachability objective in a POMDP G is a measurable set ϕ ⊆ Ω of plays
and is defined as follows: given a set T ⊆ S of target states, the reachability objective Reach(T ) =
{(s0, a0, s1, a1, s2 . . .) ∈ Ω | ∃i ≥ 0 : si ∈ T} requires that a target state in T is visited at least once.

– Total-cost and finite-length total-cost objectives. A total-cost objective is defined as follows: Let G be
a POMDP with a set of absorbing target states T and a cost function c : S × A → Z that assigns
integer-valued weights to all states and actions such that for all states t ∈ T and all actions a ∈ A we
have c(t, a) = 0. The total-cost of a play ρ = (s0, a0, s1, a1, s2, a2, . . .) is Total(ρ) =

∑∞
i=0 c(si, ai) the

sum of the costs of the play. To analyze total-cost objectives we will also require finite-length total-cost
objectives, that for a given length k sum the total costs upto length k; i.e., Totalk(ρ) =

∑k
i=0 c(si, ai).

Almost-sure winning. Given a POMDP G with a reachability objective Reach(T ) a strategy σ is almost-
sure winning iff Pσλ0

(Reach(T )) = 1. We will denote by AlmostG(T ) the set of almost-sure winning strategies
in POMDP G for the objective Reach(T ). Given a set U such that all states in U have the same observation,
a strategy is almost-sure winning from U , if given the uniform probability distribution λU over U we have
PσλU

(Reach(T )) = 1; i.e., the strategy ensures almost-sure winning if the starting belief-support is U .

Optimal cost under almost-sure winning and approximations. Given a POMDP G with a reach-
ability objective Reach(T ) and a cost function c we are interested in minimizing the expected total cost
before reaching the target set T , while ensuring that the target set is reached almost-surely. Formally,
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the value of an almost-sure winning strategy σ ∈ AlmostG(T ) is the expectation Val(σ) = Eσλ0
[Total].

The optimal cost is defined as the infimum of expected costs among all almost-sure winning strategies:
optCost = infσ∈AlmostG(T ) Val(σ). We consider the computational problems of approximating optCost and
compute strategies σ ∈ AlmostG(T ) such that the value Val(σ) approximates the optimal cost optCost. For-
mally, given ε > 0, the additive approximation problem asks to compute a strategy σ ∈ AlmostG(T ) such
that Val(σ) ≤ optCost+ ε; and the multiplicative approximation asks to compute a strategy σ ∈ AlmostG(T )
such that Val(σ) ≤ optCost · (1 + ε).

Remark 1. We remark about some of our notations.

1. Rational costs: We consider integer costs as compared rational costs, and given a POMDP with rational
costs one can obtain a POMDP with integer costs by multiplying the costs with the least common
multiple of the denominators. The transformation is polynomial given binary representation of numbers.

2. Probabilistic observations: Given a POMDP G = (S,A, δ,Z,O, λ0), the most general type of the obser-
vation function O considered in the literature is of type S × A → D(Z), i.e., the state and the action
gives a probability distribution over the set of observations Z. We show how to transform the POMDP
G into one where the observation function is deterministic and defined on states, i.e., of type S → Z
as in our definitions. We construct an equivalent POMDP G′ = (S′,A, δ′,Z,O′, λ′0) as follows: (i) the
new state space is S′ = S × Z; (ii) the transition function δ′ given a state (s, z) ∈ S′ and an action a
is as follows δ′((s, z), a)(s′, z′) = δ(s, a)(s′) · O(s′, a)(z′); and (iii) the deterministic observation function
for a state (s, z) ∈ S′ is defined as O′((s, z)) = z. Informally, the probabilistic aspect of the observation
function is captured in the transition function, and by enlarging the state space with the product with
the observations, we obtain an observation function only on states. Thus we consider observation on
states which greatly simplifies the notation.

3. Strategies: Note that in our definition of strategies, the strategies operate on state action sequences,
rather than observation action sequences. However, since we restrict strategies to be observation based,
in effect they operate on observation action sequences.

3 Approximating optCost for Integer Costs

In this section we will show that the problem of approximating the optimal cost optCost is undecidable.
We will show that deciding whether the optimal cost optCost is −∞ or not is undecidable in POMDPs
with integer costs. We present a reduction from the standard undecidable problem for probabilistic finite
automata (PFA). A PFA P = (S,A, δ, F, s0) is a special case of a POMDP G = (S,A, δ,Z,O, s0) with a
single observation Z = {z} such that for all states s ∈ S we have O(s) = z. Moreover, the PFA proceeds for
only finitely many steps, and has a set F of desired final states. The strict emptiness problem asks for the
existence of a strategy w (a finite word over the alphabet A) such that the measure of the runs ending in the
desired final states F is strictly greater than 1

2 ; and the strict emptiness problem for PFA is undecidable [24].

Reduction. Given a PFA P = (S,A, δ, F, s0) we construct a POMDP G = (S′,A′, δ′,Z,O, s′0) with a cost
function c and a target set T such that there exists a word w ∈ A∗ accepted with probability strictly greater
than 1

2 in PFA P iff the optimal cost in the POMDP G is −∞. Intuitively, the construction of the POMDP G
is as follows: for every state s ∈ S of P we construct a pair of states (s, 1) and (s,−1) in S′ with the property
that (s,−1) can only be reached with a new action $ (not in A) played in state (s, 1). The transition function
δ′ from the state (s,−1) mimics the transition function δ, i.e., δ′((s,−1), a)((s′, 1)) = δ(s, a)(s′). The cost c
of (s, 1) (resp. (s,−1)) is 1 (resp. −1), ensuring the sum of the pair to be 0. We add a new available action
# that when played in a final state reaches a newly added state good ∈ S′, and when played in a non-final
state reaches a newly added state bad ∈ S′. For states good and bad given action # the next state is the
initial state; with negative cost −1 for good and positive cost 1 for bad. We introduce a single absorbing
target state T = {target} and give full power to the player to decide when to reach the target state from the
initial state, i.e., we introduce a new action

√
that when played in the initial state deterministically reaches

the target state target.
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An illustration of the construction on an example is depicted on Figure 1. Whenever an action is played
in a state where it is not available, the POMDP reaches a losing absorbing state, i.e., an absorbing state
with cost 1 on all actions, and for brevity we omit transitions to the losing absorbing state. The formal
construction of the POMDP G is as follows:

– S′ = (S × {−1, 1}) ∪ {good, bad, target},
– s′0 = (s0, 1),
– A′ = A ∪ {#, $,

√
},

– The actions a ∈ A ∪ {#} in states (s, 1) (for s ∈ S) lead to the losing absorbing state; the action $
in states (s,−1) (for s ∈ S) leads to the losing absorbing state; and the actions a ∈ A ∪ {$} in states
good and bad lead to the losing absorbing state. The action

√
played in any state other than the initial

state s′0 also leads to the losing absorbing state. The other transitions are as follows: For all s ∈ S:
(i) δ′((s, 1), $)((s,−1)) = 1, (ii) for all a ∈ A we have δ′((s,−1), a)((s′, 1)) = δ(s, a)(s′), and (iii) for
action # and

√
we have

δ′((s,−1),#)(good) =

{
1 if s ∈ F ;

0 otherwise;
δ′((s,−1),#)(bad) =

{
1 if s 6∈ F ;

0 otherwise;

δ′(good,#)(s′0) = 1; δ′(bad,#)(s′0) = 1; δ′(s′0,
√

)(target) = 1;

– there is a single observation Z = {o}, and all the states s ∈ S′ have O(s) = o.

