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An O(n2) Time Algorithm for Alternating Büchi Games

Krishnendu Chatterjee∗ Monika Henzinger†

Abstract
Computing the winning set for Büchi objectives in alternating games on graphs is a central problem in

computer aided verification with a large number of applications. The long standing best known upper bound
for solving the problem is Õ(n · m), where n is the number of vertices and m is the number of edges in the
graph. We are the first to break the Õ(n ·m) boundary by presenting a new technique that reduces the running
time to O(n2). This bound also leads to O(n2) time algorithms for computing the set of almost-sure winning
vertices for Büchi objectives (1) in alternating games with probabilistic transitions (improving an earlier bound
of Õ(n ·m)), (2) in concurrent graph games with constant actions (improving an earlier bound of O(n3)), and
(3) in Markov decision processes (improving for m > n4/3 an earlier bound of O(min(m1.5,m · n2/3)). We
also show that the same technique can be used to compute the maximal end-component decomposition of a
graph in time O(n2), which is an improvement over earlier bounds for m > n4/3. Finally, we show how to
maintain the winning set for Büchi objectives in alternating games under a sequence of edge insertions or a
sequence of edge deletions in O(n) amortized time per operation. This is the first dynamic algorithm for this
problem.

Keywords: (1) Graph games; (2) Büchi objectives; (3) Graph algorithms; (4) Dynamic graph algorithms; (5)
Computer-aided verification.

1 Introduction
Consider a directed graph (V,E) with a partition (V1, V2) of V and a set B ⊂ V of Büchi vertices. This graph is
called a game graph. Let n = |V | and m = |E|. Two players play the following alternating game on the graph
that forms an infinite path. They start by placing a token on an initial vertex and then take turns indefinitely in
moving the token: At a vertex v ∈ V1 player 1 moves the token along one of the out-edges of v, at a vertex u ∈ V2

player 2 moves the token along one of the out-edges of u. A first question to ask is given a start vertex x ∈ V
can player 1 guarantee that the infinite path visits a vertex in B at least once, no matter what choices player 2
makes. If so player 1 can win from x and x belongs to the winning set of player 1. The question of computing the
set of vertices from which player 1 can win (called the winning set) is called the (alternating) reachability game
problem. The problem is PTIME-complete and the winning set of player 1 can be computed in time linear in the
size of the graph [2, 20]. A second, more central question is whether player 1 can guarantee that the infinite path
visits a vertex in B infinitely often, no matter what choices player 2 makes. Computing the winning set of player
1 for this setting is called the (alternating) Büchi game problem. The best known algorithms for this problem are
algorithms that repeatedly compute the alternating reachability game solution on the graph after the removal of
specific vertices. Their running time is Õ(n · m). We present in this paper a new algorithmic technique for the
alternating Büchi game problem which is inspired by dynamic graph algorithms and which reduces the running
time to O(n2).

Two-player games on graphs played by player 1 and the adversary player 2 are central in many problems
in computer science, specially in verification and synthesis of systems such as the synthesis of systems from
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specifications and synthesis of reactive systems [11, 27, 28], verification of open systems [1], checking interface
compatibility [14], well-formedness of specifications [15], and many others. Besides their application in
verification, they have also been studied in artifical intelligence as AND-OR graphs [25], and in the context
of alternating Turing machines [6].

The class of Büchi or repeated reachability objectives was introduced in the seminal works of Büchi [3, 4, 5]
in the context of automata over infinite words. The alternating Büchi game problem is one of the core problems in
verification and synthesis. For example, (a) the solution of the synthesis problem for deterministic Büchi automata
is achieved through solving the alternating Büchi game problem (see [24] for the importance of deterministic
Büchi automata); and (b) the verification of open systems with liveness and weak fairness conditions (two key
specifications used in verification) is again solved through alternating Büchi game problem [1]. Vardi [31, 30]
discusses further applications of the alternating Büchi game problem and its importance. The classical algorithm
for alternating Büchi games follows from the results of [16, 26, 32], its complexity is O(n · m). The algorithm
was improved in the special case of game graphs with m = O(n) to O(n2/ log n) time in [9]. A generalization
of the algorithm from [9] was presented in [8], and the new algorithm requires O((n · m · log ∆)/ log n) time,
where ∆ is the maximum out-degree. Thus the long standing best known upper bound for solving the alternating
Büchi game problem is Õ(n ·m).

In the design and verification of open systems it is natural that the systems under verification are developed
incrementally by adding choices or removing choices for the system, which is represented by player 1. However
the adversary, modeled by player 2, is the environment, and the system design has no control over the environment
actions. Hence there is a clear motivation to obtain dynamic algorithms for the alternating Büchi game problem,
when edges leaving player-1 vertices are inserted or deleted, while edges leaving player-2 vertices remain
unchanged.

Our contributions. In this work we present improved static and the first dynamic algorithms for the alternating
Büchi game problem using graph algorithmic techniques. Our main results are as follows.

1. We present an O(n2) time algorithm for the alternating Büchi game problem, and thus break the long
standing barrier of Õ(n·m) for the problem. It follows that in combination with the O(n2/ log n) algorithm
for m = O(n), we break the O(n ·m) barrier for all cases.

2. We present the first incremental and decremental algorithms for the alternating Büchi game problem. Our
algorithm is based on the progress measure algorithm of [21] and generalizes the Even-Shiloach algorithm
for decremental reachability in undirected graphs [17], which was generalized to directed graphs in [18].
The total time for all operations is O(n ·m), i.e., the amortized time per operation is O(n).

3. Using our techniques to solve alternating Büchi games we also show that the maximal end-component
decomposition problem (a core problem in probabilistic verification) can also be solved in O(n2) time
(see [13] and other references of [7] for the importance of the problem). The best known bound for this
problem was O(min(m1.5,m · n2/3)) [7]. Thus, our algorithm is faster for m > n4/3 and we obtain an
improved bound of O(min(m1.5, n2)) for the problem.

Decremental and incremenal algorithms for computing the maximal end-component decomposition was given
in [7]. However, our algorithms are the first dynamic algorithms for the alternating Büchi game problem and
completely different from [7]. Our result for alternating Büchi games improves the bounds for other problems as
well. We list them below.

1. The problem of computing the set of almost-sure (or probability 1) winning vertices in alternating games
with probabilistic transitions (aka simple stochastic games [12]) and Büchi objectives can be solved in
O(n2) time improving the previous known Õ(n ·m) bound: this follows from the linear reduction of [10]
from simple stochastic games to alternating Büchi games for almost-sure winning and our Büchi algorithm.

2. The problem of computing the set of almost-sure (probability 1) and limit-sure (probability arbitrarily
close to 1) winning vertices in concurrent graph games (aka games with simultaneous interaction) with
constant actions with Büchi objectives can be solved in O(n2) time: this follows from the linear reduction



from concurrent games to alternating Büchi games [22] and our Büchi algorithm. The best known bound
for concurrent graph games with constant actions with Büchi objectives was O(n · |δ|), where |δ| is the
number of transitions which is O(n2) in the worst case. Thus, in the worst case the previous best known
bound was O(n3).

3. As a consequence of our O(n2) algorithm for Büchi games and the linear reduction of [10], we also obtain
an O(n2) algorithm for computing almost-sure winning states for Markov decision processes with Büchi
objectives. The best known bound for this problem was O(min(m1.5,m · n2/3)) [7]. Thus, our algorithm
is faster for m > n4/3 and we obtain an improved bound of O(min(m1.5, n2)) for the problem.

Our main technical contribution is twofold: (1) The classical algorithm for alternating Büchi games
repeatedly removes non-winning vertices from the game graph and then recomputes the player-1 winning set for
the alternating reachability game problem. Similar to the classical algorithm our algorithm repeatedly removes
non-winning vertices from the game graph. However, it finds these vertices more efficiently using a hierarchical
graph decomposition technique. This technique was used first by Henzinger et al. [19] for processing repeated
edge deletions in undirected graphs. We show how this technique can be extended to work for vertex deletions
in (directed) game graphs. As a result we achieve faster algorithms for the alternating Büchi game problem and
for computing the maximal end-component decomposition. Moreover, even in sparse graphs, our technique can
be useful. If m = c · n and c is a large constant, then our hiercharical decomposition can be used with a small
number of levels, such as 2 or 3, to speed up the algorithm in practice.

(2) Even and Shiloach [17] gave a deletions-only algorithm for maintaining reachability in undirected graphs.
We show how to extend this algorithm to edge deletions in directed game graphs. A purely graph-theoretic proof
of the correctness of the new algorithm would be lengthy. However, by using an elegant argument based on
fix-points we give a simple proof of the correctness and an analysis of the running time of the new algorithm.
The new algorithm is simple and, like the algorithm in [17], does not need any sophisticated data structures. We
use a “dual” fix point argument to construct an incremental algorithm for alternating Büchi games.

