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MODULAR PARAMETER IDENTIFICATION OF BIOMOLECULAR
NETWORKS

MORITZ LANG†‡§ AND JÖRG STELLING†¶

Abstract. The increasing complexity of dynamic models in systems and synthetic biology poses
computational challenges especially for the identification of model parameters. While modulariza-
tion of the corresponding optimization problems could help reduce the ”curse of dimensionality”,
abundant feedback and crosstalk mechanisms prohibit a simple decomposition of most biomolecu-
lar networks into sub-networks, or modules. Drawing on ideas from network modularization and
multiple-shooting optimization, we here present a modular parameter identification approach that
explicitly allows for such interdependencies. Interfaces between our modules are given by the experi-
mentally measured molecular species. This definition allows deriving good (initial) estimates for the
inter-module communication directly from the experimental data. Given these estimates, the states
and parameter sensitivities of different modules can be integrated independently. To achieve consis-
tency between modules, we iteratively adjust the estimates for inter-module communication while
optimizing the parameters. After convergence to an optimal parameter set–but not during earlier
iterations–the inter-module communication as well as the individual modules’ state dynamics agree
with the dynamics of the non-modularized network. Our modular parameter identification approach
allows for easy parallelization; it can reduce the computational complexity for larger networks and
decrease the probability to converge to sub-optimal local minima. We demonstrate the algorithm’s
performance in parameter estimation for two biomolecular networks, a synthetic genetic oscillator
and a mammalian signaling pathway.
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1. Introduction. The values for kinetic parameters in mathematical models
for biomolecular networks are often not experimentally accessible, except indirectly
through their influences on the measurable dynamics of biomolecular species. Solving
the inverse problem of inferring kinetic parameters from such indirect experimental
measurements is referred to as parameter identification [2, 17].

Parameter identification for large biomolecular networks poses particular chal-
lenges because high-dimensional parameter spaces need to be explored, and the “curse
of dimensionality” [5] entails computation times that may increase exponentially with
the dimension of the parameter space. In addition, parameter values in biomolecular
networks are often poorly constrained by prior knowledge. For example, enzyme ki-
netic parameter values distribute over several orders of magnitude [4], which makes
it often difficult to ascertain even rough estimates when parameter values cannot be
determined experimentally.

Many different algorithmic solutions for parameter identification of biomolecular
networks exist (see e.g. [28,29,34] for extensive reviews). Most approaches repeatedly
simulate the complete model over the full time-domain. They mainly differ in how
parameter sets are selected for simulation, given the outcomes of previous simula-
tions. Recent developments of modern hybrid approaches are considered promising to
increase efficiency and to guarantee robustness in global parameter optimization [34].
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Such hybrid approaches switch from a global (typically stochastic) to a local (typi-
cally deterministic) algorithm in promising parameter regions [3,15]. Hybrid methods
can be considered as a further development of two-phase methods [29] such as mul-
tistart [8], clustering [9], or random linkage [27]. For the performance of such hybrid
or two-phase approaches, the speed, the stability, and the domain of convergence to
good optima of the local deterministic method are of central importance [3].

In contrast to the vivid research on the selection of parameter sampling points
in (global) optimization, complementary approaches to deal with the ”curse of di-
mensionality” by decomposing the parameter identification problem into smaller sub-
problems have received less attention. For biomolecular networks, divide-and-conquer
strategies are based on splitting the original network into several modules, each de-
pending only on a subset of the parameters, and by performing a modular parameter
identification [16]. Ideally, the parameter subsets of the modules are non-overlapping
and of equal size, and each module can be optimized independently–or at least consec-
utively. Existing approaches to modular parameter estimation rely on decomposing a
network into independent pathways [20], or on graph decomposition with sequential
block ordering without [19] or with [22] iterative adjustment of numerical integration
methods. However, for most biomolecular networks, such “sequential” approaches are
not possible because of omnipresent feedback loops and crosstalk mechanisms. Local
(e.g., per enzyme in a biomolecular reaction network) identification methods impose
strict requirements on measured data and on correctness of the model topology [21]
that can rarely be fulfilled in practice.

For more general approaches to a modular identification of biomolecular networks,
the requirement of independent or consecutive optimization of modules has to be re-
laxed by allowing the dynamics in one module to be affected by changes in other
modules’ parameters. Modular response analysis (MRA; see [10, 18], and [31] for a
related approach) mathematically captures such inter-module dependencies. In MRA,
the effects of parameter variations of unknown magnitude on (steady-state) species
concentrations of a modularized network are used to determine the quantitative inter-
actions (sensitivities) between modules. The approach relies on (i) local (intra-level)
sensitivities of the steady-state species’ concentrations to parametric perturbations
inside the respective module, assuming the dynamics of all other modules to be fixed,
and (ii) global (inter-level) sensitivities of the steady-states to perturbations of the
modules’ interface species’ concentrations [10, 18]. MRA has not been designed for
parameter identification, but a similar concept might reduce the amount of sensitivity
equations to be numerically integrated in a local parameter identification approach.

Modular response analysis has conceptual similarities with multiple-shooting [7,
24,30], a local deterministic parameter identification method. Multiple-shooting par-
titions the time-domain into several non-overlapping intervals, akin to partitioning
the network into modules in MRA. With each of these time intervals, separate ini-
tial conditions are associated. Thus, the states of a biomolecular network model, as
well as its parameter sensitivity equations, can be numerically integrated separately
for each time interval. In each iteration of the multiple-shooting algorithm, not only
the parameter vector is updated, but also the initial conditions of the time inter-
vals. These updates are defined such that after converging to a (locally) optimal
parameter set–but not necessarily during earlier iterations–the species’ trajectories
are continuous over the full time domain. Importantly, this constraint on the joint
species’ trajectories, respectively the update of the intervals’ initial conditions, can
be interpreted as equivalent to the interface or the communication between modules.
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Fig. 1. Simplified workflow of the iterative modular parameter identification approach. A
biomolecular network is divided into m = 1, . . . , nM possibly overlapping modules with states xi

m(t)
at time t ≥ 0 in iteration i ∈ N≥0. Each module contains exactly one state yim(t) = cm

Txi
m which

corresponds to an experimentally measured species, and to which we refer as the output of the module.
The outputs yi(t) = (yi1(t), . . . , y

i
nM

(t))T of all modules form the interface between the modules: for

a given module m, the dynamics of all other modules k 6= m might only (directly) depend on yim(t),
but not on any other of the module’s species. To simulate the modules independently, we substitute
all dependencies on yim(t) in modules k 6= m by the curves ui

m(t), to which we refer as the inputs of
the modules. We initialize these inputs ui(t) = (ui