We define the cost function c assigning only two different costs and only as a function of the state, i.e.,
c : S′ → {−1, 1} and show the undecidability even for this special case of cost functions. For all s ∈ S the
cost is c((s,−1)) = −1, and similarly c((s, 1)) = 1, and the remaining states have costs c(good) = −1 and
c(bad) = 1. The absorbing target state has cost 0; i.e., c(target) = 0. Note that though the costs are assigned
as function of states, the costs appear on the out-going transitions of the respective states.

Intuitive proof idea. The basic idea of the proof is as follows: Consider a word w accepted by the PFA
with probability at least ν > 1

2 . Let the length of the word be |w| = n, and w[i] denote the ith letter in
w. Consider a strategy in the POMDP u = ($ w[1] $ w[2] . . . $w[n] # #)k

√
for some constant k ≥ 0; that

plays alternately the letters in w and $, then two #’s, repeat the above k times, and finally plays
√

. For any
τ < 0, for k ≥ τ−1

1−2·ν , the expected total cost is below τ . Hence if the answer to the strict emptiness problem
is yes, then the optimal cost is −∞. Conversely, if there is no word accepted with probability strictly greater
than 1

2 , then the expected total cost between consecutive visits to the starting state is positive, and hence
the optimal cost is at least 1. We now formalize the intuitive proof idea.

s0 s
a

b

s0, 1 s0,−1 s, 1

s,−1good

bad

target

$ a

$ b

#

#

#

#
√

Fig. 1. PFA P to a POMDP G

Lemma 1. If there exists a word w ∈ A∗ that is accepted with probability strictly greater than 1
2 in P, then

the optimal cost optCost in the POMDP G is −∞.
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Proof. Let w ∈ A∗ be a word that is accepted in P with probability ν > 1
2 and let τ ∈ R be any negative

real-number threshold. We will construct a strategy in POMDP G ensuring that the target state target is
reached almost-surely and the value of the strategy is below τ . As this is will be true for every τ < 0 it will
follow that the optimal cost optCost is −∞.

Let the length of the word be |w| = n. We construct a pure finite-memory strategy in the POMDP G as
follows: We denote by w[i] the ith action in the word w. The finite-memory strategy we construct is specified
as a word u = ($ w[1] $ w[2] . . . $w[n] # #)k

√
for some constant k ≥ 0, i.e., the strategy plays alternately

the letters in w and $, then two #’s, repeat the above k times, and finally plays
√

. Observe that by the
construction of the POMDP G, the sequence of costs (that appear on the transitions) is (1,−1)n followed
by (i) −1 with probability ν (when F is reached), and (ii) +1 otherwise; and the whole sequence is repeated
k times.

Let r1, r2, r3, . . . rm be the finite sequence of costs and sj =
∑j
i=1 ri. The sequence of costs can be

partitioned into blocks of length 2 · n+ 1, intuitively corresponding to the transitions of a single run on the
word ($w[1] $w[2] . . . $w[n] # #). We define a random variable Xi denoting the sum of costs of the ith block
in the sequence, i.e., with probability ν for all i the value of Xi is −1 and with probability 1− ν the value is
1. The expected value of Xi is therefore equal to E[Xi] = 1− 2 · ν, and as we have that ν > 1

2 it follows that
E[Xi] < 0. The fact that after the ## the initial state is reached implies that the random variable sequence
(Xi)0≤i≤k is a finite sequence of i.i.d’s. By linearity of expectation we have that the expected total cost of
the word u is k · E[Xi] plus an additional 1 for the last

√
action. Therefore, by choosing an appropriately

large k (in particular for k ≥ τ−1
1−2·ν ) we have the expected total cost is below τ . As playing the

√
action

from the initial state reaches the target state target almost-surely, and after ## the initial state is reached
almost-surely, we have that by playing according to the strategy u the target state target is reached almost-
surely. The desired result follows. ut

We now show that pure finite-memory strategies are sufficient for the POMDP we constructed from the
probabilistic automata, and then prove a lemma that proves the converse of Lemma 1.

Lemma 2. Given the POMDP G of our reduction from the PFA, if there is a randomized (possibly infinite-
memory) strategy σ with Val(σ) < 1, then there exists a pure finite-memory strategy σ′ with Val(σ′) < 1.

Proof. Let σ be a randomized (possibly infinite-memory) strategy with the expected total cost strictly less
than 1. As there is a single observation in the POMDP G constructed in our reduction, the strategy does
not receive any useful feedback from the play, i.e., the memory update function σu always receives as one of
the parameters the unique observation. Note that with probability 1 the resolving of the probabilities in the
strategy σ leads to finite words of the form ρ = w1##w2## . . .##wn##

√
, as otherwise the target state

target is not reached with probability 1. From each such word ρ we extract the finite words w1, w2, . . . , wn
that occur in ρ, and consider the union of all such words as W (ρ), and then consider the union W over all
such words ρ. We consider two cases:

1. If there exists a word v in W such that the expected total cost after playing the word v## is strictly
less than 0, then the pure finite-memory strategy v##

√
ensures that the expected total cost strictly

less than 1.
2. Assume towards contradiction that for all the words v in W the expected total cost of v## is at least

0. Then with probability 1 resolving the probabilities in the strategy σ leads to finite words of the form
w = w1##w2## . . . wn##

√
, where each word wi belongs to W , that is played on the POMDP G.

Let us define a random variable Xi denoting the sum between i and (i + 1)-th occurrence of ##. The
expected total cost of wi## is E[Xi] and is at least 0 for all i. Therefore the expected cost of the sequence
w (which has

√
in the end with cost 1) is at least 1. Thus we arrive at a contradiction. Hence, there

must exist a word v in W such that v## has an expected total cost strictly less than 0.

This concludes the proof. ut

Lemma 3. If there exists no word w ∈ A∗ that is accepted with probability strictly greater than 1
2 in P, then

the optimal cost optCost = 1.
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Proof. We will show that playing
√

is an optimal strategy. It reaches the target state target almost-surely
with an expected total cost of 1. Assume towards contradiction that there exists a strategy (and by Lemma 2,
a pure finite-memory strategy) σ with the expected total cost strictly less than 1. Observe that as there is
only a single observation in the POMDP G the pure finite-memory strategy σ can be viewed as a finite word
of the form w1##w2## . . . wn##

√
. We extract the set of words W = {w1, w2, . . . , wn} from the strategy σ.

