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ON THE TREEWIDTH OF TRIANGULATED 3-MANIFOLDS∗

Kristóf Huszár,† Jonathan Spreer,‡ and Uli Wagner§

Abstract. In graph theory, as well as in 3-manifold topology, there exist several width-
type parameters to describe how “simple” or “thin” a given graph or 3-manifold is. These
parameters, such as pathwidth or treewidth for graphs, or the concept of thin position
for 3-manifolds, play an important role when studying algorithmic problems; in particular,
there is a variety of problems in computational 3-manifold topology—some of them known
to be computationally hard in general—that become solvable in polynomial time as soon
as the dual graph of the input triangulation has bounded treewidth.

In view of these algorithmic results, it is natural to ask whether every 3-manifold
admits a triangulation of bounded treewidth. We show that this is not the case, i.e., that
there exists an infinite family of closed 3-manifolds not admitting triangulations of bounded
pathwidth or treewidth (the latter implies the former, but we present two separate proofs).

We derive these results from work of Agol, of Scharlemann and Thompson, and of
Scharlemann, Schultens and Saito by exhibiting explicit connections between the topology
of a 3-manifold M on the one hand and width-type parameters of the dual graphs of
triangulations ofM on the other hand, answering a question that had been raised repeatedly
by researchers in computational 3-manifold topology. In particular, we show that if a closed,
orientable, irreducible, non-Haken 3-manifold M has a triangulation of treewidth (resp.
pathwidth) k then the Heegaard genus ofM is at most 18(k + 1) (resp. 4(3k + 1)).

1 Introduction

In the field of 3-manifold topology many fundamental problems can be solved algorith-
mically. Famous examples include deciding whether a given knot is trivial [27], deciding
whether a given 3-manifold is homeomorphic to the 3-sphere [54, 65], and, more generally
(based on Perelman’s proof of Thurston’s geometrization conjecture [38]), deciding whether
two given 3-manifolds are homeomorphic, see, e.g., [3, 41, 60]. The algorithm for solving
the homeomorphism problem is still purely theoretical, and its complexity remains largely
unknown [41, 43]. In contrast, the first two problems are known to lie in the intersection of
the complexity classes NP and co-NP [28, 35, 40, 42, 58, 67].1
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Moreover, implementations of, for instance, algorithms to recognize the 3-sphere
exist out-of-the-box (e.g., using the computational 3-manifold software Regina [14]) and
exhibit practical running times for virtually all known inputs.

In fact, many topological problems with implemented algorithmic solutions solve
problem instances of considerable size. This is despite the fact that most of these imple-
mentations have prohibitive worst-case running times, or the underlying problems are even
known to be computationally hard in general. In recent years, there have been several at-
tempts to explain this gap using the concepts of parameterized complexity and algorithms
for fixed parameter tractable (FPT) problems [23, 24]. This effort has proven to be highly
effective and, today, there exist numerous FPT algorithms in the field [15, 16, 17, 18, 44].
More specifically, given a triangulation T of a 3-manifoldM with n tetrahedra whose dual
graph Γ(T ) has treewidth2 at most k, there exist algorithms to compute

• taut angle structures3 of what is called ideal triangulations with torus boundary com-
ponents in running time O(7k · n) [18];

• optimal Morse matchings4 in the Hasse diagram of T in O(4k2+k · k3 · log k · n) [16];

• the Turaev–Viro invariants5 for parameter r ≥ 3 in O((r− 1)6(k+1) · k2 · log r · n) [17];

• every problem which can be expressed in monadic second-order logic in O(f(k) · n),
where f often is a tower of exponentials [15].6

Some of these results are not purely theoretical—as is sometimes the case with FPT
algorithms—but are implemented and outperform previous state-of-the-art implementations
for typical input. As a result, they have a significant practical impact. This is in particular
the case for the algorithm to compute Turaev–Viro invariants [17, 44].

Note that treewidth—the dominating factor in the running times given above—
is a combinatorial quantity linked to a triangulation, not a topological invariant of the
underlying manifold. This gives rise to the following approach to efficiently solve topological
problems on a 3-manifoldM: given a triangulation T ofM, search for a triangulation T ′
of the same manifold with smaller treewidth.

This approach faces severe difficulties. By a theorem due to Kirby and Melvin [37],
the Turaev–Viro invariant for parameter r = 4 is #P-hard to compute. Thus, if there
were a polynomial time procedure to turn an n-tetrahedron triangulation T into a poly(n)-
tetrahedron triangulation T ′ with dual graph of treewidth at most k, for some universal
constant k, then this procedure, combined with the algorithm from [17], would constitute
a polynomial time solution for a #P-hard problem. Furthermore, known facts imply that

2We often simply speak of the treewidth of a triangulation, meaning the treewidth of its dual graph.
3Taut angle structures are combinatorial versions of semi-simplicial metrics which have implications on

the geometric properties of the underlying manifold.
4Optimal Morse matchings translate to discrete Morse functions with the minimum number of critical

points with respect to the combinatorics of the triangulation and the topology of the underlying 3-manifold.
5Turaev–Viro invariants are powerful tools to distinguish between 3-manifolds. They are the method of

choice when, for instance, creating large censuses of manifolds.
6This result is analogous to Courcelle’s celebrated theorem in graph theory [20].
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most triangulations of most 3-manifolds must have large treewidth7 (see Propositions 22
and 23 in Appendix A). However, while these arguments indicate that triangulations of
small treewidth may be rare and computationally hard to find, they do not rule out that
every manifold has some (potentially very large) triangulation of bounded treewidth.

In this article we show that this is actually not the case, answering a question that
had been raised repeatedly by researchers in computational 3-manifold topology.8 More
specifically, we prove the following two statements.

Theorem 1. There exists an infinite family of 3-manifolds which does not admit triangu-
lations with dual graphs of uniformly bounded pathwidth.

Theorem 2. There exists an infinite family of 3-manifolds which does not admit triangu-
lations with dual graphs of uniformly bounded treewidth.

We establish the above results through the following theorems, which are the main
contributions of the present paper. The necessary terminology is introduced in Section 2.

Theorem 3. Let M be a closed, orientable, irreducible, non-Haken 3-manifold and let T
be a triangulation of M with dual graph Γ(T ) of pathwidth pw(Γ(T )) ≤ k. Then M has
Heegaard genus g(M) ≤ 4(3k + 1).

Theorem 4. Let M be a closed, orientable, irreducible, non-Haken 3-manifold and let T
be a triangulation of M with dual graph Γ(T ) of treewidth tw(Γ(T )) ≤ k. Then M has
Heegaard genus g(M) ≤ 18(k + 1).

By a result of Agol [1] (Theorem 17 in this paper), there exist closed, orientable,
irreducible, non-Haken 3-manifolds of arbitrarily large Heegaard genus. Combining this
result with Theorems 3 and 4 thus immediately implies Theorems 1 and 2.

Remark. Note that Theorem 1 can be directly deduced from Theorem 2 since the path-
width of a graph is always at least as large as its treewidth.9 Nonetheless, we provide
separate proofs for each of the two statements. The motivation is that while the proof of
Theorem 3 is considerably simpler than that of Theorem 4, it already illustrates several key
concepts and ideas which we are building upon in the proof of Theorem 4.

The paper is organized as follows. After going over the preliminaries in Section 2,
we give an overview of selected width-type graph parameters in Section 3. Most notably,
we propose the congestion of a graph (also known as carving width) as an alternative choice
of a parameter for FPT algorithms in 3-manifold topology (cf. Appendix C). Section 4 is
devoted to results from 3-manifold topology which we build upon. In Section 5 we then
prove Theorem 1, and in Section 6 we prove Theorem 2.

7It is known that, given k ∈ N, there exist constants C, Ck > 1 such that there are at least Cn log(n)

3-manifolds which can be triangulated with ≤ n tetrahedra, whereas there are at most Cn
k triangulations

with treewidth ≤ k and ≤ n tetrahedra.
8The question whether every 3-manifold admits a triangulation of bounded treewidth, and variations

thereof have been asked at several meetings and open problem sessions including an Oberwolfach meeting
in 2015 [12, Problem 8] (formulated in the context of knot theory).