1(t), . . . , u
i
nM

(t))T by splines through experimental

data consisting of mean concentrations Y and variances σ2 at different measurement times. Early in
the optimization, the input curves ui(t) and the output trajectories yi(t) can differ substantially, and
we denote this difference as the inconsistency Ji(t) = yi(t)−ui(t). Our algorithm iteratively adjusts
the parameter values pi+1 = pi + ∆pi as well as the input trajectories ui+1(t) = ui(t) + ∆ui(t)
to simultaneously minimize the difference Fi between the model dynamics and the experimental
data and the inconsistencies Ji(t) between inputs and outputs. For this purpose, we calculate the
(local) sensitivities of the output trajectories with respect to perturbations of the parameter values
(Si

p(t)), respectively of the input trajectories (Si
J
(t) and Si

λ
(t), see main text). After convergence,

the inconsistencies are (approximately) zero, such that each module’s states show (approximately)
the same dynamics as the corresponding states of the non-modularized network.

Thus, the sensitivities to the parameter values in each interval in multiple-shooting
are equivalent to the local intra-level response coefficients, and the sensitivities with
respect to the intervals’ initial conditions to the global inter-level responses in MRA.
Multiple-shooting has several advantageous features, including a comparatively high
numerical robustness and the possibility to derive good initial estimates for the in-
tervals’ initial conditions directly from the experimental data, leading to improved
convergence properties and the avoidance of sub-optimal local minima [7, 24].

Here, we present a modular parameter identification method for biomolecular
networks (see Fig. 1) that uses ideas from MRA and multiple-shooting to combine
the advantages of both approaches. As previously [23], we define modules such that
all species in the modules’ interfaces are experimentally measured. In this way good
initial estimates of the interface species’ dynamics can be derived directly from the ex-
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perimental data–similar to multiple-shooting [24]. We use these estimates to (partly)
insulate the modules from each other: each module can be separately simulated given
these estimates. We iteratively optimize the parameters while at the same time con-
solidating the estimates for the interfaces’ dynamics to eventually achieve consistency
between the modules’ dynamics. After convergence of our algorithm, the dynamics of
the modules are consistent with the dynamics of the non-modularized network.

This article is structured as follows: the Methods section provides the mathe-
matical problem statement, specifies our modularization approach, derives our modu-
lar parameter identification algorithm, and discusses its computational requirements
as well as its (local) convergence guarantees. In the Results section, we exemplify
the performance of our framework with respect to parameter identification for two
biomolecular networks, a synthetic genetic oscillator [13] and a more complex mam-
malian signaling pathway [1].

2. Methods.

2.1. Problem Statement. In this article, we consider dynamic models of bio-
molecular networks with nX states (species) with concentrations x(t) ∈ R

nX

≥0 at time
t ∈ [0, tf ]. The species participate in nR reactions with rates v(x(t),p) ∈ R

nR which
depend on the states and nP (unknown) parameters p ∈ R

nP . The model of a network
is given by the ordinary differential equations (ODEs)

d

dt
x(t) = Nv(x(t),p), x(0) = x0(2.1)

y(t) = Cx(t),

with N ∈ R
nX×nR the stoichiometric matrix mapping the reaction rates to the species

dynamics, and x0 ∈ R
nX

≥0 the initial conditions. The matrix C ∈ {0, 1}nM×nX maps

the states of the model to nM > 1 trajectories y(t) = (y1(t), . . . , ynM
(t))T , referred

to as the outputs of the network. Here, we require that C has exactly one non-zero
entry in each row. Throughout this article, we assume the reaction rates v to be
continuously differentiable with respect to x and p, and that a unique solution x(t)
to the initial value problem exists for t ∈ [0, tf ] and all feasible parameter sets.

The inverse, or parameter identification problem is to find the optimal set of
parameters that minimizes the difference between the model’s dynamics and given
experimental data. Here, we assume that this data represents measured mean con-
centrations Ym,s and variances σ2

m,s of the species corresponding to the model’s out-
puts m = 1, . . . , nM at times 0 ≤ ts ≤ tf , s = 1, . . . , nS . Assuming the measures to
be independently and normally distributed, the parameter identification problem is
mathematically formulated as

(2.2) min
p

nM
∑

m=1

nS
∑

s=1

(

ym(ts)− Ym,s

σm,s

)2

subject to:

d

dt
x(t) = Nv(x(t),p), x(0) = x0

y(t) = Cx(t)

pmin ≤ p ≤ pmax,

with pmin,pmax ∈ R
nP lower and upper bounds on the parameter values.
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To simplify presentation, we restricted ourselves to lower and upper parameter
bounds in contrast to more general inequality and equality constraints (see e.g. [28])
that are rarely used–in our experience–for parameter optimization of biomolecular
networks. The structural requirements onC imply that each experimentally measured
species has to correspond to exactly one state of the model. In practice, proteins with
different post-translational modifications, and similar, are often non-distinguishable
experimentally [26]. Thus, some experimental data might represent the sum of several
states of the model. In such cases, an adequate coordinate transformation of the state-

space x̃(t) =
(

CT QT
)T

x(t), with Q ∈ R
nX−nM×nX chosen such that (CT ,QT )

has full rank, is typically sufficient to bring the model into the form imposed by
the requirements on C. Furthermore, we conveniently assumed the initial conditions
x0 of the network to be given. If the initial conditions x0 are unknown, they can
become decision variables of the optimization by appending them to the parameter
vector p̄T = (pT ,x0

T ). Note that in this case, the initial conditions of the respective
parameter sensitivities (Section 2.3) have to be adjusted (see e.g. [24]). Finally, time-
dependent external inputs like dynamically changing environmental conditions can be
incorporated by allowing for an additional dependence of the rates v on these external
inputs.

2.2. Network Modularization. To identify the parameters of larger biomolec-
ular networks, we modularize these networks (Eq. 2.1) into m = 1, . . . , nM modules.
Similar to our previous work [23], we require that each module contains exactly one
output ym(t). Furthermore, each module’s dynamics can depend on nM trajectories
u(t) = (u1(t), . . . , unM

(t))T ∈ R
nM

≥0 , referred to as inputs. The modules are connected
to one another by using the modules’ outputs as each others inputs, i.e. by setting
u(t) = y(t). Upon interconnection, we require that the modules’ dynamics resemble
the dynamics of the whole (non-modularized) network (see below).