By the condition of the lemma, there exists no word accepted in the PFA P with probability strictly greater
that 1

2 . As in Lemma 1 we define a random variable Xi denoting the sum of costs after reading wi##. It
follows that the expected value of E[Xi] ≥ 0 for all 0 ≤ i ≤ n. By using the linearity of expectation we
have the expected total cost of w1##w2## . . . wn## is at least 0, and hence the expected total cost of the
strategy is at least 1 due to the cost of the last

√
action. Thus we have a contradiction to the assumption

that the expected total cost of strategy σ is strictly less than 1. ut

The above lemmas establish that if the answer to the strict emptiness problem for PFA is yes, then the
optimal cost in the POMDP is −∞; and otherwise the optimal cost is 1. Hence in POMDPs with integer
costs determining whether the optimal cost optCost is −∞ or 1 is undecidable, and thus the problem of
approximation is also undecidable.

Theorem 1. The problem of approximating the optimal cost optCost in POMDPs with integer costs is
undecidable for all ε > 0 both for additive and multiplicative approximation.

4 Approximating optCost for Positive Costs

In this section we consider POMDPs with positive cost functions, i.e., c : S×A → N instead of c : S×A → Z.
Note that the transitions from the absorbing target states have cost 0 as the goal is to minimize the cost
till the target set is reached, and also note that all other transitions have cost at least 1. We established (in
Theorem 1) that for integer costs the problem of approximating the optimal cost is undecidable, and in this
section we show that for positive cost functions the approximation problem is decidable. We first start with
a lower bound on the optimal cost.

4.1 Lower Bound on optCost

We present a double-exponential lower bound on optCost with respect to the number of states of the POMDP.
We define a family of POMDPs F(n), for every n, with a single target state, such that there exists an almost-
sure winning strategy, and for every almost-sure winning strategy the expected number of steps to reach the
target state is double-exponential in the number of states of the POMDP. Thus assigning cost 1 to every
transition we obtain the double-exponential lower bound.

Preliminary. The action set we consider consists of two symbols A = {a,#}. The state space consists of
an initial state s0, a target state target, a losing absorbing state bad and a set of n sub-POMDPs Li for
1 ≤ i ≤ n. Every sub-POMDP Li consists of states Qi that form a loop of p(i) states qi1, q

i
2, . . . q

i
p(i), where

p(i) denotes the i-th prime number and qi1 is the initial state of the sub-POMDP. For every state qij (for

1 ≤ j ≤ p(i)) the transition function under action a moves the POMDP to the state qi(j mod p(i))+1 with

probability 1
2 and to the initial state s0 with the remaining probability 1

2 . The action # played in the state
qip(i) moves the POMDP to the target state target with probability 1

2 and to the initial state s0 with the

remaining probability 1
2 . For every other state in the loop qij such that 1 ≤ j < p(i) the POMDP moves

under action # to the losing absorbing state bad with probability 1. The losing state bad and the target
state target are absorbing and have a self-loop under both actions with probability 1.

POMDP family F(n). Given an n ∈ N we define the POMDP F(n) as follows:

– The state space S = Q1 ∪Q2 ∪ . . . Qn ∪ {s0, bad, target}.
– There are two available actions A = {a,#}.
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– The transition function is defined as follows: action a in the initial state leads to bad with probability
1 and action # in the initial state leads with probability 1

n to the initial state of the sub-POMDP Li
for every 1 ≤ i ≤ n. The transitions for the states in the sub-POMDPs are described in the previous
paragraph.

– All the states in the sub-POMDPs Li do have the same observation z. The remaining states s0, bad, and
target are visible, i.e., each of these three states has its own observation.

– The initial state is s0.

The cost function c is defined as follows: the self-loop transitions at target have cost 0 and all other transitions
have cost 1. An example of the construction for n = 2 is depicted in Figure 2, where we omit the losing
absorbing state bad and the transitions leading to bad for simplicity.

Intuitive proof idea. For a given n ∈ N let p∗n =
∏n
i=1 p(i) and p+n =

∑n
i=1 p(i) denote the product and the

sum of the first n prime numbers, respectively. Note that p∗n is exponential is p+n . An almost-sure winning
strategy must play as follows: in the initial state s0 it plays #, and then if it observes the observation z for
at least p∗n consecutive steps, then for each step it must play action a, and at the p∗n step it can play action
#. Hence the probability to reach the target state in p∗n steps is at most ( 1

2 · (
1
2 )p
∗
n); and hence the expected

number of steps to reach the target state is at least p∗n · 2 · 2p
∗
n . The size of the POMDP is polynomial in p+n

and thus the expected total cost is double exponential.

Lemma 4. There exists a family (F(n))n∈N of POMDPs of size O(p(n)) for a polynomial p with a reach-
ability objective, such that the following assertion holds: There exists a polynomial q such that for every

almost-sure winning strategy the expected total cost to reach the target state is at least 22
q(n)

.

Proof. For n ∈ N, consider the POMDP F(n), and an almost-sure winning strategy in the POMDP. In the
first step the strategy needs to play the # action from s0, as otherwise the losing absorbing state is reached.
The POMDP reaches the initial state of the sub-POMDPs Li, for all i, with positive probability. As all the
states in the sub-POMDPs have the same observation z, the strategy cannot base its decision on the current
sub-POMDP. The strategy has to play the action a until the observation z is observed for p∗n steps in a row
before playing action #. If the strategy plays the action # before observing the sequence of z observations
p∗n times, then it reaches the losing absorbing state with positive probability (and would not have been an
almost-sure winning strategy). This follows from the fact that there is a positive probability of being in a
sub-POMDP, where the current state is not the last one of the loop. Hence an almost-sure winning strategy
must play a as long as the length of the sequence of the observation z is less than p∗n consecutive steps. Note
that in between the POMDP can move to the initial state s0, and the strategy restarts. In every step of
the sub-POMDPs, with probability 1

2 the initial state is reached, and the next state is in the sub-POMDP
with probability 1

2 . After observing the z observation for p∗n consecutive steps, the strategy can play the
action # that moves the POMDP to the target state target with probability 1

2 and restarts the POMDP
with the remaining probability 1

2 . Therefore the probability of reaching the target state in p∗n steps is at

most ( 1
2 · (

1
2 )p
∗
n); and hence the expected number of steps to reach the target state is at least p∗n · 2 · 2p

∗
n . The

size of the POMDP is polynomial in p+n and hence it follows that the expected total cost to reach the target
state is at least double exponential in the size of the POMDP. ut

4.2 Upper Bound on optCost

In this section we will present a double-exponential upper bound on optCost.

Almost-sure winning belief-supports. Let Belief(G) denote the set of all belief-supports in a
POMDP G, i.e., Belief(G) = {U ⊆ S | ∃z ∈ Z : U ⊆ O−1(z)}. Let BeliefWin(G,T ) de-
note the set of almost-sure winning belief-supports, i.e., BeliefWin(G,T ) = {U ∈ Belief(G) |
there exists an almost-sure winning strategy from U }, i.e., there exists an almost-sure winning strategy

with initial distribution λU that is the uniform distribution over U .
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Fig. 2. POMDP F(2)

Restricting to BeliefWin(G,T ). In the sequel without loss of generality we will restrict ourselves to belief-
supports in BeliefWin(G,T ): since from belief-supports outside BeliefWin(G,T ) there exists no almost-sure
winning strategy, all almost-sure winning strategies with starting belief-support in BeliefWin(G,T ) will ensure
that belief-supports not in BeliefWin(G,T ) are never reached.

