
Robustness in the Presence of Liveness?

Roderick Bloem1, Krishnendu Chatterjee2, Karin Greimel1,
Thomas A. Henzinger2, and Barbara Jobstmann3

1Graz University of Technology
2IST Austria (Institute of Science and Technology Austria)

3CNRS/Verimag

Abstract. Systems ought to behave reasonably even in circumstances
that are not anticipated in their specifications. We propose a definition
of robustness for liveness specifications which prescribes, for any num-
ber of environment assumptions that are violated, a minimal number of
system guarantees that must still be fulfilled. This notion of robustness
can be formulated and realized using a Generalized Reactivity formula.
We present an algorithm for synthesizing robust systems from such for-
mulas. For the important special case of Generalized Reactivity formulas
of rank 1, our algorithm improves the complexity of [PPS06] for large
specifications with a small number of assumptions and guarantees.

1 Introduction

Current verification and synthesis approaches consider the functional correctness
of a system as a Boolean question: either the specification is fulfilled, or it is
not. This approach is unsatisfactory in many situations [BCHJ09]. In particular,
many specifications consist of environment assumptions and system guarantees.
For such specifications, the classical approach does not impose any restrictions
on the behavior of the system when the environment assumptions are not ful-
filled. We argue that (1) desirable systems act in some “reasonable” way, even if
the environment does not always fulfill the assumptions and (2) it is an undue
burden on the user to specify the proper behavior of the system for each and
every environment behavior. Desirable systems should fulfill a natural “graceful
degradation” property in the sense that the system should fulfill the guarantees
as well as it can, given any behavior of the environment.

We have previously studied the verification and synthesis of robust systems
for safety specifications [BGHJ09]. In the case of safety, environment failures are
immediately apparent and the difficulty is how the system can best recover from
them. A violation of a liveness property, however, cannot be detected at any point
in time [AS85]. Thus, a system that is robust to liveness failures must attempt
to fulfill its guarantees under all circumstances, without knowing whether the
environment satisfies the assumptions.

? This work was supported by EU grants 217069 (COCONUT), 248613 (DIAMOND),
215543 (COMBEST), and the European Network of Excellence ArtistDesign.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268226772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this paper, we define several possible notions of robustness in the presence
of liveness, all aiming at maximizing the set of guarantees that is fulfilled for
any set of fulfilled assumptions. Suppose a specification has two assumptions
and two guarantees. In order for the specification to hold, both guarantees must
be met when both assumptions are. A system that meets both guarantees when
only one assumption is met is more robust than one that meets one (or zero)
guarantees when one assumption is met.

Example 1. We consider a variant of the dining philosophers problem [Dij68].
There are n philosophers sitting at a round table. There is one chopstick be-
tween each pair of adjacent philosophers. Because each philosopher needs two
chopsticks to eat, adjacent philosophers cannot eat simultaneously. We are in-
terested in schedulers that use input variables hi signifying that philosopher i is
hungry and output variables ei signifying that philosopher i is eating.

We have the following requirements. First, an eating philosopher prevents her
neighbors from eating. Formally, G1i =0(ei → ¬e(i−1)modn∧¬e(i+1)modn). Sec-
ond, an eating philosopher eats until she is no longer hungry: G2i =0(ei∧hi →
2 ei). Third, every hungry philosopher eats eventually G3i = 0(hi → 1 ei).
We add the assumption that an eating philosopher eventually loses her appetite:
A1i =0(ei →1¬hi). Our final specification consists of n assumptions and 3n
guarantees:

∧n
i=1A1i →

∧n
i=1(G1i ∧G2i ∧G3i).

We have synthesized a system realizing this specification for 5 philosophers
using our synthesis tool RATSY1. The system constructed by RATSY is not very
robust: When philosopher 1 violates the assumption by always being hungry,
then philosophers 1 and 3 eat forever, while the other philosophers starve. Thus
the three guarantees 0(h2 →1 e2), 0(h4 →1 e4), and 0(h5 →1 e5) are
violated. A more robust system would let philosopher 3 and 4 take turns, thus
violating only two guarantees. ut

In this paper, we consider Generalized Reactivity specifications of rank 1
(GR(1) specifications). GR(1) is an expressive specification formalism with a
natural distinction between assumptions and guarantees [PPS06]. Efficient tools
exist for GR(1) specifications, which have been used to synthesize relatively large
specifications [JGWB07,BGJ+07]. GR(1) specifications are of the form ϕ → ψ.
Here, ϕ represents the environment assumptions and ψ represents the system
guarantees and both ϕ and ψ are given as a set of deterministic Büchi automata.
These automata are combined into a product automaton with state space Q,
transition relation δ, and acceptance condition

∧m
i=101 ai →

∧n
i=101 gi.

GR(1) specifications do not require any guarantees to be fulfilled when some
assumption is violated. We propose an intuitive notion of robustness that pre-
scribes, for any number of environment assumptions that is violated, a minimal
number of system guarantees that must still be fulfilled. We show that this
and related measures of robustness can be transformed to a specification of the
form

∧k
j=1(

∧m
i=101 aji →

∧n
i=101 gji), which is a Generalized Reactivity

(generalized Streett) formula of rank k. We address the problem of verification
1 http://rat.fbk.eu/ratsy/index.php/Main/HomePage

and especially of synthesis of such formulas, which allows us to construct robust
systems.