The dynamics of each module m = 1, . . . , nM satisfy the ODEs

d

dt
xm(t) = Nmvm(xm(t),p,u(t)), xm(0) = xm,0(2.3)

ym(t) = cTmxm(t),

with xm(t),xm,0 ∈ R
nX,m

≥0 , vm(xm(t),p,u(t)) ∈ R
nR,m , Nm ∈ R

nX,m×nR,m , and
cm ∈ R

nX,m .

The relationship between module m and the whole network is established by
identifying the module’s species with the species of the whole network having indices
IX,m ⊆ {1, . . . , nX}, |IX,m| = nX,m. Similarly, the module’s reactions are iden-
tified with the reactions of the whole network having indices IR,m ⊆ {1, . . . , nR},
|IR,m| = nR,m. Given a valid choice for IX,m and IR,m (see below), this relation-
ship is explicitly given by xm(t) = Pmx(t), xm,0 = Pmx0, Nm = PmNQT

m, and
CT = (PT

1 c1, . . . ,P
T
nM

cnM
). The matrix Pm ∈ {0, 1}nXm×nX maps the states of the

whole system (Eq. 2.1) to the states of the mth module, with (Pm)IX,m
the identity

matrix and (Pm)IC
X,m

the zero matrix. Here, (.)C denotes the set complement, i.e.

ICX,m = {1, . . . , nX} \ IX,m. Similarly, Qm ∈ {0, 1}nRm×nR maps the reaction rates of
the complete system to the rates of the module, with (Qm)IR,m

the identity matrix
and (Qm)IC

R,m
the zero matrix. Finally, the reaction rates of module m are given by

vm (xm(t),p,u(t)) = Qmv
(

Pm
Txm(t) +CT (I−CPm

TPmCT )u(t),p
)

,
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with I the identity matrix. Intuitively, this corresponds to replacing all dependencies
of the reaction rates in module m on species inside module m by the corresponding
module’s species (Pm

Txm(t)), and all dependencies on interface species not being
part of the module by the corresponding inputs (CT (I−CPm

TPmCT )u(t)).
Upon interconnection of the modules, each module’s reaction rates should equal

the corresponding rates of the non-modularized network, i.e.

Qmv(x(t),p) = vm(xm(t),p,u(t)) for u(t) = y(t).

Thus, IX,m and IR,m have to be chosen such that δ
δxi

Qmv(x(t),p) = 0 for all i /∈

IX,m and xi(t) being not the output of any module, with δ
δxi

the partial derivative
with respect to xi(t). Trivially, such a modularization is always possible by choosing
IX,m = {1, . . . , nX} and IR,m = {1, . . . , nR}. To find the minimal sets of species ÎX,m

and reactions ÎR,m for each module, we apply our previous results (Lemma 10 in [23])
based on a so called species-reaction graph (see Figs. 2A and 5) that describes the
directed information flow in a biomolecular network. In [23], we showed that

i ∈ ÎX,m ⇒

(

C exp

[

χ(N)χ

(

δ

δx
v(x(t),p)

)

(

I−CTC
)

])

m,i

6= 0(2.4a)

i ∈ ÎR,m ⇒

(

C exp

[

χ(N)χ

(

δ

δx
v(x(t),p)

)

(

I−CTC
)

]

χ(N)

)

m,i

6= 0(2.4b)

with exp the matrix exponent, and χ the element-wise indicator function for a matrix
F defined by

(χ(F))kl =

{

0 if ∀x(t),u(t) ∈ R
nX

≥0 ,pmin ≤ p ≤ pmax : Fkl = 0

1 otherwise.

Eqs. 2.4a and 2.4b correspond to necessary conditions for observability of xi,
respectively vi, by the output ym, when removing all dependencies of the reaction
rates on directly experimentally measured species. These conditions are in general
not sufficient to decide if a certain species or reaction has to belong to a given module,
for example, because of potential symmetries in the network. However, given our
experience, such cases are rather rare for models of biomolecular networks, and for
most models Eqs. 2.4a and 2.4b are necessary and sufficient. Thus, we apply these
conditions to define the indices IX,m and IR,m of the species and reactions belonging
to a given module m. Nevertheless, we recommend using more sophisticated methods
to exclude (theoretical) non-observability (e.g. [32]) in addition.

In addition to IX,m and IR,m, we denote by IP,m ⊆ {1, . . . , nP }, |IP,m| = nP,m,
and IU,m ⊆ {1, . . . , nM}, |IU,m| = nU,m, the indices of the parameters and inputs of
module m. Given vm, these indices can be determined by

i ∈ IP,m ⇔ χ

(

δ

δpi
vm (xm(t),p,u(t))

)

6= 0(2.5a)

i ∈ IU,m ⇔ χ

(

δ

δui

vm (xm(t),p,u(t))

)

6= 0.(2.5b)

Eqs. 2.5a and 2.5a state that only parameters and inputs belong to a module which
influence the rate of at least one of the reactions of the module. The definitions of
IP,m and IU,m only become important for the determination of the computational
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complexity of our proposed algorithm (Section 2.7). Thus, to simplify notation, we
formulated the ODEs of each module (Eq. 2.3) such that they depend on all param-
eters and inputs, and not only on the respective module’s parameters and inputs.

Note that, different from other definitions of modules, the sets of species, reac-
tions, and parameters of our modules might overlap. Even more importantly, not
all species, reactions, or parameters necessarily belong to at least one module, for
example, when certain species or reactions are not observable by any output. Param-
eters that only pertain to reactions outside any module are not identifiable. Thus,
(some) non-identifiable parameters are automatically sorted out as a by-product of
the modularization.

Given the modularization of the network, we can equivalently express Eq. 2.2 as
an optimization problem with decision variables p and u(t):

(2.6a) min
p,u

nM
∑

m=1

nS
∑

s=1

(

ym(ts)− Ym,s

σm,s

)2

subject to:

d

dt
xm(t) = Nmvm(xm(t),p,u(t)), xm(0) = xm,0

ym(t) = cTmxm(t)

pmin ≤ p ≤ pmax

0 = u(t)− y(t)(2.6b)

for all m ∈ {1, . . . , nM}. Eq. 2.6b is conceptually similar to matching conditions [6,24]
or continuity constraints [30] in multiple-shooting. It states that the trajectories of
the inputs have to be equal to the trajectories of the outputs, which guarantees that
the dynamics of the states of each module are equivalent to the corresponding states
of the non-modularized model.

