
Quantitative Formal Methods Meets
Algorithmic Game Theory

Thesis submitted for the degree of Doctor of Philosophy

Guy Avni

Submitted to the Senate of the Hebrew University of Jerusalem

February, 2016

This work was carried out under the supervision of Orna Kupferman.

1

Acknowledgements

First and foremost, I would like to thank my advisor Orna Kupferman. It has been

one hell of a journey. At the end of my MSc studies, when I was deliberating on

which path to choose, she promised the Phd path “would be fun”. This is all the

convincing I needed, and I have to say that she kept her promise. The last time

I wrote an acknowledgement section and thanked her, I mentioned she taught me

how to write so that my writing was “reasonable” at the time. Looking back, my

view then was very superficial. What I referred to as “teaching writing” were merely

English syntax rules that I didn’t know. The teaching is much deeper. So deep,

that I don’t want to embarrass myself again and thank her on specific points. I feel

Orna has let me be her apprentice for these years and I thank her for teaching me

her craft. In addition to her guidance in the academia, I also see her as a role model

for life outside the academia, and thank her for the lessons there as well.

The work on this thesis had a few key moments. One of the crucial ones started

out as a standard mail, which I sent Orna. It involved some work that I ran into

and thought it was connected to what we were doing at the time. She replied that

it was nice, not related, but might be related to what she was doing with Tami. She

asked me if I wanted to join on the grounds that “It’s a lot of fun”. She didn’t get

that one wrong either. It was a pleasure working with Tami Tamir, Orna’s identical

twin sister. Tami guided me throughout the work on algorithmic game theory and

gave the complement to Orna’s guidance. Without her, this thesis would not have

been the same. I thank her greatly.

Also, I had the pleasure of working with Thomas Henzinger, and I’m looking

forward to working together in the future.

My accomplice throughout the past few years has been Shaull Almagor. We

shared an office, worked together, shared beds in conferences, and many drinks and

dinners (some ending better while others ending worse). Shaull helped make the

past few years enjoyable and I thank him greatly. The second ongoing member of

my office was Jonathan Moshieff. Apart from making it a nice place, he was a goto

guy for many topics ranging from combinatorics to managing bank accounts.

Life outside the academia was a roller coaster in these past few years. Holding

my hand through it is my wife Efrat. I hope I can ever even out with all she has

given in order for my thesis to succeed. The high points of the ride are inhabited

by my two daughters Tamar and Ella, who I thank for my second childhood. I also

thank my slightly extended family; my parents and brothers for their sincere caring

and giving throughout these years. An acknowledgement section is nothing without

a special thanks to my dog Bigi with whom I had fruitful discussion and debates in

our long nightly walks. To close, I thank my gariin mates for always being there.

2

3

Abstract

This thesis lies on the boundary between two fields: formal methods and algorithmic

game theory (AGT, for short). We adapt ideas from formal methods in AGT and

back. The goal in formal methods is to formally reason about systems. So, the bread

and butter of this field is the study of specifications and of ongoing computations.

AGT is a rapidly evolving field that takes a computational approach to game theory.

One of its subfields on which we focus, studies the stability of different classes of

games.

We start by applying the concept of a rich specification in network formation

games, which constitute a well studied class of games in AGT. A network is modeled

by a directed graph, and each player has a source and target vertex, which she wishes

to connect. The strategies of each player are the simple paths connecting her source

to the target. Each edge has a cost and the players that use the edge split the cost

evenly among them. The players’ objective in the traditional game are reachability.

We study an extension of network formation games in which the edges in the

network are labeled by letters from some alphabet and the players’ objectives are

given by a regular language over the same alphabet. In particular, the richer ob-

jectives are such that the paths selected by the players need not be simple, thus a

player may traverse some transitions several times. We refer to this extension as au-

tomata formation games. Edge costs are shared by the players with the share being

proportional to the number of times the edge is traversed. We study the stability

of automata formation games with respect to standard measures in AGT: existence

of equilibria, equilibrium efficiency, and we study computational problems for these

games.

Network formation games are a special case of cost-sharing games. Our automata

formation games give rise to an extension of cost-sharing games in which the players’

strategies consist of multisets of resources rather than sets of resources. We also

study multiset congestion games in which a greater load on a resource has a negative

effect on cost. We refer to the union of these two games as multiset resource-

allocation games, and we analyze the stability of this class of games and compare

with the games that it extends.

For the direction from AGT to formal methods, we analyze a problem in formal

methods as a resource-allocation game. Synthesis is the automated construction of a

system from its specification. In real life, hardware and software systems are rarely

constructed from scratch. Rather, a system is typically constructed from a library

of components. Lustig and Vardi formalized this intuition and studied a setting in

which a designer searches for a design, which is a recipe to glue the components

from the library together to form a compositional system. We extend on Lustig and

4

Vardi’s setting in two directions. We add costs to the components in the library, and

we consider a setting in which multiple designers use the same library of components.

The cost of a designer’s design is affected by the choices of the other designers. For

example, if the components are processors and the cost models running time, then

designers would prefer to use processors with lower load in order to increase their

system’s performance. A multiset resource allocation game arises from this setting.

We return to the direction from formal methods to AGT. Ongoing games are com-

mon in formal methods and we apply ideas from such games to resource-allocation

games. We relax two of the main assumptions of these games – the players choose

their strategies in one shot and the players move simultaneously. We introduce

and study dynamic resource-allocation games, which allow the players to choose re-

sources in an iterative and non-concurrent manner. The definitions of our game are

similar to the definitions of ongoing games in formal methods, while we ask stability

questions that originate from AGT.

Traditional formal methods are Boolean in nature: a system either satisfies its

specification or not. On the other hand, game theory is quantitative in nature:

each player has a value in an outcome of a game, which she wishes to increase. We

join a growing effort in recent years to lift traditional formal methods to reason

about quality. The automata-theoretic approach uses the theory of automata as a

unifying paradigm for system specification and verification. In the quantitative set-

ting, weighted finite automata (WFAs, for short) are an important class of automata

to model specifications as well as systems. We study several problems for WFAs.

The containment problem for WFAs is undecidable while it is a problem of great

practical importance. We suggest a heuristic approach to bypass its undecidability

that is based on adapting abstraction and simulation, which are well known in the

Boolean setting, to the quantitative setting. Next, we study a setting of partially-

specified quantitative systems, which is again well studied in the Boolean setting.

We model partial systems as WFAs with missing weights, and we study the problem

of completing a partial WFA such that it satisfies some given restrictions. Finally,

we introduce and study the problem of replacing nondeterminism in WFAs with

probabilistic transitions. We refer to this process as stochastization of WFAs, and

we study the problem of find a stochastization that does not alter “too much” the

weighted language of a given WFA.

5

Letter Indicating the Contribution

to Each Chapter

In all four chapters, I was the principal researcher. The first and third chapters are

joint work with Orna Kupferman and Tami Tamir. Tami is an expert in algorithmic

game theory. She guided me in these topics throughout these two works. The

second chapter is joint work with Orna Kupferman. The final chapter is joint work

with Orna Kupferman and Thomas Henzinger. Thomas is an expert in multi-agent

games. He helped guide me throughout this work.

6

7

Contents

1 Introduction 10

1.1 Game Theory . 10

1.2 Quantitative Formal Methods . 21

2 Network-Formation Games with Regular Objectives 32

3 Synthesis from Component Libraries with Costs 56

4 Congestion Games with Multisets of Resources

and Applications in Synthesis 102

5 Dynamic Congestion Games 135

6 Discussion 165

8

9

1 Introduction

The goal in formal methods is to formally reason about systems. Either proving

formally that a system satisfies its specification, synthesizing a system from a given

specification, or reasoning about other aspects of systems. Traditional formal meth-

ods are Boolean in nature: a system either satisfies its specification or not. In recent

years, there is a growing effort to lift traditional formal methods to reason about

quality. So, for example, rather than asking whether the system satisfies the spec-

ification, one might ask how well the system satisfies the specification. The origin

of the quantitative aspect can be in the system [24], the specification [3, 4], or both

[21].

In addition to the questions that arise when lifting Boolean questions to the

quantitative setting, other questions arise that may not have been considered at all in

the Boolean setting. For example, a specification can assign values to computations.

It makes sense to find a system that approximates the specification. Namely, it

assigns to every computation a value that is close to the one the specification assigns

to it. Such an approximation is less natural in the Boolean setting. We return to

approximation in the second part of the thesis.

In the first part of the thesis we focuses on the last type of questions, and in

particular, we study such questions on games.

1.1 Game Theory

We start with an example. As we mentioned above, a designer can have a specifi-

cation that assigns different values to systems. But a system rarely stands on its

own. Typically, a designer only designs one component of the system. The different

components either interact with each other, or compete for global resources. In the

later case, the value given by the specification can be the time it takes for it to

run. So, the value is affected by how much competition there is on the resources the

system uses. The designers are selfish. They only care about increasing the value

of their own component. So, a game arrises, which we formalize throughout this

section.

Many problems in formal methods are solved using games (c.f., [7]). Typically,

the games that are studied are two-player games; one player takes the role of the

system and plays against an adversary whose goal is to show that the system is faulty.

These games are zero-sum games; the system wins iff it can satisfy the specification

no matter how the adversary behaves. Also, many systems under consideration

in formal methods are reactive and non-terminating, thus the games are typically

ongoing games of infinite duration.

10

Recall the game that we described between several designers who design compo-

nents that compete for resources. It has a different flavor to it from the games that

are typically studied in formal methods. It is played between several designers, so

it is a multi-player game. The systems have values and the goal of the designers is

to maximizes their system’s value, so the game is not zero-sum. Finally, the game

“ends” when the designers choose a system, so it is a “one-round game” rather than

ongoing. The question we ask is also different. We are not interested in a “winning

strategy” for the system as in formal methods. Rather we want a “stable outcome”:

one in which the designers have no incentive to alter their chosen designs. The flavor

of this game as well as the questions asked are studied in algorithmic game theory

(AGT, for short). AGT is a rapidly growing field [45] that lies in the intersection

between several fields including computer science and economics.

We introduce the questions asked in AGT in more detail, while using a running

example of network formation games (NFGs, for short) [6], which constitutes a well

studied class of games in AGT. A network is modeled by a directed graph, and each

player has a source and target vertex, which she wishes to connect. The strategies

of each player are the simple paths connecting her source to the target. Each edge

has a cost and the players that use the edge, split the cost evenly between them.

The game is “one round” in the sense that the players select a path in one shot. A

profile is a vector of strategies (paths), one for each player.

We present the classic questions on NFGs. These questions in different variants

will accompany us throughout this thesis. piq Existence of an equilibrium. Recall

that players are selfish. So, not all profiles are stable in the sense that players might

benefit from changing their strategy. In NFGs and in most games we consider, the

notion of stability that is considered is a Nash equilibrium (NE, for short)1. An

NE is a profile in which no player can benefit from a unilateral deviation. We ask

whether each instance of the game has a profile of pure strategies that constitutes an

NE. piiq An analysis of equilibrium inefficiency. It is well known that decentralized

decision-making may lead to solutions that are sub-optimal from the point of view

of society as a whole. The cost of a profile is the sum of players’ costs in it. We

quantify the inefficiency incurred due to selfish behavior according to the price of

anarchy (PoA) [37] and price of stability (PoS) [6] measures. In both measures we

compare the cost of stable profiles against the social optimum profile (SO, for short),

which is the cheapest profile and is not necessarily stable. The PoA is the worst-case

inefficiency of a Nash equilibrium (that is, the ratio between the cost of the worst

NE and the SO). The PoS is the best-case inefficiency of a Nash equilibrium (that is,

1Throughout this thesis, we concentrate on pure strategies rather than considering mixed strate-

gies, which allow choosing a probabilistic distribution on pure strategies. This is also the choice in

the vast majority of works in AGT on NFGs as well as the other games we consider.

11

the ratio between the cost of the best NE and the SO). piiiqWe study computational

questions that vary slightly according to the game under consideration. First, the

best-response problem; given strategies for the players 1, . . . , k ´ 1, find the optimal

strategy for Player k. Second, depending on the answer to question piq, we study

the existence of NE or the complexity of finding one. In some cases we also study

the complexity of finding the SO.

This thesis lies is the meeting point of formal methods, and in particular quanti-

tative formal methods, with AGT. We present several works that adapt ideas from

formal methods in AGT and back.

Automata formation games The players’ objectives in NFGs are can be thought

of as reachability; a player’s goal is to reach her destination. We extend network-

formation games to a setting in which the players have richer objectives. This

involves two changes of the underlying setting: First, the edges in the network are

labeled by letters from a designated alphabet. For example, the alphabet letters

model the security level of an edge or its bandwidth. Second, the objective of each

player is specified by a language over this alphabet. Each player has a regular

language and she should select a path labeled by a word in her objective language.

For example, a player’s language might restrict to paths traversing high security

links, or, if the game models a delivery service, a player’s language can require

multiple visits to a certain location.

If we view the network as a nondeterministic weighted finite automaton (WFA)

A, which we discuss in length later on, then the set of strategies for a player with

objective L is the set of accepting runs of A on some word in L. Accordingly,

we refer to our extension as automaton-formation games (AFGs, for short). Unlike

traditional NFGs, the runs selected by the players need not be simple, thus a player’s

path may traverse some edges several times. Edge costs are still shared by the

players, but now the share is split proportionally to the number of times the edge

is traversed. This latter issue is the main technical difference between AFGs and

NFGs, and as we shall see, it is very significant.

We study questions piq ´ piiiq above for AFGs and compare the answers with

these in NFGs. The answer for question piq in NFGs is positive; every NFG is

guaranteed to have an NE. In fact, NFGs are potential games, which have an even

stronger property; every sequence of improving moves of the players converges to an

NE. When the improving moves in the sequence are the best possible, the sequence

is often called a best-response dynamics. On the other hand, we show that even very

restrictive fragments of AFGs are not guaranteed to have an NE. Recall that the

network can be viewed as a WFA A. We consider the following classes of WFAs:

p1q all-accepting, in which all the states of A are accepting, thus its language is

12

prefix closed p2q uniform costs, in which all edges have the same cost, and p3q single

letter, in which A is over a single-letter alphabet. We consider the following classes

of specifications: (1) single word, where the language of each player is a single word,

and (2) symmetric, where all players have the same objective. We refer to AFGs

that are all-accepting, uniform costs, single letter, and single word as weak AFGs,

and we show that weak AFGs are not guaranteed to have an NE. Maybe even more

surprising, we show that symmetric instances of AFGs are not guaranteed to have

an NE.

Regarding question piiq, of equilibrium inefficiency, we show that while the PoA

in AFGs agrees with the one in classical NFGs and is equal to the number of players,

the PoS also equals the number of players, again already for the very restricted weak

instances. This is in contrast with classical NFGs, where the PoS tends to log the

number of players. We do manage to find structural restrictions on the network

with which the social optimum is an NE, thus we have PoS“ 1 for these instances.

Finally, we address piiiq, namely computational problems on AFGs. We show

that for some restricted instances, finding the SO can be done efficiently, while

for other restricted instances, the complexity agrees with the NP-completeness of

classical NFGs. The best-response problem is NP-complete, while it is in P for

NFGs. We show that deciding the existence of NE is Σ2
P -complete for AFGs. This

problem is not studied for NFGs as they are guaranteed to have an NE.

These results have been described in [14, 13] and in Chapter 2 of the thesis.

Multiset resource allocation games NFGs an be viewed as a special case of

cost-sharing games (SGs, for short). Such a game is played on a set of resources.

A player’s possible strategies is a collection of sets of resources. As in NFGs, each

resource has a cost that is split among the player that use it. In the cost-sharing

game that corresponds to an NFG, the resources are the edges of the graph and the

strategies of a player are the sets of edges that correspond to the simple paths that

connect her two vertices.

We view AFGs as cost-sharing games. Again, a strategy that corresponds to

a path consists of the edges that the path traverses. Recall that paths in AFGs

need not be simple. So, a resource may appear several times in a strategy in the

corresponding cost-sharing game, making it a multiset. Thus, AFGs are a special

case of multiset cost-sharing games.

Cost-sharing games model settings in which resources have costs, which are split

between the players using them. In such cases, the load on the resource, namely the

total number it is used, has a positive effect. However, in many settings, the load

on the resources has a negative effect. For example, returning to the network game,

the network can model a map of roads. A higher load on a road implies a traffic

13

jam that produces a higher cost for the players using it. We refer to such games as

congestion games (CGs, for short) [49]

Formally, a CG is similar to a cost-sharing game only that instead of resource

costs, each resource e has a latency function of the form `e : NÑ R, where `epγq is

the cost of a single use of e when the load on it is γ. So, if Player i uses e ni times, she

pays ni ¨ `epγq for e. Cost-sharing games can be thought of as a special case of CGs

in which resource e has a cost ce and the latency function is `epγq “ ce{γ. Note that

if Player i uses e ni times, then she pays ce ¨ ni{γ, which is the proportional sharing

rule we studied in the previous section. For convenience, we make the distinction

between cost-sharing and congestion games, and refer to their union as resource

allocation games (RAGs, for short). We introduce and study multiset RAGs.

Our results in terms of existence of NE and equilibrium inefficiency for AFGs

carry over to multiset cost-sharing games. We study these two questions for multiset

congestion games (MCGs, for short). In terms of NE existence, the answer depends

on the latency functions. For affine latency functions, i.e., functions of the form

a ¨ x` b, we show good news; affine MCGs are potential games and are guaranteed

to have an NE. On the other hand, already for quadratic latency functions, there

are symmetric instances with no NE. We study the equilibrium inefficiency for affine

MCGs. We show that the PoA is PoA “ 1`φ, where φ « 1.618 is the golden ratio,

and the PoS is between 2 and 1.631. Again, much stabler than in cost-sharing games.

In order to put our results in context, we compare our results with these known

for weighted congestion games (WCGs, for short) [42]. These are congestion games

in which each Player i has a weight wi P N, and his contribution to the load of

the resources she uses as well as her payments are multiplied by wi. WCGs can be

viewed as a special case of MCGs, where each resource in a strategy for Player i

repeats wi times.

We summarize the comparison between the classes of games in Table 1 below.

Our upper bounds for MCGs match the known upper bounds for WCGs. Whenever

our lower bounds match the ones of WCGs, they are given with much simpler

instances.

DNE PoA PoS

Congestion Games Yes 2.5[29] « 1.577[29, 25]

WCGs Affine 1` φ[17] « 1.577 ď PoS ď 2[20]

MCGs Affine 1` φ 1.631 ď PoS ď 2

Table 1: A comparison between congestion games, WCGs, and MCGs.

These results have been described in [15] and in Chapter 4 of the thesis.

14

Synthesis from component libraries The results above can be seen as an adap-

tion of ideas from formal methods to AGT – strategies that are a multiset of resources

arise when we transition from a network with reachability objectives to an automa-

ton in which paths need not be simple. Here, we go in the other direction and apply

ideas from AGT to formal methods. Specifically, we show an application of MCGs

in the problem of synthesis from component libraries, which is a formalization of the

game we mentioned in the beginning of the introduction.

A central problem in formal methods is synthesis [47], namely the automated

construction of a system from its specification. In real life, hardware and software

systems are rarely constructed from scratch. Rather, a system is typically con-

structed from a library of components by gluing components from a library (allow-

ing multiple uses)[40]. For example, when designing an internet browser, a designer

does not implement the TCP protocol but uses existing implementations as black

boxes.

We follow the definitions of [40]. A design is a recipe to glue the components

together. The components are black boxes, so the design sees only the exit state

through which the component completes its computation and relinquishes control.

Based on this information, the design decides which component gets control next,

and so on. Given a design D and a library of components L we can compose the

components according to the design to construct the compositional system AL,D,

which is a concrete system. The input to the synthesis from components problem

is a library L and a specification S. The goal is to find a design D such that AL,D

meets the specification S. We then refer to D as a correct design with respect to S.

We study synthesis from component libraries with costs in the closed and open

settings. In both settings, the specification is given by means of a deterministic

automaton S on finite words (DFA). In the closed setting, the specification is a

regular language over some alphabet Σ and the library consists of box-DFAs (that is,

DFAs with exit states) over Σ. The compositional system here is a DFA. Correctness

means that the language over Σ of the composition equals the language of S. In the

open setting, the specification S is over sets I and O of input and output signals,

and the library consists of box-I{O-transducers. The compositional system here

is a transducer over I and O. Correctness here means that the interaction of the

composition defined by D with all input sequences generates a computation over

I YO that is in the language of S.

We extend on Lustig and Vardi’s setting in two aspects. First, we assume that

components have a costs. The cost of a component models its quality and is paid

each time the component is used. For example, the cost of a component can be the

number of states in the component, so the total cost of design is the number of states

in the compositional system. It makes sense to find a cheaper system as this is a

15

system with less states that is assumed to be simpler. We study the the problem of

finding a correct design as well as the problem of finding a cheapest correct design

in the closed and open settings. In the closed setting, finding a correct design can be

done in polynomial time, and finding a cheapest correct design is NP-complete. In

the open setting, the design problem is EXPTIME-complete while finding a cheapest

correct design is NEXPTIME-complete.

The public cost is a cost that is affected by the choices of the other designers. For

example, it can be the price that needs to be paid in order to design the component.

Then, the designers who use the component share this price.

First, in order to capture a wide set of scenarios in practice, we associate with

each component in the library two types of costs: a private cost and a public cost.

The private cost models quality. It concerns the performance of the component and

We continue to our second extension of Lustig and Vardi’s work. In their work,

the library of components can be seen as if it is used by a single user. However,

component libraries are typically used by multiple users simultaneously. The quality

cost above can be thought of as a private cost. In the setting of multiple users, it

makes sense to consider a public cost that is affected by the choices of the users. We

assume that each component has a latency function as in RAGs. We distinguish

between positive and negative effects for load. In the cost-sharing setting, the users

who use a component share the price of constructing the component. On the other

hand, and maybe more reasonable is the congestion case. Components can be seen

as processors, then a higher load means a decrease in performance.

This setting gives rise to a RAG, which we refer to as a component library game

(CLG, for short). A CLG is given by a shared library L and a specification Si for

each player. The resources in the corresponding RAG are the components. Player i’s

strategies are the correct designs with respect to Si. Note that a correct design Di
corresponds to a multiset of components, namely these components that the design

uses.

We show that our good and bad news in terms of NE existence and equilib-

rium inefficiency carry over from multiset RAGs to CLGs. We study computational

problems for CLGs and we focus on closed systems. Our results for cost-sharing and

congestion games coincide. We show that finding a best-response is NP-complete

and deciding the existence of NE is Σ2
P -complete.

These results have been described in [11, 15] and in Chapters 3 and 4 of the

thesis.

Cost-sharing scheduling games We study a restrictive class of multiset cost

sharing games in which the players’ multiset include a single resource. In this

setting, players can be thought of as jobs and resources as machines. Each job

16

has a set of machines that can process it, and each such machine has a different

processing time for the job. Each machine has an activation cost that needs to be

covered by the jobs assigned to it. Jobs assigned to a particular machine share its

cost proportionally to the load they generate.

Again, we study the three questions above. We study both unilateral and coordi-

nated deviations, distinguishing between instance having unit or arbitrary machine-

activation costs. Our results are detailed in Table 2, where k is the number of jobs

and m is the number of machines.

Activation

costs

Processing

times

Pure Nash Equilibrium Strong Equilibrium

D PoA PoS D SPoA SPoS

Unit
arbitrary yes mintm, ku 1 no mintm, k2 `

1
2u mintm2 ,

k
4 `

1
2u

machine-indp. yes mintm, ku 1 yes mintm2 ,
k
4 `

1
2u mintm2 ,

k
4 `

1
2u

Arbitrary
arbitrary no: k k no k k

machine-indp. yes k; k yesS k k

Table 2: Summary of our results. p:q Deciding whether a PNE exists is NP-complete.

p;q Adopted to our model from [6]. pSq Extension of [51].

These results have been described in [16] and do not appear in the thesis due to

lack of space.

Dynamic resource allocation games A key feature of RAGs is that the players

choose their strategies in one shot and concurrently . That is, a strategy for a player

is a subset of the resources – chosen as a whole, and the players choose their strategies

simultaneously. In many settings, however, resource sharing proceeds in a different

way. First, in many settings, the choices of the players are made resource by resource

as the game evolves. For example, when the network in an NFG models a map of

roads and players are drivers choosing routes, it makes sense to allow each driver

not to commit to a full route in the beginning of the game but rather to choose one

road (edge) at each junction (vertex), gradually composing the full route according

to the congestion observed. Second, in many settings, the choices of the players

are not made concurrently. We describe an example of such a setting, which is

inspired by [36]. We return to the example in which a network models a map of

roads. Driving on a road takes time. Assume it takes a duration of one unit of

time to complete an edge. Also, assume the players start driving on their paths at

different times in r0, 1s. So, the players who start at time t will choose edges at times

t ` 1, t ` 2, Specifically, the set of players that start driving at time t choose

concurrently. Moreover, they are aware of the choices of players that started driving

at every time t1 ‰ t. With respect to these players, their choices are sequential.

17

We introduce and study dynamic resource allocation games, which allow the

players to choose resources in an iterative and non-concurrent manner. A dynamic

RAG is given by a pair G “ xG, νy, where G is a k-player RAG and ν : t1, . . . , ku Ñ

t1, . . . , ku is a scheduler. A dynamic RAG proceeds in phases. In each phase, each

player chooses one resource. A phase is partitioned into turns, and the scheduler

dictates which players proceed in each turn. Formally, Player i moves at turn j if

νpiq “ j. Note that the scheduler may assign the same turn to several players, in

which case they choose a resource simultaneously in a phase. Once all turns have

been taken, a phase is concluded and a new phase begins. There are two “extreme”

schedulers: (1) A sequential scheduler assigns different turns to all players, i.e., ν is

a permutation, reflecting the fact that the players make their choices sequentially,

one player in each turn. (2) A concurrent scheduler assigns the same turn to all the

player; i.e., νpiq “ 1 for all i P t1, . . . , ku, reflecting the fact that all players proceed

concurrently in the first (and only) turn in each phase. A strategy for a player in a

dynamic RAG maps the history of choices made by the players so far (that is, the

choices of all players in earlier phases as well as the choices of players that proceed

in earlier turns in the current phase) and returns his next choice. A player finishes

playing once the resources he has chosen satisfy the objective. The game terminates

once all players finish playing. A strategy profile in the game is a vector of strategies

– one for each player. The outcome of a profile is an assignment of a set of resources

to each player. The cost of each players in a profile is induced by the costs of the

resources in his set, which depends on their load and latency functions as in usual

RAG.

We adjust the questions we asked on RAGs to the dynamic setting. We start

with existence of equilibrium. We note that while the definition of NE applies

to all games, in particular to dynamic ones, an NE is less suited in this case as it

might include “uncredible threats”. A more appropriate notion of equilibria subgame

perfect equilibrium (SPE, for short) [50]. A strategy profile is a SPE if it represents

an NE of every subgame of the original game. Informally, in an SPE the players

must take into an account their observation of the game before making a choice.

We study the existence of SPE in different classes of dynamic RAGs. In addition

to the classification of RAGs to cost-sharing games and congestion games, we also

classify them by type of their strategies. We study singleton RAGs in which the

player’s actions consist of singletons of resources, and symmetric RAGs in which the

players’ actions are the same. We show that singleton symmetric congestion games

are guaranteed to have an SPE. We show that this class is maximal by showing a

singleton congestion game as well as a symmetric congestion with no SPE. We show

that cost-sharing games are not guaranteed to have an SPE as well. Here, however

we show that singleton cost-sharing games are guaranteed to have an SPE. We find

18

two of these results surprising. First, that an SPE is not guaranteed to exist, and

second, that while in the simultaneous setting cost-sharing games are less stable

than congestion games, the “order of stability” is not carried over to the dynamic

setting.

Next, we study the inefficiency of equilibrium for the two classes of games that

are guaranteed to have an SPE. We show that it coincides with the simultaneous

setting in both cases. Finally, we study computational problems for dynamic RAGs.

We show that deciding the existence of SPE is PSPACE-complete. We also study

the problem of finding a schedule that admits an SPE under given constraints on

the order the players move, and show that this problem is also PSPACE-complete.

These results are described in Chapter 5.

Repairing multi-player concurrent games The last work we present is more

formal methods in nature and has a somewhat different flavor from the previous

works. As mentioned above, synthesis is the automated construction of systems from

their specifications [47]. Here, we take a different approach to synthesizing systems

from components than the one we present above. We assume that the components

interact, where each component has its own objective. Thus, we consider a game in

which each component is modeled by a player.

The game that arrises from this setting is a multiplayer concurrent ongoing

game [23]. Such a game is played by moving a token on a directed graph. At each

state, players select concurrently an action, and the next position of the token is

decided according to the the vector of actions they choose. So, an outcome of the

game is an infinite sequence of states. Each player has an ω-regular objective that

specifies which infinite paths meet his objective. Thus, the specification is a Boolean

specification; a path either satisfies the specification or not. We list two examples

of objectives. In reachability objectives each Player i has a set of states Si. An

infinite path π satisfies his objective if π crosses a state in Si. In Büchi objectives

each Player i again has a set of states Si. An infinite path π satisfies the objective

if it crosses Si infinitely often. Note that a path might satisfy some of the players

objectives while refuting others. Thus, the game is not a zero-sum game.

It is easy to find instances of such games with no NE. We introduce and study

repair of multi-player games. We consider a setting with an authority (the designer)

that aims to stabilize the interaction among the components and to increase the

social welfare. In standard reactive synthesis [47], there are various ways to cope

with situations when a specification is not realizable. Obviously, the specification has

to be weakened, and this can be done either by adding assumptions on the behavior

of the environment, fairness included, or by giving up some of the requirements on

the system [28, 39]. In our setting, where the goal is to obtain stability, and the

19

game is not zero-sum, a repair may both weaken and strengthen the specifications,

which, in our main model, is modeled by modifications to the winning conditions.

The input to the specification-repair problem (SR problem, for short) is a game

along with a cost function, describing the cost of each repair. For example, in Büchi

games the cost function specifies, for each vertex v and player i, the cost of making

v accepting for Player i and the cost of making v rejecting. The cost may be 0,

reflecting the fact that v is accepting or rejecting in the original specification of

Player i, or it may be 8, reflecting the fact that the original classification of v is a

feature of the specification that the designer is not allowed to modify. We consider

some useful classes of cost functions, like uniform costs – where all assignments

cost 1, except for one that has cost 0 and stands for the original classification of

the vertex, or don’t-care costs – where several assignments have cost 0, reflecting a

don’t-care original classification, and all other assignments have cost 8.

The goal of the designer is to suggest a repair to the winning conditions with

which the game has an NE. One way to quantify the quality of a repair is its cost,

and indeed the problem also gets as input a bound on the budget that can be used

in the repairs. Another way, which has to do with the social welfare, considers the

specifications that are satisfied in the obtained NE. Specifically, in the rewarded

specification-repair problem (RSR problem, for short), the input also includes a

reward function that maps subsets of specifications to rewards. When the suggested

repair leads to an NE with a set W of “winners”, i.e., players whose objective is

satisfied, the designer gets a reward that corresponds to the specifications of the

players in W . The quality of a solution then refers both to the budget it requires

and to its reward.

Studying the SR and RSR problems, we distinguish between several classes, char-

acterized by the type of winning conditions, cost functions, and reward functions.

From a complexity point of view, we also distinguish between the case where the

number of players is arbitrary and the one where it is constant. The problem of

deciding whether an NE exists is known to be NP-complete with an arbitrary num-

ber of players for most common ω-regular objectives, excluding Büchi where the

complexity is polynomial [23]. It is not too hard to lift the NP lower bound to the

SR and RSR problems. The main challenge is the Büchi case, where one should find

the cases where the polynomial complexity of deciding whether an NE exists can be

lifted to the SR and RSR problems, and the cases where the need to find a repair

shifts the complexity of the problem to NP. We show that the polynomial complex-

ity can be maintained for don’t-care costs, but the other settings are NP-complete.

We then check whether fixing the number of players can reduce the complexity of

the SR and RSR problems, either by analyzing the complexity of the algorithms for

an arbitrary number of players, or by introducing new algorithms. We show that

20

in many cases, we can solve the problem in polynomial time, mainly thanks to the

fact that it is possible to go over all possible subsets of players in search for a subset

that can win in an NE.

These results have been described in [1] and do not appear in the thesis due to

lack of space.

1.2 Quantitative Formal Methods

Game theory is quantitative in nature: every player has a value in an outcome of

a game, which she tries to increase. In the previous section we added aspects from

formal methods to game theory. Namely, we went from reachability objectives in

network formation games to richer objectives, we considered dynamics in resource

allocation games, and we considered an application of games to synthesis, which is

a problem in formal methods. In the second part, we take a dual approach. We

add aspects from game theory to traditional formal methods, and we focus in the

addition of quantitative outcomes.

Weighted automata The automata-theoretic approach uses the theory of au-

tomata as a unifying paradigm for system specification and verification [52, 53]. By

viewing computations as words (over the alphabet of possible assignments to vari-

ables of the system), we can view both the system and its specification as languages.

Questions like satisfiability of specifications or their satisfaction can then be reduced

to questions about automata and their languages.

Traditional automata accept or reject their input, and are therefore Boolean. In

recent years, there is growing need and interest in quantitative reasoning. Weighted

finite automaton (WFA, for short) map words to numerical values. Technically,

every transition in a weighted automaton A has a value, and the value of a run is

the sum of the costs of the transitions. The value that A assigns to a finite word w,

denoted valpA, wq, is either the value of the most expensive or cheapest accepting

run of A on w, depending on the application2.

The rich structure of weighted automata makes them intriguing mathematical

objects. Fundamental problems that have been solved decades ago for Boolean

automata are still open or known to be undecidable in the weighted setting [44].

For example, while in the Boolean setting, nondeterminism does not add to the

expressive power of the automata, not all weighted automata can be determinized,

and the problem of deciding whether a given nondeterministic weighted automaton

2In general, weighted automata may be defined with respect to all semirings. For our applica-

tions here, we consider WFAs over Q, with the addition of the semi-ring being max or min and its

multiplication being `.

21

can be determinized is still open, in the sense we do not even know whether it is

decidable.

A problem of great interest in the context of automata is the containment prob-

lem. In the Boolean setting, the containment problem asks, given two automata A
and B, whether all the words in Σ˚ that are accepted by A are also accepted by

B. In the weighted setting, the “goal” of words is not just to get accepted, but also

to do so with a maximal value. Accordingly, the containment problem for WFAs

asks, given two WFAs A and B, whether every word accepted by A is also accepted

by B, and its value in A is less than or equal to its value in B. We then say that

B contains A, denoted A Ď B. In the Boolean setting, the containment problem

is PSPACE-complete [41]. In the weighted setting, the problem is in general unde-

cidable [2, 38]. The problem is indeed of great interest: In the automata-theoretic

approach to reasoning about systems and their specifications, containment amounts

to correctness of systems with respect to their specifications. The same motivation

applies for weighted systems, with the specifications being quantitative [27].

Making weighted containment feasible We suggest here a heuristic approach

to bypass the undecidability of the weighed containment problem. Even in the

Boolean setting, where the containment problem is decidable, its PSPACE com-

plexity is an obstacle in practice and researchers have suggested two orthogonal

methods for coping with it. One is to replace containment by a pre-order that is

easier to check, with the leading such pre-order being the simulation preorder [43].

A second method, useful also in other paradigms for reasoning about the huge,

and possibly infinite, state space of systems is abstraction [19, 30]. Essentially, in

abstraction we hide some of the information about the system.

We apply both techniques to the weighted case. First, we extend the simulation

preorder of the Boolean setting to WFAs. For two WFAs A and B, we denote by

A ď B the fact that A simulates B. We show that A ď B implies weighted language

containment. Also, we show that deciding whether A simulates B can be done in

NP X coNP.

We then extend abstraction to the weighted case. Here, we assume that the

given WFAs A and B are equipped with abstraction functions α and β, respectively.

Using these functions we construct over-approximation AαÒ and BβÒ and under ap-

proximations AαÓ and BβÓ , of A and B, respectively. It is not hard to see that if

AαÒ Ď BβÓ , then A Ď B, and that if AαÓ Ę BβÒ , then A Ę B. We show that the above

is valid not just of containment but also for our weighted-simulation relation. This

gives rise to the following heuristics. We start by checking AαÒ ď BβÓ and AαÓ ę BβÒ ,

for some (typically coarse) initial abstraction functions α and β. If we are lucky and

one of them holds, we are done. Otherwise, we use information from the decision

22

procedure to refine the abstractions.

These results have been described in [8] and do not appear in the thesis due to

lack of space.

When does abstraction help? While on the topic of abstraction, we make a

short detour to Boolean formal methods. The biggest advantage of abstraction

of DFAs is that it reduces the state space. One of its disadvantages is that it

increases the nondeterminism. In particular, an abstraction of a DFA need not

be deterministic. The fact abstraction does not preserve determinism is a serious

drawback as determinisism makes most algorithms simpler and it is even crucial in

some settings.

We ask whether, given the need to determinize an abstract automaton, abstrac-

tion still leads to smaller automata. Formally, consider a deterministic finite au-

tomaton (DFA, for short) A, and let Aα be a nondeterministic finite automaton

obtained from A by applying an abstraction function α. Let Dα be the minimal

DFA equivalent to Aα. We ask whether Dα is smaller than A. If so, we say that α

is helpful.

We show that, surprisingly, abstractions are not always helpful. In fact, we show

a family of DFAs and abstraction functions for them for which the abstract automata

are exponentially bigger than the original automata. We also study the problem of

deciding whether a given abstraction function is helpful for a given DFA and show

that it is PSPACE-complete.

These results have been described in [9] and do not appear in the thesis due to

lack of space.

Parameterized weighted containment In addition to verification, the automata-

theoretic approach in the Boolean setting has proven useful also in reasoning about

partially-specified systems and specifications, where some components are not known

or hidden. Partially-specified systems are used mainly in stepwise design: One starts

with a system with “holes” and iteratively completes them in a way that satisfies

some specification [31, 32]. From the other direction, partially-specified specifica-

tions are used for system exploration. A primary example is query checking: [26],

the specification contains variables, and the goal is to find a maximal assignment to

the variables with which the explored system satisfies the specification.

