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Abstract Among other results, we prove the following theorem about Steiner minimal trees in d-
dimensional Euclidean space: if two finite sets in Rd have unique and combinatorially equivalent Steiner
minimal trees, then there is a homotopy between the two sets that maintains the uniqueness and the
combinatorial structure of the Steiner minimal tree throughout the homotopy.
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1 Introduction

Shortest networks connecting finite sets of geographic locations were intensely studied when the telephone
providers were legally required to charge for phone calls an amount that is proportional to the length
of the connection [2]. This motivated the discovery of many mathematical and computational properties
of such networks. Nevertheless, many of the fundamental questions are still open. For example, in 1968
Gilbert and Pollak [6] conjectured that the ratio of the length of a minimum spanning tree over the
length of a shortest network of the same point set cannot exceed 2/

√
3. In 1992, Du and Hwang claimed

a proof of the conjecture [3], but 10 years later, Ivanov and Tuzhilin noted that there are gaps [10],
and the problem remains open until today [12]. In contrast to the ratio problem, surprisingly little
attention was directed toward the configuration space of the shortest networks, a topic we approach in
this paper. Specifically, we consider a finite set of points, S, in d-dimensional Euclidean space, which we
denote as Rd. A spanning network of S is a finite set of rectifyable curves, each connecting two points
in Rd but not necessarily in S, whose union is connected and contains S. We measure the length of the
network using the Euclidean metric. A shortest network of S is a spanning network of minimum length.
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Fig. 1: Two Steiner minimal
trees of the four corners of a
square.

It is known to exist, and it satisfies the following properties; see e.g. [6]:

– it is a tree whose edges are straight line segments ending at vertices
of degree 1, 2, or 3;

– all degree-1 and degree-2 vertices are points in S;
– the angles between the edges meeting at a degree-3 vertex are 120◦,

while the angle between the edges meeting at a degree-2 vertex is at
least 120◦.

A shortest network of a finite set of points is usually referred to as a
Steiner minimal tree. This tree may or may not be unique, and in the
latter case, we call the Steiner minimal tree ambiguous. For example, the
four corners of a square have two Steiner minimal trees; see Figure 1. Note that these two trees have
different combinatorial structure if the points are labeled. Just to mention one difference: the points
A and B are connected by a path of two edges in the solid tree, and by a path of three edges in the
dashed tree. Suppose now that S consists of four (arbitrary) points in the plane, and we need to find a
Steiner minimal tree. If we know how many additional vertices there are in the tree, and how they are
connected to the four given points and to each other, then we can locate them using the 120◦-condition.
Generalizing this idea to n points in the plane gives Melzak’s algorithm [13]. But a priori, we do not
know which combinatorial structure gives the minimum length, and there is no known way that avoids
checking all of them in the worst case. Indeed, the problem of constructing a Steiner minimal tree in Rd
is NP-hard even for d = 2; see [5, page 209].

For a given finite set, S, the collection of Steiner minimal trees of S is well defined, and every tree
in this collection has a different combinatorial type [6], a notion that will be made precise later. We
are interested in the following question: for a given combinatorial type, what does the space of
points whose Steiner minimal trees are of this type look like topologically? To make this more
concrete, we order the n points in S ⊆ Rd and list the coordinates in sequence, mapping S to a point in
Rnd. For a given combinatorial type, we consider the space of points in Rnd that correspond to sets in
Rd with unambiguous Steiner minimal tree of the given type. Our main result is that this space is path-
connected. We have a weaker result if we relax the requirement and allow ambiguous Steiner minimal
trees. Here we can prove path-connectivity only for full networks in the plane. Finally, we exhibit an
example to show that the space of points with necessarily ambiguous Steiner minimal trees of a given
type is generally not connected. While the restricted setting for the result on cells is disappointing, it is
consistent with a general lack of understanding of ambiguous Steiner minimal trees. For example, it is
not known that the space of ambiguous Steiner minimal trees has measure zero. The only partial result
is in d = 2 dimensions, where the unambiguous Steiner minimal trees contain an everywhere dense open
subset of the configuration space, but the proof in [11] is long and complicated. The approach in [14]
leads to a shorter proof.

Outline. Section 2 introduces the main concepts needed to formally state our results. Section 3 presents
the key tools used in our proofs. Section 4 presents the proofs. Section 5 concludes the paper.