2.3. Linearized Modular Optimization Problem. To solve the modular op-
timization problem (Eq. 2.6), we apply a Gauss-Newton algorithm iteratively refining
the parameters and inputs to find a (locally) optimal set of parameters and a corre-
sponding set of inputs fulfilling the matching condition (Eq. 2.6b). In the following,
we denote by a superscript the value of a variable in a given iteration i = 0, 1, . . . of
the Gauss-Newton algorithm. Starting from initial guesses for the parameter vector
p0 and for the modules’ input trajectories u0(t), we determine in each iteration of
the algorithm how the outputs of the individual modules change (i) in response to in-
finitesimal perturbations of the parameters while keeping the modules’ inputs (i.e. the
outputs of all other modules) fixed, and (ii) in response to infinitesimal perturbations
of the inputs while keeping the parameters fixed. This approach closely resembles the
discrimination between intra- and inter-level responses in MRA [10,18].

Keeping the modules’ inputs fixed, the change of the output dynamics dyi
p(t)

in response to infinitesimal perturbations of the parameters dpi is quantified by the

parameter sensitivities Si
p

T
(t) =

(

Si
p,1

T
(t), . . . ,Si

p,nM

T
(t)
)

, with dyi
p(t) = Si

p(t)dp
i.

The parameter sensitivities Si
p,m(t) of each module m = 1, . . . , nM are obtained by

integrating the initial value problems

d

dt
Si
p,x,m(t) = Nm

δ

δxi
m

vm(xi
m(t),pi,ui(t))Si

p,x,m(t) +Nm

δ

δpi
vm(xi

m(t),pi,ui(t))

Si
p,m(t) = cm

TSi
p,x,m(t),
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with Sp,x,m(0) = 0.
Similarly, when keeping the parameters fixed, the change of the modules’ output

dynamics dyi
u(t) in response to infinitesimal perturbations of the input trajectories

dui(t) is quantified by the input sensitivities Si
u

T
(t, s) =

(

Si
u,1

T
(t, s), . . . ,Si

u,nM

T
(t, s)

)

.

These sensitivities Si
u(t, s), with dyi

u(t) =
∫ t

0
Si
u(t, s)du

i(s)ds, correspond to the im-
pulse responses of time-varying linear systems [33] representing the individual modules
linearized around the current parameters and inputs. In general, the impulse responses
are computationally expensive to determine numerically. Therefore, we propose in the
next section an alternative approach to estimate the responses of the modules’ outputs
to small changes in the input dynamics. Simultaneously perturbing the parameters
and the inputs leads to the response in the output dynamics dyi(t) = dyi

p(t)+dyi
u(t).

Given these definitions, the (locally) optimal parameter and input updates ∆pi

and ∆ui(t) are the solutions of the linearized modular optimization problem
(2.7a)

min
∆pi,∆ui

nM
∑

m=1

nS
∑

s=1

(

yim(ts)− Ym,s + Si
p,m(ts)∆pi +

∫ ts

0
Si
u,m(ts, s)∆ui(s)ds

σm,s

)2

subject to:

d

dt
xi
m(t) = Nmvm(xi

m(t),pi,ui(t)), xi
m(0) = xm,0,(2.7b)

yim(t) = cm
Txi

m(t)

pmin − pi ≤ ∆pi ≤ pmax − pi

ui(t) +∆ui(t) = yi(t) + Si
p(t)∆pi +

∫ t

0

Si
u(t, s)∆u(s)ds.(2.7c)

Note that after the linearization of the system, it is not guaranteed anymore that
the output trajectories equal the input trajectories. We denote the difference between
these trajectories as the inconsistency Ji, defined by

Ji(t) = yi(t)− ui(t).

A non-zero inconsistency can not only result from inconsistently chosen initial pa-
rameter sets p0 and input trajectories u0(t), but also from the non-linearity of the
network: The sensitivities Si

p,m(t) and Si
u,m(t, s) quantify the change in the output

dynamics for infinitesimal parameter and input perturbations dpi and dui(t), while
the (locally) optimal updates ∆pi and ∆ui(t) are not infinitesimal. However, while
we require Ji(t) to be (close to) zero after convergence of our algorithm, this condition
does not have to be satisfied during intermediate iterations.

2.4. Relaxed Matching Condition and Input Trajectory Update. The
linearized optimization problem (Eq. 2.7) is infinite-dimensional since the input tra-
jectory update ∆ui(t) is a function of time, and depends on the impulse responses
Si
u(t, s) which are in general computationally expensive to determine. To formulate a

finite-dimensional “condensed” version of the modular optimization problem in terms
of variables that are numerically better accessible, we relax the matching condition
(Eq. 2.7c) and restrict the input trajectory update to a specific functional form. These
two simplifications are mathematically justified by proving local convergence of the
final condensed optimization algorithm a posteriori (see Supplementary Information).
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First, we define nτ monotonously increasing matching times 0 ≤ τ1 < . . . < τnτ
=

tf , and relax the matching condition (Eq. 2.7c) of the linearized system such that it
only has to be fulfilled at these matching times. Then, we fix the input trajectories’
update to

(2.8) ∆ui(t) = Ji(t) +

nτ
∑

k=1

∆λi
kφk(t),

with nM new parameters ∆λi
k ∈ R

nM for each matching time τk, k = 1, . . . , nτ . The
basis functions φk(t) are defined by

(2.9) φk(t) =











t−τk−1

τk−τk−1
τk−1 < t ≤ τk

τk+1−t

τk+1−τk
τk < t < τk+1

0 otherwise,

with τ0 = 0 and τnτ+1 = tf .
The relaxed matching condition can then be expressed for j = 1, . . . , nτ as

∆λi
j = Si

p(τj)∆pi + Si
J(τj) +

nτ
∑

k=1

Si
λ,k(τj)∆λi

k,(2.10)

with Si
J(t) =

∫ t

0
Si
u(t, s)J

i(s)ds ∈ R
nM and Si

λ,k(t) =
∫ t

0
Si
u(t, s)φk(s)ds ∈ R

nM×nM

the local sensitivities of the outputs with respect to infinitesimal changes of the input
trajectories in the directions of Ji(t) and φk(t). Similar to the parameter sensitivities,

we obtain the sensitivities Si
J,m(t), Si

J

T
(t) =

(

Si
J,1(t), . . . , S

i
J,nM

(t)
)

, independently
for each module m by solving the initial value problems

d

dt
Si
J,x,m(t) =Nm

δ

δxi
m

vm(xi
m(t),pi,ui(t))Si

J,x,m(t)

+Nm

δ

δui
vm(xi

m(t),pi,ui(t))Ji(t)

Si
J,m(t) =cm

TSi
J,x,m(t),

with Si
J,x,m(0) = 0. The sensitivities Si

λ

T
(t) = (Si

λ,1

T
(t), . . . ,Si

λ,nM

T
(t)) are obtained

by solving analogous initial value problems for each input and each basis function.
The relaxed matching condition (Eq. 2.10) corresponds to a set of nτnM equations

that can be solved for ∆λi:

(2.11) ∆λi = (I− Si
λτ )

−1
(

Si
pτ∆pi + Si

Jτ

)

,

with

∆λiT =
(

∆λi
1

T
, . . . , ∆λi

nτ

T
)

, Si
pτ

T
=
(

Si
p

T
(τ1), . . . , Si

p

T
(τnτ

)
)

,

Si
Jτ

T
=
(

Si
J

T
(τ1), . . . , Si

J

T
(τnτ

)
)

, Si
λτ

T
=
(

Si
λ

T
(τ1), . . . , Si

λ

T
(τnτ

)
)

.