We study partial specified systems and specifications in the quantitative set-

ting. We introduce and study parameterized weighted containment (PWC, for short):

given three WFAs A, B, and C, with B being partial, the goal is to find an assign-

ment to the missing costs in B so that we end up with B1 for which A Ď B1 Ď C. We

also consider a one-bound version of the problem, where only A or only C are given

23

in addition to B, and the goal is to find a minimal assignment with which A Ď B1
or, respectively, a maximal one with which B1 Ď C.

Since weighted containment is undecidable, we restrict the problem in two as-

pects. First, we study the PWC problem where all three WFAs are deterministic.

We show that the problem can be solved in polynomial time and the solution is

based on strong mathematical tools. We describe a convex polytope P Ď Rk that

includes exactly all the legal assignments for the missing costs in B. The polytope

P is defined using exponentially many constraints, so reasoning about it naively

would give an exponential time algorithm. Fortunately, we are able to represent the

constraints in a compact manner using a separation oracle, and use the results of

[33, 34, 46] to reason about the polytope efficiently.

Our second restriction of the problem is to replace weighted containment with

weighted simulation, which we describe above and is decidable in NPXcoNP. We

argue that the one-bound problem is not interesting, as a minimal/maximal solution

need not exist. For the two bound problem, we show that the problem is NP-

complete. Given the computational difficulty of handling nondeterministic WFAs

in general, we view these results as good news

These results have been described in [10] and do not appear in the thesis due to

lack of space.

Stochastization of weighted automata Probabilistic automata (PFAs, for short)

where introduced by Rabin in the 60s [48]. The idea is to replace nondeterminism

with probability. Each transition in a PFA has a probability, the probability of a

run is the product of the probabilities of the transitions it traverses, and the “value”

of a word is the probability of the accepting runs on it. Thus, it is a number in

r0, 1s.

We combine the probabilistic ideas in PFAs with the quantitative ideas of WFAs

to obtain a probabilistic weighted finite automaton (PWFA, for short). There, each

transition has two weights, which we refer to as the cost and the probability3. The

weight that the PWFA assigns to a word is then the expected cost of the runs on

it. That is, as in WFAs, the cost of each run is the sum the costs of the transitions

along the run, and as in PFAs, the contribution of each run to the weight of a word

depends on both its cost and probability. While PFAs have been extensively studied

(e.g., [18]), we are only aware of [35] in which PWFAs were considered.

We introduce and study stochastization of WFAs. Given a WFA A, stochastiza-

tion turns it into a PWFA A1 by labeling its transitions with probabilities. Recall

that in a WFA, the weight of a word is the minimal weight of a run on it. Stochasti-

3For technical reasons we assume here that no run of a WFA gets stuck and all runs are

accepting.

24

zation of a WFA A results in a PWFA A1 with the same set of runs, and the weight

of a word is the expected cost of these runs. Accordingly, the weight of a word in A1
can only increase with respect to its weight in A. Hence, we seek stochastizations

in which A1 α-approximates A for the minimal possible factor α ě 1. That is, the

value of every word in A1 is at most α times its value in A.

We describe one of the motivatations for stochastization of WFAs. In [5], the

authors describe a framework for using WFAs in order to reason about online algo-

rithms. An online algorithm can be viewed as a reactive system: at each round, the

environment issues a request, and the algorithm should process it. The sequence

of requests is not known in advance, and the goal of the algorithm is to minimize

the overall cost of processing the sequence. The most interesting question about an

online algorithm refers to its competitive ratio: the worst-case (with respect to all

input sequences) ratio between the cost of the algorithm and the cost of an optimal

solution – one that may be given by an offline algorithm, which knows the input

sequence in advance. An online algorithm that achieves a competitive ratio α is said

to be α-competitive.

The framework in [5] models optimization problems by WFAs, relates the “un-

bounded look ahead” of the optimal offline algorithm with nondeterminism, and

relates the “no look ahead” of online algorithms with determinism. So, given a

WFA A that models an online optimization problem, the authors study the prob-

lem of finding a determinization D of A that maintains the same states as the WFA

and only prunes transitions. Such a determinization corresponds to an online al-

gorithm. They show that if D α-approximates A, then the online algorithm that

corresponds to D is α-competitive.

We broaden the framework by considering randomized online algorithms, namely

ones that may toss coins in order to choose their actions. Indeed, it is well known that

many online algorithms that use randomized strategies achieve a better competitive

ratio [22]. Similar to the above, given a WFA A, we search for an α-stochastization

P of A. A randomized online algorithm that corresponds to P is then α-competitive.

Given a WFA A and a factor α ě 1, the approximated stochastization problem

(AS problem, for short) is to decide whether there is a stochastization of A that

α-approximates it. We study the AS problem and show that it is in general unde-

cidable. Special tractable cases include two types of restrictions. First, restrictions

on α: we show that when α “ 1, the problem coincides with determinization by

pruning of WFAs, which can be solved in polynomial time [5]. Then, restrictions on

the structure of the WFA: we define the class of constant-ambiguous WFAs, namely

WFAs whose degree of nondeterminism is a constant, and show that the AS problem

for them is in PSPACE. On the other hand, the AS problem is NP-hard already for

7-ambiguous WFAs, namely WFAs that have at most 7 runs on each word. Even

25

more restricted are tree-like WFAs, for which the problem can be solved in polyno-

mial time, and so is the problem of finding a minimal approximation factor α. We

show that these restricted classes are still expressive enough to model interesting

optimization problems.

These results have been described in [12] and do not appear in the thesis due to

lack of space.

References

[1] S. Almagor, G. Avni, and O. Kupferman. Repairing multi-player games. In 26th

International Conference on Concurrency Theory, CONCUR 2015, Madrid,

Spain, September 1.4, 2015, pages 325–339, 2015.

[2] S. Almagor, U. Boker, and O. Kupferman. What’s decidable about weighted

automata? In 9th Int. Symp. on Automated Technology for Verification and

Analysis, volume 6996 of Lecture Notes in Computer Science, pages 482–491.

Springer, 2011.

[3] S. Almagor, U. Boker, and O. Kupferman. Formalizing and reasoning about

quality. In Automata, Languages, and Programming - 40th International Collo-

quium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II, pages

15–27, 2013.

[4] S. Almagor, U. Boker, and O. Kupferman. Discounting in LTL. In Tools and

Algorithms for the Construction and Analysis of Systems - 20th International

Conference, TACAS 2014, Held as Part of the European Joint Conferences on

Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13,

2014. Proceedings, pages 424–439, 2014.

[5] B. Aminof, O. Kupferman, and R. Lampert. Reasoning about online algorithms

with weighted automata. ACM Transactions on Algorithms, 6(2), 2010.

[6] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and

T. Roughgarden. The price of stability for network design with fair cost al-

location. SIAM J. Comput., 38(4):1602–1623, 2008.

[7] K.R. Apt and E. Grädel. Lectures in Game Theory for Computer Scientists.

Cambridge University Press, 2011.

[8] G. Avni and O. Kupferman. Making weighted containment feasible: A heuristic

based on simulation and abstraction. In Proc. 23rd Int. Conf. on Concurrency

Theory, volume 7454, pages 84–99, 2012.

26

[9] G. Avni and O. Kupferman. When does abstraction help? Information Pro-

cessing Letters, 113:901–905, 2013.

[10] G. Avni and O. Kupferman. Parameterized weighted containment. ACM Trans.

Comput. Log., 16(1):6:1–6:25, 2014.

[11] G. Avni and O. Kupferman. Synthesis from component libraries with costs. In

Proc. 25th Int. Conf. on Concurrency Theory, pages 156–172, 2014.

[12] G. Avni and O. Kupferman. Stochastization of weighted automata. In Math-

ematical Foundations of Computer Science 2015 - 40th International Sympo-

sium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings, Part I, pages

89–102, 2015.

[13] G. Avni, O. Kupferman, and T. Tamir. From reachability to temporal spec-

ifications in cost-sharing games. In Automated Reasoning - 7th International

Joint Conference, IJCAR 2014, Held as Part of the Vienna Summer of Logic,

VSL 2014, Vienna, Austria, July 19-22, 2014. Proceedings, pages 1–15, 2014.

[14] G. Avni, O. Kupferman, and T. Tamir. Network-formation games with regular

objectives. In Proc. 17th Int. Conf. on Foundations of Software Science and

Computation Structures, volume 8412 of Lecture Notes in Computer Science,

pages 119–133. Springer, 2014.

[15] G. Avni, O. Kupferman, and T. Tamir. Congestion games with multisets of

resources and applications in synthesis. In Proc. 35th Conf. on Foundations of

Software Technology and Theoretical Computer Science, pages 365–379, 2015.

[16] G. Avni and T. Tamir. Cost-sharing scheduling games on restricted unrelated

machines. In Algorithmic Game Theory - 8th International Symposium, SAGT

2015, Saarbrücken, Germany, September 28-30, 2015, Proceedings, pages 69–

81, 2015.

[17] B. Awerbuch, Y. Azar, and A. Epstein. The price of routing unsplittable flow.

SIAM J. Comput., 42(1):160–177, 2013.

[18] P. Azaria. Introduction to Probabilistic Automata (Computer Science and Ap-

plied Mathematics). Academic Press, Inc., Orlando, FL, USA, 1971.

[19] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. On-

drusek, S.K. Rajamani, and A. Ustuner. Thorough static analysis of device

drivers. In EuroSys, 2006.

27

[20] V. Bilò. A unifying tool for bounding the quality of non-cooperative solutions

in weighted congestion games. In WAOA, pages 215–228, 2012.

[21] U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman. Temporal specifi-

cations with accumulative values. ACM Trans. Comput. Log., 15(4):27:1–27:25,

2014.

[22] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis.

Cambridge University Press, 1998.

[23] P. Bouyer, R. Brenguier, and N. Markey. Nash equilibria for reachability ob-

jectives in multi-player timed games. In CONCUR 2010 - Concurrency The-

ory, 21th International Conference, CONCUR 2010, Paris, France, August 31-

September 3, 2010. Proceedings, pages 192–206, 2010.

[24] P. Bouyer, U. Fahrenberg, K. Larsen, N. Markey, and J. Srba. Infinite runs in

weighted timed automata with energy constraints. In FORMATS, pages 33–47,

2008.

[25] I. Caragiannis, M. Flammini, C. Kaklamanis, P. Kanellopoulos, and

L. Moscardelli. Tight bounds for selfish and greedy load balancing. Algo-

rithmica, 61(3):606–637, 2011.

[26] W. Chan. Temporal-logic queries. In Proc. 12th Int. Conf. on Computer Aided

Verification, volume 1855 of Lecture Notes in Computer Science, pages 450–463.

Springer, 2000.

[27] K. Chatterjee, L. Doyen, and T. Henzinger. Quantative languages. In Proc.

17th Annual Conf. of the European Association for Computer Science Logic,

pages 385–400, 2008.

[28] K. Chatterjee, T. Henzinger, and B. Jobstmann. Environment assumptions for

synthesis. In Proc. 19th Int. Conf. on Concurrency Theory, volume 5201 of

Lecture Notes in Computer Science, pages 147–161. Springer, 2008.

[29] G. Christodoulou and E. Koutsoupias. On the price of anarchy and stability of

correlated equilibria of linear congestion games. In ESA, pages 59–70, 2005.

[30] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for

the static analysis of programs by construction or approximation of fixpoints.

In Proc. 4th ACM Symp. on Principles of Programming Languages, pages 238–

252. ACM, 1977.

[31] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

28

[32] L. Fix, N. Francez, and O. Grumberg. Program composition and modular veri-

fication. In Proc. 18th Int. Colloq. on Automata, Languages, and Programming,

pages 93–114, 1991.

[33] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its conse-

quences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

[34] R. Karp and C. Papadimitriou. On linear characterizations of combinatorial

optimization problems. In Proc. 21st IEEE Symp. on Foundations of Computer

Science, pages 1–9, 1980.

[35] S. Kiefer, A. S. Murawski, J. Ouaknine, B. Wachter, and J. Worrell. On the

complexity of equivalence and minimisation for q-weighted automata. Logical

Methods in Computer Science, 9(1), 2013.

[36] R. Koch and M. Skutella. Nash equilibria and the price of anarchy for flows

over time. Theory Comput. Syst., 49(1):71–97, 2011.

[37] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. Computer Science

Review, 3(2):65–69, 2009.

[38] D. Krob. The equality problem for rational series with multiplicities in the trop-

ical semiring is undecidable. International Journal of Algebra and Computation,

4(3):405–425, 1994.

[39] W. Li, L. Dworkin, and S. A. Seshia. Mining assumptions for synthesis. In

9th IEEE/ACM International Conference on Formal Methods and Models for

Codesign, MEMOCODE 2011, Cambridge, UK, 11-13 July, 2011, pages 43–50,

2011.

[40] Y. Lustig and M.Y. Vardi. Synthesis from component libraries. STTT, 15(5-

6):603–618, 2013.

[41] A.R. Meyer and L.J. Stockmeyer. The equivalence problem for regular expres-

sions with squaring requires exponential time. In Proc. 13th IEEE Symp. on

Switching and Automata Theory, pages 125–129, 1972.

[42] I. Milchtaich. Congestion games with player-specific payoff functions. Games

and Economic Behavior, 13(1):111 – 124, 1996.

[43] R. Milner. An algebraic definition of simulation between programs. In Proc.

2nd Int. Joint Conf. on Artificial Intelligence, pages 481–489. British Computer

Society, 1971.

29

[44] M. Mohri. Finite-state transducers in language and speech processing. Com-

putational Linguistics, 23(2):269–311, 1997.

[45] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic Game

Theory. Cambridge University Press, 2007.

[46] M.W. Padberg and M. R. Rao. The Russian Method and Integer Programming.

Working paper series (Salomon Brothers Center for the Study of Financial

Institutions). Salomon Brothers Center for the Study of Financial Institutions,

1980.

[47] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th

ACM Symp. on Principles of Programming Languages, pages 179–190, 1989.

[48] M. O. Rabin. Probabilistic automata. Information and Control, 6:230–245,

1963.

[49] R.W. Rosenthal. A class of games possessing pure-strategy Nash equilibria.

International Journal of Game Theory, 2:65–67, 1973.

[50] R. Selten. Spieltheoretische behandlung eines oligopolmodells mit nach-

frageträgheit. Zeitschrift für die gesamte Staatswissenschaft, 121, 1965.

[51] V. Syrgkanis. The complexity of equilibria in cost sharing games. In Proc. of the

6th International Conference on Internet and Network Economics, WINE’10,

pages 366–377, 2010.

[52] W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer

Science, pages 133–191, 1990.

[53] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information

and Computation, 115(1):1–37, 1994.

30

31

Network-Formation Games with Regular

Objectives∗

Guy Avni† Orna Kupferman‡ Tami Tamir§

Abstract

Classical network-formation games are played on a directed graph. Players

have reachability objectives, and each player has to select a path satisfying

his objective. Edges are associated with costs, and when several players use

the same edge, they evenly share its cost. The theoretical and practical as-

pects of network-formation games have been extensively studied and are well

understood. We introduce and study network-formation games with regular

objectives. In our setting, the edges are labeled by alphabet letters and the

objective of each player is a regular language over the alphabet of labels, given

by means of an automaton or a temporal-logic formula. Thus, beyond reach-

ability properties, a player may restrict attention to paths that satisfy certain

properties, referring, for example, to the providers of the traversed edges, the

actions associated with them, their quality of service, security, etc.

Unlike the case of network-formation games with reachability objectives,

here the paths selected by the players need not be simple, thus a player may

traverse some transitions several times. Edge costs are shared by the players

with the share being proportional to the number of times the transition is tra-

versed. We study the existence of a pure Nash equilibrium (NE), convergence

of best-response-dynamics, the complexity of finding the social optimum, and

the inefficiency of a NE compared to a social-optimum solution. We examine

several classes of networks (for example, networks with uniform edge costs,

or alphabet of size 1) and several classes of regular objectives. We show that

many properties of classical network-formation games are no longer valid in

our game. In particular, a pure NE might not exist and the Price of Stability

equals the number of players (as opposed to logarithmic in the number of

players in the classic setting, where a pure NE always exists). In light of these

results, we also present special cases for which the resulting game is more

stable.

∗Published is the proceedings of the 17th Foundations of Software Science and Computation

Structures, LNCS 8412, pages 119–133, Springer, 2014, and in the proceedings of the 7th Interna-

tional Joint Conference, LNCS 8562, pages 1–15, Springer, 2014. A full version was submitted.
†School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
‡School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
§School of Computer Science, The Interdisciplinary Center, Herzliya, Israel

32

1 Introduction

Network design and formation is a fundamental well-studied challenge that involves

many interesting combinatorial optimization problems. In practice, network design

is often conducted by multiple strategic users whose individual costs are affected by

the decisions made by others. Early works on network design focus on analyzing

the efficiency and fairness properties associated with different sharing rules (e.g.,

[27, 35]). Following the emergence of the Internet, there has been an explosion

of studies employing game-theoretic analysis to explore Internet applications, such

as routing in computer networks and network formation [21, 1, 16, 2]. In network-

formation games (for a survey, see [40]), the network is modeled by a weighted graph.

The weight of an edge indicates the cost of activating the transition it models, which

is independent of the number of times the edge is used. Players have reachability

objectives, each given by sets of possible source and target nodes. Players share the

cost of edges used in order to fulfill their objectives. Since the costs are positive, the

runs traversed by the players are simple. Under the common Shapley cost-sharing

mechanism, the cost of an edge is shared evenly by the players that use it.

The players are selfish agents who attempt to minimize their own costs, rather

than to optimize some global objective. In network-design settings, this would mean

that the players selfishly select a path instead of being assigned one by a central

authority. The focus in game theory is on the stable outcomes of a given setting, or

the equilibrium points. A Nash equilibrium (NE) is a profile of the players’ strategies

such that no player can decrease his cost by an unilateral deviation from his current

strategy, that is, assuming that the strategies of the other players do not change.1

Reachability objectives enable the players to specify possible sources and targets.

Often, however, it is desirable to refer also to other properties of the selected paths.

For example, in a communication setting, edges may belong to different providers,

and a user may like to specify requirements like “all edges are operated by the

same provider” or “no edge operated by AT&T is followed by an edge operated

by Verizon”. Edges may also have different quality or security levels (e.g., “noisy

channel”, “high-bandwidth channel”, or “encrypted channel”), and again, users may

like to specify their preferences with respect to these properties. In planning or in

production systems, nodes of the network correspond to configurations, and edges

correspond to the application of actions. The objectives of the players are sequences

of actions that fulfill a certain plan, which is often more involved than just reacha-

bility [25]; for example “once the arm is up, do not put it down until the block is

placed”.

1Throughout this paper, we concentrate on pure strategies and pure deviations, as is the case

for the vast literature on cost-sharing games.

33

The challenge of reasoning about behaviors has been extensively studied in the

context of formal verification. While early research concerned the input-output

relations of terminating programs, current research focuses on on-going behaviors

of reactive systems [26]. The interaction between the components of a reactive

system correspond to a multi-agent game, and indeed in recent years we see an

exciting transfer of concepts and ideas between the areas of game theory and formal

verification: logics for specifying multi-agent systems [3, 13], studies of equilibria

in games that correspond to the synthesis problem [12, 11, 20], an extension of

mechanism design to on-going behaviors [30], studies of non-zero-sum games in

formal methods [14, 10], and more.

In this paper we extend network-formation games to a setting in which the players

can specify regular objectives. This involves two changes of the underlying setting:

First, the edges in the network are labeled by letters from a designated alphabet.

Second, the objective of each player is specified by a language over this alphabet.

Each player should select a path labeled by a word in his objective language. Thus,

if we view the network as a nondeterministic weighted finite automaton (WFA) A,

then the set of strategies for a player with objective L is the set of accepting runs

of A on some word in L. Accordingly, we refer to our extension as automaton-

formation games. As in classical network-formation games, players share the cost

of edges they use. Unlike the classical game, the runs selected by the players need

not be simple, thus a player may traverse some edges several times. Edge costs are

shared by the players, with the share being proportional to the number of times

the edge is traversed. This latter issue is the main technical difference between

automaton-formation and network-formation games, and as we shall see, it is very

significant.

Many variants of cost-sharing games have been studied. A generalization of the

network-formation game of [2] in which players are weighted and a player’s share

in an edge cost is proportional to its weight is considered in [15], where it is shown

that the weighted game does not necessarily have a pure NE. In congestion games,

sharing of a resource increases its cost. Studied variants of congestion games include

settings in which players’ payments depend on the resource they choose to use, the

set of players using this resource, or both [34, 31, 32, 23]. In some of these variants

a NE is guaranteed to exist while in others it is not.

All the variants above are different from automaton-formation games, where

a player needs to select a multiset of resources (namely, the edges he is going to

traverse) rather than a set without repetitions. In the context of formal methods,

an appealing application of such games is that of synthesis from components, where

the resources are components from a library, and agents need to synthesize their

objectives using the components, possibly by a repeated use of some components.

34

In some settings, the components have construction costs (e.g., the money paid to the

designer of the component), in which case the corresponding multiset game is a cost-

sharing game [6], and our results here can be generalized to apply for this settings.

In other settings, the components have congestion effects (e.g., the components are

CPUs, and the more players that use them, the slower the performance is), in which

case the corresponding game is a multiset congestion game [9].

We study the theoretical and practical aspects of automaton-formation games. In

addition to the general game, we consider classes of instances that have to do with

the network, the specifications, or to their combination. Recall that the network

can be viewed as a WFA A. We consider the following classes of WFAs: p1q all-

accepting, in which all the states of A are accepting, thus its language is prefix

closed p2q uniform costs, in which all edges have the same cost, and p3q single letter,

in which A is over a single-letter alphabet. We consider the following classes of

specifications: (1) single word, where the language of each player is a single word,

(2) symmetric, where all players have the same objective. We also consider classes

of instances that are intersections of the above classes.

Each of the restricted classes we consider corresponds to a real-life variant of the

general setting. Let us elaborate below on single-letter instances. The language of

an automaton over a single letter tau induces a subset of IN, namely the numbers

k P IN such that the automaton accepts ak. Accordingly, single-letter instances

correspond to settings in which a player specifies possible lengths of paths. Several

communication protocols are based on the fact that a message must pass a pre-

defined length before reaching its destination. This includes onion routing, where

the message is encrypted in layers [38], or proof-of-work protocols that are used to

deter denial of service attacks and other service abuses such as spam (e.g., [19]).

We provide a complete picture of the following questions for various instances

(for formal definitions, see Section 2): piq Existence of a pure Nash equilibrium. That

is, whether each instance of the game has a profile of pure strategies that constitutes

a NE. As we show, unlike the case of classical network design games, a pure NE

might not exist in general automaton-formation games and even in very restricted

instances of it. piiq The complexity of finding the social optimum (SO). The SO is

a profile that minimizes the total cost of the edges used by all players; thus the one

obtained when the players obey some centralized authority. We show that for some

restricted instances finding the SO can be done efficiently, while for other restricted

instances, the complexity agrees with the NP-completeness of classical network-

formation games. piiiq An analysis of equilibrium inefficiency. It is well known that

decentralized decision-making may lead to solutions that are sub-optimal from the

point of view of society as a whole. We quantify the inefficiency incurred due to

selfish behavior according to the price of anarchy (PoA) [29, 36] and price of stability

35

(PoS) [2] measures. The PoA is the worst-case inefficiency of a Nash equilibrium

(that is, the ratio between the worst NE and the SO). The PoS is the best-case

inefficiency of a Nash equilibrium (that is, the ratio between the best NE and the

SO). We show that while the PoA in automaton-formation games agrees with the one

in classical network-formation games and is equal to the number of players, the PoS

also equals the number of players, again already in very restricted instances. This

is in contrast with classical network-formation games, where the PoS tends to log

the number of players. Thus, the fact that players may choose to use edges several

times significantly increases the challenge of finding a stable solution as well as the

inefficiency incurred due to selfish behavior. We find this as the most technically

challenging result of this work. We do manage to find structural restrictions on the

network with which the social optimum is a NE.

The technical challenge of our setting is demonstrated in the seemingly easy

instance in which all players have the same objective. Such symmetric instances

are known to be the simplest to handle in all cost-sharing and congestion games

studied so far. Specifically, in network-formation games, the social optimum in

symmetric instances is also a NE and the PoS is 1. Moreover, in some games [22],

computing a NE is PLS-complete in general, but solvable in polynomial time for

symmetric instances. Indeed, once all players have the same objective, it is not

conceivable that a player would want to deviate from the social-optimum solution,

where each of the k players pays 1
k

of the cost of the optimal solution. We show that,

surprisingly, symmetric instances in af-games are not simple at all. Specifically, a

NE is not guaranteed to exist in the general case, and in single-letter networks, the

social optimum might not be a NE, and the PoS is at least k
k´1

. In particular, for

symmetric two-player af games, we have that PoS “ PoA “ 2. We also show that

the PoA equals the number of players already for very restricted instances.

2 Preliminaries

2.1 Automaton-formation games

A nondeterministic finite weighted automaton on finite words (WFA, for short) is

a tuple A “ xΣ, Q,∆, q0, F, cy, where Σ is an alphabet, Q is a set of states, ∆ Ď

Q ˆ Σ ˆ Q is a transition relation, q0 P Q is an initial state, F Ď Q is a set of

accepting states, and c : ∆ Ñ IR is a function that maps each transition to the cost

of its formation [33]. A run of A on a word w “ w1, . . . , wn P Σ˚ is a sequence

of states π “ π0, π1, . . . , πn such that π0 “ q0 and for every 0 ď i ă n we have

∆pπi, wi`1, π
i`1q. The run π is accepting iff πn P F . The length of π is n, whereas

its size, denoted |π|, is the number of different transitions in it. Note that |π| ď n.

36

An automaton-formation game (af game, for short) between k selfish players is

a pair xA, Oy, where A is a WFA over some alphabet Σ and O is a k-tuple of regular

languages over Σ. Thus, the objective of Player i is a regular language Li, and he

needs to choose a word wi P Li and an accepting run of A on wi in a way that

minimizes his payments. The cost of each transition is shared by the players that

use it in their selected runs, where the share of a player in the cost of a transition e

is proportional to the number of times e is used by the player. Formally, The set of

strategies for Player i is Si “ tπ : π is an accepting run of A on some word in Liu.

We assume that Si is not empty. We refer to the set S “ S1 ˆ . . .ˆ Sk as the set of

profiles of the game.

Consider a profile P “ xπ1, π2, . . . , πky. We refer to πi as a sequence of transitions.

Let πi “ e1
i , . . . , e

`i
i , and let ηP : ∆ Ñ IN be a function that maps each transition in

∆ to the number of times it is traversed by all the strategies in P , taking into an

account several traversals in a single strategy. Denote by ηipeq the number of times e

is traversed in πi, that is, ηipeq “ |t1 ď j ď `i : eji “ eu|. Then, ηP peq “
ř

i“1...k ηipeq.

The cost of player i in the profile P is

costipP q “
ÿ

ePπi

ηipeq

ηP peq
cpeq. (1)

For example, consider the WFA A depicted in Figure 1. The label e1 : a, 1 on

the transition from q0 to q1 indicates that this transition, which we refer to as e1,

traverses the letter a and its cost is 1. We consider a games between two players.

Player 1’s objective is the language is L1 “ tab
i : i ě 2u and Player 2’s language is

tab, bau. Thus, S1 “ tte1, e2, e2u, te1, e2, e2, e2u, . . .u and S2 “ tte3, e4u, te1, e2uu.

Consider the profile P “ xte1, e2, e2u, te3, e4uy, the strategies in P are disjoint,

and we have cost1pP q “ 2 ` 2 “ 4, cost2pP q “ 1 ` 3 “ 4. For the profile

P 1 “ xte1, e2, e2u, te1, e2uy, it holds that η1pe1q “ η2pe1q and η1pe2q “ 2 ¨ η2pe2q.

Therefore, cost1pP
1q “ 1

2
` 2 “ 21

2
and cost2pP

1q “ 1
2
` 1 “ 11

2
.

q1q0q2q3
e1 : a, 1

e2 : b, 3
e3 : a, 2e4 : b, 2

Figure 1: An example of a WFA.

We consider the following instances of af games. Let G “ xA, Oy. We start with

instances obtained by imposing restrictions on the WFA A. In one-letter instances,

A is over a singleton alphabet, i.e., |Σ| “ 1. When depicting such WFAs, we omit the

letters on the transitions. In all-accepting instances, all the states in A are accepting;

i.e., F “ Q. In uniform-costs instances, all the transitions in the WFA have the

same cost, which we normalize to 1. Formally, for every e P ∆, we have cpeq “ 1. We

37

continue to restrictions on the objectives in O. In single-word instances, each of the

languages in O consists of a single word. In symmetric instances, the languages in O

coicide, thus the players all have the same objective. We also consider combinations

on the restrictions. In particular, we say that xA, Oy is weak if it is one-letter,

all states are accepting, costs are uniform, and objectives are single words. Weak

instances are simple indeed – each player only specifies a length of a path he should

patrol, ending anywhere in the WFA, where the cost of all transitions is the same.

As we shall see, many of our hardness results and lower bounds hold already for the

class of weak instances.

2.2 Nash equilibrium, social optimum, and equilibrium in-

efficiency

For a profile P , a strategy πi for Player i, and a strategy π, let P rπi Ð πs denote

the profile obtained from P by replacing the strategy for Player i by π. A profile

P P S is a pure Nash equilibrium (NE) if no player i can benefit from unilaterally

deviating from his run in P to another run; i.e., for every player i and every run

π P Si it holds that cost ipP rπi Ð πsq ě cost ipP q. In our example, the profile P is

not a NE, since Player 2 can reduce his payments by deviating to profile P 1.

The (social) cost of a profile P , denoted costpP q, is the sum of costs of the

players in P . Thus, costpP q “
ř

1ďiďk costipP q. Equivalently, if we view P as a set

of transitions, with e P P iff there is π P P for which e P π, then costpP q “
ř

ePP cpeq.

We denote by OPT the cost of an optimal solution; i.e., OPT “ minPPS costpP q. It

is well known that decentralized decision-making may lead to sub-optimal solutions

from the point of view of society as a whole. We quantify the inefficiency incurred

due to self-interested behavior according to the price of anarchy (PoA) [29, 36] and

price of stability (PoS) [2] measures. The PoA is the worst-case inefficiency of a Nash

equilibrium, while the PoS measures the best-case inefficiency of a Nash equilibrium.

Formally,

Definition 2.1 Let G be a family of games, and let G P G be a game in G. Let

ΥpGq be the set of Nash equilibria of the game G. Assume that ΥpGq ‰ H.

• The price of anarchy of G is the ratio between the maximal cost of a NE and

the social optimum of G. That is, PoApGq “ maxPPΥpGq costpP q{OPT pGq.

The price of anarchy of the family of games G is PoApGq “ supGPGPoApGq.

• The price of stability of G is the ratio between the minimal cost of a NE and

the social optimum of G. That is, PoSpGq “ minPPΥpGq costpP q{OPT pGq.

The price of stability of the family of games G is PoSpGq “ supGPGPoSpGq.

38

Uniform sharing rule: A different cost-sharing rule that could be adopted for

automaton-formation games is the uniform sharing rule, according to which the

cost of a transition e is equally shared by the players that traverse e, independent

of the number of times e is traversed by each player. Formally, let κP peq be the

number of runs that use the transition e at least once in a profile P . Then, the cost

of including a transition e at least once in a run is cpeq{κP peq. This sharing rule

induces a potential game, where the potential function is identical to the one used

in the analysis of the classical network design game [2]. Specifically, let ΦpP q “
ř

ePE cpeq ¨HpκP peqq, where H0 “ 0, and Hk “ 1` 1{2` . . .` 1{k. Then, ΦpP q is a

potential function whose value reduces with every improving step of a player, thus

a pure NE exists and BRD is guaranteed to converge. The similarity with classical

network-formation games makes the study of this setting straightforward. Thus,

throughout this paper we only consider the proportional sharing rule as defined in

(1) above.

3 Properties of Automaton-Formation Games

In this section we study the theoretical properties of af games: existence of NE

and equilibrium inefficiency. We show that af games need not have a pure Nash

equilibrium. This holds already in the very restricted class of weak instances, and

is in contrast with network-formation games. There, BRD converges and a pure NE

always exists 2. We then analyze the PoS in af games and show that there too, the

situation is significantly less stable than in network-formation games.

Theorem 3.1 Automaton-formation games need not have a pure NE. This holds

already for the class of weak instances.

Proof: Consider the WFA A depicted in Figure 2 and consider a game with k “ 2

players. The language of each player consists of a single word. Recall that in one-

letter instances we care only about the lengths of the objective words. Let these be `1

and `2, with `1 " `2 " 0 that are multiples of 12. For example, `1 “ 30000, `2 “ 300.

Let C3 and C4 denote the cycles of length 3 and 4 in A, respectively. Let D3 denote

the path of length 3 from q0 to q1. Every run of A consists of some repetitions of

these cycles possibly with one pass on D3.

We claim that no pure NE exists in this instance. Since we consider long runs,

the fact that the last cycle might be partial is ignored in the calculations below.

2Best-response-dynamics (BRD) is a local-search method where in each step some player is

chosen and plays his best-response strategy, given that the strategies of the other players do not

change.

39

q0 q1

Figure 2: A weak instance of af games with no NE.

We first show that the only candidate runs for Player 1 that might be part of a

NE profile are π1 “ pC4q
`1
4 and π11 “ D3 ¨ pC3q

`1
3
´1. If Player 1 uses both C3 and

C4 multiple times, then, given that `1 " `2, he must almost fully pay for at least

one of these cycles, thus, deviating to the run that repeats this fully-paid cycle is

beneficial.

When Player 1 plays π1, Player 2’s best response is π2 “ pC4q
`2
4 . In the profile

xπ1, π2y, Player 1 pays almost all the cost of C4, so the players’ costs are p4´ ε, εq.

This is not a NE. Indeed, since `2 " 0, then by deviating to π11, the share of Player 1

in D3 reduces to almost 0, and the players’ costs in xπ11, π2y, are p3` ε, 4´ εq. This

profile is not a NE as Player 2’s best response is π12 “ D3 ¨ pC3q
`2
3
´1. Indeed, in the

profile xπ11, π
1
2y, the players’ costs are p4.5 ´ ε, 1.5 ` εq as they share the cost of D3

and Player 1 pays almost all the cost of C3. This is not a NE either, as Player 1

would deviate to the profile xπ1, π
1
2y, in which the players’ costs are p4 ´ ε, 3 ` εq.

The latter is still not a NE, as Player 2 would head back to xπ1, π2y. We conclude

that no NE exists in this game.

The fact a pure NE may not exist is a significant difference between standard

cost-sharing games and af games. The bad news do not end here and extend to

equilibrium inefficiency. We first note that the cost of any NE is at most k times

the social optimum (as otherwise, some player pays more than the cost of the SO

and can benefit from migrating to his strategy in the SO). Thus, it holds that

PoS ď PoA ď k. The following theorem shows that this is tight already for highly

restricted instances.

Theorem 3.2 The PoS in af games equals the number of players. This holds

already for the class of weak instances.

Proof: We show that for every k, δ ą 0 there exists a simple game with k

players for which the PoS is more than k ´ δ. Given k and δ, let r be an integer

such that r ą maxtk, k´1
δ
´ 1u. Consider the WFA A depicted in Figure 3. Let

L “ x`1, `2, . . . , `ky for `2 “ . . . “ `k and `1 " `2 " 0 denote the lengths of the

objective words. Thus, Player 1 has an ‘extra-long word’ and the other k´1 players

have words of the same, long, length. Let Cr and Cr`1 denote, respectively, the

cycles of length r and r ` 1 to the right of q0. Let Dr denote the path of length

40

r from q0 to q1, and let Dkr denote the ‘lasso’ consisting of the kr-path and the

single-edge loop to the left of q0.

q0 q1

. . .

(r + 1)-edge cycle
. . .

r-edge cycle
. . .

k · r edges

Figure 3: A weak instance of af games for which PoS “ k.

The social optimum of this game is to buy Cr`1. Its cost is r ` 1. However, as

we show, the profile P in which all players use Dkr is the only NE in this game. We

first show that P is a NE. In this profile, Player 1 pays r ` 1 ´ ε and each other

player pays r ` ε{pk ´ 1q. No player will deviate to a run that includes edges from

the right side of A. Next, we show that P is the only NE of this game: Every run

on the right side of A consists of some repetitions of Cr`1 and Cr, possibly with one

traversal of Dr. Since we consider long runs, the fact that the last cycle might be

partial is ignored in the calculations below.

In the social optimum profile, Player 1 pays r ` 1 ´ ε and each of the other

players pays ε{pk´1q. The social optimum is not a NE as Player 1 would deviate to

Dr ¨C
˚
r and will reduce his cost to r`ε1. The other players, in turn, will also deviate

to Dr ¨ C
˚
r . In the profile in which they are all selecting a run of the form Dr ¨ C

˚
r ,

Player 1 pays r ` r{k ´ ε ą r ` 1 and prefers to return to C˚r`1. The other players

will join him sequentially, until the non-stable social optimum is reached. Thus, no

NE that uses the right part of A exists. Finally, it is easy to see that no run that

involves edges from both the left and right sides of A or includes both Cr`1 and Cr

can be part of a NE.

The cost of the NE profile is kr`1 and the PoS is therefore kr`1
r`1

“ k´ k´1
r`1

ą k´δ.

4 Computational Complexity Issues in af Games

In this section we study the computational complexity of three problems: finding the

cost of the social optimum, finding the best-response of a player, and deciding the

existence of a NE. Recall that the social optimum (SO) is a profile that minimizes

the total cost the players pay. It is well-known that finding the social optimum in a

network-formation game is NP-complete. We show that this hardness is carried over

to simple instances of af games. On the positive side, we identify non-trivial classes

of instances, for which it is possible to compute the SO efficiently. The other issue

we consider is the complexity of finding the best strategy of a single player, given the

current profile, namely, the best-response of a player. In network-formation games,

41

computing the best-response reduces to a shortest-path problem, which can be solved

efficiently. We show that in af games, the problem is NP-complete. Finally, recall

that af games are not guaranteed to have a NE. We study the problem of deciding,

given an af game, whether it has a NE. We term this problem DNE. We show that

the DNE problem is Σ2
P -complete.