2 Concepts and Results

The two main concepts in this paper are the spanning networks of a set of n points in Rd, and the
decomposition of the nd-dimensional configuration space into cells whose points have combinatorially
equivalent shortest networks. We discuss both and introduce the terminology needed to formally state
our results.
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Graphs, networks, types. Similar to the notion of a curve in differential geometry, we define a network as
a map from an abstract topological to a concrete geometric space. In our context, the abstract space is
a finite connected graph, G = (V tW,E). It is partially ordered, with V ordered and W unordered. The
difference arises because the vertices in V are mapped to the points in S, which are ordered, while the
vertices in W can be mapped anywhere. To emphasize the difference, we sometimes call an element of
V a terminal vertex and an element of W an interior vertex ; an element of E is an edge. Two partially
ordered graphs, G = (V tW,E) and G′ = (V ′ tW ′, E′), are combinatorially equivalent if there exist
compatible bijections V → V ′, W → W ′, and E → E′ of which the first preserves order. Observe that
the preservation of order prevents the existence of such bijections for the two trees in Figure 1. We have
V = V ′ = {A,B,C,D}, and since we are obliged to map A to A and so on, it is impossible to find a
compatible bijection between the two edge sets.

We find it convenient to consider a graph as a 1-dimensional topological space, so it makes sense to talk
about a point x ∈ G, which may be a vertex or a point on an edge of G. If G and G′ are combinatorially
equivalent, then there exists a consistent homeomorphism g : G→ G′, that is: g restricts to the bijections
establishing the combinatorial equivalence. With this preamble, we introduce the first main concept.

Definition 1 A network is a continuous map G : G→ Rd such that the image of every edge is a rectifyable
curve or a point, and the preimage of the image of every vertex is a subgraph of G, possibly together with
subsets of points on edges whose images happen to pass through this image. We call G a parametrization
of G, and a contracting parametrization if every subgraph with constant image is connected.

The (combinatorial) type of G is the graph G0 obtained from G by shrinking each subgraph with constant
image to a vertex. Shrinking is similar to the contraction operation defined in Tutte [16, page 32] but
more general because we do not require that the subgraphs that shrink to vertices be connected. The type
is again a graph although it may have loops and multi-edges even if G does not. The network G : G→ Rd
spans an ordered set S ⊆ Rd if G restricts to an order-preserving bijection from V to S. To compare
networks, we write `(G) for the sum of the lengths of the curves. A straight-line network maps every edge
to a line segment or point. Of particular importance are shortest spanning networks, which are necessarily
straight-line but also satisfy the three properties stated in Section 1. A Steiner minimal tree is the image
of a shortest network. The image of a shortest network is necessarily a tree, so it is natural to parametrize
it using a tree. In this case, the type is obtained by shrinking connected subtrees, so the parametrization
is necessarily contracting.

The above definitions allow for different degrees of sameness between two networks, G : G→ Rd and
G′ : G′ → Rd. We call G,G′ identical if G,G′ are combinatorially equivalent and there is a consistent
homeomorphism g : G→ G′ such that G(x) = G′(g(x)) for every x ∈ G. Note that this is strictly stronger
than requiring combinatorially equivalent graphs and equal images. A weaker and perhaps more natural
notion calls G,G′ the same if their types, G0, G

′
0, are combinatorially equivalent, and there is a consistent

homeomorphism g0 : G0 → G′0 such that G(x) = G′(g0(x)) for every x ∈ G0. For example, two shortest
networks are the same iff they have the same Steiner minimal tree. Yet weaker is the notion that says G,G′
have the same type if G0, G

′
0 are combinatorially equivalent. In dimension d = 2, we require in addition

that there is a homeomorphism h : R2 → R2 such that G(x) = h(G′(g0(x))). For plane embeddings, this
is equivalent to requiring that the ordering of the edges around the vertices is the same in both images.
While the three notions of sameness are different and relate to each other by a chain of implications, they
are all transitive. We get the reverse chain of implications for the negations: having different type implies
not being the same implies not being identical.

Configurations, cells, decompositions. Let S be an ordered set of points pi = (pi1, pi2, . . . , pid) ∈ Rd for
1 ≤ i ≤ n. Listing the coordinates in sequence, we obtain a point

s = (p11, p12, . . . , p1d, p21, p22, . . . , pnd) ∈ Rnd. (1)

We require that the points in S are distinct, which implies that s cannot lie on any of the (nd − d)-
dimensional planes of the form ∆j

i = {(. . . , x, . . . , x, . . .) ∈ Rnd | x ∈ Rd}, where we list the i-th and
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the j-th d-tuple of coordinates, both specifying the same point in Rd. Observe that all ∆j
i contain the

diagonal of points (x, x, . . . , x). We use Rnd∆ = Rnd \
⋃
i<j ∆

j
i as the configuration space for sets of n

points in Rd.