The matrix (I − Si
λτ ) is conceptually similar to the negative of the so called

interaction map in MRA [10]. It can only be inverted if it has full rank, i.e. Si
λτ must

not have an eigenvalue equal to one. To illustrate this condition, consider Si
λτ has
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an eigenvalue equal to one with corresponding eigenvector ∆λi
1. Then, if ∆λi

0 is a
solution of Eq. 2.11, also ∆λi

0 + α∆λi
1 is a solution for every α ∈ R. Such a ∆λi

0

corresponds to a perturbation of the inputs which results in a change of the output
trajectories being equal to the input perturbation at the matching times. Even though
the individual modules are causal and do not contain feed-throughs, such an effect
is in principle possible if the distance between adjacent matching times is too large.
To prevent such cases, we propose to monitor the condition number of (I−Si

λτ ), and
eventually to increase the number of matching times if necessary. In the following, we
assume that the distance between the matching times was chosen small enough such
that (I− Si

λτ ) is well conditioned.

2.5. Condensed Modular Parameter Identification Problem. As described
in the previous section, by relaxing the matching condition and restricting the input
trajectory update ∆ui(t) to a specific functional form, ∆ui(t) becomes a function of
the parameter vector update ∆pi (Eqs. 2.8 and 2.11). This also implies that ∆ui(t)
satisfies the relaxed matching condition (Eq. 2.10).

With these simplifications, we can state a condensed modular parameter identifi-
cation problem having as decision variables only ∆pi:

(2.13a) min
∆pi

nM
∑

m=1

nS
∑

s=1

(

yim(ts)− Ym,s +Ti
p,m(ts)∆pi +Ti

J,m(ts)

σm,s

)2

subject to

d

dt
xi
m(t) = Nmvm(xi

m(t),pi,ui(t)), xi
m(0) = xm,0,(2.13b)

yim(t) = cm
Txi

m(t)

pmin − pi ≤ ∆pi ≤ pmax − pi,

with Ti
p,m and Ti

J,m defined by

Ti
p,m(t) =Si

p,m(t) + Si
λ,m(t)

(

I− Si
λτ

)−1
Si
pτ(2.14a)

Ti
J,m(t) =Si

J,m(t) + Si
λ,m(t)

(

I− Si
λτ

)−1
Si
Jτ .(2.14b)

Several efficient algorithms exist (see e.g. [11]) to determine the parameter update
∆pi by solving Eq. 2.13a. Given the parameter update, the input trajectory update
∆ui(t) can be derived using Eqs. 2.8 and 2.11.

Because we relax the matching condition and restrict the input trajectory update
to a specific functional form, the condensed identification problem (Eq. 2.13) is not
equivalent to the linearized one (Eq. 2.7). To mathematically justify these simplifica-
tions, we derived an upper bound ∆τmax for the distance between adjacent matching
times such that (local) convergence is guaranteed given (local) identifiability of the
parameters (see Supplementary Information). This upper bound ∆τmax scales with
the square root of the reciprocal of the absolute value of the second derivative of the
sensitivities of the outputs with respect to changes in the inputs and the parameters.
This indicates that the matching times should be distributed over the simulation time
according to the dynamics of the interface species. As a rule of thumb, the faster
the dynamics of the interface species are during a given period, the denser should be
the matching times in this period. As demonstrated in the Results section, for many
optimization problems it seems sufficient to estimate the timescales of the interface
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species’ dynamics based on the experimental data, and to distribute the matching
times accordingly.

Finally, far away from a local optimum, additional provisions have to be made to
prevent divergence of the algorithm (step-width adjustment) or negative input tra-
jectories (basis function adjustment). Details about these additional steps, together
with the holding condition for our algorithm, are described in the Supplementary
Information.

2.6. Embedded Modular Algorithm. Since all interface species are by defi-
nition experimentally measured, typically rather good initial estimates u0(t) for the
input trajectories can be derived directly from the experimental data using adequate
spline approximations (see Results section). In contrast, parameters (and, thus, initial
parameter estimates p0) in biomolecular research are often only poorly constrained
by prior knowledge. For such poorly constrained initial parameter guesses, the ini-
tial input trajectories u0(t) are typically closer to the real network dynamics than
the output trajectories yi(t) during early iterations i; the latter might not even have
the same order of magnitude as the experimental data. Given that the parameters
converge to a good (local) optimum for which the output dynamics are in sufficient
agreement with the experimental data, this also implies that u0(t) is typically also
closer to the final (optimized) output trajectories than the output trajectories yi(t)
at early iterations i. Thus, in the joint space of parameters and input trajectories,
updating the input trajectories at too early iterations to reduce the inconsistencies
Ji(t) more likely increases than decreases the distance to a good (local) optimum.

Given these considerations, we embed our modular parameter identification ap-
proach into a broader algorithm with two phases. In the first phase, we use a simplified
version of our algorithm without updating the input trajectories, with Ti

Jt(t) = 0 and
Ti

pt(t) = Si
pt(t) in Eq. 2.13a, corresponding to optimizing each module independently.

In this phase, only the parameter sensitivities Si
p(t), but not the input sensitivities

Si
λ(t) and Si

J(t) have to be numerically integrated, thus also reducing computational
time per iteration. Furthermore, the separate optimization of the modules in the first
phase also allows for efficient parallelization. We switch to the second phase, in which
the full (condensed) modular algorithm is applied, either if the output trajectories are
close to the experimental data (i.e., if the cost decreases below some threshold), or if
the simplified algorithm converged.

