Lifelong Learning with Weighted Majority Votes: Supplementary Material

Anastasia Pentina IST Austria apentina@ist.ac.at Ruth Urner Max Planck Institute for Intelligent Systems rurner@tuebingen.mpg.de

In this document we provide the proofs omitted from the main manuscript.

1 Properties of $d_D(\mathcal{H}, \mathcal{H}')$

Claim 1. The distance $d_D(\mathcal{H}, \mathcal{H}') = \max_{h \in \mathcal{H}} d_D(h, \mathcal{H}')$ between two hypothesis sets satisfies the triangle inequality $d_D(\mathcal{H}_1, \mathcal{H}_3) \leq d_D(\mathcal{H}_1, \mathcal{H}_2) + d_D(\mathcal{H}_2, \mathcal{H}_3)$.

Proof.

for any $h_1 \in \mathcal{H}_1$:

$$\begin{aligned} d_D(h_1, \mathcal{H}_3) &= \min_{h_3 \in \mathcal{H}_3} d_D(h_1, h_3) \\ &\leq \min_{h_3 \in \mathcal{H}_3} \left(d_D(h_1, h_2) + d_D(h_2, h_3) \right) \forall h_2 \in \mathcal{H}_2 \\ &= d_D(h_1, h_2) + \min_{h_3 \in \mathcal{H}_3} d_D(h_2, h_3) \forall h_2 \in \mathcal{H}_2 \\ &= d_D(h_1, h_2) + d_D(h_2, \mathcal{H}_3) \forall h_2 \in \mathcal{H}_2 \\ &\leq d_D(h_1, h_2) + d_D(\mathcal{H}_2, \mathcal{H}_3) \forall h_2 \in \mathcal{H}_2 \end{aligned}$$

by minimizing over h_2 :

$$d_D(h_1, \mathcal{H}_3) \leq d_D(h_1, \mathcal{H}_2) + d_D(\mathcal{H}_2, \mathcal{H}_3)$$

by maximizing over h_1 on the right hand side:

$$d_D(h_1, \mathcal{H}_3) \leq d_D(\mathcal{H}_1, \mathcal{H}_2) + d_D(\mathcal{H}_2, \mathcal{H}_3)$$

by maximizing over h_1 on the left hand side:

$$d_D(\mathcal{H}_1, \mathcal{H}_3) \leq d_D(\mathcal{H}_1, \mathcal{H}_2) + d_D(\mathcal{H}_2, \mathcal{H}_3).$$

2 Proof of Lemma 2

We will prove the statement by induction on k over a stronger statement that the conclusion holds for $V_k = MV(w_1, \ldots, w_l, h_1, \ldots, h_k)$ and $\tilde{V}_k = MV(w_1, \ldots, w_l, \tilde{h}_1, \ldots, \tilde{h}_k)$ for any w_1, \ldots, w_l . Note that for k = 1 the statement follows from Lemma 1.

Let
$$V'_k = MV(w_1, \dots, w_l, h_1, \dots, h_{k-1}, h_k)$$
. Then:
 $d_D(V_k, \tilde{V}_k) \leq d_D(V_k, V'_k) + d_D(V'_k, \tilde{V}_k)$ (by triangle inequality)
 $\leq d_D(h_k, \tilde{h}_k) + d_D(V'_k, \tilde{V}_k)$ (by Lemma 1)
 $\leq \epsilon_k + \sum_{i=1}^{k-1} \epsilon_i$ (by assumption and induction).

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

3 Proof of Theorem 3

1. First, as in the proof of Theorem 2, we need to control the total probability of any conclusion of Algorithm 2 being incorrect. For every task i = 2, ..., n Algorithm 2 preforms at most two estimations. Therefore the total probability of failure is:

$$\delta_1 + \sum_{i=2}^n 2\delta_i = \frac{\delta}{2} + \sum_{l=1}^{\lfloor \log n \rfloor} 2(2^{l+1} - 2^l) \frac{\delta}{2^{2l+2}} = \frac{\delta}{2} + \frac{\delta}{2} \sum_{l=1}^{\lfloor \log n \rfloor} \frac{1}{2^l} \le \frac{\delta}{2} + \frac{\delta}{2} \sum_{l=1}^{\infty} \frac{1}{2^l} = \frac{\delta}{2} + \frac{\delta}{2} = \delta.$$

2. Performance guarantees follow from the design of the algorithm (as in Theorem 2).

3. The fact that $\hat{k} \leq k$ can be proven in a way analogous to Theorem 2. However, we need to make sure that for every $\hat{k} = 1, \ldots, \tilde{k}$, by using Lemma 2, we will obtain a suitable result. In particular, by construction for every $j = 1, \ldots, \hat{k} - 1$ $d_{D_{i,j}}(h_{i,j}^*, \tilde{h}_j) \leq \epsilon'_j$. Therefore by Lemma 2:

$$d_{D_{\hat{k}}}(MV(h_{i_1}^*,\dots,h_{i_{k-1}}^*),MV(\tilde{h}_1,\dots,\tilde{h}_{\hat{k}-1}))) \le (\hat{k}-1)\xi + \sum_{j=1}^{\hat{k}-1} \epsilon'_j.$$
 (1)

By the definition of ϵ'_i :

$$\sum_{j=1}^{\hat{k}-1} \epsilon'_j \le \frac{\epsilon}{16} + \sum_{m=1}^{\lfloor \hat{k} \rfloor} (2^{m+1} - 2^m) \frac{\epsilon}{2^{2m+4}} = \frac{\epsilon}{16} + \frac{\epsilon}{16} \sum_{m=1}^{\lfloor \hat{k} \rfloor} \frac{1}{2^m} < \frac{\epsilon}{16} + \frac{\epsilon}{16} = \frac{\epsilon}{8}.$$

Together with the assumption on discrepancies, this guarantees that:

$$d_{D_{i_{\hat{k}}}}(\mathrm{MV}(h_{i_{1}}^{*},\ldots,h_{i_{\hat{k}-1}}^{*}),\mathrm{MV}(\tilde{h}_{1},\ldots,\tilde{h}_{\hat{k}-1}))) \leq \frac{\epsilon}{4},$$
(2)

which is exactly what is needed to come to contradiction.

4. The sample complexity of Algorithm 2 consists of the same parts as that of Algorithm 1.

The first difference comes from the fact that δ' changes over time, because the algorithm does not know the total number of tasks. However, the smallest value it attains is $\delta/(4n^2)$ and, since the dependence of the sample complexity on the δ is only logarithmic, it does not change the result significantly.

The second difference is that also ϵ' changes over time, because the algorithm does not know the parameter k in advance. This influences the sample complexity of learning "base tasks". In order to control it we need to control the following sum:

$$\sum_{j=1}^{\tilde{k}} \frac{1}{\epsilon'_j} \le \sum_{m=1}^{\lfloor \log k \rfloor} (2^{m+1} - 2^m) \frac{2^{2m+4}}{\epsilon} = \frac{16}{\epsilon} \sum_{m=1}^{\lfloor \log k \rfloor} 2^{3m} \le \frac{k^3 \log k}{\epsilon}.$$

Therefore the complexity of learning the "base tasks" is:

$$\tilde{O}\left(\frac{\mathrm{VC}(\mathcal{H})k^3}{\epsilon}\right).$$
(3)