Definition 2 The cell of a type G, denoted as cell(G), is the space of points s ∈ Rnd∆ that have shortest
networks of type G. The unambiguous cell of G, denoted as ucell(G), is the subspace of points s ∈ cell(G)
such that s has a unique Steiner minimal tree.

The remaining points, in cell(G) \ ucell(G), have at least two shortest networks, one of type G and
another of necessarily different type; see [6]. What can we say about the cells? Clearly, they cover the
configuration space since every point s ∈ Rnd∆ has at least one shortest network. The cells have possibly
non-empty intersections, and removing these intersections leaves us with the unambiguous cells, which
are disjoint but do not necessarily cover the configuration space. As mentioned earlier, there is not much
known about the space of points with ambiguous shortest networks. To complete the picture, we note
that the points in the ∆j

i correspond to multisets, or after identification to sets of size m < n in Rd. We

can therefore complete the decomposition of Rnd by partitioning the ∆j
i into strata within which m is a

constant, and to decompose each stratum according to shortest networks. By definition, the cells in these
strata belong to the boundaries of the cells in Rnd∆ , but not to the cells themselves.

B C

A

C B

A

C AB

A BC

B CA

Fig. 2: The five types of shortest networks for three points in the plane. Two boxes touch iff there is a transition between
the types that avoids configurations with fewer than three points.

We illustrate the decomposition of the configuration space with a small example: n = 3 points in d = 2
dimensions. There are only five different types, each generating a cell in R6

∆; see Figure 2. Factoring out
the three dimensions of rigid motions, we may visualize the decomposition in the remaining 3 dimensions.
Drawing the diagonal as a point at the origin with three emanating half-lines for the ∆j

i , 1 ≤ i < j ≤ 3,
we get a ring of three cells separating the two remaining cells. The origin lies in the boundaries of all five
cells, while each half-line belongs to the boundaries of four. Only six of the ten transitions between the
five cells avoid the origin and the half-lines, and we visualize them as 2-dimensional membranes, which
lie in the common boundaries of the corresponding cells. In this particular example, these membranes
belong to the three cells in the ring but not to the other two cells. For example, a point on the membrane
separating the cell on the left from the cell at the center in Figure 2 has a Steiner minimal tree consisting
of two edges that form an angle of 120◦ at B. The combinatorial type of this network is different from
that on the left but the same as that at the center. Indeed, the two separated cells do not contain any
points of their boundary, while the three cells in the ring contain every boundary point that does not
belong to the origin and the half-lines.

Main results. We are now ready to give formal statements of our main results. They state that un-
ambiguous cells are connected for all dimensions d, and that cells are connected for full networks in
R2. In contrast, the difference between a cell and the corresponding unambiguous cell is not necessarily
connected, which we will show by exhibiting an example of n = 4 points in d = 2 dimensions.

Theorem 1 (Connectedness of unambiguous cells) Let G be the type of a shortest network of a
finite set of points in Rd, for d ≥ 2. Then ucell(G) is path-connected.



On the Configuration Space of Steiner Minimal Trees 5

Theorem 2 (Connectedness of cells) Let G be the type of a shortest network of a finite set of
points in R2 such that all terminal vertices have degree-1. Then cell(G) is path-connected.

3 Tools

Fig. 3: Two locally minimal networks span-
ning the same four points in the plane. The
dashed tree is shorter because its center edge
aligns with the smaller angle pair formed by
the diagonals; see [15, Theorem 6].

The proof of our main result is inductive, applying a procedure
similar to Melzak’s algorithm; see [6, Section 5] or [13]. We
begin by introducing the ingredients of the procedure, proving
lemmas in preparation of the proofs of the theorems.

Locally minimal and pairs of codirected networks. A network
that satisfies the three properties stated in Section 1 is called
locally minimal. Every shortest network is locally minimal but
there are others; see Figure 3 for an example. As its name
suggests, there are no shorter networks nearby, in which the
notion of nearness is defined by parametrizing the networks by
their interior vertices. More generally, it is not possible to have
two locally minimal networks of the same type. We state this
result for later reference; see [9, pages 927 and 939].

