
 Gist: A Solver for Probabilistic Games

Krishnendu Chatterjee , Thomas A. Henzinger,
 Barbara Jobstmann and Arjun Radhakrishna

IST Austria (Institute of Science and Technology Austria)

Am Campus 1

A-3400 Klosterneuburg

Technical Report No. IST-2009-0003

http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-0003.pdf

October 9, 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268226811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pub.ist.ac.at/Pubs/TechRpts/2009/IST-2009-002.pdf

Copyright © 2009, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Gist: A Solver for Probabilistic Games

Krishnendu Chatterjee1, Thomas A. Henzinger1,2, Barbara Jobstmann2, and
Arjun Radhakrishna1

1 IST Austria (Institute of Science and Technology Austria)
2 École Polytechnique Fédéral de Lausanne (EPFL), Switzerland

Abstract. Gist is a tool that (a) solves the qualitative analysis prob-
lem of turn-based probabilistic games with ω-regular objectives; and (b)
synthesizes reasonable environment assumptions for synthesis of unreal-
izable specifications. Our tool provides efficient implementations of sev-
eral reduction based techniques to solve turn-based probabilistic games,
and uses the analysis of turn-based probabilistic games for synthesizing
environment assumptions for unrealizable specifications.

1 Introduction

Gist (Game solver from IST) is a tool for (a) qualitative analysis of turn-based
probabilistic games (21/2-player games) with ω-regular objectives, and (b) com-
puting environment assumptions for synthesis of unrealizable specifications. The
class of 21/2-player games arise in several important applications related to verifi-
cation and synthesis of reactive systems. Some key applications are: (a) synthesis
of stochastic reactive systems; (b) verification of probabilistic systems; and (c)
synthesis of unrealizable specifications. We believe that our tool will be useful
for the above applications.

2 1/2-player games. The 21/2-player games are played on a graph by two players
along with probabilistic transitions. We consider ω-regular objectives over infi-
nite paths specified by parity, Rabin, Streett (strong fairness) conditions that
can express all ω-regular properties such as safety, reachability, liveness, fair-
ness, and most properties commonly used in verification. Given the description
of a game and an objective, our tool determines whether the first player has a
strategy that ensures the objective is satisfied with probability 1, and if so, it
constructs such a witness strategy. Our tool provides the first implementation of
qualitative analysis (probability 1 winning) of 21/2-player games with ω-regular
objectives.

Synthesis of environment assumptions. The synthesis problem asks to con-
struct a reactive finite-state system from an ω-regular specification. Initial speci-
fications are often unrealizable, which means that there is no system that imple-
ments the specification. A common reason for unrealizability is that assumptions
on the environment of the system are incomplete. The problem of correcting an
unrealizable specification Ψ by computing an environment assumption Φ such
that the new specification Φ → Ψ is realizable was studied in [4]. The work [4]
constructs an assumption Φ that constrains only the environment and is as weak
as possible. Our tool implements the algorithms of [4]. We believe our implemen-
tation will be useful in analysis of realizability of specifications and computation
of assumptions for realizability of specifications.

2 Definitions

We first present the basic definitions of games and objectives.

Game graphs. A turn-based probabilistic game graph (21/2-player game graph)
G = ((S, E), (S0, S1, SP), δ) consists of a directed graph (S, E), a partition (S0,
S1,SP) of the finite set S of states, and a probabilistic transition function δ:
SP → D(S), where D(S) denotes the set of probability distributions over the
state space S. The states in S0 are the player-0 states, where player 0 decides the
successor state; the states in S1 are the player-1 states, where player 1 decides
the successor state; and the states in SP are the probabilistic states, where the
successor state is chosen according to the probabilistic transition function δ. We
assume that for s ∈ SP and t ∈ S, we have (s, t) ∈ E iff δ(s)(t) > 0. The turn-
based deterministic game graphs (2-player game graphs) are the special case of
the 21/2-player game graphs with SP = ∅.