9This is immediate from the definitions of treewidth and pathwidth, see Section 3.
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2 Preliminaries

In this section we recall some basic concepts and terminology of graph theory, 3-manifolds,
triangulations, and parameterized complexity theory.

Graphs vs. triangulations. Following several authors in the field, we use the terms edge
and vertex to refer to an edge or vertex in a 3-manifold triangulation, whereas the terms
arc and node denote an edge or vertex in a graph, respectively.

2.1 Graphs

For general background on graph theory we refer to [22].
A graph (more specifically, a multigraph) G = (V,E) is an ordered pair consisting

of a finite set V = V (G) of nodes and a multiset E = E(G) of unordered pairs of nodes,
called arcs. We allow loops, i.e., an arc e ∈ E might itself be a multiset, e.g., e = {v, v} for
some v ∈ V . The degree of a node v ∈ V , denoted by deg(v), equals the number of arcs
containing it, counted with multiplicity. In particular, a loop {v, v} contributes two to the
degree of v. For every node v ∈ V of a graph G, its star stG(v) denotes the set of edges
incident to v. A graph is called k-regular if all of its nodes have the same degree k ∈ N. A
tree is a connected graph with n nodes and n− 1 arcs. A node of degree one is called a leaf.

2.2 3-Manifolds and their triangulations

For an introduction to the topology and geometry of 3-manifolds and to their triangulations
we refer to the textbook [59] and to the seminal monograph [66].

A 3-manifold with boundary is a topological space10 M such that each point x ∈M
has a neighborhood which either looks like (i.e., is homeomorphic to) the Euclidean 3-space
R3 or the closed upper half-space {(x, y, z) ∈ R3 : z ≥ 0}. The points of M that do not
have a neighborhood homeomorphic to R3 constitute the boundary ∂M ofM. A compact
3-manifold is closed if it has an empty boundary.

10More precisely, we only consider topological spaces which are second countable and Hausdorff.
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Informally, two 3-manifolds are equivalent (or homeomorphic) if one can be turned
into the other by a continuous, reversible deformation. In other words, when talking about a
3-manifold, we are not interested in its particular shape, but only in its qualitative properties
(topological invariants), such as “number of boundary components”, or “connectedness”.

All 3-manifolds considered in this article are assumed to be compact and orientable.

Handle decompositions. Every compact 3-manifold can be built from finitely many build-
ing blocks called 0-, 1-, 2-, and 3-handles. In such a handle decomposition all handles are
(homeomorphic to) 3-balls, and are only distinguished in how they are glued to the existing
decomposition. For instance, to build a closed 3-manifold from handles, we may start with
a disjoint union of 3-balls, or 0-handles, where further 3-balls are glued to the boundary
of the existing decomposition along pairs of 2-dimensional disks, the so-called 1-handles,
or along annuli, the so-called 2-handles. This process is iterated until the boundary of the
decomposition consists of a union of 2-spheres. These are then eliminated by gluing in one
additional 3-ball per boundary component, the 3-handles of the decomposition.

In every step of building up a (closed) 3-manifold M from handles, the existing
decomposition is a submanifold whose boundary—called a bounding surface—separatesM
into two pieces: the part that is already present, and its complement (each of them possibly
disconnected). Bounding surfaces and, more generally, all kinds of surfaces embedded in a
3-manifold, play an important role in the study of 3-manifolds (similar to that of simple
closed curves in the study of surfaces). When chosen carefully, an embedded surface reveals
valuable information about the topology of the ambient 3-manifold.

Surfaces in 3-manifolds. Given a 3-manifoldM, a surface S ⊂ M is said to be properly
embedded, if it is embedded inM, and for the boundary we have ∂S = S∩∂M. Let S ⊂M
be a properly embedded surface distinct from the 2-sphere, and let D be a disk embedded
into M such that its boundary satisfies ∂D = D ∩ S. D is said to be a compressing disk
for S if ∂D does not bound a disk on S. If such a compressing disk exists, then S is called
compressible, otherwise it is called incompressible. An embedded 2-sphere S ⊂M is called
incompressible if S does not bound a 3-ball inM.11

A 3-manifold M is called irreducible, if every embedded 2-sphere bounds a 3-ball
in M. Moreover, it is called P 2-irreducible, if it does not contain an embedded 2-sided12

real projective plane RP 2. This notion is only significant for non-orientable manifolds,
since orientable 3-manifolds cannot contain any 2-sided non-orientable surfaces, and are
readily P 2-irreducible. If a P 2-irreducible, irreducible 3-manifold M contains a 2-sided
incompressible surface, then it is called Haken, otherwise it is called non-Haken.

Finally, let S be a closed and orientable surface (possibly disconnected). The genus
of S, denoted by g(S), equals the maximum number of pairwise disjoint simple closed curves
one can remove from S without increasing the number of connected components.

11A standard example of a compressible surface is a torus (or any other orientable surface) embedded in
the 3-sphere S3, and of an incompressible surface is the 2-sphere S2 × {x} ⊂ S2 × S1.

12A properly embedded surface S ⊂ M is 2-sided in M, if the codimension zero submanifold in M
obtained by thickening S has two boundary components, i.e., S locally separatesM into two pieces.
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Handlebodies and compression bodies. We have already discussed handle decompositions
of 3-manifolds. Closely related are the notions of handlebody and compression body.

A handlebody H is a connected 3-manifold with boundary which can be described as
a single 0-handle with a number of 1-handles attached to it, or, equivalently, as a thickened
graph. Up to homeomorphism, H is determined by the genus g(∂H) of its boundary.

Let S be a closed, orientable (not necessarily connected) surface. A compression body
is a 3-manifold N obtained from S × [0, 1] by attaching 1-handles to S × {1}, and filling
in some of the 2-sphere components of S × {0} with 3-balls. N has two sets of boundary
components: ∂−N = S × {0} \ {filled-in 2-sphere components} and ∂+N = ∂N \ ∂−N .

Dual to this construction, a compression body can be built by starting with a closed,
orientable surface F , thickening it to F × [0, 1], attaching 2-handles along F × {0}, and
filling in some of the resulting 2-spheres with 3-balls. This 3-manifold N has again two sets
of boundary components given by ∂+N = F × {1} and ∂−N = ∂N \ ∂+N .

In accordance with [31, 32], we call ∂+N the top boundary, and ∂−N the lower
boundary of N . Note that, by construction, we always have g(∂+N ) ≥ g(∂−N ). Moreover,
if ∂−N = ∅, then the compression body N is actually a handlebody.

Heegaard splittings. LetM be a 3-manifold, possibly with boundary. A Heegaard splitting
ofM is a decompositionM = N ∪S K (i.e., N ∪K =M and N ∩K = S) into compression
bodies N and K with S = ∂+N = ∂+K and ∂M = ∂−N ∪ ∂−K. The Heegaard genus of
M, denoted g(M), is the minimum possible genus g(S) over all Heegaard splittings ofM.

A fundamental result of Moise [46] implies that every compact orientable 3-manifold
admits a Heegaard splitting (also see the survey [55]).

Example 5 (Heegaard splittings from handle decompositions). When building up a closed
connected 3-manifoldM from handles, one may assume that (possibly after deforming the
attaching maps) all 0- and 1-handles are attached before any 2- or 3-handles. Defining H1
to be the union of the 0- and 1-handles, and H2 to be the union of the 2- and 3-handles
yields a Heegaard splittingM = H1∪SH2, S = ∂H1 = ∂H2, into handlebodies H1 and H2.

Example 6 (Lens spaces). Among the best known 3-manifolds are the closed orientable
3-manifolds of Heegaard genus one. These manifolds are also known under the name of lens
spaces. To construct them, let p, q be two positive co-prime integers. The lens space L(p, q)
is then obtained by taking two solid tori Ti = S1 ×D, i = 1, 2, and gluing them together
along their boundaries in a way such that the meridian m1 = {x1} × ∂D ⊂ T1 of T1 is
mapped onto the curve of T2 which wraps p times around the longitude l2 = S1×{y2} ⊂ T2
and q times around the meridian m2 = {x2} × ∂D ⊂ T2.