Proposition 1 (Uniqueness of minimal network) Let G be a partially ordered tree with n terminal
vertices and S an ordered set of n points in Rd. If there exists a locally minimal network that spans S
and is parametrized by G, then it is unique and the shortest such network.

As a special case, we see that two different shortest networks of the same set S that are parametrized by
the same tree are impossible. A related concept is the following. Two straight-line networks, G : G→ Rd
and H : H → Rd, that span the same set S are codirected if they look geometrically the same in the
neighborhood of every vertex. More formally, we require that there exists r > 0 such that the intersection
of the ball with radius r centered at G(u) = H(u) with the images of G and H are the same for every
terminal vertex u. The existence of codirected locally minimal trees that are not the same is open, but
in the plane it is known that such pairs do not exist [14].

Proposition 2 (Non-existence of codirected trees) Any two locally minimal trees spanning the
same ordered set of finitely many points in R2 that are codirected are the same.

Sequences of networks. Another useful tool in the study of cells and their boundaries are converging
sequences. We write Gi for the networks in an infinite sequence, indexing them with the positive integers
i ∈ N. In this paper, we are primarily interested in sequences such that the Gi have all the same type,
G. We say such a sequence Gi converges if the sequence of points Gi(u) converges for every vertex u of
G. For straight edges, the limit of a converging sequence is well defined, namely the straight-line network
G : G → Rd such that Gi(u) → G(u) for each vertex u. We write Gi → G as well as G = limi→∞ Gi. Note
that G is not necessarily of type G, but G parametrizes G by construction. An important method for
obtaining converging sequences follows from the Bolzano-Weierstrass Theorem in analysis: starting with
an infinite sequence of networks with finitely many types and points within a compact domain, we obtain
a converging sequence by repeatedly restricting the choice and continuing the process with an infinite
subsequence.

For straight-line networks, Gi → G implies that the length of Gi converges to the length of G. It is
therefore easy to see that if all Gi are shortest networks, then G is a shortest network with a contract-
ing parametrization. Another important property of converging sequences of shortest networks is that
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convergence for the terminal vertices implies convergence for all vertices. In other words, as long as the
shortest network does not change its type, it depends continuously on the points it spans.

Lemma 1 (Convergence of shortest networks) Let G be a tree, and let si be a converging se-
quence of points in cell(G) with shortest networks Gi : G → Rd, all of type G. Then Gi is a converging
sequence of networks, and the limit network is a shortest network of the limit of si.

Proof Since si converges, there exists a bounded and convex domain D ⊆ Rd that contains the images of
the terminal vertices of G for all i ∈ N. The images of the interior vertices lie within the convex hull of
the images of the terminal vertices and hence also in D. We can therefore apply the Bolzano-Weierstrass
Theorem and obtain a converging subsequence of shortest networks, with limit G. To get a contradiction
to the claimed property, we assume that Gi does not converge to G. Then there exists an interior vertex
u of G, a constant C > 0, and an infinite subsequence Gij such that ‖Gij (u)− G(u)‖ > C for all j.
Applying the Bolzano-Weierstrass Theorem to this subsequence gives another converging sequence of
shortest networks, now with limit G′ 6= G. Thus, we get two shortest networks of the same set S ⊆ Rd,
both parametrized by the same tree G. Both are locally minimal, which contradicts Lemma 1.

Note that Lemma 1 implies that every point s in the boundary of cell(G) has a shortest network
parametrized by G, and the parametrization is contracting.

Moustaches. A particularly simple application of infinite sequences is used to shrink and grow edges of
Steiner minimal trees that end at degree-1 vertices. Let G be a shortest network of a set S of n ≥ 2 points
in Rd, let G be its type, and recall that it enjoys the three properties stated in Section 1. Hence, G has
at least one of the following two substructures: a two-sided moustache consisting of degree-1 vertices p
and q both adjacent to a degree-3 vertex v, or a one-sided moustache consisting of a degree-1 vertex p
adjacent to a degree-2 vertex v. We call v the anchor of the moustache in both cases. We shave a two-
sided moustache by removing p and q together with the edges connecting them to v. This leaves a smaller
graph G′ and a network G′ : G′ → Rd that spans a smaller set of points, namely S′ = S \ {G(p),G(q)}
if G(v) ∈ S, and union {G(v)} if G(v) 6∈ S. Similarly, we shave a one-sided moustache by removing p
together with the edge connecting it to v. In this case, G(v) is necessarily in S, so we get a spanning
network of S′ = S \ {G(p)}. Importantly, the operation preserves minimality in both cases. For later
reference, we state and prove a slightly more general claim, namely that trimming a moustache preserves
minimality.