The verification problem is a relatively straightforward generalization of the
verification problem for GR(1) (cf. [GBJV08]) and can be performed in time
O(m · n · |Q| · |δ|). Recall that m is the number of assumptions and n is the
number of guarantees, and |Q| and |δ| refer respectively to the size of the state
space and the transition relation of the product automaton.

The synthesis question is answered by solving a Generalized Reactivity game.
This can either be done through a specialization of Zielonka’s algorithm, or
through a novel algorithm presented in this paper, both of which can be imple-
mented symbolically. Zielonka’s algorithm runs in time O(|Q|2·k ·|δ|·(m+n)k ·k!),
which we improve to O(|Q|k · |δ| · (m · n)k·(k+1) · k!). On the other hand, our al-
gorithm produces larger strategies and thus larger robust systems: the systems
produced by Zielonka’s algorithm have size |Q| · nk · k!, whereas our algorithm
produces systems of size |Q| · ((m+ 1) · (n+ 1))k · k!.

Our algorithm is a generalization of a game-theoretic algorithm for the impor-
tant class of GR(1) conditions based on a reduction (via a counting construction)
to Streett games with single pair. The algorithm runs in time O(|Q|·|δ|·(m·n)2).
This bound improves the O(|Q|2·|δ|·m·n) time bound of the algorithm of [PPS06]
for the case that Q is larger than m and n, which is typical in such applications
as GR(1) synthesis.

Measures of robustness for different fault models, for example internal mal-
functions of circuits [FD08], have been studied. Classical notions of fault toler-
ance such as self-stabilization [Dij74] and the notions of closure and convergence
suggested in [Aro93] focus on safety properties. Convergence requires that a sys-
tem restores its invariant after an error has occurred, and closure requires that
the system satisfies a second, larger invariant even when errors recur. Our ap-
proach can be viewed as an extension of closure to liveness, where we require
that some weaker set of guarantees is fulfilled when the environment behaves
unexpectedly. Apart from our previous work [BGHJ09], there is little work on
synthesis of robust systems, although people have studied the related problem
of retrofitting fault tolerance to existing programs. (See, e.g., [KE05,EKA08].)

The flow of the paper is as follows. After giving the necessary notation in
Section 2, we define several notions of robustness in Section 3. In order to solve
the synthesis problem for robust systems, we introduce the necessary transfor-
mations on the formulas and game theoretic algorithms in Sections 4 and 5.
In Section 6 we return to the questions of verification and synthesis of robust
systems. We conclude with Section 7.

2 Preliminaries

We consider systems with a set of input signals I and a set of output signals O.
We define AP = I ∪O. We use the signals as atomic propositions in the specifi-
cations defined below. Our input alphabet is thus ΣI = 2I , the output alphabet
is ΣO = 2O, and we define Σ = 2AP .

Acceptance Conditions. The specifications we use are automata and we syn-
thesize a system that realizes a given specification using games. Both automata
and games can have the following acceptance conditions. Let Q be a set of states,
an acceptance condition is a predicate Acc : Qω → B, mapping infinite runs to
true or false (accepting and not accepting, or winning and losing, respectively).
The Büchi acceptance condition is Acc(ρ) = 1 iff inf(ρ)∩F 6= ∅, where F ⊆ Q is
the set of accepting states and inf(ρ) is the set of elements that occur infinitely
often in ρ. We abbreviate the Büchi condition as B(F). A Generalized Reactivity
acceptance condition is a predicate

∧k
l=1(

∧ml

i=1 B(Al,i) →
∧nl

i=1 B(Gl,i)), where
Al,i ⊆ Q are assumptions and Gl,i ⊆ Q are guarantees. To simplify notation,
we will assume that the ml are all equal to some constant m, and similarly for
nl and n. The acceptance condition is a GR(1) acceptance condition if k = 1, it
is a generalized Büchi acceptance condition if k = 1 and m = 0, it is a Streett
acceptance condition with k pairs if m = n = 1.
Automata. A (complete deterministic) automaton A over the alphabet Σ is a
tuple A = (Q, q0, δ,Acc), where Q is a finite set of states, q0 ∈ Q is the initial
state, δ : Q × Σ → Q is the transition function, and Acc is the acceptance
condition. A run of an automaton A on a word w = w0w1 . . . ∈ Σω is the
sequence ρ(w) = ρ0ρ1 . . . ∈ Qω such that ρ0 = q0, and ρi+1 = δ(ρi, wi). An
automaton accepts a word if its run is accepting (Acc(ρ(w)) = 1); its language
L(A) consists of the set of words it accepts. A Büchi automaton A = (Q, q0, δ, F)
is an automaton with a Büchi condition with accepting state set F .
Generalized Reactivity(1) specifications. consist of two parts: assumptions
and guarantees [PPS06]. They specify the interaction between an environment
(controlling the input variables ΣI) and a system (controlling the output vari-
ables ΣO). The specification states that the system must fulfill all guarantees
whenever the environment fulfills all assumptions.