The paper is organized as follows: We give all necessary definitions in Section 2. Section 3 and Section 4
contain the new static algorithms for the alternating Büchi game and the maximal end-component decomposition
problem. Section 5 finally contains the new dynamic algorithms.

2 Definitions
Alternating Game graphs. An (alternating) game graph G = ((V,E), (V1, V2)) consists of a directed graph
(V,E) with a set V of n vertices and a set E of m edges, and a partition (V1, V2) of V into two sets. The
vertices in V1 are player 1 vertices and the vertices in V2 are player 2 vertices. For a vertex u ∈ V , we write
Out(u) = {v ∈ V | (u, v) ∈ E} for the set of successor vertices of u and In(u) = {v ∈ V | (v, u) ∈ E} for the
set of incoming edges of u. We assume that every vertex has at least one out-going edge.
Plays. A game is played by two players: player 1 and player 2, who form an infinite path in the game graph
by moving a token along edges. They start by placing the token on an initial vertex, and then they take moves
indefinitely in the following way. If the token is on a vertex in V1, then player 1 moves the token along one of
the edges going out of the vertex. If the token is on a vertex in V2, then player 2 does likewise. The result is an
infinite path in the game graph, called plays. We write Ω for the set of all plays.
Strategies. A strategy for a player is a rule that specifies how to extend plays. Formally, a strategy σ for
player 1 is a function σ: V1 → V such that σ(v) ∈ Out(v) for all v ∈ V1, and analogously for player 2
strategies1. We write Σ and Π for the sets of all strategies for player 1 and player 2, respectively. Given a

1In general strategies are defined as functions σ: V ∗ · V1 → V that, given a finite sequence of vertices (representing the history of the play so far)
which ends in a player 1 vertex, chooses the next vertex. The strategy must choose only available successors, i.e., for all w ∈ V ∗ and v ∈ V1 we
have σ(w · v) ∈ Out(v). The strategies for player 2 are defined analogously. However for all objectives considered in the paper there exists a winning
memoryless strategy for a player at a vertex v iff there exists a winning strategy with memory for the player at v. Thus for simplicity we only consider the
simpler class of memoryless strategies.



starting vertex v ∈ V , a strategy σ ∈ Σ for player 1, and a strategy π ∈ Π for player 2, there is a unique play,
denoted ω(v, σ, π) = 〈v0, v1, v2, . . .〉, which is defined as follows: v0 = v and for all k ≥ 0, if vk ∈ V1, then
σ(vk) = vk+1, and if vk ∈ V2, then π(vk) = vk+1.
Objectives. We consider game graphs with a Büchi objective for player 1 and the complementary coBüchi
objective for player 2. For a play ω = 〈v0, v1, v2, . . .〉 ∈ Ω, we define Inf(ω) = {v ∈ V |
vk = v for infinitely many k ≥ 0} to be the set of vertices that occur infinitely often in ω. We also define reach-
ability and safety objectives as they will be useful in the analysis of the algorithms.
Reachability and safety objectives. Given a set T ⊆ V of vertices, the reachability objective Reach(T ) requires
that some vertex in T be visited, and dually, the safety objective Safe(F ) requires that only vertices in F be
visited. Formally, the sets of winning plays are Reach(T ) = {〈v0, v1, v2, . . .〉 ∈ Ω | ∃k ≥ 0. vk ∈ T} and
Safe(F ) = {〈v0, v1, v2, . . .〉 ∈ Ω | ∀k ≥ 0. vk ∈ F}. The reachability and safety objectives are dual in the sense
that Reach(T ) = Ω \ Safe(V \ T ).
Büchi and coBüchi objectives. Given a set B ⊆ V of vertices, the Büchi objective Buchi(B) requires that some
vertex in B be visited infinitely often, and dually, the coBüchi objective coBuchi(C) requires that only vertices
in C be visited infinitely often. Thus, the sets of winning plays are Buchi(B) = {ω ∈ Ω | Inf(ω) ∩ B 6= ∅}
and coBuchi(C) = {ω ∈ Ω | Inf(ω) ⊆ C}. The Büchi and coBüchi objectives are dual in the sense that
Buchi(B) = Ω \ coBuchi(V \B).
Winning strategies and sets. Given an objective Φ ⊆ Ω for player 1, a strategy σ ∈ Σ is a winning
strategy for player 1 from a vertex v if for all player 2 strategies π ∈ Π the play ω(v, σ, π) is winning, i.e.,
ω(v, σ, π) ∈ Φ. The winning strategies for player 2 are defined analogously by switching the role of player 1
and player 2 in the above definition. A vertex v ∈ V is winning for player 1 with respect to the objective
Φ if player 1 has a winning strategy from v. Formally, the set of winning vertices for player 1 with respect
to the objective Φ is W1(Φ) = {v ∈ V | ∃σ ∈ Σ. ∀π ∈ Π. ω(v, σ, π) ∈ Φ} the set of all winning
vertices. Analogously, the set of all winning vertices for player 2 with respect to an objective Ψ ⊆ Ω is
W2(Ψ) = {v ∈ V | ∃π ∈ Π. ∀σ ∈ Σ. ω(v, σ, π) ∈ Ψ}.

THEOREM 2.1. (CLASSICAL MEMORYLESS DETERMINACY [16]) For all game graphs G =
((V,E), (V1, V2)), all Büchi objectives Φ for player 1, and the complementary coBüchi objective Ψ = Ω \ Φ for
player 2, we have W1(Φ) = V \W2(Ψ).

Thus the theorem shows that every vertex of V either belongs to the winning set of Büchi objectives of player 1
or to the winning set of coBüchi objectives for player 2. Since we only consider this setting we simply say in the
rest of the paper that every vertex either is winning for player 1 or winning for player 2.

The algorithmic question in alternating graph games with Büchi objective Φ is to compute the set W1(Φ).

3 Algorithms for Büchi Games
In this section we present the classical iterative algorithm for Büchi games to compute the winning sets. We then
present our new algorithm. We start with the notion of closed sets, attractors, and alternating reachability which
are key notions for the analysis of the algorithm. We present the graph theoretic definitions, and then present
well-known facts that establish the connection of the graph definitions and strategies in alternating game graphs.
Closed sets. A set U ⊆ V of vertices is a closed set for player 1 if the following two conditions hold: (a) For
all vertices u ∈ (U ∩ V1), we have Out(u) ⊆ U , i.e., all successors of player 1 vertices in U are again in U ;
and (b) for all u ∈ (U ∩ V2), we have Out(u) ∩ U 6= ∅, i.e., every player 2 vertex in U has a successor in U .
The closed sets for player 2 are defined analogously as above by exchanging the roles of player 1 and player 2
(exchanging V1 and V2). Every closed set U for player ` ∈ {1, 2}, induces a sub-game graph, denoted G � U .
Fact 1. Consider a game graph G, and a closed set U for player 1. Then the following assertions hold:

1. Player 2 has a winning strategy for the objective Safe(U) for all vertices in U , i.e., player 2 can ensure that
if the play starts in U , then the play never leaves set U .



2. For all T ⊆ V \ U , we have W1(Reach(T )) ∩ U = ∅, i.e., for any set T of vertices outside U , player 1
does not have a strategy from vertices in U to ensure to reach T .

3. If U ∩B = ∅ (i.e., there is no Büchi vertex in U ), then every vertex in U is winning for player 2.
Attractors. Given a game graph G, a set U ⊆ V of target vertices, and a player ` ∈ {1, 2}, the set Attr `(U,G)
(called attractor) is the set of vertices from which player ` has a strategy to reach a vertex in U against all
strategies of the other player; that is, Attr `(U,G) = W`(Reach(U)). The set Attr1(U,G) can be defined
inductively as follows: let R0 = U ; let Ri+1 = Ri ∪ {v ∈ V1 | Out(v) ∩ Ri 6= ∅} ∪ {v ∈ V2 | Out(v) ⊆
Ri} for all i ≥ 0; then Attr1(U,G) =

⋃
i≥0 Ri. The inductive definition of Attr2(U,G) is analogous with

V1 replaced by V2 and vice-versa. For all vertices v ∈ Attr1(U,G), define rank(v) = i if v ∈ Ri \Ri−1, that is,
rank(v) denotes the least i ≥ 0 such that v is included in Ri. Define a memoryless strategy σ ∈ Σ for player 1 as
follows: for each vertex v ∈ (Attr1(U,G)∩ V1) with rank(v) = i, choose a successor σ(v) ∈ (Ri−1 ∩Out(v))
(such a successor exists by the inductive definition). It follows that for all vertex v ∈ Attr1(U,G) and all
strategies π ∈ Π for player 2, the play ω(v, σ, π) reaches U in at most |Attr1(U,G)| transitions. Observe that for
` ∈ {1, 2}, we have U ⊆ Attr `(U,G), i.e., the set U always belongs to the attractor.
Alternating reachability. For ` ∈ {1, 2}, for a vertex u ∈ Attr `(U,G) we say that u can alt`-reach the set U . In
other words, alt`-reach denotes that player ` has a strategy to reach the target set, irrespective of the strategy of
the other player.

