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Abstract. We design an efficient commitment scheme, and companion zero-knowledge proofs of knowledge,
based on the learning with errors over rings (RLWE) problem. In particular, for rings in which almost all
elements have inverses, we construct a perfectly binding commitment scheme whose hiding property relies
on the RLWE assumption. Our scheme maps elements from the ring (or equivalently, n elements from Fq) to
a small constant number of ring elements. We then construct Σ-protocols for proving, in a zero-knowledge
manner, knowledge of the message contained in a commitment. We are able to further extend our basic
protocol to allow us to prove additive and multiplicative relations among committed values.

Our protocols have a communication complexity of O(Mn log q) and achieve a negligible knowledge error in
one run. Here M is the constant from a rejection sampling technique that we employ, and can be set close to
1 by adjusting other parameters. Previously known Σ-protocols for LWE-related languages either relied on
“smudging” out the error (which necessitates working over large fields, resulting in poor efficiency) or only
achieved a noticeable or even constant knowledge error (thus requiring many repetitions of the protocol).

Keywords. Commitment Schemes, Ring Learning with Errors, Zero-Knowledge Proofs of Knowledge

1 Introduction

Commitment schemes are among the most widely used cryptographic primitives. They allow one party,
the committer, to commit to a message m to another party. At a later point in time, the committer
may reveal m by opening the commitment c. The scheme is said to be secure if it is binding and hiding.
The former property says that the committer cannot open c to a message different from m, and the
latter ensures that only knowing c gives no information about m to the receiver.

When used as building blocks for higher-level protocols, it is often necessary to prove properties
of a message m contained in a commitment, without revealing any additional information about m.
This is done via so-called zero-knowledge proofs of knowledge (ZK-PoK). These are two-party protocols
which allows a prover to convince a verifier that it knows some secret piece of information, without
revealing anything else than what is already revealed by the claim itself [GMR85]. Zero-knowledge
proofs can be generically built using constructions of zero knowledge proofs of knowledge for all of NP
[GMW86, GMR85]. However, these constructions are too inefficient, and a large amount of research
effort has been expended in improving the efficiency of such protocols for concrete proof goals. In this
paper we construct a special commitment scheme together with efficient zero-knowledge protocols.
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Research Council under grant agreement 321310–PERCY and by the French ANR-13-JS02-0003 JCJC Project CLE
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Our constructions are proved secure under the learning with errors over rings (RLWE) assumption.
Informally, it says that tuples (a, a.s+ e) ∈ R2

q are computationally indistinguishable from (a, u) ∈ R2
q ,

where a, s, u are uniformly random in Rq and e is drawn according to some low-weight distribution
χ. We use Rq = Zq[x]/〈xn + 1〉, which as a vector space is isomorphic to Znq (one can identify a =
a1 + a2x+ · · ·+ anx

n−1 ∈ Rq with (a1, . . . , an) ∈ Znq ). For appropriately chosen parameters there exists
a quantum reduction from certain worst-case problems on ideal lattices to the RLWE-problem [LPR10].

1.1 Our Contributions

In this paper is to construct efficient commitments and zero-knowledge proofs from the RLWE-assumption:

– Efficient Commitment Schemes from RLWE. We first construct a perfectly binding and com-
putationally hiding string commitment scheme. Committing to a message is done as in Xie et
al. [XXW13], but we relax requirements on valid openings to be able to realize better ZK proofs
while still preserving the binding property of the scheme.

– Efficient ZK-PoK for Committed Values. We then give a simple and efficient zero-knowledge
protocol for proving knowledge of committed values. The protocol differs substantially from previous
protocols for RLWE, and improves over them in the following ways: On the one hand, our protocol
already achieves a negligible knowledge error in a single run. Previous protocols only achieved a
noticeable knowledge error, e.g., Ling et al. [LNSW13] or Xie et al. [XXW13], and thus many
repetitions are required to get meaningful security, resulting in a low efficiency. On the other hand,
we only require that the modulus is polynomially larger than the error in the RLWE problem.
Other constructions [AJLA+12] relied on “smudging out” (or “drowning”) the error, which required
stronger assumptions as the modulus-error ration had to be super-polynomial.
Our protocols can be turned into concurrently zero-knowledge arguments of knowledge without any
additional computational costs.

– Efficient ZK-PoK for Relations. Starting from our basic ZK-PoK we then construct protocols
for proving that committed values m1,m2,m3 ∈ Rq satisfy m3 = m1 +m2 as well as m3 = m1m2.

1.2 Related Work

At Asiacrypt’12, Jain et al. [JPT12] presented a commitment scheme whose hiding property relies
on the learning parity with noise (LPN) assumption, which is defined like LWE but over bits, i.e.,
for q = 2. Similar to this paper, [JPT12] gives a Σ-protocol to prove any relation among committed
values. A single run of their preimage proof requires only O(n log n) bits of communication, where each
committed message is from {0, 1}n. Unfortunately, their protocols only achieve a knowledge error of 2/3,
and thus reaching a success probability of a malicious prover negligible in k, requires O(kn log n) bits
of communication. The main open problem of [JPT12] was to find a commitment scheme and protocols
whose security is based on LPN or a related problem, and which avoids the dependency on k.