2.7. Computational Complexity. Assuming a constant integration step width,
equally distributed matching times, and equal cost to integrate a state or a sensitivity
equation, the time complexity per iteration of our full modular parameter identifica-
tion approach is O(EM ), with

(2.15) EM =

nM
∑

m=1

[

(nP,m + 1)nX,m + χ(nU,m)nX,m +
nτ + 1

2
nU,mnX,m

]

the number of state and sensitivity equations which have to be numerically integrated.
The first term in the sum in Eq. 2.15 represents the cost to integrate the states xm(t)
and the parameter sensitivities Si

p,m(t) of module m; sensitivities with respect to
parameters not belonging to a module are zero and do not have to be integrated.
The second term represents the cost to integrate the sensitivities with respect to
the inconsistencies Ji(t); they only have to be integrated if the module has at least
one input (χ(nU,m) = 0 if nU,m = 0, and χ(nU,m) = 1 otherwise). The third term
captures the cost to integrate the sensitivities with respect to each of the module’s
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inputs and each basis function φk(t), k = 1, . . . , nτ ; not all of these sensitivities have
to be integrated over the whole time domain. Instead, the integrations can start when
the respective basis functions are non-zero for the first time, i.e.

∑nτ

k=1
k
nτ

= nτ+1
2 .

Under the same assumptions, the time complexity per iteration of the correspond-
ing non-modular parameter identification approach is O(EO), with

(2.16) EO = nX(nP + 1).

If we additionally assume that the states and parameters are distributed equally
between non-overlapping modules sharing no common parameters, our full modular
parameter identification approach is computationally less expensive (EM < EO) per

iteration if Ω(nτ + 3) < 2 nP

nM
. The mean relative connectivity Ω =

∑nM
m=1 nU,m

nM (nM−1) ∈ [0, 1]

between the modules is Ω = 1 (Ω = 0) if the interface species of all (no) modules serve
as inputs to one another. Thus, our approach seems especially suited for optimization
problems with many parameters that are roughly equally distributed over similar sized
modules, for modules with low inter-module connectivity, or a combination thereof.
Note, however, that we compared the cost of our full modularized and a corresponding
non-modularized algorithm per iteration. As described in the previous section, we
apply a simplified algorithm in the first phase of our embedded approach without
updating the input trajectories. For optimization problems with little or no overlap
between modules, the number

∑nM

m=1 nX,m(nP,m + 1) of necessary integrations per
iteration of the simplified algorithm is typically much lower than the corresponding
number of integrations in a non-modular approach.

Ideally, the decision between a modular or a non-modular algorithm should rather
depend on the number of integrations per optimization run than per iteration, as well
as on the probability to converge to good (local) optima. For general biomolecu-
lar networks, both measures cannot be easily estimated analytically and have to be
determined numerically.

3. Results.

3.1. Example 1: Repressilator. As a first example, we apply our embed-
ded modular parameter identification approach to a model of a synthetic oscillatory
network, the so-called Repressilator [13].

The model (available at the BioModels Database, [25]) consists of the three tran-
scriptional repressors TetR, cI, and LacI, with protein concentrations y1...3 and their
corresponding mRNA species with concentrations x1...3 (Fig. 2A). The dynamics of
the Repressilator are described by the following set of ODEs:

d

dt
xi(t) = a0,tr + atr

Kn
M

Kn
M + yni−1(t)

− kdmxi(t)(3.1a)

d

dt
yi(t) = ktlxi(t)− kdpyi(t)(3.1b)

with i ∈ {1, 2, 3} and y0 = y3. The nominal parameters of the model are KM = 40,
a0,tr = 0.03, atr = 29.97, ktl = 6.93, kdm = 0.347, kdp = 0.0693, and n = 2. After the
decay of the initial conditions, the model with the nominal parameters shows stable
limit-cycle oscillations.

In the following, we assume these nominal parameters to be unknown, and that
they should be identified given experimental data. We generated artificial experimen-
tal data by assuming that all three protein concentrations y1...3 can be experimentally
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Fig. 2. Network structure, artificial experimental data, and initial input trajectories for the
Repressilator example [13]. A) Species-reaction graph. Species are represented by rectangular nodes,
and reactions by diamonds. Reactions denoted by tr represent transcription, tl translation, dm

mRNA degradation, and dp protein degradation. A directed edge is drawn from a species to a
reaction if the reaction rate depends on the species’ concentration, and an edge from a reaction to
a species if firing of the reaction changes the species’ concentration. B-D) Error bars represent the
mean and standard deviations for the artificially generated experimental data of B) TetR, C) cI and
D) LacI concentrations over time. The data was generated from the model with nominal parameters
as described in the text. The curves represent splines (PCHIP, see [14]) fitted through the data and
used as initial input trajectories for our modular parameter identification algorithm.

measured. For each protein species, artificial mean concentrations and variances at
five time points at a temporal resolution of ∆t = 20 were generated. First, we de-
termined the corresponding state values of the model with nominal parameters by
numerical integration. Then, we created three artificial “replicas” for each time point
by assuming normally distributed measurement noise with a coefficient of variation of
cv = σ

µ
= 10% around the simulated species concentrations. Similar to real measure-

ment data, we finally calculated the mean and the unbiased variance of the species
concentrations from these replicas.

We modularized the Repressilator as described in Section 2.2 (see Fig. 2A). Each
of the three modules has the concentrations of one protein and its corresponding
mRNA species as states, the protein species as an output, and the output (the protein
species) of its preceeding module as an input. For the modular optimization, the initial
input trajectories u0(t) were set to piecewise cubic hermite interpolating polynomials
(PCHIP, see [14]) of the artificial experimental data, using the PCHIP implementation
part of the curve fitting toolbox of Matlab (The MathWorks, Natick, MA). In the
first phase of our embedded modular algorithm, we optimized the parameters of the
modules without updating the input trajectories as described in the previous section.
As soon as the root-mean-square (RMS) error dropped below Finit = 2, or when the
simplified algorithm converged, we switched to the full optimization algorithm. In
the full optimization algorithm, nτ = 10 matching times were equally distributed at
τ1 = 10, . . ., τ10 = 100.
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Fig. 3. Probability density and cumulative distribution function (CDF) of the RMS value and
the number of model evaluations for optimizing the Repressilator model of [13]. In total, 1000
different initial parameter sets were sampled with a Monte-Carlo approach, with KM , a0,tr, atr,
kdm, and kdp log-uniformly distributed between 0.01 and 100-fold their original value, and the Hill
factor n uniformly distributed between 1 and 4. The plots represent the results for the non-modular
(left column) and our modular optimization algorithm (right column), either with (case i, top row) or
without (case ii, bottom row) additionally constrained parameters. Each black dot shows the outcome
of one optimization run, the background gray level the relative density (arbitrarily scaled), and the
black dotted line the RMS error of the original parameter set with which the artificial experimental
data was generated. Only optimization runs that converged are displayed.