Fact 2. For all game graphs G, all players ` ∈ {1, 2}, and all sets U ⊆ V of vertices, the following holds:
1. The set V \Attr `(U,G) is a closed set for player `, i.e., no player ` vertex in V \Attr `(U,G) has an edge

to Attr `(U,G) and every vertex of the other player in V \Attr `(U,G) has an edge in V \Attr `(U,G).
2. The set Attr `(U,G) can be computed in time O(|

∑
v∈Attr`(U,G) In(v)|) [2, 20].

COROLLARY 3.1. Every vertex in the set V \Attr1(B,G) is winning for player 2 and is not winning for player 1.

3.1 Classical algorithm for Büchi games In this subsection we present the classical algorithm for Büchi
games. We start with an informal description of the algorithm.

Informal description of classical algorithm. The classical algorithm (Algorithm 1) works as follows. We
describe an iteration j of the algorithm: the set of vertices at iteration j is denoted by V j , the game graph by Gj

and the set of Büchi vertices B ∩ V j by Bj . At iteration j, the algorithm first finds the set of vertices Rj from
which player 1 can alt1-reach the set Bj , i.e., computes Attr1(Bj , Gj). The rest of the vertices Tr j = V j \Rj is
a closed subset for player 1, and Tr j ∩Bj = ∅. Thus the set Tr j is winning for player 2 (by Corollary 3.1). Then
the set of vertices Wj+1, from which player 2 can alt2-reach the set Tr j , i.e., Attr2(Tr j , Gj) is computed. The
set Wj+1 is winning for player 2, and not for player 1 in Gj and also in G. Thus, it is removed from the vertex
set to obtain game graph Gj+1. The algorithm then iterates on the reduced game graph, i.e., proceeds to iteration
j + 1 on Gj+1. In every iteration it performs a linear-time attractor computation is performed with the current
Büchi vertices as target to find the set of vertices which can alt1-reach the Büchi set. Each iteration takes O(m)
time and the algorithm runs for at most O(n) iterations, giving a total time of O(n ·m). The algorithm is formally
described as Algorithm 1. The correctness proof of the algorithm shows that when the algorithm terminates, all
the remaining vertices are winning for player 1 [26, 29].

THEOREM 3.1. (CORRECTNESS AND RUNNING TIME) Given a game graph G = ((V,E), (V1, V2)) and B ⊆
V the following assertions hold:

1. W = W2(coBuchi(V \B)) and V \W = W1(Buchi(B)), where W is the output of Algorithm 1; and
2. the running time of Algorithm 1 is O(n ·m).

3.2 New Algorithm In this section we present our new algorithm for computing the winning set for game
graphs with Büchi objectives in time O(n2).



Algorithm 1 Classical algorithm for Büchi Games
Input : A game graph G = ((V,E), (V1, V2) and B ⊆ V .
Output: W ⊆ V .
1. G0 := G; V 0 := V ; 2. W0 := ∅; 3. j := 0
4. repeat

4.1 Wj+1 := AvoidSetClassical(Gj , B ∩ V j)
4.2 V j+1 := V j \Wj+1; Gj+1 = G � V j+1; j := j + 1;

until Wj = ∅
5. W :=

⋃j
k=1 Wk;

6. return W .

Procedure AvoidSetClassical
Input: Game graph Gj and Bj ⊆ V j .
Output: set Wj+1 ⊆ V j .
1. Rj := Attr1(Bj , Gj); 2. Tr j := V j \Rj ; 3. Wj+1 := Attr2(Tr j , Gj)

Notations. Given an alternating game graph G = ((V,E), (V1, V2)) and a set B of Büchi vertices, we label the
Büchi vertices as priority 0 vertices, and the set V \B as priority 1 vertices. For every vertex v the inedges have
a fixed order such that all edges from priority 1 player-2 vertices come before all edges from priority 1 player-
1 vertices and all edges from priority 1 vertices come before all edges from priority 0 vertices. We maintain
log n graphs Gi such that Gi = (V,Ei). The set Ei contains all edges (u, v) where (a) outdeg(u) < 2i, where
outdeg(u) = |Out(u)| or (b) the edge (u, v) belongs to the first 2i inedges of vertex v. Note that Ei−1 ⊆ Ei

since the order of the inedges is fixed. We color every player-1 vertex v in Gi blue if outdeg(v) ≥ 2i. We color
every player-2 vertex v in Gi orange if outdeg(v) ≥ 2i. All other vertices have color white. For every vertex
v that is white in Gi, all its outedges Out(v) are contained in Ei. These edges add up to 2i · n edges to Ei.
Additionally the first up to 2i inedges of every vertex belong to Ei, adding another up to 2i · n edges to Ei. Thus
|Ei| ≤ 2i+1 · n. We denote by G the full graph. Note that G = Glog n and thus all vertices in Glog n are white.

The new algorithm NEWALGO. The new algorithm consists of two nested loops, an outer loop with loop counter
j and an inner loop with loop counter i. The algorithm will iteratively delete vertices from the graph, and we
denote by Dj the set of vertices deleted in iteration j, and by U the set of vertices deleted in all iterations upto
the current iteration (initially U is empty). For j ≥ 1, we will denote by Gj

i the sub-graph of Gi induced after
removal of the set U of vertices at the beginning of iteration j, and G0

i is Gi (the initial graphs). We denote
the vertex set in iteration j as V j and the Büchi set as Bj (i.e., Bj := V j ∩ B). The intuitive description of
the algorithm is as follows: Starting from i = 0 the algorithm searches in each iteration j in each graph Gj

i

for a special player-1 closed set Sj with no Büchi vertex and stop at the smallest i at which such a closed set
exists. Since Sj ∩ Bj = ∅, Fact 1 implies that all the vertices in Sj are winning for player 2. Thus, by the same
arguments as for the classical algorithm the player-2 attractor Attr2(Sj , Gj

i ) are winning for player 2 in Gj
i and,

as our correctness proof shows, also winning in G. Thus they are removed from the vertex set and the algorithm
iterates on the reduced game graph. Computing Sj takes time O(2i · n) and, due to the fact that no such set was
found in Gj

i−1 we can show that Sj it contains at least 2i−1 vertices. Thus, using amortized analysis we charge
O(n) to each of the 2i−1 vertices in Sj that are removed, giving a total running time of O(n2). The details of
NEWALGO follow.

1. For j = 0, let Y0 := Attr1(B,G0) (where G0 is the initial game graph); X0 := V \ Y0 (i.e., X0 is
the set of vertices that cannot alt1-reach the Büchi vertices in the initial game graph G); and compute
D0 := Attr2(X, G) using attractor computation.



2. Remove the vertices of Dj from all log n graphs Gj
i to create graphs Gj+1

i ; j := j + 1; and U := U ∪Dj ;
3. i := 1;
4. repeat

(a) Let Zj
i be the vertices of V j that are (i) either orange with no outedges in Gj

i or (ii) blue in Gj
i .

(b) Compute the set Y j
i of vertices in Gj

i that can alt1-reach the Büchi vertices or Zi
j , i.e., compute

Y j
i := Attr1(Bj ∪ Zj

i , G
j
i ) using attractor computation.

(c) Sj := V j \ Y j
i (i.e., V j \Attr1(Bj ∪ Zj

i , G
j
i )); i := i + 1

5. until Sj is non-empty or i = log n
6. if Sj 6= ∅, then Dj := Attr2(Sj , G

j) and go to Step 2, else the whole algorithm terminates and outputs
V \ U .

Let U∗ be the set of vertices removed from the graph over all iterations and Y ∗ = V \ U∗ be the output of
the algorithm. We first show that Y ∗ ⊆ W1(Φ), where Φ is the Büchi objective, i.e., Y ∗ is winning for player 1.
Then we show that U∗ ∩ W1(Φ) = ∅ (i.e., U∗ is not winning for player 1). Together with Theorem 2.1 this
shows that Y ∗ = W1(Φ) estabilishing the correctness of the algorithm. Finally we analyze the running time of
the algorithm.