We start with the problem of finding the value of the social optimum.

Theorem 4.1 Finding the value of the social optimum in af games is NP-complete.

Moreover, finding the social optimum is NP-complete already in single-worded in-

stances that are also uniform-cost and are either single-lettered or all-accepting.

Proof: We start with membership in NP. Given a WFA A with objectives

w1, . . . , wk and value c P IR, we can guess a witness profile P and check whether it

satisfies costpP q ď c in polynomial time. For proving hardness, we show a reduction

from the Set-Cover (SC) problem. Consider an input xU, S,my to SC. Recall that

U is a set of elements, S “ tC1, . . . , Czu Ď 2U is a collection of subsets of elements

of U , and m P IN. Then, xU, S,my is in SC iff there is a subset S 1 of S of size at

most m that covers U . That is, |S 1| ď m and
Ť

CPS1 C “ U .

Given an input xU, S,my to SC, we construct a uniform-cost single-letter WFA

A and a vector of k integers, where the i-th integer corresponds to the length of

the (single) word in Li. We fix a value y, such that xU, S,my in SC iff the SO

value of the game played on A with the objectives in tLiu is y. We construct

A “ xtau, Q, q0,∆, tqaccu, cy as follows (see an example in the left of Figure 4).

The set Q includes the initial and accepting states, a state for every set in S, and

intermediate states required for the disjoint runs defined below. Without loss of

generality, we assume that U “ t1, . . . , ku. Consider an element i P U . For every

C P S such that i P C, there is a disjoint run of length i from C to qacc. Also,

for every C P S, there is a transition xq0, Cy in ∆. The cost of all transitions in

∆ is 1. For every 1 ď i ď k, the length of the word in |Li| is i ` 1. We define

w “ m` p1` 2` . . .` kq. The size of A is clearly polynomial in |U | and |S|.

q0

{1, 2}

{2, 3}

qacc q0

{1, 2}

{2, 3}

qacc

0

0

0
0

0

1

0

1

1
0

Figure 4: The WFAs produced by the reduction for U “ t1, 2, 3u and S “ tt1, 2u, t2, 3uu.

The construction for uniform-cost all-accepting instances is very similar (see an

example in the right of Figure 4). Let z “ rlogpnqs and Σ “ t0, 1u. For C P S

and i P C, we have a z-length path from C to qacc that is labeled with the binary

42

representation of i ´ 1 (padded with preceding zeros if needed). The label on all

transitions from q0 to the S states is 0. For 1 ď i ď k, the word for Player i is a

single 0 letter followed by the binary representation of i´ 1. The size of A is clearly

polynomial in |U | and |S|.

We claim that there exists a set-cover of size m iff OPT ď m`p1`2` . . .`kq for

the uniform-cost single-letter instance and OPT ď m`k ¨z for the uniform-cost all-

accepting instance. We prove the claim for the uniform-cost single-letter instance.

The proof for the uniform-cost all-accepting instance is very similar. For the first

direction, let S 1 “ tsi1 , . . . , simu be a set cover. We show a profile P “ tπ1, . . . , πku

such that costpP q ď m` p1` 2` . . .` kq. Recall that the input length for Player i

is i ` 1. Since S 1 is a set cover, there is a set s P S 1 with i P s. We define

the run πi to proceed from q0 to s and from there to qacc on a run of length i.

Clearly, the runs π1, . . . , πn are all legal-accepting runs. Moreover, the runs use m

transitions from tq0u ˆ S Ď E. Thus, costpP q ď m ` p1 ` 2 ` . . . ` kq, implying

OPT ď m` p1` 2` . . .` kq, and we are done.

For the second direction, assumeOPT “ m1`p1`2`. . .`kq ď m`p1`2`. . .`kq,

we prove that there is a set cover of size m1. Let S˚ “ xπ1, . . . , πky. Thus, OPT “

costpS˚q “ m1. Let S 1 Ă S be such that s P S 1 iff the transition xq0, sy is used in one

of the runs in S˚. Note that the run of every player consists of a transition pq0, sq

followed by a disjoint run of length i to qacc. Therefore, OPT “ m1`p1`2` . . .`kq,

and, |S 1| “ m1 ď m. We claim that S 1 is a set cover. For every i P U , the first

transition in the run is a transition xq0, sy for some s P S, as otherwise, player i can

not proceed to qacc along a run of length i. By our definition of S 1 we have s P S 1,

thus i P U is covered.

The hardness results in Theorem 4.1 for single-word specification use one of two

properties: either there is more than one letter, or not all states are accepting.

We show that finding the SO in instances that have both properties can be done

efficiently, even for specifications with arbitrary number of words.

For a language Li over Σ “ tau, let shortpiq “ minjta
j P Liu denote the length

of the shortest word in Li. For a set O of languages over Σ “ tau, let `maxpOq “

maxi shortpiq denote the length of the longest shortest word in O. Clearly, any

solution, in particular the social optimum, must include a run of length `maxpOq.

Thus the cost of the social optimum is at least the cost of the cheapest run of

length `maxpOq. Moreover, since the WFA is single-letter and all-accepting, the

other players can choose runs that are prefixes of this cheapest run, and no additional

transitions should be acquired. We show that finding the cheapest such run can be

done efficiently.

Theorem 4.2 The cost of the social optimum in a single-letter all-accepting in-

43

stance xA, Oy is the cost of the cheapest run of length `maxpOq. Moreover, this cost

can be found in polynomial time.

Proof: Clearly, any solution, in particular the social optimum, must include a

run of length `maxpOq. Thus the cost of the social optimum is at least the cost of

the cheapest run of length `maxpOq. Moreover, since there are no target vertices,

the other players can be assigned runs that are prefixes of the cheapest run, and no

additional transitions should be acquired.

We claim that finding the cheapest such run can be done efficiently. Recall that

q0 is the initial state in A, and let |Q| “ n. We view A as a weighted-directed graph

G “ xV,E, cy, where the vertices V are the states Q, there is an edge e P E between

two vertices if there is a transition between the two corresponding states, and the

cost of the edges is the same as the cost of the transition in A. For 0 ď i ď n, let

di : V ˆV Ñ Q` be the function that, given two vertices u, v P V , returns the value

of the cheapest pah of length i from u to v, and 8 if no such path exists. Note

that there is no requirement that the path is simple, and indeed we may traverse

cycles in order to accommodate i transitions. The function d : V ˆV Ñ Q`, returns

the value of the cheapest path of any length between two given vertices. Given two

vertices u, v P V , computing dpu, vq can be done using Dijkstra’s algorithm, and,

given an index i P IN, it is possible to compute dipu, vq by a slight variation of the

Bellman-Ford algorithm.

We distinguish between two cases. If `max ą 2n ´ 2, we claim that the value of

the social optimum is mintdpq0, vq`dpv, vq : v P V u. If `max ď 2n´2, then we claim

that the value of the social optimum is the minimum value of dipq0, vq ` djpv, vq,

where v P V , 0 ď i ď `max, 0 ď j ď `max ´ i, and if j “ 0, then i “ `max.

We start with the first case. Assume `max ą 2n´ 2. Let ALG “ mintdpq0, vq `

dpv, vq : v P V u. Recall that S˚ is the social optimum profile, and OPT “ costpS˚q.

For the first direction, we claim that ALG ď OPT . Let π be a run in S˚ of length

`max, where we assume π is a sequence of transitions. Clearly, OPT ě costpπq.

Since ALG takes the minimum over all vertices, it suffices to prove that costpπq ě

dpq0, vq` dpv, vq for some v P V . We view π as a path in the graph G, and we claim

that π contains a sub-path that starts in q0 and ends in v and a sub-path that is a

cycle from v to itself, for some v P V . Thus, OPT ě costpπq ě costpxq ` costpyq ě

dpq0, vq`dpv, vq ě ALG. We continue to prove the claim. Since `max ą n, there is a

vertex v that appears twice in π. We split π into two paths, at the first appearance

of v. That is, π “ x ¨ y1, where x is a path that ends in v and v does not appear in

x again. Note that if v “ q0, then π “ y1. Since π is a legal run, it starts in q0, and

we have that x is a path from q0 to v. We continue to prove that there is a cycle y

from v to itself that is contained in y1. Indeed, since v appears at least twice in π,

44

and since y1 is a sequence of transitions that starts in v, we have that v appears in

y1 at least twice, and we are done.

We continue to prove that ALG ě OPT . Let v P V be the vertex that attains

the minimum in mintdpq0, vq` dpv, vq : v P V u. Let τ “ τ1 ¨ τ2 be a run such that τ1

is a simple path from q0 to v with costpτ1q “ dpq0, vq and τ2 is a simple cycle from

v to itself with costpτ2q “ dpv, vq. We claim that costpτq ě OPT . Since τ1 and τ2

are simple, we have |τ1| ď n´ 1 and |τ2| ď n´ 1. Thus, |τ | ă 2n´ 2. We extend τ

to a path of length `max by traversing the loop τ2 many times. Clearly, τ is a legal

run of the automaton A on a word of length `max. Consider the profile S in which

the players choose runs that are prefixes of τ 1. Since the only transitions used in S

are those in τ , we have costpSq “ costpτq. Since S˚ is the social optimum, we have

ALG “ costpSq ě costpS˚q “ OPT , and we are done.

The case in which `max ď 2n´ 2 is proven in a similar manner.

We turn to prove the hardness of finding the best-response of a player. Our proof

is valid already for a single player that needs to select a strategy on a WFA that is

not used by other players (one-player game).

Theorem 4.3 Finding the best-response of a player in af games is NP-complete.

Proof: We start with membership in NP. Given a WFA A with objectives

L1, . . . , Lk and value c P IR, we can guess a witness profile P and check whether it

satisfies costpP q ď c in polynomial time.

For proving hardness, we show a reduction from the Set-Cover (SC) problem.

Consider an input xU, S,my to SC. Recall that U “ t1, . . . , nu is a set of elements,

S “ tC1, . . . , Czu Ď 2U is a collection of subsets of elements of U , and m P IN. Then,

xU, S,my is in SC iff there is a subset S 1 of S of size at most m that covers U . That

is, |S 1| ď m and
Ť

CPS1 C “ U .

Given an input xU, S,my to SC, we construct a game xA, Oy such that xU, S,my

is in SC iff the SO in the game is at most l. The game is a one-player game. We start

by describing the specification L of the player. The alphabet of L is S YU and it is

given by the regular expression pC1`. . .`Cmq¨1¨pC1`. . .`Cmq¨2¨. . .¨pC1`. . .`Cmq¨n.

The WFA A is over the alphabet SYU . There is a single initial state qin and a state

for every set in S. For 1 ď i ď z, there is a Ci-labeled transition from qin to the

state Ci, and for every j P Ci, there is a j-labeled transition from the state Ci back

to qin. The first type of transitions cost 1 and the second cost 0 (for an example see

Figure 5).

We prove the correctness of the reduction: For the first direction, assume there

is a set cover of at most l. Consider the word w in which, for every 1 ď j ď n, the

letter that precedes j is Ci P S such that Ci is in the set cover. Clearly, w P L and

45

qin {1, 2}{2, 3}

C1, 1C2, 1

1, 0

2, 0

2, 0

3, 0

Figure 5: The WFA produced by the reduction for U “ t1, 2, 3u and S “ tt1, 2u, t2, 3uu.

since it uses at most l letters from S, the profile in which the player chooses it, costs

at most l. Thus, the SO is also at most l. For the other direction, assume the SO is

attained in a profile with the word w P L. It is not hard to see that the letters from

S that appear in w form a set cover of size at most l.

We turn to study the problem of deciding whether a NE exists. We show that

DNE is complete for ΣP
2 – the second level of the polynomial hierarchy. Namely, de-

cision problems solvable in polynomial time by a nondeterministic Turing machine

augmented by an oracle for an NP-complete problem. An oracle for a computational

problem is a black box that is able to produce a solution for any instance of the

problem in a single operation. Thus, for every problem P P ΣP
2 there is a machine

such that for every x P P there is a polynomial accepting computation (with poly-

nomial many queries to the oracle). As co-NP is the dual complexity class of NP,

the dual complexity class of ΣP
2 is ΠP

2 . Thus, a problem P is ΣP
2 -complete iff its

complement P is ΠP
2 -complete.

The upper bound is easy: guess a profile, and use k calls to an oracle for the

best-response problem to verify that no player can benefit from deviating. For the

lower bound, we alter the reduction in [6], for the DNE problem in a similar game.

The reduction is from the complement of the min-max vertex cover problem, which

is known to ΣP
2 -complete [28].

Theorem 4.4 The problem of deciding whether an af has a NE is Σ2
P -complete.

5 Tractable Instances of af Games

In the example in Theorem 3.1, Player 1 deviates from a run on the shortest (and

cheapest) possible path to a run that uses a longer path. By doing so, most of the

cost of the original path, which is a prefix of the new path and accounts to most

of its cost, goes to Player 2. We consider semi-weak games in which the WFA is

uniform-cost, all-accepting, and single-letter, but the objectives need not be a single

word. We identify a property of such games that prevents this type of deviation and

which guarantees that the social optimum a NE. Thus, we identify a family of af

games in which a NE exists, finding the SO is easy, and the PoS is 1.

46

Definition 5.1 Consider a semi-weak game xA, Oy. A lasso is a path u ¨v, where u

is a simple path that starts from the initial state and v is a simple cycle. A lasso ν is

minimal in A if A does not have shorter lassos. Note that for minimal lassos u ¨ v,

we have that uX v “ H. We say that A is resistant if it has no cycles or there is a

minimal lasso ν “ u ¨v such that for every other lasso ν 1 we have |uzν 1|`|v| ď |ν 1zν|.

Consider a resistant weak game xA, Oy. In order to prove that the social optimum

is a NE, we proceed as follows. Let ν be the lasso that is the witness for the resistance

of A. We show that the profile S˚ in which all players choose runs that use only

the lasso ν or a prefix of it, is a NE. The proof is technical and we go over all the

possible types of deviations for a player and use the weak properties of the network

along with its resistance. By Theorem 4.2, the cost of the profile is the SO. Hence

the following.

Theorem 5.1 For resistant semi-weak games, the social optimum is a NE.

Proof: Consider a resistant semi-weak game xA, Oy, thus A has no cycles or

there is a minimal lasso in A that satisfies the resistance requirements. Recall that

by Theorem 4.2, the social optimum is the profile S˚ in which all players use prefixes

of the cheapest run of length `maxpOq. Formally, let `1 ě `2 ě . . . ě `k, where for

1 ď i ď k, `i be the minimal length of a word in Li. That is, `1 “ `maxpOq. Then,

S˚ “ xπ1, . . . , πky, where for 1 ď i ď k, the run πi is of length `i and π1 uses the

lasso that is the witness for resistance, or an acyclic path if the lasso’s length is

larger than `1.

We claim that S˚ is a NE. Assume otherwise, thus there are 1 ď i ď k and π1i

such that costipS
˚q ą costipS

˚ri Ð π1isq. Assume Wlog that |π1i| “ `i as otherwise

Player i can deviate to a prefix of length `i of π1i and only improve his payment. We

use S 1 to refer to S˚riÐ π1is. For 1 ď j ď k, let νj be the set of transitions that are

used in πj. Similarly, let ν 1i be the transitions used in π1i. Note that ν1, . . . , νk, ν
1
i are

paths of transitions.

We distinguish between four cases. In the first case, both νi and ν 1i are simple

paths. First, note that every transition in νi X ν 1i costs the same for Player i in

both profiles. Next, we claim that every transition in ν 1izνi costs at least as much

as any transition in ν 1izνi. Indeed, since all players use prefixes of ν1, the sharing

along the path monotonically decreases. That is, assuming νi “ t1, . . . , tn, then for

1 ď j ď n ´ 1, in S˚, the number of players using transition tj is at least that of

tj`1. Since A has uniform transition costs, the claim follows. Finally, since the runs

are simple, the sizes of νizν
1
i and ν 1izνi are equal. Thus, costipS

˚q ď costipS
1q, and

we reach a contradiction to the fact that Player i deviates.

In the second case, νi is simple and ν 1i is lasso. Thus, |ν 1i| ď |νi|. If |ν 1i| “ |νi|,

we return to the previous case. We assume |ν 1i| ă |νi|, and show that we reach a

47

contradiction to our assumption that A is resistant. Recall that |ν1| ě |νi|. If π1

uses a lasso, then ν 1i is a shorter lasso, contradicting the minimality of the witness

lasso for resistance. If π1 does not use a lasso, then we reach a contradiction to our

assumption that the witness lasso has length greater than `1.

In the third case, νi is a lasso and ν 1i is simple. Thus, νi “ ν1. Consider a

transition e P νi. Let xe and x1e be the number of times Player i uses e in πi and

π1i, respectively. Thus, xe ą 0 and x1e ď 1. Let ye be the number of times the other

players use e in S˚ and also in S 1 as none of them alter their strategy. Consider

a transition e P νi having x1e “ 1. That is, Player i reduces his number of uses of

transition e from xe to 1. Since the number of times Player i uses a transition in π1i

is at most 1, there are pxe ´ 1q transitions that are not used by Player i in πi and

are used once in π1i. Since νi “ ν1, these transitions are all in ν 1izνi and Player i pays

1 for each of them. Consider a transition e P νi. Let costei pS
˚q and costei pS

1q be the

cost Player i pays for transition e in profiles S˚ and S 1, respectively. If x1e “ 1, then

by the above

costei pS
˚
q ´ costei pS

1
q “

xe
ye ` xe

´
` 1

ye ` 1
` pxe ´ 1q

˘

“

“
xeye ` xe ` y

2
e ´ yex

2
e ´ x

2
e ´ y

2
exe

pye ` xeq ¨ pye ` 1q
ď 0

Similarly, if x1e “ 0, then the change in cost incurred by e is:

costei pS
˚
q ´ costei pS

1
q “

xe
ye ` xe

´ xe ď 0

Since costipS
˚q´costipS

1q “
ř

eP∆ cost
e
i pS

˚q´costei pS
1q, we have costipS

˚q´costipS
1q ď

0, and thus costipS
˚q ď costipS

1q, which is a contradiction to the fact that Player i

deviates.

We continue to the final case in which both νi and ν 1i are lassos. As in the

previous case, νi “ ν1. Recall that the lasso ν1 is the lasso that is the witness for

the resistance of A. We show that the lasso ν 1i violates our requirement for ν1 and

thus we reach a contradiction. Let ν1 “ u ¨ v, where u is a simple path from the

initial state and v is a simple cycle. Thus,

costipS
˚
q “ costipS

˚, uq ` costipS
˚, vq ď costipS

˚, uX ν 1iq ` |uzν
1
i| ` |v|.

Also,

costipS
1
q “ costipS

1, uX ν 1iq ` costipS
1, ν 1i X vq ` |ν

1
izνi| ě costipS

˚, uX ν 1iq ` |ν
1
izνi|.

Subtracting both inequalities we get:

costipS
˚
q ´ costipS

1
q ď |uzν 1i| ` |v| ´ |ν

1
izνi|.

48

Since costipS
˚q ´ costipS

1q ą 0, we get:

|ν 1izνi| ą |uzν
1
i| ` |v|,

which is a contradiction to the resistance of A, and we are done.

A corollary of Theorem 5.1 is the following:

Corollary 5.2 For resistant semi-weak games, we have PoS“ 1.

We note that resistance can be defined also in WFAs with non-uniform costs, with

costpνq replacing |ν|. Resistance, however, is not sufficient in the slightly stronger

model where the WFA is single-letter and all-accepting but not uniform-cost. In-

deed, given k, we show a such a game in which the PoS is kx, for a parameter x that

can be arbitrarily close to 1. Consider the WFA A in Figure 5. Note that A has a

single lasso and is thus a resistant WFA. The parameter `1 is a function of x, and

the players’ objectives are single words of lengths `1 " `2 " . . . " `k " 0. Similar

to the proof of Theorem 3.2, there is only one NE in the game, which is when all

players choose the left chain. The social optimum is attained when all players use

the self-loop, and thus for a game in this family, PoS “ k¨x
1

. Since x tends to 1, we

have PoS “ k for resistant all-accepting single-letter games.

q0 q1 . . . qℓ1−2 qℓ1−1q′
1

q′
2

. . .q′
ℓ1−1

q′
ℓ1

1

x 0 0 0k · x0000

Figure 6: A resistant all-accepting single-letter game in which the PoS tend to k.

6 Surprises in Symmetric Instances

In this section we consider the class of symmetric instances, where all players share

the same objective. That is, there exists a language L, such that for all 1 ď i ď k,

we have Li “ L. In such instances it is tempting to believe that the social optimum

is also a NE, as all players evenly share the cost of the solution that optimizes their

common objective. While this is indeed the case in all known symmetric games, we

show that, surprisingly, this is not valid for af-games, in fact already for the class

of one-letter, all accepting, unit-cost and single-word instances.

Moreover, we start by showing that a NE need not exist in general symmetric

instances.

Theorem 6.1 Symmetric instances of af-games need not have a pure NE.

49

Proof: Consider a WFA A consisting of a single accepting state with two self

loops, labeled pa, 1q and pb, 5
14
´ εq. Let n1 and n2 be such that 0 ! n2 ! n1. We

define L “ a6 ` abn1 ` aabn2 ` aaab. We denote the 4 strategies available to each of

the players by A,B,C, and D, with A “ p6, 0q indicating 6 uses of the a transition

and 0 uses of the b transition, B “ p1, n1q, C “ p2, n2q, and D “ p3, 1q.

In order to show that there is no NE, we only have to show that the four profiles

in which the players follow the same strategy are not a NE. Indeed, it is easy to see

that for every other profile, one of the players would deviate to one of these profiles.

Now, in profile xA,Ay both players pay 1
2

as they split the cost of the a-transition

evenly. This is not a NE as Player 1 (or, symmetrically, Player 2) would deviate to

xB,Ay, where he pays 1
7

for the a-transition and the full price of the b-transition,

which is 5
14
´ ε, thus he pays 1

2
´ ε.

In profile xB,By, both players pay 1
2

for the a-transition plus 5
2¨14

´ ε for the

b-transition, which sums to 0.678 ´ ε. This is not a NE, as Player 1 would deviate

to xC,By, where he pays 2
3

for the a-transition and, as n2 ! n1, only ε for the

b-transition.

In profile xC,Cy, again both players pay 0.678 ´ ε. By deviating to xD,Cy,

Player 1 reduces his payment to 3
5
` ε. Finally, in profile xD,Dy, both players pay

0.678´ ε and when deviating to xA,Dy, Player 1 reduces his payment to 6
9
.

We turn to study the equilibrium inefficiency, starting with the PoA. It is easy

to see that in symmetric af games, we have PoA “ k. This bound is achieved, as

in the classic network-formation game, by a network with two parallel edges labeled

by a and having costs k and 1. The players all have the same specification L “ tau.

The profile in which all players select the expensive path is a NE. We show that

PoA “ k is achieved even for weak symmetric instances.

Theorem 6.2 The PoA equals the number of players, already for weak symmetric

instances.

Proof: We show a lower bound of k. The example is a generalization of the

PoA in cost sharing games [2]. For k players, consider the weak instance depicted

in Figure 6, where all players have the length k. Intuitively, the social optimum is

attained when all players use the loop xq0, q0y and thus OPT “ 1. The worst NE is

when all players use the run q0q1 . . . qk, and its cost is clearly k. Formally, there are

two NEs in the game:

• The cheap NE is when all players use the loop xq0, q0y. This is indeed a NE

because if a player deviates, he must buy at least the transition xq0, q1y. Thus,

he pays at least 1, which is higher than 1
k
, which is what he pays when all

players use the loop.

50

• The expensive NE is when all players use the run q0, q1, . . . , qk. This is a NE

because a player has two options to deviate. Either to the run that uses only

the loop, which costs 1, or to a run that uses the loop and some prefix of

q0, q1, . . . , qk, which costs at least 1 ` 1
k
. Since he currently pays 1, he has no

intention of deviating to either runs.

Since the cheap NE costs 1 and the expensive one costs k, we get PoA “ k.

q0 q1 q2 · · · qk

Figure 7: The WFA A for which a symmetric game with |L| “ 1 achieves PoA “ k.

We now turn to the PoS analysis. We first demonstrate the anomaly of having

PoS ą 1 with the two-player game appearing in Figure 8. All the states in the

WFA A are accepting, and the objectives of both players is a single long word. The

social optimum is when both players traverse the loop q0, q1, q0. Its cost is 2` ε, so

each player pays 1` ε
2
. This, however, is not a NE, as Player 1 (or, symmetrically,

Player 2) prefers to deviate to the run q0, q1, q1, q1, . . ., where he pays the cost of the

loop q1, q1 and his share in the transition from q0 to q1. We can choose the length of

the objective word and ε so that this share is smaller than ε
2
, justifying his deviation.

Note that the new situation is not a NE either, as Player 2, who now pays 2, is

going to join Player 1, resulting in an unfortunate NE in which both players pay

1.5.

q0 q1

2

ǫ

1

Figure 8: The WFA A for which the SO in a symmetric game is not a NE.

It is not hard to extend the example from Figure 8 to k ą 2 players by changing

the 2-valued transition to k, and adjusting ε and the lengths of the players accord-

ingly. The social optimum and the only NE are as in the two-player example. Thus,

the PoS in the resulting game is 1` 1
k
.

A higher lower bound of 1 ` 1
k´1

is shown in the following theorem. Although

both bounds tend to 1 as k grows to infinity, this bound is clearly stronger. Also,

for k “ 2, the bound PoS “ 1 ` 1
k´1

“ 2 is tight. We conjecture that k
k´1

is tight

for every k ą 1.

Theorem 6.3 In a symmetric k-player game, the PoS is at least k
k´1

.

51

Proof: For k ě 2, we describe a family of symmetric games for which the PoS

tends to k
k´1

. For n ě 1, the game Gε,n uses the WFA that is depicted in Figure 9.

Note that this is a one-letter instance in which all states are accepting. The players

have an identical specification, consisting of a single word w of length ` " 0. We

choose ` and ε “ ε0 ą . . . ą εn´1 as follows. Let C0, . . . , Cn denote, respectively, the

cycles with costs pkn` ε0q, pk
n´1` ε1q, . . . , pk` εn´1q, 1. Let r0, . . . , rn be lasso-runs

on w that end in C0, . . . , Cn, respectively. Consider 0 ď i ď n´ 1 and let Pi be the

profile in which all players choose the run ri. We choose ` and εi so that Player 1

benefits from deviating from Pi to the run ri`1, thus Pi is not a NE. Note that by

deviating from ri to ri`1, Player 1 pays the same amount for the path leading to Ci.

However, his share of the loop Ci decreases drastically as he uses the kn´i-valued

transition only once whereas the other players use it close to ` times. On the other

hand, he now buys the loop Ci`1 by himself. Thus, the change in his payment change

is 1
k
¨ pkn´i ` εiq ´ pε

1 ` kn´pi`1q ` εi`1q. We choose εi`1 and ` so that εi
k
ą ε1 ` εi`1,

thus the deviation is beneficial.

k
n

ǫ0

k
n−1

ǫ1

. . .

k
n−2

ǫ2

k
2

ǫn−2

k

ǫn−1

1

Figure 9: The network of the identical-specification game Gε,n, in which PoS tends to
k
k´1 .

We claim that the only NE is when all players use the run rn. Indeed, it is

not hard to see that every profile in which a player selects a run that is not from

r0, . . . , rn cannot be a NE. Also, a profile in which two players select runs ri and rj,

for 1 ď i ă j ď n, cannot be a NE as the player using ri can decreases his payment

by joining the other player in rj. Finally, by our selection of ε1, . . . , εn, and `, every

profile in which all the players choose the run ri, for 0 ď i ď n´ 1, is not a NE.

Clearly, the social optimum is attained when all players choose the run r0, and

its cost is kn` ε. Since the cost of the only NE in the game is
ř

0ďiďn k
n´i, the PoS

in this family of games tends to k
k´1

as n grows to infinity and ε to 0.

Finally, we note that our hardness result in Theorem 4.3 implies that finding the

social optimum in a symmetric af-game is NP-complete. Indeed, since the social

optimum is the cheapest run on some word in L, finding the best-response in a one-

player game is equivalent to finding the social optimum in a symmetric game. This

is contrast with other cost-sharing and congestion game (e.g. [22], where the social

optimum in symmetric games can be computed using a reduction to max-flow).

Acknowledgments. We thank Michal Feldman, Noam Nisan, and Michael Schapira

52

for helpful discussions.

References

[1] S. Albers, S. Elits, E. Even-Dar, Y. Mansour, and L. Roditty. On Nash Equilibria

for a Network Creation Game. In Proc. 17th SODA, pages 89-98, 2006.

[2] E. Anshelevich, A. Dasgupta, J. Kleinberg, É. Tardos, T. Wexler, and T. Rough-

garden. The Price of Stability for Network Design with Fair Cost Allocation.

SIAM J. Comput. 38(4): 1602–1623, 2008.

[3] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic.

Journal of the ACM, 49(5):672–713, 2002.

[4] B. Aminof, O. Kupferman, and R. Lampert, Reasoning about online algorithms

with weighted automata, ACM Transactions on Algorithms, 6(2), 2010.

[5] B. Alpern and F.B. Schneider. Recognizing safety and liveness. Distributed

computing, 2:117–126, 1987.

[6] G. Avni and O. Kupferman, Synthesis from Component Libraries with Costs, In

Proc. 25th CONCUR, pages 156–172, 2014.

[7] G. Avni, O. Kupferman, T. Tamir, Network-Formation Games with Regular

Objectives In Proc. 17th FoSSaCS, pages 119–133, 2014.

[8] G. Avni, O. Kupferman, T. Tamir, From Reachability to Temporal Specifications

in Cost-Sharing Games, In Proc. 7th IJCAR, pages 1–15, 2014.

[9] G. Avni, O. Kupferman, T. Tamir, Congestion Games with Multisets of Re-

sources and Applications in Synthesis, Submitted.

[10] T. Brihaye, V. Bruyère, J. De Pril, and H. Gimbert. On subgame perfection

in quantitative reachability games. Logical Methods in Computer Science, 9(1),

2012.

[11] K. Chatterjee. Nash equilibrium for upward-closed objectives. In Proc. 15th

CSL, LNCS 4207, pages 271–286. Springer, 2006.

[12] K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Games with secure equi-

libria. Theoretical Computer Science, 365(1-2):67–82, 2006.

[13] K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy logic. In Proc. 18th

CONCUR, pages 59–73, 2007.

53

[14] K. Chatterjee, R. Majumdar, and M. Jurdzinski. On Nash equilibria in stochas-

tic games. In Proc. 13th CSL, LNCS 3210, pages 26–40. Springer, 2004.

[15] H. Chen and T. Roughgarden. Network Design with Weighted Players, Theory

of Computing Systems, 45(2), 302–324, 2009.

[16] J. R. Correa, A. S. Schulz, and N. E. Stier-Moses. Selfish Routing in Capacitated

Networks. Mathematics of Operations Research 29: 961–976, 2004.

[17] N. Daniele, F. Guinchiglia, and M.Y. Vardi. Improved automata generation for

linear temporal logic. In Proc. 11th CAV, LNCS 1633, pages 249–260. Springer,

1999.

[18] M. Droste, W. Kuich, and H. Vogler (eds.), Handbook of Weighted Automata,

Springer, 2009.

[19] C. Dwork and M. Naor. Pricing via Processing or Combatting Junk Mail, In

Proc. 12th CRYPTO, pages 139–177, 1992.

[20] D. Fisman, O. Kupferman, and Y. Lustig. Rational synthesis. In Proc. 16th

TACAS, LNCS 6015, pages 190–204. Springer, 2010.

[21] A. Fabrikant, A. Luthra, E. Maneva, C. Papadimitriou, and S. Shenker. On a

network creation game. In Proc. 22nd PODC, pages 347-351, 2003.

[22] A. Fabrikant, C. Papadimitriou, and K. Talwarl, The Complexity of Pure Nash

Equilibria, Proc. 36th STOC, pages 604–612, 2004.

[23] M. Feldman and T. Tamir. Conflicting Congestion Effects in Resource Alloca-

tion Games. Journal of Operations Research 60(3), pages 529–540, 2012.

[24] P. von Falkenhausen and T. Harks. Optimal Cost Sharing Protocols for Schedul-

ing Games. In Proc. 12th EC, pages 285-294, 2011.

[25] G. de Giacomo and M. Y. Vardi. Automata-Theoretic Approach to Planning

for Temporally Extended Goals, In European Conferences on Planning, pages

226–238, 1999.

[26] D. Harel and A. Pnueli. On the development of reactive systems. In Logics

and Models of Concurrent Systems, volume F-13 of NATO Advanced Summer

Institutes, pages 477–498. Springer, 1985.

[27] S. Herzog, S. Shenker, and D. Estrin. Sharing the “Cost” of Multicast Trees:

An Axiomatic Analysis. IEEE/ACM Transactions on Networking, 1997.

54

[28] K-I. Ko and C-L. Lin. On the complexity of min-max optimization problems

and their approximation. In Minimax and Applications, volume 4 of Nonconvex

Optimization and Its Applications, pages 219–239. Springer, 1995.

[29] E. Koutsoupias and C. Papadimitriou. Worst-case Equilibria. Computer Science

Review,3(2): 65–69, 2009.

[30] O. Kupferman and T. Tamir. Coping with selfish on-going behaviors. Infor-

mation and Computation, 210:1–12, 2012.

[31] M. Mavronicolas, I. Milchtaich, B. Monien, and K. Tiemann. Congestion Games

with Player-specific Constants. In Proc 32nd MFCS, pp. 633–644, 2007.

[32] I. Milchtaich. Weighted Congestion Games With Separable Preferences. Games

and Economic Behavior, 67, 750-757, 2009.

[33] M. Mohri. Finite-state transducers in language and speech processing. Com-

putational Linguistics, 23(2):269–311, 1997.

[34] D. Monderer and L. Shapley. Potential Games. Games and Economic Behavior,

14:124–143, 1996.

[35] H. Moulin and S. Shenker. Strategyproof Sharing of Submodular Costs: Budget

Balance Versus Efficiency. Journal of Economic Theory, 18: 511–533, 2001.

[36] C. Papadimitriou. Algorithms, Games, and the Internet. In Proc 33rd STOC,

pages 749–753, 2001.

[37] R. Paes Leme, V. Syrgkanis, E. Tardos. The curse of simultaneity. Innovations

in Theoretical Computer Science (ITCS), pages 60-67, 2012.

[38] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anonymous Connections

and Onion Routing IEEE J. on Selected Areas in Communication, Issue on

Copyright and Privacy Protection, 1998.

[39] R. W. Rosenthal. A Class of Games Possessing Pure-Strategy Nash Equilibria.

International Journal of Game Theory, 2: 65–67, 1973.

[40] E. Tardos and T. Wexler. Network Formation Games and the Potential Func-

tion Method, In Algorithmic Game Theory, Cambridge University Press, 2007.

[41] B. Vöcking. In N. Nisan, T. Roughgarden, E. Tardos and V. Vazirani, eds.,

Algorithmic Game Theory. Chapter 20: Selfish Load Balancing. Cambridge

University Press, 2007.

55

Synthesis from Component Libraries with

Costs∗

Guy Avni† Orna Kupferman‡

Abstract

Synthesis is the automated construction of a system from its specifica-

tion. In real life, hardware and software systems are rarely constructed from

scratch. Rather, a system is typically constructed from a library of compo-

nents. Lustig and Vardi formalized this intuition and studied LTL synthesis

from component libraries. In real life, designers seek optimal systems. In

this paper we add optimality considerations to the setting. We distinguish

between quality considerations (for example, size – the smaller a system is,

the better it is), and pricing (for example, the payment to the company who

manufactured the component). We study the problem of designing systems

with minimal quality-cost and price. A key point is that while the quality

cost is individual – the choices of a designer are independent of choices made

by other designers that use the same library, pricing gives rise to a resource-

allocation game – designers that use the same component share its price, with

the share being proportional to the number of uses (a component can be used

several times in a design). We study both closed and open settings, and in

both we solve the problem of finding an optimal design. In a setting with

multiple designers, we also study the game-theoretic problems of the induced

resource-allocation game.

1 Introduction

Synthesis is the automated construction of a system from its specification. The clas-

sical approach to synthesis is to extract a system from a proof that the specification

is satisfiable. In the late 1980s, researchers realized that the classical approach to

synthesis is well suited to closed systems, but not to open (also called reactive) sys-

tems [1, 28]. A reactive system interacts with its environment, and a correct system

∗Published in the proceedings of the 25th Concurrency theory, LNCS 8704, pages 156–172,

Springer, 2013. A full version was submitted.
†School of Computer Science and Engineering, The Hebrew University, Israel
‡School of Computer Science and Engineering, The Hebrew University, Israel

56

should have a strategy to satisfy the specification with respect to all environments.

It turns out that the existence of such a strategy is stronger than satisfiability, and

is termed reliability.

In spite of the rich theory developed for synthesis, in both the closed and open

settings, little of this theory has been reduced to practice. This is in contrast with

verification algorithms, which are extensively applied in practice. We distinguish

between algorithmic and conceptual reasons for the little impact of synthesis in prac-

tice. The algorithmic reasons include the high complexity of the synthesis problem

(PSPACE-complete in the closed setting [32] and 2EXPTIME-complete in the open

setting [28], for specifications in LTL) as well as the intricacy of the algorithms in

the open setting – the traditional approach involves determinization of automata on

infinite words [31] and a solution of parity games [22].

We find the argument about the algorithmic challenge less compelling. First,

experience with verification shows that even nonelementary algorithms can be prac-

tical, since the worst-case complexity does not arise often. For example, while the

model-checking problem for specifications in second-order logic has nonelementary

complexity, the model-checking tool Mona [16] successfully verifies many specifi-

cations given in second-order logic. Furthermore, in some sense, synthesis is not

harder than verification: the complexity of synthesis is given with respect to the

specification only, whereas the complexity of verification is given with respect to

the specification and the system, which is typically much larger than the specifica-

tion. About the intercity of the algorithms, in the last decade we have seen quite

many alternatives to the traditional approach – Safraless algorithms that avoid de-

terminization and parity games, and reduce synthesis to problems that are simpler

and are amenable to optimizations and symbolic implementations [19, 25, 26].