A GR(1) specification over the alphabet Σ consists of m Büchi automata
Aa1 , . . . , A

a
m for the environment assumptions and n Büchi automata Ag1, . . . , A

g
n

for the system guarantees. [PPS06]. Let AGR(1) = (Q, δ, q0,Acc) be the product
of all automata Aai and Agi , where the state space is Q = Qa1×· · ·×Qam×Qg1×· · ·×
Qgn, the transition function is δ((qa1 , . . . , q

g
n), σ) = (δa1 (qa1 , σ), . . . , δgn(qgn, σ)), and

the initial state is q0 = (qa0,1, . . . , q
g
0,n). Let Jai = {(qa1 , . . . , qgn) ∈ Q | qai ∈ F ai } be

the set of states that are accepting in Aai . Similarly, let Jgi be the set of all states
of AGR(1) that are accepting in Agi . The acceptance condition Acc is a GR(1)
condition with assumptions Jai and guarantees Jgi .

Note that the size of the state space of the specification grows exponentially
with the number of assumptions and guarantees (if the Büchi automata have
more than 2 states), whereas m and n grow linearly.

A system realizes a GR(1) specification AGR(1) if the language of the system
is part of the language of AGR(1).
Games and Strategies. A game graph is a finite directed graph G = (S, s0, E)
consisting of a set of states S, an initial state s0 ∈ S, and a set of edges E ⊆ S×S
such that each state has at least one outgoing edge. The states are partitioned
into a set S1 of Player-1 states and a set S2 of Player-2 states. When the initial

state is not relevant, we omit it and write (S,E). A play ρ = s0s1 . . . ∈ Sω is an
infinite sequence of states such that for all i ≥ 0 we have (si, si+1) ∈ E. Given
a game graph G = (S,E), a (finite memory) strategy for Player 1 is a tuple
(Γ, γ0, π), where Γ is some (finite) set representing the memory, γ0 ∈ Γ is the
initial memory content, and π : S1×Γ → S×Γ is a function mapping a Player-1
state s and a memory content to a successor state s′ and an updated memory con-
tent such that (s, s′) ∈ E. A Player-2 strategy is defined similarly. A strategy is
positional if it depends only on the current state. We represent a positional strat-
egy π for player p as a function from Sp to S. Let ρ((Γ1, γ0,1, π1), (Γ2, γ0,2, π2), s)
denote the unique play starting at s when Player 1 plays according to the strat-
egy (Γ1, γ0,1, π1) and Player 2 plays according to (Γ2, γ0,2, π2).

A game is a tuple ((S,E),Acc), consisting of a game graph (S,E) and an
objective Acc. The game graph defines the possible actions of the players. The
objective describes the winning condition for the players. A play ρ is winning
for Player 1 if it satisfies the objective of the game, otherwise it is winning
for Player 2. A strategy π1 is winning for Player 1 if for all strategies π2 of
Player 2 the play ρ((Γ1, γ0,1, π1), (Γ2, γ0,2, π2), s0) is winning. A game is winning
for Player 1 (Player 2) if there exists a winning strategy for Player 1 (Player 2,
resp.). A Generalized Reactivity (GR) game is a game with a Generalized Reac-
tivity acceptance condition, and similarly for GR(1).

Given a game graph G, two objectives are equivalent if all plays in G have
the same winner for both objectives. The objectives are equivalent if they are
equivalent for any game graph.
GR(1) Synthesis. A GR(1) specification can easily be translated into a GR(1)
game. A winning strategy for the GR(1) game corresponds to a system that
realizes the GR(1) specification.

3 Defining Measures of Robustness

In this section we discuss how to compare systems with respect to robustness.
Usually, multiple systems satisfy a specification, but which one is most robust?
In prior work we answered this question for safety specifications: our measure of
robustness for a safety specification ϕ → ψ is the ratio between how often the
environment violates ϕ and how often the system violates ψ. For specifications
with liveness properties, this approach does not work because we cannot count
the number of violations of a liveness property. Instead, we propose to count the
number of properties violated. In the following we show two different robustness
measures, the single and the multiple counting requirements measure. Then we
formally state the requirements a robustness measure has to satisfy.

Single Counting Requirements. Recall the dining philosophers example with
n = 5 philosophers given in the introduction. Suppose system D1 always lets
one philosopher eat until she is not hungry anymore and then moves to the
next hungry philosopher in a round robin manner. If one philosopher is hungry
forever, then no other philosopher gets to eat again. Thus, the violation of one
assumption leads to the violation of four guarantees.

Suppose system D2 lets two non-adjacent philosophers eat at the same time
until neither is hungry anymore. They take turns in the following order: first
philosopher 1 and 3 eat, then philosopher 2 and 4, and last philosopher 3 and
5 eat. If one of the currently eating philosopher is hungry forever, then the
two currently eating philosophers eat forever and no other philosopher gets to
eat again. Thus, the violation of one assumption leads to the violation of three
guarantees. System D2 is thus more robust than system D1.

An even more robust system (D3) is the one described in the introduction.
Two philosophers eat at the same time, as soon as one of them is not hun-
gry anymore another philosopher with free chopsticks is allowed to eat. If one
philosopher is hungry forever, she eats forever and the other philosophers that
are not her neighbors take turns eating. The violation of one assumption leads
to the violation of two guarantees.