LEMMA 3.1. Let Y ∗ be the output of NEWALGO, and let G∗ and B∗ be the game graph and the Büchi set on
termination, respectively (i.e., G∗ is the graph induced by Y ∗ and B∗ is B ∩ Y ∗). The following assertions hold:

1. Y ∗ = Attr1(B∗, G∗), i.e., player 1 can alt1-reach the set B∗ in G∗ from Y ∗.
2. Y ∗ is a player-2 closed set in the original game graph G.
3. Y ∗ ⊆ W1(Φ), where Φ is the Büchi objective.

Proof. We prove the three parts below.
1. Consider the last iteration j∗ of the outer loop of the algorithm. Since it is the last iteration, the set Sj∗

must be empty. It follows that i must have been log n in the last iteration of the repeat loop, i.e., the last
iteration of the repeat loop considered Gj∗

log n = G∗. Let i = log n. Note that all vertices are white in G∗,

i.e., Zj∗

i was empty. Since NRj∗

i = V j∗ \ Attr1(B∗, G∗) it follows that no vertex of NRj∗

i belonged to
Attr1(B∗ ∪Zj∗

i , G∗). Hence the fact that Sj∗ was empty at the end of the iteration implies that NRj∗

i was
empty, i.e., that all vertices of G∗ belong to Attr1(B∗, G∗). Hence Y ∗ = Attr1(B∗, G∗).

2. Whenever a set of vertices is deleted in any iteration, it is an player-2 attractor. Hence if a vertex u ∈ Y ∗∩V2

would have an edge to a vertex v ∈ U∗, then u would have been included in U∗ (where U∗ = V \ Y ∗).
Similarly for a player 1 vertex u ∈ Y ∗ ∩ V1 it must have an edge in Y ∗, as we assume that it has at least
one out-edge and if all its out-edges pointed to U∗ it would have been included in U∗. It follows that Y ∗ is
a player-2 closed set in G.

3. The result is obtained from the previous two items. Consider a memoryless attractor strategy σ in G∗ for
player-1 that ensures that for all vertices in Y ∗ the set B∗ is reached within |Y ∗| steps against all strategies
of player-2. Moreover the strategy only chooses successor in Y ∗. Since Y ∗ is a player-2 closed set, it
follows that against all strategies of player-2 the set Y ∗ is never left, thus it is ensured that B∗ is visited
infinitely often. Hence the strategy σ ensures that for all vertices v ∈ Y ∗ and all strategies π we have
ω(v, σ, π) ∈ Φ. It follows that Y ∗ ⊆ W1(Φ).

The desired result follows.

To complete the correctness proof we need to show that if U∗ = V \ Y ∗, then U∗ ∩W1(Φ) = ∅, where Φ is
the Büchi objective. We will show the result by induction on the number of iterations. Let us denote by Uj the
set of vertices removed till iteration j. The base case is trivial as initially U is emptyset. By inductive hypothesis,
we assume for j ≥ 1 we have Uj−1∩W1(Φ) = ∅, and then show that Uj ∩W1(Φ) = ∅. Let Gj be the alternating
game graph obtained after removal of the set Uj−1 of vertices. We will show the following claim.
Claim 1. In Gj , let Sj be the non-empty set identified in iteration j, then Attr1(Bj , Gj) ∩ Sj = ∅.



In the following two lemmata we first show how with Claim 1 we establish the correctness of our algorithm and
finally prove Claim 1 to complete the correctness proof.

LEMMA 3.2. The inductive hypothesis that Uj−1 ∩W1(Φ) = ∅ and Claim 1 implies that Sj ∩W1(Φ) = ∅.

Proof. By Claim 1 we have Attr1(Bj , Gj) ∩ Sj = ∅, and it follows that if player 1 follows a strategy from any
vertex in Sj such that the set V j = V \ Uj−1 of vertices is never left, then no Büchi vertex is ever reached.
If the set V j is left after a finite number of steps, then the set Uj−1 is reached, and by inductive hypothesis
Uj−1 ∩ W1(Φ) = ∅, i.e., player 2 can ensure from Uj−1 that the set of Büchi vertices is visited finitely often.
Since the Büchi objective is independent of finite prefixes, it follows that if V j is left and Uj−1 is reached, then
player 2 ensures that the Büchi objective is not satisfied. It follows that Sj ∩W1(Φ) = ∅.

LEMMA 3.3. The inductive hypothesis that Uj−1 ∩W1(Φ) = ∅ and Claim 1 implies that Uj ∩W1(Φ) = ∅.

Proof. Observe that Uj is obtained as a player 2 attractor to Sj , and hence player 2 can ensure from Uj that Sj is
reached in finite number of steps. Since Büchi objective is independent of finite prefixes and by Lemma 3.2 we
have that Sj ∩W1(Φ) = ∅, it follows that Uj ∩W1(Φ) = ∅.

Hence to complete the proof we need to establish Claim 1 and this is achieved in the following two lemmata.
We start with the notion of a separating cut.

Separating cut. We say a set S of vertices induces a separating cut in a graph Gi or Gj
i if (a) the only edges

from S to V \S come from player-2 vertices in S, (b) every player-2 vertex in S has an edge to another vertex in
S, (c) every player-1 vertex in S is white, and (d) B ∩ S = ∅.

LEMMA 3.4. Let G = ((V,E), (V1, V2)) be a game graph where every vertex has at least outdegree 1, and
G′ = ((V,E′), (V1, V2)) be a sub-graph of G with E′ ⊆ E. Let Z be a set of blue player-1 and orange player-2
vertices of G′ such that all orange vertices have outdegree 0 in G′. If S induces a separating cut in G′, then no
vertex of S belongs to Attr1(B ∪ Z,G).

Proof. We first show that every vertex in S has an edge to another vertex in S in G′. For player-2 vertices this
follows from condition (b) of a separating cut. For player-1 vertices this follows since they have outdegree 1 in
G, are white in G′, and cannot have an edge to a vertex in V \ S.

Note that S ∩ (B ∪ Z) = ∅ since S contains no blue vertex of Gi, every orange vertex in S has outdegree
at least 1 and B ∩ S = ∅ by condition (d) of a separating cut. By condition (a) for all player-1 vertices in S all
out-going edges are in S. It follows that S is a player-1 closed set, and since S ∩ (B ∪Z) = ∅, the result follows
from Fact 1.

LEMMA 3.5. We have Sj ∩Attr1(Bj , Gj) = ∅.

Proof. Let v be a vertex in Sj . By construction v cannot alt1-reach Bj ∪ Zj
i∗ in Gj

i∗ , where i∗ was the last value
of i in the repeat loop of iteration j. We will show that v cannot alt1-reach Bj in Gj . If suffices to show that Sj

induces a separating cut in Gj . Then we can simply apply Lemma 3.4 with G = Gj , G′ = Gj
i∗ , Z = ∅, and

S = Sj to prove the lemma.
1. Condition (a). By construction no player-1 vertex in Sj has an edge to V j \ Sj , otherwise it would belong

to the player-1 attractor of Bj ∪ Zj
i∗ . Since all player-1 vertices in Sj are white in Gj

i∗ , the outedges of the
player-1 vertices in Sj are the same in Ej

i∗ and in Ej . Thus condition (a) of a separating cut holds in Gj .
2. Condition (b). Every player-2 vertex in Sj must have an edge to another vertex in Sj , otherwise all its

edges would go to vertices in V j \ Sj and thus it would belong to Attr1(Bj ∪ Zj
i∗ , G

j
i∗). Since Ej

i∗ ⊆ Ej ,
the same holds in Gj . Hence condition (b) of a separating cut holds in Gj .

3. Condition (c). All vertices are white in Gj . Thus condition (c) holds trivially.



4. Condition (d). The condition (d), Sj ∩ Bj = ∅ holds, since otherwise a vertex of Sj would belong to Bj

and, thus, to Attr1(Bj ∪ Zj
i∗ , G

j
i∗).

Thus Sj induces a separating cut in Gj . The desired result follows.

Lemma 3.5 proves Claim 1 and this completes the correctness proof, and gives the following lemma.

LEMMA 3.6. Let Y ∗ be the output of NEWALGO. Then we have Y ∗ = W1(Φ), where Φ is the Büchi objective.

Running time analysis. To analyze the running time we need to define separating cuts. A set S of vertices
induces a separating cut in a graph Gi or Gj

i if (a) the only edges from S to V \S come from player-2 vertices in
S, (b) every player-2 vertex in S has an edge to another vertex in S, (c) every player-1 vertex in S is white, and
(d) B ∩ S = ∅. Thus S is a player-1 closed set where every player-1 vertex is white and which does not contain
a vertex in B.