The arguments about the conceptual and methodological reasons are more com-

pelling. We see here three main challenges, relevant in both the closed and open

settings. First, unlike verification, where a specification can be decomposed into sub-

specifications, each can be checked independently, in synthesis the starting point is

one comprehensive specification. This inability to decompose or evolve the specifica-

tion is related to the second challenge. In practice, we rarely construct systems from

scratch or from one comprehensive specification. Rather, systems are constructed

from existing components. This is true for both hardware systems, where we see

IP cores or design libraries, and software systems, where web APIs and libraries of

functions and objects are common. Third, while in verification we only automate

the check of the system, automating its design is by far more risky and unpredictable

– there are typically many ways to satisfy a satisfiable or realizable specification,

and designers will be willing to give up manual design only if they can count on the

automated synthesis tool to construct systems of comparable quality. Traditional

57

synthesis algorithms do not attempt to address the quality issue.

In this paper we continue earlier efforts to cope with the above conceptual chal-

lenges. Our contribution extends both the setting and the results of earlier work.

The realization that design of systems proceeds by composition of underlying com-

ponents is not new to the verification community. For example, [20] proposed a

framework for component-based modelling that uses an abstract layered model of

components, and [14] initiated a series of works on interface theories for component-

based design, possibly with a reuse of components in a library [15]. The need to

consider components is more evident in the context of software, where, for example,

recursion is possible, so components have to be equipped with mechanisms for call

and return [4]. The setting and technical details, however, are different from these

in the synthesis problem we consider here. The closer to our work here is [27], which

studied LTL synthesis from reusable component libraries. Lustig and Vardi studied

two notions of component composition. In the first notion, termed data-flow com-

position, components are cascaded so that the outputs of one component are fed

to other components. In the second notion, termed control-flow composition, the

composition is flat and control flows among the different components. The second

notion, which turns out to be the decidable one [27], is particularly suitable for

modelling web-service orchestration, where users are typically offered services and

interact with different parties [3].

Let us turn now to the quality issue. Traditional formal methods are based on

a Boolean satisfaction notion: a system satisfies, or not, a given specification. The

richness of today’s systems, however, calls for specification formalisms that are multi-

valued. The multi-valued setting arises directly in probabilistic and weighted systems

and arises indirectly in applications where multi-valued satisfaction is used in order

to model quantitative properties of the system like its size, security level, or quality.

Reasoning about quantitative properties of systems is an active area of research in

recent years, yielding quantitative specification formalisms and algorithms [13, 18,

12, 2, 11]. In quantitative reasoning, the Boolean satisfaction notion is refined and

one can talk about the cost, or reward, of using a system, or, in our component-based

setting, the cost of using a component from the library.

In order to capture a wide set of scenarios in practice, we associate with each

component in the library two costs: a quality cost and a construction cost. The

quality cost, as describes above, concerns the performance of the component and

is paid each time the component is used. The construction cost is the cost of

adding the component to the library. Thus, a design that uses a component pays

its construction cost once. When several designs use the same component, they

share its construction cost. This corresponds to real-life scenarios, where users pay,

for example, for web-services, and indeed their price is influenced by the market

58

demand.

In [5], the authors study the problem of synthesizing a hierarchical system from a

library of components that satisfies a specification while attempting to find a succinct

system. They assume that rather than one specification, the input is a sequence of

specifications φ1, . . . , φm that attempt to guide the synthesis. The construction is

then incremental. At step i, a component that satisfies φi is added to the library.

The component Cm is then output as the final system.

We study synthesis from component libraries with costs in the closed and open

settings. In both settings, the specification is given by means of a deterministic

automaton S on finite words (DFA).1 In the closed setting, the specification is a

regular language over some alphabet Σ and the library consists of box-DFAs (that

is, DFAs with exit states) over Σ. In the open setting, the specification S is over sets

I and O of input and output signals, and the library consists of box-I{O-transducers.

The boxes are black, in the sense that a design that uses components from the library

does not see Σ (or I Y O) nor it sees the behavior inside the components. Rather,

the mode of operation is as in the control-flow composition of [27]: the design gives

control to one of the components in the library. It then sees only the exit state

through which the component completes its computation and relinquishes control.

Based on this information, the design decides which component gets control next,

and so on.

In more technical details, the synthesis problem gets as input the specification

S as well as a library L of components B1, . . . ,Bn. The goal is to return a correct

design – a transducer D that reads the exit states of the components and outputs

the next component to gain control. In the closed setting, correctness means that

the language over Σ that is generated by the composition defined by D is equal to

the language of S. In the open setting, correctness means that the interaction of

the composition defined by D with all input sequences generates a computation over

I YO that is in the language of S.

We first study the problem without cost and reduce it to the solution of a two-

player safety game GL,S . In the closed setting, the game is of full information and

the problem can be solved in polynomial time. In the open setting, the flexibility

that the design have in responding to different input sequences introduces partial

information to the game, and the problem is EXPTIME-complete. We note that

in [27], where the open setting was studied and the specification is given by means

of an LTL formula, the complexity is 2EXPTIME-complete, thus one could have

1It is possible to extend our results to specifications in LTL. We prefer to work with deterministic

automata, as this setting isolates the complexity and technical challenges of the design problem and

avoids the domination of the doubly-exponential complexity of going from LTL to deterministic

automata.

59

expected our complexity to be only polynomial. We prove, however, hardness in

EXPTIME, showing that it is not just the need to transfer the LTL formula to a

deterministic formalism that leads to the high complexity.

We then turn to integrate cost to the story. As explained above, there are two

types of costs associated with each component Bi in L. The first type, quality

cost, can be studied for each design in isolation. We show that even there, the

combinatorial setting is not simple. While for the closed setting an optimal design

can be induced from a memoryless strategy of the designer in the game GL,S , making

the problem of finding an optimal design NP-complete, seeking designs of optimal

cost may require sophisticated compositions in the open setting. In particular, we

show that optimal designs may be exponentially larger than other correct designs2,

and that an optimal design may not be induced by a memoryless strategy in GL,S .

We are still able to bound the size of an optimal transducer by the size of GL,S , and

show that the optimal synthesis problem is NEXPTIME-complete.

The second type of cost, namely construction cost, depends not only on choices

made by the designer, but also on choices made by designers of other specifications

that use the library. Indeed, recall that the construction cost of a component is

shared by designers that use this component, with the share being proportional to

the number of uses (a component can be used several times in a design). Hence, the

setting gives rise to a resource-allocation game [30, 17]. Unlike traditional resource-

allocation games, where players’ strategies are sets of resources, here each strategy is

a multiset – the components a designer needs. As has been the case in [8], the setting

of multisets makes the game less stable. We show that the game is not guaranteed

to have a Nash Equilibrium (NE), and that the problem of deciding whether an

NE exists is ΣP
2 -complete. We then turn to the more algorithmic related problems

and show that the problems of finding an optimal design given the choices of the

other designers (a.k.a. the best-response problem, in algorithmic game theory) and

of finding designs that minimize the total cost for all specifications (a.k.a. the social

optimum) are both NP-complete.

Recently, in [9], the setting of synthesis from component libraries by multiple

users has been considered also for the setting in which the costs of the components

have congestion effects rather than cost-sharing as we study here. For example,

components might model processors and cost can model performance. When many

users use the same component, congestion increases and performance decreases.

While the cost model we describe above is suited for some settings, e.g., in cases

where the goal is to minimize the number of states in the system, in other settings

a computation-based cost model is more appropriate. For example, in a system that

2Recall that “optimal” here refers to the quality-cost function.

60

issues grants upon requests, a goal of the designer can be to design a system that

minimizes the waiting time for a grant once a request is received. A standard model

for reasoning about such costs of computations is lattice automata [24]. Such an

automaton assigns to each word a value which is an element of some lattice.

We study the closed synthesis problem from component libraries where the spec-

ification is given by a deterministic lattice automaton (LDFA, for short) and the

components are box LDFAs. Thus, our goal is to compose the components in the

library to construct an LDFA that is equivalent to the specification LDFA, where

equivalence means that the two automata assign the same values to all words. We

are able to show that the problem can be solved in polynomial time using a similar

idea to that in Boolean setting. Our solution introduces a new type of LDFAs,

which compensate for the lack of a canonical minimal LDFA [21] and might be of

independent interest.

2 Preliminaries

Automata, transducers, and boxes A deterministic finite automaton (DFA,

for short) is a tuple A “ xΣ, Q, δ, q0, F y, where Σ is an alphabet, Q is a set of states,

δ : Q ˆ Σ Ñ Q is a partial transition function, q0 P Q is an initial states, and

F Ď Q is a set of accepting states. We extend δ to words in an expected way, thus

δ˚ : Q ˆ Σ˚ Ñ Q is such that for q P Q, we have δ˚pq, εq “ q and for w P Σ˚ and

σ P Σ, we have δ˚pq, w ¨ σq “ δpδ˚pq, wq, σq. When q “ q0, we sometimes omit it,

thus δ˚pwq is the state that A reaches after reading w. We assume that all states

are reachable from q0, thus for every q P Q there exists a word w P Σ˚ such that

δ˚pwq “ q. We refer to the size of A, denoted |A|, as the number of its states.

The run of A on a word w “ w1, . . . wn P Σ˚ is the sequence of states r “

r0, r1, . . . , rn such that r0 “ q0 and for every 0 ď i ď n´1 we have ri`1 “ δpri, wi`1q.

The run r is accepting iff rn P F . The language of A, denoted LpAq, is the set of

words w P Σ˚ such that the run of A on w is accepting, or, equivalently, δ˚pwq P F .

For q P Q, we denote by LpAqq the language of the DFA that is the same as A only

with initial state q. Note that since A is deterministic and δ is partial, there is at

most one run of A on each word.

A transducer models an interaction between a system and its environment. It

is similar to a DFA except that in addition to Σ, which is referred to as the input

alphabet, denoted ΣI , there is an output alphabet, denoted ΣO, and rather than

being classified to accepting or rejecting, each state is labeled by a letter from ΣO
3.

Formally, a transducer is a tuple T “ xΣI ,ΣO, Q, q0, δ, νy, where ΣI is an input

alphabet, ΣO is an output alphabet, Q, q0, and δ : Q ˆ ΣI Ñ Q are as in a DFA,

3These transducers are sometimes referred to as Moore machines.

61

and ν : Q Ñ ΣO is an output function. We require T to be receptive. That is, δ is

complete, so for every input word w P Σ˚I , there is a run of T on w. Consider an

input word w “ w1, . . . , wn P Σ˚I . Let r “ r0, . . . , rn be the run of T on w. The

computation of T in w is then σ1, . . . , σn P pΣI ˆ ΣOq
˚, where for 1 ď i ď n, we

have σi “ xwi, νpri´1qy. We define the language of T , denoted LpT q, as the set of all

its computations. For a specification L Ď pΣI ˆ ΣOq
˚, we say that T realizes L iff

LpT q Ď L. Thus, no matter what the input sequence is, the interaction of T with

the environment generates a computation that satisfies the specification. For two

words u P Σ˚I and v P Σ˚O of length n we define the product of the two words, denoted

u‘ v, as w “ w1 . . . wn P pΣI ˆ ΣOq
˚, where, for 1 ď i ď n, we have wi “ xui, viy.

By adding exit states to DFAs and transducers, we can view them as components

from which we can compose systems. Formally, we consider two types of components.

Closed components are modeled by box-DFAs and open components are modeled by

box-transducers. A box-DFA augments a DFA by a set of exit states. Thus, a box-

DFA is a tuple xΣ, Q, δ, q0, F, Ey, where E Ď Q is a nonempty set of exit states.

There are no outgoing transitions from an exit state. Also, the initial state cannot

be an exit state and exit states are not accepting. Thus, q0 R E and F X E “ H.

Box-transducers are defined similarly, and their exit states are not labeled, thus

ν : QzE Ñ ΣO.

Component libraries A component library is a collection of boxes L “ tB1, . . . ,Bnu.
We say that L is a closed library if the boxes are box-DFAs, and is an open library if

the boxes are box-transducers. Let rns “ t1, . . . , nu. In the first case, for i P rns, let

Bi “ xΣ, Ci, δi, c0
i , Fi, Eiy. In the second case, Bi “ xΣI ,ΣO, Ci, δi, c

0
i , νi, Eiy. Note

that all boxes in L share the same alphabet (input and output alphabet, in the case

of transducers). We assume that the states of the components are disjoint, thus

for every i ‰ j P rns, we have Ci X Cj “ H. We use the following abbreviations

C “ Ť

iPrnsCi, C0 “
Ť

iPrnstc
0
i u, F “

Ť

iPrns Fi, and E “ Ť

iPrnsEi. We define the size

of L as |C|.
We start by describing the intuition for composition of closed libraries. A design

is a recipe to compose the components of a library L (allowing multiple uses) into a

DFA. A run of the design on a word starts in an initial state of one of the components

in L. We say that this component has the initial control. When a component is in

control, the run uses its states, follows its transition function, and if the run ends,

it is accepting iff it ends in one of the components’ accepting states. A component

relinquishes control when the run reaches one of its exit states. It is then the design’s

duty to assign control to the next component, which gains control through its initial

state.

Formally, a design is a transducer D with input alphabet E and output alphabet

62

rns. We can think of D as running beside the components. When a component

reaches an exit state e, then D reads the input letter e, proceeds to its next state,

and outputs the index of the component to gain control next. Note that D does not

read the alphabet Σ and has no information about the states that the component

visits. It only sees which exit state has been reached.

Consider a design D “ xE , rns, D, δ, d0, νy and a closed library L. We formalize

the behavior of D by means of the composition DFAAL,D that simulates the run of D
along with the runs of the box-DFAs. Formally, AL,D “ xΣ, QL,D, δL,D, q

0
L,D, FL,Dy

is defined as follows. The set of states QL,D Ď pCzEq ˆ D consists of pairs of a

component state from C and an design state from S. The component states are

consistent with ν, thus QL,D “
Ť

iPrnspCizEiq ˆ tq : νpqq “ iu. In exit states, the

composition immediately moves to the initial state of the next component, which is

why the component states of AL,D do not include E . Consider a state xc, qy P QL,D

and a letter σ P Σ. Let i P rns be such that c P Ci. When a run of AL,D reaches

the state xc, qy, the component Bi is in control. Recall that c is not an exit state.

Let c1 “ δipc, σq. If c1 R Ei, then Bi does not relinquish control after reading

σ and δL,Dpxc, qy, σq “ xc1, qy. If c1 P Ei, then Bi relinquishes control through

c1, and it is the design’s task to choose the next component to gain control. Let

q1 “ δpq, c1q and let j “ νpq1q. Then, Bj is the next component to gain control

(possibly j “ i). Accordingly, we advance D to q1 and continue to the initial state

of Bj. Formally, δL,Dpxc, qy, σq “ xc
0
j , q

1y. (Recall that c0
j R Ej, so the new state is

in QL,D.) Note also that a visit in c1 is skipped. The component that gains initial

control is chosen according to νpd0q. Thus, q0
L,D “ xc

0
j , d

0y, where j “ νpd0q. Finally,

the accepting states of AL,D are these in which the component state is accepting,

thus FL,D “ F ˆD.

The definition of a composition for an open library is similar. There, the com-

position is a transducer TL,D “ xΣI ,ΣO, QL,D, δL,D, q
0
L,D, νL,Dy, where QL,D, q0

L,D,

and δL,D are as in the closed setting, except that δL,D reads letters in ΣI , and

νL,Dpxc, qyq “ νipcq, for i P rns such that c P Ci.

Consider a closed-library L, a design D, and the run r of AL,D on w “ w0 ¨ ¨ ¨wl.

We partition w according to positions in which control is transferred among com-

ponents. Equivalently, positions in which r skips visits in exit states. Thus, w “

y0 ¨ ¨ ¨ yk is such that for all 0 ď i ă k, we have that yi P Σ` and the composition

AL,D takes a transfer transition exactly when it reads the last letter of yi. An ex-

ception is yk, which may be empty (this happens when r ends upon entering the

last component to gain control). We then say that w is suffix-less. The definitions

in the open setting are similar.

63

3 The Design Problem

The design problem gets as input a component library L and a specification that

is given by means of a DFA S. The problem is to decide whether there exists a

correct design for S using the components in L. In the closed setting, a design D is

correct if LpAL,Dq “ LpSq. In the open setting, D is correct if the transducer TL,D
realizes S. Our solution to the design problem reduces it to the problem of finding

the winner in a turn-based two-player game, defined below.

A turn-based two-player game is played on an arena xV,∆, V0, αy, where V “

V1 Y V2 is a set of vertices that are partitioned between Player 1 and Player 2,

∆ Ď V ˆ V is a set of directed edges, V0 Ď V is a set of initial vertices, and α is

an objective for Player 1, specifying a subset of V ω. We consider here safety games,

where α Ď V is a set of vertices that are safe for Player 1. The game is played as

follows. Initially, Player 1 places a token on one of the vertices in V0. Assume the

token is placed on a vertex v P V at the beginning of a round. The player that owns

v is the player that moves the token to the next vertex, where the legal vertices to

continue to are tv1 P V : xv, v1y P ∆u. The outcome of the game is a play π P V ω.

The play is winning for Player 1 if for every i ě 1, we have πi P α. Otherwise,

Player 2 wins.

A strategy for Player i, for i P t1, 2u, is a recipe that, given a prefix of a play,

tells the player what his next move should be. Thus, it is a function fi : V ˚ ¨Vi Ñ V

such that for every play π ¨ v P V ˚ with v P Vi, we have xv, fipπ ¨ vqy P ∆. Since

Player 1 moves first, we require that f1pεq is defined and is in V0. For strategies f1

and f2 for players 1 and 2 respectively, the play outpf1, f2q P V
ω is the unique play

that is the outcome the game when the players follow their strategies. A strategy

fi for Player i is memoryless if it depends only in the current vertex, thus it is a

function fi : Vi Ñ V .

A strategy is winning for a player if by using it he wins against every strategy of

the other player. Formally, a strategy f1 is winning for Player 1 iff for every strategy

f2 for Player 2, Player 1 wins the play outpf1, f2q. The definition for Player 2 is dual.

It is well known that safety games are determined, namely, exactly one player has a

winning strategy, and admits memoryless strategies, namely, Player i has a winning

strategy iff he has a memoryless winning strategy. Deciding the winner of a safety

game can done in linear time.

Solving the design problem We describe the intuition of our solution for the

design problems. Given a library L and a specification S we construct a safety

game GL,S such that Player 1 wins GL,S iff there is a correct design for S using the

components in L. Intuitively, Player 1’s goal is to construct a correct design, thus he

64

chooses the components to gain control. Player 2 challenges the design that Player 1

chooses, thus he chooses a word (over Σ in the closed setting and over ΣI ˆ ΣO in

the open setting) and wins if his word is a witness for the incorrectness of Player 1’s

design.

Closed designs The input to the closed-design problem is a closed-library L and

a DFA S over the alphabet Σ. The goal is to find a correct design D. Recall

that D is correct if the DFA AL,D that is constructed from L using D satisfies

LpAL,Dq “ LpSq. We assume that S is the minimal DFA for the language LpSq.

Theorem 3.1 The closed-design problem can be solved in polynomial time.

Proof: Given a closed-library L and a DFA S “ xΣ, S, δS , s0, FSy, we describe

a safety game GL,S such that Player 1 wins GL,S iff there is a design of S using

components from L. Recall that L consists of box-DFAs Bi “ xΣ, Ci, δi, c0
i , Fi, Eiy,

for i P rns, and that we use C, C0, E , and F to denote the union of all states, initial

states, exit states, and accepting states in all the components of L. The number of

vertices in GL,S is |pC0YEqˆS| and it can be constructed in polynomial time. Since

solving safety games can be done in linear time, the theorem follows.

We define GL,S “ xV,E, V0, αy. First, V “ pC0YEqˆS and V0 “ C0ˆts
0u. Recall

that Player 1 moves when it is time to decide the next (or first) component to gain

control. Accordingly, V1 “ E ˆS. Also, Player 2 challenges the design suggested by

Player 1 and chooses the word that is processed in a component that gains control,

so V2 “ C0 ˆ S.

Consider a vertex xe, sy P V1. Player 1 selects the next component to gain control.

This component gains control through its initial state. Accordingly, E contains edges

xxe, sy, xc0
i , syy, for every i P rns. Note that since no letter is read when control is

passed, we do not advance the state in S. Consider a vertex v “ xc0
i , sy P V2. Player 2

selects the word that is read in the component Bi, or equivalently, he selects the exit

state from which Bi relinquishes control. Thus, E contains an edge xxc0
i , sy, xe, s

1yy

iff there exists a word u P Σ˚ such that δ˚i puq “ e and δ˚Sps, uq “ s1.

We now turn to define the winning condition. All the vertices in V1 are in α. A

vertex v P V2 is not in α if it is possible to extend the word traversed for reaching

v to a witness for the incorrectness of D. Accordingly, a vertex xc0
i , sy is not in α if

one of the following holds. First (“the suffix witness”), there is a finite word that

is read inside the current component and witnesses the incorrectness. Formally,

there is u P Σ˚ such that δ˚i puq P Fi and δ˚Sps, uq R FS , or δ˚i puq P CizpFi Y Eiq

and δ˚Sps, uq P FS . Second (“the infix witness”), there are two words that reach

the same exit state of the current component yet the behavior of S along them is

different. Formally, there exist words u, u1 P Σ˚ such that δ˚i puq “ δ˚i pu
1q P Ei and

65

δ˚Sps, uq ‰ δ˚Sps, u
1q. Intuitively, the minimality of S enables us to extend either u or

u1 to an incorrectness witness. Given L and S, the game GL,S can be constructed in

polynomial time.

We claim that there is a correct design D iff Player 1 wins GL,S . Assume first that

there is a correct designD “ xE , rns, D, δ, d0, νy, thus LpAL,Dq “ LpSq. We construct

a winning strategy fD for Player 1. The strategy fD proceeds like D. First, fDpεq “

xc0
i , s

0y, with i “ νpd0q. Then, for a finite play π, let xe0, s0y, xe1, s1y . . . xem, smy be

its projection on V1. Thus, e0, . . . , em P E and s0, . . . , sm P S. We define fDpπq “

xc0
i , smy, for i “ νpδ˚Dpe0, . . . , emqq.

We claim that fD is a winning strategy. Assume towards contradiction that there

is a Player 2 strategy f2 that wins against fD. Let π “ outpfD, f2q, let xc0
i , sy be

its first vertex that is not in α, and let w be the word in Σ˚ that Player 2 follows

along the prefix of π that reaches xc0
i , sy. Finally, let d P D be such that xc0

i , dy is

the state that AL,D reaches when it reads w. Since we define fD to agree with D,

then the component state of this state in AL,D is indeed c0
i .

We distinguish between two cases. First, if xc0
i , sy exits α because of a suffix

witness, let u P Σ˚ be such that δ˚i puq P Fi and δ˚Sps, uq R FS . (The case where

δ˚i puq R pFi Y Eiq and δ˚Sps, uq P FS is similar). Let c “ δ˚i puq. The run of AL,D on

w ¨ u ends in the state xδ˚i puq, sy. Since δ˚i puq P Fi, we have w ¨ u P LpAL,Dq. By the

definition of E, we have that δ˚Spwq “ s. Since δ˚Sps, uq R FS , we have w ¨ u R LpSq.
Thus, LpAL,Dq ‰ LpSq, and we reach a contradiction to the correctness of D.

In the second case, of an infix witness, there exist words u, u1 P Σ˚ such that

δ˚i puq “ δ˚i pu
1q P Ei and δ˚Sps, uq “ p ‰ p1 “ δ˚Sps, u

1q. Since S is a minimal DFA

for LpSq, we have LpSpq ‰ LpSp1q. Thus, wlog, there is a word z P LpSpqzLpSp1q.
Recall that δ˚L,Dpwq “ xc

0
i , dy. Let d1 “ δDpd, eq and j “ νpd1q. Since δ˚L,Dpw ¨ uq “

δ˚L,Dpw ¨u
1q “ xc0

j , d
1y, we have δ˚L,Dpw ¨u ¨zq “ δ˚L,Dpw ¨u

1 ¨zq. Thus, w ¨u ¨z P LpAL,Dq

iff w ¨u1 ¨ z P LpAL,Dq. However, w ¨u ¨ z P LpSq and w ¨u1 ¨ z R LpSq. Thus, we reach

a contradiction to the correctness of D, and we are done.

Assume now that Player 1 wins the game GL,S . Let f be a memoryless winning

strategy for Player 1. We construct a correct design Df from f . Note that all

the successors of a vertex in V1 are in V2. Thus, f : V1 Ñ V2. We define Df “
xE , rns, D, δ, s0, νy as follows. First, D “ V2 “ C0 ˆ S. Consider a state v “ xc0

i , sy P

V2 X α. Recall that c0
i is the initial state of the component Bi. Since v P α, the

lack of an infix witness implies that for every exit state e P Ei there is exactly one

state s1 P S such that xxc0
i , sy, xe, s

1yy P E. We define δpv, eq “ fpxe, s1yq. Note that

if v R α or e R Ei, then we can define δpv, eq arbitrarily. The labeling function ν is

defined as expected, with νpxc0
i , syq “ i.

We prove that Df is a correct design. Assume towards contradiction that there is

a word w P LpAL,Df qzLpSq. The case where w P LpSqzLpAL,Df q is similar. Consider

66

the run r of AL,Df on w. Let Bi1 , . . . ,Bim P L˚ be sequence of components that r

traverses and ei1 , . . . , eim´1 P E˚ be the corresponding exit states. Let y1, . . . , ym

be the partition of w according to D. Thus, for 1 ď j ă m, we have yi P Σ` and

δ˚ijpyiq “ eij P Eij , and ym P Σ˚. Since w P LpAL,Df q, we have δ˚impwmq P Fim . Note

that the word y1 ¨ ¨ ¨ ym´1 P Σ˚ is suffix-less, thus δ˚L,Df py1 ¨ . . . ¨ ym´1q “ xc
0
im , dy for

some d P D with νpdq “ im. Since we defined Df to agree with f on the components

that gain control, the finite play π that is the outcome of the game when Player 1

plays f and Player 2 chooses the exit states ei1 , . . . , eim´1 reaches the Player 2 vertex

v “ xc0
im , sy P V2, for s P S such that δ˚Spy1 ¨ ¨ ¨ ym´1q “ s. We claim that v R α.

Indeed, δ˚i pymq P Fi and since w R LpSq, we have ym R LpSsq. Thus, π is a winning

play for Player 2, contradicting our assumption that f is a winning strategy, and we

are done.

Open designs We continue to study the open setting. Recall that there, the input

is a DFA S over the alphabet ΣI ˆ ΣO and an open library L. The goal is to find

a correct design D or return that no such design exists, where D is correct if the

composition transducer TL,D realizes LpSq.
Lustig and Vardi [27] studied the design problem in a setting in which the spec-

ification is given by means of an LTL formula. They showed that the problem is

2EXPTIME-complete. Given an LTL formula one can construct a deterministic par-

ity automaton that recognizes the language of words that satisfy the formula. The

size of the automaton is doubly-exponential in the size of the formula. Thus, one

might guess that the design problem in a setting in which the specification is given

by means of a DFA would be solvable in polynomial time. We show that this is not

the case and that the problem is EXPTIME-complete. As in [27], our upper bound

is based on the ability to “summarize” the activity inside the components. Starting

with an LTL formula, the solution in [27] has to combine the complexity involved

in the translation of the LTL formula into an automaton with the complexity of

finding a design, which is done by going throughout a universal word automaton

that is expanded to a tree automaton. Starting with a deterministic automaton,

our solution directly uses games. The interesting contribution, however, is the lower

bound, showing that problem is EXPTIME-hard even when the specification is given

by means of a deterministic automaton. We start with the upper bound.

Theorem 3.2 The open-design problem is in EXPTIME.

Proof: Given an open-library L and a DFA S “ xΣI ˆ ΣO, S, δS , s
0, FSy, we

describe a safety game GL,S such that Player 1 wins GL,S iff there is a design for S
using components from L. The number of vertices in GL,S is exponential in S and

67

C. Since solving safety games can be done in linear time, membership in EXPTIME

follows.

We define GL,S “ xV,E, V0, αy as follows.4 Recall that C, C0, E , and F are

the union of all states, initial states, exit states, and accepting states in all the

components of L. We define V “ pC0 Y Eq ˆ 2S with V1 “ E ˆ 2S and V2 “ C0 ˆ 2S.

Also, V0 “ C0 ˆ tts
0uu. As in the closed-setting, Player 1 selects the components

that gain control, thus for a vertex xe, T y P V1 we have xxe, T y, xc0
i , T yy P E, for every

c0
i P C0. Player 2 selects the word that is processed in the component, or equivalently,

the exit state from which it relinquishes control, thus for a vertex v “ xc0
i , T y P V2 we

have xxc0
i , T y, xe, T

1yy P E iff for every s1 P T 1 there is a state s P T and a word u P Σ˚I

such that δ˚i puq “ e and, assuming w P pΣI ˆ ΣOq
˚ is the computation of Bi that

corresponds to u, we have δ˚Sps, wq “ s1. Note that for c0
i P C0, T P 2S, and e P E ,

there is at most one, nonempty, subset T 1 P 2S such that xxc0
i , T y, xe, T

1yy P E. The

set of vertices that are loosing for Player 1 consists of states xc0
i , T y P V2 from which

Player 2 can generate a suffix-witness to the incorrectness of the design. Formally,

xc0
i , T y P α iff there exists u P LpBiq and s P T such that u R LpSsq.

We claim that there is a correct design D iff Player 1 wins GL,S . For the first

direction, consider a correct design D, thus LpTL,Dq Ď LpSq. We construct a winning

Player 1 strategy fD. Recall that a design reads exit states and outputs components.

Further recall that assuming the game does not end, a Player 2 move is a choice of

an exit state. We define fD so that it responds to Player 2’s choice the same way D
responds. We define fDpεq “ xc

0
i , tts

0uuy for i “ νpd0q, thus fD and D assign initial

control to the same component. Consider a finite play π and let xe1, T1y, . . . , xem, Tmy

be the projection of π on V2, thus e1, . . . , em P E and T1, . . . , Tm P 2S. We define

fDpπq “ xc
0
i , Tmy where νpδ˚Dpe1, . . . , emqq “ i.

We claim that fD is a winning strategy. Assume towards contradiction that

there is a Player 2 strategy fw that wins against fD. Let π “ xc0
i1
, ts0uy, xei1 , T1y,

xc0
i2
, T1y, xei2 , T2y, . . . , xeim´1 , Tmy, xc

0
im , Tmy be the finite losing prefix of outpfD, fwq,

thus xc0
im , Tmy R α. Since xc0

im , Tmy R α there is a state sm P Tm and a word

wm P LpBiq such that wm R LpSsmq. It is not hard to see that there are words

w1, . . . , wm´1 P pΣI ˆ ΣOq
˚ and states s1, . . . , sm´1 P S such that for 1 ď j ď m´ 1

we have wj P LpBijq, δ˚ijpc0
ij
, wjq “ eij , δ

˚
Spw1q “ s1, and δ˚Spsj, wjq “ sj`1. It is

not hard to see that since we defined fD to agree with D, the components that gain

control in the run of TL,D on w “ w1 ¨ . . . wm are Bi1 , . . . ,Bim , thus it is possible to

prove by induction that w P LpTL,Dq. Moreover, the run of S on w is not accepting,

4A different way to construct GL,S would be to go through a partial-information game (see

Theorem 3.3) with vertices in CˆS, where Player 1 cannot distinguish between vertices xe, dy and

xe, d1y for e P E and d, d1 P S. The game S is the corresponding game. We describe it directly,

which also shows that the exponential dependency is only in S.

68

thus w P LpTL,DqzLpSq, and we reach a contradiction to the correctness of D.

We continue to the second direction. Assume Player 1 wins the game GL,S .

Thus, he has a memoryless winning strategy fD from which we construct a design

D. Intuitively, in D, we skip exit states and proceed according to fD. Thus, the

states of D are V2 “ C0 ˆ 2S. Consider a state xc0
i , T y P V2, where recall that c0

i is

the initial state of the component Bi P L, and an exit state e P Ei of Bi. Recall

that there is a unique subset T 1 P 2S such that xxc0
i , T y, xe, T

1yy P E. We define

δDpxc
0
i , T y, eq “ fDpxe, T

1yq.

We claim that D is a correct design. Assume towards contradiction that there is

a word w P LpTL,DqzLpSq. Consider the run r of TL,D on w. Let Bi1 , . . . ,Bim P L˚
be sequence of components that r traverses. Let w1, . . . , wm be the partition of w

according to D. That is, for 1 ď j ď m, the subword wj is induced while r is in

component Bij and δ˚ijpwjq P Eij . Let πw “ ei1 , . . . , eim´1 P E˚ be the exit states that

r visits. Note that since Bim gains control last the word w1 ¨ . . . ¨wm´1 is suffix-less,

thus δ˚L,Dpw1 ¨ . . . ¨ wm´1q “ xc0
im , dy for some d P D having νpdq “ im. Moreover,

wm P LpBimq. Since we defined D to agree with fD on the components that gain

control, the finite play π that is the outcome of the game when Player 1 plays

fD and Player 2 chooses the exit states ei1 , . . . , eim´1 reaches the Player 2 vertex

v “ xc0
im , T y P V2, for some T P 2S. We claim that v R α. Indeed, the definition

of E implies that there is a vertex s P T such that δ˚Spw1 ¨ . . . ¨ wm´1q “ s. Since

w R LpSq, we have wm R LpSsq and wm P LpBimq. Thus, π is a winning play for

Player 2, contradicting our assumption that fD is a winning strategy, and we are

done.

We continue to study the lower bound.

Theorem 3.3 The open-design problem is EXPTIME-hard.

Proof: We describe a reduction from the problem of deciding whether Player 1

has a winning strategy in a partial-information safety game, known to be EXPTIME-

complete [10].

Partial-information games (PI games, for short) are a variant of the full-information

games (FI games, for short) defined above in which Player 1 has imperfect informa-

tion [29]. The vertices, which we refer to as locations, denoted L, are partitioned

into observations, denoted O. Player 1 is unaware of the location on which the to-

ken is placed and is only aware of the observation it is in. Accordingly, In his turn,

Player 1 cannot select the next location to move the token to. Instead, the edges

in the game are labeled with actions, denoted Γ. In each round, Player 1 selects

an action and Player 2 resolves nondeterminism and chooses the next location the

token moves to. Initially, the token is placed on l0 P L. The set of labeled edges in

69

the game is Λ Ď L ˆ Γ ˆ L, and the safety objective α is given with respect to the

observations, thus α Ď O.

Formally, a PI game is played on an arena xΓ, L,O, l0,Υ, αy, where Γ is a set of

actions, L is a set of locations, O Ď 2L is a set of observations that form a partition

of L (that is, O “ tL1, . . . , Lku where for all i ‰ j P rks, we have that Li XLj “ H,

and
Ť

iPrks Li “ L), l0 P L is an initial location, Υ Ď LˆΓˆL are labeled edges, and

α is a winning condition defined with respect to O. In particular, in safety games

α Ď O are safe observations for Player 1. We require that for every location l P L

and action a P Γ, there is a location l1 P L such that xl, a, l1y P Υ.

The game proceeds similarly to FI games. At the beginning of the game, a token

is placed on the initial location l0. Assume the token is on a location l P L. Player 1

moves first and selects an action a P Γ. Player 2 resolves non-determinism and selects

a location l1 P L such that xl, a, l1y P Υ. Since Player 1 only observes the member

in O in which l is, a strategy for Player 1 is a function f1 : pO ¨ Γq˚ ¨O Ñ Γ. Since

Player 2 has complete information, a strategy for him is a function f2 : L` ¨ Γ Ñ L

such that for a play π “ l0, . . . , lm and an action a P Γ, we have xlm, a, f2pπ, aqy P Υ.

The definition of winning strategies are as in the full-information setting.

Consider a PI safety game G “ xΓ, L,O, l0,Υ, αy. We construct a library L and a

DFA S such that there is a correct design for S using the components of L iff Player 1

wins G. Recall that a design reads an exit state and outputs the component that

gets control next. Also, a Player 1 strategy in G reads observations and outputs

actions. Accordingly, the library L consists of box-transducers Ba, one for every

action a P Γ. The exit states of the components correspond to the observations in

O. That is, when a component exits through an observation Li P O, the design

decides which component Ba P L gains control, which corresponds to a Player 1

strategy that chooses the action a P Γ from the observation Li.

Next, we define words to correspond to Player 2 strategies. Recall that Player 2

resolves nondeterminism in G. That is, when the token is in location l P L and

Player 1 selects an action a P Γ, Player 2 selects an edge xl, a, l1y P Υ and the

token moves to the location l1. Accordingly, ΣI “ Υ, thus a word in Σ˚I is a

sequence of edges. We define the specification S so that a word witnesses the

incorrectness of the design only if it corresponds to a loosing path in G, where

xl0, a1, l
1
1y, xl1, a2, l

1
2y, xl2, a2, l

1
3y, . . . , xlm´1, am´1, l

1
my P Υ˚ is a loosing path if for all

1 ď i ď m´ 1 we have that l1i “ li and l1m R α.

Finally, we define the components so that a correct design corresponds to a

winning Player 1 strategy. For a P Γ, the component Ba P L can process every edge

that is labeled with a. When reading such an edge it relinquishes control, and when

reading an edge that is labeled with b ‰ a, the component enters a sink which is

intuitively a rejecting sink. Thus, in order to avoid processing a word w “ t1 . . . tm

70

that corresponds to a loosing path, a design must assign control to some component

Ba with a ‰ ai, after reading the input prefix t1 . . . ti´1, for 1 ď i ď m.

Formally, for a P Γ, we define the box-transducer Ba “ xΥ, tJ,Ku, tc0
a, c

rej
a u Y

O, c0
a, δa, νa,Oy, where νapc

0
aq “ J, νapc

rej
a q “ K, and δa is defined as follows. Con-

sider an edge xl, a, l1y P Υ. We define δapc
0
a, xl, a, l

1yq “ P , for the observation P with

l1 P P . For an edge xl, b, l1y P Υ, with b ‰ a, we define δapc
0
a, xl, b, l

1yq “ creja . The

state creja is a sink, thus δapc
rej
a , σq “ creja for all σ P ΣI . Note that the component Ba

relinquishes control and outputs J when it reads a transition labeled a. Otherwise,

it gets stuck in the rejecting sink.