Lemma 2 (Trimming a moustache) Let G be the type of a shortest network G of a set of n ≥ 2 points
in Rd, let p be a degree-1 vertex of G and v its neighbor. For 0 ≤ t ≤ 1, let Gt : G→ Rd be the same except
that it maps p to Gt(p) = (1− t)G(p) + tG(v). Then Gt is a shortest network of St = S \ {G(p)}∪ {Gt(p)},
and if G is unambiguous then so is Gt.

Proof Suppose there exists a network Ht : G → Rd that spans St with `(Ht) < `(Gt). Append the line
segment from Ht(p) = Gt(p) to G(p) to get a network H that now spans S. Then `(H) < `(G), which
contradicts the assumption that G is a shortest network of S. The same argument contradicts the existence
of different shortest networks for St if there is only one for S.

When we shave a moustache, we effectively map a point s ∈ cell(G) ⊆ Rnd∆ to a point s′ ∈ cell(G′) in
(n− 1)d- or (n− 2)d-dimensional configuration space, depending on the case. Doing this over all points s
and all moustaches of the corresponding shortest networks, we get multiple maps from higher- to lower-
dimensional configuration spaces, each skipping either d or 2d dimensions. We will exploit the fact that
every point in an unambiguous cell has plenty of preimages. In other words, if S′ has an unambiguous
shortest network, then we can grow a moustache while preserving that the network is shortest and
unambiguous, of course now spanning a larger set S. This property does not necessarily hold for sets S′
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with ambiguous shortest networks. Indeed, the corners of a regular octagon have eight different shortest
networks [4], and none of them permits the growth of a one- or two-sided moustache such that the network
remains shortest; see Figure 4.

www

p p

vv v

Fig. 4: From left to right : a Steiner minimal tree of the corners of a regular octagon, the tree with a one-sided moustache
attached, a shorter network with a degree-3 vertex connecting the endpoint of the moustache to the rest of the tree.

Admissible extensions. Before proving the property for unambiguous shortest networks, we introduce
notation for adding a moustache. Let G′ : G′ → Rd be a shortest network, let v be a degree-1 vertex
with neighbor w in G′, and let ϕ ∈ Sd−1 be a direction. To add a two-sided moustache with anchor v,
we require that the angle between ϕ and the direction ω = (G′(w) − G′(v))/‖G′(w)− G′(v)‖ be 120◦.
Equivalently, we require 〈ϕ, ω〉 = − 1

2 , and if this equation is satisfied, then we call ϕ an allowed direction
for v. For such a ϕ, there exists a unique second direction ψ ∈ Sd−1 such that 〈ψ,ϕ〉 = 〈ψ, ω〉 = − 1

2 .
Choosing r > 0, we construct S = S′ \ {G′(v)} ∪ {G′(v) + rϕ,G′(v) + rψ}. Similarly, we construct G from
G′ by adding vertices p and q, connecting both with new edges to v, and we construct G : G→ Rd such
that the restriction to G′ agrees with G′. We call r admissible for v and ϕ if G is the unique shortest
network of S.

Adding a one-sided moustache is similar, except that ϕ is an allowed direction if 〈ϕ, ω〉 ≤ − 1
2 , and

there is no second direction ψ to worry about.

Lemma 3 (Existence of admissible extensions) For each unambiguous shortest network G′ : G′ →
Rd, each degree-1 vertex v in G′, and each allowed direction ϕ ∈ Sd−1, there exists R > 0 such that every
0 < r ≤ R is admissible for v and ϕ.

Proof We consider the two-sided case and omit the proof of the easier, one-sided case. Assume without
loss of generality that G′ is the type of G′, write S′ for the ordered set of points spanned by G′, and let
x = G′(v) be the image of the anchor. We prove that the set of admissible extensions is not empty. Given
a positive admissible extension, Lemma 2 then implies that all smaller extensions are also admissible,
which gives the claimed statement. To get a contradiction, we assume that there is a degree-1 vertex v
of G′ and an allowed direction ϕ, such that no r > 0 is admissible for v and ϕ. The plan is to construct
two different locally minimal networks that are parametrized by the same tree. By Proposition 1, such
networks do not exist, which will furnish the desired contradiction.