LEMMA 3.7. Let Gj
i be a game graph in iteration j and let Zj

i be the set of blue and degree-0 orange vertices of
Gj

i as defined in iteration j of the outer loop and i of the inner loop of the algorithm. If S induces a separating
cut Gj

i , then S ⊆ Sj .

Proof. None of the vertices in S can alt1-reach B in Gj by Lemma 3.5. Thus S ⊆ NRj
i . By Lemma 3.4 none of

the vertices in S can alt1-reach Bj ∪ Zj
i . Thus S ⊆ Sj .

LEMMA 3.8. The total time spent by NEWALGO is O(n2).

Proof. We present the O(n2) running time analysis and we consider two cases.
All other than the last iteration of the outer loop. Assume in iteration j the algorithm stops the repeat until
loop at value i and this is not the last iteration of the algorithm. Then Sj is not empty. Note that all player-1
vertices in Sj are white, since Zj

i contains all blue player-1 vertices of V j and Sj = V j \ Attr1(Bj ∪ Zj
i , G

j
i ).

Thus, Sj induces a separating cut in Gj
i . Consider the set Sj in Gj

i−1. There are 2 cases to consider:
Case 1: Sj contains a player-1 vertex x that is blue in Gj

i−1. Thus x has outdegree at least 2i−1 in Gj
i and

none of these edges go to vertices in V j \ Sj in Gj
i . Thus, Sj contains at least 2i−1 vertices.

Case 2: All player-1 vertices in Sj are white in Gj
i−1. Thus, their outedges in Gj

i and Gj
i−1 are identical.

Note that no player-2 vertices in V j \ Sj point to vertices of Sj in Gj
i . Since Ej

i−1 ⊆ Ej
i it follows that no

player-2 vertices in V j \ Sj point to vertices in Sj in Gj
i−1. Consider a player-2 vertex u in Sj . Thus there exists

an edge (u, v) ∈ Ej
i with v ∈ Sj . There are two possibilities.

Case 2a: For all player-2 vertices u ∈ Sj there exists a vertex v ∈ Sj with (u, v) ∈ Ej
i−1. But then Sj would

be a separating cut in Gj
i−1. By Lemma 3.7 it follows that Sj would be non-empty in iteration i− 1 and thus the

repeat loop would have stopped after iteration i − 1. This is not the case and thus the condition of Case 2a does
not hold.

Case 2b: There exists a player 2 vertex u ∈ Sj that has an edge (u, v) ∈ Ej
i to a vertex v ∈ Sj but this edge

is not contained in Ej
i−1. This can only happen if u is orange in Gj

i−1 and v has 2i−1 other inedges in Ej
i−1. Since

the edge (u, v) where u is a player-2 vertex is not in Gj
i−1, all inedges of v that are in Gj

i−1 are from player-2
vertces by the fixed order of inedges. It follows that none of the inedges of v in Gj

i−1 are from V j \ Sj and, thus,
Sj must contain at least 2i−1 player-2 vertices.

Thus in either case Sj contains at least 2i−1 vertices and all these vertices are deleted. The time spent for all
the executions of the repeat loop in this iteration of the outer loop it the time spent in all graphs G1, G2, ..., Gi∗ ,
which sums to O(2i · n). We charge O(n) work to each deleted vertex. This accounts for all but the last iteration
of the outer loop. As the algorithm deletes at most n vertices the total time spent over the whole algorithm other
than the last iteration is O(n2).



The last iteration of the outer loop. In the last iteration of the outer loop, when no vertex is deleted, the
algorithm works on all the graphs and in each graph the running time is linear. Since each graph Gi has at most
n · 2i+1 edges and there are log n graphs, the total number of edges worked in the last iteration is O(n2). Hence
the total time required in the last iteration is O(n2). An identical argument also shows that the time to built all
the initial graphs Gi is at most O(n2). Hence the desired result follows.

THEOREM 3.2. Given a game graph G with n vertices, and an Büchi objective Φ, algorithm NEWALGO

correctly computes the winning set W1(Φ) in time O(n2).

4 Maximal End-component Decomposition Algorithm
In this section we present an algorithm for the maximal end-component decomposition problem that runs in
O(n2) time. The maximal end-component problem is the core algorithmic problem in verification of probabilistic
systems, and the graph theoretic description of the problem for game graphs is defined below.
Maximal end-component decomposition. Given a game graph G = ((V,E), (V1, V2)), an end-component
U ⊆ V is a set of vertices such that (a) the graph (U,E∩U×U) is strongly connected; (b) for all u ∈ U ∩V2 and
all (u, v) ∈ E we have v ∈ U ; and (c) either |U | ≥ 2, or U = {v} and there is a self-loop at v (i.e., (v, v) ∈ E).
In other words, an end-component is a player-2 closed set that is strongly connected. Note that if U1 and U2 are
end-components with U1 ∩ U2 6= ∅, then U1 ∪ U2 is an end-component. A maximal end-component (mec) is
an end-component that is maximal under set inclusion. Every vertex of V belongs to at most one maximal end-
component. The maximal end-component (mec) decomposition consists of all the maximal end-components of
V and all vertices of V that do not belong to any maximal end-component. Maximal end-components generalize
strongly connected components for directed graphs (with V2 = ∅) and closed recurrent sets for Markov chains
(with V1 = ∅).
Notations. Given a game graph G = ((V,E), (V1, V2)), we will denote by Reachable(X, G) the set of vertices
that can reach a vertex in X in the graph (V,E). Note that X ⊆ Reachable(X, G). We maintain log n graphs Gi

such that Gi = (V,Ei) and Ei contains all edges (u, v) where outdeg(u) < 2i. We denote by G the full graph.
We color vertices v in Gi blue if outdeg(v) > 2i, i.e., Bli = {v ∈ V | outdeg(v) > 2i} and all other vertices are
colored white, i.e., Whi = {v ∈ V | outdeg(v) ≤ 2i}. Note that G = Glog n and thus all vertices in Glog n are
white. Thus, none of the outedges of the blue vertices of Gi belong to Gi, i.e., all blue vertices have outdegree 0
in Gi. A bottom scc C of a graph is a scc that has no edge leaving out of C. Note every bottom scc is a mec.
Maximal end-component decomposition algorithm. The algorithm consists of two nested loops, an outer loop
with loop counter j and an inner loop with loop counter i. The algorithm will iteratively delete vertices from the
graph, and we denote by Dj the set of vertices deleted in iteration j. We will denote by Gj

i the sub-graph of Gi

at the beginning of iteration j (as for NEWALGO) and the vertex set in iteration j is denoted as V j . The set Blji
is the set of vertices in Gj

i with outdegree greater than 2i in Gj
i . Basically the algorithm is similar to NEWALGO,

and instead of searching for separating cuts, the algorithm for mec decomposition searches for bottom scc’s. The
steps of the algorithm are as follows and we refer the algorithm as NEWMECALGO.

1. Let Dj be the set of vertices deleted in iteration j. For j := 0, let D0 := Attr2(X, G0), where X is the set
of vertices that are in the bottom scc’s in the initial graph G.

2. Remove the vertices of Dj from all log n graphs Gj
i to create graph Gj+1

i ; j := j + 1; If all vertices are
removed, then the whole algorithm terminates.

3. i := 1;
4. repeat

(a) Compute all the vertices in Gj
i that can reach the blue vertices using the standard linear-time algorithm

for reachability.
(b) Let Sj = V j \Reachable(Blji , G

j
i ) be the set of vertices that cannot reach the set Blji blue vertices in

Gj
i ; i := i + 1



5. until Sj is non-empty
6. if Sj 6= ∅, then let Dj := Attr2(X, Gj), where X is the set of vertices that are in the bottom scc’s in the

sub-graph induced by Sj in Gj
i . Go to Step 2.

Basic correctness argument. Let us denote Gj be the remaining game graph after iteration j. Let Sj be
the set identified at iteration j, and let the inner iteration stop at i∗. All vertices in Sj are white, since
Sj = V j \ Reachable(Blji∗ , G

j
i∗) and Blji∗ ⊆ Reachable(Blji∗ , G

j
i∗). For all v ∈ Sj , all outedges from v end

in a vertex in Sj : otherwise if there is an edge from v to Reachable(Blji∗ , G
j
i∗), then v would have been included

in Reachable(Blji∗ , G
j
i∗). Hence any bottom scc in the subgraph induced by Sj in Gj

i∗ is also a bottom scc of
Gj . The correctness of the identification the bottom scc as an mec and removal of the attractor follows from
the following two lemmata established in [7] (see Lemma 2.1 and Lemma 2.2 of [7]). The correctness of the
algorithm follows.

LEMMA 4.1. Algorithm NEWMECALGO correctly computes the mec decomposition of a game graph.