The specification is given by the DFA S “ xΣI ˆ ΣO, S, δS , l
0, FSy, where S “

LYtsaccu, the accepting states FS are the states that do not belong to observations

in α, thus FS “ Sz
Ť

PPα P , and we describe δS in the following. Consider a location

l P L. For every edge t “ xl, a, l1y P Υ we define δSpl, xt,Jyq “ l1. For every other

letter σ P ΣI ˆ ΣO, we define δSpl, σq “ sacc.

Note that a word w P pΣIˆΣOq
˚ is not in LpSq if it is of the form w “ w1‘w2 P

pΣI ˆ ΣOq
˚ for w2 P J

˚ and w1 P Σ˚I corresponds to a loosing path in G. That is,

w “ t1 . . . tm, where t1, . . . , tm P Υ, t1 “ xl
0, a1, l1y, for 1 ď i ă m, the target location

of the transition ti is the source location of ti`1, and assuming tm “ xtm´1, am, tmy,

we have tm R α. Recall that a component Ba P L relinquishes control after reading

an edge that the action a P Γ participates in. When reading an edge that a does not

participate in, Ba enters a sink and outputs K. Thus, in order to avoid processing

the word w as in the above, a design must assign control to some component Ba
with a ‰ ai, after reading the input prefix t1 . . . ti´1, for 1 ď i ď m.

We claim that Player 1 wins G iff there is a correct design D for S using the

components in L. For the first direction, consider a Player 1 winning strategy f1.

We construct a design D inductively. Let a1 “ f1pP0q, where P0 P O is such that

l0 P P0. The first component to gain control is Ba1 . Consider a run on some word,

and let Ba1 , P1,Ba2 , P2, . . .BamPm be the sequence of components and corresponding

exit states that the run visits. Recall that P1, . . . , Pm are observations in O. Let

π “ P0, a1, P1, . . . , Pm, where l0 P P0. Note that π might not correspond to a path in

G, in which case D assigns control to an arbitrary component. Otherwise, assuming

f1pπq “ am`1, D assigns control to Bam`1 .

We claim that D is a correct design. Assume towards contradiction that there

is a word w P LpTL,DqzLpSq. Since w R LpSq, its projection on ΣO is in J˚ and the

projection of w on ΣI is a loosing path t1, . . . , tm. For 1 ď i ď m, let ti “ xli´1, ai, liy,

where l0 “ l0. Let r be the run of TL,D on w. Since the projection of w on ΣO

is a sequence of J’s, the sequence of components and exit states that r passes

is Ba1 , P1, . . . ,Bam , Pm. Indeed, if for 1 ď i ď m and b ‰ ai, the component

Bb P L is in control when ai is read, the component outputs K. Let π be the path

71

that corresponds to t1, . . . , tm, thus π “ l0, . . . , lm, where l0 “ l0. Consider the

Player 2 strategy f2 that selects the edges t1, . . . , tm. Since by our definition of the

components in L, for 1 ď i ď m, we have li P Pi, we can prove by induction that π

is a prefix of outpf1, f2q. Since lm R α, the strategy f2 is winning against f1, which

is a contradiction to the fact that it is a winning strategy, and we are done.

For the second direction, consider a correct design D. We define a Player 1

strategy fD inductively as follows. We abuse notation and refer to the labeling

function ν of D as a function from its states D to L. Assume the first component

that D assigns control to is Ba1 P L. For the observation P0 such that l0 P P0,

we define f1pP0q “ a1. Consider a play π “ l0, l1, . . . , lm, where l0 “ l0. Let

τ “ P0, a1, P1, . . . , am, Pm such that for 1 ď i ď m we have li P Pi. Let a1, . . . , am P Γ

such that, for 1 ď i ď m we have xli´1, ai, liy P Υ. Let δ˚DpP1 . . . Pmq “ d and let

νpdq “ Bam P L. We define fDpτq “ am.

We claim that fD is a winning strategy. Assume towards contradiction that

there is a Player 2 strategy f2 and a finite prefix π of outpfD, f2q that is winning for

Player 2. Let τ “ t1, . . . , tm be the edges that π traverses. Consider the run of TL,D
on τ . We can prove by induction that by our definition of fD, for 1 ď i ď m, when

the letter ti “ xli´1, ai, liy is read, the component Bai is in control. Thus, the output

of TL,D when reading the word τ is a sequence w of |τ | J’s. Since τ corresponds

to a loosing path, we have τ ‘ w P LpTL,DqzLpSq, which is a contradiction to the

correctness of D, and we are done.

4 Libraries with Costs

Given a library and a specification, there are possibly many, in fact infinitely many,

designs that are solutions to the design problem. As a trivial example, assume that

LpSq “ a˚ and that the library contains a component B that traverses the letter a

(that is, B consists of an accepting initial state that has an a-transition to an exit

state). An optimal design for S uses B once: it has a single state with a self loop

in which B is called. Other designs can use B arbitrarily many times. When we

wrote “optimal” above, we assumed that the smaller the design is, the better it is.

In this section we would like to formalize the notion of optimality and add to the

composition picture different costs that components in the libraries may have.

In order to capture a wide set of scenarios in practice, we associate with each

component in L two costs: a construction cost and a quality cost. The costs are

given by the functions c-cost, q-cost : LÑ IR`Yt0u, respectively. The construction

cost of a component is the cost of adding it to the library. Thus, a design that uses a

component pays its construction cost once, and (as would be the case in Section 6),

72

when several designs use a component, they share its construction cost. The quality

cost measures the performance of the component, and involves, for example, its

number of states. Accordingly, a design pays the quality cost of a component every

time it uses it, and the fact the component is used by other designs is not important.5

Formally, consider a library L “ tB1, . . . ,Bnu and a designD “ xrns, E,D, d0, δ, νy.

The number of times D uses a component Bi is nusedpD,Biq “ |td P D : νpdq “ iu|.

The set of components that are used in D, is usedpDq “ tBi : nusedpD,Biq ě 1u.

The cost of a design is then costpDq “ ř

BPusedpDq c-costpBq`nusedpD,Bq¨q-costpBq.
We state the problem of finding the cheapest design as a decision problem. For a

specification DFA S, a library L, and a threshold µ, we say that an input xS,L, µy
is in BCD (standing for “bounded cost design”) iff there exists a correct design D
such that costpDq ď µ. In this section we study the BCD problem in a setting with

a single user. Thus, decisions are independent of other users of the library, which,

recall, may influence the construction cost.

In section 3, we reduced the design problem to the problem of the solution of a

safety game. In particular, we showed how a winning strategy in the game induces

a correct design. Note that while we know that safety games admits memoryless

strategies, there is no guarantee that memoryless strategies are guaranteed to lead

to optimal designs. We first study this point and show that, surprisingly, while

memoryless strategies are sufficient for obtaining an optimal design in the closed

setting, this is not the case in the open setting. The source of the difference is the

fact that the language of a design in the open setting may be strictly contained

in the language of the specification. The approximation may enable the user to

generate a design that is more complex and is still cheaper in terms of cost. This

is related to the fact that over approximating the language of a DFA may result in

exponentially bigger DFAs [6]. We are still able to bound the size of the cheapest

design by the size of the game.

4.1 On the optimality and non-optimality of memoryless

strategies

Consider a closed library L and a DFA S. Recall that a correct design for S from

components in L is induced by a winning strategy of Player 1 in the game GL,S
(see Theorem 3.1). If the winning strategy is not memoryless, we can trim it to

5One might consider a different quality-cost model, which takes into an account the cost of

computations. The cost of a design is then the maximal or expected cost of its computations. Such

a cost model is appropriate for measures like the running time or other complexity measures. We

take here a global approach, which is appropriate for measures like the number of states or security

level.

73

a memoryless one and obtain a design whose state space is a subset of the design

induced by the original strategy. Since the design has no flexibility with respect to

the language of S, we cannot do better. Hence the following lemma.

Lemma 4.1 Consider a closed library L and a DFA S. For every µ ě 0, if there

is a correct design D with costpDq ď µ, then there is a correct design D1 induced by

a memoryless strategy for Player 1 in GL,S such that costpD1q ď µ.

Proof: Consider a correct design D with costpDq ď µ. Let fD be a winning

Player 1 strategy in the safety game GL,S as constructed in the proof of Theorem 3.1.

Note that while we know that safety games admit memoryless strategies, there is no

guarantee that memoryless strategies are guaranteed to lead to minimal-cost designs.

Thus, fD need not be a memoryless strategy. We construct a Player 1 memoryless

strategy f 1D by trimming fD in every memoryfull vertex. Then, we construct a design

D1 from f 1D and show that it costs no more than D.

In order to prove the claim formally, we need a few definitions. Consider a

Player 1 vertex v “ xe, sy P V1. We define adjpfD, vq P V to be the vertices fD

continues to from v. That is, u P adjpfD, vq if there is a play πu that ends in v and

is an outcome of the game when Player 1 plays fD and Player 2 plays some strategy,

and fDpπuq “ u. We refer to πu as a witness play for u P adjpfD, vq. Note that there

can be many witness plays for a vertex in adjpfD, vq. Further note that if adjpfD, vq

is a singleton, then v is a memoryless vertex with respect to fD. Consider a vertex

u “ xc0
i , sy P adjpfD, vq. Intuitively, since we define fD to assign control as D, and

since fD continues to u after πu, there must be a state du P D with νpduq “ i.

Thus, du is a witness state for the fact that fDpπuq “ u. Again, there can be several

witness states for a vertex in adjpfD, vq. Formally, let πu be a witness play for u

and let wu P Σ˚ be the word that is induced by the Player 2 choices in πu. That is,

δ˚Spwuq “ s, where recall that v “ xe, sy. Moreover, let e1, . . . , em be the exit states

that are traversed in πu, and let du “ δ˚Dpe1 . . . emq. Since fD assigns control to the

same components as D, the run of AL,D on wu ends in the state xc0
i , duy. We refer

to wu and du as a witness word and state for u, respectively.

We define f 1D as follows. For every v P V1, we choose a vertex u P adjpfD, vq

arbitrarily and define f 1Dpvq “ u. It is not hard to prove that f 1D is a winning

strategy. Let D1 be the design that corresponds to f 1D and is constructed as in the

proof of Theorem 3.1. Since f 1D is winning, D1 is a correct design. We claim that

costpD1q ď costpDq. Recall that the states of D1 are the Player 2 vertices in GL,S .

Further recall that in the construction of D1 we skip Player 1 vertices and proceed

according to f 1D. Consider a reachable Player 2 vertex xc0
i , sy. We denote by ν 1 the

labeling function of D1. Recall that c0
i is the initial state of the component Bi P L

and ν 1pxc0
i , syq “ i. First, we claim that if a component is used in D1 then it is used

74

in D, thus usedpD1q Ď usedpDq. Indeed, if Bi P usedpD1q, there is a state in D1 that

corresponds to a reachable Player 2 vertex v “ xc0
i , sy, for some s P S. Let sv be a

witness state of v. Since the labeling of sv is νpsvq “ i, we have Bi P usedpDq. We

conclude that the sum of construction costs that is incurred by D1 is at most that

of D.

We prove that the sum of quality costs incurred by D1 is at most that of D. We

prove that for every Bi P usedpD1q we have nusedpD1,Biq ď nusedpD,Biq. For a

reachable vertex v P V2 let dv P D be an arbitrary choice of witness state of v. Let

wv be the corresponding witness word. We show that the mapping from a reachable

vertex v P V2 to dv P D is a one-to-one mapping. Consider v, u P V2 with dv “ du.

Let d “ dv “ du. Let i “ νpdq. Since the component-state of v and u is the initial

state of Bi, we have v “ xc0
i , sy and u “ xc0

i , s
1y. To conclude the proof, we show

that s “ s1, thus v “ u. We claim that LpSsq “ LpSs1q and since S is a minimal

DFA, it would follow that s “ s1. Recall that wv and wu are the witness words for

v and u, respectively, thus δ˚Spwvq “ s and δ˚Spwv1q “ s1. Moreover, since wv and wu

are the witness words that correspond to the witness states dv “ du “ d, we have

δ˚L,Dpwvq “ δ˚L,Dpwuq “ xc0
i , dy. Consider a word x P Σ˚. If x P LpSsq, then since

δ˚Spwvq “ s, we have wv ¨x P LpSq. SinceD is a correct design, wv ¨x P LpAL,Dq. Thus,

δ˚L,Dpwv ¨xq is an accepting state. Since δ˚L,Dpwvq “ δ˚L,Dpwuq, we have wu¨x P LpAL,Dq

and in turn wu ¨x P LpSq. Since δ˚Spwuq “ s1, we have u P LpSs1q. The other direction

is symmetric, and we are done.

While Lemma 4.1 seems intuitive, it does not hold in the setting of open systems.

There, a design has the freedom to generate a language that is a subset of LpSq, as

long as it stays receptive. This flexibility allows the design to generate a language

that need not be related to the structure of the game GL,S , which may significantly

reduce its cost. Formally, we have the following.

Lemma 4.2 There is an open library L and a family of DFAs Sn such that Sn has

a correct design Dn with cost 1 but every correct design for Sn that is induced by a

memoryless strategy for Player 1 in GL,Sn has cost n.

Proof: We define Sn “ xΣI ˆ ΣO, Sn, δSn , s
0
0, FSny, where ΣI “ t0̃, 1̃,#u, ΣO “

t0, 1, u, and Sn, δSn and FSn are as follows. Essentially, after reading a prefix of i

#’s, for 1 ď i ď n, the design should arrange its outputs so that the i-th and pn` iq-

th letters agree (they are 0̃ and 0, or are 1̃ and 1). One method to do it is to count

the number of #’s and then check the corresponding indices. Another method is to

keep track of all the first n input letters and make sure that they repeat. The key

idea is that while in the second method we strengthen the specification (agreement

is checked with respect to all i’s, ignoring the length of the #-prefix), it is still

receptive, which is exactly the flexibility that the open setting allows. We define

75

Sn and the library L so that the structure of GL,Sn supports the first method, but

counting each # has a cost of 1. Consequently, a memoryless strategy of Player 1

in GL,Sn induces a design that counts, and is therefore of cost n, whereas an optimal

design follows the second method, and since it does not count the number of #’s,

its cost is only 1.

We can now describe the DFA Sn in more detail. It consists of n chains, sharing

an accepting sink sacc and a rejecting sink srej. For 0 ď i ď n´1, we describe the i-th

chain, which is depicted in Figure 1. When describing δSn , for ease of presentation,

we sometimes omit the letter in ΣI or ΣO and we mean that every letter in the

respective alphabet is allowed. For 0 ď i ă n ´ 1, we define δSnps
i
0,#q “ si`1

0 and

δSnps
n
0 ,#q “ sn0 . Note that words of the form #ia11̃a2b0 or #ia10̃a2b1 are not in

LpSnq, where if 0 ď i ď n´ 1, then a1 P p0̃` 1̃qi, a2 P p0̃` 1̃qn´i´1, and b P p0` 1qi,

and if i ą n´1 then the lengths of a1, a2, and b are n´1, 0, and n´1, respectively.

We require that after reading a word in #˚p0̃` 1̃qn there is an output of n letters in

t0, 1u. Thus, for n ď j ď n ` i ` 1, we define δSnps
i,0
j , q “ δSnps

i,1
j , q “ srej. Also,

Sn accepts every word that has a # after the initial prefix of # letters. Thus, for

1 ď j ď i, we define δSnps
i
j,#q “ sacc, and for i ` 1 ď j ď n ` i ` 1 and t P t0, 1u

we define δSnps
i,t
j ,#q “ sacc.

s
i
0

#

· · · s
i
i

{0̃, 1̃}{0̃, 1̃}
s
i,0
i+1 · · · s

i,0
n s

i,0
n+1 · · · s

i,0
n+i+1

sacc

srej

0̃
{0̃, 1̃} {0̃, 1̃} {0, 1} {0, 1} {0, 1}

0

1

s
i,1
i+1 · · · s

i,1
n s

i,1
n+1 · · · s

i,1
n+i+1

1̃ {0̃, 1̃} {0̃, 1̃} {0, 1} {0, 1} {0, 1}

0

1
#

Figure 1: A description of the i-th chain of the specification Sn.

The library L is depicted in Figure 2. The quality and construction costs of all

the components is 0, except for B1 which has q-costpB1q “ 1 and c-costpB1q “ 0.

B1

e
1
#

e
1
0e

1
1

#

0̃1̃ B2 e
2
0e

2
1

#

0̃1̃

{0̃, 1̃,#}

B3 0 e
3

#

{0̃, 1̃}

{0̃, 1̃,#}

B4 1 e
4

#

{0̃, 1̃}

{0̃, 1̃,#}

Figure 2: The library L. Exit states are square nodes and the output of a state is

written in the node.

We First claim that every correct design must cost at least 1. Indeed, such a

design must use B1 at least once. Otherwise, the output sequence for the input

word #0̃n`1 is a sequence in ˚. Recall that we require that after reading a word in

#˚p0̃` 1̃qn there is an output of n letters in t0, 1u, thus such a design is incorrect.

We describe a correct design Dn with costpDnq “ 1. Intuitively, as explained

above, Dn does not track the number of #’s that are read and can thus use B1 only

once. Instead, Dn keeps track of all of the n input letters in t0̃, 1̃u that follow the

76

sequence in #˚. Thus, after 0̃ or 1̃ is read, B2 gains control for n consecutive times.

Then, assuming the word u P t0̃, 1̃un is read in the first phase, control is alternated

between B3 and B4 so that the word v P t0, 1un is output, where u and v represent

the same vector. Note that Dn uses the components B2, B3, and B4 exponentially

many times in n.

Formally, we define Dn “ xΣI ,ΣO, Dn, δDn , d
0, νy. We define νpd0q “ 1 and

δDnpd
0, e1

#q “ d0. When B1 relinquishes control through e1
1 or e1

0 control is passed

to B2 for n consecutive times. During this phase, Dn remembers the vector in

t0̃, 1̃un that is read, thus Dn has 2Ωpnq states. Next, the components B3 and B4

alternate control for n times as we describe in the following. Consider an input word

w “ #i ¨a1 . . . anb, where a1, . . . , an P t0̃, 1̃u
n and b P t0̃, 1̃um for 0 ď m ă n´1. After

reading w either B3 or B4 relinquish control. If am`1 “ 0, then the next component

to gain control is B3 and otherwise it is B4. After n alternations of control B4 is

assigned control indefinitely.

Since the initial state of Dn is the only state that is labeled with B1, we have

nusedpB1q “ 1, thus costpDnq “ 1. We claim that Dn is a correct design. Indeed,

note that LpTL,Dnq consists of two types of words. The first type are prefixes of

words in #˚ab0˚, for a P t0̃, 1̃un and b P t0, 1un that represent the same vector, thus

for 1 ď i ď n, if ai “ 0̃, then bi “ 0 and if ai “ 1̃, then bi “ 1. The second type are

words that have a prefix in #˚p0̃ ` 1̃q`#. Clearly, LpTL,Dnq Ď LpSnq, and we are

done.

4.2 Solving the BCD problem

Theorem 4.3 The BCD problem is NP-complete for closed designs.

Proof: Consider an input xS,L, µy to the BCD problem. By Lemma 4.1, we

can restrict the search for a correct design D with costpDq ď µ to these induced

by a memoryless strategy for Player 1 in GL,S . By the definition of the game GL,S ,

such a design has at most |C0 ˆ S| states. Since checking if a design is correct and

calculating its cost can be done in polynomial time, membership in NP follows.

For the lower bound, we describe a reduction from SET-COVER. Consider an

input xU, T, µy to SET-COVER, where U “ t1, . . . , lu is a universe, T “ tT1, . . . , Tmu

is a set of subsets over U , i.e., Ti Ď U , for 1 ď i ď m, and µ P IN. We construct a

closed-library L and a DFA S such that there is a design D that costs at most µ iff

there is a set-cover of size at most µ.

We construct the DFA S over the alphabet U as a chain of l ` 1 states that

accepts only the word 12 . . . l. There are m ` 2 components in L. For 1 ď i ď m,

the component Bi corresponds to the set Ti. Its initial state is c0
i and it has an exit

77

state eij for every element j P Ti. For j P Ti there is a transition δipc
0
i , jq “ eij.

The last two components are Bacc and Brej. For consistency we also refer to these

components as Bm`1 and Bm`2, respectively. They consist of a single initial non-

exit state that is accepting in Bacc and rejecting in Brej. For Bi P L, we define

c-costpBiq “ 1 and we define c-costpBaccq “ c-costpBrejq “ 0. Finally, the quality

cost of the components is 0, thus we define q-cost ” 0.

We claim that there is a set cover of size at most µ iff there is a design of cost at

most µ. For the first direction, consider a set cover T 1 Ď T with |T 1| ď µ. For j P U ,

let coverpjq be the index such that j P Tcoverpjq and Tcoverpjq P T
1. We construct

a design D with costpDq ď µ. We define D so that when AL,D reads the word

1 . . . l, the component that gets j-th control, for 1 ď j ď l, is Bcoverpjq. If the j-th

input letter is j1 ‰ j, then the next component to gain control is Brej. Finally, the

component that gains l ` 1-th control is Bacc.
Formally, D “ xE , rm`2s, D, δD, d1, νy, where td1, . . . , dl, dacc, dreju and we define

ν and δD as follows. For 1 ď j ď l, we define νpdjq “ coverpjq. For 1 ď i ď m,

recall that the component Bi has an exit state eij for every j P Ti. For j ă l and

1 ď i ď m, we define δDpdj, e
i
jq “ dj`1 and we define δDpdl, e

i
lq “ dacc. For j ‰ i,

we define δDpdj, e
i
jq “ drej. It is not hard to see that LpAL,Iq “ t12 . . . lu, and thus

D is a correct design. The components that D uses are the ones that correspond to

the sets in T 1, thus D uses at most µ components with construction cost 1, and its

cost is at most µ.

For the other direction, assume there is a correct design D with costpDq ď µ.

Consider the collection T 1 Ď T of sets that correspond to the components tνpdq :

d P D and νpdq R tBacc,Brejuu. We claim that T 1 is a set cover with at most µ sets.

Since costpDq ď µ, it uses at most µ components that correspond to sets in T , thus

|T 1| ď µ. We are left to show that T 1 is a set cover. Consider the run r of AL,D

on the word 1 . . . l. Since D is correct, r is accepting. Specifically it does not get

stuck. Since the components we described above relinquish control after reading a

single letter, the control is passed l ` 1 times during r. Let Bi1 , . . . ,Bil ,Bil`1
be

the sequence of components that gain control. Consider j P U . We claim that j

is covered in T 1. Since r does not get stuck, there is a transition labeled j in the

component Bij , the j-th component to gain control in r. Thus, j P Tij , the set in T

that corresponds to Bij . Since Tij P T
1, j is covered, and we are done.

Remark 4.4 Note that a different attempt to reduce SET-COVER to the BCD

problem would be to define the components as in the proof of Theorem 4.3 and

define S so that it accepts one-letter words for each element in U . However, this

attempt fails since, intuitively, a design does not know which letter is going to be

read. Even if there is a set cover T 1 Ď T and control is assigned to the component Bi

78

where Ti P T
1, a letter j P UzTi can be read. Thus, the fact that we use a one-word

specification allows a design to expect the next letter that should be read.

We turn to study the open setting, which is significantly harder than the closed

one. For the upper bound, we first show that while we cannot restrict attention

to designs induced by memoryless strategies, we can still bound the size of optimal

designs:

Theorem 4.5 For an open library L with ` components and a specification S with

n states, a cheapest correct design D has at most
`

n
n{2

˘

¨ ` states.

Proof: Given S and L, assume towards contradiction that the cheapest smallest

design D for S using the components in L has more than
`

n
n{2

˘

¨ ` states.

Consider a word w P LpTL,Dq. Let Bi1 , . . . ,Bim P L be the components that

are traversed in the run r of TL,D that induces w. Let w “ w1 ¨ . . . ¨ wm, where,

for 1 ď j ď m, the word wj is induced in the component Bij . We say that w is

suffix-less if wm “ ε, thus r ends in the initial state of the last component to gain

control. We denote by πwpDq “ ei1 , . . . , eim´1 P E˚ the sequence of exit states that

r visits.

For a state d P D, we define the set Sd Ď S so that s P Sd iff there exists a

suffix-less word w P pΣI ˆ ΣOq
˚ such that δ˚Spwq “ s and δ˚DpπwpDqq “ d. Since D

has more than
`

n
n{2

˘

¨ ` states, there is a component Bi P L such that the set D1 Ď L
of states that are labeled with Bi is larger than

`

n
n{2

˘

. Thus, there must be two states

d, d1 P D1 that have Sd1 Ď Sd. Note that νpdq “ νpd1q “ i.

We construct a new design D1 by merging d1 into d. Formally, we define D1 “

Dztd1u. If d1 is the initial state of D, then we define d10 “ d and otherwise we

define d10 “ d0. For t P D1 and e P E , if δDpt, eq “ d1, then we define δD1pt, eq “ d,

and otherwise we define δD1pt, eq “ δDpt, eq. Finally, for every t P D1 we define

ν 1ptq “ νptq.

Clearly, for every component B P L we have nusedpD,Bq ě nusedpD1,Bq, thus

costpDq ě costpD1q. Moreover, D1 has less states than D. Thus, in order complete

the contradiction and conclude the proof of the theorem, we prove the following.

Claim 4.6 We claim that D1 is a correct design, thus LpTL,D1q Ď LpSq.

In order to prove the claim we prove the following.

Claim 4.7 For every suffix-less (w.r.t D1) word x P LpTL,D1q there is a suffix-less

(w.r.t D) word y P LpTL,Dq such that δ˚Spxq “ δ˚Spyq and δ˚DpπypDqq “ δ˚D1pπxpD1qq.

Before proving the correctness of Claim 4.7 we show that it implies the cor-

rectness of Claim 4.6. Assume towards contradiction that there is a word w P

79

LpTL,D1qzLpSq. Let r be the run of TL,D1 that induces w and let Bi P L be the

last component to gain control in r. Let w0, . . . , wm be the partition of w with

respect to D1 and let x “ w0 ¨ . . . ¨ wm´1. That is, x is the longest suffix-less prefix

of w. Note that πwpD1q “ πxpD1q. By Claim 4.7 there is a suffix-less (w.r.t D)

word y P LpTL,Dq such that δ˚Spxq “ δ˚Spyq and δ˚DpπypDqq “ δ˚D1pπxpD1qq. Since

δ˚DpπypDqq “ δ˚D1pπxpD1qq, the last component to gain control in the two runs is

Bi. Since both x and y are suffix-free, the runs that induce them end in the initial

state of Bi, thus δ˚L,Dpyq “ δ˚L,D1pxq. Recall that w “ x ¨ wn P LpTL,D1q. Thus,

y ¨ wn P LpTL,Dq. Since δ˚Spyq “ δ˚Spxq and w R LpSq, we have y ¨ wn R LpSq. Thus,

y ¨wn P LpTL,DqzLpSq, and we reach a contradiction to the correctness of D, and we

are done.

We continue to prove Claim 4.7. Consider a suffix-less (w.r.t D1) word x P

LpTL,D1q and let r be the run of D1 on πxpD1q, which are the exit states that TL,D1
visits when inducing x. The proof is by induction on the number of visits of r to

d P D1. For the base case, r does not visit d. Thus, r is a run of D on πxpD1q, and

we define y “ x.

Assume the claim is correct for runs with m visits to d and we prove for runs

with m` 1 visits. Let πxpD1q “ πx1pD1q ¨ e ¨ πx3pD1q such that δ˚D1pπx1pD1q ¨ eq “ d is

the last visit of r to d. Let x “ x1 ¨x2 ¨x3, where x1 and x1 ¨x2 are suffix-less. That is,

assuming t “ δ˚D1pπx1pD1qq and ν 1ptq “ i, then x2 is the sub word of x that is induced

by the component Bi, thus δ˚i px2q “ e P E . We distinguish between two cases. In

the first case x2 “ ε, thus x1 “ ε and d10 “ d, and we define y “ x as in the base

case. In the second case, x2 ‰ ε. By the induction hypothesis, there is a suffix-less

(w.r.t D) word y1 P pΣI ˆ ΣOq
˚ such that δ˚Dpπy1pDqq “ δ˚D1pπx1pD1qq “ t P D1 and

δ˚Spy1q “ δ˚Spx1q. If δDpt, eq “ d, then δD1pt, eq “ d and y “ y1 ¨ x2 ¨ x3 clearly meets

the requirements of the claim. Assume δDpt, eq “ d1. Note that y1 ¨x2 is a suffix-less

(w.r.t D) word with δ˚Dpπy1¨x2pDqq “ d1. Let δ˚Spy1 ¨ x2q “ s. Since Sd1 Ď Sd, there is

a suffix-less (w.r.t D) word z P pΣI ˆ ΣOq
˚ such that δDpπzpDqq “ d and δ˚Spzq “ s.

We define y “ z ¨ x3, which clearly meets the requirements of the claim, and we are

done.

Before we turn to the lower bound, we argue that the exponential blow-up proven

in Theorem 4.5 cannot be avoided:

Theorem 4.8 For every n ě 1, there is an open library L and specification Sn such

that the size of L is constant, the size of Sn is Opn2q, and every cheapest correct

design for Sn that uses components from L has at least 2n states.

Proof: Consider the specification Sn and library L that are described in Lemma 4.2.

We claim that every correct design that costs 1 cannot count #’s and should thus

remember vectors in t0̃, 1̃un. Assume towards contradiction that there is a correct

80

design D with costpDq “ 1 and D has less than 2n states. Thus, nusedpD,B1q “ 1.

Since D must assign initial control to B1, its initial state d0 is labeled with 1. We

claim that if B1 relinquishes control after reading #, it is assigned control again.

Indeed, if one of the other components gains control, for the input word ##0̃n`1 the

output sequence is a sequence in ˚. Recall that we require that after reading a word

in #˚p0̃` 1̃qn there is an output of n letters in t0, 1u, thus we reach a contradiction

to the correctness of D. We conclude that the initial state has a e1
#-labeled self loop,

thus δDpd
0, e1

#q “ d0.

Since D has less that 2n states and the components B2, B3, and B4 relinquish

control after reading a letter in t0̃, 1̃u, there are two words a, b P t0̃, 1̃un such that

a ‰ b and δ˚L,Dpaq “ δ˚L,Dpbq. Let 0 ď i ď n ´ 1 such that, WLog, 1 “ ai ‰ bi “ 0.

By the above, for the initial state q0
L,D of TL,D we have δL,Dpq

0
L,D,#q “ q0

L,D. Thus,

δ˚L,Dp#
ia0̃iq “ δ˚L,Dp#

ib0̃iq. Recall that Sn requires that either 0 or 1 is output

after these words are read, thus either B3 or B4 gain control. In the first case, the

output letter is 0 and the input word #ia0̃i`1 produces an output that violates the

specification, and in the second case 1 is output and the input word #ib0̃i`1 produces

an output that violates the specification, and we are done.

Theorem 4.9 The BCD problem for open libraries is NEXPTIME-complete.

Proof: Membership in NEXPTIME follows from Theorem 4.5 and the fact we

can check the correctness of a design and calculate its cost in polynomial time.

For the lower bound, we describe a reduction from EXP-TILING. Consider an

input to EXP-TILING xT, V,H, ny, where T “ tt1, . . . , tmu is a set of tiles, V,H Ď

T ˆ T are vertical and horizontal relations, respectively, and n P IN is an index. We

say that xT, V,H, ny P EXP-TILING if it is possible to fill a 2n ˆ 2n square with

the tiles in T that respects the two relations. Formally, xT, V,H, ny P EXP-TILING

if there is a function f : 2n ˆ 2n Ñ T such that for a, b P 2n, if a ă 2n then

V pfpa, bq, fpa` 1, bqq, and if b ă 2n, then Hpfpa, bq, fpa, b` 1qq.

Given an input xT, V,H, ny, we construct an input xL,S, ky to the open-BCD

problem such that there is an exponential tiling iff there is a correct design D with

costpDq ď 22n`1`1. The idea behind the reduction is similar to that of Lemma 4.2.

We define ΣI “ t0̃, 1̃,#, c, v, h, u and ΣO “ t0, 1, u Y T . For x P t0, 1un, we use

x̃ to refer to the t0̃, 1̃u copy of x. The library L has the same components as in

Lemma 4.2 with an additional tile component Bt for every t P T . The component

Bt outputs t in its initial state, and when reading c, v, or h, it relinquishes control.

When reading every other letter, it enters an accepting sink. The construction costs

of the components in L is 0. We define q-costpB1q “ 22n ` 1, and q-costpBtq “ 1 for

all t P T . The other components’ quality cost is 0.

81

Consider a correct design D with costpDq ď 22n`1 ` 1. We define S so that a

correct design must use B1 at least once, thus D uses it exactly once. Intuitively,

a ¨ b, for a, b P t0, 1un, can be thought of as two coordinates in a 2n ˆ 2n square.

We define S so that after reading the word ã ¨ b̃ P t0̃, 1̃u2n, a component is output,

which can be thought of as the tile in the pa, bq coordinate in the square. The next

letter that can be read is either c, v, or h. Then, S enforces that the output is a ¨ b,

pa ` 1q ¨ b, and a ¨ pb ` 1q, respectively. Thus, we show that D uses exactly 22n tile

components and the tiling that it induces is legal.

Recall that D uses B1 exactly once and uses at most 22n tile components. We

describe the specification S as an intersection of the languages of three DFAs. The

first DFA Sc is similar to the specification in Theorem 4.8. The differences are that

there are 2n chains and after the sequence of 2n input letters, a letter xt, cy, for

t P T , must be read. Thus, it guarantees that when D reads ãb̃c 2n, for ã, b̃ P t0̃, 1̃un,

it outputs a word 2ntab, where t P T and recall that a, b P t0, 1un represent the

same vectors as ã and b̃, respectively.

Consider a, b P t0, 1un, and let da,b be the state of D that is reached after

reading the word ãb̃. Then, control must be assigned to a tile component, thus

t “ νpδ˚L,Dpãb̃qq is a tile component. Consider the input word w “ c 2n. If w is read

when D is at state da,b, the word a ¨ b must be output. Recall that D uses at most

22n tile components. A key observation is the following. Consider a state d of D
that is labeled by a tile component. If D is in state d and ab is output when reading

w, then d “ da,b.

The next DFA from which S is devised is Sv. It guarantees that when D reads

the word ãb̃vc 2n it outputs 2ntitjpa ` 1qb for ti, tj P T with V pti, tjq. Finally, in

order to deal with the tiles in the top row, Sv accepts every word that starts with a

prefix in #˚1̃np0̃` 1̃qnv. The DFA Sh is defined similarly to Sv.
We define a tiling f by fpa, bq “ νpda,bq for a, b P t0, 1un. We show that the

above observation implies that f respects V , and the proof for H similar. Consider

a, b P t0, 1un. If a “ 1n, then fpa, bq is in the top row, and there is nothing to prove.

Otherwise, we view a and b as numbers and claim that V pfpa, bq, fpa`1, bqq. Recall

that after reading ab, D reaches the state da,b and the tile fpa, bq is output. By

the above, Sv guarantees that if v is read, the next tile that is output respects V .

We claim that fpa` 1, bq is output. Indeed, when reading c 2n, Sv guarantees that

pa ` 1qb must be output. By the observation above, dpa`1q,b is the only state of D
from which an input of c 2n produces an output of pa` 1qb.

The other direction, namely, if there is a tiling of 2n ˆ 2n, then there is a design

that costs 22n ` 1, is dual to the above.

82

5 Computation-Based Cost

While the cost model we use in Section 4 is suited for some settings, e.g., in cases

where the goal is to minimize the number of states in the system, in other settings

a computation-based cost model is more appropriate. For example, in a system that

issues grants upon requests, a goal of the designer can be to design a system that

minimizes the waiting time for a grant once a request is received. A standard model

for reasoning about such costs of computations is lattice automata [24]. Such an

automaton assigns to each word a value which is an element of some lattice.

We study the synthesis problem from component libraries where the specification

is given by a deterministic lattice automaton (LDFA, for short) and the components

are box LDFAs. Thus, our goal is to compose the components in the library to

construct an LDFA that is equivalent to the specification LDFA, where equivalence

means that the two automata assign the same values to all words.

The compleity of problems on lattice automata typically coincide with the com-

plexity of the corresponding problem in the Boolean setting. An exception is the

problem of minimization of LDFAs, which is NP-complete [?]. It is shown in [?],

that there is no canonical minimal LDFA for a latticed language. Recall that mini-

mal DFAs play a key role in our upper bound for the design problem in the closed

setting (Theorem 3.1) as we assumed the specification is given as such a DFA.

Even with no canonical minimal LDFA for the language of the specification, we

show that the design problem can be solved in polynomial time. We assume the

specification is given as a separable LDFA, which is a type of LDFAs we introduce

here. In such an LDFA, every two states have a separating word (similar to minimal

DFAs). That is, if there are words w1 and w2 whose runs reach two different states,

then there is a word w such that w1 ¨w gets a different value than w2 ¨w. We show

that every latticed language has a separable LDFA of polynomial size. This result

might be of independent interest.

5.1 Lattice automata

Let xA,ďy be a partially ordered set, and let P be a subset of A. An element a P A

is an upper bound on P if a ě b for all b P P . Dually, a is a lower bound on P

if a ď b for all b P P . An element a P A is the least element of P if a P P and

a is a lower bound on P . Dually, a P A is the greatest element of P if a P P and

a is an upper bound on P . A partially ordered set xA,ďy is a lattice if for every

two elements a, b P A both the least upper bound and the greatest lower bound of

ta, bu exist, in which case they are denoted a _ b (a join b) and a ^ b (a meet b),

respectively. A lattice is complete if for every subset P Ď A both the least upper

83

bound and the greatest lower bound of P exist, in which case they are denoted
Ž

P

and
Ź

P , respectively. In particular,
Ž

A and
Ź

A are denoted J (top) and K

(bottom), respectively. A lattice xA,ďy is finite if A is finite. Note that every finite

lattice is complete. A lattice xA,ďy is distributive if for every a, b, c P A, we have

a^ pb_ cq “ pa^ bq _ pa^ cq and a_ pb^ cq “ pa_ bq ^ pa_ cq.

