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Abstract 1 

A novel strategy for controlling the spread of arboviral diseases such as dengue, Zika and 2 

chikungunya is to transform mosquito populations with virus-suppressing Wolbachia. In general, 3 

Wolbachia transinfected into mosquitoes induce fitness costs through lower viability or 4 

fecundity. These maternally inherited bacteria also produce a frequency-dependent advantage for 5 

infected females by inducing cytoplasmic incompatibility (CI), which kills the embryos produced 6 

by uninfected females mated to infected males. These competing effects, a frequency-dependent 7 

advantage and frequency-independent costs, produce bistable Wolbachia frequency dynamics. 8 

Above a threshold frequency, denoted , CI drives fitness-decreasing Wolbachia transinfections 9 

through local populations; but below , infection frequencies tend to decline to zero. If  is not 10 

too high, CI also drives spatial spread once infections become established over sufficiently large 11 

areas. We illustrate how simple models provide testable predictions concerning the spatial and 12 

temporal dynamics of Wolbachia introductions, focusing on rate of spatial spread, the shape of 13 

spreading waves, and the conditions for initiating spread from local introductions. First, we 14 

consider the robustness of diffusion-based predictions to incorporating two important features of 15 

wMel-Aedes aegypti biology that may be inconsistent with the diffusion approximations, namely 16 

fast local dynamics induced by complete CI (i.e., all embryos produced from incompatible 17 

crosses die) and long-tailed, non-Gaussian dispersal. With complete CI, our numerical analyses 18 

show that long-tailed dispersal changes wave-width predictions only slightly; but it can 19 

significantly reduce wave speed relative to the diffusion prediction; it also allows smaller local 20 

introductions to initiate spatial spread. Second, we use approximations for  and dispersal 21 

distances to predict the outcome of 2013 releases of wMel-infected Aedes aegypti in Cairns, 22 

Australia, Third, we describe new data from Aedes aegypti populations near Cairns, Australia 23 

that demonstrate long-distance dispersal and provide an approximate lower bound on  for 24 

wMel in northeastern Australia. Finally, we apply our analyses to produce operational guidelines 25 

for efficient transformation of vector populations over large areas. We demonstrate that even 26 

very slow spatial spread, on the order of 10-20 m/month (as predicted), can produce area-wide 27 
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 3 

population transformation within a few years following initial releases covering about 20-30% of 1 

the target area. 2 

 3 

Keywords: population transformation; population replacement; bistable wave dynamics; disease 4 

suppression; Zika; biocontrol 5 

  6 
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1. Introduction 1 

 Wolbachia are maternally inherited endosymbionts, pervasive among arthropods (Weinert et 2 

al. 2015) and best known for reproductive manipulation (Werren et al. 2008). Their most widely 3 

documented reproductive manipulation is cytoplasmic incompatibility (CI) (Hoffmann and 4 

Turelli 1997; Hamm et al. 2014), which kills embryos produced by Wolbachia-uninfected 5 

females mated to infected males. Wolbachia-infected females are compatible with both infected 6 

and uninfected males and generally produce only infected progeny. CI gives infected females a 7 

reproductive advantage that increases with the infection frequency. Consequently, CI-inducing 8 

Wolbachia can spread within and among populations, at least once they become sufficiently 9 

common that the CI-induced advantage overcomes any frequency-independent disadvantages 10 

(Caspari and Watson 1959; Turelli and Hoffmann 1991; Turelli 2010; Barton and Turelli 2011). 11 

Because Wolbachia are maternally transmitted, selection favors variants that increase the fitness 12 

of infected females (Turelli 1994; Haywood and Turelli 2009). Teixeira et al. (2008) and Hedges 13 

et al. (2008) discovered that Wolbachia-infected individuals are protected from some pathogens, 14 

including viruses. Pathogen protection is not universal (Osborne et al. 2009), and studies of both 15 

transient somatic Wolbachia transinfections (Dodson et al. 2014) and stable transinfections 16 

(Martinez et al. 2014) suggest that Wolbachia can occasionally enhance susceptibility to 17 

pathogens. However, virus protection seems to be a common property of both natural and 18 

introduced Wolbachia infections (Martinez et al. 2014). 19 

 This anti-pathogen effect has revitalized efforts to use Wolbachia for disease control, an 20 

idea first proposed in the 1960s (Laven 1967; McGraw & O’Neill 2013). The disease-vector 21 

mosquito Aedes aegypti has been transinfected with two Wolbachia strains from Drosophila 22 

melanogaster (wMelPop, McMeniman et al. 2009; and wMel, Walker et al. 2011). Two isolated 23 

natural Australian Ae. aegypti populations have been transformed with wMel to suppress dengue 24 

virus transmission (Hoffmann et al. 2011), and these populations have remained stably 25 

transformed for more than four years (Hoffmann et al. 2014; S. L. O’Neill, pers. comm.). The 26 
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dengue-suppressing phenotype of wMel-transinfected Ae. aegypti, first demonstrated in 1 

laboratory colonies (Walker et al. 2011), has been maintained, and possibly enhanced, after two 2 

years in nature (Frentiu et al. 2014). Recently, wMel has also been shown to block the spread of 3 

the Zika virus by Ae. aegypti (Dutra et al. 2016). Anopheles stephensi was also transinfected with 4 

Wolbachia, making them less able to transmit the malaria-causing parasite (Bian et al. 2013). 5 

Wolbachia transinfections are now being deployed for disease control in at least five countries 6 

(Australia, Vietnam, Indonesia, Brazil and Colombia, see the “Eliminate Dengue” website: 7 

http://www.eliminatedengue.com/program), with many more releases planned. We present 8 

simple approximation-based predictions to understand and aid the deployment of these 9 

transinfections. 10 

 Our mathematical analyses rest on bistable frequency dynamics for Wolbachia 11 

transinfections. Namely, the frequency-independent costs associated with introduced infections 12 

cause frequencies to decline when the infections are rare; but the frequency-dependent advantage 13 

associated with CI overcomes these costs when the infections become sufficiently common. As 14 

explained in the Discussion, bistability now seems implausible for naturally occurring Wolbachia 15 

infections (cf. Fenton et al. 2011; Kriesner et al. 2013; Hamm et al. 2014). However, we present 16 

several lines of evidence, including new field data, indicating that wMel transinfections in Ae. 17 

aegypti experience bistable dynamics in nature.  18 

 Why does bistability matter? As reviewed in Barton and Turelli (2011), bistability 19 

constrains which variants can spread spatially, how fast they spread, how difficult it is to initiate 20 

spread, and how easily spread is stopped. Roughly speaking, spatial spread can occur only if the 21 

critical frequency, denoted , above which local dynamics predict deterministic increase rather 22 

than decrease, is less than a threshold value near ½. As discussed in Turelli (2010),  is 23 

determined by a balance between the frequency-dependent advantage provided by cytoplasmic 24 

incompatibility and frequency-dependent disadvantages associated with possible deleterious 25 

Wolbachia effects on fecundity, viability and development time. As  increases, the rate of 26 

predicted spatial spread slows to zero (then reverses direction), the area in which the variant must 27 
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 6 

be introduced to initiate spread approaches infinity, and smaller spatial heterogeneities suffice to 1 

halt spread. Spatial dynamics depend on details of local frequency dynamics and dispersal that 2 

are not well understood empirically. This motivates our exploration of quantitative predictions 3 

using relatively simple but robust models that focus on three key biological phenomena, 4 

dispersal, deleterious fitness effects and cytoplasmic incompatibility. 5 

 We seek conditions under which minimal releases of dengue-suppressing Wolbachia 6 

transinfections achieve area-wide disease control by transforming a significant fraction of the 7 

vector population in a relatively short period. We focus on simple models to provide quantitative 8 

predictions and guidelines, and test the robustness of the predictions to long-distance dispersal. 9 

Our simple approximations make testable predictions that may be improved as additional data 10 

become available. Many parameters in detailed models will be difficult to estimate and are likely 11 

to vary in time and space. Our idealization is motivated by the scarce information concerning the 12 

ecology of disease vectors such as Ae. aegypti. For instance, the dynamics of introductions must 13 

depend on ecological factors such as density regulation (Hancock et al. 2011a,b). However, the 14 

ecology of Ae. aegypti is so poorly understood that increases in embryo lethality associated with 15 

CI might lead to either decreasing or increasing adult numbers (cf. Prout 1980; Walsh et al. 16 

2013; but see Hancock et al. 2016). As in Barton and Turelli (2011), we ignore these ecological 17 

complications and emphasize quantitative conclusions that depend on only two key parameters: 18 

σ, a measure of average dispersal distance, and , the unstable equilibrium frequency. We 19 

illustrate how these two parameters can be estimated from introduced-Wolbachia frequency data 20 

(producing predictions that can be cross-validated) and explore the robustness of the resulting 21 

predictions. 22 

 Our new analyses build on Barton and Turelli (2011), which used diffusion approximations 23 

to understand spatial and temporal dynamics. To determine the robustness of those diffusion-24 

based predictions, which make mathematical assumptions that may not be consistent with the 25 

biology of Wolbachia-transinfected mosquitoes, we examine dispersal patterns that assign higher 26 

probabilities to long-distance (and very short-distance) dispersal. We ask how dispersal patterns 27 

� 

ˆ p 



 7 

affect wave speed, wave shape, and the conditions for initiating an expanding wave (Section 4). 1 

We use these new, more robust predictions to propose guidelines for field deployment of 2 

dengue-suppressing Wolbachia. This involves addressing new questions. For instance, Barton 3 

and Turelli (2011) determined the minimum area over which Wolbachia must be introduced to 4 

initiate spatial spread, but ignored the fact that near this critical size threshold, dynamics would 5 

be extremely slow. Effective field deployment requires initiating multiple waves to cover a broad 6 

area relatively quickly, given constraints on how many mosquitoes can be released. This requires 7 

understanding how transient dynamics depend on initial conditions. We synthesize data-based 8 

and model-based analyses of spatial spread to outline efficient strategies for area-wide 9 

transformation of vector populations (Section 7).  10 

 In addition to our theoretical results concerning predicted properties of spatial spread and 11 

near-optimal release strategies, we illustrate the theory with predictions concerning the outcome 12 

of wMel releases in Cairns, Australia in 2013 (Section 5). We also analyze some previously 13 

unpublished data from the 2011 releases reported in Hoffmann et al. (2011) to approximate a 14 

lower bound for  relevant to the Cairns releases (Section 6). 15 

 16 
2. Mathematical background, models and methods  17 
 18 

 Our initial numerical analyses focus on testing the robustness of predictions presented in 19 

Barton and Turelli (2011). We first describe the diffusion approximations and results from 20 

Barton and Turelli (2011) before describing the alternative approximations and analyses. Next 21 

we describe the model used to analyze the new data we present. Finally we describe our 22 

approaches to approximating optimal release strategies. 23 

 24 

2.1. Diffusion approximations, alternative dynamics and predictions 25 

 The simplest spatial model relevant to understanding Wolbachia frequency dynamics in 26 

space and time is a one-dimensional diffusion approximation: 27 
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 1 

 , (2.1) 2 

where f(p) describes local dynamics and p(x, t) denotes the infection frequency at point x and 3 

time t. If we approximate the local bistable dynamics by the cubic  4 

 5 
 f(p) = shp(1 – p)(p – ),  (2.2) 6 

where sh describes the intensity of CI, there is an explicit asymptotic traveling wave solution of 7 

(2.1), given as Eq. 13 of Barton and Turelli (2011). Eq. (2.1), extended to two dimensions as 8 

described by Eq. 22 of Barton and Turelli (2011), can be solved numerically to address transient 9 

dynamics associated with local releases. In two dimensions, we interpret σ2 as the variance in 10 

dispersal distance per generation along any axis. (This implies that the average Euclidean 11 

distance between the birthplaces of mothers and daughters is , assuming Gaussian 12 

dispersal.) The model defined by (2.1) and (2.3) provides analytical predictions for wave speed 13 

and wave shape and numerical conditions for establishing a spreading wave from a local 14 

introduction. 15 

 To more accurately approximate CI dynamics, Barton and Turelli (2011) replaced the cubic 16 

approximation (2.2) with the model of Schraiber et al. (2012) 17 

 18 

 dp
dt

= f (p) = shp(1− p)(p − p̂)
1− s f p − shp(1− p)

, with (2.3a) 19 

 p̂  = sr/sh = (sf + sv – sf sv)/sh. (2.3b) 20 

(Eq. 2.3a assumes that the daily death rate for the infected individuals is dI = 1, so that time is 21 

measured in terms of the average lifetime of an infected individual.) As in Eq. (2.2), sh measures 22 

the intensity of CI; whereas sr measures the net reduction in fitness caused by the Wolbachia 23 

infection. As in the discrete-time model of Turelli (2010), fitness costs may involve reductions of 24 
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 9 

both fecundity and mean life length (viability), as measured by sf and sv, respectively; however, 1 

sv enters the dynamics only through p̂ . Numerical integration can be used to compare the cubic-2 

based analytical predictions with those produced by this more biologically explicit 3 

approximation. For fixed , the dynamics described by Eq. (2.3a) depend on whether fitness 4 

costs primarily involve viability or fecundity effects (because only sf appears in the 5 

denominator). The data of Hoffmann et al. (2014) suggest that fecundity effects may dominate. 6 

 In our discrete-time, discrete-space analyses, we approximate local dynamics with the 7 

Caspari-Watson model (1959) which incorporates CI and fecundity effects (cf. Hoffmann and 8 

Turelli 1988; Weeks et al. 2007). Let H denote the relative hatch rate of embryos produced from 9 

an incompatible cross. Setting H = 1 – sh and F = 1 – sf, and letting p denote the frequency of 10 

infected adults, the local dynamics are described by  11 

 12 

 , with (2.4a)  13 

  = sf/sh. (2.4b) 14 

In this model, the condition for bistability (i.e., simultaneous local stability of p = 0 and p = 1) is 15 

sh > sf > 0, i.e., the (frequency dependent) benefit to the infection from CI must exceed its 16 

(frequency independent) cost, modeled as decreased fecundity. Both lab and field experiments 17 

indicate that wMel causes complete CI, i.e., sh ≈ 1 in Ae. aegypti (Hoffmann et al. 2014). 18 

 19 

2.1.1. Wave speed  20 

 Measuring time in generations, the predicted wave speed from (2.1) with cubic dynamics 21 

(2.2) is 22 
 23 

 c = σ (½ – ), (2.5) 24 
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 10 

provided that  > 0. This one-dimensional result also describes the asymptotic speed of a 1 

radially expanding wave in two dimensions (see Eqs. 23-25 of Barton and Turelli 2011). Barton 2 

and Turelli (2011) used numerical solutions of (2.1) to compare this speed prediction to the wave 3 

speed produced by (2.3), which explicitly models the fast local dynamics associated with strong 4 

CI. The more realistic dynamics (2.3) led to slightly faster wave propagation (as expected 5 

because the denominator of f(p) is less than one). 6 

. 7 

2.1.2. Wave width  8 

 The explicit traveling-wave solution of (2.1) for cubic f(p) provides a simple description for 9 

the asymptotic wave width, the spatial scale over which infection frequencies change. Defining 10 

wave width as the inverse of the maximum slope of infection frequencies (Endler 1977), the 11 

diffusion approximation with cubic dynamics implies that the traveling wave has width 12 