Belief updates. Given a belief-support U ∈ Belief(G), an action a ∈ A, and an observation z ∈ Z we
denote by Update(U, z, a) the updated belief-support. Formally, the set Update(U, z, a) is defined as follows:
Update(U, z, a) =

⋃
s′∈U Supp(δ(s′, a)) ∩ O−1(z). The set of belief-supports reachable from U by playing an

action a ∈ A is denoted by Update(U, a). Formally, Update(U, a) = {U ′ ⊆ S | ∃z ∈ Z : U ′ = Update(U, z, a))∧
U ′ 6= ∅}.
Allowed actions. Given a POMDPG and a belief-support U ∈ BeliefWin(G,T ), we consider the set of actions
that are guaranteed to keep the next belief-support U ′ in BeliefWin(G,T ) and refer these actions as allowed
or safe. Formally we consider the set of allowed actions as follows: Given a belief-support U ∈ BeliefWin(G,T )
we define Allow(U) = {a ∈ A | ∀U ′ ∈ Update(U, a) : U ′ ∈ BeliefWin(G,T )}.

We now show that almost-sure winning strategies must only play allowed actions. An easy consequence
of the lemma is that for all belief-supports U in BeliefWin(G,T ), there is always an allowed action.

Lemma 5. Given a POMDP with a reachability objective Reach(T ), consider a strategy σ and a starting
belief-support in BeliefWin(G,T ). Given σ, if for a reachable belief-support U ∈ BeliefWin(G,T ) the strategy
σ plays an action a not in Allow(U) with positive probability, then σ is not almost-sure winning for the
reachability objective.

Proof. Assume the strategy σ reaches the belief-support U and plays an action a 6∈ Allow(U). Since the
belief-support U is reachable, it follows that given the strategy σ when the belief-support is U , all states in
U are reached with positive probability, i.e., given the strategy the belief-support U is reached with positive
probability. It follows from the definition of Allow that there exists a belief-support U ′ ∈ Update(U, a)
that is not in BeliefWin(G,T ). By the definition of Update there exists an observation z ∈ Z such that
U ′ = Update(U, z, a) and U ′ 6= ∅. It follows that by playing a in belief-support U , there is a positive
probability of observing observation z and reaching belief-support U ′ that does not belong to BeliefWin(G,T ).
It follows that under action a, given the current belief-support is U , the next belief-support is U ′ with positive
probability. By definition, for all belief-supports U ′ that does not belong to BeliefWin(G,T ), if the starting
belief-support is U ′, then for all strategies the probability to reach T is strictly less than 1. Hence if U ′ is
reached with positive probability from U under action a, then σ is not almost-sure winning. The desired
result follows. ut

Corollary 1. For all U ∈ BeliefWin(G,T ) we have Allow(U) 6= ∅.
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Markov chains and reachability. A Markov chain G = (S, δ) consists of a finite set S of states and a
probabilistic transition function δ : S → D(S). Given the Markov chain, we consider the directed graph
(S,E) where E = {(s, s′) | δ(s′ | s) > 0}. The following standard properties of reachability in Markov chains
will be used in our proofs [14]:

1. Property 1 of Markov chains. For a set T ⊆ S, if for all states s ∈ S there is a path to T (i.e., for all states
there is a positive probability to reach T ), then from all states the set T is reached with probability 1.

2. Property 2 of Markov chains. In a Markov chain if a set T is reached almost-surely from s, then the
expected hitting time from s to T is at most exponential in the number of the states of the Markov
chain.

The strategy σAllow. We consider a belief-support-based stationary (for brevity belief-based)1 strategy σAllow
as follows: for all belief-supports U in BeliefWin(G,T ), the strategy plays uniformly at random all actions
from Allow(U). Note that as the strategy σAllow is belief-based, it can be viewed as a finite-memory strategy
σAllow = (σu, σn,BeliefWin(G,T ),m0), where the components are defined as follows: (i) The set of memory
elements are the winning belief-supports BeliefWin(G,T ); (ii) the belief-support m0 ∈ BeliefWin(G,T ) is the
initial belief (i.e., Supp(λ0)); (iii) the action selection function given memory U ∈ BeliefWin(G,T ) is a uniform
distribution over the set Allow(U) of actions, i.e., σn(U) = unif(Allow(U)) where unif denotes the uniform
distribution; and (iv) the memory update function given memory U ∈ BeliefWin(G,T ), observation z ∈ Z,
and action a ∈ Allow(U) is defined as the belief-support update U ′ from belief-support U under action a and
observation z, i.e., σu(U, z, a) = Update(U, z, a).

The Markov chain G � σAllow. Given a POMDP G = (S,A, δ,Z,O, s0) and the strategy σAllow =
(σu, σn,BeliefWin(G,T ),m0) the Markov chain G � σAllow = (S, δ) obtained by playing strategy σAllow in
G is defined as follows:

– The set of states S is defined as follows: S = {(s, U) | U ∈ BeliefWin(G,T ), s ∈ U}, i.e., the second
components are the almost-sure winning belief-supports and the first component is a state in the belief-
support.

– The probability that the next state is (s′, U ′) from a state (s, U) is δ((s, U))((s′, U ′)) =
∑
a∈A σn(U)(a) ·

δ(s, a)(s′) · σu(U,O(s′), a)(U ′).

The probability of transition can be decomposed as follows: (i) First an action a ∈ A is sampled according
to the distribution σn(U); (ii) then the next state s′ is sampled according to the distribution δ(s, a); and
(iii) finally the new memory U ′ is sampled according to the distribution σu(U,O(s′), a).

Remark 2. Note that due to the definition of the strategy σAllow (that only plays allowed actions) all
states (s′, U ′) of the Markov chain G � σAllow that are reachable from a state (s, U) where s ∈ U and
U ∈ BeliefWin(G,T ) satisfy that s′ ∈ U ′ and U ′ ∈ BeliefWin(G,T ).

Lemma 6. The belief-based strategy σAllow is an almost-sure winning strategy for all belief-supports U ∈
BeliefWin(G,T ) for the objective Reach(T ).

Proof. Consider the Markov chain G� σAllow and a state (s, U) of the Markov chain. As U ∈ BeliefWin(G,T )
by the definition of almost-sure winning belief-supports, there exists a strategy σ that is almost-sure winning
for the reachability objective Reach(T ) starting with belief-support U .