Objectives. We consider the three canonical form of ω-regular ob-
jectives: Streett (strong fairness objectives) and its dual Rabin objec-
tives; and parity objectives. The Streett objective consists of d-pairs
{ (Q1, R1), (Q2, R2), . . . , (Qd, Rd) } of request-response pairs where Qi denotes
a request and Ri denotes the corresponding response (each Qi and Ri are
subsets of the state space). The objective requires that if a request Qi hap-
pens infinitely often, then the corresponding response must happen infinitely
often. The Rabin objective is its dual. The parity (or Rabin-chain objective)
is the special case of Streett objectives when the set of request-responses
Q1 ⊂ R1 ⊂ Q2 ⊂ R2 ⊂ Q3 ⊂ · · · ⊂ Qd ⊂ Rd form a chain.

Qualitative analysis. The qualitative analysis for 21/2-player games is as fol-
lows: the input to the problem is a 21/2-player game graph, and an objective
Φ (Streett, Rabin or parity objective), and the output is the set of states such
that player 0 can ensure the satisfaction of Φ with probability 1. For detailed
description of game graphs, plays, strategies, objectives and notion of winning
see [1].

3 Tool Implementation

Our tool presents a solution of the following two problems.

Qualitative analysis of 2 1/2-player games. Our tool presents the first imple-
mentation for the qualitative analysis of 21/2-player games with Streett, Rabin
and parity objectives. We have implemented the linear-time reduction for qual-
itative analysis of 21/2-player Rabin and Streett games to 2-player Rabin and
Streett games of [1, 3], and the linear-time reduction for 21/2-player parity games
to 2-player parity games of [1, 2]. The 2-player Rabin and Streett games are
solved by reducing them to the 2-player parity games using the LAR (latest ap-
pearance records) construction [5, 9]. The 2-player parity games are solved using
the tool PGSolver [7]. Our tool uses the small progress measures algorithm [6]
implemented by PGSolver.

Environment assumptions for synthesis. A two-step algorithm for comput-
ing the environment assumptions as presented in [4]. The algorithm operates
on game graphs that is used to answer the realizability question. First, a safety

assumption that removes a minimal set of environment edges from the graph is
computed. Second, a fairness assumption that puts fairness conditions on some
of the remaining environment edges is computed. The problem of finding a min-
imal set of fair edges is computationally hard [4], and a reduction to 21/2-player
games was presented in [4] to compute a locally minimal fairness assumption.
The details of the implementation are as follows: given an LTL formula φ, the
conversion to an equivalent deterministic parity automaton is achieved through
GOAL [10]. Our tool then converts the parity automaton into a 2-player parity
game by splitting the states and transitions based on input and output symbols.
Our tool then computes the safety assumption by solving a safety model-checking
problem.The computation of the fairness assumption is achieved in the following
steps:

1. Step 1. convert the parity game with fairness assumption to a 21/2-player
game; and

2. Step 2. solve the 21/2-player game (using our tool) to check whether the
assumption is sufficient (if so, go to step 1 with a weaker fairness assumption).

The synthesized system is obtained from a witness strategy of the parity game.
The flow is illustrated in Figure 1.

LTL Formula
Det. Parity

Aut.
Synthesis

Game

Synthesized System
21/2-player

game

Safe
Synthesis

Game

GOAL

Assumption not locally minimal

Fig. 1. An example illustrating the flow of the tool

We illustrate the working of our tool on a simple example shown in Figure 2
Consider an LTL formula Φ = GFgrant ∧ G(cancel → ¬grant), where G
and F denote globally and eventually, respectively. The propositions grant and
cancel are abbreviated as g and c, respectively. From Φ our tool obtains a
deterministic parity automaton (Figure 2(a)) that accepts exactly the infinite
words that satisfies Φ. The parity automaton is then converted into a parity game
(Figure 2(b)) by splitting the states and transitions based on input and output
symbols. The 2 represent player 0 states and the 3 represent player 1 states. It
can be shown that in this game no safety assumption required. We illustrate how
to compute a locally minimal fairness assumption. Given an fairness assumption
on edges, our tool reduces the game with the assumption to a 21/2-player parity
game (see details in [4]). If the initial state in the 21/2-player game is in winning
with probability 1 for player 0, then the assumption is sufficient. Figure 2(c)
illustrates the 21/2-player game obtained with the fairness assumption on the
edge (0, 4). The © state is the probabilistic state with uniform distribution over
its successors. The assumption on the edge is the minimal fairness assumption
for the example. From a witness strategy in Figure 2(c) our tool obtains the
system which implements the specification with the assumption (Figure 2(d)).