1

2

Λ2

1

1

2

0

Λ3

(1, 1)

(0, 1)

(0, 0)

(1, 0)

Λ2,2

{a, b}

{a}

{a, b, c}

{a, c}

{b}

∅

{b, c}

{c}

2{a,b,c}

Figure 3: Some lattices

In Figure 3 we describe some finite lattices. The elements of the lattice Λ2 are the

usual truth values 1 (true) and 0 (false) with the order 0 ď 1. The lattice Λn contains

the values 0, 1, . . . , n´ 1, with the order 0 ď 1 ď . . . ď n´ 1. The lattice Λ2,2 is the

Cartesian product of two Λ2 lattices, thus pa, bq ď pa1, b1q if both a ď a1 and b ď b1.

Finally, the lattice 2ta,b,cu is the power set of ta, b, cu with the set-inclusion order.

In this lattice, join and meet coincide with union and intersection, respectively, and

we have, for example, tau _ tbu “ ta, bu, tau ^ tbu “ K, ta, cu _ tbu “ J, and

ta, cu ^ tbu “ K.

Consider a lattice Λ (we abuse notation and refer to Λ also as a set of elements,

rather than a pair of a set with an order on it). For a set X of elements, an Λ-set

over X is a function S : X Ñ Λ assigning to each element of X a value in Λ. Thus,

S P ΛX . It is convenient to think about Spxq as the truth value of the statement “x

is in S”. We say that an Λ-set S is Boolean if Spxq P tJ,Ku for all x P X.

Consider a lattice Λ and an alphabet Σ. An Λ-language is an Λ-set over Σ˚.

Thus, an Λ-language L : Σ˚ Ñ Λ assigns a value in Λ to each word over Σ.

A deterministic lattice automaton on finite words (LDFA, for short) is a tuple

A “ xΛ,Σ, Q,Q0, δ, F y, where Λ is a finite lattice, Σ is a finite alphabet, Q is a finite

set of states, Q0 P ΛQ is an Λ-set of initial states, δ P ΛQˆΣˆQ is an Λ-transition-

relation, and F P ΛQ is an Λ-set of accepting states.

The fact that A is deterministic is reflected in two conditions on Q0 and δ. First,

there is at most one state q P Q, called the initial state of A, such that Q0pqq ‰ K.

In addition, for every state q P Q and letter σ P Σ, there is at most one state q1 P Q,

called the σ-destination of q, such that δpq, σ, q1q ‰ K. The run of an LDFA on a

word w “ σ1 ¨ σ2 ¨ ¨ ¨ σn is a sequence r “ q0, . . . , qn of n ` 1 states, where q0 is the

initial state of A, and for all 1 ď i ď n, it holds that qi is the σi-destination of

84

qi´1. We extend the notion of destination to words. For a word w P Σ˚ and a state

q P Q, we use δ˚pq, wq to refer to the w-destination of q. When q P Q0, we omit

it and use δ˚pwq. The value of w is valpwq “ Q0pq0q ^
Źn

i“1 δpqi´1, σi, qiq ^ F pqnq.

Intuitively, Q0pq0q is the value of q0 being initial, δpqi´1, σi, qiq is the value of qi

being a successor of qi´1 when σi is the input letter, F pqnq is the value of qn being

accepting, and the value of w is the meet of all these values. The traversal value of w

is trav-valpwq “ Q0pq0q^
Źn

i“1 δpqi´1, σi, qiq, and its acceptance value is F pqnq. The

Λ-language of A, denoted LpAq, maps each word w to the value of its run in A. In

case such a run does not exist, the value of the word is K. An example of an LDFA

can be found in Figure 5. We say that two LDFA A and B are equivalent iff they

assign the same values to all words, thus for w P Σ˚, we have valpA, wq “ valpB, wq.
Note that traditional deterministic automata over finite words (DFA, for short)

correspond to LDFA over the lattice Λ2. Indeed, over Λ2, a word is mapped to the

value J iff the run on it uses only transitions with value J and its final state has

value J.

An LDFA is simple if Q0 and δ are Boolean. Note that the traversal value of a

run r of a simple LDFA is either K or J, thus the value of r is induced by F . For

simplicity, in such LDFAs we assume δ : Qˆ Σ Ñ Q.

The following lemma was proven in [24] and we give it here for completeness.

Lemma 5.1 [24] Every LDFA over a lattice Λ with n states has an equivalent simple

LDFA with n ¨ |Λ| states.

Proof: Consider an LDFA D “ xΛ,Σ, D, d0, δ, F y. Intuitively, in the simple

LDFA D1 we “remember” the lattice value of a run of D. Formally, let D1 “
xΛ,Σ, D ˆ Λ, xd0,Jy, δ

1, F 1y, where F 1pxd, `yq “ ` ^ F pdq and we define δ1 below.

Recall that for every d P D and σ P Σ, there is at most one state d1 P D such that

δpd, σ, d1q ‰ K. We define δ1pxd, `y, σq “ xd1, ` ^ δpd, σ, d1qyq. Clearly, the size of

D1 is |D| ¨ |Λ|, and it is simple. Moreover, it is not hard to see that D and D1 are

equivalent.

5.2 Separable LDFAs

Recall that in the Boolean setting, our solution to the closed design problem relied

on the fact that the specification was given as a minimal DFA. Specifically, we used

the fact that states in such a DFA have separating words. It is known that there

is no canonical minimal LDFA for a lattice language [21]. However, we show below

that it is possible to assume that the specification is given by means of an LDFA

whose states have separating words.

Formally, consider an LDFA D “ xΛ,Σ, D, d0, δ, F y. We say that two states

d1, d2 P D have a separating word, if there is a word w P Σ˚ such that for every two

85

words w1, w2 P Σ˚ with δ˚Dpw1q “ d1 and δ˚Dpw2q “ d2, we have valpD, w1 ¨ wq ‰

valpD, w2 ¨wq. We say that D is separable if every two states have a separating word.

For example, consider the LDFA D that is depicted in Figure 5. The alphabet

of D is Σ “ t1, 2, 3u and it is defined over the lattice x2a,b,c,Ďy. The states’ names

appear above them and their acceptance value inside. We show that D is not

separable. For this, we show that the states d1 and d2 are not separable, as for the

words w1 “ 1 and w2 “ 2, we have δ˚Dpw1q “ d1 and δ˚Dpw2q “ d2, but there is no

word w such that valpD, w1 ¨wq ‰ valpD, w2 ¨wq. Indeed, words with a prefix w1 or

w2 have either a value of tau or a value of K. If 1˚ is read after reading w1 or w2,

then the value is tau, and otherwise it is K. Note that it is not possible to simply

merge d1 and d2 as that would result in a change of the value of either the word 32

or the word 42.

⊤⊤ ⊤

d0d1 d2

4, {b}

1, {a}
1,{a}

2,{b}

2, {a}

3, {c}
2,{c}

1,{a}

Figure 4: An example of an LDFA in which the states d1 and d2 are not separable.

We show that every simple LDFA D has an equivalent simple separable LDFA

D1. By Lemma 5.1, this would imply that every LDFA has an equivalent separable

LDFA. Let D “ xΛ,Σ, D, d0, δ, F y. We define an equivalence relation on D and use

it to construct D1. Consider a join-irreducible element a P JIpΛq. We construct

a DFA Da with LpDaq “ tw P Σ˚ : valpD, wq ě au as follows. We define Da “
xΣ, D, d0, δa, Fay, where for q P Q and σ P Σ, we have δapq, σq “ q1 iff δpq, σ, q1q “ J,

and d P Fa iff a ď F pdq. Since Da is a DFA, its language has a canonical minimal

DFA D1a. Moreover, the states of Da refine these of D1a such that there is a mapping

fa from the states of Da to these of D1a such that for two states d1, d2 P D, we have

fapd1q “ fapd2q iff for every word w P Σ˚, we have w P LpDd1a q iff w P LpDd2a q.
We are ready to define the equivalence relation on D. We define d1 „ d2 iff

F pd1q “ F pd2q and for every a P JIpΛq we have fapd1q “ fapd2q. Let D„ be the

partition of D according to „.

Consider two states d1, d2 P D such that d1 „ d2 and a letter σ P Σ. We claim

that d11 “ δpd1, σq „ δpd2, σq “ d12. Assume otherwise, thus either F pd11q ‰ F pd12q or

there is a P JIpΛq such that fapd
1
1q ‰ fapd

1
2q. Assume that the second case holds.

Then, there is a word w P Σ˚, such that a ď valpDd11 , wq and a ę valpDd12 , wq, or the

other way around. But then, the word σ ¨w is separating for d1 and d2, contradicting

the fact that fapd1q “ fapd2q. The proof for the first case is similar.

Let D1 “ xΛ,Σ, D„, d10, δ1, F 1y, where d10 P D„ is such that d0 P d
1
0, and δ1 and F 1

are defined as follows. For A P D„, d P A, and σ P Σ, we define δ1pA, σq “ A1 iff

86

δpd, σq P A1. Then, F 1pAq “ F pdq. By the above, δ1 is well defined.

For example, consider the simple LDFA D that is equivalent to the one in Fig-

ure 5. Here, we do not state the values of the transitions as they are all J. Note

that the states xd1, tauy and xd2, tauy are not separable and in D1 they are merged.

⊤

{a} {a}d0

〈d1, {a}〉 〈d2, {a}〉

{b} {c}

〈d1, {b}〉 〈d2, {c}〉

1

4

1

2

2

3

1

2

Figure 5: A simple LDFA that is equivalent to the one in Figure 5.

We claim that D1 is equivalent to D. Consider a word w “ w1, . . . , wn P Σ˚ and

let r “ r0, r1, . . . , rn and r1 “ r10, r
1
1, . . . , r

1
n be the runs ofD andD1 on w, respectively.

It is not hard to prove by induction on i that for every 0 ď i ď n, we have ri P r
1
i.

Since D and D1 are simple, we have valpD, wq “ F prnq and valpD1, wq “ F 1pr1nq. By

the claim, rn P r
1
n, and by the definition of F 1, we have F 1pr1nq “ F prnq, and we are

done.

Finally, we claim that D1 is separable. Consider two words w1, w2 P Σ˚ such

that A1 “ δ˚D1pw1q ‰ δ˚D1pw2q “ A2. If F pA1q ‰ F pA2q, then ε is a separating word.

Assume F pA1q “ F pA2q, and we show that they have a separating word. Let d1 “

δ˚Dpw1q and d2 “ δ˚Dpw2q. By the above, we have d1 P A1 and d2 P A2. Since A1 ‰ A2,

there is a P JIpΛq such that fapd1q ‰ fapd2q. Thus, there is a word w P Σ˚ such

that a ď valpDd1 , wq and a ę valpDd2 , wq, or the other way around. Note that since

D is simple, we have valpD, w1 ¨ wq “ valpDd1 , wq and valpD, w2 ¨ wq “ valpDd2 , wq.
Since D and D1 are equivalent, they assign the same values to the words w1 ¨w and

w2 ¨ w, thus we have a ď valpD1, w1 ¨ wq and a ę valpD1, w1 ¨ wq. Recall that two

lattice values x, y P Λ are equal iff for every a P JIpΛq, we have a ď x iff a ď y.

Thus, we have that valpD1, w1 ¨ wq ‰ valpD1, w1 ¨ wq, and we are done.

Note that the size of D1 is at most the size of D. We conclude with the following.

Theorem 5.2 Every simple LDFA with n states has an equivalent simple LDFA

with at most n states.

Recall that in Lemma 5.1, the construction of a simple LDFA results in a blowup

in the size of lattice. Thus, we have the following.

Corollary 5.3 Every LDFA with n states over a lattice Λ has an equivalent simple

separable LDFA of size at most n ¨ |Λ|.

87

5.3 The closed-lattice synthesis problem

Consider a library L of box-LDFAs and a design D. Recall that a design in the

Boolean setting is a recipe to construct an LDFA by glueing the components in L.

Given a design D, we refer to AL,D as the compositional LDFA that is constructed

using D and the components from L. We can now define the lattice closed-design

problem. Given a library of box-LDFAs L and a specification LDFA S, decide

whether there is a design D such that AL,D is equivalent to S. Recall that in the

lattice setting this means that S and AL,D assign the same values to all words. We

assume that the components in L as well as S are all defined with respect to the

same lattice.

Theorem 5.4 The lattice closed design problem can be solved in polynomial time.

Proof: The solution here is similar to that of the closed design problem in

Theorem 3.1. Given a library L of box-LDFAs and a specification LDFA S, we

construct a full information safety game GL,S such that Player 1 wins iff there is

a design for S using the components of L. Recall that a safety game is a turn-

based two player game in which Player 1 wins iff the token that the players move

stays within the “safe” vertices. Again, similar to the Boolean setting, Player 1’s

strategies correspond to designs. He select the first component to gain control, and

once a component relinquishes control, he selects which component gains control

next.

Player 2 challenges Player 1’s choice of design. In the Boolean setting, he selects

the word that is read while a component is in control, which amounts to selecting

an exit state from which the component relinquishes control. In the lattice setting,

different runs that exit through the same exit state might have different traversal

values. Player 1 should not know what the traversal value is. This has the sense

of partial information, which caused the exponential blowup in the open setting.

However, we are able to bypass this problem. Assume Player 1 assigns control to a

components Bi, and Player 2 selects the exit state e. Then, we maintain both the

join and the meet of all possible values of runs that exit through e.

Formally, assume L consists of components of the form Bi “ xΛ,Σ, Ci, c0
i , Fi, Eiy,

for i P rns. As in the Boolean setting, we denote by C, C0, and E , the union of the

sets of states, initial states, and exit states, respectively, of the components. Let

S “ xΛ,Σ, S, s0, FSy. By Corollary 5.3, we can assume that S is a simple separable

LDFA.

We construct a game xV,E, V0, αy, where V1 “ E ˆΛˆΛˆS and V2 “ C0ˆΛˆ

ΛˆS, V1 “ C0ˆtJuˆtJuˆts0u, and E and α are defined as follows. All the vertices

in V1 are safe, i.e., they are in α. We describe when a vertex xci0, `Ó, `Ò, sy in V2 is not

88

in α. We alter the definitions we had in the Boolean setting of “infix witness” and

“suffix witness” to incorporate the lattice values. First, we have that xci0, `Ó, `Ò, sy

is an infix witness if there exists words w1, w2 P Σ˚ such that δ˚i pw1q “ δ˚i pw2q P E
and δ˚Sps, w1q ‰ δ˚Sps, w2q. Second, we have that xci0, `Ó, `Ò, sy is a suffix witness

if there exists a word w P Σ˚ such that either valpBi, wq ^ `Ó ‰ valpSs, wq or

valpBi, wq ^ `Ò ‰ valpSs, wq.
We describe the edges of the game. First, edges leaving Player 1 vertices are as

in the Boolean setting and corresponding to choosing the next component to gain

control; we have xxe, `Ó, `Ò, sy, xc
i
0, `Ó, `Ò, syy P E, for every i P rns. Vertices in V2zα

have no outgoing transitions. Consider a vertex v “ xci0, `Ó, `Ò, sy P V2 X α. Edges

leaving v correspond to a choice of exit state e of Bi. Since v R α, there is a state

s1 P S such that every word w P Σ˚ that has δ˚pwq “ e also has δ˚Sps, wq “ s1. Finally,

the traversal values of these words might be different. We update the meet and join

of all these traversal values. Formally, there is an edge xxci0, `Ó, `Ò, sy, xe, `
1
Ó, `

1
Ò, s

1yy

iff there exists a word w P Σ˚ such that δ˚i pwq “ e and δ˚Sps, wq “ s1, and `1Ó “

`Ó ^
Ź

wPΣ˚:δ˚i pwq“e
trav-valpBi, wq and `1Ò “ `Ò ^

Ž

wPΣ˚:δ˚i pwq“e
trav-valpBi, wq.

We claim that Player 1 wins GL,S iff there is a correct design for S using the

component of L. For the first direction, assume Player 1 has a winning strategy fD

and let D be the corresponding design as in Theorem 3.1. We claim that D is a

correct design. Assume towards contradiction that there is a word w P Σ˚ such that

valpAL,D, wq ‰ valpS, wq. Let w “ w1 ¨w2 ¨ . . . wm be the partition of w according to

the components that process it in AL,D, and let `1, `2, . . . , `m be the traversal values

of each of the sub-words in the corresponding component. Let Bj be the component

that processes wm. Note that valpAL,D, wq “
Ź

1ďiďm´1 `i ^ valpBj, wmq. Consider

the Player 2 strategy fw that, intuitively, selects the word w1 ¨ . . . ¨wm´1. The vertex

in the game GL,S that the game reaches is of the form v “ xc0
j , `Ó, `Ò, sy P V2. It is

not hard to show that `Ó ď
Ź

1ďiďm´1 `i ď `Ò.

We claim that v R α, which will contradict the fact that fD is winning. Recall

that two lattice elements are equal iff their order with respect to all join irreducible

elements is the same. We distinguish between two cases. First, there is an element

a P JIpΛq such that a ď valpAL,D, wq and a ę valpS, wq. We claim that a ď

p`Ó ^ valpBj, wmqq. Indeed, since a ď valpAL,D, wq, we have a ď valpBj, wmq as

well as a ď `i, for 1 ď i ď m ´ 1. By the above, the latter implies that a ď `Ò.

On the other hand, we claim that a ę valpSs, wmq. It is not hard to see that

δ˚Spw1 ¨ . . . ¨ wm´1q “ s. Since S is simple, valpS, wq “ valpSs, wmq, thus the claim

follows. We conclude that `Ò^ valpBj, wmq ‰ valpSs, wmq, implying that v R α, and

we are done. Showing that v R α when a ę valpAL,D, wq and a ď valpS, wq, is done

similarly using `Ó.

For the other direction, assume there is a correct design D, and we show that the

89

corresponding Player 1 strategy fD is a winning strategy in GL,S . Assume otherwise,

and let f2 be a Player 2 strategy that is winning against fD. Let v “ xc0
i , `Ó, `Ò, sy R α

that the game reaches. Assume v R α because of an infix witness. The contradiction

is attained similarly to Theorem 3.1. Recall that in this case there are words w1, w2 P

Σ˚ such that δ˚i pw1q “ δ˚i pw2q P E but s1 “ δ˚Sps, w1q ‰ δ˚Sps, w2q “ s2. Since S is

separable, there is a separating word w for s1 and s2, thus valpSs1 , wq ‰ valpSs2 , wq.
But, since Bi exists from the same exit state when reading w1 and w2, the LDFA

AL,D assigns the same values to the words with suffix w1 ¨ w and w2 ¨ w, while they

get different values in S.

Assume v R α because of a suffix witness. Thus, there is a word w P Σ˚ such

that either `Ó ^ valpBj, wq ‰ valpSs, wq or `Ò ^ valpBj, wq ‰ valpSs, wq. We prove

for the first case and the second is similar. Assume the play outpfD, f2q traverses

the components Bi1 , . . . ,Bim and exit states e1, . . . , em. We choose words w1, . . . , wm

that the components traverse. Thus, we need, for every 1 ď j ď m that δ˚ijpwjq “ ej.

Again, we distinguish between two cases. First, let a P JIpΛq such that a ď p`Ó ^

valpBj, wqq and a ę valpSs, wq. Since a ď `Ó, for every 1 ď j ď m, every word u P Σ˚

such that δ˚ijpuq “ ej, has a ď trav-valpBij , uq. So we can choose any such word u as

wj. Note that since the intermediate vertices in the play outpfD, f2q are in α, it is not

hard to show that δ˚Spw1 ¨. . .¨wmq “ s. So, we have a ď valpAL,D, w1 ¨. . . wm ¨wq while

a ę valpS, w1 ¨. . . wm ¨wq, and we are done. For the second case, a ę p`Ó^valpBj, wqq
and a ď valpSs, wq. If a ę valpBj, wq, then we choose for each component some

word as in the above. If a ę `Ó, then there is 1 ď j ď m and a word wj P Σ˚ such

that δ˚ijpwjq “ ej and a ę trav-valpBij , wjq. We choose the other words as in the

above, so that we have a ę valpAL,D, w1 ¨ . . . ¨ wmq, and the proof is similar to the

above.

6 Libraries with Costs and Multiple Users

In this section we study the setting in which several designers, each with his own

specification, use the library. The construction cost of a component is now shared by

the designers that use it, with the share being proportional to the number of times

the component is used. For example, if c-costpBq “ 8 and there are two designers,

one that uses B once and a second that uses B three times, then the construction

costs of B of the two designers are 2 and 6, respectively. The quality cost of a

component is not shared. Thus, the cost a designer pays for a design depends on

the choices of the other users and he has an incentive to share the construction

costs of components with other designers. We model this setting as a multi-player

game, which we dub component library games (CLGs, for short). The game can be

90

thought of as a one-round game in which each player (user) selects a design that is

correct according to his specification. In this section we focus on closed designs.

Formally, a CLG is a tuple xL,S1, . . . ,Sky, where L is a closed component library

and, for 1 ď i ď k, the DFA Si is a specification for Player i. A strategy of Player i

is a design that is correct with respect to Si. We refer to a choice of designs for

all the players as a strategy profile. Consider a profile P “ xD1, . . . ,Dky and a

component B P L. The construction cost of B is split proportionally between the

players that use it. Formally, for 1 ď i ď k, recall that we use nusedpB,Diq to

denote the number of times Di uses B. For a profile P , let nusedpB, P q denote

the number of times B is used by all the designs in P . Thus, nusedpB, P q “
ř

1ďiďk nusedpB,Diq. Then, the construction cost that Player i pays in P for B
is c-costipP,Bq “ c-costpBq ¨ nusedpB,Diq

nusedpB,P q . Since the quality costs of the components is

not shared, it is calculated as in Section 4. Thus, the cost Player i pays in profile

P , denoted costipP q is
ř

BPL c-costipP,Bq`nusedpB,Diq ¨ q-costpDiq. We define the

cost of a profile P , denoted costpP q, as
ř

iPrks costipP q.

For a profile P and a correct design D for Player i, let P ri Ð Ds denote the

profile obtained from P by replacing the choice of design of Player i by D. A profile

P is a Nash equilibrium (NE) if no Player i can benefit by unilaterally deviating

from his choice in P to a different design; i.e., for every Player i and every correct

design D with respect to Si, it holds that costipP riÐ Dsq ě costipP q.

Theorem 6.1 There is a CLG with no NE.

Proof: We adapt the example for multiset cost-sharing games from [7] to CLGs.

Consider the two-player CLG over the alphabet Σ “ ta, b, cu in which Player 1

and 2’s specifications are (the single word) languages tabu and tcu, respectively.

The library is depicted in Figure 6, where the quality costs of all components is 0,

c-costpB1q “ 12, c-costpB2q “ 5, c-costpB3q “ 1, and c-costpB4q “ c-costpB5q “ 0.

Both players have two correct designs. For Player 1, the first design uses B1 twice

and the second design uses B1 once and B2 once. There are also uses of B4 and B5,

but since they can be used for free, we do not include them in the calculations. For

Player 2, the first design uses B2 once, and the second design uses B1 once. The

table in Figure 6 shows the players’ costs in the four possible CLG’s profiles, and

indeed none of the profiles is a NE.

We study computational problems for CLGs. The most basic problem is the

best-response problem (BR problem, for short). Given a profile P and i P rks, find

the cheapest correct design for Player i with respect to the other players’ choices

in P . Apart from its practical importance, it is an important ingredient in the

solutions to the other problems we study. The next problem we study is finding the

91

B1

e
1

a

e
1

b

e
1

c

a

b

c

B2 e
2

b

b

B3 e
3

c

c

B4

B5

tB1,B1u tB1,B2u

tB3u 5, 12 5, 13

tB1u 4, 8 6, 7

Figure 6: The library of the CLG with no NE, and the costs of the players in its

profiles.

social optimum (SO, for short), namely the profile that minimizes the total cost of all

players; thus the one obtained when the players obey some centralized authority. For

both the BR and SO problems, we study the decision (rather than search) variants,

where the input includes a threshold µ. Finally, since CLGs are not guaranteed to

have a NE, we study the problem of deciding whether a given CLG has a NE. We

term this problem DNE.

Definition 6.1 We define the decision problems formally as follows. Let G be a

CLG.

BR An input xG, P, i, µy is in BR, where P is a profile, i P rks, and µ P IR, iff there

is a design Di that is correct with respect to Si such that costipP riÐ Disq ď µ.

SO An input xG, µy is in SO, where µ P IR, iff there is a profile P such that

costpP q ď µ.

DNE An input xGy is in DNE iff there is a NE profile in G.

Note that the BCD problem studied in Section 4 is a special case of BRP when

there is only one player. Also, in a setting with a single player, the SO and BR prob-

lems coincide, thus the lower bound of Theorem 4.3 applies to them. In Lemma 4.1

we showed that if there is a correct design D with costpDq ď µ, then there is also a

correct design D1, based on a memoryless strategy and hence having polynomially

many states, such that for every component B, we have nusedpD1,Bq ď nusedpD,Bq.
The arguments there apply in the more general case of CLGs. Thus, we have the

following.

Theorem 6.2 The BR and SO problems are NP-complete.

We continue to study the DNE problem. We show that DNE is complete for ΣP
2 –

the second level of the polynomial hierarchy. Namely, decision problems solvable in

polynomial time by a nondeterministic Turing machine augmented by an oracle for

an NP-complete problem. An oracle for a computational problem is a black box that

is able to produce a solution for any instance of the problem in a single operation.

Thus, for every problem P P ΣP
2 there is a machine such that for every x P P there is

92

a polynomial accepting computation (with polynomial many queries to the oracle).

As co-NP is the dual complexity class of NP, the dual complexity class of ΣP
2 is ΠP

2 .

Thus, a problem P is ΣP
2 -complete iff its complement P is ΠP

2 -complete.

Theorem 6.3 The DNE problem is ΣP
2 -complete.

Proof: For the upper bound, we describe a nondeterministic Turing machine

with an oracle to SBR problem – the strict version of the BR problem, where we

seek a design whose cost is strictly smaller than µ. Given a CLG G “ xL,S1, . . . ,Sky,
we guess a profile P “ xD1, . . . ,Dky, where for 1 ď i ď k, the design Di has at most

|C0 ˆ Si| states, where Si are the states of Si. First, we check whether P is a profile

of correct designs. That is, for i P rks, we check whether Di is a correct design with

respect to Si, which can be done in polynomial time. If there is an incorrect design

we terminate and reject. Next, we check whether P is a NE profile by checking if

there is a player that has a beneficial move from P . That is, for i P rks, we feed

the oracle the input xG, P, i, costipP qy. If the oracle answers YES, then Player i can

benefit from deviating and P is not a NE in which case we reject. On the other hand,

if for every i P rks the oracle answers NO, then P is a NE in which case we accept.

Clearly the machine recognizes DNE. Note that if G P DNE, one of the profiles P we

guess is a NE, and the computation in which we guess P is a polynomial accepting

computation.

For the lower bound, we show a reduction from the complement of the ΠP
2 -

complete problem min-max vertex cover [23] (MMVC, for short). The input to the

MMVC problem is xG, I, J,N, µy, where G “ xV,Ey is an undirected graph, I and J

are sets of indices, N : V Ñ tVi,j Ď V : i P I and j P Ju partitions the vertices, and

µ P IN is a value. Note that since G is undirected, its edges are sets with two vertices.

We refer to the sets in the partition tVi,juiPI,jPJ as neighborhoods and for v P V we

refer to Npvq as the neighborhood of v. Note that there is a coarser partition of V ,

namely tViuiPI , where Vi “
Ť

jPJ Vi,j. We refer to the elements in this partition as

districts and, for v P V , use Dpvq to denote the district v belongs to. For a function

t : I Ñ J we define Vt “
Ť

iPI Vi,tpiq. Intuitively, t is a choice of neighborhood in

each district. Let Gt “ xVt, Ety be the induced subgraph of G on the vertex set Vt.

Formally, for e P E, we have e P Et iff e Ď Vt. For a graph G, we say that V 1 Ď V

is a vertex cover of G if for every e “ tu, vu P E we have V 1 X tu, vu ‰ H. An

input xG, I, J,N, µy is in MMVC iff for any choice of neighborhoods in the districts

given by a function t, the smallest vertex cover of the resulting graph is at most

µ. Formally, maxtPJI mint|V 1| : V 1 Ď Vt is a vertex cover of Gtu ď µ. We assume

without loss of generality that µ ď |V |.

Consider an input xG, I, J,N, µy to MMVC. We construct a CLG G with li-

brary L and specifications S0,S1, . . . ,S|I| such that G has a NE iff xG, I, J,N, µy R

93

MMVC. The alphabet Σ consists of letters i, ĩ P I, v, ṽ P V , and e P E. Let

E “ te1, . . . , emu. The specification of Player 0 consists of words of length 3|E| of

the form v1ṽ1e1 . . . vmṽmem, for some v1, . . . , vm P V (allowing duplicates). For i P I,

the specifications of Player i consist of the single word i ¨ p̃iq`, where ` is a polynomial

in |V |, which we define in the following.

We describe the components of L (see Figure 7). When describing the compo-

nents’ costs we only refer to the construction cost as their quality costs are 0. The

simplest components are Bacc and Brej. They consist of a single initial state that

is accepting in Bacc and rejecting in Brej. The cost of both these components is 0.

The next component is B0, which is exactly S0, and its cost is µ` 1. The rest of the

components have no accepting states. We describe these components by the words

that they can process. For each word there is a unique disjoint path from the initial

to a separate exit state. For every neighborhood Vi,j there is a component Bi,j P L
that costs p3|E| ` 2qpµ` 1q. We refer to these components as neighborhood compo-

nents. The single-lettered words it can process are i, ĩ, and v for v P Vi,j. Also, it

can process the words vṽe for v P V zVi,j and e P E, and ṽe for v P Vi,j and e P E

such that e X pVizVi,jq ‰ H. For every v P V there is a component Bv that costs

1. We refer to these components as vertex components. The words it can process

are ũe for u P Npvq and e P E such that v P e. For i P I there is a component Bi
that can process the word ĩ and costs a very small value ξ ą 0. The construction is

clearly polynomial in the input.

Bi,j

v1v1 ∈ Vi,j

v2 ṽ2 ev2 /∈ Vi,j

ṽ3 ev3∈Vi,j∧
e∩(Vi\Vi,j)6=∅

i

ĩ

Bv

ũ eu∈N(v)
v∈e

Bi

ĩ

Figure 7: Some of the components in the library produced by the reduction from

MMVC.

We claim that xG, I, J,N, µy R MMVC iff G “ xL,S0,S1, . . . ,S|I|y P DNE. For the

first direction, assume xG, I, J,N, µy R MMVC. Thus, there is a function t : I Ñ J

such that every vertex cover of Vt has more than µ vertices. We claim that the CLG

G has a NE. Consider the profile P in which Player 0 uses only the component B0

and, for i P I, Player i uses the design Di,tpiq, which we describe below, and uses only

the neighborhood component Bi,tpiq and the components Bacc and Brej. For i P I and

j P J , we describe the design Di,j. In Di,j, the component Bi,j gains initial control. If

the component relinquishes control after reading the single-lettered word i, it regains

control. If it relinquishes control after reading any other word, the design assigns

94

control to Brej. Similarly, for ` times, control is given to Bi,j assuming it reads the

word ĩ, and otherwise control is given to Brej. After Bi,j gains control ` ` 1 times,

control is assigned to Bacc. Clearly, LpDi,jq “ LpSiq, thus it is a correct design for

Player i.

Assume towards contradiction that P is not a NE. Thus, there is a player that

benefits from deviating. We start by showing that, for i P I, Player i cannot benefit

from deviating. Note that for j P J , no other player uses a component Bi,j in P .

Thus, deviating to a design Di,j, for j ‰ tpiq, would result in the same cost for

Player i, and deviating to any other correct design would increase his cost, and is

clearly not beneficial.

We continue to show that Player 0 cannot benefit from a deviation. Assume to-

wards contradiction that there is a correct designD such that cost0pP q ą cost0pP r0 Ð

Dsq. Consider the set V 1 Ď V of vertices that correspond to vertex components that

are used in D, thus v P V 1 iff Bv P usedpDq. Recall that c-costpB0q “ µ ` 1, thus

cost0pP q “ µ ` 1. Since the construction costs of the vertex components is 1 and

Player 1 does not share them, we have |V 1| ď µ.

We claim that there is a vertex cover V 2 Ď V 1 X Vt for Gt. Since |V 1| ď µ,

this would contradict our assumption that xG, I, J,N, µy R MMVC. Recall that

the cost of using a neighborhood component without sharing is more than µ ` 1.

Since we assume Player 0 benefits from deviating to D, he must share all his uses of

these components. Since the neighborhood components that are used by the players

1, . . . , |I| are exactly these that are dictated by t, every neighborhood component

Bi,j P usedpDq has j “ tpiq.

We claim that for every e P Et there is a vertex v P V 1 X Vt such that v P e.

Let Et “ tei1 , . . . , eilu and j P rls. Consider the word w “ vṽe1vṽe2 . . . vṽeij´1 for

some v P V . Since w is a prefix of a word in LpS0q, the run of AL,D on w does not

get stuck. Since the last letter in w is in E the component that gains control after

reading w is a neighborhood component, thus it is Bi,tpiq for some i P I.

Consider the word w1 “ w ¨ uũeij for u P Vi,tpiq. Again, since w1 is a prefix of

a word in LpS0q the run of AL,D on w1 does not get stuck. Since u P Vi, Bi,tpiq
relinquishes control after reading u. We claim that a vertex component Bv must

gain control next. Indeed, since u P Vi,tpiq, the only neighborhood component that

is a candidate to process the word ũe is Bi,tpiq. However, since u P Gt if it has an

endpoint that belongs to the district Vi, then the endpoint is in Vi,tpiq. Thus, Bi,tpiq
cannot process ũe and it is processed by a vertex component Bv. Note that since it

can process the word ũe, we have u P Npvq, thus Npvq “ Vi,tpiq. Moreover, v P e.

Clearly v P V 1 as D uses Bv, and we are done.

For the second direction, assume xG, I, J,N, µy P MMVC. Assume towards

contradiction that there is a NE profile P in G. We distinguish between two cases.

95

In the first case, Player 0 does not use B0. Recall that Player 0 has a correct design

that uses only B0 and costs µ` 1. Moreover, every correct design that does use B0

must use a neighborhood component Bi,j, which costs p3|E| ` 2qpµ` 1q. Since P is

a NE, Player i, the only player that can use Bi,j, uses Bi,j at least 3|E| ` 1 times.

We claim that Player i has a beneficial deviation from P , contradicting the fact

that P is a NE. First, we bound costipP q. Clearly, Player 0 uses Bi,j at most 3|E|

times, thus costipP q ě
3|E|`1

3|E|`3|E|`1
¨ costpBi,jq. We describe a beneficial deviation for

Player i. Consider the design D that assigns initial control to Bi,j. If it relinquishes

control after reading anything different from i, D assigns control to Brej. Otherwise,

the component Bi, which can process only the word ĩ, gains control ` consecutive

times after which Bacc gains control. It is not hard to see that LpDq “ LpSiq. Since

nusedpD,Bi,jq “ 1 and nusedpD,Biq “ `, we have costipP riÐ Dsq ď 1
2
costpBi,jq`ξ.

For sufficiently small ξ, we have costipP q ą costipP riÐ Dsq, and we are done.

In the second case, the design Player 0 chooses in P is the design that uses

only the component B0. Thus, cost0pP q “ µ ` 1. Recall that for every i P I and

j P J , the design Di,j is a correct design for Player i that uses only the neighborhood

component Bi,j. It is not hard to see that since P is a NE, every Player i chooses

some design Di,j. Let t : I Ñ J be the function that corresponds to these players

choices. Since xG, I, J,N, µy P MMVC, there is a vertex cover V 1 Ď Vt of Gt such

that |V 1| ď µ.

We construct a design D for Player 0 that is a beneficial deviation from P .

Recall that Player 0’s specification is the set of words of length 3|E| of the form

v1ṽ1e1 . . . vmṽmem, where E “ te1, . . . , emu and v1, . . . , vm P V (allowing duplicates).

The definition of D is inductive. Let 1 ď l ď |E|. Consider a word w P Σ˚ of length

3pl ´ 1q that can be extended to a word in LpS0q. That is, there is a word x P Σ˚

such that w ¨ x P LpS0q. For v P V , let wv “ w ¨ vṽel`1. Note that wv can also be

extended to a word in LpS0q (possibly with ε). Assuming the run of AL,D on w does

not get stuck and control is relinquished from some component after reading w, we

describe how D assigns control next such that the run of AL,D on every wv does not

get stuck and control is relinquished after reading wv.

We distinguish between two cases. In the first case, el R Et. Thus, there is

a vertex v P elzVt. Let Vi be v’s district, thus Vi “ Dpvq. Let Vi,j Ď Vi be the

neighborhood in Vi that is selected by t, thus j “ tpiq. Note that this since v R Vt, it

does not belong to Vi,j. The component to which D assigns control after reading w

is the neighborhood component Bi,j. Consider a vertex u P V . If u R Vi,j, then when

reading uũe the run in Bi,j does not get stuck and control is relinquished at its end.

If u P Vi,j, then Bi,j relinquishes control after reading u. In such a case we define

D to reassign control to Bi,j. Note that the run of Bi,j on ũel does not get stuck.

Indeed, the vertex v P el is a witness to the fact that pVizVi,jq X el ‰ H. Clearly,

96

control is relinquished after Bi,j reads ũel. If in one of the times Bi,j gains control

it relinquishes it after reading any other word x P Σ˚, then there is no y P Σ˚ such

that w ¨ x ¨ y P LpS0q, and we assign control to Brej.
In the second case, el P Et. Thus, there is a vertex v in the vertex cover V 1

such that v P el. Let Npvq “ Vi,j. Note that since v P Vt, we have tpiq “ j.

The component to which D assigns control after reading w is the neighborhood

component Bi,j. Consider a vertex u P V . The case where u R Vi,j is similar to the

previous case. For u P Vi,j, when Bi,j reads u, it relinquishes control. In such a case,

D assigns control to Bv. Since v P Vi,j and v P el, the component Bv can process the

word ũel, and it relinquishes control after its end. Similarly to the above, if Bi,j or

Bv relinquish control after reading any other word x P Σ˚, then we assign control to

Brej. Finally, if l “ |E|, we assign control Bacc.
Correctness of the design D is immediate from the construction. We claim that

cost0pP r0 Ð Dsq ă µ ` 1. Note that the D uses two types of components. The

first type is neighborhood components. Consider Bi,j P usedpDq. Note that we

constructed D so that j “ tpiq. Thus, Player 0 shares the cost of Bi,j with Player i.