Xie et al. [XXW13] generalized the commitment scheme from Jain et al. [JPT12] from LPN to RLWE,
and gave companion protocols for their scheme. However, their zero-knowledge proofs still require Stern-
like techniques [Ste93], and therefore only achieve a knowledge error of 2/3. Our commitment scheme is
very closely related to theirs, and may be seen as a generalization as we relax the requirements on valid
openings of a commitment. In their construction, a commitment c to a message m can be opened by
revealing r and a short e such that c = am+ br+ e, where a, b, c, e ∈ Rkq and m, r ∈ Rq. Getting a bit
ahead, we relax the openings such that we also accept openings of the form c = am+br+ f−1e, where
f ∈ Rq is an additional small polynomial. We will prove that commitments are still binding, and show
that this relaxation allows us to overcome the constant knowledge-error “barrier” for the commitment
scheme by employing rejection sampling techniques introduced by Lyubashevsky [Lyu09, Lyu12].

Concurrently to our work, Benhamouda et al. [BCK+14] improved the efficiency of zero-knowledge
proofs of knowledge for RLWE-based encryption schemes. As encryption schemes can also be seen as
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commitment schemes, it is worthwhile comparing their result to ours. They gave a protocol for proving
relations of the form y = as+ e (for y, a, s, e ∈ Rq and s, e short) that has a knowledge error of 1/(2n),
where n is the dimension of the ring, and thus also overcomes the above barrier. Because our proof
does not need to prove that anything is short, we are able to give a protocol that achieves negligible
knowledge error, rather than just 1/(2n), in just one run. On the other hand, our protocol requires the
ring Rq to have a large subring that is a field, whereas the protocol in [BCK+14] does not intrinsically
require Rq to have such a property.

Asharov et al. [AJLA+12] constructed Σ-protocols for several specific languages related to the
standard LWE-problem. However, they do not give (efficient, i.e., direct) constructions for proving
relations among LWE-secrets. Furthermore, their protocols have a super-polynomial knowledge-gap,
i.e., the norm of the error known to a potentially malicious prover can only be guaranteed to be super-
polynomially larger than that known to an honest party, while this gap is only polynomial in our case.
This allows us to prove the security of our scheme under weaker assumptions, and to use a smaller
modulus in the RLWE-problem, giving better efficiency.

Apart from these very closely related works, a large number of cryptographic applications based on
the LWE-assumption has been proposed, starting with the work of Regev [Reg05]. This includes (fully
homomorphic) encryption [BV11a, Gen09, LP11, LPR10, Reg05], signature schemes [DDLL13, GPV08,
Lyu09, Lyu12, Rüc10], pseudorandom functions [BPR12] and hash functions [KV09, PR06]. Similarly,
efficient (non-)interactive zero-knowledge proofs and arguments have been a vivid topic of research,
see, e.g., [AJLA+12, BDP00, CD97, CD98, CD09, DaPSZ12, GS08, IKOS07, KR06, KMO90, KP98]
and the references therein. Finally, starting with a different motivation, the idea of committing to the
first message in a Σ-protocol was also used by Damg̊ard [Dam00], where it was shown how to obtain
concurrent zero-knowledge for any Σ-protocol. We commit to the first message to get zero-knowledge
in the first place, and we will discuss how the concurrency results also apply to our constructions in
Section 4.1.

1.3 Roadmap

In Section 2 we recap some basic definitions on ZK proofs and LWE. Then, in Section 3 we present our
commitment scheme, and give protocols for proving knowledge of, and relations among, the contents of
commitments in Section 4. We finally briefly conclude in Section 5.

2 Preliminaries

We denote vectors by bold lower-case letters (a, b, . . . ) and algorithms by sans-serif letters (A,B, . . . ).

We write a
$← A for a set A if a was uniformly drawn from A, a

$← D for a distribution D if a was

drawn according to D, and a
$← A if a is the output of a randomized algorithm A.

For two distributions D,E, we write D
c∼ E, if D and E are computationally indistinguishable.

Furthermore, we use the notation Pr[E : Ω] to denote the probability of event E over the probability

space Ω. For instance, Pr[x = y : x, y
$← D] denotes the probability that x = y if x, y were drawn

according to a distribution D.
The language induced by a binary relation R is defined as L(R) = {c : ∃w such that (c, w) ∈ R}.
We finally assume that elements of Zq (q odd) are represented by elements from

{
− q−1

2 , . . . , q−12

}
.

2.1 Commitment Schemes

We now formally define commitment schemes.

Definition 2.1. A commitment scheme consists of three algorithms (KGen,Com,Ver) such that:

– On input 1`, the key generation algorithm KGen outputs a public commitment key pk.
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– The commitment algorithm Com takes as inputs a message m from a message space M and a
commitment key pk, and outputs a commitment/opening pair (c, d).

– The verification algorithm Ver takes a key pk, a message m, a commitment c and an opening d and
outputs accept or reject.

A commitment scheme has to satisfy the following security requirements:

– Correctness: Ver outputs accept whenever the inputs were computed by an honest party, i.e.,

Pr[Ver(pk,m, c, d) = accept : pk
$← KGen(1`),m ∈M, (c, d)

$← Com(m, pk)] = 1 .