0

1

2

¬g
c ∧ g

¬c ∧ g

T

¬g

c ∧ g

¬c ∧ g

(a) Deterministic Parity
Automaton

0

1

23

4

5
c
¬g

¬c

¬g

g

c

g

¬c

T

T

(b) 2-player Parity Game

0

0 1

23

4

5

(c) A 2 1

2
-player game obtained for

the fairness assumption which con-
tains only (0, 4)

0

¬c/g

c/¬g

(d) Transducer
System

Fig. 2. An example that illustrates the tool flow

Other features of Gist. Our tool is compatible with several other game solving
and synthesis tools: Gist is compatible with PGSolver and GOAL. Our tool
provides a graphical interface to describe games and automata, and thus can
also be used as a front-end to PGSolver to graphically describe games.

References

1. K. Chatterjee. Stochastic ω-Regular Games. PhD thesis, UC Berkeley, 2007.
2. K. Chatterjee, M. Jurdziński, and T.A. Henzinger. Quantitative stochastic parity

games. In SODA, pages 121–130. SIAM, 2004.
3. Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. The complexity

of stochastic Rabin and Streett games. In ICALP, pages 878–890. Springer, 2005.
4. Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann. Environ-

ment assumptions for synthesis. In CONCUR, pages 147–161. Springer, 2008.
5. Y. Gurevich and L. Harrington. Trees, automata, and games. In STOC, pages

60–65. ACM Press, 1982.
6. M. Jurdziński. Small progress measures for solving parity games. In STACS, pages

290–301. Springer, 2000.
7. Martin Lange and Oliver Friedmann. The pgsolver collection of parity game solvers.

Technical report, Institut für Informatik, Ludwig-Maximilians-Universität, 2009.
8. The JUNG Framework Development Team. JUNG: Java universal network/graph

framework. http://jung.sourceforge.net.
9. W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages,

volume 3, Beyond Words, chapter 7, pages 389–455. Springer, 1997.
10. Yih-Kuen Tsay, Yu-Fang Chen, Ming-Hsien Tsai, Wen-Chin Chan, and Chi-Jian

Luo. Goal extended: Towards a research tool for omega automata and temporal
logic. In TACAS, pages 346–350, 2008.

4 Appendix: Details of the Tool

Gist is available for download at http://pub.ist.ac.at/gist for Unix-based
architectures. All the libraries that Gist uses are packaged along with it.

4.1 Dependencies and Architecture

Language, tools and installation. Gist is written in Scala and it uses several
other tools. For the graphical interface to draw game graphs and automata it
uses the JUNG library [8] for layouts. For translation of an LTL formula to a
deterministic parity automata it uses GOAL [10]. The solution of 2-player parity
games is achieved by using PGSolver [7]. For compilation and installation: (a)
an installation of the Scala compiler and runtime environment is required; (b)
the PGSolver build process requires an OCaml compiler to be installed; and (c)
GOAL and JUNG require a Java runtime environment to be installed.

Source code. The source code of Gist is composed mainly of five modules:

1. Module newgames mainly consists of the classes for all probabilistic ω-
regular games, such Büchi, coBüchi, Rabin, Streett and parity objectives.
Each of these classes contains routines for the reduction of the 21/2-player
version to the 2-player version. Each of these classes also returns a witness
strategy for the player as required.

2. Module specification consists of classes implementing the specifications
for the synthesis problem, i.e. LTL formulae, Büchi automata and parity
automata. The class for LTL formulae contains a routine to convert LTL
formulae into an equivalent nondeterministic Büchi automata and the class
for Büchi automata has a routine for converting it into a deterministic parity
automaton. The parity automata class can generate the synthesis game (by
splitting transitions) for the automaton as described in [4].