Recall that Player i chooses the design Di,j that uses Bi,j ` times. We define ` to be

sufficiently large so that the proportion of the cost that Player 0 pays is less than
1

2|E|
. Thus, the total cost Player 0 endures for neighborhood components is less than

1. The second type of components D uses is vertex components. Since D uses vertex

components that correspond to vertices in the vertex cover V 1, the number of such

component that D uses is at most µ, which is the total cost for these components.

Thus, cost0pP r0 Ð Dsq ă µ` 1, and we are done.

7 Discussion

Traditional synthesis algorithms assumed that the system is constructed from scratch.

Previous work adjusted synthesis algorithms to a reality in which systems are con-

structed from component libraries. We adjust the algorithms further, formalize the

notions of quality and cost and seek systems of high quality and low cost. We argue

that one should distinguish between quality considerations, which are independent

of uses of the library by other designs, and pricing considerations, which depend on

uses of the library by other designs.

Once we add multiple library users to the story, synthesis is modeled by a

resource-allocation game and involves ideas and techniques form algorithmic game

theory. In particular, different models for sharing the price of components can be

taken. Recall that in our model, users share the price of a component, with the

share being proportional to the number of uses. In some settings, a uniform sharing

97

rule may fit better, which also makes the game more stable. In other settings, a

more appropriate sharing rule would be the one used in congestion games – the

more a component is used, the higher is its price, reflecting, for example, a higher

load. Somewhat surprising, games with congestion effects turn out to be more sta-

ble than cost-sharing games [9]. Still, the complexity of the decision problems we

study here for CLGs match the ones for CLGs with congestion effects. Moreover,

synthesis of different specifications in different times gives rise to dynamic allocation

of components, and synthesis of collections of specifications by different users gives

rise to coalitions in the games. These notions are well studied in algorithmic game

theory and enable an even better modeling of the rich settings in which traditional

synthesis is applied.

References

[1] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable concurrent pro-

gram specifications. In Proc. 25th ICALP, LNCS 372, pages 1–17. Springer, 1989.

[2] S. Almagor, U. Boker, and O. Kupferman. Formalizing and reasoning about quality.

In Proc. 40th ICALP, LNCS 7966, pages 15 – 27. Springer, 2013.

[3] G. Alonso, F. Casati, H.A. Kuno, and V. Machiraju. Web Services - Concepts,

Architectures and Applications. Data-Centric Systems and Applications. Springer,

2004.

[4] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and

returns. In Proc. 10th TACAS, LNCS 2725, pages 67–79. Springer, 2004.

[5] B. Aminof, F. Mogavero, and A. Murano Synthesis of hierarchical systems. In Sci.

Comput. Program., volume 83, pages 56–79, 2014.

[6] G. Avni and O. Kupferman. When does abstraction help? IPL, 113:901–905, 2013.

[7] T. Tamir. private communication.

[8] G. Avni, O. Kupferman, and T. Tamir. Network-formation games with regular ob-

jectives. In Proc. 17th FoSSaCS, LNCS 8412, pages 119–133. Springer, 2014.

[9] G. Avni, O. Kupferman, and T. Tamir. Congestion Games with Multisets of Resources

and Applications in Synthesis. In Proc. 35th FSTTCS, LIPIcs 45, pages 365–379,

Schloss Dagstuhl, 2015.

[10] D. Berwanger and L. Doyen. On the power of imperfect information. In Proc. 28th

TST& TCS, pages 73–82, 2008.

98

[11] A. Bohy, V. Bruyère, E. Filiot, and J-F. Raskin. Synthesis from LTL specifications

with mean-payoff objectives. In Proc. 19th TACAS, LNCS 7795, pages 169–184.

Springer, 2013.

[12] U. Boker, K. Chatterjee, T.A. Henzinger, and O. Kupferman. Temporal specifications

with accumulative values. In Proc. 26th LICS, pages 43–52, 2011.

[13] L. de Alfaro, M. Faella, T.A. Henzinger, R. Majumdar, and M. Stoelinga. Model

checking discounted temporal properties. TCS, 345(1):139–170, 2005.

[14] L. de Alfaro and T.A. Henzinger. Interface theories for component-based design. In

Proc. 1st EMSOFT, LNCS 2211, pages 148–165. Springer, 2001.

[15] L. Doyen, T. A. Henzinger, B. Jobstmann, and T. Petrov. Interface theories with

component reuse. In Proc. 8th EMSOFT, pages 79–88, 2008.

[16] J. Elgaard, N. Klarlund, and A. Möller. Mona 1.x: new techniques for WS1S and

WS2S. In Proc. 10th CAV, LNCS 1427, pages 516–520. Springer, 1998.

[17] A. Fabrikant, C. Papadimitriou, and K. Talwar. The complexity of pure nash equi-

libria. In Proc. 36th STOC, pages 604–612, 2004.

[18] M. Faella, A. Legay, and M. Stoelinga. Model checking quantitative linear time logic.

ENTCS, 220(3):61–77, 2008.

[19] E. Filiot, N. Jin, and J.-F. Raskin. Antichains and compositional algorithms for LTL

synthesis. FMSD, 39(3):261–296, 2011.

[20] G. Gößler and J. Sifakis. Composition for component-based modeling. Sci. Comput.

Program., 55(1-3):161–183, 2005.

[21] S. Halamish and O. Kupferman. Minimizing deterministic lattice automata. In Proc.

14th FoSSaCS, LNCS 6604, pages 199 – 213. Springer, 2011.

[22] M. Jurdzinski. Small progress measures for solving parity games. In Proc. 17th

STACS, LNCS 1770, pages 290–301. Springer, 2000.

[23] K-I. Ko and C-L. Lin. On the complexity of min-max optimization problems and their

approximation. In Minimax and Applications, volume 4 of Nonconvex Optimization

and Its Applications, pages 219–239. Springer, 1995.

[24] O. Kupferman and Y. Lustig. Lattice automata. In Proc. 8th VMCAI, LNCS 4349,

pages 199 – 213. Springer, 2007.

[25] O. Kupferman, N. Piterman, and M.Y. Vardi. Safraless compositional synthesis. In

Proc. 18th CAV, LNCS 4144, pages 31–44. Springer, 2006.

[26] O. Kupferman and M.Y. Vardi. Safraless decision procedures. In Proc. 46th FOCS,

pages 531–540, 2005.

99

[27] Y. Lustig and M.Y. Vardi. Synthesis from component libraries. STTT 15:603–618,

2013.

[28] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th POPL,

pages 179–190, 1989.

[29] J.-F. Raskin, K. Chatterjee, L. Doyen, and T. Henzinger. Algorithms for ω-regular

games with imperfect information. LMCS, 3(3), 2007.

[30] T. Roughgarden and E. Tardos. How bad is selfish routing? JACM, 49(2):236–259,

2002.

[31] S. Safra. On the complexity of ω-automata. In Proc. 29th FOCS, pages 319–327,

1988.

[32] A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logic.

JACM, 32:733–749, 1985.

100

101

Congestion Games with Multisets of

Resources and Applications in Synthesis∗

Guy Avni† Orna Kupferman‡ Tami Tamir§

Abstract

In classical congestion games, players’ strategies are subsets of resources.

We introduce and study multiset congestion games, where players’ strategies

are multisets of resources. Thus, in each strategy a player may need to use

each resource a different number of times, and his cost for using the resource

depends on the load that he and the other players generate on the resource.

Beyond the theoretical interest in examining the effect of a repeated use of

resources, our study enables better understanding of non-cooperative systems

and environments whose behavior is not covered by previously studied models.

Indeed, congestion games with multiset-strategies arise, for example, in pro-

duction planing and network formation with tasks that are more involved than

reachability. We study in detail the application of synthesis from component

libraries: different users synthesize systems by gluing together components

from a component library. A component may be used in several systems and

may be used several times in a system. The performance of a component and

hence the system’s quality depends on the load on it.

Our results reveal how the richer setting of multisets congestion games

affects the stability and equilibrium efficiency compared to standard conges-

tion games. In particular, while we present very simple instances with no

pure Nash equilibrium and prove tighter and simpler lower bounds for equi-

librium inefficiency, we are also able to show that some of the positive results

known for affine and weighted congestion games apply to the richer setting of

multisets.

1 Introduction

Congestion games model non-cooperative resource sharing among selfish players.

Resources may be shared by the players and the cost of using a resource increases

∗Published in the proceedings of the 35th Conference on Foundation of Software Technology

and Theoretical Computer Science, LIPIcs 45, pages 365–379, Schloss Dagstuhl, 2015.
†School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
‡School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
§School of Computer Science, The Interdisciplinary Center, Israel

102

with the load on it. Such a cost paradigm models settings where high congestion

corresponds to lower quality of service or higher delay. Formally, each resource e is

associated with an increasing latency function fe : IN Ñ IR, where fep`q is the cost

of a single use of e when it has load `.

Previous work on congestion games assumes that players’ strategies are subsets

of resources, as is the case in many applications, most notably routing and network

design. For example, in the setting of networks, players have reachability objectives

and strategies are subsets of edges, each inducing a simple path from the source

to the target [29, 3, 19]. We introduce and study multiset games, where players’

strategies are multisets of resources. Thus, a player may need a resource multiple

times – depending on the specific resource and strategy, and his cost for using the

resource depends on the load that he and the other players generate on it. Formally,

in multiset congestion games (MCGs, for short), a player that uses j times a resource

e that is used ` times by all players together, pays j ¨ fep`q for these uses.

Beyond the theoretical interest in examining the effect of multisets on the extensively-

studied classical games, multiset congestion games arise naturally in many applica-

tions and environments. The use of multisets enables the specification of rich settings

that cannot be specified by means of subsets. We give here several examples.

As a first example, consider network formation. In addition to reachability tasks,

which involve simple paths (and hence, subsets of resources), researchers have stud-

ied tasks whose satisfaction may involve paths that are not simple. For example, a

user may want to specify that each traversal of a low-security channel is followed by

a visit to a check-sum node. A well-studied class of tasks that involve paths that

need not be simple are these associated with a specific length, such as patrols in a

geographical region. Several communication protocols are based on the fact that a

message must pass a pre-defined length before reaching its destination, either for

security reasons (e.g., in Onion routing, where the message is encrypted in layers

[27]) or for marketing purposes (e.g., advertisement spread in social networks). In

addition, tasks of a pre-defined length are the components of proof-of-work proto-

cols that are used to deter denial of service attacks and other service abuses such as

spam (e.g., [15]), and of several protocols for sensor networks [7]. The introduction

of multiset corresponds to strategies that are not necessarily simple paths [5].

In production systems or in planning, a system is modeled by a network whose

nodes correspond to configurations and whose edges correspond to actions performed

by resources. Users have tasks, that need to be fulfilled by taking sequences of

actions. This setting corresponds to an MCG in which the strategies of the players

are multisets of actions that fulfill their tasks, which indeed often involve repeated

execution of actions [13]; for example “once the arm is up, do not put it down until

the block is placed”. Also, multiset games can model preemptive scheduling, where

103

the processing of a job may split in several feasible ways among a set of machines.

Our last example, which we are going to study in detail, is synthesis form com-

ponent libraries. A central problem in formal methods is synthesis [26], namely the

automated construction of a system from its specification. In real life, hardware

and software systems are rarely constructed from scratch. Rather, a system is typi-

cally constructed from a library of components by gluing components from a library

(allowing multiple uses) [23]. For example, when designing an internet browser, a

designer does not implement the TCP protocol but uses existing implementations

as black boxes. The library of components is used by multiple users simultaneously,

and the usages are associated with costs. The usage cost can either decrease with

load (e.g., when the cost of a component represents its construction price, the users

of a component share this price) as was studied in [4], or increase with load (e.g.,

when the components are processors and a higher load means slower performance).

The later scenario induces an instance of an MCG.

Let us demonstrate the intricacy of the multiset setting with the question of the

existence of a pure Nash equilibrium (PNE). That is, whether each instance of the

game has a profile of pure strategies that constitutes a PNE – a profile such that

no player can decrease his cost by unilaterally deviating from his current strategy.

By [28], classical congestion games are potential games and thus always have a

PNE. Moreover, by [19], in a symmetric congestion game, a PNE can be found in

polynomial time. As we show in Example 1 below, a PNE might not exist in an

MCG even in a symmetric two-player game over identical resources.

Example 1: Consider the following symmetric MCG with two players and three

resources: a, b, and c. The players’ strategy space is ta, a, bu or tb, b, cu or tc, c, au.

That is, a player needs to access some resource twice and the (cyclically) consequent

resource once. The latency function of all three resources is the same, specifically,

fap`q “ fbp`q “ fcp`q “ `2. The players’ costs in all possible profiles are given in

Table 1. We show that no PNE exists in this game. Assume first that the two

players select distinct strategies, w.l.o.g. ta, a, bu and tb, b, cu. In this profile, a is

accessed twice, b is accessed three times, and c is accessed once. Thus, every access

of a, b and c costs 4, 9 and 1 respectively. The cost of Player 1 is 8 ` 9 “ 17, while

the cost of Player 2 is 18 ` 1 “ 19. By deviating to tc, c, au, the cost of Player 2

will reduce to 17 (while the cost of Player 1 will increase to 19). Thus, no PNE in

which the players select different strategies exists. If the player select the the same

strategy, then one resource is accessed 4 times, and one resource is accessed twice,

implying that the cost of both players is 2 ¨ 16 ` 1 ¨ 4 “ 36, and any deviation is

profitable. We conclude that no PNE exists in the game.

We study and answer the following questions in general and for various classes

of multiset congestion games (for formal definitions, see Section 2): piq Existence

104

ta, a, bu tb, b, cu tc, c, au

ta, a, bu 36, 36 19, 17 17, 19

tb, b, cu 17, 19 36, 36 19, 17

tc, c, au 19, 17 17, 19 36, 36

Table 1: Players costs. Each entry describes the cost of Player 1 followed by the

cost of Player 2.

of a PNE. piiq An analysis of equilibrium inefficiency. A social optimum (SO) of

the game is a profile that minimizes the total cost of the players; thus, the one

obtained when the players obey some centralized authority. It is well known that

decentralized decision-making may lead to solutions that are sub-optimal from the

point of view of society as a whole. We quantify the inefficiency incurred due to

selfish behavior according to the price of anarchy (PoA) [22] and price of stability

(PoS) [3] measures. The PoA is the worst-case inefficiency of a PNE (that is, the

ratio between the cost of a worst PNE and the SO). The PoS is the best-case

inefficiency of a Nash equilibrium (that is, the ratio between the cost of a best PNE

and the SO). piiiq Computational complexity of finding a PNE.

Before we turn to describe our results, let us review related work. Weighted

congestion games (WCGs, for short), introduced in [25], are congestion games in

which each player i has a weight wi P IN, and his contribution to the load of the

resources he uses as well as his payments are multiplied by wi. WCGs can be viewed

as a special case of MCGs, where each resource in a strategy for Player i repeats

wi times. A different extension of WCGs in which players may use a resource more

than once is integer splittable WCGs [24, 30]. These games model the setting in

which a player has a number (integer) of tasks he needs to perform and can split

them among the resources. For example, in the network setting, a player might

need to send ` P IN packets from vertex s to t. He can send the packets on different

paths, but a packet cannot be split. MCGs are clearly more general than WCGs

and integer splittable WCGs – the ability to repeat each resource a different number

of times lead to a much more complex setting. Thus, it is interesting to compare

our results with these known for these games.

It is shown in [17, 21] that the existence of a PNE in WCGs depends on the

latency function: when the latency functions are either affine or exponential, WCGs

are guaranteed to admit a PNE, whereas WCGs with a polynomial latency function

need not have a PNE. In [24], the author shows that PNE always exists when the

latency functions are linear using a potential function argument. This argument fails

when the latency functions are convex, but [30] are still able to show that there is

105

always a PNE in these games. We are able to show that the exact potential function

of [17] applies also to (the much richer) affine MCGs (that is, MCGs with a affine

latency function), and thus they always admit a PNE. As demonstrated in Example

1, very simple MCGs with quadratic latency functions might have no PNE.

We turn on to results in the front of equilibrium inefficiency. In congestion games

with affine latency functions, both the PoA and PoS measures are well understood.

It was shown in [12] that PoS ě 1 ` 1?
3
« 1.577 and is at most 1.6. A tight upper

bound was later shown in [10]. Also, PoA “ 5
2

[12]. Going one step towards our

setting to the study of affine WCGs, [6] shows that PoA “ 1 ` φ, where φ « 1.618

is the golden ratio. The PoS question is far from being settled. Only recently, [9]

shows a first upper bound of 2 for PoS in linear WCGs, which is a subclass of affine

WCGs. As far as we know, the only lower bound that is known for affine WCGs

is the lower bound from the unweighted setting. So there is a relatively large gap

between the upper- and lower-bounds for the PoS in these games.

We bound the potential function in order to show that every affine MCG G has

PoSpGq ă 2. This improves and generalizes the result in [9]. Our most technically-

challenging result is the PoS lower-bound proof, which involves the construction

of a family G of linear MCGs. Essentially, the game Gk P G is parameterized by

the number of players and defined recursively. The use of multisets enables us to

to define a game in which, although the sharing of resources dramatically changes

between its profiles, the cost a player pays is equal in all of them. For k “ 17

we obtain that PoSpG17q ą 1.631. This is the first lower bound in these models

that exceeds the 1.577 lower bound in congestion games. Finally, the PNE in G
is achieved with dominant strategies, so our bound holds for stronger equilibrium

concepts.

As for the PoA, we show that MCGs with latency functions that are polynomials

of degree at most d have PoA “ Φd`1
d , where Φd is the unique nonnegative real

solution to px ` 1qd “ xd`1. Observe that Φd is a natural generalization of the

golden ratio to higher degrees. Specifically, Φ1 “ φ. For the upper bound, we adjust

the upper-bound proof of [2] to our setting. We show a simplified matching lower

bound; a simple two-player MCG with only two resources and latency functions of

the form fp`q “ `d. For general latency functions we show that the PoA can be

arbitrarily high.

We turn to study the application of synthesis from component libraries by mul-

tiple players. Recall that in this application, different users synthesize systems from

components. A component may be used in several systems and may be used several

times in a system. The quality of a system depends on the load on its components.

This gives rise to an MCG, which we term a component library game (CLG, for

short). On the one hand, a CLG is a special case of MCG, so one could expect

106

positive results about MCGs to apply to CLGs. On the other hand, while in MCGs

the strategies of the players are given explicitly by means of multisets of resources, in

CLGs the strategies of the players are given symbolically by means of a specification

deterministic finite automaton – the one whose language has to be composed from

the library’s components.

We prove that every MCG has a corresponding CLG, implying that negative

results for MCGs apply to CLGs. Moreover, we show that the succinctness of the

presentation of the strategies makes decision problems about MCGs more complex

in the setting of CLGs. We demonstrate this by studying the complexity of the

best-response problem – deciding whether a player can benefit from a unilateral

deviation from his strategy, and the problem of deciding whether a PNE exists in

a given game. For the best-response problem, which is in P for MCGs, we prove

NP-completeness for CLGs. The problem of deciding the existence of a PNE is

known to be strongly NP-complete for weighted symmetric congestion games. For

network congestion games with player specific cost functions, this problem is NP-

complete for arbitrary networks, while a PNE can be found efficiently for constant

size networks [1]. We provide a simpler hardness proof for MCGs, which is valid also

for a constant number of resources, and we show that for CLGs the problem is ΣP
2 -

complete. As good news, we are able to prove a “small-design property” for CLGs,

which bounds the number of strategies that one needs to consider and enables us

to lift to CLGs the positive results for MCGs with linear latency functions. Thus,

such CLGs always have a PNE and their PoS is at most 2.

Due to space constraints, some proofs and examples are given in the appendix.

2 Preliminaries

A multiset over a set E of elements is a generalization of a subset of E in which

each element may appear more than once. For a multiset A over E and an element

e P E, we use Apeq to denote the number of times e appears in A, and use e P A to

indicate that Apeq ě 1. When describing multisets, we use em, for m P IN, to denote

m occurrences of e.

A multiset congestion game (MCG) is a tuple G “ xK,E, tΣiuiPK , tfeuePEy,

where K “ t1, . . . , ku is a set of players, E is a set of resources, for every 1 ď i ď k,

the strategy space Σi of Player i is a collection of multisets over E, and for every

resource e P E, the latency function fe : IN Ñ IR is a non-decreasing function. The

MCG G is an affine MCG if for every e P E, the latency function fe is affine, i.e.,

fepxq “ aex ` be, for non-negative constants ae and be. Similarly, we say that G is

a linear MCG if it is affine and for e P E we have be “ 0. We assume w.l.o.g. that

107

for e P E we have ae ě 1. Classical congestion games are a special case of MCGs

where the players’ strategies are sets of resources. Weighted congestion games can

be viewed as a special case of MCGs, where for every 1 ď i ď k, multiset si P Σ and

e P si, we have sipeq “ wi.

A profile of a game G is a tuple P “ xs1, s2, . . . , sky P pΣ1 ˆ Σ2 ˆ . . . ˆ Σkq of

strategies selected by the players. For a resource e P E, we use Le,ipP q to denote the

number of times e is used in P by Player i. Note that Le,ipP q “ sipeq. We define

the load on e in P , denoted LepP q, as the number of times it is used by all players,

thus LepP q “
ř

1ďiďk Le,ipP q
1.

In classical congestion games, all players that use a resource e pay fep`q, where

` is the number of players that use e. As we formalize below, in MCGs, the pay-

ment of a player for using a resource e depends on the number of times he uses

it. Given a profile P , a resource e P E, and 1 ď i ď k, the cost of e for Player i

in P is coste,ipP q “ Le,ipP q ¨ fepLepP qq. That is, for each of the Le,ipP q uses of e,

Player i pays fepLepP qq. The cost of Player i in the profile P is then costipP q “
ř

ePE coste,ipP q and the cost of the profile P is costpP q “
ř

1ďiďk costipP q. We also

refer to the cost of a resource e in P , namely costepP q “
ř

iPK coste,ipP q.

Consider a game G. For a profile P , player i P K, and a strategy s1i P Σ for

Player i, let P riÐ s1is denote the profile obtained from P by replacing the strategy

for Player i by s1i. A profile P is a pure Nash equilibrium (PNE) if no Player i can

benefit from unilaterally deviating from his strategy in P to another strategy; i.e.,

for every player i and every strategy s1i P Σ it holds that costipP riÐ s1isq ě costipP q.

We denote byOPT the cost of a social-optimal solution; i.e., OPT “ minP costpP q.

It is well known that decentralized decision-making may lead to sub-optimal solu-

tions from the point of view of society as a whole. We quantify the inefficiency

incurred due to self-interested behavior according to the price of anarchy (PoA) [22]

and price of stability (PoS) [3] measures. The PoA is the worst-case inefficiency

of a Nash equilibrium, while the PoS measures the best-case inefficiency of a Nash

equilibrium. Formally,

Definition 2.1 Let G be a family of games, and let G be a game in G. Let ΥpGq

be the set of Nash equilibria of the game G. Assume that ΥpGq ‰ H.

• The price of anarchy of G is the ratio between the maximal cost of a PNE and

the social optimum of G. That is, PoApGq “ maxPPΥpGq costpP q{OPT pGq.

The price of anarchy of the family of games G is PoApGq “ supGPGPoApGq.

1Since our strategies are multisets, we have that sipeq, for all i and e, is an integer. Our

considerations, however, are independent of this, thus all our results are valid also for games in

which strategies might include fractional demands for resources. In non-splittable (atomic) games,

the players must select a single strategy, even if fractional demands are allowed.

108

• The price of stability of G is the ratio between the minimal cost of a PNE

and the social optimum of G. That is, PoSpGq “ minPPΥpGq costpP q{OPT pGq.

The price of stability of the family of games G is PoSpGq “ supGPGPoSpGq.

3 Existence of a Pure Nash Equilibrium

As demonstrated in Example 1, MCGs are less stable than weighted congestion

games:

Theorem 3.1 There exists a symmetric two-player MCG with identical resources

and quadratic latency function that has no PNE.

On the positive side, we show that a PNE exists in all MCGs with affine latency

functions. We do so by showing that an exact potential function exists, which is a

generalization of the one in [9, 18].

Theorem 3.2 Affine MCGs are potential games.

Proof: For a profile P and a resource e P E, define

ΦepP q “ ae ¨
`

k
ÿ

i“1

k
ÿ

j“i

Le,ipP q ¨ Le,jpP q
˘

`
`

be ¨
k
ÿ

i“1

Le,ipP q
˘

.

Also, ΦpP q “
ř

ePE ΦepP q. In the appendix, we prove that Φ is an exact potential

function.

The negative result in Theorem 3.1 gives rise to the decision problem DPNE;

given an MCG, decide whether it has a PNE. Being a generalization of WCGs, the

hardness results known for WCGs imply that DPNE is NP-hard [14]. Using the

richer definition of MCGs, we show below a much simpler hardness proof. We also

show hardness for games with a constant number of resources, unlike congestion

games with user-specific cost functions [1].

Theorem 3.3 Given an instance of an MCG, it is strongly NP-complete to decide

whether the game has a PNE, as well as to find a PNE given that one exists. For

games with a constant number of resources, the problems are NP-Complete.

Remark 3.3.1: In splittable (non-atomic) games, each player can split his task

among several strategies. This can be seen as if each player is replaced by M Ñ 8

identical players all having the same strategy space scaled by 1{M . This model suits

several applications, in particular planning of preemptive production. Splittable

games are well-understood in classical and weighted congestion games [29, 8]. In

Appendix B we define the corresponding MCG and show that the positive PNE-

existence result, known for weighted congestion games, carry over to games with

multisets of resources.

109

4 Equilibrium Inefficiency in MCGs

4.1 The Price of Stability

The PoS problem in affine congestion games is settled: [12, 10] show that PoS “

1 ` 1?
3
« 1.577. For affine WCGs, the problem was open for a long time, and only

recently progress was made by [9], who showed that PoS ď 2 for linear WCGs.

As far as we know, there is no known lower bound for linear WCGs that exceeds

the 1.577 bound for unweighted games. We show that every affine MCG G has

PoSpGq ă 2. Thus, we both improve the result to include affine functions, tighten

the bound, and generalize it. For the lower bound, we show a family of linear MCGs

G that has PoSpGq ą 1.631. We start with the upper bound.

Theorem 4.1 Every affine MCG G has PoSpGq ă 2.

Proof: Consider an affine MCG G and a profile P . It is not hard to see that

for the potential function Φ that is presented in Theorem 3.2 we have ΦpP q ď

costpP q. Moreover, for e P E we have 2ΦepP q “ costepP q ´ ae
ř

1ďiďk L
2
e,ipP q ´

be
ř

1ďiďk Le,ipP q. Thus, ΦpP q ą 1
2
costpP q. The theorem follows using standard

techniques: costpOq ě ΦpOq ě ΦpNq ą 1
2
costpNq, where O is the social optimum

and N is a PNE that is reached from O by a sequence of best-respond moves of the

players. Then, PoSpGq ď costpNq
costpOq

ă 2. The details of the proof can be found in the

appendix.

Note that while the PoS can get arbitrarily close to 2, it is strictly smaller than

2 for every game instance. The proof in [9], on the other hand, only shows PoS ď 2

for the family of affine MCGs, and our result does not improve this bound.

For the lower bound, we show a family of linear MCG G “ tGkukě2 that are

parameterized by the number of players. Using a computerized simulation, we obtain

that for the game with 17 players, we have PoSpG17q ą 1.631. We leave open the

problem of calculating the exact value the PoS tends to as the number of players

increases. The graph depicted in Figure 3 in the appendix, of PoSpGkq as a function

of k, hints that the answer is only slightly higher than 1.631.

The PNE in the games in the family is achieved with dominant strategies, and

thus it is resistant to stronger types of equilibria.

Theorem 4.2 There is a linear MCG G with PoSpGq ą 1.631.

Proof: We define a family of games tGkukě2 as follows. The game Gk is played

by k players, thus Kk “ t1, . . . , ku. For Player 1, all strategies Σk
1 “ tO

k
1u consists

of a single multiset. For ease of presentation we sometimes refer to Ok
1 as Nk

1 . For

i ě 2, the strategy space of Player i consists of two multisets, Σk
i “ tO

k
i , N

k
i u. We

110

define Gk so that for all k ě 2, the profile Ōk “ xO
k
1 , . . . , O

k
ky is the social optimum

and the profile N̄k “ xN
k
1 , . . . , N

k
k y is the only PNE.

When describing the games in the family, we partition the resources into types

and describe a multiset as a collection of triples. A triple xt, y, ly stands for y different

resources of type t, each appearing l times. For example, txa, 2, 1y, xb, 1, 3y, xc, 2, 2yu

stands for the multiset ta1, a2, b1, b1, b1, c1, c1, c2, c2u. In all games and resources,

there are two types of latency functions; the identity function, or identity plus

epsilon, where the second type of function are linear functions of the form fpxq “

p1 ` εq ¨ x, for some ε ą 0. The latency function of resources of the same type is

the same, and we use the terms “a has identity latency” and “b has identity plus ε

latency” to indicate that all the resources a1 of type a have fa1pjq “ j and all the

resources b1 of type b have fb1pjq “ p1` εq ¨ j, for all numbers j of uses.

The definition of Gk is complicated and we start by describing the idea in the

construction of G2 and G3. In the appendix we also describe G4. We start by

describingG2. The gameG2 is defined with respect to two types of resources, a and b,

with identity and identity plus ε latency, respectively. We define Player 1’s strategy

space Σ2
1 “ tO2

1u and Player 2’s strategy space Σ2
2 “ tO2

2, N
2
2 u, with O2

1 “ N2
2 “

xa, 2, 1y and O2
2 “ xb, 1, 2y. That is, Σ2

1 “ tta1, a2uu and Σ2
2 “ tta1, a2u, tb1, b1uu.

Clearly, the profile N̄2 “ xO
2
1, N

2
2 y is the only PNE in G2.

We continue to describe G3. The game G3 is defined with respect to four types

of resources, a, b, c1 and c2, where b has identity plus ε latency, c1 has identity

plus ε1 latency, and the other resources have identity latency. Let x3 “ 3! “ 6. We

define Σ3
1 “ tO

3
1u, Σ2

2 “ tO
3
2, N

3
2 u, and Σ3

3 “ tO
3
3, N

3
3 u, with O3

1 “ N3
2 “ xa, x3, 1y,

O3
2 “ xb, x3

2
, 2y, O3

3 “ txc1, x3
3
, 3y, xc2, x3

2
, 1yu, and N3

3 “ txb, x3
2
, 1y, xa, x3, 1yu. We

claim that N̄3 “ xO3
1, N

3
2 , N

3
3 y is the only PNE. Our goal here is not to show a

complete proof, but to demonstrate the idea of the construction. It is not hard

to see that Player 2 deviates to N3
2 from the profile Ō3 “ xO3

1, O
3
2, O

3
3y, Player 3

deviates from the resulting profile N̄3 “ xO
3
1, N

3
2 , N

3
3 y. The crux of the construction

is to keep Player 2 from deviating back from N̄3. Note that since Player 3 uses

the b-type resources once in N̄3, when Player 2 deviates from N3
2 to O3

2, their load

increases to 3. Thus, cost2pN̄3r2 Ð O3
2sq “ 3p3 ¨ 2 ¨ p1 ` εqq ą 6p3 ¨ 1q “ cost2pN̄3q

and the deviation is not beneficial.

We define the game Gk, for k ě 2, as follows. Let xk “ k!. Player 1’s strategy

space consists of a single multiset Ok
1 “ xe1,1, xk, 1y. For 2 ď i ď k, assume we have

defined the strategies and resources for players 1, . . . , i ´ 1. We define Player i’s

strategies as follows. We start with the multiset Nk
i , which does not introduce new

resources. We define Nk
i “ Y1ďjďi´1txt, x, 1y : xt, x, ly Ď Ok

i u. The definition of

Ok
i is more involved, but the idea is simple. We define Ok

i so that it satisfies two

properties. First, Ok
i uses new resources. That is, for every 1 ď j ď i ´ 1, both

111

Ok
i X Ok

j “ H and Ok
i X Nk

j “ H. Consider the profile Pi in which, for every

1 ď j ă i, Player j uses Nk
j and, for every i ď l ď k, Player l uses Ok

l . We define

Ok
i so that when all resources have identity latency, costipPiq “ costipPiri Ð Nk

i sq.

For every multiset xej,a, xj,a, 1y in Nk
i , which we have just defined, we introduce a

multiset xei,b, xi,b, li,by in Ok
i that uses new resources, where b is a unique index that

is arbitrarily chosen, and xib and lib are defined as follows. Let l “ |tj : ej,a P N
k
j u|.

We define li,b “ l ` 1 and xi,b “ xj,a{li,b. Since Ok
i uses new resources, showing the

first property is easy. In the appendix we show it satisfies a much stronger property.

Claim 4.2.1: Consider k P IN, a profile P in Gk, and 1 ă i ď k. Assume

Player i plays Oi
k in P . When the latency functions are identity, we have costipP q “

costipP riÐ N i
ksq.

To complete the construction, we define the latency functions so that for every

2 ď i ď k, we have that ei,1-type resources have identity plus εi latency for 0 ă ε2 ă

. . . ă εk. By Claim 4.2.1 there are such values that make Nk
i a dominant strategy

for Player i. Thus, the only PNE in Gk, for k ě 2, is the profile N̄k “ xOk
1 , N

k
2 ,

. . . , Nk
k y. Next, we identify the social optimum.

Claim 4.2.2: The profile Ōk “ xO
k
1 , . . . , O

k
ky is the social optimum.

Once we identify Ōk as the social optimum and N̄k as the only PNE, the cal-

culation of the PoS boils down to calculating their costs, which we do using a

computer. Specifically, we have PoSpG17q “ 1.6316, and we depict the values of Gk,

for 2 ď k ď 17, in Figure 3 in the appendix.

Remark 4.2.1: We conjecture that the correct value for the PoS is closer to our

lower bound of 1.631 rather than to the upper bound of 2. In the appendix we show

a more careful analysis of the potential function than the one in Theorem 4.1 that

shows that for every linear MCG G we have PoSpGq ď 2´
ř

ePE

?
costepNGq

costpOGq
, where NG

and OG denote the cheapest PNE and the social optimum of G, respectively. Also,

we show that for every n ě 2, for the MCG Gn that is described in Theorem 4.2,

the inequality in the expression is essentially an equality.

Remark 4.2.2: We can alter the family in Theorem 4.2 to have quadratic latency

functions instead of identity functions. Although Claim 4.2.1 does not hold in the

altered family, a computerized simulation shows that the N strategies are still dom-

inant strategies. Also, using a computerized simulation, we show that the PoS for

G15 is 2.399, higher than the upper bound of 2.362 for congestion games, which is

shown in [9, 11].

112

4.2 The Price of Anarchy

In this section we study the PoA for MCGs. We start with MCGs with polynomial

latency functions and show that the upper bound proven in [2] for WCGs can be

adjusted to our setting. Being a special case of MCGs, the matching lower bound

for WCGs applies too. Still, we present a different and much simpler lower-bound

example, which uses a two-player singleton MCG. In a singleton game, each strat-

egy consists of (multiple accesses to) a single resource. Finally, when the latency

functions are not restricted to be polynomials, we show that the PoA is unbounded,

and it is unbounded already in a singleton MCG with only two players.

We start by showing that the PoA in polynomial MCGs is not higher than in

polynomial WCGs. The proof adjusts the one known for WCGs [2] to our setting.

For d P IN, we denote by Pd the set of polynomials of degree at most d.

Theorem 4.3 The PoA in MCGs with latency functions in Pd is at most Φd`1
d ,

where Φd is the unique nonnegative real solution to px` 1qd “ xd`1.

Next, we show a matching lower bound that is stronger and simpler than the

one in [2].

Theorem 4.4 For d P IN, the PoA in two-player singleton MCG with latency func-

tions in Pd is at least Φd`1
d .

Proof: Let d P IN. Consider the two-player singleton MCG G with resources

E “ te1, e2u, strategy spaces Σ1 “ tex1 , e
y
2u and Σ2 “ tey1, e

x
2u, and for ` P IR, we

define the latency functions fe1p`q “ fe2p`q “ `d. We define x “ Φd and y “ 1. Since

x ą y the social optimum is attained in the profile xey1, e
y
2y and its cost is 2yd “ 2.

Recall that in MCGs, the players’ strategies are multisets. In particular, x should

be a natural number. To fix this, we consider a family of MCGs in which the ratio

between x and y tends to the ratio above.

We claim that the profileN “ xex1 , e
x
2y is a PNE. This would imply that PoApGq “

2xd`1

2
“ Φd`1

d , which would conclude the proof. We continue to prove the claim.

The cost of a player in N is x ¨ xd “ xd`1 and by deviating, the cost changes to

y ¨ px` yqd “ px` 1qd. Our definition of x implies that xd`1 “ px` 1qd. Thus, the

cost does not change after deviating. Since the players are symmetric, we conclude

that the profile N is a PNE, and we are done.

Finally, by taking variants with factorial latency functions to the game described

in Theorem 4.4, we are able to increase the PoA in an unbounded manner.

Theorem 4.5 The PoA in two-player MCGs is unbounded.

113

5 Synthesis from Component Libraries

In this section we describe the application of MCGs in synthesis from component

libraries. As briefly explained in Section 1, in this application, different users synthe-

size systems by gluing together components from a component library. A component

may be used in several systems and may be used several times in a system. The

performance of a component and hence the system’s quality depends on the load

on it. We describe the setting in more detail, formalize it by means of MCGs, and

relate to the results studied in earlier sections.

Today’s rapid development of complex and safety-critical systems requires reli-

able verification methods. In formal methods, we reason about systems and their

specifications by solving mathematical questions about their models. A central prob-

lem in formal methods is synthesis, namely the automated construction of a system

from its specification. In real life, systems are rarely constructed from scratch.