– Binding : A commitment cannot be opened to different messages. A scheme is said to be perfectly
binding if this holds unconditionally, i.e., with overwhelming probability over the choice of the public

key pk
$← KGen(1`) we have that:(

(Ver(pk,m, c, d) = accept) ∧ (Ver(pk,m′, c, d′) = accept)
)
⇒ m = m′ .

On the other hand, a scheme is said to be computationally binding if no PPT adversary can come
up with a commitment and two different openings, i.e., for every PPT adversary A there exists a
negligible function negl such that:

Pr
[
Ver(pk,m, c, d) = Ver(pk,m′, c, d′) : pk

$← KGen(1`), (c,m, d,m′, d′)
$← A(pk)

]
≤ negl(n) .

– Computational hiding : A commitment computationally hides the committed message: for every
probabilistic polynomial time (PPT) adversary A there is a negligible function negl such that:

Pr

[
b = b′ :

pk
$← KGen(1`), (m0,m1, aux)

$← A1(pk), b
$← {0, 1},

(c, d) = Com(mb, pk), b′
$← A2(c, aux)

]
≤ 1

2
+ negl(n) .

A scheme is called a trapdoor commitment scheme, if KGen additionally outputs a trapdoor td for the
public key, such that there exists an efficient algorithm taking (c, d) = Com(m, pk), m, td and m′ ∈M
as inputs, that outputs d′ such that Ver(pk,m′, c, d′) = accept. Note that trapdoor commitment schemes
can only be computationally binding. See, e.g., Fischlin [Fis01] for a detailed discussion of such schemes.

For the sake of simplicity, we will not state pk explicitly as an input in the following.

2.2 Zero-Knowledge Proofs and Σ-Protocols

Informally, a zero-knowledge proof of knowledge is a two party protocol between a prover and a verifier,
which allows the former to convince the latter that it knows some secret piece of information, without
revealing anything about the secret apart from what the claim itself already reveals. For a formal
definition we refer to Bellare and Goldreich [BG93]. The ZK proofs constructed in this paper will
be instantiations of the following definition, which is a straightforward generalization of the standard
notion of Σ-protocols [Cra97, Dam10]:

Definition 2.2. Let (P,V) be a two-party protocol, where V is PPT, and let R,R′ be a binary relation
such that R ⊆ R′. Then (P,V) is called a Σ′m-protocol for R,R′ with challenge set C, public input c
and private input w, if and only if it satisfies the following conditions:

– 3-move form: The protocol is of the following form:
• The prover P computes a commitment t and sends it to V.

• The verifier V draws a challenge d
$← C and sends it to P.

• The prover sends a response s to the verifier.
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• Depending on the protocol transcript (t, d, s), the verifier accepts or rejects the proof.

The protocol transcript (t, d, s) is called accepting, if the verifier accepts the protocol run.

– Completeness: Whenever (c, w) ∈ R, the verifier V accepts with probability at least 1− α.

– Special soundness: There exists a PPT algorithm E (the knowledge extractor) which takes m
accepting transcripts (t, d1, s1), . . . , (t, dm, sm) satisfying di 6= dj for i 6= j as inputs, and outputs w′

such that (c, w′) ∈ R′.
– Special honest-verifier zero-knowledge: There exists a PPT algorithm S (the simulator) taking
c ∈ L(R) and d ∈ C as inputs, that outputs triples (t, d, s) whose distribution is (computationally)
indistinguishable from accepting protocol transcripts generated by real protocol runs.

We now discuss some additional points regarding Definition 2.2. First, the standard definition for
Σ-protocols found in the literature considers the case where m = 2, R = R′ and α = 0. In this case, it is
well known that the protocol is also a proof of knowledge for the same relation R with knowledge error
1/|C| [Dam10]. However, it can be seen that the proof given there also generalizes to other constants m
with a knowledge error of (m−1)/|C| if 1−α > (m−1)/|C|, and special cases of this result were already
used implicitly in previous work, e.g., [JPT12, Ste93]. Second, the modification that R ⊆ R′ means that
the protocol is honest-verifier zero-knowledge and complete whenever the prover uses a secret witness
w such that (c, w) ∈ R, but the verifier is only ensured that the prover supplied a witness w′ such
that (c, w′) ∈ R′. For many interesting relations this gap allows for much more efficient protocols, e.g.,
Fujisaki et al. [FO97, DF02] or Benhamouda et al. [BCK+14]. If this gap is reasonably small, as is
the case in the protocols we present, one still obtains sufficient security guarantees from the protocol.
Finally, the above definition only guarantees privacy to the prover against honest-but-curious verifiers,
i.e., verifiers not deviating from the protocol. This issue can be solved generically using techniques of,
e.g., Damg̊ard et al. [DGOW95] or Fiat and Shamir [FS87]; furthermore, for our concrete protocols it
can be solved without any extra costs, cf. Lemma 4.3.

2.3 Learning with Errors

The learning with errors (LWE) problems was first introduced by Regev [Reg05]. Informally, it asks to
distinguish slightly perturbed random linear equations from truly random ones. LWE has been shown
to be as hard as certain worst-case problems on lattices, and has served as a basis for a large variety of
cryptographic schemes. Unfortunately, schemes built upon LWE are inherently inefficient due to a large
overhead in the use of the problem. This drawback has been resolved by Lyubashevsky et al. [LPR10]
by introducing the ring learning with noise problem, which still enjoys strong hardness guarantees. The
following formulation is a special case of the problem restricted to the ring Z[x]/〈xn + 1〉, with n a
power of two:

Definition 2.3. Let R = Z[x]/〈xn + 1〉 and Rq = R/qR, and let χ be a distribution over R.