3. Module synthesis contains the classes relevant to the process of synthesis.
The class for synthesis games contains routines (a) to compute transducers
implementing the specification, (b) to compute minimal safety assumption
and locally minimal fairness assumption in case of an unrealizable specifica-
tion, (c) to check whether user-specified assumptions are sufficient to make
the specification realizable, and (d) to get the assumptions as a Streett au-
tomaton.

4. Modules gui and cui contain classes for graphical and text based user in-
terfaces. Most of the functionality in the cui module is contained in the
Console class, which interprets a command line.

5. Module basic contains the definitions which are needed by all other packages,
namely, the classes for alphabet, symbols and automata.

In addition to these, there are other routines to parse and write automata and
game graphs in files in a format that can be used with GOAL.

4.2 User Manual

In this section we describe the usage of the graphical and text-based interface
of the tool.
Format of files. The file format used by the tool is based on the format used
by GOAL. The format for games and automata structures is presented below:

<structure label-on="transition" type=["game"|"fa"]>

<alphabet type="propositional">

<prop type=["input"|"output"]>TEXT</prop>

...

</alphabet>

<stateSet>

<state sid="NUMERIC">

[<player>[0|1|-1]</player>]

[<label>TEXT</label>]

</state>

...

</stateSet>

<transitionSet>

<transition tid="NUMERIC">

<from>NUMERIC(State ID)</from>

<to>NUMERIC(State ID)</to>

<read>TEXT(Symbol)</read>

</transition>

...

</transitionSet>

<initialStateSet>

<stateID>NUMERIC</stateID>

</initialStateSet>

<acc type="[buchi|parity|rabin|streett]">

<accSet> %For Buchi and parity acceptance conditions

<stateID>NUMERIC(State ID)</stateID>

...

</accSet>

<accSet> %For Rabin and Streett acceptance conditions

<E>

<stateID>NUMERIC(State ID)</stateID>

...

</E>

<F>

<stateID>NUMERIC(State ID)</stateID>

...

</F>

...

</accSet>

</acc>

</structure>

Graphical Interface. The graphical interface for Gist consists of a window
for each kind of game graph, automata, and formula the tool considers. When
Gist is invoked, a window is shown with buttons for each kind. A window
for a specific kind contains buttons that represent relevant actions that can be
performed. There are also generic options such as saving and loading.

For automata and game graphs, the window contains an area in which the
graph is laid out visually. The layout can be changed by dragging the vertices and
the edges of the graph. Gist uses the layout algorithms of JUNG to automati-

cally layout the graph. The layout algorithms can be chosen by right-clicking on
the window and selecting Layout from a pop-up menu that appears. Also, sets
of vertices or edges can be highlighted for other operations (such as finding suf-
ficiency of assumptions containing these edges) by choosing Highlight Mode

on the pop-up menu.
The tool also includes interfaces for building automata and games graphically.

In these windows, one can insert states or edges into a structure by selecting the
appropriate mode from the pop-up menu. When an edge is created, the user can
label the edge appropriately. The alphabet for the symbols (for labeling edges)
must be set before the edges are created. States and edges can also be deleted
using the Delete mode.
Text-based Interface. The text-based interface for Gist is an interactive
prompt. The user can define and use variable for any object. Variables need
not be declared before use. All variable names need to begin with a $. The
syntax for the statements is defined below.

Variable := $[a-zA-Z0-9]*

Statement := Variable --Prints the value of the variable

| Variable = Variable --Assignment

| Variable = Expression --Assignment

Expression := Object Action

Object := "LTL" | "BuchiAutomaton" | "ParityAutomaton"

| "SynthesisGame" | "StreettAutomaton" | "ParityGame"

| "RabinGame" | "StreettGame"

Action := readFile ... | writeFile ... | help | ...

The “action” as seen in the above syntax definition varies depending upon the
object. The help action for any object displays all the other actions available
for this object along with an explaination.