 13 

 w = 1/Max(|∂p/∂x|) = 4σ/ , (2.6) 14 

 15 

which becomes 4σ with complete CI, as in Ae. aegypti. The explicit solution that produces (2.6) 16 

implies that with sh = 1, the scaled wave (with space measured in units of σ) has shape  17 

1/[1 + Exp(–x)]. Thus, infection frequencies increase from about 0.18 to 0.82 over 3σ. If steady 18 

spread is observed in the field, we can use this wave-shape approximation to estimate σ   from 19 

spatial infection-frequency data. These estimates can be compared to independent estimates from 20 

release-recapture experiments or genetic data. We show below that relation (2.6) is relatively 21 

robust to more realistic descriptions of local frequency dynamics and long-tailed dispersal. 22 

 23 

2.1.3. Wave initiation  24 

 Finally, the diffusion approximation predicts the minimum area that must be actively 25 

transformed to initiate deterministic spatial spread. Barton and Turelli (2011) consider 26 

introductions over a circular area with initial infection frequency p0 in the circle. This initial state 27 
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 11 

corresponds to rapid local establishment of a transinfection from intensive releases. Hoffmann et 1 

al. (2011) showed that releases in isolated suburbs near Cairns produced wMel frequencies over 2 

80% within 12 weeks, about three Ae. aegypti generations. Fig. 3 of Barton and Turelli (2011) 3 

summarizes the diffusion predictions concerning the minimum radius of release areas, measured 4 

in units of dispersal distance σ, needed to initiate a spreading wave. In their analysis, the scaled 5 

critical radius, denoted Rcrit, depends only on . As  increases from 0 to 0.3, Rcrit increases 6 

from 0 to about 3.5σ, then rapidly increases towards infinity as  approaches 0.5, the 7 

approximate upper bound on  consistent with spatial spread. Releases over areas smaller than 8 

Rcrit are predicted to fail, with the infection locally eliminated by immigration from surrounding 9 

uninfected populations. Barton and Turelli (2011) used the Schraiber et al. (2012) model (2.3) to 10 

assess the robustness of these cubic-based predictions to more realistic local CI dynamics. Model 11 

(2.3) produced Rcrit predictions within a few percent of those derived from the cubic (see Fig. 3 12 

of Barton and Turelli 2011), assuming that Wolbachia reduce fitness primarily through viability 13 

effects. Below, we contrast the diffusion predictions of Barton and Turelli (2011) with numerical 14 

results that account for fecundity effects, faster local dynamics and alternative forms of dispersal. 15 

 16 

2.1.4. Time scale for asymptotic wave speed and width 17 

 Predictions (2.5) and (2.6) for wave speed and wave width are based on the asymptotic 18 

behavior of the traveling wave solutions to the diffusion model (2.1) assuming cubic dynamics. 19 

(As discussed in Barton and Turelli (2011), the asymptotic wave speed and width are the same in 20 

one dimension and two.) To apply these predictions to frequency data generated from field 21 

releases, it is important to know how quickly these asymptotic values are approached. Fig. 1 22 

illustrates numerical solutions for the transient dynamics of the cubic-diffusion model in two 23 

dimensions with plausible parameter values for wMel in Aedes aegypti, sh = 1 and  = 0.25 24 

(discussed below). The calculations use two initial conditions. In the first, the infection is 25 

introduced with p0 near 0.8 over a circular region with diameter 3 (see Fig. 1 legend for details), 26 

which is about 14% larger than Rcrit = 2.64, the critical radius needed to initiate spatial spread. In 27 
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 12 

the second, the infection frequency drops smoothly from 0.65 at the center of the introduction to 1 

0.25 (the unstable point, ) at about R = 4.6. As shown in Fig. 1, for these parameters and initial 2 

conditions, the approach to the asymptotic wave speed and width is rapid, on the order of five-to-3 

ten generations. Similar results hold for our discrete-time models and data from field releases of 4 

wMel in Aedes aegypti (data not shown). 5 

 6 

Fig. 1. Transient dynamics of wave position and wave width from numerical solutions of the 7 

two-dimension version of diffusion model (2.1) with cubic dynamics (2.2), sh = 1 and  = 0.25. 8 

The calculations assume circular introductions with radial symmetry and initial frequency p(R) = 9 

0.8/{1 + exp[4(R – 3)/v]} for v = 0.8 and 8. Setting v = 0.8 produces an abrupt drop in the initial 10 

frequency from 0.75 to 0.05 over roughly R = 2.5 to R = 3.5; with v = 8, the initial frequency 11 

drops from 0.65 at R = 0 to 0.25 at R = 4.6. The left panel shows wave position measured as the 12 

point of maximum slope, the right panel shows the width, measured as the inverse of the 13 

maximum slope (see Eq. (2.6)). The dotted curves correspond to v = 0.8, modeling a rapid 14 

introduction in a confined area. This produces a faster approach to the expected asymptotic speed 15 

of 0.25. Both initial conditions, one with narrower width than the asymptotic value of four, the 16 

other wider, approach the asymptotic width of four within 7-10 generations.  17 

 18 

2.2. Numerical analyses of discrete-time, discrete-state (DTDS) models 19 

 To explore the robustness of the diffusion predictions, we consider the simultaneous effects 20 

of fast local dynamics, associated with complete CI, and long-tailed dispersal. To do this, we 21 

replace the PDE approximation (2.1) with discrete-time, discrete-space (DTDS) models that 22 

assume discrete generations and discrete patches in which the consequences of mating, fecundity 23 

effects and CI occur and between which adult migration occurs.  24 

  25 
  26 
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 13 

2.2.1. Model structure and dynamics.  1 

 Let i denote a patch in one or two dimensions, let g(p) =  denote a function that describes 2 

how mating, fecundity differences and CI transform local infection frequencies between 3 

generations, and let m(i, j) denote the probability that an individual at location i after migration 4 

originated in location j. Assuming discrete generations in which migration of newly eclosed 5 

individuals precedes local CI dynamics, the infection frequencies among adults in each patch 6 

follow 7 

 8 

  or .  (2.7) 9 

Our choice of patch spacing for these discretizations is discussed below. We approximate local 10 

dynamics with the Caspari-Watson model (2.4).   11 

 12 

2.2.2. Alternative dispersal kernels.  13 

 Following Wang et al. (2002), we compare results obtained with three models of dispersal: a 14 

Gaussian, denoted G(x), versus two “long tailed” distributions, the Laplace (or reflected 15 

exponential), denoted L(x), and the exponential square root (ExpSqrt), denoted S(x). Letting σ 16 

denote the standard deviation of dispersal distances, our dispersal kernels in one dimension 17 

(proportional to the probability of moving distance x in one dimension) are  18 

 19 

 G(x) = , (2.8a) 20 

 L(x)  = , and (2.8b) 21 

 S(x) = . (2.8c) 22 
 23 

These alternative dispersal models are illustrated in Fig. 2. Our DTDS calculations used patch 24 

spacing of 0.5σ. We truncated the dispersal functions at ±10σ. We adjusted the variance 25 

parameter in our discrete calculations so that the actual standard deviation of the discrete 26 

′p

p(i,t +1) = m(i, j) ′p ( j,t)
j
∑ p(i,t +1) = g m(i, j)p( j,t)

j
∑⎡
⎣
⎢

⎤

⎦
⎥

Exp[−x2 / (2σ 2 )] / 2πσ 2

Exp[− 2x2 /σ 2 ] / 2σ 2

15 / (2σ 2 )Exp[− 120x2 /σ 24 ]
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distribution was σ . In two dimensions, (x, y), the dispersal models, generically denoted m(z), 1 

were implemented as m x2 + y2( ) . 2 

 3 

Fig. 2. Alternative dispersal models with σ = 1. The three models are: Gaussian (blue), Laplace 4 

(green), and ExpSqrt (red) as described by (2.8). Each describes the probability, denoted m(x) in 5 

the figure, of moving distance x along any axis. 6 

 7 

 Taking logs of the densities, the tails of G(x) decline as –x2, whereas the tails of L(x) and 8 

S(x) decline as –|x| and – , respectively, corresponding to successively higher probabilities 9 

of long-distance dispersal. Denoting the random variables corresponding to these densities as G, 10 

L and S, we have P(|G| > 3σ) = 0.003, P(|L| > 3σ) = 0.014 and P(|S| > 3σ) = 0.022. As Fig. 2 11 

shows, higher probabilities of long-distance dispersal are accompanied by higher probabilities of 12 

short-distance dispersal (e.g., P(|G| < 0.5σ) = 0.383, P(|L| < 0.5σ) = 0.507 and P(|S| < 0.5σ) = 13 

0.678), with corresponding medians for |G|, |L| and |S| of 0.67σ, 0.49σ and 0.28σ, respectively.  14 

 In two dimensions, we assume that dispersal is isotropic, with radial distribution given by 15 

the kernels defined by (2.8), and scaled such that the standard deviation along any one axis is σ. 16 

To approximate σ  from experiments that estimate mean Euclidean dispersal distances, D, note 17 

that the Gaussian produces E(DG) =  ≈ 1.25σ; whereas for the Laplace and ExpSqrt, we 18 

have E(DL) ≈ 1.15σ  and E(DS) ≈ 0.94σ,  respectively. Thus, empirical estimates of average 19 

Euclidean dispersal distance can imply values of σ  that differ by over 30% depending on the 20 

shape of the dispersal function, with longer tails implying higher values of σ. (Note that 21 

statistical estimation of dispersal requires some assumption about the distribution of dispersal 22 

distance.) We compare the predictions resulting from alternative dispersal models by holding 23 

fixed the variance parameter σ2, which is natural measure of dispersal distance for diffusion 24 

approximations (see, for instance, the derivations in Haldane (1948), Slatkin (1973) or Nagylaki 25 

(1975)).  26 
 27 

| x |

� 

σ π /2



 15 

2.3 Model used for data analysis: an isolated deme subject to immigration 1 

 Barton and Turelli (2011) adapted the “island model” of Haldane (1930) to approximate the 2 

rate of immigration of Wolbachia-infected individuals required to “flip” an isolated population 3 

from uninfected to infected. In addition to approximating the critical migration rate, m, the 4 

analysis produces an analytical approximation for the equilibrium infection frequency when the 5 

immigration rate is too low to flip the recipient population to Wolbachia fixation. Assuming 6 

complete CI, 100% frequency of Wolbachia in the donor population and one-way immigration 7 

into the recipient population, Eq. (31) of Barton and Turelli (2011) predicts that Wolbachia 8 

should take over the recipient population if m, the fraction of individuals who were new migrants 9 

each generation, exceeds m* = . For m < m*, the predicted Wolbachia equilibrium 10 

frequency in the recipient population, using a cubic approximation for local dynamics, is  11 

 12 

  (2.9) 13 

 14 

(this is a reparameterization of Eq. (31) of Barton and Turelli 2011). Hence, if we use the long-15 

term average Wolbachia frequency, , to approximate p*, the equilibrium described by (2.9), 16 

we can approximate a lower bound for the unstable equilibrium, , as 2 .  17 

 18 

2.4. Near-optimal release strategies 19 

 We analyze alternative release strategies using a combination of numerical solutions of 20 

diffusion models, DTDS models and even simpler models that assume constant rates of radial 21 

spread from release foci. Each analysis is described below along with the results it produces. 22 
 23 
 24 
3. New data demonstrating bistability 25 
 26 

 We analyze a small subset of the Wolbachia infection frequency data collected subsequent 27 

to the first “Eliminate Dengue” field releases of wMel-infected Ae. aegypti, described in 28 

p̂2 / 4

p*= ( p̂ / 2)− ( p̂ / 2)2 −m < p̂ / 2.

p
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Hoffmann et al. (2011). The releases occurred in early 2011 in two isolated towns, Gordonvale 1 

(668 houses) and Yorkeys Knob (614 houses), near Cairns in northeast Australia. As described in 2 

Hoffmann et al. (2011), Pyramid Estate (PE) is an area of Gordonvale separated from the town 3 

center by a major highway, with roughly 100 m separating the nearest houses on either side. 4 

Highways seem to inhibit Ae. aegypti migration (Hemme et al. 2010). The 2011 wMel releases 5 

were restricted to the main part of Gordonvale; but as reported in Hoffmann et al. (2011), wMel-6 

infected mosquitoes were found in PE within months of the initial releases. The PE capture sites 7 

were scattered over an area of houses on the order of 1 km2 with traps roughly 100-500 m from 8 

the nearest residences in the Gordonvale release area. As described in Hoffmann et al. (2011, 9 

2014), infection frequencies were estimated using PCR of DNA from adults reared from eggs 10 

collected in oviposition traps. Between late March 2011 and January 2015, 2689 adults were 11 

assayed in PE. The data are archived in Dryad (http://XXX). 12 

 13 
4. Results: Robustness of diffusion results to long-tailed dispersal and rapid 14 
CI dynamics 15 
 16 

4.1. Wave speed.  17 

 We initially calculated wave speed in a one-dimensional spatial array, then as in Barton and 18 

Turelli (2011), we checked the results with two-dimensional calculations. To disentangle the 19 

effects of non-Gaussian dispersal from the effects of fast local dynamics, we contrast results 20 

obtained assuming complete CI (sh = 1), as observed with wMel-infected Ae. aegypti, with 21 

results assuming weak CI (sh = 0.2). Fig. 3 compares the numerically approximated wave speeds 22 

to the analytical prediction, c = σ (½ – ), from the diffusion approximation with cubic 23 

dynamics. The left panel shows that with relatively slow local dynamics (sh = 0.2), the cubic 24 

diffusion approximation is accurate and robust to the shape of the dispersal function. This is 25 

expected from the derivation of approximation (2.1) as a limit of discrete-time, discrete-space 26 

dynamics (Haldane 1948; Nagylaki 1975). The derivation explicitly invokes slow local dynamics 27 
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and limited dispersal, retaining only the variance of dispersal distances in the quadratic 1 

approximation. The sh = 0.2 results have two other notable features. First, despite the overall 2 

accuracy of approximation (2.5), we see that ExpSqrt dispersal slightly slows propagation. This 3 

can be understood in terms of the lower median dispersal distance and the fact that with 4 

bistability, rare long-distance dispersal is not effective at pushing the wave forward, because 5 

long-distance migrants are swamped by the much more abundant natives. This distinguishes 6 

bistable spatial dynamics from those with zero as an unstable equilibrium. For such systems, 7 

long-tailed dispersal can produce accelerating waves (see Supporting Information Appendix A 8 

for references and comparison of bistable versus Fisherian wave speeds). Moreover, geographic 9 

spread associated with spatially non-contiguous, successful long-distance colonization events (cf. 10 

Shigesada and Kawasaki 1997, Ch. 5), can greatly exceed predictions based on average dispersal 11 

distances. Second, note that as  approaches 0.5, the analytical approximation starts to 12 

underestimate wave speed. As described by Barton and Turelli (2011), this reflects the fact that 13 

the cubic model produces the threshold  ≤ 0.5 for spatial spread, whereas models more 14 

accurately describing CI and fitness costs, such as (2.3) and (2.4), predict spatial spread with  15 

slightly above 0.5. 16 

 17 
Fig. 3. Wave speed. Speed calculated from DSDT analyses compared to the cubic-based 18 

diffusion prediction, c = σ (½ – ), as a function of , for sh = 0.2 (left) and sh = 1 (right).  19 

The green dots were produced with Gaussian dispersal, blue with Laplace and black with 20 