Linear splittings. In their work on thin position [57], discussed in Section 4, Scharlemann
and Thompson consider a generalization of Heegaard splittings, we call a linear splitting,
which arises naturally from more complicated sequences of handle attachments, e.g., when
building up a manifold by first only attaching some of the 0- and 1-handles before attaching
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2- and 3-handles (cf. Example 7).13

A linear splitting of a 3-manifoldM is a decomposition

M = (N1 ∪R1 K1) ∪F1 (N2 ∪R2 K2) ∪F2 · · · ∪Fs−1 (Ns ∪Rs Ks) ,

where (N1,K1, . . . ,Ns,Ks) is a sequence of (possibly disconnected) compression bodies in
M. They are pairwise disjoint except for subsequent pairs, which are “glued together”
along (pairwise disjoint) closed surfaces R1,F1, . . . ,Rs−1,Fs−1,Rs inM. More precisely,

Ri = Ni ∩ Ki = ∂+Ni = ∂+Ki and Fj = Kj ∩Nj+1 = ∂−Kj = ∂−Nj+1.

The lower boundaries of N1 and Ks constitute the boundary ofM, i.e., ∂M = ∂−N1∪∂−Ks.

Example 7 (Linear splittings from handle decompositions). Assume M is a closed 3-
manifold given via a handle decomposition, i.e., a sequence of handle attachments to build
up M. Consider the first terms of the sequence up to (but not including) the first 2- or
3-handle attachment. Let N1 be the union of all handles in this subsequence. In the second
step look at all 2- and 3-handles following the initial sequence of 0- and 1-handles until we
reach 0- or 1-handles again, and follow the dual construction to obtain another compression
body K1. More precisely, define ∂+K1 = ∂+N1, thicken the top boundary into ∂+K1× [0, 1],
and then attach the given 2- and 3-handles along ∂+K1 × {0}. Iterating this procedure
results in a linear splitting ofM into compression bodies (N1,K1, . . . ,Ns,Ks).

Graph splittings and fork complexes. The decomposition described above exhibits a linear
structure. Here we introduce a more general approach of decomposing a 3-manifold into
compression bodies following a graph structure [56].

The main difference is that now we allow the lower boundary components of a com-
pression body to be glued to lower boundary components of distinct compression bodies.
The top boundary of a compression body, however, is still identified with the top boundary
of a single other compression body. This structure can be represented by a so-called fork
complex (which is essentially a labeled graph) in which the compression bodies of the de-
composition are modeled by forks. More precisely, an n-fork is a tree F with n + 2 nodes
V (F ) = {g, p, t1, . . . , tn} with p being of degree n+ 1 and all other nodes being leaves. The
nodes g, p, and the ti are called the grip, the root, and the tines of F , respectively (Figure
1(i) shows a 0- and a 3-fork). We think of a fork F = FN as an abstraction of a compression
body N , such that the grip of F corresponds to ∂+N , whereas the tines correspond to the
connected components of ∂−N .

Informally, a fork complex F (representing a given decomposition of a 3-manifold
M) is obtained by taking several forks (corresponding to the compression bodies which
constitute M), and identifying grips with grips, and tines with tines (following the way
the boundaries of these compression bodies are glued together). The set of grips and tines
which remain unpaired is denoted by ∂F (as they correspond to surfaces which constitute
the boundary ∂M). The formal relationship between F and the underlying 3-manifold

13While this construction is sometimes called a generalized Heegaard splitting, we prefer the more expressive
term of a linear splitting [31] to make a distinction from the even more general graph splittings [32].
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root

grip

tine

(i) (ii) (iii)

N1 K1 N2 K2

R1 F1 R2

(iv)

F2

Figure 1: Fork complexes describing Heegaard (ii), linear (iii), and graph splittings (iv)

M (possibly with boundary) is described by a map ρ : (M; ∂M) → (F ; ∂F ) which has
to satisfy certain natural criteria [56, Definition 5.1.7]. The pair (F , ρ) is called a graph
splitting. See Figure 1 for illustrations, and [56, Section 5.1] for further details.

Triangulations. In this article we typically describe 3-manifolds by triangulations (also
referred to as generalised, semi-simplicial, or singular triangulations in the literature).14

That is, a finite collection of abstract tetrahedra, glued together in pairs along their tri-
angular faces (called triangles). As a result of these face gluings, many tetrahedral edges
(or vertices) are glued together and we refer to the result as a single edge (or vertex) of
the triangulation. A triangulation T describes a closed 3-manifold if no tetrahedral edge
is identified with itself in reverse, and the boundary of a small neighborhood around each
vertex is a 2-sphere. Similarly, T describes a 3-manifold with boundary if, in addition, the
boundary of small neighborhoods around some of the vertices are disks.

Given a triangulation T of a closed 3-manifold, its dual graph Γ(T ) (also called
the face pairing graph) is the graph with one node per tetrahedron of T , and with an arc
between two nodes for each face gluing between the corresponding pair of tetrahedra. By
construction, the dual graph is a 4-regular multigraph. Since every triangulation T can be
linked to its dual graph Γ(T ) this way, we often attribute properties of Γ(T ) directly to T .

2.3 Parameterized complexity and fixed parameter tractability

There exist various notions and concepts of a refined complexity analysis for theoretically
difficult problems. Parameterized complexity, due to Downey and Fellows [23, 24], identifies
a parameter on the set of inputs, which is responsible for the hardness of a given problem.

More precisely, for a problem P with input set I, a parameter is a (computable)
function p : I → N. If the parameter p is the output of P, then p is called the natural
parameter. The problem P is said to be fixed parameter tractable for parameter p (or FPT
in p for short) if there exists an algorithm which solves P for every instance I ∈ I with

14Triangulations, in the present sense, provide a very efficient way to describe 3-manifolds: more than
11, 000 topologically distinct 3-manifolds can be triangulated with 11 tetrahedra or less [13, 45]. This
efficiency comes at a price: we allow self-identifications (e.g., gluings of pairs of triangular faces of the same
tetrahedron), and thus a triangulation is generally non-regular when seen as a (simplicial) cell-complex.
However, this deficiency can be overcome by passing to the first barycentric subdivision. A second barycentric
subdivision then yields a simplicial complex. In particular, every triangulation can be turned into a simplicial
complex of size at most 242 = 576 times larger than the original triangulation.
The aforementioned theorem of Moise [46] tells us that every 3-manifold has a triangulation.
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running time O(f(p(I)) · poly(n)), where n is the size of the input I, and f : N → N is
arbitrary (computable). By definition, such an algorithm then runs in polynomial time on
the set of inputs with bounded p. Hence, this identifies, in some sense, p as a potential
“source of hardness” for P, cf. the results listed in the Introduction.

In computational 3-manifold topology, a very important set of parameters is the
one of topological invariants, i.e., properties which only depend on the topology of a given
manifold and are independent of the choice of triangulation (see [44] for such a result, using
the first Betti number as parameter). However, most FPT-results in the field use parameters
of the dual graph of a triangulation which greatly depend on the choice of the triangulation:
every 3-manifold admits a triangulation with arbitrarily high graph parameters—for all
parameters considered in this article. The aim of this work is to link these parameters to
topological invariants in the only remaining sense: given a 3-manifoldM, find lower bounds
for graph parameters of dual graphs of triangulations ranging over all triangulations ofM.

3 Width-type graph parameters

The theory of parameterized complexity has its sources in graph theory, where many prob-
lems which are NP-hard in general become tractable in polynomial time if one assumes
structural restrictions about the possible input graphs. For instance, several graph theoret-
ical questions have a simple answer if one asks them about trees, or graphs which are similar
to trees in some sense. Width-type parameters make this sense of similarity precise [30].
We are particularly interested in the behavior of these parameters and their relationship
with each other when considering bounded-degree graphs or, more specifically, dual graphs
of 3-manifold triangulations. (See Appendix C for computational aspects.)