We specify robust systems by adding restrictions to the original specifica-
tion. All three systems above satisfy the original specification ϕ =

∧n
i=1A1i →∧n

i=1(G1i ∧G2i ∧G3i), but only D2 and D3 guarantee that they violate at most
three system guarantees if the environment violates one of its assumptions. For-
mally, D2 and D3 additionally satisfy

ψ1 =
(n∨
i=1

∧
j∈{1,...,n}\{i}

A1j

)
→
(
ϕS ∧

n∨
i=1

n∨
j=i+1

n∨
k=j+1

∧
l∈{1,...,n}\{i,j,k}

G3l

)
,

where ϕS =
∧n
i=1(G1i ∧ G2i). The antecedent of the formula states that the

environment satisfies n− 1 out of the n assumptions. The consequent says that
the system satisfies all the safety guarantees (G1i and G2i) but might violate
three of its liveness guarantees.

Note that in general, a robust system cannot violate a safety guarantee in
response to a violation of a fairness assumption, since a violation of a fairness
assumption can not be detected in finite time.

Since D3 violates at most two system guarantees if one environment assump-
tion is violated, it also satisfies the following formula.

ψ2 =
(n∨
i=1

∧
j∈{1,...,n}\{i}

A1j

)
→
(
ϕS ∧

n∨
i=1

n∨
j=i+1

∧
k∈{1,...,n}\{i,j}

G3k

)
These two formulas allow us to distinguish between systems D1, D2, and D3,

which satisfy the same base specification but differ in how resilient they are with
respect to violated environment assumptions. We propose to use formulas of this
type, which relate the number of satisfied assumptions to a number of satisfied
guarantees to measure how robust a system is.

Suppose A is a set of assumptions and G is a set of guarantees. Let Ak =
{A ⊆ A | |A| = k} be the set of all subsets of A of size k and let Gk be
defined similarly. We can augment the specification with a restriction of the
form (

∨
A∈Ak

∧
Ai∈AAi) → (

∨
G∈Gl

∧
Gi∈GGi) to check if a system satisfies l

guarantees when k assumptions are satisfied. Naturally, a system that satisfies
more guarantees with the same number of satisfied assumptions is more robust.

Multiple Counting Requirements. In some cases we might want to have a
more fine-grained measure of robustness, which cannot be expressed by a single
restriction of the form given above. Recall again the dining philosophers example
but this time assume there are n = 7 philosophers. Suppose system D4 allows
two hungry philosophers to eat at the same time. Then, even if one philosopher
does not stop eating, the other non-adjacent philosophers can still take turns
eating. However, if two philosophers misbehave and they both get to eat (i.e.,
they do not sit next to each other), they will leave the other five philosophers
to starve. Suppose another system D5 allows three philosophers to eat at the
same time. Now, if two philosophers misbehave and they both get to eat, the
system D5 still allows another philosopher to eat and only four philosophers are
left to starve. Both D4 and D5 realize the specification ϕ. If we consider the
restrictions from above, we see that both systems satisfy the formula ψ1 and
ψ2. Our previous measure of robustness cannot distinguish between D4 and D5.
Let’s add another restriction ψ3 to our specification:

ψ3 =
(n∨
i=1

n∨
j=i+1

∧
k∈{1,...,n}\{i,j}

A1k

)
→
(
ϕS ∧

n∨
i=1

n∨
j=i+1

n∨
k=j+1

∧
l∈{1,...,n}\{i,j,k}

G3l

)
System D5 realizes ϕ∧ψ2∧ψ3 but system D4 does not. We can measure the num-
ber of satisfied guarantees for several numbers of satisfied assumptions. The re-
strictions we add to the specifications are of the form

∧
(k,l)∈L((

∨
A∈Ak

∧
Ai∈AAi)→

(
∨
G∈Gl

∧
Gi∈G Gi)), where L is a list of pairs (k, l), requiring l guarantees to be

satisfied if k assumptions are satisfied.

Definitions. Both single and multiple counting requirements, as defined above,
can be put in the following form (as we will shown in Section 4).

Definition 1. Given a GR(1) specification AGR(1) with assumptions Ja1 , . . . , J
a
m

and guarantees Jg1 , . . . , J
g
n, a robustness specification for AGR(1) has the form

k∧
l=1

(
ml∧
i=1

B(Jal,i)→
nl∧
i=1

B(Jgl,i)

)
,

where Jal,i ∈ {Ja1 , . . . , Jam} and Jgl,i ∈ {J
g
1 , . . . , J

g
n}.

There is a natural partial order on robustness specifications: If, for each set
of satisfied assumptions, a specification S requires a superset of the guarantees
required by specification S′, then S is more robust than S′. Let us denote this
order by ≺.

Definition 2. A robustness measure for a GR(1) specification is a set of ro-
bustness specifications together with a total order that respects ≺.