The (decisional) ring learning with errors assumption (denoted by RLWEq,χ) states that:

{(ai, ai · s+ ei)}
c∼ {(ai, ui)} ,

for any polynomial number of samples, where ai
$← Rq, ei

$← χ, ui
$← Rq, and s

$← Rq is secret.

We further recapitulate the definition of Normal distributions:

Definition 2.4. The continuous Normal distribution on Rm centered at v with standard deviation σ is
defined by the density function ρmv,σ(x) = (

√
2πσ)−m exp(−‖x−v‖

2

2σ2 ). We avoid the subscript v if v = 0m.

The discrete Normal distribution on Zm centered at v with standard deviation σ is defined by
the density function Dm

v,σ(x) = ρmv,σ(x)/ρσ(Zm), where ρσ(Zm) =
∑

z∈Zm ρ
m
σ (z) is the scaling factor

required to obtain a probability distribution.
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For convenience, sampling the normal distribution over a ring R, we will still write Dv,σ even
though it is not a 1-dimensional distribution. Lyubashevsky et al. [LPR10] showed the search and the
decisional version of RLWEq,χ are polynomially related, and that there exists a quantum reduction from
the worst-case approximate shortest vector problem on ideal lattices to RLWEq,χ. 5

2.4 Rejection Sampling

For proving the zero-knowledge property of our protocol, it is essential that all the responses of the
prover can be simulated without knowing the secret key. We thus need that the response elements are
from a distribution which is independent of the secret key. In our protocol, however, all the potential
responses will be from a shifted distribution D`

v,σ for ` = kn and some vector v depending on the secret
key. To correct for this, we employ rejection sampling [Lyu09, Lyu12], where a potential response is
only output with a certain probability, and otherwise the protocol is aborted.

Informally, the following theorem states that if σ ∈ Θ̃(‖v‖), then the rejection sampling procedure
will result in a distribution statistically close to D`

σ, which is independent of v as required. The technique
only requires a constant number of iterations before a value is output, and furthermore the output is
also statistically close for every v′ with norm at most ‖v‖. For concrete parameters we refer to the
original work of Lyubashevsky [Lyu12].

Theorem 2.5 ([Lyu12]). Let V be a subset of Z` in which all elements have norms less than T , and
let h be a probability distribution over V . Then, for any constant M , there exists a σ = Θ̃(T ) such that
the output distributions of the following algorithms A,F are statistically close:
A:
v

$← h; z
$← D`

v,σ;

output (z,v) with probability min
(

exp
(
−2〈z,v〉+‖v‖2

2σ2

)
, 1
) F:

v
$← h; z

$← D`
σ;

output (z,v) with probability 1
M

Moreover, the probability that A outputs something is exponentially close to that of F, i.e., 1/M .

In [Lyu12], it is also shown that if σ = αT for a positive α, then M = e12/α+1/(2α2), the output of A is

within a statistical distance of 2−100

M of the output of F, and the probability that A outputs something

is at least 1−2−100

M .

3 Commitments from Ring-LWE

Parameter name Semantics / Restrictions

n degree of polynomial, power of 2, typical values are 29 or 210

γ integer parameter controlling the size of the modulus

q prime number, ≡ 3 mod 8 and ≥ nγ

k multiplicative overhead of commitment size

σe standard deviation of the error in the commitment scheme; Õ(n3/4)

κ integer, where 1/|C| = 1/
(
n/2
κ

)
bounds the knowledge error of our proofs; for instance,

n = 29, κ = 21 or n = 210, κ = 17 give a knowledge error of less than 2−100

C domain of challenges; C = {d ∈ {0, 1}n : ‖d‖1 ≤ κ ∧ deg d < n/2}
ση standard deviation of the randomness for e in the protocols; Õ(n5/4)

Table 1. Overview of parameters used in this document.

In the following we describe our commitment scheme. Table 1 lists the parameters being used and
the requirements we pose on them.

5 The work of [LPR10] showed the hardness for decisional RLWE only for rings where xn + 1 splits completely modulo q.
Employing the modulus switching technique from [BV11b], it was shown in [LS12, BLP+13] that the problem remains
hard for any q.
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– KGen: The public commitment key pk = (a, b) is computed as a, b
$← (Zq[x]/〈xn + 1〉)k, where

q ≡ 3 mod 8 is prime, and n is a power of 2.

– Com: To commit to a message m ∈ Zq[x]/〈xn+1〉, the commitment algorithm draws r
$← Zq[x]/〈xn+

1〉 and e
$← Dk

σe conditioned on ‖e‖∞ ≤ n, and outputs

c = am+ br + e ,

and the opening information for c is given by (m, r, e, 1).
– Ver: Given a commitment c, a message m′, a randomness r′, as well as e′ and f ′, the verifier accepts,

if and only if

am′ + br′ + f ′−1e′ = c ∧ ‖e′‖∞ <

⌊
n4/3

2

⌋
∧ ‖f ′‖∞ ≤ 1 ∧ deg f ′ <

n

2
.