The first locally minimal network is G : G → Rd obtained by growing a two-sided moustache of
sufficiently small size R = r1 > 0 to avoid self-intersections. Assuming G is its type, we get G from G′

by adding vertices p and q and edges that connect them to v. To construct the second locally minimal
network, we use the assumption that there is no positive admissible extension. Choosing an infinite
sequence ri that vanishes in the limit, we set Si = S′ \{x}∪{x+riϕ, x+riψ} and write Hi : Hi → Rd for
the shortest network of Si, letting Hi be its type. Since we can select a converging subsequence, we may
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assume that H = Hi for all i, and that Hi converges to a network H : H → Rd. Since both H and G′ are
shortest, they are the same, only with different parametrizations. To analyze this difference, we consider
the preimage, Hx = H−1(x). We note that p and q are the only terminal vertices whose images converge

v

p q p q p q p q

Fig. 5: Possible subtrees Hx. The leftmost is a subtree of G, while the other three exhaust the possibilities for H. The
rightmost subtree can be used to reparametrize the others.

to x. All interior vertices of H have degree 3, but one of them can have degree less than 3 in Hx, namely
the endpoint of the edge that connects Hx to the rest of the tree. There cannot be a second such vertex
for this would contradict that H has a contracting parametrization as implied by Lemma 1. Since Hx has
at most three vertices of degree less than 3, we are left with the choices shown in Figure 5. The tree on
the very right can be used to reparametrize the other three. We can therefore reparametrize G and H1

with the same tree. Both networks are locally minimal and span the same set, S1, which contradicts that
they are different.

Lower semi-continuity. Fixing G′, we may consider the shortest networks of all s′ ∈ ucell(G′) and grow
a moustache from the fixed anchor, v, in each. Within each such network, we have a direction ω(s′)
determined by the image of v and the image of its neighbor, w. By Lemma 1, ω depends continuously
on s′. We can therefore choose an allowed direction, ϕ, that depends continuously on s′. The second
direction, ψ, needed to grow a moustache is uniquely determined by ω and ϕ. Let R1 : ucell(G′)→ R be
defined by mapping s′ to the minimum of 1 and the supremum of the thresholds R for which Lemma
3 holds. We do not know whether this function is continuous, but we can prove lower semi-continuity,
which is sufficient to prove that the infimum of R1 over a compact set of points s′ is positive.

Lemma 4 (Lower semi-continuity) Let s′ = limi→∞ s′i, all points in a common unambiguous cell.
Then lim infi→∞R1(s′i) ≥ R1(s′).

Proof We consider the two-sided case and omit the proof of the easier, one-sided case. To get a contra-
diction, we suppose that lim infi→∞R1(s′i) ≤ R1(s′)− 2δ for some δ > 0. Choose a converging sequence
ri such that R1(s′i) < ri < R1(s′) − δ for each i. Writing S′i for the set of points that corresponds to s′i
and xi for the image of the anchor, we introduce Si = S′i \ {xi}∪ {xi + riϕ, xi + riψ} and let Gi : G→ Rd
be the network obtained by adding the moustache to the shortest network of S′i. Writing G′ for the type
of that shortest network, we get the type G of Gi from G′ by adding vertices p and q and connecting
them with edges to the anchor. Because R1(s′i) < ri, the constructed network Gi is either not a shortest
network or it is not unique. In either case, there exists a different shortest network Hi spanning the same
ordered set Si ⊆ Rd. Since we can choose subsequences, we may assume that the Hi all have the same
type H. By Lemma 1, Hi converges to a shortest network H : H → Rd spanning S = limi→∞ Si. By
construction, 0 < limi→∞ ri < R1(s′), so S has a unique shortest network G : G→ Rd. This implies that
G and H are the same. Networks of type G can therefore be parametrized by H. But then Gi and Hi are
different locally minimal networks parametrized by the same tree, which contradicts Proposition 1.
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4 Proofs

With the preparations in Section 3, we are now ready to prove Theorems 1 and 2, which have been
formally stated at the end of Section 2. In addition, we illustrate the limitation of connectivity with an
example.