For example, consider again the ‘simple counting requirements’ robustness
specifications from above. A possible total order is (k = 0, l = |G|) > (k = 0, l =
|G| − 1) > . . . > (k = 0, l = 1) > (k = 1, l = |G|) > . . . > (k = |A|, l = 0),

where k is the number of satisfied assumptions and l the number of satisfied
guarantees. Another possible total order is (k = 0, l = |G|) > (k = 1, l = |G|) >
. . . > (k = |A| − 1, l = |G|) > (k = 0, l = |G| − 1) > . . . > (k = |A|, l = 0). A
total order is necessary to synthesize the most robust specification.

Section 6 shows how to verify and synthesize robust systems for a given
measure. To synthesize a robust system, we solve games with the robustness
specification as objective. Section 5 shows how to solve such games. In the next
section, we show how to translate combinations of Büchi objectives to generalized
Büchi objectives.

4 Simplification of Combinations of Büchi Objectives

In this section we present a simplification of disjunctions of conjunctions
of Büchi objectives (DCB objectives) to conjunctions of Büchi objectives (gen-
eralized Büchi objectives). This simplification is needed to transform counting
requirements to robustness specifications. The simplification (or reduction) in-
curs an exponential blowup. Games with generalized Büchi objectives can be
solved in polynomial time, whereas we show that games with DCB objectives
are coNP-complete. This shows that the exponential blow up in the translation
is probably inevitable.

Simplification of DCB objectives. The simplification is done in two steps.
First, we show how to translate DCB objectives to conjunctions of disjunctions
of Büchi objectives. Second, we show that conjunctions of disjunctions of Büchi
objectives can be translated to generalized Büchi objectives.

Lemma 1. Any winning condition ψ that is a DCB objective can be translated
into an equivalent winning condition ψ′ that is a conjunction of disjunctions of
Büchi objectives, such that |ψ′| = O(2|ψ|).

Proof. For any objective ψ =
∨m
i=1

∧n
j=1 B(Bij) there exists an equivalent objec-

tive ψ′ =
∧nm

i=1

∨m
j=1 B(B′ij) with B′ij ∈ {Bij | i ∈ {1 . . .m} and j ∈ {1 . . . n}}.

The translation is identical to that of changing DNF into CNF. ut

Lemma 2. Any winning condition ψ that is a conjunction of disjunctions of
Büchi objectives can be translated into an equivalent generalized Büchi objective
ψ′, such that |ψ′| = O(|ψ|).

Proof. Since a disjunction of Büchi conditions is again a Büchi condition (B(B1)∨
B(B2) = B(B1 ∪ B2)), objectives of the form

∧k
i=1

∨l
j=1 B(Bij) can be reduced

to a generalized Büchi objective
∧k
i=1 B(

⋃l
j=1Bij). ut

Corollary 1. Any winning condition ψ that is a DCB objective can be translated
into an equivalent generalized Büchi objective ψ′, such that |ψ′| = O(2|ψ|).

C1

C2

Ck

...

}
}
}

literal

literal

literal

1

Fig. 1. Game graph for 3SAT formula

Complexity of solving DCB objectives. We first show that the problem
of deciding whether Player 1 has a winning strategy for a DCB objective is
coNP-hard, and then we will argue coNP-completeness.

Hardness proof. We show that the problem of deciding whether Player 1 has a
winning strategy in a game with a DCB objective is at least as hard as deciding
whether a 3SAT formula is unsatisfiable. Consider a 3SAT formula ψ in CNF
with clauses C1, C2, . . . , Ck over variables {x1, x2, . . . , xn}, where each clause
consists of disjunctions of exactly three literals (a literal is a variable or its
complement). Given the formula ψ, we construct a game graph as shown in
Figure 1. The game graph is as follows: from the initial state, Player 1 chooses
a clause, then from a clause Player 2 chooses a literal that appears in the clause
(i.e., makes the clause true). From every literal the next state is the initial state.
The winning condition for Player 1 is

∨n
i=1(B(Xi) ∧ B(Xi)), where Xi is the

set of states that correspond to the literal xi and Xi is the set of states that
correspond to the complement literal ¬xi; in other words, Player 1 wants to visit
some variable and its complement infinitely often.

We now present two directions of the hardness proof.
Not satisfiable implies winning. We show that if ψ is not satisfiable, then

Player 1 has a winning strategy. The winning strategy is as follows: the strategy
is played in rounds; in round i Player 1 chooses the clauses C1, C2, . . . , Ck in
order, and then proceeds to round i + 1. Since ψ is not satisfiable, for every
round i there is at least one variable such that both the variable state and its
complement state is visited in round i. Since the number of variables is finite, it
follows that there must be some variable such that both the variable state and
its complement state appears infinitely often. The result follows.

Satisfiable implies not winning. We now show that if ψ is satisfiable, then
Player 2 has a winning strategy. Consider a satisfying assignment to ψ. A mem-
oryless winning strategy for Player 2 is as follows: for every clause Ci, Player 2
chooses a literal from Ci that is set true by the satisfying assignment. Given the

strategy of Player 2, since the strategy is obtained from a valid assignment, it
follows that never a variable and its complement is visited.

The above argument gives us the following lemma.

Lemma 3. Given a game graph with a DCB objective, deciding if Player 1 has
a winning strategy is coNP-hard.