Treewidth and pathwidth. The concepts of treewidth and pathwidth were introduced by
Robertson and Seymour in their early papers on graph minors [52, 53], also see the surveys
[6, 8, 10]. Given a graph G, its treewidth tw(G) measures how tree-like the graph is.

Definition 8 (Tree decomposition, treewidth). A tree decomposition of a graph G = (V,E)
is a tree T with nodes B1, . . . , Bm ⊆ V , also called bags, such that

1. B1 ∪ . . . ∪Bm = V ,

2. if v ∈ Bi ∩ Bj then v ∈ Bk for all bags Bk of T in the path between Bi and Bj , in
other words, the bags containing v span a (connected) subtree of T ,

3. for every arc {u, v} ∈ E, there exists a node Bi such that {u, v} ⊆ Bi.

The width of a tree decomposition equals the size of the largest bag minus one. The
treewidth tw(G) is the minimum width among all possible tree decompositions of G.

Definition 9 (Path decomposition, pathwidth). A path decomposition of a graph G =
(V,E) is a tree decomposition for which the tree T is required to be a path. The pathwidth
pw(G) of a graph G is the minimum width of any path decomposition of G.
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Cutwidth. The cutwidth cw(G) of a graph G is the graph-analogue of the linear width of a
manifold (to be discussed in Section 4). If we order the nodes {v1, . . . , vn} = V (G) of G on
a line, the set of arcs running from a node vi, i ≤ `, to a node vj , j > `, is called a cutset C`

of the ordering. The cutwidth cw(G) is defined to be the cardinality of the largest cutset,
minimized over all linear orderings of V (G).

Cutwidth and pathwidth are closely related: for bounded-degree graphs they are
within a constant factor. Let ∆(G) denote the maximum degree of a node in G.

Theorem 10 (Bodlaender, Theorems 47 and 49 from [7]15). Given a graph G, we have

pw(G) ≤ cw(G) ≤ ∆(G) pw(G).

Congestion. In [5] Bienstock introduced congestion, a generalization of cutwidth, which
is a quantity related to treewidth in a similar way as cutwidth to pathwidth (compare
Theorems 10 and 12).

Let us consider two graphs G and H, called the guest and the host, respectively. An
embedding E = (ι, ρ) of G into H consists of an injective mapping ι : V (G)→ V (H) together
with a routing ρ that assigns to each arc {u, v} ∈ E(G) a path in H with endpoints ι(u)
and ι(v). If e ∈ E(G) and h ∈ E(H) is on the path ρ(e), then we say that “e is running
parallel to h”. The congestion of G with respect to an embedding E of G into a host graph
H, denoted as cngH,E(G), is defined to be the maximal number of times an arc of H is used
in the routing of arcs of G. We also say that H is realizing congestion cngH,E(G). Several
notions of congestion can be obtained by minimizing cngH,E(G) over various families of host
graphs and embeddings (see, e.g., [51]). Here we work with the following.

Definition 11 (Congestion16). Let T{1,3} be the set of unrooted binary trees.17 The con-
gestion cng(G) of a graph G is defined as

cng(G) = min{cngH,E(G) : H ∈ T{1,3}, E = (ι, ρ) with ι : V (G)→ L(H) bijection},

where L(H) denotes the set of leaves of H.
In other words, we minimize cngH,E(G) when the host graphH is an unrooted binary

tree and the mapping ι maps the nodes of G bijectively onto the leaves of H. The routing
ρ is uniquely determined as the host graph is a tree. See Figure 2.

15The inequality cw(G) ≤ ∆(G) pw(G) seems to be already present in the earlier work of Chung and
Seymour [19] on the relation of cutwidth to another parameter called topological bandwith (see Theorem
2 in [19]). Pathwidth plays an intermediate, connecting role there. However, the inequality is phrased and
proved explicitly by Bodlaender in [7].

16It is important to note that congestion in the sense of Definition 11 is also known as carving width,
a term which was coined by Robertson and Seymour in [61]. However, the usual abbreviation for carving
width is ‘cw’ which clashes with that of the cutwidth. Therefore we stick to the name ‘congestion’ and the
abbreviation ‘cng’ to avoid this potential confusion in notation.

17An unrooted binary tree is a tree in which each node is incident to either one or three arcs.
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Figure 2: The complete graph K5 (guest) routed along an unrooted binary tree H (host).
We have cngH,E(K5) = 6 which is witnessed by h: six arcs of K5 are running parallel to h

Theorem 12 (Bienstock, p. 108–111 of [4]). Given a graph G with maximum degree ∆(G),
we have18

max
{

2
3(tw(G) + 1),∆(G)

}
≤ cng(G) ≤ ∆(G)(tw(G) + 1).

Example 13 (The Petersen graph). One of the most widely used examples in graph theory
is the Petersen graph, denoted P , see Figure 3(i). Although it is not a dual graph of a 3-
manifold triangulation (since it is not 4-regular), it turns out to be helpful for comparing
the graph parameters considered in this article.

• cw(P ) = 6. Notice that for any S ⊂ V = V (P ) of cardinality four there are at least
six arcs running between S and V \ S. That is, on the one hand, cw(P ) ≥ 6. On the
other hand, it is easily verified that in the linear ordering 0 < 1 < 2 < . . . < 9 the
maximal cutset has size six.

• pw(P ) = 5. A minimal-width path decomposition (which we computed using the
module ‘Vertex separation’ of SageMath [21]) is the following.

{0} − {0, 1} − {0, 1, 2} − {0, 1, 2, 4} − {0, 1, 2, 4, 5} − {1, 2, 3, 4, 5}

{4, 6, 7, 9} − {3, 4, 5, 6, 7, 8} − {2, 3, 4, 5, 6, 7} − {1, 2, 3, 4, 5, 6}

• tw(P ) = 4. An optimal tree decomposition (computed using SageMath [21]) is shown
in Figure 3(ii).

• cng(P ) = 5. Every arc e of a host tree H specifies a cut in P : by deleting e, the
leaves of the two components of H \ e correspond to a partition of V (P ). It is easy
to see that there is always a cut S ∪ R = V with {#S,#R} ∈ {{3, 7}, {4, 6}, {5, 5}},
and that every such cut contains at least five arcs, hence cng(P ) ≥ 5. The reverse
inequality is proven through the example in Figure 3(iii).

18Only the right-hand side inequality of Theorem 12, cng(G) ≤ (tw(G) + 1)∆(G), is formulated explicitly
in [4] as Theorem 1 on p. 111, whereas the left-hand side inequality is stated “inline” in the preceding
paragraphs on the same page.
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Figure 3: The Petersen graph (i), a tree decomposition realizing minimal treewidth (ii),
and an unrooted binary tree realizing minimal congestion (iii)

4 Width-type parameters for 3-manifolds

The Heegaard genus (defined in Section 2.2) is a first example for a width-type parameter
of a 3-manifold: the larger the Heegaard genus, the “wider” the manifold. Here we consider
two subsequent refinements, the linear width and the more general graph width, whose
properties are essential for proving our results in Sections 5 and 6, respectively.

Linear width. In [57] Scharlemann and Thompson extend the concept of thin position from
knot theory [25] to 3-manifolds and define the linear width of a manifold.19 For this they
look at linear splittings, i.e., linear decompositions of a manifold into compression bodies.
This setup is explained in Section 2.2.

Given a linear splitting of a 3-manifold M into 2s compression bodies with top
boundary surfaces Ri, 1 ≤ i ≤ s, consider the multiset {c(Ri) : 1 ≤ i ≤ s}, where
c(S) = max{0, 2g(S) − 1} for a connected surface S, and c(S) =

∑
j c(Sj) for a surface

S with connected components Sj . This multiset {c(Ri) : 1 ≤ i ≤ s}, when arranged in
non-increasing order, is called the width of the (linear) splitting. We here define the linear
width of a manifoldM, denoted by L (M), to be the maximum entry in a lexicographically
smallest width ranging over all linear splittings of M.20 A manifold M together with a
linear spitting of lexicographically smallest width is said to be in thin position.