Exponential Square root (ExpSqrt). 21 

  22 

 The right panel of Fig. 3 (sh = 1) shows that faster local dynamics accentuate both 23 

phenomena seen with sh = 0.2: slower speed with more long-tailed dispersal and underestimation 24 

of observed speed as  approaches 0.5. With complete CI and plausible  (i.e., 0.2 ≤  ≤ 0.35), 25 

observed speed closely follows the cubic-based diffusion prediction with Gaussian dispersal, but 26 
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is reduced by about 10% for Laplace dispersal and by much more (25-40%) for ExpSqrt 1 

dispersal. A simple interpretation is that long-tailed dispersal is associated with smaller median 2 

dispersal distances. Long-distance migrants are effectively “wasted” in that they cannot initiate 3 

local spread. 4 

 Appendix A provides a more complete description of the consequences of alternative 5 

dispersal models on wave speed under bistable versus monostable local dynamics, including the 6 

consequences of finite population size at the front on wave propagation.  7 

 8 

4.2. Wave width.  9 

 Under the diffusion model with cubic dynamics, the predicted wave width is w ≈ 4σ  10 

(2.6). Fig. 4 compares this prediction with the results obtained from DTDS with Caspari-Watson 11 

dynamics and alternative dispersal models. With relatively slow local dynamics (sh = 0.2), Panel 12 

A shows that the cubic-diffusion prediction remains accurate for all three dispersal models, 13 

analogous to the results for wave speed illustrated in Fig. 3A. ExpSqrt dispersal slightly reduces 14 

wave width, presumably reflecting the lower median dispersal. As with wave speed, sh = 1 15 

produces larger departures from the cubic-diffusion prediction and much greater effects of 16 

dispersal shape. However, for plausible values of  (i.e., 0.2 ≤  ≤ 0.35), the observed width 17 

remains within about 15% of prediction (2.6) for Gaussian and Laplace and very close to the 18 

prediction for ExpSqrt.  19 
 20 
 21 

Fig. 4. Wave width. Wave width as a function of  calculated using discrete-time, discrete-space 22 

(DTDS) analyses with alternative dispersal models. The dots from the DTDS analyses are 23 

compared to the diffusion prediction (w = 1/Max(|∂p/∂x|) = 4σ/ , red line) for sh = 0.2 (left) 24 

and sh = 1 (right). The green dots were produced with Gaussian dispersal, blue with Laplace and 25 

black with Exponential Square root (ExpSqrt). 26 
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 1 

4.3. Wave initiation: critical radius Rcrit   2 

 Fig. 3 of Barton and Turelli (2011) showed how Rcrit, the minimal radius of an introduction 3 

needed to initiate spread (measured in units of the dispersal parameter σ), depends on  and p0 4 

under the diffusion approximation. It contrasts the predictions for cubic dynamics versus 5 

Schraiber et al. (2012) Wolbachia dynamics (Eq. 2.3). Fig. 5 compares those predictions to 6 

DTDS results under Caspari-Watson Wolbachia dynamics (Eq. 2.4). The key result is that long-7 

tailed dispersal produces smaller critical radii, and the effect of long-tailed dispersal increases as 8 

 increases. This result is complementary to the wave-speed results. With longer-tailed 9 

dispersal, more individuals move very little so that the median dispersal falls, making it easier to 10 

establish a wave (but the resulting wave moves more slowly). The discrepancies between the 11 

diffusion results with Schraiber et al. (2012) dynamics and the DTDS results for Gaussian 12 

dispersal are mainly attributable to the fact that the Schraiber et al. (2012) results illustrated in 13 

Fig. 5 assume only viability costs, which produces slower dynamics (see Eq. 2.4a) and requires 14 

larger introductions, than if one assumes fecundity costs, as done in the DTDS Caspari-Watson 15 

model. The effect of fecundity vs. viability costs is illustrated in Table 1 in section 5.1. For  = 16 

0.35 and p0 = 0.8, numerical solution of the diffusion equation with Schraiber et al. (2012) 17 

dynamics produces Rcrit = 3.36 if sf = 0 (so that  = sv), but this drops to Rcrit = 2.76 if sv = 0 (so 18 

that  = sf). The corresponding values under the DTDS model with Caspari-Watson dynamics 19 

are Rcrit = 3.01, 2.91, 2.55, for Gaussian, Laplace and ExpSqrt dispersal, respectively. 20 
 21 

Fig. 5. Critical radius, Rcrit, assuming complete CI and alternative dynamics.  The upper points 22 

reproduce the diffusion results from Barton and Turelli (2011) with cubic (red curve) and 23 

Schraiber et al. (2012) CI dynamics (assuming only viability fitness costs) The red curve shows 24 

the cubic-diffusion predictions with p0 = 0.8, the large blue dots are the cubic with p0 = 0.6. The 25 

small red (blue) dots are produced by the diffusion analysis of Schraiber et al. (2012) CI 26 
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dynamics with p0 = 0.8 (p0 = 0.6). The lower points and curves show our DTDS predictions as a 1 

function of  and the initial infection frequency (p0) with alternative dispersal models. The 2 

lower lines correspond to p0 = 0.8 with Gaussian (green), Laplace (blue) and ExpSqrt (black) 3 

dispersal. The points above and below these lines correspond to p0 = 0.6 and p0 = 1, respectively 4 

 5 

 There are two striking results concerning the DTDS-derived values of Rcrit. First, like the 6 

wave-width results, the critical radii are relatively insensitive to the dispersal model. Second, 7 

however, unlike the wave-width results, the critical radii are significantly different and smaller 8 

than those produced by the diffusion approximation. Barton and Turelli (2011) showed that the 9 

Schraiber et al. (2012) dynamics produced smaller Rcrit values than the cubic model, even if 10 

fitness costs were purely based on reduced viability. Reduced fecundity, as assumed in the 11 

Caspari-Watson model, accelerates the local dynamics and hence allows much smaller 12 

introductions to initiate a traveling wave. Even with  = 0.35, introductions with p0 = 0.8 will 13 

succeed as long as the initial radius of release, denoted RI, satisfies RI ≥ 2.5σ (or 3.0σ) with 14 

ExpSqrt (or Gaussian) dispersal.  15 

 16 
5. Results: Predictions for 2013 Cairns releases 17 
 18 
5.1. Diffusion-based predictions 19 

 One of our primary aims is to understand the robustness of the Barton and Turelli (2011) 20 

diffusion predictions. Rather than discuss generalities, we will focus on specific field releases. In 21 

early 2013, three localized releases were performed within the city of Cairns. Releases were 22 

made in three neighborhoods, Edgehill/Whitfield (EHW), Parramatta Park (PP), and Westcourt 23 

(WC). The release areas were roughly 0.97 km2 for EHW, 0.52 km2 for PP, and only 0.11 km2 24 

for WC. Infection frequencies quickly rose above 0.8 within all three release areas, and each 25 

release area adjoined housing into which the wMel infection might plausibly spread. What 26 

predictions emerge from the diffusion approximations? 27 
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 Numerical predictions require estimates of σ  and p̂ . Russell et al. (2005) performed a mark-1 

release-recapture experiment with Ae. aegypti using a release site abutting the 2013 EHW release 2 

area. The mean absolute distance of recaptures from the release point was about 78 m. The 3 

diffusion approximation assumes that dispersal is measured as the standard deviation of dispersal 4 

distance along any axis. If we assume that dispersal distance is roughly Gaussian distributed with 5 

mean 0 and standard deviation σ along each axis, the mean absolute dispersal distance is 6 

σ π / 2  or about 1.25σ. With this assumption, the estimate from Russell et al. (2005) implies 7 

σ  ≈ 62 m/(generation)1/2. In general, however, release-recapture estimates tend to be 8 

systematically lower than those based on genetic data (see, for instance, Barton and Hewitt 1985, 9 

Fig. 3). Moreover, estimates of dispersal distance for Ae. aegypti are extremely variable in time 10 

and space. For instance, Harrington et al. (2005) found that repeated estimates of mean dispersal 11 

distance in the same village in Thailand ranged from about 40 m/(generation)1/2 to about 160 12 

m/(generation)1/2. Our theoretical predictions concerning the consequences of dispersal are best 13 

interpreted as temporal averages, which are more likely to be accurately captured by indirect 14 

estimates of average dispersal such as wave width (or genetic data describing the decline of 15 

relatedness with distance). Given that direct estimates systematically underestimate average 16 

dispersal in nature, we use σ  ≈ 100 m/(generation)1/2 as a plausible estimate for Cairns. We 17 

recognize, however, that dispersal is likely to vary significantly with local conditions. 18 

 Assuming σ  ≈ 100 m/(generation)1/2, Eq. (2.6) implies that if spatial spread is observed, the 19 

wave width should be about 400 m. From Eq. (2.5), the corresponding wave speed is  20 

c = 100(½ – 

� 

ˆ p ) m per generation (m/gen). As argued in section 6.1 below, 

� 

ˆ p  is probably above 21 

0.2. Thus, the maximum predicted speed is about 30 m/gen. However, if 

� 

ˆ p  is as high as 0.35, 22 

predicted speed falls to 15 m/gen. Assuming about 10 Ae. aegypti generations per year near 23 

Cairns, these crude estimates indicate that wMel spread in Ae. aegypti is likely to be on the order 24 

of 150-300 m/year – two or three orders of magnitude slower than the spread of wRi in 25 

California and eastern Australia D. simulans (100 km/year, Kriesner et al. 2013). Yet repeated 26 

estimates of dispersal distances for various Drosophila species suggest that natural dispersal 27 



 22 

distances are at most 5-10 times greater for D. simulans than for Ae. aegypti (e.g., Dobzhansky 1 

and Wright 1943; Powell et al. 1976; McInnis et al. 1982). The critical difference between the 2 

speeds associated with these exemplars of Wolbachia spread is unlikely to be dispersal, but more 3 

probably the bistability of wMel dynamics in Ae. aegypti versus the monostability of wRi 4 

dynamics (see Discussion section 8.3). Monostability allows relatively rare human-mediated, 5 

long-distance dispersal to greatly enhance spatial spread, as described, for instance, by 6 

“structured diffusion” models (Shigesada and Kawasaki 1997, Ch. 5). 7 

 Whether spatial spread occurs with bistability depends on the size of the release area, the 8 

initial frequency produced in the release area (p0), and . From Fig. 3 of Barton and Turelli 9 

(2011) with p0 = 0.8, if  were as large as 0.35, the minimum radius of a circular release needed 10 

to produce an expanding wave would be on the order of 4σ, implying a minimal release area of 11 

about 0.5 km2 (assuming σ   ≈ 100 m/(generation)1/2). Replacing the cubic in (2.2) with the 12 

Schraiber et al. (2012) description of CI dynamics (2.3), Barton and Turelli (2011) showed that 13 

the minimal radius with = 0.35 falls from about 4σ to about 2.8-3.5σ, with the value 14 

depending on whether wMel-infected Ae. aegypti lose fitness primarily through fecundity (as the 15 

data of Hoffmann et al. 2014 suggest), which produces 2.8σ, or viability, which produces 3.5σ. 16 

The smaller values (from Schraiber et al. 2012) imply minimal release areas of about 0.25-0.38 17 

km2 (the lower value assumes only fecundity effects). In contrast, if  were as small as 0.2, the 18 

minimum radius falls to about 2σ for both the cubic model and Schraiber et al. (2012) dynamics 19 

(with either fecundity or viability effects), corresponding to a minimal area of about 0.13 km2.  20 

 Table 1 summarizes our diffusion-based predictions. Note that according to these analyses, 21 

the releases at EHW and PP should certainly lead to spatial spread, but the WC release is close to 22 

minimal release area even if  is as small as 0.2. Next we address the robustness of these 23 

predictions to long-tailed dispersal and patchy spatial distributions.  24 
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Table 1. Diffusion-based predictions for spatial spread.  1 
 2 
 3 
     Unstable point Speed (m/gen)      Width (m)   Minimum Release Area (km2) 4 
 5 

= 0.2 30 400 0.13 

= 0.35 15 400 0.25-0.38a (0.5) 
These predictions assume σ  ≈ 100 m, p0 = 0.8, and 0.2 ≤  ≤ 0.35. They are based on Eq. 5, Eq. 6 
6 and Fig 3 of Barton and Turelli (2011). 7 
aThe smaller prediction (0.25) is derived with Schraiber et al. (2012) CI dynamics (2.3) assuming 8 
that wMel reduces only the fecundity of Ae. aegypti (i.e., sr = sf  in 2.3b), the larger result (0.38) 9 
assumes that wMel reduces only viability. The cubic model produces the still larger value (0.5). 10 

 11 
5.2. DTDS-based predictions 12 

 Our robustness analyses of the wave-width predictions emerging from the cubic-diffusion 13 

model indicate that σ can be reliably estimated from observed widths of traveling waves of 14 

Wolbachia infections. In contrast, our wave-speed analyses suggest that given an estimate of σ, 15 

the predicted wave speed depends significantly on the shape of dispersal with plausible speeds 16 

that may be on the order of 20-30% below the cubic-diffusion prediction c = σ (½ – ). 17 

 Our final prediction concerns spatial spread from individual localized releases. As shown in 18 

Fig 5, the critical release radius for spread depends on: 1) , the unstable point; 2) p0, the initial 19 

infection frequency produced within the release areas; 3) the shape of the dispersal function; and 20 

4) σ,  dispersal distance. As dispersal becomes more long-tailed (moving from Gaussian to 21 

ExpSqrt), the critical radius of the initial introduction decreases. If we assume that = 0.3 and 22 

p0 = 0.8, Rcrit is about 2.61σ  if dispersal is Gaussian, but falls to about 2.51σ  (or 2.16σ) if 23 

dispersal is Laplace (or ExpSqrt). Hence, for each of the three release areas in Cairns, we can ask 24 

what is the maximum σ  consistent with our deterministic predictions for spatial spread. Given 25 

that spread occurs only if the release area exceeds π σ 2, for each release area, we can 26 

approximate an upper bound on σ consistent with spatial spread by 27 

 28 
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 σ < (release area)/(πRcrit
2 ) . (5.1) 1 

 2 

Table 2 presents these upper bounds on σ associated with the three 2013 release areas in central 3 

Cairns for a plausible range of . 4 
 5 
 6 
Table 2. Predicted maximum σ  ( in meters) consistent with spatial spread.  7 

 8 
 9 
Location  Gaussian  Laplace ExpSqrt 10 
 11 
Westcourt (0.11 km2) 0.2 92 95 115 
 0.25 81 84 101 
 0.3 72 74 87 
 0.35 62 64 73 
Parramatta Park (0.52 km2) 0.35 135 140 160 
Edge Hill/Whitfield (0.97 km2) 0.35 184 191 218 
These prediction, based on inequality (10), assume that assuming that p0 = 0.8 and 0.2 ≤  ≤ 12 
0.35. 13 
 14 

 Given that very few empirical estimates of σ   for Aedes aegypti exceed 100 m, these results 15 

suggest that spatial spread should certainly be observed for the Edge Hill/Whitfield and 16 

Parramatta Park releases. The prediction for Westcourt is more ambiguous. Note that from Table 17 

1, our diffusion predictions with 0.2 ≤  ≤ 0.35 indicated a minimum release area of 0.14 km2. 18 