In each iteration, we determined the parameter update by solving a constrained
linear least-squares problem consisting of the respective condensed modular parameter
identification problem with an additional constraint on the parameter update

(3.2)

(

1

πmax

− 1

)

pi ≤ ∆pi ≤ (πmax − 1)pi,

with πmax = 2 the maximal fold change of each parameter value per iteration (that
is, in iteration i+1, each parameter can have a value maximally twice, and minimally
half its value in iteration i). The constrained linear least-squares problem (Eqs. 2.13
and 3.2) was solved with an implementation of a reflective Newton method [11],
part of the optimization toolbox of Matlab. The parameters of the backtracking
algorithm determining the step-with (see Supplementary Information) were set to
α = 0.1 and β = 0.5, and the parameters for the holding condition (see Supplementary
Information) to A1 = A2 = A3 = B1 = B2 = 1%.

To evaluate the convergence properties of our modular parameter identification
algorithm, we compared its performance with a non-modular (local) algorithm oper-
ating on the whole network. For a comparison unbiased by different implementation
details, we modified our modular algorithm to perform a non-modular parameter
identification by allowing it to operate on a single “module” containing all states.
Besides minor adjustments (e.g., removing unrequired convergence criteria for incon-
sistency), both algorithms were configured identically. We then used both algorithms
in the local phase of a global stochastic multistart optimization [29] (see caption of
Fig. 3 for details). During the optimization, we (i) either additionally constrained
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the parameters to stay in the region of the parameter space from which we sampled,
or (ii) we did not impose any additional constraints. For both algorithms, the same
randomly generated initial parameter sets were used. The final cost for a parameter
set identified by our modular approach was determined a posteriori by simulation of
the original, non-modularized network. We considered an optimization run to not
have converged either after a maximum of 100 iterations, or when during an iteration
the parameters were such that numerical integration failed for one or more of the
modules (we used the solver ode15s of Matlab with a maximal integration step width
of 0.1).

With additionally constrained parameters (case i), both the non-modular (99%
of the initial parameter sets) and our modular (98%) approach lead to convergence
within 100 iterations (Fig. 3). For the non-modular approach, converged optimiza-
tions had an average RMS error of 4.17 and only 59% of the initial parameter sets
converged to an RMS value of one or less; the nominal parameter set–used to gen-
erate the artificial experimental data–results in an RMS error of 1.03. In contrast,
our modular parameter estimation method resulted in an average RMS error of 1.60,
corresponding to 90% convergence to RMS values of less or equal to one. Both al-
gorithms showed worse performance when parameters were not constrained to the
sampling region (case ii). However, our modular approach (96% convergence, average
RMS of 2.24, 81.1% final RMS below or equal to one) was less sensitive to the removal
of the constraints than the non-modular approach (90.8% convergence, 5.91 average
RMS, 36.7% with RMS less or equal to one). We also observed higher robustness of
the modular approach when we use extended regions in parameter space for initial
sampling (with constraints, case i; three orders of magnitudes around the nominal
parameter set and [1, 5] for the Hill factor n), with 36% convergence rate to RMS
values of less or equal to one of the non-modular algorithm, and 70% for the modular
algorithm.

Fig. 3 shows that the lower average RMS value of our modular algorithm is
mainly achieved by avoiding certain sub-optimal local minima. Manual inspection
showed that most of these sub-optimal parameter sets correspond to strongly damped
oscillations or a non-oscillatory model behavior, and that a minority correspond to
oscillations with a significantly higher frequency than oscillations obtained with the
nominal parameter set. We hypothesize that the comparatively good performance of
our modular algorithm results from the modules being “entrained” by the experimen-
tal data used to initialize the inputs to the modules. By allowing for inconsistencies
between the modules’ dynamics during (but not at the end of) the optimization, each
module is exposed to input dynamics close to the dynamics of the ”real” biomolecu-
lar network already in early iterations. In contrast, in a non-modular optimization,
a module is only exposed to dynamics close to the real-world system after the pa-
rameters converged to the proximity of a good local optimum–if such a convergence
happens at all.

3.2. Example 2: JAK2/STAT5 Signaling. As a second example, we esti-
mated the parameters of a model [1] of the JAK2/STAT5 signaling pathway (avail-
able at the BioModels Database, [25]) that has 26 states and 36 reactions. The
model describes the fast erythopoetin (Epo) induced signal transduction pathway in
mammalian cells. Pathway activation results in phosphorylation and nuclear import
of STAT5, as well as two slow feedback mechanisms via the production of SOCS3
and CIS under transcriptional control of nuclear localized STAT5. A wide range of
different experiments were performed in [1] for parameter identification and model val-
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Fig. 4. Experimental data for the JAK2/STAT4 signaling pathway used for optimization, and
initial input trajectories. The error bars represent the mean and standard deviations for A) CIS
RNA, B) SOCS3 RNA and C) phosphorylated STAT5 concentrations over time after induction with
5 U/ml Epo; they were derived from the experimental data given in [1] as described in the main text.
The curves represent splines (PCHIP, see [14]) fitted through the data and used as initial inputs for
our modular parameter optimization algorithm.

idation. However, even with this extensive data set, not all of the 21 free parameters
of the model are practically identifiable [1], which is a common–if not ubiquitous [26]–
phenomenon for larger models in systems biology. Since in [1] the concentrations of
several different species were simultaneously measured for several experiments, the
JAK2/STAT5 signaling pathway model represents an interesting test case for our
modular parameter identification approach.

This section is intended to demonstrate our modular identification approach on
a realistic biomolecular network, and not to serve as an exhaustive biological study.
Therefore, we restricted ourselves to a subset of the experimental data reported in [1]
for the modular identification of the network. This subset consisted of data for the
phosphorylated STAT5 protein (Table S3 in Supplementary Information of [1]), and
for the SOCS3 and CIS mRNA abundances (Table S5) in the first 240 min after induc-
tion of the pathway with 5 U/ml Epo (Fig. 4). We transformed the raw experimental
data to concentration units by using the relationships stated in Supplementary Infor-
mation of [1] (Eqs. 96 and 123-128). For the mRNA levels, we calculated the mean
and the standard deviations from the three available replicas. For phosphorylated
STAT5, only one replica per time point was reported in [1]. We used these values as
the mean and assumed a coefficient of variation of 25% in agreement with the aver-
age coefficient of variation of the mRNA data. With these experimentally measured
species, we modularized the JAK2/STAT5 signaling model (see Fig. 5) as described
in the Methods section.