The scheme above is a generalization of that by Xie et al. [XXW13], as we allow for the additional
small polynomial f in valid openings. While an honest party can always set f = 1 when opening c
and therefore the completeness property is not affected by this relaxation, the immediate question
arises whether the given construction is still binding, i.e., whether a malicious user still cannot open a
commitment to two different messages. We give a formal security proof in the following.

We want to stress that the above modification will be at the heart for the construction of efficient
zero-knowledge proofs of the contained message in Section 4.

Theorem 3.1. Let γ > 6 and q, k be polynomial in n such that the following is satisfied:

q ≥ nγ ≥ n6 and k >
18γ

3γ − 16
. (1)

Then, under the RLWE-assumption, the above scheme is a computationally hiding and perfectly binding
commitment scheme with overwhelming probability over the choices of the public commitment key.

Proof. We will prove completeness as well as perfect binding and computational hiding properties.
Correctness. This is trivial.
Computational blinding. First note that by, e.g., [Lyu12, Lemma 4.4], the probability that e

$← Dk
σe

has ‖e‖∞ > n is negligible, and thus the conditional distribution of e in Com is statistically close to a
discrete Normal distribution. Now, by the RLWE-assumption, br+e is pseudorandom, and thus so is c.
Binding. For the binding property, we have to show that

c = am′ + br′ + f ′−1e′ = am′′ + br′′ + f ′′−1e′′

implies that m′ = m′′, if ‖e′‖∞, ‖e′′‖∞ < n4/3/2, ‖f ′‖∞, ‖f ′′‖∞ ≤ 1, and deg f ′,deg f ′′ < n/2, or,
alternatively, that

am+ br = f ′−1e′ − f ′′−1e′′

implies that m = 0 with overwhelming probability over the choices of a, b.
Assume by contradiction that this holds for some fixed m, r, e′, e′′, f ′, f ′′ with m 6= 0 and e′, e′′, f ′, f ′′

being sufficiently small. Because of the assumption on n and q, we have that xn + 1 splits into two
irreducible factors α(x), β(x) [SSTX09, Lemma 3]. Now, since m 6= 0 mod (xn + 1), we also have that
m 6= 0 mod α(x) or m 6= 0 mod β(x), and thus aim takes at least qn/2 different values. We then have
that

Pr


a1m+ b1r

...
akm+ bkr

 =

f
′−1e′1 − f ′′−1e′′1

...
f ′−1e′k − f ′′−1e′′k

 : a, b
$← (Zq[x]/〈xn + 1〉)k,

 ≤ 1

qkn/2
.
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P[c;m, r, e] V[c]

µ, ρ
$← Zq[x]/〈xn + 1〉

η
$← Dk

ση
t = aµ+ bρ+ η

(caux, daux) = aCom(t) caux - d
$← C

sm = µ+ dm d�
sr = ρ+ dr
se = η + de

abort-checks for se daux, t, sm, sr, se - aVer(caux, daux, t)
?
= accept

t+ dc
?
= asm + bsr + se

‖se‖∞
?

≤ bn4/3/4c

Protocol 4.1: Simple preimage proof. The verifier accepts, iff all conditions marked with “?” are satisfied.

Now, taking a union bound over all m, r, e′, e′′, f ′, f ′′ we get that the overall probability that there
exists such an m 6= 0 is at most

q2n(n4/3)2kn32n/2

qkn/2
≤ q2n(q4/(3γ))2kn32n/2

qkn/2
= 3nq

(2+( 8
3γ
− 1

2
)k)n

.

This is negligible in n if 3q2+(8/(3γ)−1/2)k ≤ 1/2, which holds if the requirements from (1) are satisfied.
ut

4 Zero-Knowledge of Proofs of Knowledge

In this section we first present a protocol for proving knowledge of valid openings of commitments as
defined in the previous section. We then give protocols which allow one to prove that the messages
m1,m2,m3 contained in commitments c1, c2, c3 satisfy m3 = m1 + m2 or m3 = m1m2, respectively.
Together this allows one to prove knowledge of arbitrary algebraic circuits.

In this entire section we let (aKGen, aCom, aVer) be an arbitrary auxiliary string commitment scheme.
For simplicity, the reader may think of it as the scheme from Section 3, or as well just as a random
oracle. We write (caux, daux) = aCom(s), where caux is the commitment and daux is the opening of caux.

4.1 Preimage Proofs

The protocol depicted in Protocol 4.1 is a Σ′2-protocol for showing knowledge of a valid opening for a
single commitment. It is honest-verifier zero-knowledge whenever the commitment was honestly com-
puted, and is sound with respect to valid openings. In particular, whenever a potentially malicious
prover can make the verifier accept with more than negligible probability, it must know a valid opening
of c. We stress that this gap between the zero-knowledge and the soundness property is in line with
previous protocols, e.g., for discrete logarithms in groups of hidden order [DF02], where the prover is
also guaranteed security only for a subset of valid openings. However, this gap is meaningful, as our
commitment scheme is still perfectly binding also for the larger set of valid openings, and so the proof
still guarantees knowledge of the unique valid opening of c.