Running time analysis. The crucial result of the running time analysis depends on the following lemma that
shows in an outer iteration j, if the inner iteration stops at iteration i∗ and X is the set of vertices identified as
bottom scc, then X ∩ Blji∗−1 is non-empty.

LEMMA 4.2. Consider an outer iteration j of the algorithm, and let the inner iteration stop at iteration i∗. Let
X be te set of vertices idetified as bottom scc of the graph induced by S in Gj

i∗ . Then X ∩ Blji∗−1 6= ∅.

Proof. Assume towards contradiction that there is a bottom scc C in the induced subgraph of S in Gj
i∗ such that

C ∩Blji∗−1 = ∅. Now we consider the iteration i∗− 1 and then for every vertex in C in Gj
i∗−1 all outedges end in

a vertex in C. Since C does not contain a vertex from Blji∗−1, it follows that C ⊆ V j \ Reachable(Blji∗−1, G
j
i∗).

It follows that a non-emptyset Sj would have been identified in iteration i∗ − 1, and this contradicts that the
algorithm stops at iteration i∗ and not in i∗ − 1.

LEMMA 4.3. The total time spent by NEWMECALGO is O(n2).

Proof. Assume that for an outer iteration j, the inner iteration stops the repeat until loop at value i∗. By the
previous lemma, one of the vertices v in X must have belong to Blji∗−1 and thus it has outdegree at least 2i∗−1.
Since we identify the bottom scc that contain v it must contain all the endpoints of the outedges from v. Hence
X contains at least 2i∗−1 vertices. The time spent for all the executions of the repeat loop in this iteration of the
outer loop it the time spent in all graphs Gj

1, Gj
2, ..., Gj

i∗ , which sums to O(2i∗ · n). We charge 2 · n to each
deleted vertex. As the algorithm deletes at most n vertices the total time spent over the whole algorithm is O(n2).
The removal of all the player-2 attractors overall iterations takes O(m) = O(n2) time. Similar to the proof of
Lemma 3.8, the time required to built all the initial graphs Gi is at most O(n2). The result follows.

THEOREM 4.1. Algorithm NEWMECALGO correctly computes the mec decomposition of a game graph in
O(n2) time.

5 Decremental and Incremental Algorithms
In this section we present the decremental and incremental algorithms for computing the winning set in game
graphs with Büchi objectives. We will show that the progress measure algorithm of [21] works in total time
O(n ·m) for a sequence of player-1 edge deletions (or insertions), and hence the amortized time per operation is
O(n). Since Büchi objectives generalize reachability objectives, and alternating game graphs generalize directed
graphs, our algorithm is a generalization of the Even-Shiloach algorithm [17] for decremental reachability in
undirected graphs. However our proof is very different, based on a fix-point argument, and is much simpler. We
first present the algorithm for the decremental case.



5.1 Decremental algorithm for Büchi games Our decremental algorithm is based on the notion of progress
measure and we start with the notion of a progress measure and valid progress measure.
Progress measure. Given a game graph with n vertices, a progress measure is a function ρ : V → [n]∪>, where
[n] = {0, 1, 2, . . . , n}, that assigns to every vertex either a number from 0 to n, or the top element >. We will
follow the conventions that: (a) for all j ∈ [n] we have j < >; (b) n + 1 = >; (c) > + 1 = >; (d) > ≥ >.
Given a game graph with a set B of Büchi vertices, a progress measure ρ is a valid progress measure if the
following conditions hold for all v ∈ V : (i) ρ(v) = > if for all (v, w) ∈ E we have ρ(w) = >, and 0 otherwise,
for v ∈ V1 ∩ B; (ii) ρ(v) = > if there exists (v, w) ∈ E with ρ(w) = >, and 0 otherwise, for v ∈ V2 ∩ B;
(iii) ρ(v) = min(v,w)∈E ρ(w) + 1 for v ∈ V1 \ B; and (iv) ρ(v) = max(v,w)∈E ρ(w) + 1 for v ∈ V2 \ B. We
define the comparison operators ≤,≥ on progress measures with the pointwise comparison, i.e., for ./∈ {≤,≥}
and progress measures ρ1 and ρ2, we write ρ1 ./ ρ2 iff for all v ∈ V we have ρ1(v) ./ ρ2(v).
Lift operation on progress measure. Given a game graph G, the function LiftG takes as input a progress measure
and returns a progress measure. For all input progress measures ρ, the output progress measure ρ′ = LiftG(ρ)
is defined as follows: for all v ∈ V , (i) ρ′(v) = > if for all (v, w) ∈ E we have ρ(w) = >, and 0 otherwise,
for v ∈ V1 ∩ B; (ii) ρ′(v) = > if there exists (v, w) ∈ E with ρ(w) = >, and 0 otherwise, for v ∈ V2 ∩ B;
(iii) ρ′(v) = min(v,w)∈E ρ(w) + 1 for v ∈ V1 \B; and (iv) ρ′(v) = max(v,w)∈E ρ(w) + 1 for v ∈ V2 \B.

LEMMA 5.1. For all game graphs G, the function LiftG is monotonic (if ρ1 ≤ ρ2, then LiftG(ρ1) ≤ LiftG(ρ2)).

Proof. Consider progress measures ρ1, ρ2 such that ρ1 ≤ ρ2. For a non-Büchi vertex v ∈ (V \B) we have

LiftG(ρ1)(v) =

{
min(v,w)∈E ρ1(w) + 1 ≤ min(v,w)∈E ρ2(w) + 1 = LiftG(ρ2)(v) v ∈ V1 \B;
max(v,w)∈E ρ1(w) + 1 ≤ max(v,w)∈E ρ2(w) + 1 = LiftG(ρ2)(v) v ∈ V2 \B;

where E is the set of edges in G. It follows that for all v ∈ (V \ B) we have LiftG(ρ1)(v) ≤ LiftG(ρ2)(v). For
v ∈ B we have the following cases: (i) v ∈ V1 ∩ B: if LiftG(ρ1)(v) = >, then for all (v, w) ∈ E we have
ρ1(w) = >, and hence for all (v, w) ∈ E we have ρ2(w) = >; thus LiftG(ρ2)(v) = >; and (i) v ∈ V2 ∩ B:
if LiftG(ρ1)(v) = >, then there exists (v, w) ∈ E with ρ1(w) = >, and hence we have ρ2(w) = >; thus
LiftG(ρ2)(v) = >. It follows that we have LiftG(ρ1) ≤ LiftG(ρ2). The desired result follows.

Since LiftG is a monotonic function on a finite lattice, by the Tarski-Knaster Theorem [23] it has a least
fix-point. Given a player-1 attractor Attr1(U,G), the minimal alternating distance of a vertex v ∈ Attr1(U,G)
is the rank rank(v) of the vertex v (in other words it is the alternating shortest distance to U where player-1
minimizes the distance and player-2 maximizes the distance to U ). The result of [21] established that for all
game graphs G, (i) there is a unique least fix-point of LiftG, (ii) the least fix-point is a valid progress measure,
(iii) it characterizes the winning set, (iv) in the winning set the progress measure equals the minimal alternating
distance to the set of Büchi vertices in the winning set and all Büchi vertices in the winning set has progress
measure 0, and (v) all vertices in the complement of the winning set are assigned >. The result of [21] is for the
more general case of parity objectives, and the specialization to Büchi objectives yields the above properties.

THEOREM 5.1. ([21]) For all game graphs G, let ρ∗ be the least fix-point of LiftG, and let ||ρ∗|| = {v ∈ V |
ρ(v) ∈ [n]} denote the set of vertices that are not assigned the top element. Then ||ρ∗|| = W1(Φ), where Φ is the
Büchi objective.

Decremental algorithm. Our algorithm initially computes the least fix-point progress measure ρ∗ of the graph
and then maintains it after each edge deletion by repeatedly applying the lift operator to the fix-point ρ∗ stored
before the edge deletion. To prove the correctness we will show that the fix-point obtained by repeatedly applying
the lift operator on the previous least fix-point converges to the least fix-point of the new game graph. The
algorithm maintains the following data structure: (i) For each vertex x ∈ V1 ∩B it keeps a list of vertices w such



that (x,w) ∈ E and ρ∗(w) 6= > and (ii) for each vertex x ∈ V1 \B a list of vertices w such that (x,w) ∈ E and
ρ∗(x) = ρ∗(w) + 1. (iii) Every edge (x,w) has a pointer to its location in the list of x if it is stored in such a list.
We next describe the algorithm in detail.
Computation of the initial ρ∗. Use the static Büchi algorithm from the previous section to compute the player-1
and player-2 winning sets and assign > to all vertices in the player-2 winning set. Use the backward search
algorithm [2, 20] to determine the rank of every vertex in the player-1 winning set and set its initial progress
measure equal to its rank. Then we compute for each vertex of V1 its list.
Deletion of the edge (u, v). Maintain a queue of vertices to be processed to update the progress measure until
the least fix-point is reached such that a vertex of V2 is only added to the queue when its progress measure has
increased. Initially, enqueue u. Then iteratively process and dequeue the vertices from the queue.