A guiding idea behind thin position is to attach 2- and 3-handles as early as possible
and 0- and 1-handles as late as possible in order to obtain a decomposition for which the
“topological complexity” of the top bounding surfaces is minimized.

Theorem 14 (Scharlemann–Thompson, Rule 5 from [57]). LetM be a 3-manifold together
with a linear splitting into compression bodies (N1,K1, . . . ,Ns,Ks) in thin position, and let
{Fi ⊂ M : 1 ≤ i ≤ s − 1}, be the set of lower boundary surfaces Fi = ∂−Ki = ∂−Ni+1.

19Also see [33] and the textbook [56] for an introduction to generalized Heegaard splittings and to thin
position, and for a survey of recent results.

20For our purposes it is most convenient to define the linear width to be a single integer rather than a
multiset of integers. We thus deviate at this point from the definition of linear width in [57].
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Then every connected component of every surface Fi is incompressible.

Theorem 14 has the following consequence.

Theorem 15 (Scharlemann–Thompson [57]). Let M be irreducible, non-Haken. Then
the smallest width linear splitting of M into compression bodies is a Heegaard splitting of
minimal genus g(M). In particular, the linear width ofM is given by L (M) = 2g(M)−1.

Proof (sketch). Let (N1,K1,N2,K2, . . . ,Ns,Ks) be a thin decomposition of M. By The-
orem 14, all surface components of all bounding surfaces Fi, 1 ≤ i < s, must be incom-
pressible. Moreover, all Fi are separating and thus they are 2-sided. However, irreducible,
non-Haken 3-manifolds do not have incompressible 2-sided surfaces. Hence s = 1 and
therefore the decomposition (N1,K1) must be a Heegaard splitting ofM.

Graph width. In [56] Scharlemann, Schultens and Saito further refine the concept of thin
position to graph splittings of 3-manifolds, see Section 2.2. In particular, given a manifold
M together with a graph splitting defined by a fork complex F , let {Rj : j grip of F }
be the set of top boundary surfaces of the decomposition. Then the width of the graph
splitting coming from F is defined as the multiset {g(Rj) : j grip of F } with non-increasing
order. Similar to the construction of linear width, the graph width G (M) ofM is defined to
be the largest entry of the lexicographically smallest width ranging over all graph splittings
ofM. A graph splitting ofM which has lexicographically smallest width is said to be thin.

Theorem 16 (Scharlemann–Schultens–Saito, [56] Corollary 5.2.5). LetM be a 3-manifold
together with a thin graph splitting defined by fork a complex F , and let {Fi ⊂ M :
i tine of F } be the set of lower boundary surfaces as defined in Section 2.2. Then every
connected component of every lower boundary surface Fi is incompressible.

Similarly to the linear width case, Theorem 16 implies that a thin graph splitting of
an irreducible, non-Haken 3-manifold must be a Heegaard splitting. In particular, G (M) =
g(M) for any given irreducible, non-Haken 3-manifoldM.

Non-Haken 3-manifolds of large genus. The next theorem provides an infinite family of
3-manifolds for which we can apply our results established in the subsequent sections.

Theorem 17 (Agol, Theorem 3.2 in [1]). There exist orientable, closed, irreducible, and
non-Haken 3-manifolds of arbitrarily large Heegaard genus.

Remark. The construction used to prove Theorem 17 starts with non-Haken n-component
link complements, and performs Dehn fillings which neither create incompressible surfaces,
nor decrease the (unbounded) Heegaard genera of the complements. The existence of such
Dehn fillings is guaranteed by work due to Hatcher [29] and Moriah–Rubinstein [48]. As
can be deduced from the construction, the manifolds in question are closed and orientable.
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5 An obstruction to bounded cutwidth and pathwidth

In this section we establish an upper bound for the Heegaard genus of a 3-manifoldM in
terms of the pathwidth of any triangulation of M (cf. Theorem 3). As an application of
this bound we prove Theorem 1. That is, we show that there exists an infinite family of
3-manifolds not admitting triangulations of uniformly bounded pathwidth.

Theorem 18. Let M be a closed, orientable 3-manifold of linear width L (M). Further-
more, let T be a triangulation ofM with dual graph Γ(T ) of cutwidth cw(Γ(T )). Then we
have L (M) ≤ 6 cw(Γ(T )) + 7.

Proof of Theorem 3 assuming Theorem 18. By Theorem 10, cw(Γ(T )) ≤ 4 pw(Γ(T )) since
dual graphs of 3-manifold triangulations are 4-regular. By Theorem 15, L (M) = 2g(M)−1
wheneverM is irreducible and non-Haken. Combining these relations with the inequality
provided by Theorem 18 yields the result.

Theorem 1 is now obtained from Theorem 3 and Agol’s Theorem 17. It remains to
prove Theorem 18. We begin with a basic, yet very useful definition.

Definition 19. Let T be a triangulation of a 3-manifoldM. The canonical handle decom-
position chd(T ) ofM associated with T is given by

• one 0-handle for the interior of each tetrahedron of T ,
• one 1-handle for a thickened version of the interior of each triangle of T ,
• one 2-handle for a thickened version of the interior of each edge of T , and
• one 3-handle for a neighborhood of each vertex of T .

Remark. In the above definition of a canonical handle decomposition of a triangulation we
associate 0-handles with tetrahedra and 3-handles with vertices of the triangulation. This
is motivated by the fact that we model this decomposition on the dual graph rather than
on the triangulation itself. The reason for this choice, in turn, is that it is the dual graph
of a triangulation which acts as an intermediary between the topology of a 3-manifold and
the framework of structural graph theory.

The following lemma gives a bound on the complexity of boundary surfaces occurring
in the process of building up a manifold M from the handles of the canonical handle
decomposition of a given triangulation ofM.

Lemma 20. Let T be a triangulation of a 3-manifoldM and let ∆1 < ∆2 < . . . < ∆n ∈ T
be a linear ordering of its tetrahedra. Moreover, let H1 ⊂ H2 ⊂ . . . ⊂ Hn = chd(T ) be
a filtration of chd(T ) where Hj ⊂ chd(T ) is the codimension zero submanifold consisting
of all handles of chd(T ) disjoint from tetrahedra ∆i, i > j. Then passing from Hj to
Hj+1 corresponds to adding at most 15 handles. Let K be the codimension zero submanifold
constructed from Hj by adding an arbitrary subset of these handles, then the sum of the
genera of ∂K is no larger than the sum of the genera of the components of ∂Hj plus four.
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Proof of Lemma 20. This is apparent from the fact that every tetrahedron consists of 15
(non-empty) faces and thus at most 15 handles of chd(T ) are disjoint from Hj but not
disjoint from Hj+1. In particular, at most 15 handles are added at the j-th level of the
filtration. Moreover, note that at most four of the handles added in every step are 1-
handles (corresponding to the four triangles of the tetrahedron), which are the only handles
increasing the sum of the genera of ∂Hj .

With the help of Lemma 20 we can now prove Theorem 18.

Proof of Theorem 18. Let vj , 1 ≤ j ≤ n, be the nodes of Γ(T ) with corresponding tetrahe-
dra ∆j ∈ T , 1 ≤ j ≤ n. We may assume, without loss of generality, that the largest cutset
of the linear ordering v1 < v2 < . . . < vn has cardinality cw(Γ(T )) = k.

Let Hj ⊂ chd(T ), 1 ≤ j ≤ n, be the filtration from Lemma 20. Moreover, let Cj ,
1 ≤ j < n, be the cutsets of the linear ordering above. Naturally, the cutset Cj can be
associated with at most k triangles of T with, together, at most 3k edges and at most 3k
vertices of T . Let H(Cj) ⊂ chd(T ) be the corresponding submanifold formed from the at
most k 1-handles and at most 3k 2- and 3-handles each of chd(T ) associated with these
faces of T .

By construction, the boundary ∂H(Cj) of H(Cj) decomposes into two parts, one of
which coincides with the boundary surface ∂Hj . Since H(Cj) is of the form “neighborhood
of k triangles in T ”, and since the 2- and 3-handles of chd(T ) form a handlebody, the 2-
and 3-handles of H(Cj) form a union of handlebodies with sum of genera at most 3k.