Lemma 4. Given a game graph with a DCB objective, deciding if Player 1 has
a winning strategy can be achieved in coNP.

Proof. The proof is as follows: we have already shown that DCB objectives can be
translated to a generalized Büchi objective (which is an upward-closed objective).
It follows from the result of Zielonka [Zie98] that there are memoryless winning
strategies for the complement of an upward-closed objective (in particular for
disjunction of coBüchi objectives). It follows that there always exist memoryless
winning strategies for Player 2. Hence to falsify that Player 1 has a winning
strategy, a memoryless strategy for Player 2 can be fixed (as the polynomial
witness) and the resulting one-player graph can be verified in polynomial time.
The polynomial time verification procedure uses the following fact: consider a
maximal strongly connected component (MSCC) in a one-player graph (only
Player 1), then the MSCC is winning if for some index i of the disjunction,
for every index j of the corresponding conjunction the MSCC contains at least
one Büchi state Bij . Using the above fact, MSCC decomposition of a graph,
and reachability to winning MSCCs we obtain a polynomial time verification
procedure. The result follows. ut

Lemma 3 and Lemma 4 yield the following result.

Theorem 1. Given a game graph with a DCB objective for Player 1, deciding
if Player 1 has winning strategy is co-NP complete.

5 Solving Generalized Reactivity Games

In this section, we first present a translation of GR(1) winning conditions to one-
pair Streett conditions (or parity {0, 1, 2} conditions). Our reduction is based on
a counting construction similar to the reduction of generalized Büchi conditions
to Büchi conditions. Second, we generalize the translation to reduce games with
Generalized Reactivity objectives to games with Streett objectives.

Reduction. Consider a GR(1) gameG = ((S,E),Acc) with Acc =
∧m
i=1 B(Ai)→∧n

i=1 B(Gi) with Player 1 states S1 and Player 2 states S2. We construct an
equivalent one-pair Streett game G′ = ((S′, E′),B(A′1)→ B(G′1)) with Player 1
states S′1 and Player 2 states S′2 as follows.

1. The state space S′ = S × {0, 1, . . . ,m} × {0, 1, . . . , n}, with S′1 = S1 ×
{0, 1, . . . ,m} × {0, 1, . . . , n}, and S′2 = S2 × {0, 1, . . . ,m} × {0, 1, . . . , n}.

2. The set of edges E′ is defined as follows:

((s, i, n), (s, 0, 0)) ∈ E′ for 0 ≤ i ≤ m,
((s,m, j), (s, 0, j)) ∈ E′ if j 6= n, and
((s, i, j), (s′, i′, j′)) ∈ E′ if (s, s′) ∈ E, i′ = i+ 1 if s′ ∈ Ai+1 otherwise i′ = i,

and j′ = j + 1 if s′ ∈ Gj+1 otherwise j′ = j.

3. The Streett pair is (A′1 = {(s,m, j) ∈ S′ | j ∈ {0, . . . , n}}, G′1 = {(s, i, n) ∈
S′ | i ∈ {0, . . . ,m}}).

We present the intuition behind the construction. Initially i and j are zero. If
all the assumptions are visited such that, assumption A2 is visited after some
visit to assumption A1; assumption A3 is visited after some visits to assumptions
A1, A2; assumption A4 is visited after some visits to assumptions A1, A2, A3; and
so on, since the last reset, then i is reset to 0. If all the guarantees are visited,
such that guarantee G2 is visited after some visit to guarantee G1; guarantee G3

is visited after some visits to guarantees G1, G2; guarantee G4 is visited after
some visits to guarantees G1, G2, G3; and so on, since the last reset, then j is
reset to 0. In between resets, i and j denote the last assumption and the last
guarantee visited in the order described above, since the last reset. The size of
the new state space is |S′| = |S| · (m + 1) · (n + 1) = O(|S| · m · n). The new
number of transitions is |E′| = |E| · (m+ 1) · (n+ 1) + 2 · |S| = O(|E| ·m · n).

Lemma 5. There exists a winning strategy for G iff there exists a winning strat-
egy for G′.

Proof. Consider a play ρ in G and the corresponding play ρ′ in G′. We consider
two cases. Case one. We consider the case where all guarantees appear infinitely
often in ρ. If all guarantees are visited infinitely often, then a state with third
state component with value n is visited infinitely often in ρ′ (i.e., G′1 is visited
infinitely often). Thus, if the play inG satisfies the GR(1) condition by visiting all
guarantees infinitely often, then the corresponding play in G′ visits G′1 infinitely
often and satisfies the Streett condition.

Case two. We consider the case where some guarantee is not visited infinitely
often in ρ. In this case a state with third state component with value n is visited
only finitely often in ρ′. We consider two sub-cases.

Case two(a). If all the assumptions are visited infinitely often in ρ, then a
state with second state component with value m is visited infinitely often in
ρ′. In this case the play in G does not satisfy the GR(1) condition, and the
corresponding play in G′ visits A′1 infinitely often and G′1 finitely often, which
violates the Streett condition.