Case 1: A vertex x of V1 is dequeued. Check whether given the current progress measure, the progress
measure of x needs to be increased to satisfy the lift operation for x. To do this we first check whether the list of
x is empty. If it is not empty, nothing needs to be done. If it is empty, all remaining outedges of x are checked to
compute the new progress measure value of x and the new list of x. Then all inedges (u, x) of x are processed
as follows: If u is a player-1 non-Büchi vertex (u ∈ V1 \B), then it is enqueued (if it is not already in the queue)
and x is removed from the list of u if it was there. If u is a player-2 non-Büchi vertex (u ∈ V2 \ B), then check
whether the change in the progress measure value of x also increases the progress measure value of u. If it does,
then u is enqueued (if it is not already in the queue), otherwise u is not enqueued. If u is a player-1 Büchi vertex
(u ∈ V1 ∩B), then (i) if the progress measure of x is not >, then do nothing; (ii) else remove x from the list of u,
and if the list of u is empty, assign progress measure > to u and u is enqueued (if it is not already in the queue).
If u is a player-2 Büchi vertex (u ∈ V2 ∩ B), then (i) if the progress measure of x is not >, then do nothing;
(ii) else assign progress measure > to u and u is enqueued (if it is not already in the queue).

Case 2: A vertex x of V2 is dequeued. In this case the progress measure of x has increased and it has already
been updated. Thus all what remains is to process all inedges (u, x) of x as follows: If u is a player-1 non-Büchi
vertex, then it is enqueued (if it is not already in the queue) and x is removed from the list of u if it was there. If u
is a player-2 non-Büchi vertex, then check whether the change in the progress measure value of x also increases
the progress measure value of u. If it does, then u is enqueued (if it is not already in the queue), otherwise u is not
enqueued. If u is a player-1 Büchi vertex, then (i) if the progress measure of x is not >, then do nothing; (ii) else
remove x from the list of u, and if the list of u is empty, assign progress measure > to u and u is enqueued (if it
is not already in the queue). If u is a player-2 Büchi vertex, then (i) if the progress measure of x is not >, then do
nothing; (ii) else assign progress measure > to u and u is enqueued (if it is not already in the queue).

This algorithm is a generalization of the Even-Shiloach algorithm [17] for maintaining the connected
component (or more precisely the breadth-first-search tree) of a vertex b in an undirected graph. Assume B = {b}
and that V = V1. Then the progress measure value of a vertex v is exactly v’s level in the breadth-first search
tree rooted at b (or equivalently its shortest path distance to b). Applying the lift operator to a vertex v is exactly
the same as checking whether v has still an edge to an edge at level level(v) − 1 and if not, increasing the level
of v by 1.

Correctness. Let G be a game graph, and let ρ∗ be the least fix-point of LiftG. Let G = G \ {e}, where
e ∈ E ∩ V1 × V , be the game graph obtained by deleting a player-1 edge e. Let ρ∗ be the least fix-point of G.
Let ρ∗new be the new fix-point obtained by iterating LiftG on ρ∗. We will show that ρ∗ = ρ∗new.

LEMMA 5.2. We have ρ∗ ≤ ρ∗new.

Proof. Let ρ0 be the progress measure that assings 0 to all vertices, i.e., the least progress measure. Clearly,
ρ0 ≤ ρ∗. Let us denote by (LiftG)i be the result of applying the lift operator i-times on G, for some
i ∈ N. From an simple application of Lemma 5.1 it follows that (LiftG)i is monotonic. Hence we have
(LiftG)i(ρ0) ≤ (LiftG)i(ρ∗). Since ρ∗ = (LiftG)j(ρ0) for some j, and ρ∗new ≥ (LiftG)i(ρ∗) for all i (in particular



for the j for which the least fix-point is obtained from ρ0), it follows that ρ∗ ≤ ρ∗new.

LEMMA 5.3. We have ρ∗new ≤ ρ∗.

Proof. Observe that the graph G is obtained by deleting an edge for player-1, and hence the winning set for
player 1 can only decrease and the minimal alternating distance to the Büchi set in the winning set can only
increase. In other words, we have ρ∗ ≤ ρ∗, i.e., the least fix-point of the graph G is smaller than the least fix-
point of G. Since ρ∗new = (LiftG)i(ρ∗), for some i, we have ρ∗new = (LiftG)i(ρ∗) ≤ (LiftG)i(ρ∗) = ρ∗, where the
first inequality is a consequence of Lemma 5.1 that (LiftG)i is monotonic, and the last inequality is a consequence
of the fact that ρ∗ is a fix-point. Hence the desired result follows.

The correctness follows from Lemma 5.2 and Lemma 5.3 (that ρ∗new = ρ∗) and the fact that the algorithm
implements the iteration of the lift operator on vertices one by one to compute the fix-point that is obtained by
repeatedly applying the lift operator on the least fix-point of the previous game graph.

Running time. The deletions of player-1 edges only decreases the winning set, and once a set is removed from
the winning set (i.e., assigned value > in the progress measure algorithm), then they are never worked upon.
Upon termination, let W be the winning set, and let ρ be the least fix-point in the end. The computation of the
initial least fix-point is done in time O(n2).

In the decremental algorithm we check for each dequeued player-1 vertex u whether its progress measure
increases in constant time. If it does not increase no further work is done for u. The constant amount of work
is charged to the edge deletion if an outedge of u was deleted. If no outedge of u was deleted then the progress
measure of a vertex w with (u, w) ∈ E must have increased and we charge the work to w. If the progress measure
of u increases we spend time O(|In(u)| + |Out(u)|) to determine the new progress measure of u, compute its
new list, and process all its inedges, and the work is charged to u. A player-2 vertex u is only enqueued when its
progress measure has increased. When it is dequeued we spend time O(|In(u)|) to process all its inedges, and
charge it to u The number of times the progress measure can increase for a vertex is at most n + 1 (as once it is
n + 1 it is assigned >). For a vertex v, let Num(v) = ρ(v), if ρ(v) 6= >, and n + 1 otherwise. Hence the total
work done by the algorithm is O(

∑
v∈V Num(v) · |In(v)|) + O(

∑
v∈V Num(v) · |Out(v)|) = O(n ·m).

THEOREM 5.2. Given an initial game graph with n vertices and m edges, the winning set partitions can be
maintained under the deletion of O(m) edges (u, v) with u ∈ V1 in total time O(n ·m).

5.2 Incremental algorithm for Büchi games We now present the details of the incremental algorithm for
Büchi games. The algorithm is similar to the decremental algorithm and based on progress measure for player 2.
We start with the definition of a valid progress measure for player 2.

Valid progress measure for player 2. Given a game graph with a set B of Büchi vertices, let C = V \ B be the
set of coBüchi vertices. A progress measure ρ is a valid progress measure for player 2 if the following conditions
hold for all v ∈ V :

ρ(v) ≥


min(v,w)∈E ρ(w) v ∈ V2 ∩ C;
min(v,w)∈E ρ(w) + 1 v ∈ V2 ∩B;
max(v,w)∈E ρ(w) v ∈ V1 ∩ C;
max(v,w)∈E ρ(w) + 1 v ∈ V1 ∩B.

We define the comparison operators ≤,≥ on progress measures with the pointwise comparison.

Lift operation on progress measure. Given a game graph G, the function coLiftG, like the LiftG function, takes as
input a progress measure and returns a progress measure. For all input progress measures ρ, the output progress



measure ρ′ = coLiftG(ρ) is defined as follows: for all v ∈ V ,

ρ′(v) =


min(v,w)∈E ρ(w) v ∈ V2 ∩ C;
min(v,w)∈E ρ(w) + 1 v ∈ V2 ∩B;
max(v,w)∈E ρ(w) v ∈ V1 ∩ C;
max(v,w)∈E ρ(w) + 1 v ∈ V1 ∩B.

LEMMA 5.4. For all game graphs G, the function coLiftG is monotonic.