This lower bound assumes σ  = 100 m and  = 0.2. Thus the diffusion analyses suggested 19 

probable failure of the Westcourt release. In contrast, as shown in Fig. 5, our DTDS analyses 20 

indicate that the Westcourt release area may be near the lower limit for spread, with the outcome 21 

depending critically on the exact values of σ  and .  22 

 Empirically testing these predictions concerning minimal release areas is confounded by the 23 

fact that dynamics very close to the critical values for spread are expected to be slow. Assuming 24 

that  = 0.25, if the release area is 10% (5%) smaller than the critical value, the time for collapse 25 
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is on the order of 15-20 (20-25) generations, roughly two years. Conversely, if the release area is 1 

only 10% (5%) larger that the critical area, the time scale for appreciable spatial spread is also on 2 

the order of 15-20 (20-25) generations. In contrast, release areas twice as large as necessary 3 

should produce appreciable spread in only 10-15 generations; whereas release areas only half as 4 

large as needed should essentially collapse in 10-15 generations. These calculations motivated 5 

our analyses presented below of “optimal” release sizes aimed at area-wide coverage within a 6 

few years. 7 

 8 

6. Results: Data relevant to bistability and long-distance dispersal  9 

 10 

6.1. Heuristic approximation for   from Pyramid Estates data  11 

 Pyramid Estates (PE) was sampled for over two years after the releases stopped. The few 12 

capture sites were scattered over an area of houses that is on the order of 1 km2 with traps 13 

varying between about 100 m and 500 m from the nearest residences in our release area. For over 14 

two years, the wMel frequency in PE remained persistently low, but non-zero with  ≈ 0.106 (N 15 

= 2689, averaged over space and time). (We found no evidence that infection frequency varied 16 

with distance from the release area). For instance, a sample of 43 Ae. aegypti from the week 17 

ending 9 January 2015 yielded an infection frequency of 0.07 [with 95% binomial confidence 18 

interval (0.01, 0.19)].  From Eq. (2.9), a long-term average of 0.105 implies  ≥ 0.21. The 19 

persistence of a low infection frequency for over two years clearly demonstrates regular 20 

immigration of infected individuals that has been unable to push the local PE population past its 21 

unstable point. The fitness data from Hoffmann et al. (2014) suggest that  for wMel near Cairns 22 

is likely to be at least 0.2. This is corroborated by the transient dynamics described in Hoffmann 23 

et al. (2011) which also suggest that  is unlikely to be significantly above 0.3. 24 
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6.2. Long-tailed dispersal  1 

 Gordonvale and Yorkeys Knob are separated from other sizable populations of Ae. aegypti 2 

by kilometers. Yet, Hoffmann et al. (2014) found consistent low frequencies of uninfected 3 

individuals more than three years after wMel reached near-fixation, despite no evidence for 4 

imperfect maternal transmission. Yorkeys Knob is less isolated than Gordonvale and shows a 5 

significantly higher frequency of uninfected individuals, about 6% versus 3%. Long-distance 6 

dispersal is the most plausible explanation for uninfected individuals in Gordonvale and Yorkeys 7 

Knob – and the persistence of rare infected individuals at Pyramid Estate. 8 
 9 
7. Results: Near-optimal release strategies 10 
 11 

 We seek conditions under which releases of disease-suppressing Wolbachia transinfections 13 

achieve area-wide control of a disease such as dengue (cf. Ferguson et al. 2015) by transforming 14 

a significant fraction of the vector population, say 80%, in a relatively rapid period, say two to 15 

four years (on the order of 20-40 generations), while releasing as few Wolbachia-infected vectors 16 

as possible. We consider several questions associated with the optimizing the timing, spacing 17 

and intensity of releases. First, we contrast pulsed releases, over a time scale of very few vector 18 

generations, with prolonged low-intensity releases. Second, we consider optimizing the spacing 19 

and intensity of releases, as quantified by three parameters: a) local initial infection frequencies 20 

after releases, b) areas of local releases, and c) the spacing of releases. Third, given that 21 

optimization requires knowing parameters that can only be approximated, we consider the 22 

consequences of non-optimal releases. 23 

 24 

7.1. Timing of releases: pulse versus gradual introduction  25 

 With bistable dynamics, the frequency of an infection (or allele) must be raised above a 26 

critical threshold, , over a sufficiently large area to initiate spread. What is the most efficient 27 

way to establish an infection? At one extreme, the frequency could be raised essentially 28 
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instantaneously to some p0(x); if p0 >  over a large enough region (cf. Fig. 5), the infection will 1 

spread. At the other extreme, there might be a gradual introduction, described by a local 2 

introduction rate m(x), sustained until deterministic spread is initiated. If this input is sufficiently 3 

high over a sufficiently large region, the infection will be locally established and spread. 4 

Between these extremes, releases might be sustained for a set period of many months or a few 5 

years. Supporting Information Appendix B investigates conditions for local establishment and 6 

wave initiation, providing analytical results for a single deme and for a point source of 7 

introduction in one dimension, and numerical results for two dimensions. We show that it is most 8 

efficient to raise infection frequency rapidly, in a brief pulse, rather than making gradual 9 

introductions. This accords with the intuition that it is most efficient to raise the frequency as 10 

quickly as possible above the threshold : this maximizes the reproductive value of introduced 11 

individuals. The principle is simple; during gradual introductions, until local infection 12 

frequencies exceed , the introduced infected individuals are systematically eliminated by 13 

deterministic selection that dominates the weaker (frequency-dependent) force of CI at low 14 

Wolbachia frequencies. Assuming that releases quickly drive the local infection frequency to a 15 

value p0 sufficient to initiate spatial spread, we ask how long it might take to cover a large area 16 

and what spatial patterns of release minimize the time to reach a desired coverage. 17 

  18 

7.2. Spacing and intensity of releases.  19 

 We start with idealized analyses, then discuss their relative robustness and the effects of 20 

environmental heterogeneity. Consider an area with a relatively uniform vector density. What is 21 

the optimal release strategy? The calculations in Appendix B show that for a given number of 22 

mosquitoes, the best strategy is to release a short pulse, i.e., to essentially instantly produce a 23 

local infection frequency sufficient to initiate a wave. Obviously there are practical constraints 24 

on numbers that can be released, as well as density-dependent effects, that limit the rate of local 25 

transformation. However, empirical results of Hoffmann et al. (2011) demonstrate that patches 26 

on the order of 1 km2 can be converted to relatively high Wolbachia-infection frequencies, on the 27 
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order of 0.8, within two or three months. For simplicity, we focus on releasing Wolbachia-1 

infected mosquitoes in circular areas of radius RI that will form expanding waves. Because the 2 

expansion rate approaches zero as the release radius approaches the critical size threshold needed 3 

to produce an expanding wave, RI must exceed this critical size. We assume that because of 4 

limitations associated with density regulation and constraints on numbers released, the highest 5 

initial frequency, p0, that can plausibly be achieved in each release area is pmax < 1. We consider 6 

laying out release areas in a uniform grid with spacing D between the centers of each release.  7 

 We envision expanding waves from each release. When the waves meet, the radius of each 8 

infected patch is D/2 and the fraction of the space occupied by Wolbachia-transformed 9 

mosquitoes is π/4 = 0.785 (i.e., π(D/2)2/D2), or roughly 80%. If the waves were instantly moving 10 

at the asymptotic speed c, they would meet in (D/2 –  RI)/c time units. The actual time will be 11 

slower because the infection frequency must rise in the release area and the proper wave shape 12 

establish. Given that we can control p0  (≤ pmax), RI, and D, we can ask: what values of these three 13 

parameters produce waves that meet in a minimum time for a fixed number of mosquitoes 14 

released – and what is that time? Alternatively, we can ask what is the minimum number of 15 

mosquitoes that must be released to produce advancing waves that meet within a fixed time? 16 

Given practical constraints on achieving specific values for p0, RI, and D, we then consider how 17 

sensitive our results are to these parameters and to model assumptions concerning dynamics and 18 

dispersal. 19 

 20 

7.3. Empirically based approximations for area-wide coverage 21 

 Before addressing these questions with detailed dynamic models, we provide informative 22 

approximations from empirical results. From the data reported in Hoffmann et al. (2011) and 23 

Hoffmann et al. (2014), we know that releases of wMel-infected Aedes aegypti can be used to 24 

stably transform areas with radius roughly RI = 400 m. A Wolbachia frequency of about 80% 25 

within such release areas can be achieved in about 10 weeks (under three generations) by 26 

releasing weekly a number of adults on the order of 50-100% of the resident adult population 27 
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(Hoffmann et al. 2011; Ritchie et al. 2013). Our theoretical analyses above and in Barton and 1 

Turelli (2011) suggest that rates of spatial spread are likely to be habitat dependent. But in 2 

relatively uniform habitats, comparable our release areas near Cairns with σ  ≈ 100 3 

m/(generation)1/2 and  ≈ 0.25-0.3, we expect wave speeds on the order of 10-20 m per month. 4 

 To understand the consequences of slow spatial spread, we initially consider dividing the 5 

target region into non-overlapping D × D squares. We will determine the value of D that 6 

achieves about 80% coverage over the desired period. Suppose that at the center of each square, 7 

we release Wolbachia-infected mosquitoes over a circle of radius RI. Assume that each release 8 

initiates a wave moving c meters per generation (roughly per month). If we want the expanding 9 

circles to hit the edges of the D × D squares within T generations, the wave front must move a 10 

distance D/2 – RI in T generations. Hence, the distance between adjacent centers must be  11 

 12 

 D = 2(RI + cT).  (7.1) 13 

 14 

The fraction, F, of the target area that must be actively transformed to achieve π/4 coverage in T 15 

generations is F = πRI
2/D2, where D is given by (7.1). Thus,  16 

 17 

 F = πRI
2/[4(RI + cT)2]. (7.2) 18 

 19 

Table 3 shows how F depends on time (T, in generations), wave speed per generation (c), and the 20 

initial release radius (RI). The target times correspond roughly to one-to-four years. These 21 

approximations make sense only if the initial frequency in the release area is high enough that 22 

the asymptotic wave speed is reached within a few generations. They imply that for relatively 23 

homogeneous target areas consistent with steady spatial spread, roughly 80% can be covered in 24 

three or four years with initial releases of 0.5-1 km2 that cover about 10-30% of the target. 25 

Comparable results are obtained below from explicit dynamic models for wave initiation and 26 

spread. 27 
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 1 
 2 
Table 3. Fraction of the target area that must be actively transformed to produce about 3 
80% (π/4) coverage in T generations.  4 
 5 
 6 
RI (area) 40 generations  30 generations 20 generations 10 generations 7 
 8 
400 m (0.5 km2) 0.09-0.20 0.13-0.26 0.20-0.35 0.35-0.50  
560 m (0.99 km2) 0.13-0.27 0.18-0.33 0.27-0.43 0.43-0.57  
These calculations assume wave speed c = 10-20 m/generation starting from initial releases in 9 
circles of radius RI that produce local infection frequencies p0 near 1. 10 

 11 

 To completely cover a region as quickly as possible, a regular grid of releases is not optimal. 12 

Fig. 6 shows how rows of releases with the centers offset between adjacent rows reduces the 13 

distance each wave must travel by  – 5D/8 ≈ 0.08D. (Note that with the release 14 

configuration shown in Fig. 6, when the radii of the expanding waves reach 5D/8, the entire 15 

target area has been transformed.) The empirical relevance of such idealized release spacings is 16 

considered in the Discussion. 17 
 18 

Fig. 6. Optimal spacing. The green circles within the D × D squares represent release areas with 19 

radii RI. If the release areas were laid out on a regular grid, each expanding wave would have to 20 

travel to the corner of the enclosing square, a distance of (D / 2 ) – RI, to transform the entire 21 

target area. In contrast, by offsetting the release centers between adjacent rows, as illustrated, 22 

each wave must travel only (5D/8) – RI for area-wide transformation. 23 
 24 

7.4. Model-based approximations 25 

 Next, we reconsider the times to achieve roughly 80% coverage using explicit models for 26 

temporal and spatial dynamics. With explicit dynamics we can address various questions 27 

involving, for instance, optimal size and spacing of release areas and optimal initial frequencies 28 

in the release areas. Release areas have a major impact on subsequent dynamics. For releases 29 

D / 2
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near the minimal sizes required to initiate spread (cf. Fig. 5), dynamics will be extremely slow. 1 

In contrast, our calculations above assume that asymptotic wave speed is reached essentially 2 

instantaneously. Assuming Caspari-Watson dynamics with alternative dispersal models, we use 3 

the DTDS approximations (2.7) to describe optimal release strategies under different constraints. 4 

 5 

7.4.1. Optimal spacing and sizes of releases 6 

 For these calculations, we assume that releases occur in a fixed fraction, ρ, of the target area 7 

and that the initial Wolbachia frequency within the release areas is p0. To understand fully how 8 

mosquito releases translate into local infection frequencies, density regulation must be 9 

understood. Instead, we consider ρ and p0 as simple proxies for release effort. As above, we 10 

assume that release areas are circles of radius RI set at the centers of D ✕ D squares that cover the 11 

target area. Given ρ, the spacing D dictates the radii, RI, of the releases, with RI = D ρ /π . For 12 

fixed ρ, we seek the spacing D (or equivalently the release area) that minimizes the time until the 13 

waves meet (covering π/4 of the target area). The minimal time is denoted Tmin.  14 

 Assuming releases over 20% of the target area (ρ = 0.2) with initial infection frequencies, 15 

p0, of 0.6 or 0.8 in each release area, Table 4 presents optimal spacing for releases and the 16 

number of generations to reach 80% coverage for two plausible values of . What seems most 17 

notable is that for these parameters, the optimal release radii are only about 30-45% larger than 18 

the minimum radii needed to initiate spatial spread. With “optimal” spacing, 80% coverage is 19 

predicted in about 1.25-3.5 years, assuming about 10 generations per year. The values of Tmin are 20 

considerably smaller than those reported in Table 3, and the critical difference is that the release 21 

areas are considerably smaller. Table 3 assumes σ  = 100 m, so the release sizes are fixed at RI = 22 

4 and 5.6. The shorter times in Table 4 are associated with the fact that in principle smaller 23 

releases will suffice to start waves that relatively quickly approach their asymptotic speed. 24 
 25 
 26 
  27 
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Table 4. Optimal spacing of releases.  1 
 2 
 3 
p0 = 0.6 = 0.2 = 0.3 
 4 
Dispersal D RI Rcrit Tmin D RI Rcrit Tmin 

 5 
Gaussian 13.06 3.30 2.48 17.60 16.26 4.10 3.19 30.22 

Laplace 12.21 3.08 2.35 17.95 16.22 4.09 3.06 31.13 

ExpSqrt 11.30 2.85 1.99 19.54 15.11 3.81 2.64 34.87 

   
p0 = 0.8 = 0.2 = 0.3 
 6 
Dispersal D RI Rcrit Tmin D RI Rcrit Tmin 

 7 
Gaussian 11.26 2.86 2.05 14.17 13.43 3.39 2.61 24.26 

Laplace 10.25 2.60 1.97 14.57 13.39 3.38 2.52 25.09 

ExpSqrt 9.34 2.36 1.62 16.25 12.18 3.07 2.16 28.59 

All distances are measured in units of σ . Assuming releases over 20% of the target area (i.e., ρ = 8 
0.2 and p0 = 0.6 or 0.8), we compare the spacing, D (distance between adjacent release centers), 9 
that produces the shortest time (in generations), Tmin, required to reach 80% coverage as a 10 
function of p0, initial infection frequency in release areas,  and dispersal shape. The initial 11 
radius of these optimal releases, RI = D ρ /π , is compared to the minimum radius, Rcrit, 12 
required to initiate an expanding wave for the specified p0 and .  13 