Reachability under σ. Note that by Lemma 5 the strategy must only play allowed actions. The strategy must
ensure that from s a target state t is reached with positive probability by playing according to σ (given the ini-
tial belief-support is U). It follows that there exists a finite prefix of a play (s1, a1, s2, a2, . . . an−1, sn) induced
by σ where s1 = s and sn = t and for all 1 ≤ i < n we have that ai ∈ Supp(σ(O((s1, a1, s2, a2, . . . , si)))).
We define a sequence of belief-supports U1, U2, . . . Un, where U1 = U and Ui+1 = Update(Ui,O(si+1), ai). As
σ is an almost-sure winning strategy, it follows from Lemma 5 that ai ∈ Allow(Ui) for all 1 ≤ i < n.

1 recall, for a belief-support-based stationary strategy, the probability distribution only depends on the current
belief-support
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Reachability in the Markov chain. Recall that the strategy σAllow plays all the allowed actions uniformly at
random. Hence it follows from the definition of the Markov chain G� σAllow that for all 0 ≤ i < n we have
δ((si, Ui))((si+1, Ui+1)) > 0, i.e, there is a positive probability to reach (t, Un) from (s, U) in the Markov
chain G� σAllow. It follows that for an arbitrary state (s, U) of the Markov chain G� σAllow there exists a state
(t′, U ′) with t′ ∈ T that is reached with positive probability. In other words, in the graph of the Markov
chain, there is a path from all states (s, U) to a state (t′, U ′) where t′ ∈ T . Thus by Property 1 of Markov
chains it follows that the target set T is reached with probability 1. It follows that σAllow is an almost-sure
winning strategy for all belief-supports in BeliefWin(G,T ). The desired result follows. ut
Remark 3 (Computation of σAllow). It follows from Lemma 6 that the strategy σAllow can be computed by
computing the set of almost-sure winning states in the belief-support MDP. The belief-support MDP is a
perfect-observation MDP where each state is a belief-support of the original POMDP, and given an action,
the next state is obtained according to the belief-support updates. The strategy σAllow can be obtained by
computing the set of almost-sure winning states in the belief-support MDP, and for discrete graph-based
algorithms to compute almost-sure winning states in perfect-observation MDPs see [6, 5].

Upper bound. We now establish a double-exponential upper bound on optCost, matching our lower bound
from Lemma 4. We have that σAllow ∈ AlmostG(T ). Hence we have Val(σAllow) ≥ infσ∈AlmostG(T ) Val(σ) =
optCost. Once σAllow is fixed, since the strategy is belief-based (i.e., depends on the subset of states) we
obtain an exponential size Markov chain. It follows from Property 2 of Markov chains that given σAllow the
expected hitting time to the target set is at most double exponential. If cmax denotes the maximal cost of
transitions, then optCost is bounded by cmax times the expected hitting time. Thus we obtain the following
lemma.

Lemma 7. Given a POMDP G with n states, let cmax denote the maximal value of the cost of all transitions.

There is a polynomial function q such that optCost ≤ 22
q(n) · cmax.

4.3 Optimal finite-horizon strategies

Our algorithm for approximation of optCost will use algorithms for optimizing the finite-horizon costs. We
first recall the well-known construction of the optimal finite-horizon strategies that minimizes the expected
total cost in POMDPs for length k.

Information state. For minimizing the expected total cost, strategies based on information states are
sufficient [30]. An information state b is defined as a probability distribution over the set of states, where for
s ∈ S the value b(s) denotes the probability of being in state s. We will denote by H the set of all information
states. Given an information state b, an action a, and an observation z, computing the resulting information
state b′ can be done in a straight forward way, see [4].

Value-iteration algorithm. The standard finite-horizon value-iteration algorithm for expected total cost
in the setting of perfect-information MDPs can be formulated by the following equation:

V ∗0 (s) = 0;

V ∗n (s) = min
a∈A

[
c(s, a) +

∑
s′∈S

δ(s, a)(s′)V ∗n−1(s′)

]
;

where V ∗n (s) represents the value of an optimal policy, when the starting state is s and there are n decision
steps remaining. For a POMDP the finite-horizon value-iteration algorithm works on the information states.
Let ψ(b, a) denote the probability distribution over the information states given that action a was played
in the information state b. The cost function c′ : H ×A → N that maps every pair of an information state
and an action to a positive real-valued cost is defined as follows: c′(b, a) =

∑
s∈S b(s) · c(s, a). The resulting

equation for finite-horizon value-iteration algorithm for POMDPs is as follows:

V ∗0 (b) = 0;

V ∗n (b) = min
a∈A

[
c′(b, a) +

∑
b′∈H

ψ(b, a)(b′)V ∗n−1(b′)

]
.
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The optimal strategy σFO
k and σ∗k. In our setting we modify the standard finite-horizon value-iteration

algorithm by restricting the optimal strategy to play only allowed actions and restrict it only to belief-
supports in the set BeliefWin(G,T ). The equation for the value-iteration algorithm is defined as follows:

V ∗0 (b) = 0;

V ∗n (b) = min
a∈Allow(Supp(b))

[
c′(b, a) +

∑
b′∈H

ψ(b, a)(b′)V ∗n−1(b′)

]
.

We obtain a strategy σFO
k = (σu, σn,M,m0) that is finite-horizon optimal for length k (here FO stands for

finite-horizon optimal) from the above equation as follows: (i) the set of memory elements M is defined as
H×N; (ii) the initial memory state is (λ0, k); (iii) for all 1 ≤ n ≤ k, the action selection function σn((b, n))

selects an arbitrary action a such that a = arg mina∈Allow(Supp(b))

[
c′(b, a) +

∑
b′∈H

ψ(b, a)(b′)V ∗n−1(b′)

]
; and

(iv) the memory update function given a memory state (b, n), action a, and an observation o updates to a
memory state (b′, n − 1), where b′ is the unique information state update from information state b under
action a and observation z. As the target states T in the POMDP G are absorbing and the costs on all
outgoing edges from the target states are the only edges with cost 0, it follows that for sufficiently large n
the strategy σkFO minimizes the expected total cost to reach the target set T . Given σFO

k , we define a strategy
σ∗k as follows: for the first k steps, the strategy σ∗k plays as the strategy σFO

k , and after the first k steps the
strategy plays as the strategy σAllow.

Lemma 8. For all k ∈ N the strategy σ∗k is almost-sure winning for the reachability objective Reach(T ).

Proof. By definition the strategy σFO
k (and hence the strategy σ∗k) plays only allowed actions in the first k

steps. Hence it follows that every reachable belief-support in the first k steps belongs to BeliefWin(G,T ). After
the first k steps, the strategy plays as σAllow, and by Lemma 6, the strategy σAllow is almost-sure winning for
the reachability objective Reach(T ) from every belief-support in BeliefWin(G,T ). The result follows. ut

Note that the only restriction in the construction of the strategy σFO
k is that it must play only allowed

actions, and since almost-sure winning strategies only play allowed actions (by Lemma 5) it follows that
σFO
k (and hence σ∗k) is optimal for the finite-horizon of length k (i.e., for the objective Totalk) among all

almost-sure winning strategies.

Lemma 9. For all k ∈ N we have Eσ
∗
k

λ0
[Totalk] = infσ∈AlmostG(T ) Eσλ0

[Totalk].