Case two(b). If some assumption is not visited infinitely often in ρ, then a
state with second state component with value m is visited only finitely often in
ρ′ (i.e., A′1 is visited finitely often). In this case the play in G satisfies the GR(1)
condition, and the corresponding play in G′ satisfies the Streett condition. This
completes the proof. ut

Theorem 2. Games with GR(1) objectives can be solved in O(|S| · |E| · (m ·n)2)
time.

Since one-pair Streett (or parity {0, 1, 2})) games with |S| states and |E| edges
can be solved in O(|S| · |E|) time [Jur00], from Lemma 5 we obtain the above
theorem. It may also be noted that one-pair Streett games can be solved very
efficiently in practice [dAF07] and also symbolically [EJ91] (and implementing
our counting construction symbolically is standard). The previous best know
algorithm to solve GR(1) games was through the triple nested fix-point algorithm
of [PPS06] which works in time O(|S|2 · |E| ·n ·m). For the typical case that |S|
is much greater than m and n, our algorithm is faster.

Our algorithm can easily be generalized to Generalized Reactivity objectives.

Theorem 3. Games with Generalized Reactivity objectives can be solved in O(|S|k·
|E| · (m · n)k·(k+1) · k!) time.

Proof. Turn all GR(1) objectives into Streett pairs, the Streett game has O(|S| ·
mk · nk) states, O(|E| ·mk · nk) transitions, and k-Streett pairs. A Streett game
with k pairs, |E′| transitions and |S′| states can be solved in O(|E′| · |S′|k ·
k!) [PP06]. ut

A symbolic algorithm for Generalized Reactivity objectives can be obtained
as follows: use the standard symbolic implementation of the counting construc-
tion along with the symbolic algorithm for Streett games from [PP06]. This
gives us a symbolic algorithm for solving games with Generalized Reactivity
objectives.
Winning strategy and memory required. A winning strategy for a GR(k)
condition is obtained as follows: first we consider an automaton A1 of size ((n+
1) · (m + 1))k to store the values of the counters and follow the transition as
given in the reduction to Streett games with k pairs (essentially this mimics the
reduction of the counting construction). Winning strategies in Streett games with
k pairs require at most k! memory, and a winning strategy (automata A2 with
k! memory) can be constructed from the Streett game solving algorithms (such
as [PP06] or [CHP07]). The product automaton A1 × A2 describes a winning
strategy for the GR(k) condition and requires ((n+ 1) · (m+ 1))k · k! memory.

In the case of GR(1) conditions, our construction of winning strategies re-
quires (n+ 1) · (m+ 1) memory. The memory can be improved to n as follows:
once the winning set is computed, we can run Zielonka’s algorithm to com-
pute a winning strategy with n memory. However, as the winning set is already
computed we can get rid of the outer iteration of Zielonka’s algorithm and re-
running Zielonka’s algorithm to compute the winning strategy, given the winning
set, takes O(|S| · |E| · (n+m)) time.

6 Verification and Synthesis of Robust Systems

First, we show how to verify whether a system has a certain level of robustness.
Then, we give an algorithm to synthesize the most robust system with respect
to a given robustness measure.

Verification. Verification of a robustness specification is similar to the verifica-
tion of a GR(1) specification.

Lemma 6. Given a GR(1) specification AGR(1) = (Q, δ, q0,Acc) with m as-
sumptions and n guarantees, and a system M , verification can be performed in
O(m · n · |Q|2 · |δ|) time.

Proof. Check if a trace in AGR(1) × M satisfies
∧m
i=1 B(Ai) ∧ (

∨n
i=1 ¬B(Gi))

(the negation of the specification) using the µ-calculus formula µX .(pre(X) ∨∨n
j=1 νY .(¬Gj ∧

∧m
i=1 pre(µZ .(Y ∧ (Ai∨pre(Z)))))) [GBJV08]. The complexity

of the nested fix-points is in O(|Q|2 · |δ|) [EL86]. ut

Theorem 4. Given a GR(1) specification AGR(1) = (Q, δ, q0,Acc), a robustness
specification

∧k
l=1(

∧m
i=1 B(Al,i)→

∧n
i=1 B(Gl,i)), and a system M , verifying that

M satisfies the robustness specification takes O(k ·m · n · |Q|2 · |δ|) time.

Proof. Check if a trace in AGR(1) ×M satisfies the negation of the specifica-
tion

∨k
l=1(

∧m
i=1 B(Al,i) ∧ (

∨n
i=1 ¬B(Gl,j))) by checking the k different GR(1)

parts (
∧m
i=1 B(Al,i)∧ (

∨n
i=1 ¬B(Gl,j))) separately, one after the other, using the

method of Lemma 6. ut

Synthesis. The most robust system with respect to a given robustness measure
can be synthesized by synthesizing the greatest realizable robustness specifica-
tion. Thus, synthesis can be reduced to solving GR games.

Theorem 5. Given a GR(1) specification AGR(1) = (Q, δ, q0,Acc), and a ro-
bustness measure with h robustness specifications rp =

∧k
l=1(

∧m
i=1 B(Al,i) →∧n

i=1 B(Gl,i)), with 1 ≤ p ≤ h, and a total order, synthesis of the most robust
system can be performed in O(h · |Q|k · |δ| · (m · n)k·(k+1) · k!) time. The size of
the resulting system is ((m+ 1) · (n+ 1))k · k! · |Q|.