 14 

 Table 4 shows that Tmin depends only weakly on the shape of dispersal. As expected from 15 

our speed calculations, long-tailed dispersal leads to longer wait times. Two factors contribute to 16 

this, the differences in wave speed demonstrated in Fig. 3 and the differences in the optimal 17 

spacing. With longer dispersal tails, wave speed slows down, but the optimal spacing is closer 18 

(because smaller release radii suffice to initiate spread), and these effects partially cancel. In 19 

contrast, as  increases from 0.2 to 0.3, Tmin increases by 70-80%, whereas the analytical 20 

prediction c = σ (½ – ) and the numerical results in Fig. 3 indicate that wave speed should 21 

decrease by only about 50%, at most. The additional factor explaining the discrepancy is that 22 

larger releases are needed, producing larger spacing, D, so that the waves must travel farther to 23 
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meet. Table 4 also predicts how Tmin varies with the number of infected mosquitoes released, as 1 

measured by p0. As expected, the critical spacing, D, and the minimal time, Tmin, fall as initial 2 

frequencies rise. For instance, with Gaussian dispersal and  = 0.3, (D, Tmin) fall from (13.06, 3 

17.60) with p0 = 0.6 to (10.74, 14.25) with p0 = 0.8 and to (9.36, 12.03) with p0 = 1.0. Overall, 4 

decreasing p0 from 0.8 to 0.6 leads to lengthening Tmin by a factor of 1.20-1.25. 5 

 6 

7.4.2. Optimal distribution: release area, ρ, versus initial frequency, p0. 7 

  Optimization depends on constraints. Above we assume that ρ  and p0 have been chosen, 8 

then seek the optimal spacing (or equivalently the optimal sizes for the individual release areas), 9 

conditioned on ρ, the total area over which releases will occur. An alternative is to assume that 10 

available resources dictate the number of mosquitoes that can be released, then ask whether it is 11 

more efficient to produce a low initial frequency over a large area or a higher frequency over a 12 

smaller area. In general, we expect that achieving a frequency of 0.45 requires less than half the 13 

effort required to achieve 0.9 for at least two reasons. First, density-dependence is likely to 14 

produce diminishing returns from very intensive releases (Hancock et al. 2016); and second, very 15 

high frequencies can only be achieved with repeated releases, which are less efficient than more 16 

intense releases over shorter periods. Nevertheless, if we view that product ρ p0 as proportional to 17 

total release effort, it is instructive to ask for a fixed ρ p0 what p0 achieves 80% coverage as 18 

quickly as possible?  19 

 Using all three dispersal models and  = 0.2 or 0.3, Fig. 7 plots the minimal time to achieve 20 

80% cover as a function of p0 assuming ρ p0 = 0.2. The results indicate that releases producing 21 

initial frequencies between roughly 0.5 and 0.8 are essentially equivalent, with coverage times 22 

varying less than 10%. In contrast, the considerable additional effort required to produce p0 ≥ 0.9 23 

yields slightly slower rather than faster coverage. Conversely, reaching only p0 = 0.04-0.5 24 

requires significantly larger optimal release areas and yields slower coverage. For instance, with 25 

Laplace dispersal,  = 0.3, and ρ p0 = 0.2, Tmin is achieved with RI = 4.10 for  p0 = 0.7 but RI = 26 

� 

ˆ p 

� 

ˆ p 

� 

ˆ p 



 34 

5.84 for p0 = 0.5, corresponding to roughly doubling the release areas. These results suggest that 1 

releases should aim for initial Wolbachia frequencies in the neighborhood of 60-80%. 2 
 3 
 4 

Fig. 7. Time to reach about 80% (~π/4) coverage as a function of initial frequency in the release 5 

area, p0. The calculations assume ρ p0 = 0.2. The small dots are produced with  = 0.2; the large 6 

dots with  = 0.3. Green points are for Gaussian dispersal, blue points for Laplace, and black for 7 

ExpSqrt.  8 
 9 

7.4.3. Robustness of coverage times to incomplete knowledge  10 

 Although one can propose optimal spacing and release areas for fixed ρ and p0, the optimal 11 

values are unlikely to be achieved in practice because they depend critically on two parameters, 12 

the local dispersal parameter σ and the value of the unstable equilibrium , that will be known 13 

only approximately. Moreover, the geometry of field releases will be influenced by factors such 14 

as housing density and type, barriers to wave movement, and local community acceptance. 15 

Although the fraction of the target area in which releases are initially performed, ρ, is clearly 16 

under experimental control, as is the initial frequency in those release areas, p0, it is important to 17 

understand the robustness of the minimum times presented in Table 4 and Fig. 7 to alternative 18 

release areas, RI, which are measured in units of σ. 19 

 Fig. 8 summarizes the results for all three dispersal models, assuming that we initially 20 

release over 20% of the target area (ρ = 0.2) and produce an initial infection frequency p0 = 0.8 21 

relatively rapidly. As RI departs from the optima given in Table 4, Fig. 8 shows how the time to 22 

achieve 80% coverage increases relative to Topt, the minimal time achievable. As expected from 23 

Table 4, there is a fundamental asymmetry produced by the fact that the optimal RI is typically 24 

only about 25-30% larger than the minimal release size needed to produce an expanding wave. 25 

Hence, undershooting the optimal release size by as little as 25% can lead to releases that 26 

collapse rather than expand. In contrast, for a realistic range of unstable points and all three 27 
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models of dispersal, overshooting the optimal release area by 50% increases Tπ/4 by less than 1 

20%. Even releases twice as large as optimal increase Tπ/4 by at most 43%. The clear implication 2 

is that one should use conservatively large estimates of σ  and  to design releases that will 3 

produce near-optimal results with little possibility of collapse. The practical implications of 4 

Table 4 and Fig. 7 are discussed below. 5 

 6 

Fig 8. Time to reach about 80% (~π/4) coverage, relative to the minimum time, as a function of 7 

release area. For each model, release areas are measured relative to the release area, RI(opt) , that 8 

produces Tmin for that model. The DTDS calculations assume Caspari-Watson dynamics with ρ = 9 

0.2 and p0 = 0.8. The small dots are produced with  = 0.2; the large dots with  = 0.3. Green 10 

points are for Gaussian dispersal, blue points for Laplace, and black for ExpSqrt.  11 

 12 

8. Discussion 13 

 14 

8.1 Robustness of the cubic-diffusion predictions for spatial spread 15 

8.1.1. Wave width  16 

 The point of estimating wave width is that it provides an average estimate – under natural 17 

field conditions – of the dispersal parameter σ that is central to predicting wave speed (see Eqs. 18 

2.5 and 2.6). Using discrete-time, discrete-space (DTDS) approximations with alternative models 19 

of dispersal, we have tested the robustness of diffusion-based approximations for wave speed, 20 

wave width and the size of releases needed to initiate spatial spread. The most robust prediction 21 

concerns wave width (see Eq. 2.6 and Fig. 4). For a wide range of dispersal models and 22 

parameters, wave width is observed to be within about 10% of the analytical prediction, Eq. 23 

(2.6), produced by the cubic-diffusion approximation for bistable dynamics. This implies that 24 

estimates of the dispersal parameter σ  can be obtained from data on the spatial pattern of 25 

infection frequencies after local releases. Unlike dispersal estimates obtained from short-term 26 

release-recapture experiments, estimates based on infection-frequency wave width average over 27 
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seasons and are largely free from behavioral artifacts associated with inflated population 1 

densities or the effects of lab rearing, marking or handling.  2 

 3 

8.1.2. Wave speed.  4 

 The cubic-diffusion model produces the wave-speed approximation Eq. (2.5): c = σ(½ – ) 5 

per generation, assuming complete cytoplasmic incompatibility (i.e., sh = 1 in Eq. 2.3a or 2.4a). 6 

Our DTDS calculations show that this approximation remains accurate even for the rapid local 7 

dynamics produced by complete CI if dispersal is near-Gaussian (i.e., Gaussian or Laplace in Eq. 8 

2.8) and the unstable point is below 0.4 (Fig 3B). However, for long-tailed dispersal as described 9 

by the ExpSqrt model (see Eq. 2.8c and Fig 2), spatial spread is slowed by 30-40% relative to the 10 

analytical prediction for 0.2 ≤  ≤ 0.35. Hence, if σ  is on the order of 100 m/(generation)1/2 and 11 

 is near 0.25, the predicted wave speed can drop from about 25 m/generation to about 15 12 

m/generation. The result is that with about 10 Ae. aegypti generations per year, wMel is expected 13 

to spread through natural populations of Ae. aegypti at a rate nearly three orders of magnitude 14 

slower than the 100 km/year rate at which wRi spread through D. simulans populations in 15 

California and eastern Australia. 16 

 17 

8.1.3. Wave initiation 18 

 Finally, our DTDS calculations indicate that the cubic-diffusion approximations for the 19 

minimum radii of release areas from Barton and Turelli (2011) are likely to be significant 20 

overestimates, especially if fitness is reduced primarily through fecundity. Fig. 5 shows that the 21 

diffusion approximation may overestimate minimum release sizes by a factor of two for 0.2 ≤  22 

≤ 0.35 (as noted in Section 4.3, most of this discrepancy is attributable to using a model that 23 

explicitly models Wolbachia dynamics, assuming that the cost of transinfections is mainly 24 

associated with a fecundity reduction). In general, for fixed σ, smaller releases will initiate 25 

spatial spread when dispersal is more long-tailed. With σ  ≈ 100 m/(generation)1/2, releases that 26 

produce initial frequencies of 0.8 over about 0.13 km2 should suffice to initiate spatial spread, 27 
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assuming that  ≤ 0.3. However, near this minimum, expansion (or collapse) is expected to be 1 

extremely slow, easily on the order of two years. 2 

 3 

8.2. Predictions for 2013 Cairns releases 4 

 In 2013, the wMel releases in the Edgehill/Whitfield (EHW) and Parramatta Park (PP) 5 

regions of Cairns quickly produced infection frequencies about 0.8 within the release areas (S. L. 6 

O’Neill, pers. comm.). Given that these sites are roughly 0.97 km2 (EHW) and 0.52 km2 (PP), we 7 

expect spatial spread of the infection from both release areas. Assuming σ  ≈ 100 8 

m/(generation)1/2 (corresponding to wave width on the order of 400 m), our analyses predict 9 

spread on the order of 10-25 m/generation, assuming  ≈ 0.25. In contrast, the Westcourt (WC) 10 

release encompassed only 0.11 km2, very close to the critical value that separates expected local 11 

establishment from collapse, assuming  ≈ 0.25 and 100 m/(generation)1/2 (see Table 2 for 12 

additional details). Given the slow rate of change expected near this threshold, considerable 13 

replication of such small releases would be required to convert our ambiguous prediction into a 14 

rigorous test. In contrast to the difficulty of testing our predictions concerning the minimum sizes 15 

of releases, our wave-speed and wave-width predictions can be easily compared to empirical data 16 

from urban field releases. The “Eliminate Dengue” project is currently preparing the data from 17 

the 2013 Cairns releases for publication. 18 

  19 

8.3 Bistability for Wolbachia transinfections but probably not for natural infections 20 

8.3.1. Background  21 

 Early proposals by O’Neill and his collaborators (e.g., Sinkins et al. 1997) to transform 22 

natural populations with introduced Wolbachia were motivated at least in part by the belief that 23 

even fitness-decreasing infections might spread rapidly in nature, driven by the force of 24 

cytoplasmic incompatibility (Turelli and Hoffmann 1991, 1995). However, the rapid spatial 25 

spread of natural Wolbachia infections in Drosophila now seems dependent on net fitness 26 

advantages, previously unknown – and still not fully understood, that allow them to increase 27 
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systematically in frequency even when they are so rare that cytoplasmic incompatibility provides 1 

no appreciable benefit (Fenton et al. 2011; Kriesner et al. 2013; Hamm et al. 2014). For 2 

Wolbachia infections that tend to increase when rare, occasional long-distance dispersal events 3 

can allow them to establish locally, spread and coalesce with other propagules, speeding their 4 

spatial spread far beyond what might be expected from more typical dispersal. Bistable 5 

dynamics, as produced by the appreciable fitness costs associated with wMel-infected Aedes 6 

aegypti in Australia, restrict spatial spread to speeds set by average dispersal. Moreover, 7 

bistability sets a fundamental constraint on which transinfections might ever spread. S. L. 8 

O’Neill’s “Eliminate Dengue” project (http://www.eliminatedengue.com/program) initially 9 

proposed introducing the life-shortening Wolbachia, wMelPop, into Ae. aegypti to greatly reduce 10 

the frequency of females old enough to transmit dengue virus. However, the fitness costs 11 

associated with wMelPop in Ae. aegypti produced an unstable infection frequency far above 0.5, 12 

precluding spatial spread (Barton 1979; Turelli 2010; Walker et al. 2011; Barton and Turelli 13 

2011). 14 

 Turelli and Hoffmann (1991) proposed bistable dynamics to describe the northward spread 15 

of Wolbachia variant wRi through California populations of D. simulans. The rationale for 16 

bistability was that the frequency-dependent advantage associated with CI seemed to be 17 

counteracted at low frequencies by two factors: imperfect maternal transmission, whereby a few 18 

percent of the ova produced by infected mothers were uninfected (Hoffmann et al. 1990; Turelli 19 

and Hoffmann 1995; Carrington et al. 2011); and reduced fecundity for infected females, with a 20 

10-20% fecundity disadvantage observed in the lab (Hoffmann and Turelli 1988, Hoffmann et al. 21 

1990; Nigro and Prout 1990) and a smaller, but statistically significant, fecundity disadvantage 22 

observed once in nature (Turelli and Hoffmann 1995).   23 

 The generality of bistable frequency dynamics for natural Wolbachia infections was brought 24 

into question by two infections found first in Australia that cause little (wMel in D. 25 

melanogaster, Hoffmann 1988; Hoffmann et al. 1998) or no (wAu in D. simulans, Hoffmann et 26 

al. 1996) CI or other reproductive manipulation (Hoffmann and Turelli 1997). It was 27 
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subsequently discovered that these Wolbachia nevertheless spread in nature. First noted was a 1 

turnover of Wolbachia variants among global populations of D. melanogaster (Riegler et al. 2 

2005; Richardson et al. 2012), even though none of these variants cause appreciable CI when 3 

males are more than a few days old (Reynolds and Hoffmann 2002; Harcombe and Hoffmann 4 

2004). Similarly, Wolbachia variant wAu, which does not cause CI in D. simulans (Hoffmann et 5 

al. 1996), was found spreading to intermediate frequencies through D. simulans populations in 6 

eastern Australia, despite imperfect maternal transmission (Kriesner et al. 2013). The spread of 7 

wAu was followed by the spread of wRi through these same populations, beginning from three 8 

widely separated geographical locations (Kriesner et al. 2013). Although spread of bistable 9 

Wolbachia could in principle be initiated by chance fluctuations (Jansen et al. 2008), a net fitness 10 

advantage that counteracts imperfect transmission seems far more plausible (Hoffmann and 11 