Note that since in the first k steps σ∗k plays as σFO
k we have the following proposition.

Proposition 1. For all k ∈ N we have Eσ
∗
k

λ0
[Totalk] = Eσ

FO
k

λ0
[Totalk].

4.4 Approximation algorithm

In this section we will show that for all ε > 0 there exists a bound k such that the strategy σ∗k approximates
optCost within ε. First we consider an upper bound on optCost.
Bound UAllow. We consider an upper bound UAllow on the expected total cost of the strategy σAllow starting
in an arbitrary state s ∈ U with the initial belief-support U ∈ BeliefWin(G,T ). Given a belief-support
U ∈ BeliefWin(G,T ) and a state s ∈ U let TAllow(s, U) denote the expected total cost of the strategy σAllow
starting in the state s with the initial belief-support U . Then the upper bound is defined as UAllow =
maxU∈BeliefWin(G,T ),s∈U TAllow(s, U). As the strategy σAllow is in AlmostG(T ) it follows that the value UAllow is
also an upper bound for the optimal cost optCost. Observe that by Lemma 7 it follows that UAllow is at most
double exponential in the size of the POMDP.

Lemma 10. We have optCost ≤ UAllow.
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Key lemma. We will now present our key lemma to obtain the bound on k depending on ε. We start
with a few notations. Given k ∈ N, let Ek denote the event of reaching the target set within k steps, i.e.,
Ek = {(s0, a0, s1, a1, s2 . . .) ∈ Ω | ∃i ≤ k : si ∈ T}; and Ek the complement of the event Ek that denotes the
target set is not reached within the first k steps. Recall that for plays ρ = (s0, a0, s1, a1, s2, a2, . . .) we have

Totalk =
∑k
i=0 c(si, ai) and we consider Totalk =

∑∞
i=k+1 c(si, ai) the sum of the costs after k steps. Note

that we have Total = Totalk + Totalk.

Lemma 11. For k ∈ N consider the strategy σ∗k that is obtained by playing an optimal finite-horizon strategy

σFO
k for k steps, followed by strategy σAllow. Let αk = Pσ

∗
k

λ0
(Ek) denote the probability that the target set is not

reached within the first k steps. We have

Eσ
∗
k

λ0
[Total] ≤ Eσ

∗
k

λ0
[Totalk] + αk · UAllow

Proof. We have

Eσ
∗
k

λ0
[Total] = Pσ

∗
k

λ0
(Ek) · Eσ

∗
k

λ0
[Total | Ek] + Pσ

∗
k

λ0
(Ek) · Eσ

∗
k

λ0
[Total | Ek]

= Pσ
∗
k

λ0
(Ek) · Eσ

∗
k

λ0
[Total | Ek] + Pσ

∗
k

λ0
(Ek) · Eσ

∗
k

λ0
[(Totalk + Totalk) | Ek]

= Pσ
∗
k

λ0
(Ek) · Eσ

∗
k

λ0
[Total | Ek] + Pσ

∗
k

λ0
(Ek) · Eσ

∗
k

λ0
[Totalk | Ek] + Pσ

∗
k

λ0
(Ek) · Eσ

∗
k

λ0
[Totalk | Ek]

= Pσ
∗
k

λ0
(Ek) · Eσ

∗
k

λ0
[Totalk | Ek] + Pσ

∗
k

λ0
(Ek) · Eσ

∗
k

λ0
[Totalk | Ek] + Pσ

∗
k

λ0
(Ek) · Eσ

∗
k

λ0
[Totalk | Ek]

= Eσ
∗
k

λ0
[Totalk] + Pσ

∗
k

λ0
(Ek) · Eσ

∗
k

λ0
[Totalk | Ek] ≤ Eσ

∗
k

λ0
[Totalk] + αk · UAllow.

The first equality is obtained by splitting with respect to the complementary events Ek and Ek; the second
equality is obtained by writing Total = Totalk +Totalk; and the third equality is by linearity of expectation.
The fourth equality is obtained as follows: since all outgoing transitions from target states have cost zero, it
follows that given the event Ek we have Total = Totalk. The fifth equality is obtained by combining the first
two terms. The final inequality is obtained as follows: from the (k + 1)-th step the strategy plays as σAllow
and the expected total cost given σAllow is bounded by UAllow. The result follows. ut

Lemma 12. For k ∈ N consider the strategy σ∗k and αk (as defined in Lemma 11). The following assertions
hold:

(1) Eσ
∗
k

λ0
[Totalk] ≤ optCost; and (2) αk ≤

optCost

k
.

Proof. We prove both the inequalities below.

1. For k ∈ N we have that

Eσ
∗
k

λ0
[Totalk] ≤ inf

σ∈AlmostG(T )
Eσλ0

[Totalk] ≤ inf
σ∈AlmostG(T )

Eσλ0
[Total] = optCost

The first inequality is due to Lemma 9 and the second inequality follows from the fact that Totalk ≤ Total
for non-negative weights.

2. Note that αk denotes the probability that the target state is not reached within the first k steps. Since
the costs are positive integers (for all transitions other than the target state transitions), given the event

Ek the total cost for k steps is at least k. Hence it follows that Eσ
∗
k

λ0
[Totalk] ≥ k ·αk. Thus it follows from

the first inequality that we have αk ≤ optCost
k .

The desired result follows. ut
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Algorithm 1 ApproxAlgo Input: POMDP, ε > 0

1: k ← 1
2: σAllow,UAllow ← Compute σAllow and UAllow . See Remark 3
3: σFO

k ← Finite-horizon value iteration for horizon k restricted to allowed actions . See Section 4.3

4: Tk ← Eσ
FO
k
λ0

[Totalk]

5: αk ← Pσ
FO
k
λ0

(Ek) . Note that Pσ
∗
k
λ0

(Ek) = Pσ
FO
k
λ0

(Ek)
6: Add. approx.: if αk · UAllow ≤ ε then goto line: 10
7: Mult. approx.: if αk · UAllow ≤ Tk · ε then goto line: 10
8: k ← k + 1
9: goto line: 3

10: return Strategy σ∗
k obtained by playing σFO

k for k-steps followed by σAllow

Approximation algorithms. Our approximation algorithm is presented as Algorithm 1.

Correctness and bound on iterations. Observe that by Proposition 1 we have Tk = Eσ
FO
k

λ0
[Totalk] =

Eσ∗λ0
[Totalk]. Thus by Lemma 11 and Lemma 12 (first inequality) we have Eσ∗λ0

[Total] ≤ Tk + αk · UAllow ≤
optCost + αk · UAllow (since Tk ≤ optCost). Thus if αk · UAllow ≤ ε we obtain an additive approximation. If
αk · UAllow ≤ Tk · ε, then we have Eσ∗λ0

[Total] ≤ Tk + αk · UAllow ≤ Tk · (1 + ε) ≤ optCost · (1 + ε); and we
obtain an multiplicative approximation. This establishes the correctness Algorithm 1. Finally, we present
the theoretical upper bound on k that ensures stopping for the algorithm. By Lemma 12 (second inequality)

we have αk ≤ optCost
k ≤ UAllowk . Thus k ≥ U

2
Allow

ε ensures that αk · UAllow ≤ ε, and the algorithm stops both for
additive and multiplicative approximation. We now summarize the main results of this section.