Proof. The best system can be synthesized by trying the specifications in order.
Start with the lagest robustness specification according to the given total order.
Try to synthesize a system satisfying the specification using the algorithm given
in Section 5. The translation of the specification into a game graph is linear,
hence synthesis of a robustness specification can be performed in O(|Q|k · |δ| ·
(m · n)k·(k+1) · k!) time (see Theorem 3). The size of the synthesized system is
((m + 1) · (n + 1))k · k! · |Q|, if the robustness specification is realizable. If the
robustness specification is not realizable proceed with the next specification in
the given order. ut

7 Conclusions

We have presented a framework for robustness for liveness specifications. The
notion of robustness that we suggest aims to maximize the number of guarantees
that are fulfilled for any number of assumptions that may be violated. We have

discussed several different interpretations of this notion and have shown that
they can all be reduced to Generalized Reactivity formulas. We have shown
how to verify such formulas and how to synthesize them to robust systems.
For synthesis we have developed a novel game-theoretic algorithm that is faster
than Zielonka’s, although it does produce strategies with larger memory. Our
algorithm can also be used for the synthesis of GR(1) properties, in which case
it outperforms the algorithm of [PPS06] when the state space of the specification
is larger than the number of assumptions and guarantees.

References

[Aro93] A. Arora. Closure and convergence: A foundation of fault-tolerant comput-
ing. IEEE Transatcions of Software Engineering, 19:1015–1027, 1993.

[AS85] B. Alpern and F. B. Schneider. Defining liveness. Information Processing
Letters, 21:181–185, October 1985.

[BCHJ09] R. Bloem, K. Chatterjee, T. Henzinger, and B. Jobstmann. Better quality
in synthesis through quantitative objectives. In Int. Conf. Computer Aided
Verification (CAV), pages 140–156, 2009.

[BGHJ09] R. Bloem, K. Greimel, T. Henzinger, and B. Jobstmann. Synthesizing ro-
bust systems. In Proc. Formal Methods in Computer Aided Design (FM-
CAD), pages 85–92, 2009.

[BGJ+07] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and M. Wei-
glhofer. Automatic hardware synthesis from specifications: A case study.
In In Proceedings of the Design, Automation and Test in Europe, pages
1188–1193, 2007.

[CHP07] K. Chatterjee, T. A. Henzinger, and N. Piterman. Generalized parity games.
In 10th International Conference on Foundations of Software Science and
Computation Structures, pages 153–167. Springer, 2007. LNCS 4423.

[dAF07] L. de Alfaro and M. Faella. Accelerated algorithms for 3-color parity games
with an application to timed games. In Nineteenth International Conference
on Computer Aided Verification (CAV’07), pages 108–120, Berlin, 2007.
Springer-Verlag. LNCS 4590.

[Dij68] E. W. Dijkstra. Cooperating sequential processes. In Genuys, editor, Pro-
gramming Languages, pages 43–112. Academic Press, 1968.

[Dij74] E. Dijkstra. Self-stabilizing systems in spite of distributed control. Com-
munications of the ACM, 17:643–644, 1974.

[EJ91] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determi-
nacy. In Proc. 32nd IEEE Symposium on Foundations of Computer Science,
pages 368–377, October 1991.

[EKA08] A. Ebnenasir, S. S. Kulkarni, and A. Arora. Ftsyn: a framework for auto-
matic synthesis of fault-tolerance. Software Tools for Technology Transfer,
10:455–471, 2008.

[EL86] E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the
propositional mu-calculus. In Proceedings of the First Annual Symposium
of Logic in Computer Science, pages 267–278, June 1986.

[FD08] G. Fey and R. Drechsler. A basis for formal robustness checking. In ISQED,
pages 784–789, 2008.

[GBJV08] K. Greimel, R. Bloem, B. Jobstmann, and M. Vardi. Open implica-
tion. In Proc. Int. Colloquium on Automata, Languages and Programming
(ICALP’08), pages 361–372, 2008. LNCS 5126.

[JGWB07] B. Jobstmann, S. Galler, M. Weiglhofer, and R. Bloem. Anzu: A tool for
property synthesis. In Computer Aided Verification, pages 258–262, 2007.

[Jur00] M. Jurdziński. Small progress measures for solving parity games. In STACS
2000, 17th Annual Symposium on Theoretical Aspects of Computer Science,
pages 290–301, Lille, France, February 2000. Springer. LNCS 1770.

[KE05] S. S. Kulkarni and A. Ebnnenasir. Complexity issues in automated synthesis
of failsafe fault-tolerance. IEEE Transactions on Dependable and Secure
Computing, 2:1–15, 2005.

[PP06] N. Piterman and A. Pnueli. Faster solutions of Rabin and Streett games.
In Logic in Computer Science, pages 275–284, 2006.

[PPS06] N. Piterman, A. Pnueli, and Y. Sa´ar. Synthesis of reactive(1) designs. In
7th International Conference on Verification, Model Checking and Abstract
Interpretation, pages 364–380. Springer, 2006. LNCS 3855.

[Zie98] W. Zielonka. Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theoretical Computer Science, 200(1-2):135–183,
1998.