Turelli 1997; Fenton et al. 2011; Hamm et al. 2014). The observed rate of spread for wRi, 12 

approximately 100 km/yr., in both California and eastern Australia, is easy to understand only if 13 

long-distance, human-mediated dispersal can establish local infections that spread and coalesce 14 

(see Shigesada and Kawasaki 1997, Ch. 5). Such rapid expansion is implausible if local 15 

introductions must be sufficiently extensive to exceed initial area and frequency thresholds 16 

imposed by bistability (Lewis and Kareiva 1993; Soboleva et al. 2003; Alrock et al. 2011; Barton 17 

and Turelli 2011). With bistability, spatial spread is likely to be limited by the relatively slow 18 

processes of active insect dispersal. As demonstrated below, this indicates that the spread of 19 

transinfections with bistable dynamics in Ae. aegypti will be orders of magnitude slower than the 20 

100 km/year observed for wRi in California and Australia populations of D. simulans. 21 

 A net fitness benefit for natural Wolbachia infections helps explain the persistence and 22 

spread of Wolbachia variants, such as wAu and wMel, that do not cause appreciable CI in their 23 

native Drosophila hosts. A net fitness benefit, so that the relative fitness of infected females, F, 24 

and their maternal transmission rate, l – µ, satisfy F(1 – µ) > 1, would also help explain the 25 

extraordinarily rapid human-mediated spatial spread of wRi in both California and Australia. 26 

Mitochondrial data reported in Kriesner et al. (2013) suggest that wRi spread northward in 27 
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California shortly after it was introduced to southern California, rather than being stalled by a 1 

transverse mountain range, as might be expected with bistability (cf. Turelli and Hoffmann 2 

1995). Several fitness advantages have been proposed to counteract imperfect transmission and 3 

possible fecundity disadvantages, including nutritional effects (Brownlie et al. 2009; Gill et al. 4 

2014) and microbe protection (Hedges et al. 2008; Teixeira et al. 2008).  5 

 These arguments against bistability for natural Wolbachia infections may suggest that 6 

intrinsic fitness advantages, together with CI, could lead to rapid spread of disease-suppressing 7 

Wolbachia transinfections in nature from minimal introductions. The data we discuss in Section 8 

6 argue strongly against this. 9 

 10 

8.3.2. New evidence for bistability of transinfections   11 

 Based on the theory in Barton and Turelli (2011) and the expectation that few mosquitoes 12 

would cross the highway, Hoffmann et al. (2011) predicted that “Unless fitness costs are 13 

essentially zero or there are unexpected fitness benefits, we do not expect the infection to spread 14 

further …” Four years later, wMel has not become established in PE despite repeated 15 

immigration. An adaptation of Haldane’s (1930) island model, Eq. (2.9), indicates a lower bound 16 

on the unstable equilibrium, , of about 0.21. This local frequency threshold for population 17 

transformation appreciably slows the predicted rate of spatial spread, as indicated by Eq. (2.5).  18 

 Our new data and analyses bolster previous evidence for bistability. In Hoffmann et al. 19 

(2011), an informal quantitative analysis of the rising frequency of wMel in response to several 20 

weekly releases indicated fitness costs on the order of 20%. However, the frequency data could 21 

not distinguish fitness costs associated with laboratory rearing from reduced fitness intrinsic to 22 

the Wolbachia transinfection. Two years later, Hoffmann et al. (2014) resampled these stably 23 

transformed populations and determined that the infected females produced about 20% fewer 24 

eggs under laboratory conditions, suggesting that  ≥ 0.2. As a consequence of bistability, the 25 

rate of spatial spread is limited by natural dispersal ability, with a maximum speed bounded 26 

above by σ/2 per generation, where σ is the dispersal parameter discussed below. In particular, 27 
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bistability precludes very rapid spatial spread based on long-distance, human-mediated dispersal. 1 

Even when large numbers are transported by accident, the area transformed would be unlikely to 2 

exceed the minimum size needed to initiate spatial spread (Fig. 4). 3 

 The unstable equilibrium frequency, , is a useful abstraction that captures key features of 4 

the complex frequency dynamics of Wolbachia transinfections. The true dynamics are 5 

multidimensional (Turelli 2010; Zheng et al. 2014) and depend on age-specific effects as well as 6 

ecological factors, such as intraspecific density-dependence (Hancock et al. 2011a,b; Hancock et 7 

al. 2016) and interaction with other insects and microbes (Fenton et al. 2011). However, a full 8 

description of this biology would involve many parameters that would have to be estimated in 9 

each locale. We doubt that these parameters could be estimated accurately enough for more 10 

realistic models to produce better predictions that our simple two-parameter approximations. Our 11 

idealized models of frequency dynamics produce field-testable predictions and empirically useful 12 

guidance for field releases. 13 

 14 

8.4. Consequences of patchy population structure with bistable dynamics 15 

 We have assumed throughout a uniform population density and dispersal rate. In reality, 16 

habitat heterogeneity may slow – or stop – the spread of a wave. If increase is expected from low 17 

frequencies, then a few long-range migrants can take the infection beyond a local barrier. We 18 

expect this has happened repeatedly with the observed spread of wAu and wRi in Drosophila 19 

simulans (cf. Coyne et al. 1982; Coyne et al. 1987; Kriesner et al. 2013). Similarly, many 20 

episodes of successful long-distance dispersal and local establishment must underlie the global 21 

spread of Aedes aegypti out of Africa (Brown et al. 2011). However, bistability, as expected for 22 

the wMel infection in Ae. aegypti, implies that infection spread can be stopped indefinitely, as 23 

seems to be the case with Pyramid Estate/Gordonvale near Cairns. Barton and Turelli (2011, Eq. 24 

20) gave a simple result that shows how a gradient in population density alters wave speed: 25 

regardless of the detailed dynamics, a gradient in log density will slow (or accelerate) a travelling 26 

wave by σ2d(log(ρ(x))/dx, where ρ(x) denotes the population density at x. However, such a 27 
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gradient must be sustained over a sufficient distance. Local heterogeneities, such as those due to 1 

the spacing between discrete demes (e.g., individual households harboring Ae. aegypti), have a 2 

negligible effect if they are over a shorter scale than the width of the wave (Barton 1979, p. 357).  3 

 In contrast, when the wave encounters a significant barrier, such as the highway separating 4 

Pyramid Estate from Gordonvale, we can understand wave stopping either in terms of sharp 5 

breaks in density, as considered in Fig. 6 of Barton and Turelli (2011), or in terms of migration 6 

from an infected population into an uninfected population. The latter produces a lower bound on 7 

immigration rate needed to “flip” the uninfected population past the unstable point, as discussed 8 

above Eq. 1. Because large tropical cities that are the targets of control efforts for arboviruses 9 

such as dengue and Zika are filled with significant dispersal barriers, we have not considered 10 

release schemes more elaborate than regularly spaced, equal-sized release foci. Nevertheless, we 11 

hope these abstractions accurately indicate the potential for area-wide control with plausible 12 

effort over a span of a few years. 13 

 14 

8.5. Practical guidelines for field releases 15 

 When the “Eliminate Dengue” program initially obtained Gates Foundation “Grand 16 

Challenges” funding in 2006, the extraordinarily rapid spread of wRi through California 17 

populations of D. simulans provided a plausible paradigm supporting the conjecture that natural 18 

Ae. aegypti populations could be rapidly transformed with disease-suppressing Wolbachia. The 19 

D. simulans paradigm also suggested that very few local introductions could lead to area-wide 20 

transformation within a few years for large metropolitan areas with relatively continuous Ae. 21 

aegypti habitat. Unfortunately, this rapid-spread paradigm, which remains demonstrably true for 22 

natural Wolbachia infections (Kriesner et al. 2013), now seems clearly inapplicable to Wolbachia 23 

transinfections that significantly reduce the fitness of their Ae. aegypti hosts. More plausible 24 

rates of spatial spread seem to be at most 0.25 km per year, and even those slow rates are 25 

expected only in near-continuous habitats. From our analysis of the Pyramid Estate data, it seems 26 

that barriers on the order of 100-200 m, such as highways, will suffice to halt spread. Hence, it is 27 
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reasonable to ask whether spatial spread can play a significant role in achieving area-wide 1 

coverage over a time scale of a few years. 2 

 A central question is whether real urban/suburban landscapes provide enough nearly-3 

continuous habitat to apply our optimal – or near-optimal – release designs, involving a series of 4 

releases set out in grids. We have showcased an empirical example in which wMel has 5 

apparently not been able to cross a highway. We do not yet know enough to characterize a priori 6 

the barriers that will halt wMel spread. What is clear is that area-wide control over just a few 7 

years will require many release areas. We can offer simple guidance based on our mathematical 8 

results and the population biology of vector-borne disease transmission. Given that spatial spread 9 

will preferentially occur from high-density areas to low-density areas, a guiding principle is that 10 

releases should initially occur in areas that support the highest Ae. aegypti densities. Because 11 

disease transmission is proportional to vector density, these areas are the natural targets for initial 12 

control efforts.  13 

 Our calculations provide more detailed guidance concerning the size of individual releases, 14 

their spacing, and the initial infection frequencies that should be achieved. Fig. 7 shows that for a 15 

wide range of parameters, releases need not produce initial frequencies above 0.6. Indeed, the 16 

effort to achieve much higher initial frequencies may produce slightly slower area-wide 17 

coverage, if a fixed fraction of the local mosquito population is initially replaced. As 18 

demonstrated by Fig. 7, overshooting optimal release areas even by a factor of two should 19 

increase the time to produce large-scale coverage by at most 50%. In contrast, Table 2 shows that 20 

“optimal” release areas are often only twice as large as the minimal release areas needed to 21 

initiate spread (corresponding to RI/Rcrit = √2 in Table 2). Thus, release areas should be based on 22 

conservatively large estimates of σ   and . Assuming σ ≤ 120 m/gen1/2 and  ≤ 0.3, individual 23 

releases on the order of 1 km2, producing initial frequencies of 60-80%, should generally suffice 24 

to guarantee local spread, assuming that the surrounding habitat has population densities 25 

comparable to or lower than the release area. If the habitat is sufficiently homogeneous, covering 26 
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only about a third of the target area with such releases should produce about 80% coverage in 1 

less than three years.  2 

 All of our guidelines are predicated on  ≤  0.35. The lower the unstable point the better. 3 

But if there is any significant cost of Wolbachia transinfections, so that  ≥ 0.1, wave speed is 4 

likely to bounded above by σ/2. Although spatial spread of low-  variants is unlikely to be 5 

significantly aided by occasional long-distance dispersal, the spread of such variants is far less 6 

likely to be stopped by minor barriers to dispersal. As shown in Fig. 6 of Barton and Turelli 7 

(2011), step-increases in population density of just over two-fold will stop the spatial spread of a 8 

transinfection that produces  = 0.25; whereas an increase greater than five-fold is needed to 9 

stop a variant with  = 0.1.  10 

 Given that only two Wolbachia transfections of Ae. aegypti have been released in nature in 11 

population transformation efforts, we don’t know whether there are Wolbachia variants that can 12 

provide effective virus-blocking and produce low fitness costs. In preliminary analyses, high 13 

Wolbachia titer is associated with better virus blocking and also lower fitness of infected hosts 14 

(Walker et al. 2011; Martinez et al. 2015). Among Wolbachia found in Drosophila species and 15 

transferred into D. simulans, the relationships between titer and measures of fitness loss and 16 

virus protection are both highly significant; but they explain only about half of the variation 17 

observed in each trait. Hence, it seems likely that further exploration of Wolbachia variation in 18 

nature could uncover high-protection, low-fitness-cost variants.  19 

 Despite the fact that the wMel variant currently being released will spread very slowly and 20 

may be relatively easily stopped by barriers to dispersal, it still offers significant benefits over 21 

disease-control strategies like insecticide application and sterile-male release (or release of CI-22 

causing males) that require continual applications to suppress local vector populations (McGraw 23 

and O’Neill 2013). As shown by Hoffmann et al. (2014), transformations of isolated populations 24 

with Wolbachia remain stable. Similarly, for sufficiently large local releases, we expect local 25 

Wolbachia introductions to at least persist and probably slowly expand as long as the 26 

surrounding areas do not harbor significantly higher Ae. aegypti densities. Even if half of a large 27 
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area has to be actively transformed to achieve area-wide control, this will only have to be done 1 

once. We do not know how long-lasting dengue-blocking by wMel or other transinfections will 2 

be, but the comparative evidence from natural Wolbachia infections suggests that it should 3 

persist for at least a decade or more (Bull and Turelli 2013), a time-scale over which effective 4 

vaccines may well become available (Screaton et al. 2015). 5 

 6 
8.6. Final comment: reversibility versus re-transformation 7 

 Population transformation carries a potential risk of unintended consequences (Bull and 8 

Turelli 2013). For instance, a Wolbachia strain that inhibits the transmission of one disease may 9 

in principle enhance the transmission of another (cf. Martinez et al. 2014). Hence, it is interesting 10 

to ask whether an introduced Wolbachia can be “recalled”, returning the population to its initial 11 

uninfected state. In principle, this could be done by swamping the population with uninfected 12 

individuals so that the infection frequency falls below . However, given the tendency of 13 

variants with  < 0.5 to spread spatially, this swamping strategy seems implausible outside of 14 

relatively small isolated populations. However, it seems more plausible to re-transform the 15 

population with a more desirable Wolbachia variant that shows unidirectional incompatibility 16 

with the first. For example, when Wolbachia wMel is introduced from D. melanogaster into D. 17 

simulans, which is naturally infected by wRi, the wMel-infected females are incompatible with 18 

wRi infected males, whereas wRi females are protected from the incompatibility that wMel 19 

induces against uninfected females (Poinsot et al. 1998). Thus if a population has been 20 

transformed with wMel, it could in principle be transformed again by introducing wRi. The hit-21 

and-miss process of identifying Wolbachia strains in nature with the desired properties is likely 22 

to be greatly accelerated as we begin to understand the loci within Wolbachia that cause CI (see 23 

Beckmann and Fallon 2013; LePage et al. 2017; Beckmann et al. 2017).  24 
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Fig. 1. Transient dynamics of wave position and wave width from numerical solutions of the 

two-dimension version of diffusion model (2.1) with cubic dynamics (2.2), sh = 1 and  = 0.25. 

The calculations assume circular introductions with radial symmetry and initial frequency p(R) = 

0.8/{1 + exp[4(R – 3)/v]} for v = 0.8 and 8. Setting v = 0.8 produces an abrupt drop in the initial 

frequency from 0.75 to 0.05 over roughly R = 2.5 to R = 3.5; with v = 8, the initial frequency 

drops from 0.65 at R = 0 to 0.25 at R = 4.6. The left panel shows wave position measured as the 

point of maximum slope, the right panel shows the width, measured as the inverse of the 

maximum slope (see Eq. (2.6)). The dotted curves correspond to v = 0.8, modeling a rapid 

introduction in a confined area. This produces a faster approach to the expected asymptotic speed 

of 0.25. Both initial conditions, one with narrower width than the asymptotic value of four, the 

other wider, approach the asymptotic width of four within 7-10 generations. 
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Fig. 2. Alternative dispersal models with σ = 1. The three models are: Gaussian (blue), Laplace 

(green), and ExpSqrt (red) as described by (9). Each describes the probability, denoted m(x) in 

the figure, of moving distance x along any axis. 
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Fig. 3. Wave speed. Speed calculated from DSDT analyses compared to the cubic-based 

diffusion prediction, c = σ (½ – ), as a function of , for sh = 0.2 (left) and sh = 1 (right).  