Theorem 4.2. If the auxiliary commitment scheme is perfectly binding, then Protocol 4.1 is an honest-
verifier zero-knowledge proof of knowledge with knowledge error 1/

(
n/2
κ

)
for the following relations:

RLWE = {((a, b, c), (m, r, e)) : c = am+ br + e ∧ ‖e‖∞ ≤ n} and

R′LWE =
{

((a, b, c), (m, r, e, f)) : c = am+ br + f−1e ∧ ‖e‖∞ ≤ bn4/3/2c, ‖f‖∞ ≤ 1 ,deg f <
n

2

}
.
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Proof. The theorem is proved by showing that the protocol is a Σ′2-protocol for the given relation. The
claim then follows directly from the discussion in Section 2.2.

While the 3-move-form is obvious, we will now prove the remaining properties:
Completeness. An honest prover responses with a probability close to 1

M . In this case we get:

t+ dc = aµ+ bρ+ η + dam+ dbr + de = a(µ+ dm) + b(ρ+ dr) + (η + de) = asm + bsr + se .

Furthermore, we have that with overwhelming probability ‖se‖∞ = ‖η + de‖∞ ≤ ‖η‖∞ + κ‖e‖∞ ≤
bn4/3/4c, as the standard deviations of Dσe , Dση are significantly smaller than n4/3.
Special soundness. Let be given two accepting protocol transcripts (caux, d

′, (d′aux, t
′, s′m, s

′
r, s
′
e)) and

(caux, d
′′, (d′′aux, t

′′, s′′m, s
′′
r , s
′′
e)), where d′ 6= d′′. By the perfect binding property of aCom we get that

t′ = t′′ = t. By subtracting the verification equations performed by the verifier we then obtain:

∆dc = a∆m + b∆r +∆e ,

where we set ∆d = d′ − d′′, and similar for ∆m, ∆r, and ∆e. As deg∆d < n/2, we also have that ∆d is
invertible in Rq. We get the witness (∆−1d ∆m, ∆

−1
d ∆r, ∆d, ∆e), where ‖∆d‖∞ ≤ 1 and ‖∆e‖ ≤ bn4/3/2c.

Honest-verifier zero-knowledge. Taking a challenge d as an input, the simulator first draws uniformly

random elements s′m, s
′
r

$← Zq[x]/〈xn + 1〉, and s′e to be ⊥ with probability 1 − 1/M and distributed
according to Dση with probability 1/M . If s′e 6= ⊥, it computes (c′aux, d

′
aux) = aCom(t′ = as′m+bs′r+s′e−

dc) and outputs (c′aux, d, (d
′
aux, t

′, s′m, s
′
r, s
′
e)). (Note that s′i and d uniquely determine t′ in the protocol

and in the simulation.) Otherwise the simulator sets (c′aux, d
′
aux) = aCom(0) and outputs (c′aux, d,⊥).

It follows from Theorem 2.5 that the distribution conditioned on the prover not outputting ⊥ is
indistinguishable from real protocol runs. From the same theorem, it follows that aborts occur with
probability 1− 1/M for every value of de. In case of an abort, the indistinguishability follows from the
hiding property of aCom and the fact that for every d, there is an equal chance of an abort happening.

ut

Lemma 4.3. If the auxiliary commitment scheme is a trapdoor commitment scheme, then Protocol 4.1
is a concurrently secure zero-knowledge argument of knowledge with knowledge error 1/

(
n/2
κ

)
for the

relation specified in Theorem 4.2:

Proof. Soundness against computationally bounded adversaries follows directly from the computational
binding property of the commitment scheme and the same arguments as in the proof of Theorem 4.2.

The zero-knowledge property can be seen as follows: The simulator first sets up the public parameters
of the auxiliary commitment scheme, keeping the trapdoor td secret. It then sends caux = aCom(0) to
the verifier, receiving a challenge d. It now runs the simulator for the honest verifier, and, if it does not
abort, uses td to open caux to the correct value. As this does not require to rewind the verifier, it also
gives security in the concurrent setting. ut

Note that this result is very similar to Damg̊ard [Dam00] who gives a generic construction to achieve
concurrent ZK for any Σ-protocol. However, our technique had a slightly different origin as our protocols
are inherently based on the auxiliary commitment scheme to achieve honest-verifier zero-knowledge. The
lemma literally also applies for the subsequent protocols.
On the abort probability. From Theorem 2.5 and [Lyu12] it follows that the probability that the prover

does not abort is exponentially close to 1
M , where M ∈ O(exp(‖de‖ση

)). Thus, on average M repetitions
of the protocol are required. By choosing ση sufficiently large, M can be made arbitrarily small at the
cost of requiring larger parameters, see also Lyubashevsky [Lyu12].
Number of rounds. By nesting the executions, the expected number of rounds until a successful protocol
run is about 2M . Alternatively, when only aiming for arguments of knowledge, one can also use the idea
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of Damg̊ard et al. [DaPSZ12], who compute many independent first messages and send a Merkle-tree
commitment of those in the first step. While on average requiring more computation on the prover side,
this approach gives a constant 3-round protocol.

4.2 Proving Linear Relations

Protocol 4.4 allows one to prove knowledge of messages m1,m2,m3 contained in c1, c2, c3, where the
mi additionally satisfy a linear relation of the form m3 = x1m1 + x2m2 for arbitrary public xi ∈
Zq[x]/〈xn + 1〉. The construction uses a standard technique: Three instances of Protocol 4.1 are run in
parallel for m1,m2,m3 using the same challenge, but instead of choosing the randomness µ3 for m3 in
the prover’s first step at random, it is computed such that µ1, µ2, µ3 satisfy the claimed linear relation.
Verifying now whether the smi also satisfy that linear relation is enough for the verifier to be guaranteed
that the supplied messages have the correct form.