To complete the construction of H(Cj), the remaining at most k 1-handles are
attached to this union of handlebodies as 2-handles. These either increase the number
of boundary surface components, or decrease the overall sum of genera of the boundary
components. Altogether, the sum of genera of ∂Hj ⊂ ∂H(Cj) is bounded above by 3k.

Hence, following Lemma 20, the sum g of genera of the components of any bounding
surface for any sequence of handle attachments of chd(T ) compatible with the ordering v1 <
v2 < . . . < vn is bounded above by 3 cw(Γ(T )) + 4. It follows that 2g− 1 ≤ 6 cw(Γ(T )) + 7,
and finally, by the definition, L (M) ≤ 6 cw(Γ(T )) + 7.

6 An obstruction to bounded congestion and treewidth

The goal of this section is to prove Theorems 2 and 4, the counterparts of Theorem 1 and
3 for treewidth. At the core of the proof is the following explicit connection between the
congestion of the dual graph of any triangulation of a 3-manifoldM and its graph width.

Theorem 21. Let M be a closed, connected, orientable 3-manifold of graph width G (M),
and T be a triangulation ofM with dual graph Γ(T ) of congestion cng(Γ(T )). Then either
M has graph width G (M) ≤ 9

2 cng(Γ(T )), or T only contains one tetrahedron.

Proof of Theorem 4 assuming Theorem 21. First note, that the only closed orientable 3-
manifolds which can be triangulated with a single tetrahedron are the 3-sphere of Heegaard
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Figure 4: Local pictures of the fork complex F constructed in the proof of Theorem 21

genus zero, and the lens spaces of type L(4, 1) and L(5, 2) of Heegaard genus one (see Exam-
ple 6) for which Theorem 4 holds. Otherwise, since dual graphs of 3-manifold triangulations
are 4-regular, Theorem 12 yields cng(Γ(T )) ≤ 4(tw(Γ(T )) + 1). In addition, Theorem 16
implies that G (M) = g(M) whenever M is irreducible and non-Haken. Combining these
relations with the inequality provided by Theorem 21 we obtain Theorem 4.

Similarly as in Section 5, Theorem 2 immediately follows from Theorems 4 and 17.
Hence, the remainder of the section is dedicated to the proof of Theorem 21.

Proof of Theorem 21. Let M be a closed, connected, orientable 3-manifold, T be a trian-
gulation of M whose dual graph Γ(T ) has congestion cng(Γ(T )) ≤ k, and let H be an
unrooted binary tree realizing cng(Γ(T )) ≤ k (cf. Definition 11).

If k = 0, T must consist of a single tetrahedron, and the theorem holds. Thus we
can assume that k ≥ 1.

The idea of the proof is to first construct a graph splitting ofM from a fork complex
F modeled on H (cf. Section 2.2), and then to analyze the genera of the top boundary
surfaces appearing in the splitting to see that they are all bounded above by 9

2 cng(Γ(T )).

Construction of the splitting. Consider the canonical handle decomposition chd(T ) of
M associated with T as defined in Definition 19. Every compression body in the graph
splitting described below is either a union of handles in chd(T ), a thickened surface parallel
to the boundary surface of some union of handles from chd(T ), or a combination of both.
In particular, the graph splitting maintains the handle structure coming from chd(T ). Note
that we do not require the following compression bodies to be connected, but rather to be
the union of connected compression bodies.
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For every leaf w ∈ V (H), a handlebody Hw is constructed as follows. Consider the
abstract tetrahedron ∆w ∈ T associated to w. If ∆w has no self-identifications in T , then
Hw is just the 0-handle of chd(T ) corresponding to ∆w. If ∆w exhibits self-identifications,
then first note that at most one pair of triangular faces of ∆w are identified, otherwise ∆w

would be disjoint from the rest of T . Up to symmetry there are two possibilities:
Either, ∆w forms a “snapped” 3-ball in T , see Figure 5(i), in which case Hw is built

from the 0-handle, the 1-handle, and the 2-
handle of chd(T ) corresponding to ∆w, to the
face gluing, and to the edge {1, 2} of ∆w, re-
spectively.

Or, ∆w forms a solid torus in T , see
Figure 5(ii), and then Hw consists of the 0-
handle and of the 1-handle of chd(T ), corre-
sponding to ∆w and to the face gluing, respec-
tively.

(ii)(i)

0

2

3

1

0

2

3

1

Figure 5: (i) A snapped 3-ball, and
(ii) a one-tetrahedron solid torus

Moreover, for every leaf w ∈ V (H), a compression body Cw = ∂Hw×[0, 1] is attached
to ∂Hw along ∂+Cw = ∂Hw × {0}. See Figure 4(i).

Before proceeding, let us fix a “root arc” r ∈ E(H). This choice induces a partial
order on V (H): for x, y ∈ V (H), x ≺ y if and only if y is contained by the path connecting x
with r. We also say “x is below y”. In particular, x ≺ x for all x ∈ V (H). Given x ∈ V (H),
let Tx denote the submanifold ofM consisting of

• any 0-handle of chd(T ) corresponding to a leaf of H below x,
• any 1-handle of chd(T ) where both adjacent 0-handles are in Tx

• any 2-handle of chd(T ) where all adjacent 0-handles are in Tx, and
• any 3-handle of chd(T ) where all adjacent 0-handles are in Tx.

In other words, Tx is the submanifold ofM spanned by the 0-handles of chd(T ) below x.

Claim 1. If x ≺ y then Tx ⊆ Ty. If x 6≺ y and y 6≺ x then Tx ∩ Ty = ∅ and ∂Tx ∩ ∂Ty = ∅.

Proof of Claim 1. The first part of the claim is obvious. For the second part, let x, y ∈ V (H)
with x 6≺ y and y 6≺ x. The way we construct Tx and Ty ensures that Tx and Ty do not only
have disjoint interiors, but are also separated from each other such that their boundaries
are disjoint as well. Indeed, if Tx and Ty are both collections of 0-handles this is certainly
true as each of these 0-handles can be thought of as living inside a single tetrahedron of
T away from its boundary. As soon as we have two such 0-handles living in two adjacent
tetrahedra in, say, Tx, the 1-handle(s) corresponding to their common triangular face(s) can
be glued to the two 0-handles and the resulting boundary is still disjoint from any Ty being
such a collection of 0- and 1-handles itself. Now fix an edge f of T and suppose that Tx

contains all 0- and 1-handles associated to tetrahedra and triangles around f , then we are
safe to add the 2-handle corresponding to f to Tx and still be disjoint from Ty even if Ty
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itself is such a collection of 0-, 1-, and 2-handles. The case of adding 3-handles to Tx and
Ty corresponding to vertices of T is completely analogous to the previous case. This proves
the second part of the claim.

We can now describe the remaining parts of the graph splitting ofM. For this, let
v ∈ V (H) be a degree three node, u, u′ ∈ V (H) be the two nodes below and incident to
v, and let e, e′ ∈ E(H) denote the arcs with endpoints v and u, u′, respectively. For every
such degree three node v ∈ V (H), a pair of compression bodies (C1

v , C2
v) is constructed in

two steps. (See Figure 4(ii) for an example of a local schematic picture of F around v.)

1. To construct the first compression body C1
v , we start with (∂(Tu ∪ Tu′)) × [0, 1] and

attach to (∂(Tu ∪ Tu′)) × {1} all 1-handles of chd(T ) corresponding to triangles of
T associated to arcs of Γ(T ) running parallel to e and e′. (These are the remaining
1-handles of Tv not attached earlier.) We then define its lower and upper boundary
as ∂−C1

v = (∂(Tu ∪ Tu′))× {0} and ∂+C1
v = ∂C1

v \ ∂−C1
v , respectively.

2. For the second compression body C2
v , we start with ∂+C1

v×[0, 1] (with the top boundary
being defined as ∂+C2

v = ∂+C1
v × {1}). The compression body is then completed by

attaching along ∂+C1
v × {0} all 2- and 3-handles of chd(T ) which are contained in Tv

but not in Tu ∪ Tu′ . We set ∂−C2
v = ∂C2

v \ ∂+C1
v .