The green dots were produced with Gaussian dispersal, blue with Laplace and black with 

Exponential Square root (ExpSqrt). 
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Fig. 4. Wave width. Wave width as a function of  calculated using discrete-time, discrete-space 

(DTDS) analyses with alternative dispersal models. The dots from the DTDS analyses are 

compared to the diffusion prediction (w = 1/Max(|∂p/∂x|) = 4σ/ , red line) for sh = 0.2 (left) 

and sh = 1 (right). The green dots were produced with Gaussian dispersal, blue with Laplace and 

black with Exponential Square root (ExpSqrt). 
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Fig 5. Critical radius, Rcrit, assuming complete CI and alternative dynamics.  The upper points 

reproduce the diffusion results from Barton and Turelli (2011) with cubic (red curve) and 

Schraiber et al. (2012) CI dynamics. The red curve shows the cubic-diffusion predictions with p0 

= 0.8, the large blue dots are the cubic with p0 = 0.6. The small red (blue) dots are produced by 

the diffusion analysis of Schraiber et al. (2012) CI dynamics with p0 = 0.8 (p0 = 0.6), assuming 

only viability fitness costs. The lower points and curves show our DTDS predictions as a 

function of  and the initial infection frequency (p0) with alternative dispersal models. The 

lower lines correspond to p0 = 0.8 with Gaussian (green), Laplace (blue) and ExpSqrt (black) 

dispersal. The points above and below these lines correspond to p0 = 0.6 and p0 = 1, respectively. 
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Fig. 6. Optimal spacing. The green circles within the D × D squares 
represent release areas with radii RI. If the release areas were laid out on 
a regular grid, each expanding wave would have to travel to the corner 
of the enclosing square, a distance of – RI, to transform the entire target 
area. In contrast, by offsetting the release centers between adjacent rows, 
as illustrated, each wave must travel only 5D/8 – RI for area-wide 
transformation.
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Fig. 7. Time to reach about 80% (~π/4) coverage as a function of initial frequency in the release 

area, p0. The calculations assume ρ p0 = 0.2. The small dots are produced with  = 0.2; the large 

dots with  = 0.3. Green points are for Gaussian dispersal, blue points for Laplace, and black for 

ExpSqrt.  

 

--- (single column) --- 
 

●

● ● ● ● ● ●

●

● ● ● ● ● ●

●

● ● ● ● ● ●

●
● ● ● ● ● ●

●
● ● ● ● ● ●

● ● ● ● ● ● ●

0.4 0.5 0.6 0.7 0.8 0.9 1.0
p0

5

10

15

20

25

Tmin

� 

ˆ p 

� 

ˆ p 



 

 

Fig 8. Time to reach about 80% (~π/4) coverage, relative to the minimum time, as a function of 

release area. For each model, release areas are measured relative to the release area, RI(opt) , that 

produces Tmin for that model. The DTDS calculations assume Caspari-Watson dynamics with ρ = 

0.2 and p0 = 0.8. The small dots are produced with  = 0.2; the large dots with  = 0.3. Green 

points are for Gaussian dispersal, blue points for Laplace, and black for ExpSqrt. 
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Appendix A: Effect of dispersal pattern and random 
fluctuations on travelling waves

Ultimately, populations consist of reproducing individuals.  In continuous space, they may be approxi-
mated by determinsitic integro-difference equations (IDE; Wang et al. 2002) in which allele frequencies 
or species density is taken to be cointinuous through space:

pt[x] =  ϕ[x, y] g[pt-−1[y]] ⅆy (1)

where ϕ𝜑[x, y] is the probability of moving from y to x� .  If change is sufficiently slow, and dispersal 
local, then this may be further approximated by a spatial diffusion, continuous in time, t, as well as 
space, x:

∂tp =
σ2

2

∂2p

∂x2
+ f[p] (2)

where f [p] = g[p] -− p, and σ𝜎2 = ∫ϕ𝜑[ϵ𝜀] ϵ𝜀2 ⅆϵ𝜀 is the variance of dispersal distance.  In the following numeri-
cal examples, we divide the habitat into discrete demes, and simulate a discrete stepping-stone model.  
However, we choose a large enough dispersal range that the deme spacing has negligible effect.

Under the diffusion approximation, the direction of movement is determined by whether the net rate of 
increase, ∫0

1f [p] ⅆp, is positive or negative.  This simple result carries over to IDE models, and is indepen-
dent of the form of dispersal, ϕ𝜑, provided that dispersal is symmetric.  In stochastic models, the extent 
of spread (as measured by ∫pⅆx, say) varies randomly, but the expected rate of spread still follows the 
same rule. 

There is a qualitative distinction between two kinds of wave: pushed versus pulled (Stokes 1976).  If 
f [p] ≥ pf '[0] for some 0 < p < 1, then there will be a travelling wave that is pushed by increase within its 
bulk, and so which is insensitive to long-range dispersal, or to random fluctuations. With random sam-
pling drift or demographic stochasticity, the variance in position increases by ~ 1

N  in one dimension, 
where population density is N.  In contrast, if f < pf '[0] everywhere, then the wave is pulled at a rate 
determined by the individuals at the advancing front; individuals behind the wave almost all descend 
from this small fraction (Brunet et al. 2006).  Now, the spread of the wave is sensitive to the form of long-
range dispersal, and to the population density.  Provided that the dispersal distribution is bounded by an 
exponential, the wave will settle to a steady shape, with a speed that depends only on the growth rate 
from low density; random fluctuations will slow it by an amount that depends logarithmically on density 
(Brunet et al. 2006). If the rate of long-range dispersal is faster than exponential, then the wave will 
accelerate, though again, random fluctuation will limit this acceleration, and cause the wave to fragment.

Effect of dispersal distribution on wave speed: deterministic models 
We illustrate these points using the simple cubic model:

f[p] =
s

2
pq (p -− q + α) = spq p -− p/ (3)

where p + q = 1.  Note that the model only makes sense for sufficiently small s : it can be taken as a 
weak-selection approximation to a variety of more detailed models (Barton and Turelli, 2011).  However, 
it is accurate even for quite large s, and so we take it as a surrogate for a much wider class of models.

Because we will be considering the case p/ < 0, it is more natural to use the parameter α𝛼 in this section. 
Without loss of generality, we assume p/ < 1

2 , or α𝛼 = 1 -− 2 p/ > 0.  If p/ > 0, α𝛼 < 1, there is an unstable 
equilibrium, whereas if p/ < 0, α𝛼 > 1, the allele can increase from low frequency.  (p/ = 0  represents 
selection on a strictly recessive allele).  If α𝛼 < 3 or p/ > -−1, then f [p] ≥ pf '[0] for some p, and so a pushed 

wave solution exists.  However, a pulled solution also exists, with speed c = σ𝜎α𝛼 s /∕4 . The transition 
between a pulled and pushed wave occurs when the speeds of the two solutions intersect, at α𝛼 = 2, or 

p/ = -− 1
2 . For larger α𝛼, the deterministic solution is "pulled", with speed c = σ𝜎 s(α𝛼 -− 1) = σ𝜎 2 s-−p/  

(Fisher 1937).  
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Figure 1 shows how the wave speed increases with α𝛼, measured relative to the prediction for a pushed 

wave, α𝛼σ𝜎 s /∕4  (horizontal line).  For Gaussian dispersal, the speed is very close to the diffusion 

approximation for α𝛼<2, and close to the prediction for a pulled wave, c = σ𝜎 s(α𝛼 -− 1) , for α𝛼 > 2 (see 
below).  A reflected exponential (“Laplace”) distribution, which has substantially fatter tails, is also close 
to the diffusion approximation for a pulled wave (blue dots to right), but is slightly slower than predicted 
for a pushed wave for α𝛼<1.  This is because genes that move a long way will be at a selective disadvan-
tage, and so will be lost: the wave speed depends on the shape of the bulk of the dispersal kernel, 
which for a given variance, is narrower than a Gaussian (Fig. 2).  The exponential square root distribu-
tion has even fatter tails, and shows a correspondingly slower speed for α𝛼<1.  For α𝛼≥2, this fat-tailed 
distribution gives a higher speed, but still settles to a travelling wave with constant speed.  This is at first 
puzzling, since distributions with fatter than exponential tails are predicted to give an accelerating wave.  
However, numerical calculations were made with a dispersal distribution truncated at ± 20 demes, or 
±10 standard deviations (black dots).  If this truncation is increased to 50 or 100 demes (purple and red 
dots), this makes little difference to the wave speed for α𝛼 < 1 (speeds are indistinguishable for α𝛼<1), but 
substantially increases the speed for α𝛼 > 1, as predicted.  However, the speed is only increased by ~ 
20% even when individuals can disperse out to 100 demes, or ± 50σ𝜎.  Moreover, even for the exponen-
tial square root distribution, only an extremely small fraction of the distribution is excluded by truncation 
at 25σ𝜎. Arguably, it would be unrealistic to calculate for yet longer tails, since real ranges are finite, and 
since over such large distances, stochastic effects will dominate even in very large populations, as we 
discuss below.

Figure 1.  Wave speed, c, relative to that expected for a pushed wave, α𝛼σ𝜎 s /∕4 , is plotted against 
α𝛼 = 1 -− 2 p/.  The horizontal line at 1 is the expectation for a pushed wave, whilst the downward curve at 

the right is the ratio expected for a pulled wave, whose speed is c=σ𝜎 s(α𝛼 -− 1) .  Dots show numerical 
calculations for three forms of dispersal: Gaussian (green), Laplace (blue), and exponential square root 
(black); the dispersal distribution is truncated at ±20 demes, and the standard deviation adjusted to 
equal σ𝜎=2.  For the exponential square root, results are also shown for truncation at ±50 demes (purple) 
and ±100 demes (red). The selection coefficient is adjusted so that the maximum rate of change is 
always 0.025; this is equivalent to constant directional selection of s = 20%.  With these parameters, the 
deme spacing has negligible effect.
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Table 1.  The mass and the fraction of the total variance  that is excluded by truncating distributions at 
10σ𝜎 (Fig. 1, green, blue, black), 25σ𝜎 (Fig. 1, purple) and 50σ𝜎 (Fig. 1, red).

Gaussian Laplace ExpSqrt

10 σ mass
variance

1.52397 × 10-−23

1.55416 × 10-−21
7.21354 × 10-−7

0.0000830583
0.000326548
0.0513746

25 σ mass
variance

6.11339 × 10-−138

3.83308 × 10-−135
4.41948 × 10-−16

2.92285 × 10-−13
1.14081 × 10-−6

0.000934673

50 σ mass
variance

0.
0.

1.95318 × 10-−31

5.02302 × 10-−28
1.67283 × 10-−9

5.03447 × 10-−6

Wave speed with infinite variance
In Fig. 1, we compared dispersal distributions that were scaled to have the same variance.  This 
approach fails for distributions such as the Cauchy, that fall away so slowly that they have infinite 
variance.  However, we can find the Cauchy distribution that yields the same wave speed as a Gaus-
sian with (say) σ𝜎 = 2 (Fig. 3).  On an infinite range, a Cauchy distribution leads to a wave with ever-
increasing speed. However, the Cauchy distribution must necessarily be truncated for numerical calcula-
tions, and for any given truncation point, the wave does settle to a steady speed, which can be matched 
to that of a Gaussian.  Figure 3 plots the standard deviation of the truncated Cauchy against α𝛼 = 1 -− 2 p/, 
for truncation at 10σ𝜎 … 100σ𝜎 (black … red dots). For pushed waves (α𝛼 < 2), fat tails slow down the 
wave, because long-distance migrants are lost, and so the truncated Cauchy must have a higher vari-
ance to maintain the same speed (α𝛼 < 2, left of Fig. 3).  For a pulled wave, however, a truncated 
Cauchy with a very small variance can maintain high speed, provided that it is truncated sufficiently far 
out.  In the most extreme case shown here (truncation at 100σ𝜎, α𝛼=4; bottom right of Fig. 3),  0nly a 
fraction 7.9*⋆10-−8 disperse away from their native deme, contributing variance ~10-−5, and yet this main-
tains a wave with the same speed as Gaussian dispersal with standard deviation σ𝜎=2.  (Note that for 
these extreme cases, the choice of deme spacing does affect the results, though not qualitatively).
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tains a wave with the same speed as Gaussian dispersal with standard deviation σ𝜎=2.  (Note that for 
these extreme cases, the choice of deme spacing does affect the results, though not qualitatively).

Figure 2. The standard deviation, σ𝜎*⋆, of the truncated Cauchy distribution that gives the same speed as 
a Gaussian with σ𝜎=2 (horizontal line); this is plotted against α𝛼.  The distribution is truncated at 10σ𝜎, 
25σ𝜎, 50σ𝜎, 75σ𝜎, 100σ𝜎 (black, blue, brown, purple, red).
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Random fluctuations
With long-tailed dispersal, deterministic models are misleading, because the numbers of long-range 
migrants will be small even in very dense populations.   Indeed, even with Gaussian dispersal, finite 
population size has an appreciable effect  on the speed of a pulled wave, because the dynamics 
depend on regions where alleles or individuals are very rare.  Here, we simulate a finite population on 
an infinite range.  The population is represented as a list of the numbers of the focal allele in each 
deme; all demes to the left are assumed to be fixed, and all to the right are assumed to be at zero.  In 
each generation, and in each deme, there is selection followed by random sampling of 2N genes, 
following the Wright-Fisher model.  Dispersal is implemented as follows.  For each of the np demes that 
are currently polymorphic, the 2N genes are drawn from a parent population according to the dispersal 
function; the continuous dispersal distribution is rounded to the nearest integer. (For σ𝜎=2, as used here, 
this causes negligible error).  These genes can be from arbitrarily far away.  The same procedure is 
followed for 1000 demes to the left of the current set, and 1000 demes to the right.  Finally, the list is 
trimmed to remove fixed demes on the left and on the right (but tracking the location of the leftmost 
polymorphic deme, which will tend to move to the right as the wave advances.  This scheme is 
extremely efficient, since the random distances moved can be taken as a single draw of 2Nnp random 
numbers from the dispersal distribution.  The only approximations are that individuals live on a discrete 
grid, and that only ±1000 demes are followed on either side.

Table 2 summarises the effects of finite population size.  For a pushed wave (α𝛼=0.5), random drift has 
little effect, unless deme size is very small (2 N = 5).  For a pulled wave, there is a substantial slowing, 
even for demes of 2 N = 1000 individuals.  Note that this stochastic effect means that long range disper-
sal no longer increases the speed of advance, even for the exponential square root.  There is no sign 
that rare propagules move far ahead of the initial wave, producing the kind of stochastic advance that is 
expected for very fat-tailed distribution.  The key conclusion is that random fluctuations have very little 
effect on the speed of “pushed” waves.  The slowing effect is greater when waves are “pulled”, and 
there is long-range dispersal.  However, even then the effect is not as dramatic as suggested by the 
asymptotic theory.  
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effect on the speed of “pushed” waves.  The slowing effect is greater when waves are “pulled”, and 
there is long-range dispersal.  However, even then the effect is not as dramatic as suggested by the 
asymptotic theory.  