P[ci;mi, ri, ei] V[ci]

µ1, µ2, ρ1, ρ2, ρ3
$← Zq[x]/〈xn + 1〉

µ3 = x1µ1 + x2µ2

η1,η2,η3
$← Dk

ση
ti = aµi + bρi + ηi for i = 1, 2, 3

(caux, daux) = aCom(t1, t2, t3) caux - d
$← C

smi = µi + dmi for i = 1, 2 d�
sri = ρi + dri for i = 1, 2, 3
sei = ηi + dei for i = 1, 2, 3

abort-checks for sej
daux, ti, smi , sri , sei - aVer(caux, daux, (t1, t2, t3))

?
= accept

sm3 = x1sm1 + x2sm2

ti + dci
?
= aismi + bsri + sei for i = 1, 2, 3

sei
?

≤ bn4/3/4c for i = 1, 2, 3

Protocol 4.4: Proving linear relations. The abort-checks are as in Protocol 4.1 and Theorem 2.5.

Theorem 4.5. If the auxiliary commitment scheme is perfectly binding, then Protocol 4.4 is an honest-
verifier zero-knowledge proof of knowledge with knowledge error 1/

(
n/2
κ

)
for the following relations:

RLLWE =

{
((a, b, x1, x2, c1, c2, c3), (m1,m2,m3, r1, r2, r3, e1, e2, e3)) :

3∧
i=1

(ci = ami + bri + ei ∧ ‖ei‖∞ ≤ n) ∧ m3 = x1m1 + x2m2

}
,

and R′LLWE is defined accordingly.

Proof. The theorem is proved by showing that the protocol is a Σ′2-protocol for the given relation. The
claim then follows directly from the discussion in Section 2.2.

The proof is essentially a straightforward adaption of that of Theorem 4.2.

Completeness. This follows directly from the completeness of Protocol 4.1 and:

x1sm1 + x2sm2 = x1(µ1 + dm1) + x2(µ2 + dm2) = (x1µ1 + x2µ2) + d(x1m1 + x2m2) = µ3 + dm3 = sm3 ,

Special soundness. Given two accepting transcripts, we can extract witnesses (∆mi , ∆ri , ∆d, ∆ei) for ci
(i = 1, 2, 3) analogously to Theorem 4.2. The only thing that remains to show is that the linear relation
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∆m3 = x1∆m1 + x2∆m2 is indeed satisfied. This can be seen as follows:

∆m3 = s′m3
− s′′m3

= (x1s
′
m1

+ x2s
′
m2

)− (x1s
′′
m1

+ x2s
′′
m2

)

= x1(s
′
m1
− s′′m1

) + x2(s
′
m2
− s′′m2

) = x1∆m1 + x2∆m2 .

Special honest-verifier zero-knowledge. The simulator is essentially given by three independent instances
of that for Protocol 4.1, except that s′m3

= x1s
′
m1

+ x2s
′
m2

. The correctness of this simulation is shown
by a standard argument, cf., e.g., [BGK+09, JPT12]. ut

Proving inhomogeneous relations. As for, e.g., DLOG based protocols, inhomogeneous relations like
m3 = x1m1 + x2m2 + x3 can be proved by first removing the inhomogeneity: If ci is a commitment to
mi, both parties first compute c′3 = c3−ax3, and the prover sets m′3 = m3−x3. The parties then perform
Protocol 4.4 for c1, c2, c

′
3 and m1,m2,m

′
3 and the homogeneous linear relation m′3 = x1m1 + x2m2.

4.3 Proving Multiplicative Relations

In this section we show how one can prove knowledge of mi, ri, ei, i = 1, 2, 3 such that ci = ami+bri+ei,
and additionally m3 = m1 ·m2. We begin by giving the intuition behind the protocol.

(i) The prover first proves knowledge of the contents of c1, c2, c3 by running 3 instances of Protocol 4.1.
(ii) Similar to Protocol 4.4, the verifier will check the multiplicative relation by combining the re-

sponses for m1,m2,m3 accordingly. Unfortunately, in contrast to linear proofs where we have
sm1 + sm2 = sm3 for an honest prover, we have that sm1sm2 6= sm3 . We tackle this problem by
letting the prover commit to the arising cross-terms µ1m2 +µ2m1 and µ1µ2 in a second part. The
according commitments are denoted by c+ and c×. Again using two instances of Protocol 4.1, the
prover now proves that it knows the openings of those two commitments.