Proof of Theorem 1. Recall that this theorem asserts that unambiguous cells in the decomposition of
the configuration space of n points in Rd are path-connected for all d ≥ 2. We use induction over the
number of points. For n = 1, there is only the trivial Steiner minimal tree, whose unambiguous cell is
the entire Rd, which is path-connected. For n = 2, there is again only one Steiner minimal tree consisting
of two points connected by a line segment. The unambiguous cell is the entire R2d minus the diagonal,
which is a d-dimensional plane. This space has the homotopy type of the (d − 1)-dimensional sphere. It
is path-connected for all d ≥ 2. This establishes the claim for n = 1, 2 and d ≥ 2.

For the inductive step, we consider two points, s0 and s1, in an unambiguous cell ucell(G) ⊆ R(n+1)d
∆ ,

and prove that there exists a path s : [0, 1]→ ucell(G) with s(0) = s0 and s(1) = s1. Choose a moustache
in G, shave it, and write G′ for the resulting smaller tree. This construction establishes a map from

ucell(G) to ucell(G′), as described in Section 3. Note that ucell(G′) is contained in Rnd∆ or in R(n−1)d
∆ ,

depending on the choice of moustache. By induction, ucell(G′) is path-connected, which implies the
existence of a path s′ : [0, 1]→ ucell(G′) such that s′(0) and s′(1) are images of s0 and s1 under the map.
We are going to lift the path to ucell(G) taking inverses. Lemma 3 states that we can find a preimage
of s′(t) for every t ∈ [0, 1]. It remains to show that the preimages can be chosen in such a way that
they give a path s : [0, 1]→ ucell(G). But all the work needed to achieve this has already been done. As
explained before Lemma 4, we can choose directions ϕ and ψ that depend continuously on s′. It is easy
to modify this direction field so that when we move along s′, we connect the needed directions at the
two ends. Next, we set r = inf0≤t≤1R1(s′(t)) and note that r > 0 because [0, 1] is compact, and R1 is
everywhere positive as well as lower semi-continuous; see Lemma 4. Moving along s′, we thus get a path
sr : [0, 1]→ ucell(G) consisting of networks with moustaches of uniform size. To get s : [0, 1]→ ucell(G),
we first trim the moustache to go from s0 to sr(0), we second move from sr(0) to sr(1), and we third
enlarge the moustache to go from sr(1) to s1.

Proof of Theorem 2. Our second result asserts path-connectivity for cells, but only in dimension d = 2
and for a full network in which all terminal vertices have degree 1. Suppose G : G→ R2 is a shortest such
network for a set S, let G = (V tW,E) be its type, and let s0 ∈ cell(G) \ ucell(G). Since we know that
ucell(G) is path-connected, it suffices to construct a path s : [0, 1]→ cell(G) that starts at s(0) = s0 and
ends at a point s(1) ∈ ucell(G). We prove the existence of such a path by considering the derivative of
the length function. Write m(u) ∈ R2 for the motion vector of u ∈ V tW , and define the direction vector
by taking the sum of unit vectors in the directions of the incident edges:

dG(u) =
∑

{u,v}∈E

G(v)− G(u)

‖G(v)− G(u)‖
. (2)

The first derivative of the length function in the direction of the motion is the sum of scalar products
between motion and direction vectors. Since the direction vector of every interior vertex vanishes, this
gives

∂`(G)

∂t
=

∑
u∈V
〈m(u),dG(u)〉; (3)

see [8, page 64]. We are interested in the special case in which m(u) = dG(u) for every u ∈ V . Then
∂`(G)/∂t = n, the number of terminal vertices. Returning to the task at hand, we consider a second
shortest network, H : H → R2 of S, and we compare the two derivatives. The vectors dH(u) have at most
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unit length. This is immediate if the degree of u in H is 1, and it follows from the angle condition if the
degree is 2. Hence, ∂`(G)/∂t − ∂`(H)/∂t ≥ 0, with equality iff dG(u) = dH(u) for all terminal vertices.
If the difference is positive, then we move the points G(u) to G(u) + rdG(u) for r > 0 smaller than the
length of the shortest edge of G. After this motion, the adjusted network G is shorter than the adjusted
network H.

It remains to show that vanishing difference is not possible. As mentioned, this is equivalent to
dG(u) = dH(u) for all u ∈ V . If all terminal vertices have degree 1, then this implies that G and H
are codirected, which according to Proposition 2 is impossible for two shortest networks that are not the
same. Otherwise, we grow a new edge from every vertex u whose degree in H is 2 in the direction −dG(u).
We grow these edges both in G and in H. The two trees may no longer be shortest, but for sufficiently
short extensions, they are both locally minimal. We thus get a contradiction from the stronger version of
Proposition 2 which asserts that no two locally minimal trees can be codirected.