All objects which represent games have the following actions: winningRe-

gion, cooperativeWinningRegion, and toDeterministicGame. The action
winningRegion takes an argument, either 0 or 1 (for a player), and computes
the set of states from which the player wins with probability 1. The action co-

operativeWinningRegion is invoked only for 2-player games, and it computes
the set of states such that there is a path to satisfy the objective of player 0.
The action toDeterministicGame is invoked on 21/2-player games and it re-
turns a 2-player game in which probability 1 winning of player 0 is preserved. In
addition, the action winningStrategy computes the winning strategy of each
player in 2-player games, and the probability 1 winning strategy in 21/2-player
games.

The objects for Büchi automata have an action toParityAutomaton to
convert it into equivalent deterministic parity automata. Similarly, the objects
for LTL formulae and parity automata have actions to convert them into non-
deterministic Büchi automata and Synthesis games respectively. The objects for
Synthesis games have actions related to synthesis and computation of environ-
ment assumptions.

The text-based interface for Gist is also available online at http://pub.ist.
ac.at/gist. Figure 3 shows the screenshot for the text-interface with input and
output for Example 1 (described in the following subsection). Figure 4 shows
the screenshot of the web interface for a similar example.

Fig. 3. Example to illustrate the text-based interface

Fig. 4. Gist web interface

4.3 Examples

In this section, we present two examples to illustrate the usage of Gist. These
examples demonstrate the usage of Gist for computation of environment as-
sumptions for synthesis and uses solution of 21/2-player games. In these exam-
ples, we compute the assumptions for two unrealizable specifications given in
LTL. Both the specifications are about request-response systems and are chosen
to illustrate safety and fairness assumptions respectively.

Fig. 5. Example 1. The safety assumption is highlighted

Example 1. Consider a request-response system in which there are two inputs,
request and cancel, and one output grant. Now, consider the specification
G(request → grant) ∧ G(cancel → ¬grant). This specification is unrealiz-
able: any input in which both request and cancel are set at the same time
does not have an output which satisfies the specification. We can compute an
environment assumption for this specification using Gist. Intuitively, we would
want an assumption that says request and cancel must not be set at the same
time provided the specification was not already violated earlier. We show that
the assumption can be computed automatically by Gist.

To compute the assumption using Gist, we select LTL formula from the main
window of options and then enter the formula above, specifying the inputs and
outputs. This formula is then converted into a nondeterministic Büchi automaton
and then to a deterministic parity automaton, and finally to a synthesis game. In
this game, we attempt to compute the safety assumption. The safety assumption
is highlighted (green arrows in a box; (0,4) and (2,7)) as shown in Figure 5. As

shown in Figure 5, the safety assumption includes all the edges where request

and cancel are set at the same time. But, if there has been an instance of a
request not being granted already, then there is no restriction on the inputs.
This is the same assumption as was expected intuitively. Now, we can obtain
a synthesis game where the safety assumption is enforced. In this new game, if
the fairness assumption is computed the output shows no fairness assumption
is necessary. A transducer that implements the modified specification can be
obtained from the solution of this game.

Fig. 6. Example 2. The fairness assumption is highlighted

Example 2. Consider the request-response system as in Example 1. But, with
the specification (GFgrant) ∧ G(cancel → ¬grant). This specification says
that we should have infinitely many grants and that at every step, if cancel

is set, then there should be no grant at that step. This specification is also
unrealizable as any input where the cancel is always set has no acceptable
output. We can see that if cancel is not set always after a point, then the
specification becomes realizable. This condition can be computed using Gist

following the same steps as in the above example: first the tool finds that no
safety assumption is necessary, and then it computes the fairness assumption in
the synthesis game. The fairness assumption is computed internally by reduction
to 21/2-player games. The fairness assumption is highlighted (by green arrow
in a box; (0,4)) in the screenshot Figure 6. The computed assumption can be
interpreted as follows: the highlighted edge must be taken infinitely often if
the source vertex of the edge is visited infinitely often. Translating this into
propositions, it means that at any step, cancel cannot be set forever in the
future.