(iii) The third part of the proof now establishes the multiplicative relation. It is based on the following
observation: from (i) and (ii) it follows that:

c̃ = asm1sm2 − d2c3 − c× − dc+ = a
(
µ1µ2 −m× + d(µ1m2 + µ2m1 −m+) + d2(m1m2 −m3)

)
+ b(−d2r3 − r× − dr+) + (−d2e3 − e× − de+) ,

for some m×,m+. Note here that the error term (−d2e3−e×−de+) of c̃ has small norm, because
e3, e×, e+ have small norm and ‖d‖1 ≤ κ.
Now, for an honest prover it can easily be seen that c̃ = br̃+ẽ for r̃ and ẽ as defined in the protocol,
i.e., c̃ is a commitment to 0. On the other hand, if a prover can prove that for at least three different
challenges d, the multiplicative relation follows. This can be seen as follows. If the coefficient of
a is equal to 0 for three different values of d, this coefficient must be the zero-polynomial (in the
indeterminate d), and thus m3 = m1m2. This is because a quadratic polynomial in Rq can only
have at most two distinct roots in C. The proof of this claim is straightforward and thus omitted.

Theorem 4.6. If the auxiliary commitment scheme is perfectly binding, then Protocol 4.7 is an honest-
verifier zero-knowledge proof of knowledge with knowledge error 2/

(
n/2
κ

)
for the following relations:

RMLWE =

{
((a, b, x1, x2, c1, c2, c3), (m1,m2,m3, r1, r2, r3, e1, e2, e3)) :

3∧
i=1

(ci = ami + bri + ei ∧ ‖ei‖∞ ≤ n) ∧ m3 = m1m2

}
,

and R′MLWE is defined accordingly.
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P[ci;mi, ri, ei] V[ci]

(i) µ1, µ2, µ3, ρ1, ρ2, ρ3
$← Zq[x]/〈xn + 1〉

η1,η2,η3
$← Dk

ση

ti = aµi + bρi + ηi for i = 1, 2, 3

(ii) m+ = µ1m2 + µ2m1

m× = µ1µ2

r+, r×
$← Zq[x]/〈xn + 1〉

e+, e×
$← Dk

σe
c+ = am+ + br+ + e+
c× = am× + br× + e×

µ+, µ×, ρ+, ρ×
$← Zq[x]/〈xn + 1〉

η+,η×
$← Dk

ση

t+ = aµ+ + bρ+ + η+

t× = aµ× + bρ× + η×

(iii) ρ̃
$← Zq[x]/〈xn + 1〉

η̃
$← Dk

ση

t̃ = bρ̃+ η̃
(caux, daux) = aCom(t+, t×, ti, t̃, c+, c×)

caux - d
$← C

d�

(i) + (ii) smi = µi + dmi for i = 1, 2, 3,+,×
sri = ρi + dri for i = 1, 2, 3,+,×
sei = ηi + dei for i = 1, 2, 3,+,×

(iii) sr̃ = ρ̃+ dr̃
ẽ = −d2e3 − e× − de+
r̃ = −d2r3 − r× − dr+
sẽ = η̃ + dẽ

abort-checks for sẽ, sej

caux, t+, t×, ti, t̃, c+, c×,
smi , sri , sei , sr̃, sẽ - aVer(caux, daux, (t+, t×, ti, t̃, c+, c×))

?
= accept

(i) + (ii) ti + dci
?
= aismi + bsri + sei for i = 1, 2, 3,+,×

sei
?

≤ bn4/3/4c for i = 1, 2, 3,+,×
(iii) c̃ = asm1sm2 − d2c3 − c× − dc+

t̃+ dc̃
?
= bsr̃ + sẽ

sẽ
?

≤ bn4/3/4c

Protocol 4.7: Proving multiplicative relations. The abort-checks are as in Protocol 4.1 and Theorem 2.5.

Proof. The theorem is proved by showing that the protocol is a Σ′3-protocol for the given relation. The
claim then follows directly from the discussion in Section 2.2.

Completeness. It is easy to see that V accepts with overwhelming probability when P does not abort.

Special soundness. This follows from the soundness of Protocols 4.1 and 4.4 and the above considerations.

Special honest-verifier zero-knowledge. The intuition is the following: By the hiding property of our
commitment scheme, c+ and c× computationally do not reveal any information about the secrets.
Furthermore, as Protocol 4.1 is zero-knowledge, sm1 , sm2 and consequently c̃ do not reveal anything to
the verifier either. The claim then follows from the proof of Theorem 4.2.

More formally, the simulator first computes c̃′ as a commitment to 0, and similarly for c′+. It then
runs the simulator for c1, c2, c3 and, assuming that no aborts happened, computes c′× = c̃′ + d2c3 −
as′m1

s′m2
+ dc+. It now runs the simulator for c′×, c

′
+, c̃

′, and, again assuming no aborts, computes an
auxiliary commitment, and outputs a transcript by appropriately arranging the messages. If in any step
an abort occurred, it sets (c′aux, d

′
aux) = aCom(0) and returns (c′aux, d,⊥). It can now be shown that the

simulator outputs transcripts that are computationally indistinguishable from real protocol runs. Note
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therefore that even though the error distributions of c̃′ and c̃ (and of c′× and c×, respectively) are not
identical, the resulting commitments cannot be distinguished under the RLWE-assumption. ut

5 Conclusion

We presented a simple and efficient string commitment scheme whose security is based on the hardness
of the RLWE-problem, or, equivalently, on the hardness of solving certain problems on ideal lattices.
Additionally we gave constructions for zero-knowledge proofs of knowledge of valid openings of such
commitments, and for proving arbitrary relations among such messages. By achieving a negligible
knowledge error in our protocols, we solve an open problem stated in previous work, e.g., Jain et
al. [JPT12].
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