Example. To complement our theorems, we show that ambiguous subsets of cells are not necessarily
connected. Specifically, we exhibit an ambiguous shortest network of type G such that cell(G) \ ucell(G)
is not connected. The network spans the ordered set of n = 4 points in R2 drawn in Figure 6. The two
trees superimposed on the left are the only two Steiner minimal trees of the four points. Indeed, there
cannot be a full Steiner minimal tree with two interior vertices because the four points do not form a
strictly convex quadrilateral; see [15, Lemma 5], and the remaining types with one or zero interior vertices
give longer networks.

Fig. 6: Left: the two Steiner minimal trees of four points in the plane. Middle and right: the two ambiguous shortest networks
that cannot be connected by a path of like networks.

For the next step, we choose two orderings of the four points such that the first Steiner minimal tree
for the first ordering has the same type as the second Steiner minimal tree for the second ordering; see
Figure 6 in the middle and on the right. We claim that there is no path from the first to the second tree
along which the Steiner minimal tree remains of the same type and ambiguous at all times. To derive a
contradiction, we suppose there is such a path s : [0, 1]→ cell(G)\ucell(G). Consider the counterclockwise
angle, αt, from the edge connecting Ct to Dt to the second edge incident on Ct. Since we have a Steiner
minimal tree at all times, we have 2π

3 ≤ αt ≤
4π
3 for all t. Taking a look at Figure 6, we see that α0 > π

and α1 = 2π − α0 < π. Since αt depends continuously on t, there is a value 0 < τ < 1 such that ατ = π.
At t = τ , the Steiner minimal tree is determined by the points Aτ , Bτ , Dτ . However, the Steiner minimal
tree of three points cannot be ambiguous. This contradicts that S is a path inside cell(G) \ ucell(G). We
note that this example does not extend to d ≥ 3 dimensions.

5 Discussion

This paper continues the study of the decomposition of the configuration space of n points in Rd as defined
by the combinatorial types of the Steiner minimal trees, which was initiated in [11]. We consider the
ordered setting and our main result is a proof that the cells consisting of configurations with unambiguous
Steiner minimal trees are path-connected. There are many questions that remain open.
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– Can our partial results for cells be extended to all configurations in R2 and to higher dimensions?
– Is it true that the set of points in Rnd∆ with ambiguous shortest networks has measure zero?
– Is the non-empty intersection of two cells in Rnd∆ necessarily path-connected?
– Is the union of sets cell(G) \ ucell(G) in Rnd∆ over all types G path-connected?

Besides the ordered setting considered in this paper, it would be interesting to address the same ques-
tions for unordered point sets. The additional symmetries complicate the global topology [1], and more
sophisticated notions of connectivity as offered by homology and homotopy groups seem appropriate.
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A Notation

S ⊆ Rd ordered set of n points in Euclidean space
G = (V tW,E) partially ordered connected graph
G : G→ Rd, G0 network, graph; type
H : H → Rd, H0 network, graph; type
g, g0, h homeomorphisms

s ∈ Rnd∆ configuration, configuration space
ucell(G) ⊆ cell(G) unambiguous cell, cell
s : [0, 1]→ ucell(G) path
t, τ ∈ [0, 1] time parameter, moment

Gi, i ∈ N infinite sequence, index
Gi → G,G = limGi convergence, limit
C;D ⊆ Rd constant; bounded convex region
u, v, w; p, q vertices
ϕ,ψ, ω ∈ Sd−1 directions
ri, r, R positive extensions
R1 : ucell(H)→ R supremum extension function

m(u),dG (u) motion vector, direction vector
`(G), ∂`(G)/∂t length, derivative
α, αt angles

Table 1: Notation for geometric concepts, sets, functions, vectors, variables used in this paper.

B Dependence

converging short netwtrimming moustaches unique loc min net

lower semi−continuityadmissible extensions

Lemma 4Lemma 3

connected cellsconnected ucells

non-exist codir nets

Bolzano-
Weierstrass

Theorem 1

Lemma 1

Theorem 2

Lemma 2 Proposition 1

Proposition 2

Fig. 7: Dependence of Lemmas and Theorems from top to bottom.