Theorem 2. In POMDPs with positive costs, the additive and multiplicative approximation problems for
the optimal cost optCost are decidable. Algorithm 1 computes the approximations using finite-horizon optimal
strategy computations and requires at most double-exponentially many iterations; and there exists POMDPs
where double-exponentially many iterations are required.

Remark 4. Note that though the theoretical upper bound k on the number of iterations
U2

Allow

ε is double
exponential in the worst case, in practical examples of interest the stopping criteria is expected to be satisfied
in much fewer iterations.

Remark 5. We remark that if we consider POMDPs with positive costs, then considering almost-sure strate-
gies is not a restriction. For every strategy that is not almost-sure winning, with positive probability the
target set is not reached, and since all costs are positive, the expected cost is infinite. If every strategy is
not almost-sure winning (i.e., there exists no almost-sure winning strategy to reach the target set from the
starting state), then the expected cost is infinite, and if there exists an almost-sure winning strategy, we
approximate the optimal cost. Thus our result is applicable to all POMDPs with positive costs. A closely
related work to ours is Goal-POMDPs, and the solution of Goal-POMDPs applies to the class of POMDPs
where the target state is reachable from every state (see [2, line-3, right column page 1] for the restriction
of Goal-MDPs and the solution of Goal-POMDPs is reduced to Goal-MDPs). For example, in the following
Section 5, the first three examples for experimental results do not satisfy the restriction of Goal-POMDPs.

5 Experimental Results

Implementation. We have implemented Algorithm 1. In principle our algorithm suggests the following: First,
compute the almost-sure winning belief-supports, the set of allowed actions, and σAllow; and then compute
finite-horizon value iteration restricted to allowed actions. An important feature of our algorithm is its
flexibility that any finite-horizon value iteration algorithm can be used for our purpose. We have implemented
our approach where we first implement the computation of almost-sure winning belief-supports, allowed
actions, and σAllow; and for the finite-horizon value iteration (Step 3 of Algorithm 1) we implement two
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approaches. The first approach is the exact finite-horizon value iteration using a modified version of POMDP-
Solve [3]; and the second approach is an approximate finite-horizon value iteration using a modified version
of RTDP-Bel [2]; and in both the cases our straightforward modification is that the computation of the
finite-horizon value iteration is restricted to allowed actions and almost-sure winning belief-supports.

Examples for experimental results. We experimented on several well-known examples of POMDPs. The
POMDP examples we considered are as follows: (A) We experimented with the Cheese maze POMDP
example which was introduced in [19] and also studied in [9, 18, 20]. Along with the standard example,
we also considered a larger maze version; and considered two cost functions: one that assign cost 1 to all
transitions and the other where the cost of movement on the baseline is assigned cost 2. (B) We considered the
Grid POMDP introduced in [28] and also studied in [18, 23, 20]. We considered two cost functions: one where
all costs are 1 and the other where transitions in narrow areas are assigned cost 2. (C) We experimented with
the robot navigation problem POMDP introduced in [18], where we considered both deterministic transition
and a randomized version. We also considered two cost functions: one where all costs are assigned 1 and the
other where costs of turning is assigned cost 2. (D) We consider the Hallway example from [18, 31, 29, 2].
(E) We consider the RockSample example from [2, 29].

Discussion on Experimental results. Our experimental results are shown in Table 1, where we compare our
approach to RTDP-Bel [2]. Other approaches such as SARSOP [16], anytime POMDP [25], ZMDP [29]
are for discounted setting, and hence are different from our approach. The RTDP-Bel approach works for
POMDPs where from every state the goal states are reachable, and our first three examples do not fall
into this category. For the first three examples, both of our exact and approximate implementation work
very efficiently. For the other two larger examples, the exact method does not work since POMDP-Solve
cannot handle large POMDPs, whereas our approximate method gives comparable result to RTDP-Bel. For
the exact computation, we consider multiplicative approximation with ε = 0.1 and report the number of
iterations and the time required by the exact computation. For the approximate computation, we report the
time required by the number of trials specified for the computation of the finite-horizon value iteration. For
the first three examples, the obtained value of the strategies of our approximate version closely matches the
value of the strategy of the exact computation, and for the last two example, the values of the strategies
obtained by our approximate version closely matches the values of the strategies obtained by RTDP-Bel.

Details of the POMDP examples. We now present the details of the POMDP examples.

1. Cheese maze: The example models a simple maze, where there are four actions n, e, s, w that correspond
to the movement in the four compass directions. The POMDP examples are shown in Figure 3 and
Figure 4. Actions that attempt to move outside of the maze have no effect on the position; otherwise the
movement is determined deterministically given the action in all four directions. In the small version,
there are 12 states and 8 observations, which correspond to what walls would be seen in all four directions
that are immediately adjacent to the current location, i.e., states 5, 6, and 7 have the same observation.
The game starts in a unique initial state that is not depicted in the figure, where all actions lead to the
baseline states 0, 1, 2, 3, or 4 with uniform probability. The target state is depicted with a star, and
there are also two absorbing trap states depicted with a skull. The initial state, the trap states, and the
goal state have their own unique observations. In the larger variant of the POMDP there are four more
states and intuitively they add a new leftmost branch to the POMDP with a third absorbing trap state
at the end. The new baseline is formed out of states 0, 1, 2, . . . , 6. In the first setting all the costs are
1, and this represents the number of steps to the target state; and in the second setting the cost of any
movement on the baseline is 2 and the movement in the branches costs 1 (which models that baseline
exploration is more costly).

2. Grid 4 × 3: The Grid POMDP is shown in Figure 5 and models a maze with 11 states: the starting
state 0, one target state depicted with a star, and an absorbing trap state that is depicted with a
skull. There are four actions n, e, s, w that correspond to the movement in the four compass directions.
The movement succeeds only with probability 0.96 and with probability 0.02 moves perpendicular to
the intended direction. Attempts to move outside of the grid have no effect on the position, i.e., playing
action s from state 0 will move with probability 0.96 to state 4; with probability 0.02 to state 1, and with

15



Example Costs |S| |A| |Z| σAllow comp.
Exact ε = 0.1 Approx. RTDP-Bel
Iter. Time Time Trials Time Trials