For the root arc r = {s, t}, we construct a pair of compression bodies (Cr,Hr) as
follows. (Hr is a union of handlebodies, hence the notation.)

1. To build Cr, start with (∂−C2
s ∪ ∂−C2

t ) × [0, 1], define the lower boundary as ∂−Cr =
(∂−C2

s ∪ ∂−C2
t ) × {0} and attach to (∂−C2

s ∪ ∂−C2
t ) × {1} all 1-handles of chd(T )

corresponding to arcs of Γ(T ) routed through r. As usual, ∂+Cr = ∂Cr \ ∂−Cr.

2. Finally, to obtain Hr, take ∂+Cr × [0, 1], set ∂+Hr = ∂+Cr × {1} and identify it with
∂+Cr, and attach all remaining 2- and 3-handles of chd(T ) to ∂+Cr × {0}.

Figure 4(iii) shows a possible scenario around the root arc. This finishes the construction.

Claim 2. The compression bodies Hw, Cw, C1
v , C2

v , Cr, and Hr (where w, v ∈ V (H),
deg(w) = 1, deg(v) = 3, and r ∈ E(H) is the root arc), glued together along their appro-
priate boundary components, form a graph splitting ofM.

Proof of Claim 2. It follows from Claim 1 and the construction that all compression bodies
above have pairwise disjoint interiors. We check that their lower and upper bonudary
components match up whenever they are identified (cf. Figure 4). For the identifications
between Hw and Cw, between C1

v and C2
v , and between Cr and Hr this is immediate. Now

let v ∈ V (H) be of degree three with adjacent nodes u, u′ ∈ V (H) below. Note that, by
construction, ∂−C2

u = ∂Tu and ∂−C2
u′ = ∂Tu′ and they are disjoint by Claim 1. Hence

∂−C1
v = (∂(Tu ∪ Tu′)) × {0} can indeed be identified with the disjoint union of ∂−C2

u and
∂−C2

u′ . For the gluings between ∂−Cr and ∂−C2
s ∪ ∂−C2

t , where r = {s, t} ∈ E(H) is the root
arc, the reasoning is analogous. Finally, as it is modeled on the tree, the fork complex F is
exact (see [56, Definition 5.1.4]), yielding a graph splitting ofM.
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Bounding the width. Following [56, Section 5.1], cf. Section 4, the width of the graph
splitting ofM exhibited above is given by the largest genus of a top boundary of a connected
compression body in the graph splitting. However, this splitting, by construction, consists
of unions of compression bodies. In particular, C1

v , C2
v , Cr, and Hr may be disconnected.

Note that this is not a problem since the sum of genera of top boundaries for every such
union cannot be smaller than the genus of the largest genus compression body in the union.
Hence, with this adjustment, we are left with the multiset{

g(∂Hw), g(∂+C1
v), g(∂Hr)

∣∣∣ w, v ∈ V (H),deg(w) = 1, deg(v) = 3, r ∈ E(H) root arc
}

to determine an upper bound on the graph width ofM, where g(S) denotes the sum of the
genera of all connected components of S.

The handlebody Hw has genus at most one: g(∂Hw) = 0 if ∆w is a 0-handle, or
forms a “snapped” 3-ball in T , and g(∂Hw) = 1 if ∆w forms a solid torus in T .

Let us fix a node v ∈ V (H) of degree three. Our goal is to upper-bound g(∂+C1
v).

Note that, since cng(Γ(T )) ≤ k, at most k arcs of Γ(T ) run parallel to each arc of H.
Moreover, counting those arcs of Γ(T ) along the three arcs of H incident to v, we encounter
each of them twice, therefore at most 3

2k arcs of Γ(T ) meet v. Based on this fact, we show
that g(∂+C1

v) ≤ 9k
2 . The proof relies on the next key observation.

Claim 3. Let x ∈ V (H) be a node of H and a ∈ E(H) be the unique arc of H above and
incident to x. Then any handle h ∈ chd(T ) \ Tx that touches ∂Tx is adjacent or equal to a
1-handle of chd(T ) corresponding to an arc of Γ(T ) routed through a.

Proof of Claim 3. Recall that Tx is spanned by those 0-handles of chd(T ) that correspond
to the leaves of H below x. Turning this around, every handle in chd(T ) \ Tx is either a 0-
handle whose corresponding leaf is not below x, or is adjacent to at least one such 0-handle.
Now let h ∈ chd(T ) \ Tx be a handle that touches ∂Tx.

First, observe that h cannot be a 0-handle. Indeed, if h is a 0-handle not in Tx then
its corresponding leaf is not below x, and therefore all h′ ∈ chd(T ) adjacent to h are not
part of Tx either. As the union of these handles h′ comprise a neighborhood of h, it follows
that ∂h ∩ ∂Tx = ∅, contradicting the assumption that h touches ∂Tx.

Second, notice that if h is an i-handle (i ∈ {1, 2, 3}) and no 0-handles adjacent to
h are below x, then h is separated from Tx by the union of the h′ ∈ chd(T ) \ {h} that
are adjacent to at least one of these 0-handles. Thus there exists a 0-handle h1 ∈ chd(T )
adjacent to h with corresponding leaf below x. Moreover, some other 0-handle adjacent to
h, say h2, must be in chd(T ) \ Tx, since otherwise h must be part of Tx.

If h is a 1-handle, then h1 and h2 are precisely the two 0-handles adjacent to h,
which thus corresponds to an arc of Γ(T ) routed through a ∈ E(H) and we are done. If h is
a 2- or 3-handle, then there is an alternating sequence h1 = h(0), h(1), h(2), . . . , h(p) = h2 of
0- and 1-handles adjacent to h, and h(j) being adjacent to h(j+1) (0 ≤ j < p). Since h1 ∈ Tx

and h2 ∈ chd(T ) \ Tx, there exists some even q ∈ {0, 2, . . . , p − 2} for which h(q) ∈ Tx and
h(q+2) ∈ chd(T )\Tx. But then h(q+1) is a 1-handle of chd(T ) adjacent to h that corresponds
to an arc of Γ(T ) routed through a. This concludes the proof of Claim 3.
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By construction, ∂+C1
v ≈ ∂(Tu∪Tu′ ∪He,e′), where He,e′ consists of the 1-handles in

chd(T ) corresponding to arcs of Γ(T ) running parallel to both e = {u, v} and e′ = {u′, v}.
(Here S1 ≈ S2 denotes that the surfaces S1 and S2 are parallel, and hence, in particular, of
the same genus.)

Let X be the submanifold ofM built from the handles in chd(T )\(Tu∪Tu′) touching
∂(Tu∪Tu′). It follows from Claim 3, that each handle in X is either a 1-handle routed through
e or e′, or a 2- or 3-handle adjacent to such a 1-handle. In particular, X consists of at most
3k
2 1-handles, at most 9k

2 2-handles, and at most 9k
2 3-handles, cf. the paragraph before

Claim 3. Since the 2- and 3-handles of chd(T ) form a handlebody, the 2- and 3-handles of
X form a union of handlebodies, denoted by X2,3, with sum of genera at most 9k

2 .
Consider the submanifold Y ⊆ X obtained from X2,3 by attaching to it all 1-handles

of X not in He,e′ . (These are precisely the 1-handles of chd(T ) that correspond to arcs
of Γ(T ) running parallel either to e or to e′ but not to both.) Note that these 1-handles
are attached to X2,3 as 2-handles. Each of these attachments either increases the number
of boundary surface components, or decreases the overall sum of genera of the boundary
components by one. Consequently, g(∂Y) ≤ g(∂X2,3) ≤ 9k

2 . Finally, by construction, ∂+C1
v

is parallel to the union of some components of ∂Y, and therefore g(∂+C1
v) ≤ g(∂Y) ≤ 9k

2 .