All relevant 21 free parameters of the model for the chosen subset of the experi-
mental data (those parameters that were neither fixed to a certain value already in [1]
or correspond to initial species’ concentrations) were optimized with an initial value
set to 1. The units of the parameters and their upper and lower bounds were set ac-
cording to Table S16 in [1]. This corresponds to initial parameter values up to more
than eight orders of magnitude away from the ones identified in [1].

We distributed nτ = 10 matching times at {5, 10, 15, 20, 30, 60, 90, 120, 180, 240}
minutes after induction according to a rough visual inspection of the experimental
data with respect to the time intervals showing fast interface species’ dynamics (see
Fig. 4). The switching condition between the two phases of our modular algorithm,
the holding criterion as well as the maximal relative parameter update per iteration
were set as in the previous example. To evaluate the performance of our algorithm,
we also optimized the parameters using the non-modular counterpart of our algorithm
as described above.
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Fig. 5. Species-reaction graph of the modularized JAK2/STAT5 signaling pathway [1]. The
nodes (see Fig. 2A for notation) are grouped according to the module the corresponding reaction
or species belongs to. Species and reactions belonging to more than one module (R14, R15 and
npSTAT5) are represented by separate nodes in each module. Experimentally measured species are
highlighted by a double border, and edges representing inter-module communication are dashed and
slightly thicker. Graph drawn with Graphviz [12].

For both the modular and the non-modular algorithm, Fig. 6 displays the RMS
error between the experimental data and the corresponding states of the model, as
well as the indicator functions used for the holding criteria. Our modular algorithm
showed quick convergence and it terminated already after 21 iterations with an RMS
value of 1.31 (determined a posteriori by integrating the non-modularized model). In
contrast, the non-modular algorithm already terminated after the first iteration since
the expected relative gain in the RMS value was less than the corresponding holding
criterion (see Supplementary Information). To allow for a better comparison of the
two algorithms, we removed the holding criterion for the non-modular algorithm, and
ran it for a total of 100 iterations. During these 100 iterations, the non-modular
algorithm temporarily signaled convergence two additional times at iteration 6 and
22 − 23. Finally, it converged around iteration 50 to a local sub-optimal minimum
with a final RMS value of 1.57.

The comparatively fast convergence properties of our embedded modular param-
eter optimization algorithm can be explained as a result of using the experimental
data (Fig. 4) as proxies for the input dynamics during the initial phase of our em-
bedded optimization algorithm (compare also to Example 1). It does not seem to be
necessary that these inputs are very close to the final trajectories. Indeed, especially
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Fig. 6. Comparison of the convergence properties of the modular and non-modular parameter
identification algorithms for the JAK2/STAT5 signaling model of [1]. A) Root-mean-square er-
ror F between experimental data and simulations over iteration number. B) Expected relative RMS

gain 1−
F (pi,ui,∆pi,1)

F (pi,ui,0,1)
(modular, see Supplementary Information), respectively 1−
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F (pi,0,1)
(non-

modular), of updating the parameters; and the scaled maximal inconsistency

√

∑nM
m=1
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m(t)|
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m)

(modular only) used as holding conditions (see Supplementary Information). The gray areas corre-
spond to the iterations in which the simplified modular optimization algorithm was used.

the initial input trajectory of phosphorylated STAT5 (Fig. 4C) could be improved
with respect to prior knowledge of the expected dynamics. This suggests that it
is sufficient that at least some dynamical properties are roughly captured and that
concentrations have the correct order of magnitude. These inputs likely serve in the
initial phase of the modular algorithm to “entrain” the individual modules, result-
ing in a quick convergence to dynamics similar to the final, (locally) optimal ones.
Our full modular algorithm used in the second phase of the embedded algorithm,
which started at iteration 11, first reduced the inconsistency between the inputs and
the outputs while simultaneously adjusting the parameters to preserve the quality of
the fits (ca. iterations 12 − 14); subsequently, it even decreased the cost (iterations
15 − 20). Since at the end of iteration 20, the convergence criterion for the param-
eters but not yet the one for the inconsistencies was satisfied (see Supplementary
Information), the parameter update was set to zero for the last iteration (iteration
21). This lead to a rapid decrease of the inconsistency, such that the holding condition
of the algorithm–converged parameters and small inconsistencies–became satisfied at
the end of iteration 21.

4. Discussion. In this article, we presented a modular parameter identification
algorithm for biomolecular networks. In our approach, we partition a biomolecular
network into several, partly overlapping modules based not solely on the network’s
structure, but also on the set of species for which experimental data is available.
These modules are defined such that the set of experimentally measured species also
forms the interface between the modules. In contrast to existing approaches to mod-
ular identification, this module definition allows us to deal with highly interconnected
networks, as demonstrated for the JAK2/STAT5 example. For the optimization, the
modules and their parameter sensitivities are independently numerically integrated by
using fixed “input” trajectories at every iteration, proxies for the inter-module commu-
nication initialized to splines through the experimental data. To achieve consistency
between the modules at the end of–but not necessarily during–the optimization, these
input trajectories are updated in each iteration such that they eventually converge to
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the actual interface species’ dynamics. By allowing for inconsistencies between the
interface species’ dynamics and the input trajectories during the optimization, the
computational requirements per iteration can be decreased for larger networks, the
convergence properties are improved (at least for the tested examples), and the risk
of convergence to local sub-optimal minima is reduced.

Future research might extend or adjust our modular parameter identification ap-
proach in different directions: one might allow for more than one experimentally
measured species per module, or one might extend the algorithm to allow for exper-
imental data in which not all interface species are measured under all experimental
conditions. Furthermore, it would be interesting to define algorithms to automatically
identify optimal matching times, and eventually to adaptively adjust their position
and number during optimization. One could also analyze the convergence properties
of our modular parameter identification framework for other sets of basis functions,
for example, basis functions defined in the frequency rather than in the time domain.
Interestingly, our modular parameter identification approach is in principle compat-
ible with multiple-shooting [7, 24, 30]. Thus, it might be possible to combine both
approaches, that is, to modularize a biomolecular network and to split its time do-
main into several intervals. We believe that such a combination would be promising to
combine the advantages of both approaches and to further increase performance (see
Supplementary Information for a detailed discussion). Finally, integrating our deter-
ministic local parameter identification approach with more sophisticated (stochastic
or deterministic) global approaches than multistart seems promising. Such modern
hybrid approaches have been proposed to provide a high overall efficiency and robust-
ness [34].
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