Cheese maze - small
{1}

12 4 8 0.27 · 10−3s
7 0.54s 0.06s 12k ×

{1, 2} 8 0.62s 0.06s 12k ×

Cheese maze - large
{1}

16 4 8 0.57 · 10−3s
9 12.18s 0.29s 12k ×

{1, 2} 12 16.55s 0.3s 12k ×

Grid
{1}

11 4 6 0.47 · 10−3s
6 0.33s 0.2s 12k ×

{1, 2} 10 4.21s 0.21s 12k ×

Robot movement - det.
{1}

15 3 11 0.43 · 10−3s
9 5.67s 0.08s 12k ×

{1, 2} 8 5.01s 0.08s 12k ×

Robot movement - ran.
{1}

15 3 11 0.52 · 10−3s
10 6.64s 0.08s 12k ×

{1, 2} 10 6.65s 0.04s 12k ×

Hallway {1} 61 5 22 0.32 · 10−1s Timeout 20m. 283.88s 12k 282.47s 12k

Hallway 2 {1} 94 5 17 0.58 · 10−1s Timeout 20m. 414.29s 14k 413.21s 14k

RockSample[4,4] {1, 50, 100} 257 9 2 0.05s Timeout 20m. 61.23s 20k 61.29s 20k

RockSample[5,5] {1, 50, 100} 801 10 2 0.26s Timeout 20m. 99.13s 20k 98.44s 20k

RockSample[5,7] {1, 50, 100} 3201 12 2 4.44s Timeout 20m. 427.94s 20k 422.61s 20k

RockSample[7,8] {1, 50, 100} 12545 13 2 78.83s Timeout 20m. 1106.2s 20k 1104.53s 20k

Table 1. Experimental results

Fig. 3. The Cheese Maze - small POMDP Fig. 4. The Cheese Maze - large POMDP

probability 0.02 to state 0. There are 6 observations that correspond to the information from detectors
that can detect whether there are walls immediately adjacent to the east and to the west of the current
state. The goal and the absorbing trap state have their own observations. We have again considered the
setting where all the costs before reaching the target state are 1. In the second setting we have assigned
to movements in the narrow areas of the maze (states 0, 1, 4, 7, and 8) cost of all actions to 2. Intuitively,
the higher costs compensate for the wall bumps that can make the movement in the narrow areas of the
maze more predictable.

3. Robot navigation: The robot navigation POMDP models the movement of a robot in an environment.
The robot can be in four possible states: facing north, east, south, and west. The environment has states
1, 2, 3, and a final state depicted with a star. The robot has three available actions: move forward f,
turn left l, and turn right r. The original setting of the problem is that all actions are deterministic –
Robot movement - det. We also consider a variant Robot movement - ran., where the attempt to make
an action may fail and with probability 0.04 has no effect, i.e., the action does not change the state. The
POMDP starts in a unique initial state that is not depicted in the figure and under all actions reaches the
state 1 with the robot facing north, east, south or west with uniform probability. Any bump to the wall
results in a damaged immobile robot, modeled by an absorbing state not depicted in the figure. There
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Fig. 5. The Grid 4× 3 POMDP

are 11 observations that correspond to what would be seen in all four directions that are adjacent to the
current location. The initial state, the damaged state, and the target state have their own observations.
For both variants we have considered two different cost settings. In the first setting all the costs before
reaching the target state are 1. In the second setting we assign cost 1 to the move forward action, and
cost 2 to the turn-left and turn-right action (i.e., turning is more costly than moving forward).

Fig. 6. The Robot POMDP

4. Hallway. We consider two versions of the Hallway example introduced in in [18] and used later in [31,
29, 2]. The basic idea behind both of the Hallway problems, is that there is an agent wandering around
some office building. It is assumed that the locations have been discretized so there are a finite number
of locations where the agent could be. The agent has a small finite set of actions it can take, but these
only succeed with some probability. Additionally, the agent is equipped with very short range sensors
to provide it only with information about whether it is adjacent to a wall. These sensors also have the
property that they are somewhat unreliable and will sometimes miss a wall or see a wall when there
is none. It can ”see” in four directions: forward, left, right, and backward. It is important to note that
these observations are relative to the current orientation of the agent (N, E, S, W). In these problems
the location in the building and the agent’s current orientation comprise the states. There is a single goal
location, denoted by the star. The actions that can be chosen consists of movements: forward, turn-left,
turn-right, turn-around, and no-op (stay in place). Action forward succeeds with probability 0.8, leaves
the state unchanged with probability 0.05, moves the agent to the left and rotates the agent to the
left with probability 0.05, similarly with probability 0.05 the agent moves to the right and is rotated
to the right, with probability 0.025 the agent is moved back without changing its orientation, and with
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probability 0.025 the agent is moved back and is rotated backwards. The action move-left and move-right
succeeds with probability 0.7, and with probability 0.1 each of the three remaining orientation is reached.
Action turn-around succeeds with probability 0.6, leaves the state unchanged with probability 0.1, turns
the agent to left or right, each with probability 0.15. The last action no-op leaves the state unchanged
with probability 1. In states where moving forward is impossible the probability mass for the impossible
next state is collapsed into the probability of not changing the state. Every move of the agent has a
cost of 1 and the agent starts with uniform probability in all non-goal states. In the smaller Hallway
problem there are 61 states and 22 observations. In the Hallway2 POMDP there are 94 states and 17
observations.

Fig. 7. Hallway Fig. 8. Hallway 2

Fig. 9. RockSample[7,8]

5. RockSample. The RockSample problem introduced in [29] and used later in [2] is a scalable problem that
models rover science exploration (Figure 9). The rover can achieve various costs by sampling rocks in
the immediate area, and by continuing its traverse (reaching the exit at the right side of the map). The
positions of the rover and the rocks are known, but only some of the rocks have scientific value; we will call
these rocks good. Sampling a rock is expensive, so the rover is equipped with a noisy long-range sensor
that it can use to help determine whether a rock is good before choosing whether to approach and sample
it. An instance of RockSample with map size n × n and k rocks is described as RockSample[n,k]. The
POMDP model of RockSample[n,k] is as follows. The state space is the cross product of k + 1 features:
Position = {(1, 1), (1, 2), ..., (n, n)}, and k binary features RockTypei = {Good ,Bad} that indicate which
of the rocks are good. There is an additional terminal state, reached when the rover moves off the right-
hand edge of the map. The rover can select from k + 5 actions: {N,S,E,W, sample, check1, ..., checkk}.
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The first four are deterministic single-step motion actions. The sample action samples the rock at the
rover’s current location. If the rock is good, the rover receives a small cost of 1 and the rock becomes bad
(indicating that nothing more can be gained by sampling it). If the rock is bad, it receives a higher cost
of 50. The cost of performing a measurement induces a cost of 1, attempt to move outside of the map has
a cost of 100. All other moves have a cost of 50. Each check i action applies the rover’s long-range sensor
to rock i, returning a noisy observation from Good,Bad. The noise in the long-range sensor reading is
determined by the efficiency ν, which decreases exponentially as a function of Euclidean distance from
the target. At ν = 1, the sensor always returns the correct value. At ν = 0, it has a 50/50 chance of
returning Good or Bad . At intermediate values, these behaviors are combined linearly. The initial belief
is that every rock has equal probability of being Good or Bad. All the problems have 2 observations,
and RockSample[4,4] has 257 states, RockSample[5,5] has 801 states, RockSample[5,7] has 3201 states,
and RockSample[7,8] has 12545 states.
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