Bounding above the genus of ∂Hr is analogous. The only difference is that ∂Hr ≈
∂(Ts∪Tt∪Hr), where Hr now consists of the at most k 1-handles in chd(T ) which correspond
to arcs of Γ(T ) routed through the root arc r = {s, t} ∈ E(H). Here an even stronger bound
holds, i.e., g(∂Hr) ≤ 3k < 9k

2 .

From the definition of graph width it immediately follows that G (M) ≤ 9k
2 .
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A Most triangulations have large treewidth

As mentioned in the Introduction, most triangulations of most 3-manifolds must have large
treewidth. Here we briefly review two well-known and simple observations that, together,
imply this fact. Since they are hard to find in the literature, we also sketch their proofs.

Proposition 22. There exists a constant C > 1, such that there are at least Cn log(n)

3-manifolds which can be triangulated with ≤ n tetrahedra.

Sketch of the proof. Note that the number of isomorphism classes of graphs is superexpo-
nential in the number of nodes. Consider the family of graph manifolds where the nodes are
Seifert fibered spaces of constant size.21 Conclude by the observation that graph manifolds
modeled on non-isomorphic graphs are non-homeomorphic, cf. [43, Section 3].

Proposition 23. Given k ≥ 0, there exists a constant Ck > 1 such that there are at most
Cn

k triangulations of 3-manifolds with dual graph of treewidth ≤ k and ≤ n tetrahedra.

Sketch of the proof. The property of a graph to be of bounded treewidth is closed under
minors. Hence, it follows from a theorem of Norine, Seymour, Thomas and Wollan [49] that
the number of isomorphism classes of graphs with treewidth ≤ k is at most exponential in
the number of nodes n of the graph. Furthermore, any given graph can at most produce a
number of combinatorially distinct triangulations exponential in n.

M1 M1

M1

M4

M4
M4

M2

M3

M3

M3

M2

M2

M5

M5

M6

M7

M8

· · ·

Tn0

Tn1

Tn2
superexponential growth

triangulations with tw ≤ k

(at most exponential growth)

· · · · · · · · ·

?

Figure 6

These propositions tell us that,
as n grows larger, the number
of triangulations of treewidth at
most k represent a rapidly de-
creasing fraction of the set Tn

of all (≤ n)-tetrahedra triangu-
lations of 3-manifolds.

Let Mi ⊂ Tnj denote
the set of triangulations of the
manifold Mi with at most nj

tetrahedra. The main question
we are investigating in this arti-
cle is the following:

Given a 3-manifold M,
does there always exist some
nM ∈ N, such that the set of
triangulations M in TnM over-
laps with the region of treewidth
≤ k triangulations? In other words, does the set of triangulations of every 3-manifold even-
tually behave like the one of M1 on Figure 6? Theorem 2 answers this question in the
negative in general.

21See [50] for an overview on graph manifolds and Seifert fiber spaces.
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B Complexity and fixed parameter tractability

In Table 1 we collect complexity and fixed parameter tractability properties of the problems
of computing the considered graph parameters. First, we explain the columns of the table.

• Complexity. The computational complexity of the question “Is p(G) ≤ k?”. Here k
is a variable given as part of the input.
• FPT. Fixed parameter tractability in the natural parameter. The check mark (X)

indicates the following: if k is fixed (as opposed to being a variable part of the input)
and G is an n-vertex graph, then the answer to the question “Is p(G) ≤ k?” can be
found in O(poly(n)) time.
• Bounded-degree graphs. What is known if we restrict our attention to a family of

bounded-degree graphs.

p Complexity FPT Bounded-degree graphs

tw NP-complete [2] X [9] remains NP-complete [11]
pw NP-complete [2] X [9] remains NP-complete [47]22

cw NP-complete [26] X [64] polynomial if tw bounded [63]
cng NP-complete [61] X [62]23

Table 1: Complexity and fixed parameter tractability of selected graph parameters

We point out that there is a more detailed table in [6], showing the complexity of
computing pathwidth and treewidth on several different classes of graphs.

C Computational aspects of different graph parameters

A small treewidth k ≥ 0 of the dual graph Γ(T ) of an n-tetrahedron triangulation T of
a 3-manifold can be exploited by applying standard dynamic programming techniques to
the tetrahedra of the triangulation: in a tree decomposition T of Γ(T ) with O(n) bags
realizing width k, every bag B ∈ V (T ) corresponds to a subcomplex XB ⊂ T of at most
k + 1 tetrahedra of T . Going up from the leaves of T , for each bag B ∈ V (T ), compute a
list of candidate solutions of the given problem on XB ⊂ T . When processing a new bag
B′ ∈ V (T ), for all child bags Bi ∈ V (T ), 1 ≤ i ≤ r, their lists of candidate solutions (which
are already computed) are used to validate or disqualify candidate solutions for XB′ . Due
to property 2 of a tree decomposition (Definition 8), every time a tetrahedron disappears
from a bag while we go up from the leaves to the root of T , it never reappears. This means
that constraints for a global solution coming from such a “forgotten” tetrahedron are fully
incorporated in the candidate solutions of the current bags. If for each bag the running
time, as well as the length of the list of candidate solutions is a function in k, the procedure
must have running time O(n) for triangulations with dual graphs of constant treewidth.

22NP-completeness is shown for the vertex separation number which is equivalent to pathwidth [36].
23See the discussion in the introduction of [62].
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Moreover, for every tree decomposition T with O(n) bags, there exists a linear time
procedure to preprocess T into a tree decomposition T ′ of Γ(T ), also with O(n) bags,
such that every bag is of one of three types: introduce, forget, or join bag [39]. Such a
nice tree decomposition24 has the advantage that only three distinct procedures are needed
to process all the bags—causing such FPT-algorithms to be much simpler in structure:
Introduce and forget bags are bags in T with only one child bag where a node is either
added to or removed from the child bag to obtain the parent bag. Procedures to deal with
these situations are often comparatively simple to implement and running times are often
comparatively feasible. A join bag is a bag with two child bags such that parent bag and
both child bags are identical. Depending on the problem to be solved, the procedure of a
join bag can be more intricate, and running times are often orders of magnitude slower than
in the other two cases.

Pathwidth vs. treewidth. Since every (preprocessed) nice path decomposition is a nice
tree decomposition without join bags, every FPT-algorithm in the treewidth of the input
is also FPT in the pathwidth with the (often dominant) running time of the join bag
removed. Thus, at least in certain circumstances, it can be beneficial to work with nice
path decompositions—and thus with pathwidth as a parameter—instead of treewidth and
its more complicated join bags in their nice tree decompositions.

For small cutwidth and for small congestion, similar dynamic programming tech-
niques can be applied to the cutsets of the respective linear or binary tree layouts of the
nodes and arcs of the dual graph of a triangulation. Thus, in the following paragraph
we compare these parameters to treewidth (and pathwidth), and point out some potential
benefits from using them as alternative parameters.

Congestion vs. treewidth and cutwidth vs. pathwidth. Parameterized algorithms using
pathwidth or treewidth operate on bags containing elements corresponding to tetrahedra of
the input triangulations. In contrast to this, parameterized algorithms using cutwidth or
congestion operate on cutsets containing elements corresponding to triangles of the input
triangulations. It follows that an algorithm operating on a tree decomposition of width k
must handle a 3-dimensional subcomplex of the input triangulation made of up to 15(k+1)
faces in one step. An algorithm operating on a tree layout of congestion k, however, only
needs to consider a 2-dimensional subcomplex of up to 7k faces of the input triangulation
per step. Moreover, cutwidth and congestion are equivalent to pathwidth and treewidth
respectively (for bounded degree graphs, up to a small constant factor, see Theorems 10 and
12), and parameterized algorithms for 3-manifolds are not just theoretical statements, but
may give rise to practical tools outperforming current state-of-the-art algorithms (see, for
example, [17]). These observations suggest that, at least for some problems, parameterized
algorithms using cutwidth or congestion of the dual graph have a chance to outperform
similar algorithms operating on pathwidth or treewidth, respectively.

24See the 3-manifold software Regina [14] for a visualization of a tree decomposition, and a nice tree
decomposition of the dual graph of any given triangulation.
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