Table 2. The wave speed in a finite population.  This is estimated as the mean speed over 2000 genera-
tions. The last row shows the results for the deterministic model (Fig. 1) with kmax = 20 for the Gaussian 
and Laplace distributions, and km = 200 for the exponential square root. 
α𝛼 = 0.5 2 N Gaussian Laplace ExpSqrt α𝛼 = 4 Gaussian Laplace ExpSqrt

10 0.263 0.274 0.267 0.533 0.540 0.546
100 0.259 0.257 0.243 0.697 0.672 0.705

1000 0.716 0.704 0.746
∞ 0.255 0.250 0.230 0.751 0.765 0.920

References not cited in the main text.
Brunet E, Derrida B, Mueller AH, Munier S (2006) Phenomenological theory giving the full statistics of 
the position of fluctuating pulled fronts. Phys. Rev. E 73: 056126.
Fisher, RA (1937) The wave of advance of advantageous genes. Annals of Eugenics 7: 355-369.
Stokes AN (1976) On two types of moving front in quasilinear diffusion. Mathematical Biosciences 31: 

307-315.
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Appendix B: Establishing a wave
In a bistable system, a wave can be established if the initial distribution is above some threshold.  Alter-
natively, one might continuously release within some region: again, there will be some threshold 
required for establishment. If the intensity of the source is above this threshold, then the wave can be 
established even if the source is turned off at a finite time.  A key comparison is the total number that 
need to be introduced to establish the wave, or (more simply) how long the source needs to continue to 
send out the same number as would be needed with an initial brief pulse.  Our intuition is that an initial 
pulse would always be more efficient, since any release in regions below the threshold will decay over 
time: the key is to raise a sufficiently large region above the threshold so that it can contribute to further 
increase.

We represent an influx by a term mf [x] q, which represents migration from a deme fixed for p = 1 : in 
each generation, a (scaled) fraction mf (X) is replaced by migrants.  This ensures that allele frequencies 
do not rise above&& 1.  If one follows population density, scaled relative to carrying capacity, and with an 
Allee effect that causes bistability, then one would add a term λ𝜆f [x], and density could rise above carry-
ing capacity.  Here we assume a source λ𝜆f (X)q, corresponding to replacement of a fraction of the 
population.  This is appropriate if population size is regulated to a constant value after the release. 

Island model

Take the simple case of a single population, with an influx that replaces a fraction m of the population 
every generation.  Let T = (sh /∕2) t, M = 2m

sh
; α𝛼 = 1 -− 2 p+: 

∂p

∂T
= pq (2 p -− 1 + α) + Mq (1)

Then, it is easy to show that the critical migration rate is M*⋆ = (1 -− α𝛼)2 16.   How much higher does M 
need to be if sustained for a finite time, T0?  Integrating Eq. B1, starting from zero allele freequency:

T =
(3 + α)

M -− M*⋆ (1 + M*⋆ + α)
ArcTan

1 -− α

M -− M*⋆
 -− ArcTan

1 -− 4 p -− α

M -− M*⋆
 +

1

2
-−2 Log[1 -− p] + Log1 +

p

M
(-−1 + 2 p + α)  (1 + M + α) M*⋆ =

(1 -− α)2

8

(2)

Now, establishment is assured if, at time Tcrit, p > p+ = (1-−α𝛼)
2 .  Setting p = (1-−α𝛼)

2 :

Tcrit =
2 (3 + α)

M -− M*⋆ (1 + M + α)
ArcTan

(1 -− α)

M -− M*⋆
 -−

Log 1+α
2



(1 + M + α)
(3)

The left plot of Fig. B1 shows this critical time, as a function of the scaled migration rate, M. One 
might measure the total ‘cost’ of the introduction by MT . This declines to an asymptote for large M, 
indicating that the most efficient strategy is a short pulse that quickly raises the frequency above the 
critical threshold. However, MT  is almost constant above M~∼0.1, and so the precise timing of the 
introduction makes little difference (Fig. B1, middle). If the resident population is constant, N0, then the 
number that need to be introduced to replace a fraction m is m

1-−m N0. With complete CI, sh = 1, and so, 

this equals M
2-−M : it becomes expensive to replace a large fraction of the population.  When this effect is 

included (Fig. B1, right), the most efficient strategy is at intermediate M.  However, an instantaneous 
pulse is almost as efficient.  The best guidance is that the introduction should be made as rapidly as is 
feasible, given practical constraints.



The left plot of Fig. B1 shows this critical time, as a function of the scaled migration rate, M. One 
might measure the total ‘cost’ of the introduction by MT . This declines to an asymptote for large M, 
indicating that the most efficient strategy is a short pulse that quickly raises the frequency above the 
critical threshold. However, MT  is almost constant above M~∼0.1, and so the precise timing of the 
introduction makes little difference (Fig. B1, middle). If the resident population is constant, N0, then the 
number that need to be introduced to replace a fraction m is m

1-−m N0. With complete CI, sh = 1, and so, 

this equals M
2-−M : it becomes expensive to replace a large fraction of the population.  When this effect is 

included (Fig. B1, right), the most efficient strategy is at intermediate M.  However, an instantaneous 
pulse is almost as efficient.  The best guidance is that the introduction should be made as rapidly as is 
feasible, given practical constraints.

Figire B1: The left plot shows the minimum time needed for establishment, plotted against M = 2m
sh

, as a 

function of α𝛼=0.1, 0.2, 0.3, 0.4, 0.5, 0.6 (bottom to top) (i.e., p+ = 0.45, 0.4, 0.35, 0.3, 0.25, 0.2).  The 
middle plot shows MTcrit =m tcrit, and the right plot M

2-−M Tcrit = m
2 (1-−m/∕sh)
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One dimension

We rescale Eqs. 2, 3 by setting time to T = (sh /∕2) t and distance to X = x sh σ𝜎; M = 2m
sh

, α𝛼 = 1 -− 2 p+:

∂p

∂T
=

∂2p

∂X2
+ pq (2 p -− 1 + α) + M [X]q (4)

 With M=0, the wave will increase if the initial p[X, 0] is “large enough”.  There is a critical bubble that 
lies on this theshold, which can be calculated explicitly in one dimension.  Now, suppose that initially 
p = 0.  How large must M be to ensure spread?  This can be solved for special choices of the source, 
M[X]; below, we give the critical value for a point source, and for a “top hat” function, with a constant 
input within some region.  We then give numerical results for the minimum time needed to ensure 
establishment, analogous to Fig. B1. 

Point source
With a source Mδ𝛿(X)q, there is a boundary condition p '[0, T ] = ±Mq[0, T ] /∕2.  Integrating Eq. 1 we have, 
at X = 0:

∂p

∂X
= p q2 -− α 1 -−

2

3
p =

M

2
q (5)

The function 2 p
q

q2 -− α 1 -− 2
3
p  has an intermediate maximum, which gives the threshold value of 

Λ.  Below this threshold, there are two solutions for p, one stable and one unstable:

Mcrit = B 1 -− 4 α
(1 -− B /∕ 3)

(2 -− B)2

where B = 2 1 -−
α

9
 -− 2 α 1 +

α

9
 

A

2

-−1/∕3

-−
(4 A)1/∕3

9
, (6)
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A = 243 α 1 +
α

9
+
2 α2

243
-− 1 +

14

81
α +

α2

81

(6)

In the original variables, the threshold scales as Λ > g[α𝛼] σ𝜎
2 sh  which has the dimensions XT-−1.

Top-hat source
Now, suppose that we have a source Mq within -−Y <X <Y.  Then, equilibrium is given by:

0 =
∂2p

∂X2
+ p (1 -− p) (2 p -− 1 + α) + Mq (0 < X < Y)

0 =
∂2p

∂X2
+ p (1 -− p) (2 p -− 1 + α) (Y < X)

with p'[0] = 0, p[Y-−] = p[Y+], p'[Y-−] = p'[Y+]

(7)

Integrating:
∂p

∂X

2
= h[p] (Y < X)

∂p

∂X

2
= h[p] -− M (p -− pY) (2 -− pY -− p) (0 < X < Y)

where h[p] = p2 (1 -− p)2 -− α 1 -−
2

3
p

(8)

The allele frequency at zero, p0, is where ∂𝜕p /∕∂𝜕X = 0, so that 0 = h[p0] -− M (p0 -− pY) (2 -− p0 -− pY); this 
defines p0 as a function of pY.  We can obtain Y by integrating ∂𝜕X /∕∂𝜕p.  Hence, pY is given by:

Y = 
pY

p0 ⅆp

h[p] -− M (p -− pY) (2 -− p0 -− pY)
(9)

For given pY, there is a solution for Y, provided that pY < 2
3 ; this has a maximum value of Ycrit, so that if 

Y <Ycrit, there will be two solutions.  This maximum defines the threshold for spread.  However, it is not 
straightforward to find this threshold analytically.

Consider the equation 0 = h[p0] -− M (p0 -− pY) (2 -− p0 -− pY).  For M > (1 -− α𝛼)2 8, there is only one 
root.  For M < (1 -− α𝛼)2 8, there is one root if pY > pY*⋆ .   

p0*⋆ =
1

4
1 -− α -− A 

pY*⋆ = 1 -−
1

4 6 M
(1 -− α)3 (3 + α) + 12 5 + 2 α + α2 M -− 24 M2 -− A A (3 + α) 

where A = (1 -− α)2 -− 8 M.

(10)

For M > (1 -− α𝛼)2 8 = 0.02, there is a single solution, with a peak which represents the maximum Ycrit 
consistent with a stable equilibrium.  However, once M passes below the threshold, there is a singular-
ity, and it appears that there can be a stable solution with extremely large Y.  This threshold simply 
corresponds to M so low that it cannot cause a transition, even as Y→∞.  Fig. B2 shows  solutions to 
Eq. 10 over a range of α𝛼, p+; the maximum gives the critical spatial range, Ycrit, required for establish-
ment.  Table B1 gives this maximum, together with the total input, 2MYcrit. For given α𝛼, p+, there is an 
optimal migration rate and spatial extent that minimises 2MYcrit.  These analytic results give the mini-
mum input required for establishment.  However, it would take an indefinitely long time for establish-
ment to be assured.  If the input is more intense and/or over a wider spatial range, then it could persist 
for a shorter time.  Results for a finite time, analogous to the island model (Fig. B1), require numerical 
solution.  We give those in the next section, for two dimensions.
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For M > (1 -− α𝛼)2 8 = 0.02, there is a single solution, with a peak which represents the maximum Ycrit 
consistent with a stable equilibrium.  However, once M passes below the threshold, there is a singular-
ity, and it appears that there can be a stable solution with extremely large Y.  This threshold simply 
corresponds to M so low that it cannot cause a transition, even as Y→∞.  Fig. B2 shows  solutions to 
Eq. 10 over a range of α𝛼, p+; the maximum gives the critical spatial range, Ycrit, required for establish-
ment.  Table B1 gives this maximum, together with the total input, 2MYcrit. For given α𝛼, p+, there is an 
optimal migration rate and spatial extent that minimises 2MYcrit.  These analytic results give the mini-
mum input required for establishment.  However, it would take an indefinitely long time for establish-
ment to be assured.  If the input is more intense and/or over a wider spatial range, then it could persist 
for a shorter time.  Results for a finite time, analogous to the island model (Fig. B1), require numerical 
solution.  We give those in the next section, for two dimensions.

Figure B2. The value of Y against pY, for α𝛼=0.2, p+=0.2, and M= 0.02, 0.03, 0.04, 0.05, 0.06 (top to 
bottom).  The maximum Y corresponds to the minimum size of the range, {-−Y, Y} necessary for estab-
lishment, given a source M.
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pY0

2
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Y

Table B1.  Threshold Ycrit for varying α𝛼, M.  pY, p0 give the frequency at he edge of the source and at 
the centre, respectively. 2MY gives the total rate of input. The last column, Mδ𝛿, gives the critical inten-
sity of point source needed to allow establishment; it is the limit of the the total source 2MY when M 
becomes large and its spatial extent, {-−Y, Y} small. 

α p9 M pY p0 Ycrit 2 MYcrit Mδ

0.1 0.45 0.10 ∞ ∞
0.15 0.156 0.339074 2.86202 0.858606
0.2 0.230 0.397044 1.93251 0.773003
0.3 0.339 0.470151 1.2619 0.757142
0.4 0.408 0.512299 0.964945 0.771956
0.5 0.452 0.537759 0.789265 0.789265
0.6 0.483 0.554738 0.670762 0.804915
0.7 0.504 0.566513 0.584561 0.818385 0.956562

___ ___ ___ ___ ___ ___ ___
0.2 0.4 0.08 ∞ ∞

0.1 0.104 0.266342 4.13891 0.827782
0.15 0.189 0.333694 2.10228 0.630685
0.2 0.251 0.373722 1.50629 0.602516
0.3 0.328 0.418784 0.999828 0.599897
0.4 0.372 0.44259 0.760042 0.608034 0.684528

___ ___ ___ ___ ___ ___ ___
0.4 0.3 0.045 ∞ ∞

0.05 0.062 0.180264 6.71364 0.671364
0.1 0.163 0.25412 1.83648 0.367296
0.15 0.215 0.28246 1.17168 0.351503
0.2 0.245 0.297788 0.87301 0.349204
0.3 0.278 0.313796 0.584271 0.350562
0.4 0.295 0.322091 0.440908 0.352726 0.366544

___ ___ ___ ___ ___ ___ ___
0.6 0.2 0.02 0.033 0.100 ∞
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0.05 0.116 0.168 1.83167 0.183167
0.1 0.162 0.191 0.866468 0.173294
0.15 0.179 0.199 0.575105 0.172531
0.2 0.189 0.203 0.431589 0.172635
0.3 0.198 0.208 0.288481 0.173089
0.4 0.203 0.210 0.21682 0.173456 0.175184

Two dimensions

Using the same scalings as in one dimensions, we have:

∂p

∂T
=

∂2p

∂R2
+
1

R

∂p

∂R
+ pq (2 p -− 1 + α) + M[R]q (11)

We solve this equation numerically using NDSolve in Mathematica.  For a given α𝛼, p+, there is a critical 
radius, Rcrit, such that the wave will just establish if initially p = 1 within R <Rcrit. We compare this initial 
pulse with a continuous source within the same radius, and sustained for time T ; for given T , we find 
the minimum M required for establishment; this also gives the minimum Tcrit needed for establishment 
with given M.  As M increases above the threshold required for establishment from an indefinitely 
sustained source, Tcrit decreases.  Figure B3 summarises these results, in the same form as for Fig. B1, 
but just for α𝛼 = 0.6, p+ = 0.2.  As for the island model, the effort, measured by MT  reaches an asymptote 
for large M, indicating that an immediate increase to high frequency is most efficient.  If the increasing 
cost of raising frequency by introduction into a fixed native population is included, by using he measure 
M

2-−M Tcrit, then the most efficient scheme is to use M~∼0.3 for Tcrit~∼1  - which is still an extremely short 
time if sh = 1.
Figure B3.   On the left, the time for which a source needs to be sustained, plotted against source 
strength, M, given optimal initial radius.  The vertical line is the source strength needed for establish-
ment, if sustained indefinitely.  The middle plot shows the total amount, MTcrit = m

2 tcrit that is needed, as 

a function of source strength. The right plot shows M
2-−M Tcrit = m

2 (1-−m/∕sh)
tcrit, which is the total number that 

need to be introduced, relative to a constant native population, if sh = 1. Rcrit = 5.19, α𝛼 = 0.6, p+ = 0.2. 
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