Proof. Consider progress measures ρ1, ρ2 such that ρ1 ≤ ρ2. For a vertex v we have

coLiftG(ρ1)(v) =


min(v,w)∈E ρ1(w) ≤ min(v,w)∈E ρ2(w) = coLiftG(ρ2)(v) v ∈ V2 ∩ C;
min(v,w)∈E ρ1(w) + 1 ≤ min(v,w)∈E ρ2(w) + 1 = coLiftG(ρ2)(v) v ∈ V2 ∩B;
max(v,w)∈E ρ1(w) ≤ max(v,w)∈E ρ2(w) = coLiftG(ρ2)(v) v ∈ V1 ∩ C;
max(v,w)∈E ρ1(w) + 1 ≤ max(v,w)∈E ρ2(w) + 1 = coLiftG(ρ2)(v) v ∈ V1 ∩B;

where E is the set of edges in G. It follows that coLiftG(ρ1) ≤ coLiftG(ρ2). The desired result follows.

Since coLiftG is a monotonic function on a finite lattice, by Tarski-Knaster Theorem [23] it has a least fix-
point. Before we proceed to the characterization, we present a definition: for a vertex v ∈ W2(Ψ), where Ψ is the
coBüchi objective coBuchi(C), let maxvisit(v) = minπ∈Π maxσ∈Σ |{i | ω(v, σ, π) = 〈v0, v1, v2, . . .〉, vi ∈ B}|
denote the maximum number of visits to Büchi vertices. Since v ∈ W2(Ψ), once a winning strategy for player-2
is fixed, there cannot be a cycle with a Büchi vertex, and hence maxvisit(v) ≤ n. The result of [21] established
that for all game graphs G, (i) there is a unique least fix-point of coLiftG, (ii) the least fix-point is a valid progress
measure, (iii) it characterizes the winning set for player 2, (iv) for vertices v in the winning set for player 2 the
progress measure equals maxvisit(v), and (v) all vertices in the winning set for player 1 are assigned the top
element >. The result of [21] is for the more general case of parity objectives, and the specialization to coBüchi
objectives yields the above properties.

THEOREM 5.3. ([21]) For all game graphs G, let ρ∗ be the least fix-point of coLiftG, and let ||ρ∗|| = {v ∈ V |
ρ(v) ∈ [n]} denote the set of vertices that are not assigned the top element. Then ||ρ∗|| = W2(Ψ), where Ψ is
the coBüchi objective.

Incremental algorithm. Our algorithm initially computes the least fix-point progress measure ρ∗ of coLift of the
graph and then maintains it after each edge insertion by repeatedly applying the lift operator coLift to the fix-point
ρ∗ stored from before the edge insertion. To prove the correctness we will show that the fix-point obtained by
repeatedly applying the lift operator on the previous least fix-point converges to the least fix-point of the new
game graph. The algorithm maintains the following data structure: (i) For each vertex x ∈ V2 ∩ C it keeps a list
of vertices w such that (x,w) ∈ E and ρ∗(x) = ρ∗(w) and (ii) for each vertex x ∈ V2 ∩ B a list of vertices w
such that (x,w) ∈ E and ρ∗(x) = ρ∗(w) + 1. (iii) Every edge (x,w) has a pointer to its location in the list of x
if it is stored in such a list. We next describe the algorithm in detail. We first describe the insertion of an edge as
the initial fix-point computation is similar.
Insertion of the edge (u, v). Maintain a queue of vertices to be processed to update the progress measure until
the least fix-point is reached such that a vertex of V1 is only added to the queue when its progress measure has
increased. Initially, enqueue u. Then iteratively process and dequeue the vertices from the queue.

Case 1: A vertex x of V2 is dequeued. Check whether given the current progress measure, the progress
measure of x needs to be increased to satisfy the lift operation for x. To do this we first check whether the list of
x is empty. If it is not empty, nothing needs to be done. If it is empty, all remaining outedges of x are checked to



compute the new progress measure value of x and the new list of x. Then all inedges (u, x) of x are processed
as follows: If u is a player-2 vertex it is enqueued (if it is not already in the queue) and x is removed from the
list of u if it was there. If u is a player-1 vertex then check whether the change in the progress measure value of
x also increases the progress measure value of u. If it does, then u is enqueued (if it is not already in the queue),
otherwise u is not enqueued.

Case 2: A vertex x of V1 is dequeued. In this case the progress measure of x has increased and it has already
been updated. Thus all what remains is to process all inedges (u, x) of x as follows: If u is a player-2 vertex it is
enqueued (if it is not already in the queue) and x is removed from the list of u if it was there. If u is a player-1
vertex then check whether the change in the progress measure value of x also increases the progress measure
value of u. If it does, then u is enqueued (if it is not already in the queue), otherwise u is not enqueued.
Computation of the initial ρ∗. The computation of the initial ρ∗ is similar to the incremental algorithm. We
initialize the initial progress measure as 0 for all vertices, then enqueue the set of Büchi vertices, and proceed as
the incremental algorithm until a fix-point is reached. As we start with the all 0 progress measure and repeatedly
apply the lift operator we are guaranteed to reach the least fix-point. Then we compute for each vertex v ∈ V2 its
list.
Correctness. Let G be a game graph, and let ρ∗ be the least fix-point of coLiftG. Let G = G ∪ {e}, where
e ∈ E ∩ V1 × V , be the game graph obtained by inserting a player-1 edge e. Let ρ∗ be the least fix-point of G.
Let ρ∗new be the new fix-point obtained by iterating coLiftG on ρ∗. We will show that ρ∗ = ρ∗new.

LEMMA 5.5. We have ρ∗ ≤ ρ∗new.

Proof. Let ρ0 be the progress measure that assings 0 to all vertices, i.e., the least progress measure. Clearly,
ρ0 ≤ ρ∗. Let us denote by (coLiftG)i be the result of applying the lift operator i-times on G, for some
i ∈ N. From an simple application of Lemma 5.4 it follows that (coLiftG)i is monotonic. Hence we have
(coLiftG)i(ρ0) ≤ (coLiftG)i(ρ∗). Since ρ∗ = (coLiftG)j(ρ0) for some j, and ρ∗new ≥ (coLiftG)i(ρ∗) for all i (in
particular for the j for which the least fix-point is obtained from ρ0), it follows that ρ∗ ≤ ρ∗new.

LEMMA 5.6. We have ρ∗new ≤ ρ∗.

Proof. Observe that the graph G is obtained by inserting an edge for player-1, and hence the winning set for
player 2 can only decrease and maxvisit(v) can only increase for vertices in the winning set for player 2. In other
words, we have ρ∗ ≤ ρ∗, i.e., the least fix-point of the graph G is smaller than the least fix-point of G. Since
ρ∗new = (coLiftG)i(ρ∗), for some i, we have

ρ∗new = (coLiftG)i(ρ∗) ≤ (coLiftG)i(ρ∗) = ρ∗,

where the first inequality is a consequence of Lemma 5.4 that (coLiftG)i is monotonic, and the last inequality is
a consequence of the fact that ρ∗ is a fix-point. Hence the desired result follows.

LEMMA 5.7. We have ρ∗new = ρ∗.

Correctness. The correctness follows from Lemma 5.7 and the fact that the algorithm implements the iteration
of the lift operator on vertices one by one to compute the fix-point that is obtained by repeatedly applying the lift
operator on the least fix-point of the previous game graph.
Running time. The insertions of player-1 edges only decreases the winning set for player 2, and once a set is
removed from the winning set (i.e., assigned value > in the progress measure algorithm), then they are never
worked upon. Upon termination, let W be the winning set, and let ρ be the least fix-point in the end. In the
incremental algorithm we check for each dequeued player-2 vertex u whether its progress measure increases in
constant time. If it does not increase no further work is done for u. Since u is processed, the progress measure



of a vertex w with (u, w) ∈ E must have increased and we charge the work to w. If the progress measure of u
increases, then we spend time O(|In(u)| + |Out(u)|) to determine the new progress measure of u, compute its
new list, and process all its inedges, and charge the work to u. A player-1 vertex u is only enqueued when its
progress measure has increased, or an edge is inserted at u. If an edge was inserted, the work is charged to the
inserted edge. When it is dequeued we spend time O(|In(u)|) to process all its inedges, and charge it to u. The
number of times the progress measure can increase for a vertex is at most n + 1 (as once it is n + 1 it is assigned
>). For a vertex v, let Num(v) = ρ(v), if ρ(v) 6= >, and n + 1 otherwise. Hence the total work done by the
algorithm is

O(
∑
v∈V

Num(v) · |In(v)|) + O(
∑
v∈V

Num(v) · |Out(v)|) = O(n ·m).

An argument similar to the above also establishes that the initial least fix-point is computed in time O(n ·m).

THEOREM 5.4. Given an initial game graph with n vertices and m edges, the winning set partitions can be
maintained under the insertion of O(m) edges (u, v) with u ∈ V1 in total time O(n ·m).
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