Rather, a system is typically constructed from a library of components by gluing

components from the library [23]. In this setting, the input to the synthesis prob-

lem is a specification and a library of components, and the goal is to construct

from the components a system that exhibits exactly the behaviors specified in the

specification.

Remark 5.0.1: The above setting corresponds to closed systems, whose behavior is

independent of their environment. It is possible to generalize the definitions to open

systems, which interact with their environment. In [4], we studied both the closed

and open settings in the context of cost-sharing (rather than congestion) games.

The technical challenges that have to do with the system being open are orthogonal

to these that arise from the congestion effects, and on which we focus in this work.

In our setting, we use deterministic finite automata (DFAs, for short) to model

the specification and use box-DFAs to model the components in the library. Formally,

a DFA isA “ xΣ, Q, δ, q0, F y, where Σ is an alphabet, Q is a set of states, δ : QˆΣ Ñ

Q is a partial transition function, q0 P Q is an initial states, and F Ď Q is a set

of accepting states. The run of A on a word w “ w1, . . . wn P Σ˚ is the sequence

of states r “ r0, r1, . . . , rn such that r0 “ q0 and for every 0 ď i ď n ´ 1, we have

ri`1 “ δpri, wi`1q. Now, a box-DFA B is a DFA augmented with a set of exit states.

When a run of B reaches an exit state, it moves to another box-DFA, as we formalize

below.

The input to the synthesis from component libraries problem is a specification

DFA S over an alphabet Σ and a library of box-DFAs components L “ tB1, . . . ,Bnu.
The goal is to produce a design, which is a recipe to compose the components from

L to a DFA. A design is correct if the language of the system it induces coincides

114

with that of the specification.

Intuitively, the design can be thought of as a scheduler; it passes control between

the different components in L. When a component Bi is in control, it reads letters in

Σ, visits the states of Bi, follows its transition function, and if the run terminates, it is

accepting iff it terminates in one of Bi’s accepting states. A component relinquishes

control when the run reaches one of its exit states. It is then the design’s duty to

choose the next component, which gains control through its initial state.

Formally (see an example in Figure 1), a transducer is a DFA that has, in addition

to the input alphabet that labels the transitions, also an output alphabet that labels

the states. Also, a transducer has no rejecting states. Let rns “ t1, . . . , nu. A

design is a transducer D whose input alphabet is the set E of all exit states of all

the components in L and whose output alphabet is rns. We can think of D as

running beside the components. When a component reaches an exit state e, then

D reads the input letter e, proceeds to its next state, and outputs the index of the

component to gain control next. Note that the components in the library are black

boxes: the design D does not read the alphabet Σ of the components and has no

information about the states that the component visits. It only sees which exit state

have been reached. Given a library L and a design D, their composition is a DFA

AL,D obtained by composing the components in L according to D. We say that a

design D is correct with respect to a specification DFA S iff LpAL,Dq “ LpSq. In

the appendix we construct AL,D formally.

For example, consider the library L “ tB1,B2u over the alphabet Σ “ ta, b, cu,

and the design D that are depicted in Figure 1. We describe the run on the word

bc. The component that gains initial control is B1 as the initial state of D outputs

1. The run in B1 proceeds with the letter b to the exit state e1 and relinquishes

control. Intuitively, control is passed to the design that advances with the letter e1

to the state that outputs 2. Thus, the component B2 gains control, and it gains it

through its initial state. Then, the letter c is read, B2 proceeds to the exit state

e3 and relinquishes control. The design advances with the letter e3 to a state that

outputs 1, and control is assigned to B1. Since the initial state of B1 is rejecting,

the word ab is rejected. As a second example, consider the word ab. Again, B1 gains

initial control. After visiting the exit state e2, control is reassigned to B1. Finally,

after visiting the state e1, control is assigned to B2, where the run ends. Since the

initial state of B2 is accepting, the run is accepting.

B1 e1
b e2

a B2 e3
c D 1 2 1

e1

e2
e3

e2

e1

AL,D
b

a
c

a

b
B1 e1

b e2
a B2 e3

c D 1 2 1
e1

e2
e3

e2

e1

AL,D
b

a
c

a

b

Figure 1: An example of a library L “ tB1,B2u, a design D, and the resulting

composition AL,D.

115

The synthesis problem defined above is aimed at synthesizing correct designs. We

now add costs to the setting. A component library game (CLG, for short) is a tuple

xK,L, tSiuiPK , tfBuBPLy, where K “ t1, . . . , ku is a set of players, L is a collection

of box-DFAs, the objective of Player i P K is given by means of a specification DFA

Si, and, as in MCGs, the latency function fB for a component B P L maps the load

on B to its cost with this load. For i P K, the set of strategies for Player i is the set

of designs that are correct with respect to Si. A CLG corresponds to an MCG with

a slight difference that there might be infinitely many correct designs. Consider a

profile P “ xD1, . . . ,Dky. For a component B P L, we use LB,ipP q to denote the

number of times Player i uses B in P . Recall that each state in the transducer Di
is labeled by a component in L. We define LB,ipP q to be the number of states in Di
that are labeled with B. The rest of the definitions are as in MCGs.

We first show that every MCG can be translated to a CLG:

Theorem 5.1 Consider a k-player MCG G. There is a CLG G1 between k players

with corresponding profiles. Formally, there is a one-to-one and onto function f

from profiles of G to profiles of G1 such that for every profiles P in G and Player

i P rks, we have that costipP q “ costipfpP qq.

Proof: Consider an MCG xK,E, tΣiuiPK , tfeuePEy. Recall that Σi is the set of

strategies for Player i that consists of multisets over E. We construct a CLG with

alphabet E Y
Ť

iPK Σi. For i P K, the specification Si for Player i consists of |Σi|

words. Every strategy s “ te1, . . . , enu (allowing duplicates) in Σi contributes to

LpSq the word s ¨ e1 ¨ e2 ¨ . . . ¨ en. We construct a library L with |E| `
ř

iPK |Σi|

components of two types: a strategy component Bs for each s P Σi and a resource

component Be for each e P E. In addition, L contains the component Bacc that is

depicted in Figure 2. Intuitively, a correct design must choose one strategy compo-

nent Bs and then use the component Be the same number of times e appears in s.

We continue to describe the components. For s P Σi, the component Bs relinquishes

control only if the letter s is read. It accepts every word in LpSiq that does not

start with s. For e P E, the resource component Be has an initial state with an

e-labeled transition to an exit state. Finally, the latency function for the resource

components coincides with latency functions of the resources in the MCG, thus for

e P E, we have fBe “ fe. The other latency functions are f ” 0. In the appendix we

prove that there is a cost-preserving one-to-one and onto correspondence between

correct designs with respect to Si and strategies in Σi, implying the existence of the

required function between the profiles.

Theorem 5.1 implies that the negative results we show for MCGs apply to CLGs:

Corollary 5.2 There is a CLG with quadratic latency functions with no PNE; for

116

B0

e#
#

eC1

C1

...

eCm

Cm

Bacc Brej

B1

xi

#0
ixi

C̃jxi : xi ∈ Cj

B1

¬xi

#0
ixi#

1
i

C̃jxi : ¬xi ∈ Cj

Bl
xi

2 ≤ l ≤ m− 1

#l−1
i xi

C̃jxi : xi ∈ Cj

Bl
¬xi

2 ≤ l ≤ m− 1

xi#
l
i

C̃jxi : ¬xi ∈ Cj

Bm
xi

#m−1
i xi#

m
i

C̃jxi : xi ∈ Cj

Bm
¬xi

xi#
m
i

C̃jxi : ¬xi ∈ Cj

BCj ,xja

a ∈ {1, 2, 3}
b = (a mod 3) + 1
c = (b mod 3) + 1

xja

xjbC̃jxjb

xjcC̃jxjc

Figure 2: The components in the library L.

CLGs with affine latency functions, we have PoSpCLGq ą 1.631; for d P IN, the

PoA in a two-player singleton MCG with latency functions in Pd is at least Φd`1
d .

Remark 5.2.1: We note that the positive results for CLGs with linear latency

functions, namely existence of PNE and PoSpCLGq ď 2, do not follow immediately

from Theorem 3.2, as its proof relies on the fact that an MCG has only finitely many

profiles. Since the strategy space of a player might have infinitely many strategies,

a CLG might have infinitely many profiles. In order to show that CLGs with linear

latency functions have a PNE we need Lemma 5.3 below, which implies that even

in games with infinitely many profiles, there is a best response dynamics that only

traverses profiles with “small” designs. Such a traversal is guaranteed to reach a

PNE as there are only finitely many such profiles.

Computational complexity We turn to study two computational problems for

CLGs: finding a best-response and deciding the existence of a PNE. We show that

the succinctness of the representation of the objectives of the players in CLGs makes

these problems much harder than for MCGs. Our upper bounds rely on the following

lemma. The lemma is proven in [4] for cost-sharing games, and the considerations

in the proof there applies also for congestion games.

Lemma 5.3 Consider a library L, a specification S, and a correct design D. There

is a correct design D1 with at most |S| ¨ |L| states, where |L| is the number of states

in the components of L, such that for every component B P L, the number of times

D1 uses B is at most the number of times D uses B.

We start with the best-response problem (BR problem, for short): Given an

MCG G between k players, a profile P , an index i P K, and µ P IR, decide whether

Player i has a strategy S 1i such that costipP riÐ S 1isq ď µ.

Theorem 5.4 The BR problem for MCGs is in P. For CLGs it is NP-complete, and

NP-hardness holds already for games with one player and linear latency functions.

117

Proof: Showing that the BR problem is in P for MCGs follows easily from the

fact the set of strategies for Player i is given implicitly and calculating the cost for

a player in a profile can be done in polynomial time.

The upper bound for CLGs follows from Lemma 5.3, which implies an upper

bound on the size of the cheapest correct designs. Since checking whether a design

is correct and calculating its cost can both be done in polynomial time, membership

in NP follows.

We continue to the lower bound. We describe the intuition of the reduction

and the formal definition along with the correctness proof can be found in the

appendix. Given a 3SAT formula ϕ with clauses C1, . . . , Cm and variables x1, . . . , xn,

we construct a library L and a specification S such that there is a design D that

costs at most µ “ nm `m iff ϕ is satisfiable. The library L consists of an initial

component B0, variable components Bjxi and Bj xi for j P rms and i P rns, clause

components BCj ,xjk for j P rms and k P t1, 2, 3u, and component Bacc and Brej. The

components of the library are depicted in Figure 2. The latency function of the

variable components is the identity function fpxq “ x, thus using such a component

once costs 1. The latency functions of the other components is the constant function

f ” 0, thus using such components any number of times is free.

Intuitively, a correct design corresponds to an assignment to the variable and

must use nm variable components as follows. For i P rns, either use all the com-

ponents B1
xi
, . . . ,Bmxi or all the components B1

 xi
, . . . ,Bm xi with a single use each.

Thus, a correct design implies an assignment η : tx1, . . . , xnu Ñ tT, F u. Choosing

B1
xi
, . . . ,Bmxi corresponds to ηpxiq “ F and choosing B1

 xi
, . . . ,Bm xi corresponds to

ηpxiq “ F .

Additionally, in order to verify that a correct design corresponds to a satisfying

assignment, it must use m clause components and m more variable components

as follows. Consider a correct design D, and let η : tx1, . . . , xnu Ñ tT, F u be the

corresponding assignment as described above. For every j P rms, D must use a clause

component BCj ,xi , where recall that the clause Cj includes a literal ` P txi, xiu.

Using the component BCj ,xi requires D to use a variable component Bt`, for some

t P rms. So, a correct design uses a total of nm ` m components with identity

latency. If ηp`q “ F , then Bt` is already in use and a second use will cost more than

1, implying that the design costs more than nm`m.

The next problem we study is deciding the existence of a PNE. As we show

in Theorem 3.3, the problem is NP-complete for MCGs. As we show below, the

succinctness of the representation makes this problem harder for CLGs.

Theorem 5.5 The DPNE problem for CLGs is ΣP
2 -complete.

Proof: The upper bound is easy and follows from Lemma 5.3. For the lower

118

bound we show a reduction from the complement of not all equal @D 3SAT (NAE,

for short), which is known to be ΣP
2 -complete [16]. An input to NAE is a 3CNF

formula ϕ over variables x1, . . . , xn, y1, . . . , yn. It is in NAE if for every assignment

η : tx1, . . . , xnu Ñ tT, F u there is an assignment ρ : ty1, . . . , ynu Ñ tT, F u such that

every clause in ϕ has a literal that gets value truth and a literal that gets value false

(in η or ρ, according to whether the variable is an x or a y variable). We say that

such a pair of assignments xη, ρy is legal for ϕ.

Given a 3CNF formula ϕ, we construct a CLG G with three players such that

ϕ P NAE iff G does not have a PNE. We describe the intuition of the reduction.

The details can be found in the appendix. There is a one-to-one correspondence

between Player 3 correct designs and assignments to the variables tx1, . . . , xnu. For

an assignment η : tx1, . . . , xnu Ñ tT, F u we refer to the corresponding correct

design by Dη. Consider a legal pair of assignments xη, ρy, and assume Player 3

chooses the design Dη. Similarly to the proof of Theorem 5.4, the library contains

variable components with identity latency function. We construct the library and

the players’ objectives so that there is a correct design Dρ for Player 1 that uses

mn` 2m variable components each with load 1 iff xη, ρy is a legal pair for ϕ. More

technically, both Dη and Dρ use mn variable components that correspond to the

variables x1, . . . , xn and y1, . . . , yn, respectively. For every j P rms, assuming the j-

th clause is `1
j _ `

2
j _ `

3
j , the design Dρ must use two additional variable components

Bt1`aj and Bt2
`bj

, for a ‰ b P t1, 2, 3u and t1, t2 P rms, which corresponds to η or ρ

assigning value true to `aj and value false to `bj.

Player 1 has an additional correct design DALL in which he does not share any

components regardless of the other players’ choices. Player 2 has two possible de-

signs DA and DB. Assume Player 3 chooses a design Dη. We describe the interac-

tion between Player 1 and Player 2. We define the library and the players’ objec-

tives so that when Player 1 chooses some design Dρ, Player 2 prefers DB over DA,

thus cost2pxDρ,DA,Dηyq ą cost2pxDρ,DB,Dηyq. When Player 2 plays DB, Player 1

prefersDALL over every designDρ, thus cost1pxDρ,DB,Dηyq ą cost1pxDALL,DB,Dηyq.
When Player 1 choosesDALL, Player 2 prefersDA overDB, thus cost2pxDALL,DB,Dηyq ą
cost2pxDη,DA,Dηyq. Finally, when Player 2 chooses DA, Player 1 prefers the design

Dρ iff the pair xη, ρy is legal for ϕ, thus cost1pxDALL,DA,Dηyq ą cost1pxDρ,DA,
Dηyq, for a legal pair xη, ρy.

Thus, if ϕ P NAE, then for every assignment η, there is an assignment ρ such

that xη, ρy is a legal pair. Then, assuming Player 3 chooses a design Dη, Player 1

prefers either choosing DALL or Dρ over every other design, where xη, ρy is a legal

pair. By the above, there is no PNE in the game. If ϕ R NAE, then there is an

assignment η such that for every assignment ρ, the pair xη, ρy is illegal. Then, the

profile xDALL,DA,Dηy is a PNE, and we are done.

119

References

[1] H. Ackermann and A. Skopalik. Complexity of pure Nash equilibria in player-

specific network congestion games. Internet Mathematics, 5(4):321–515, 2008.

[2] S. Aland, D. Dumrauf, M. Gairing, B. Monien, and F. Schoppmann. Exact price

of anarchy for polynomial congestion games. SIAM J. Comput., 40(5):1211–

1233, 2011.

[3] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and

T. Roughgarden. The price of stability for network design with fair cost al-

location. SIAM J. Comput., 38(4):1602–1623, 2008.

[4] G. Avni and O. Kupferman. Synthesis from component libraries with costs. In

Proc. 25th CONCUR, LNCS 8704, pages 156–172. Springer, 2014.

[5] G. Avni, O. Kupferman, and T. Tamir. Network-formation games with regular

objectives. In Proc. 17th FoSSaCS, LNCS 8412, pages 119–133. Springer, 2014.

[6] B. Awerbuch, Y. Azar, and A. Epstein. The price of routing unsplittable flow.

SIAM J. Comput., 42(1):160–177, 2013.

[7] N. Basilico, N. Gatti, and F. Amigoni. Leader-follower strategies for robotic

patrolling in environments with arbitrary topologies. In Proc. 8th AAMAS,

2009.

[8] K. Bhawalkar, M. Gairing, and T. Roughgarden. Weighted congestion games:

Price of anarchy, universal worst-case examples, and tightness. In ESA (2),

pages 17–28, 2010.

[9] V. Bilò. A unifying tool for bounding the quality of non-cooperative solutions

in weighted congestion games. In WAOA, pages 215–228, 2012.

[10] I. Caragiannis, M. Flammini, C. Kaklamanis, P. Kanellopoulos, and

L. Moscardelli. Tight bounds for selfish and greedy load balancing. Algo-

rithmica, 61(3):606–637, 2011.

[11] G. Christodoulou and M. Gairing. Price of stability in polynomial congestion

games. In Proc. 40th ICALP, pages 496–507, 2013.

[12] G. Christodoulou and E. Koutsoupias. On the price of anarchy and stability of

correlated equilibria of linear congestion games. In ESA, pages 59–70, 2005.

120

[13] N. Daniele, F. Guinchiglia, and M.Y. Vardi. Improved automata generation for

linear temporal logic. In Proc. 11th CAV, LNCS 1633, pages 249–260. Springer,

1999.

[14] J. Dunkel and A.S. Schulz. On the complexity of pure-strategy nash equilib-

ria in congestion and local-effect games. Mathematics of Operations Research,

33(4):851–868, 2008.

[15] C. Dwork and M. Naor. Pricing via processing, or, combatting junk mail. In

Proc. CRYPTO, pages 139–177, 2009.

[16] T. Eiter and G. Gottlob Note on the complexity of some eigenvector problems.

Technical Report CD-TR 95/89, Christian Doppler Laboratory for Expert Sys-

tems, TU Vienna, 1995.

[17] D. Fotakis, S. Kontogiannis, and P. Spirakis. Selfish unsplittable flows. Theo-

retical Computer Science, 348(2-3):226–239, 2005.

[18] D. Fotakis, S. Kontogiannis, and P. Spirakis. Symmetry in Network Congestion

Games: Pure Equilibria and Anarchy Cost. In Proc. WAOA, pages 161-175,

2005.

[19] A. Fabrikant, C. Papadimitriou, and K. Talwar. The complexity of pure Nash

equilibria. In Proc. 36th STOC, pages 604–612, 2004.

[20] M. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-completeness. W. Freeman and Co., 1979.

[21] T. Harks and M. Klimm. On the existence of pure Nash equilibria in weighted

congestion games. Math. Oper. Res., 37(3):419–436, 2012.

[22] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. Computer Science

Review, 3(2):65–69, 2009.

[23] Y. Lustig and M.Y. Vardi. Synthesis from component libraries. STTT, 15(5-

6):603–618, 2013.

[24] C. Meyers. Network flow problems and congestion games: complexity and ap-

proximation results. PhD thesis, MIT, 2006.

[25] I. Milchtaich. Congestion games with player-specific payoff functions. Games

and Economic Behavior, 13(1):111 – 124, 1996.

[26] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL,

pages 179–190, 1989.

121

[27] M.G. Reed, P.F. Syverson, and D.M. Goldschlag. Anonymous connections and

onion routing. IEEE J. on Selected Areas in Communication, 1998. Issue on

Copyright and Privacy Protection.

[28] R.W. Rosenthal. A class of games possessing pure-strategy Nash equilibria.

International Journal of Game Theory, 2:65–67, 1973.

[29] T. Roughgarden and E. Tardos. How bad is selfish routing? JACM, 49(2):236–

259, 2002.

[30] L. Tran-Thanh, M. Polukarov, A. C. Chapman, A. Rogers, and N. R. Jennings.

On the existence of pure strategy nash equilibria in integer-splittable weighted

congestion games. In SAGT, pages 236–253, 2011.

A Proofs

The function Φ in Theorem 3.2 is an exact potential function: Consider

a profile P , and assume Player i deviates from his strategy si in P to a strategy

s1i, and let P 1 be the resulting profile. We claim that ΦpP q ą ΦpP 1q. Moreover,

ΦpP q ´ ΦpP 1q is exactly the gain of Player i from the deviation.

Consider a transition e P E. Note that for every j ‰ i, we have Le,jpP q “

Le,jpP
1q. Thus, for j, j1 ‰ i, the values ae ¨ Le,jpP q ¨ Le,j1pP q and be ¨ Le,jpP q appear

both in ΦepP q and ΦepP
1q. Thus,

ΦepP q ´ ΦepP
1
q “

“ ae ¨
k
ÿ

j“1

Le,ipP q ¨Le,jpP q`be ¨Le,ipP q´

ˆ

ae ¨
`

k
ÿ

j“1

Le,ipP
1
q ¨Le,jpP

1
q
˘

`be ¨Le,ipP
1
q

˙

“

“ Le,ipP q ¨
`

ae ¨ LepP q ` be
˘

´ Le,ipP
1
q ¨

`

ae ¨ LepP
1
q ` be

˘

“ coste,ipP q ´ coste,ipP
1
q.

Note that if Le,ipP q “ Le,ipP
1q “ 0, then ΦepP q ´ ΦepP

1q “ 0. Thus,

ΦpP q´ΦpP 1q “
ÿ

ePE

ΦepP q´ΦepP
1
q “

ÿ

ePE

coste,ipP q´coste,ipP
1
q “ costipP q´costipP

1
q.

Since we assume Player i improves his cost, we have costipP q ą costipP
1q, and we

are done.

Proof of Theorem 3.3: The problem is clearly in NP. For the hardness proof we

present a reduction from the 3-Partition Problem, which is known to be strongly

NP-hard [20]. Given a set of 3m integers A “ ts1, s2, ..., s3mu whose total sum is

mS, and for every 1 ď i ď 3m it holds that S{4 ă si ă S{2, the goal is to decide

whether it is possible to partition A into sets of size 3, each with total sum S.

122

Given A, define the following MCG G over 3m` 2 players and m` 4 resources

te1, e2, . . . , em, z, a, b, cu. The latency functions of the resources are fe1pxq “ . . . “

fempxq “ x; fzpxq “ r2x{Ss ¨ S; fapxq “ maxp0, px ´ 1q2q; fbpxq “ fcpxq “ x2. For

every 1 ď i ď 3m, the strategy space of Player i is ttesi1 u, . . . , te
si
mu, tz

si , auu. The

additional two players play the no-PNE game introduced in Example 1, thus we have

the same strategy space tta, a, bu, tb, b, cu, tc, c, auu. We show that a PNE exists in

G if and only if a 3-partition of A exists.

If a 3-partition of A exists, then a PNE exists: the first 3m players can split

between the resources e1, . . . , em, causing load S on each resource, thus, cost si ¨ S

for each player 1 ď i ď 3m. A deviation to tz, au will cause cost si ¨ S ` 1 and is

therefore not beneficial. Since the latency function of a is lower than the latency

functions of b and c, and the first 3m players do not cause any load on a, it is easy

to verify that the profile tta, a, bu and tc, c, auu is stable for the two last players

(achieving costs 9 and 12).

If a 3-partition does not exist, then we claim that in every profile, exactly one

out of the first 3m players selects tzsi , au. If no players selects this strategy, then

at least one of the resources e1, . . . , em has load larger than S and a deviation to

tzsi , au is beneficial for any of the players using this resource. If more than one

player selects this strategy, then the load on z is Lz ě 2smin ą S{2. Combining the

facts that fzpxq “ r2x{Ss ¨S and Lz ą S{2, we get that fzpLzq ě 2S, thus, deviating

to a resource e1, . . . , em with load less than 1.5S (by averaging argument, at least

one such resource exists) is beneficial.

Given that exactly one player selects tz, au, we have that the load on a is 1.

Thus, the two last players face exactly the game introduced in Example 1 - that has

no PNE. We conclude that a PNE exists if and only if a 3-partition exists. Moreover,

even if a 3-partition exists, it is strongly NP-hard to find it, and therefore, finding

a PNE is strongly NP-hard as well.

In a similar way, it is possible to define a reduction from Equal-Partition, in

which 2n integers should split into two sets of the same cardinality and the same

total sum. The induced game will be over six resources: the first two will be assigned

the partition items, and the four additional items will have the same role as z, a, b

and c in the above reduction. Thus, the hardness proof is valid also for games

with a constant number of resources, unlike congestion games with user-specific

cost functions [1].

Proof of Theorem 4.1: Our proof is based on the potential function defined in

[9, 18] (see Theorem 3.2). Consider a affine MCG G. We claim that for every profile

P in G we have:
1

2
¨ costpP q ă ΦpP q ď costpP q.

123

In order to prove the claim, we prove that for every e P E:

1

2
¨ costepP q ă ΦepP q ď costepP q.

For the second inequality, recall that costepP q “
ř

1ďiďk Le,ipP q ¨
`

ae ¨ LepP q ` be
˘

and LepP q “
ř

1ďiďk Le,ipP q. Thus,

costepP q “
k
ÿ

i“1

Le,ipP q¨
`

ae

k
ÿ

j“1

Le,jpP q`be
˘

“ ae¨
k
ÿ

i“1

k
ÿ

j“1

Le,jpP q¨Le,ipP q`be¨
k
ÿ

i“1

Le,ipP q ě

ě ae ¨
k
ÿ

i“1

k
ÿ

j“i

Le,jpP q ¨ Le,ipP q ` be ¨
k
ÿ

i“1

Le,ipP q “ ΦepP q.

We continue to prove the first inequality. Using the same calculations as above, we

have:

costepP q ´ ΦepP q “ ae ¨
k
ÿ

i“2

i´1
ÿ

j“1

Le,jpP q ¨ Le,ipP q “

“ ae ¨
k
ÿ

i“1

k
ÿ

j“i`1

Le,jpP q ¨ Le,ipP q “ ΦepP q ´ ae

k
ÿ

i“1

Le,ipP q
2
´ be

k
ÿ

i“1

Le,ipP q.

Thus,

costepP q “ 2 ¨ ΦepP q ´ ae

k
ÿ

i“1

Le,ipP q
2
´ be

k
ÿ

i“1

Le,ipP q.

Since ae, be, and Le,ipP q, for 1 ď i ď k, are all positive, we get that costepP q ă

2 ¨ ΦepP q, and we are done.

A description of G4 from Theorem 4.2:

The game G4 is defined with respect to resources a, b, c1, c2, d1, d2, d3, and d4,

where the latency of a, b, c1, and c2 are as in G3, d1 has latency identity plus ε2

and d2, d3, and d4 have identity latency. Let x4 “ 4!. The strategies of players 1, 2

and 3, are the same as in G3 only that we use x4 instead of x3. We define O4
4 “

txd1, x4
4
, 4y, xd2, x4

4
, 2y, xd3, x4

3
, 1y, xd4, x4

2
, 1yu andN4

4 “ txa, x4, 1y, xb,
x4
2
, 1y, xc1, x4

3
, 1y, xc2, x4

2
, 1yu.

Again, we claim that N̄4 is the only PNE in the game. Note that with a slight ad-

justment due to the transition from x3 to x4, our calculations in G3 are valid here.

So, to illustrate the idea why N̄4 is the only PNE, we show that Player 4 deviates

from N̄4r4 Ð O4
4s to N4

4 , and that players 2 and 3 do not benefit by deviating from

N̄4 to O4
2 and O4

3, respectively. Thus, cost4pN̄4r4 Ð O4
4sq “

x4
4
p4 ¨ 4 ¨ p1 ` ε2qq `

x4
2¨2
p2 ¨ 2q ` x4

3
` x4

2
. In the profile N̄4r4 Ð O4

4s, the load on the a-type resources

is 3, the load on the b-type resources is 1, and the load on the c1- and c2-type

resources is 0. Thus, in N̄4, the loads increase to 4, 2, 1, and 1, respectively, and

cost4pN̄4q “ x4p4¨1q`
x4
2
p2¨1¨p1`εqq` x4

3
p1¨1¨p1`ε1qq` x4

2
p1¨1q. We choose ε ą ε1 so

that cost4pN̄4r4 Ð O4
4sq ą cost4pN̄4q. We continue to show that players 2 and 3 do

124

not benefit by deviating from N̄4 to O4
2. In N̄4, the load on the b-type resources is 2,

and in N̄4r2 Ð O4
2s the load increases to 4 as Player 2 has two uses of every b-type re-

source. Thus, cost2pN̄4q “ 24p4¨1q ă 12p4¨2¨p1`εqq “ cost2pN̄4r2 Ð O4
2sq. Similarly,

cost3pN̄4q “ 24p4¨1q`12p2¨1¨p1`εqq ą 8p4¨3¨p1`ε1qq`12p2¨1q “ cost3pN̄4r3 Ð O4
3sq.

Recall that x4 “ 4! “ 24. Thus, costpN̄4q “ 24p4 ¨ 4q ` 12p2 ¨ 2 ¨ p1` εqq ` 8` 12 and

costpŌ4q “ 24`12p2 ¨2p1`εqq`8p3 ¨3p1`ε1qq`12`6p4 ¨4p1`ε2qq`6p2 ¨2q`8`12,

and thus, PoSpG4q “ 1.527.

Figure 3: A graph of PoSpGkq as a function of k. The value of PoSpG17q is 1.6316.

Proof of Claim 4.2.1: We prove the claim by induction on k. For the base case,

k “ 2 and the correctness of the claim is shown in the description of G2 above.

We assume correctness for k ´ 1 and prove for k. Consider 1 ď i ď k and a

profile P “ xP k
1 , . . . , P

k
k y having P k

i “ Ok
i . Let P 1 “ P ri Ð Nk

i s. We claim that

costipP q ą costipP
1q.

We distinguish between two cases. In the first case, i ‰ k. LetQ “ xP k´1
1 , . . . , P k´1

k´1 y,

where for 2 ď j ď k, if P k
j “ Nk

j , then P k´1
j “ Nk´1

j and otherwise P k
j “ Ok

j and

P k´1
j “ Ok´1

j . Let Q1 “ Qri Ð Nk´1
i s. By the induction hypothesis, costipQq “

costipQ
1q. We distinguish between two cases. In the first case P k

k “ Ok
k , and by the

construction, Player k does not share any of its resources. It is not hard to prove

that 1
xk
¨ costipP q “

1
xk´1

¨ costipQq and 1
xk
¨ costipP

1q “ 1
xk´1

costipQ
1q, and the claim

follows.

For the second case, P k
k “ Nk

k . Recall that Nk
k has a single use for every resource

in Nk
j or Ok

j , for 1 ď j ď k ´ 1. Specifically, for every e P Ok
i we have LepP q “

LepQq ` 1, and for every e P Nk
i we have LepP

1q “ LepQ
1q ` 1. Thus,

costipP q “
ÿ

ePOki

Le,ipP q¨fepLepP qq “
ÿ

ePOki

Le,ipP q¨fepLepQq`1q “
ÿ

ePOki

Le,ipP q¨fepLepQqq`
ÿ

ePOki

Le,ipP q.

Since Le,ipP q “ Le,ipQq, we have
ÿ

ePOki

Le,ipP q ¨ fepLepQqq “
ÿ

ePOki

Le,ipQq ¨ fepLepQqq “ costipQq.

125

By the induction hypothesis, costipQq “ costipQ
1q. Going the opposite direction, we

have costipQ
1q “

ř

ePNk
i
Le,ipP

1q ¨ fepLepQ
1qq. Note that

ř

ePOki
Le,ipP q “ |O

k
i |. We

show in the construction that |Ok
i | “ |N

k
i | “

ř

ePNk
i
Le,ipP

1q. To conclude,

costipP q “
ÿ

ePNk
i

Le,ipP
1
q¨fepLepQ

1
qq`

ÿ

ePNk
i

Le,ipP
1
q “

ÿ

ePNk
i

Le,ipP
1
q¨fepLepP

1
qq “ costipP

1
q.

We continue to prove the second case in which i “ k. Recall that we construct

Ok
k and Nk

k to that costkpŌkq “ costkpN̄kq. We claim that costkpŌkq “ costkpP q

and costkpN̄kq “ costkpP
1q, which would conclude the proof. Recall that in the

construction of Ok
k we use new resources. Thus, Player k does not share any resources

when he plays Ok
k , and we have costkpŌq “ costkpP q. We continue to show that

costkpN̄kq “ costkpP
1q. It is not hard to prove by induction on k, that for every

two profiles S and S 1 in Gk, we have
ř

ePEk
LepSq “

ř

ePEk
LepS

1q, where Ek are

the resources of the game Gk. When Player k plays Nk
k , he uses every resource in

EkzO
k
k exactly once. Since Ok

k uses new resources, when Player k plays Nk
k , the load

on e P Ok
k is 0, and

ř

ePEk
LepN̄kq “

ř

ePpEkzO
k
kq
LepN̄kq. Let y “

ř

2ďiďk´1
xk
i
εi. To

conclude the proof,

costkpN̄kq “
ÿ

ePNk
i

Le,ipN̄kq ¨ fepLepN̄kqq “ y `
ÿ

ePNk
i

LepN̄kq ¨ 1 “

“ y `
ÿ

ePE

LepN̄kq “ y `
ÿ

ePE

LepP
1
q ¨ 1 “ costkpP

1
q.

Proof of Claim 4.2.2: Assume towards contradiction that the social optimum

profile P ˚ is not Ō. Let 1 ď i ď k be the highest index of a player that uses his

Nk
i strategy in P ˚. We claim that the profile P 1 in which Player i plays Ok

i has

costpP ˚q ą costpP 1q. For i ă j ď k, in P ˚, Player j uses his Ok
j strategy, and

thus does not share any resources with Player i in P 1. It follows that costjpP
˚q “

costjpP
1q. For 1 ď j ă i, since Player i shares resources with Player j in P ˚ and

does not share resources in P 1, we have that costjpP
˚q ą costjpP

1q. Moreover, since

the e1-type resources have identity latency, we have costjpP
˚q ě 1 ` costjpP

1q. By

the construction, we have costipP
˚q “ costipP

1q ` εi, and it is possible to select εi

so that costpP 1q ă costpP ˚q, which is a contradiction to the minimality of P ˚, and

we are done.

Proof of Remark 4.2.1: For the upper bound, consider a linear MCG G and let

N be a PNE profile that is reached by a sequence of best-response moves from the

social optimum O. We tighten our analysis from Theorem 4.1. For e P E, we have

costepNq “ 2costpNq ´ ae ¨
ř

1ďiďk L
2
e,ipNq ě

?
ae ¨

ř

1ďiďk Le,ipNq “
?
ae ¨ LepNq “

a

costepNq. Thus, costepNq ě 2´
a

costepNq and costpNq ě 2´
ř

ePE

a

costepNq.

126

Let N 1 be the cheapest PNE profile. Then,
ř

ePE

a

costepNq ě
ř

ePE

a

costepN 1q

and PoSpGq ď 2´ cost´1pOq ¨
ř

ePE

a

costepN 1q.

For the lower bound, we show that the inequality is essentially an equality for

the MCGs in the family described in Theorem 4.2. Consider k P IN. Since in

the social optimum in Gk the resources are used by exactly one player, we have

ΦpŌkq “ costpŌkq. Claim 4.2.1 implies that, essentially, ΦpŌkq “ ΦpN̄kq. Finally,

since in N̄k a resource is used by a player at most one time, we have ΦpN̄kq “

1
2
costpN̄kq`

1
2

ř

ePE

a

costepN̄kq. Thus, PoSpGkq “ 2´cost´1pOkq¨
ř

ePE

a

costepN̄kq.

Since N̄k is the only PNE in Gk, we are done.

Proof of Theorem 4.3: Recall that Pd is the set of polynomials of degree at most

d. The proof relies on the following lemma [2]: Let d P IN. Then,

min
pλ,µqPIR2

t
λ

1´ µ
: @x, y P IR, f P Pd we have y¨fpx`yq ď λ¨y¨fpyq`µ¨x¨fpxqu “ Φd`1

d .

(1)

Consider an MCG G, and let N be a PNE profile and O be the social optimum

profile. Consider 1 ď i ď k. Recall that for a profile P and resource e P E, we use

Pe to denote the load on e in P , the latency function on e P E is fe P Pd, and for

1 ď i ď k, we use P i to denote the multiset that Player i chooses in P and P ipeq

the number of times Player i uses e in P i. By the definition of a PNE, we have

costipNq ď costipN riÐ Oisq. Next,

costipN riÐ Oi
sq “

ÿ

ePE

Oi
peq ¨ fepNe ´N

i
e `O

i
eq ď

ÿ

ePE

Oi
peq ¨ fepNe `Oeq,

where the last inequality follows from the fact that the latency functions we

consider are monotonically increasing.

costpNq “
ÿ

1ďiďk

costipNq ď
ÿ

1ďiďk

ÿ

ePE

Oi
peq ¨ fepNe `Oeq “

ÿ

ePE

Oe ¨ fepNe `Oeq.

Let λ, µ P IR that minimize the expression in (1). Then,

ÿ

ePE

Oe ¨ fepNe `Oeq ď
ÿ

ePE

λ ¨Oe ¨ fpOeq ` µ ¨Ne ¨ fpNeq “ λ ¨ costpOq ` µ ¨ costpNq.

Rearranging yields the theorem.

Proof of Theorem 4.5: We show a family of two-player congestion games in which

the PoA is arbitrarily high. For n P IN, we define the game Gn. The resources are

E “ te1, e2u. The strategy spaces of the players are mirrored. Player 1’s strategy

space is Σ1 “ te1, e
n
2u and Player 2 strategy space is Σ2 “ ten1 , e2u. The latency

functions are both the factorial function, i.e., fe1plq “ fe2plq “ l!.

127

We continue to calculate PoApGnq. Clearly, the social optimum is attained in

the profile xe1, e2y and its cost is 2. We claim that the profile N “ xen2 , e
n
1y is a PNE.

Indeed, cost1pNq “ n ¨ n!, and by deviating to e1, his cost increases to 1 ¨ pn ` 1q!.

The proof for Player 2 is dual. Since costpNq “ 2n ¨ n!, we have PoApGnq “ n ¨ n!,

and we are done.

A formal construction of the DFA AL,D: Recall that the library of components

is L “ tB1, . . . ,Bnu. For i P rns, we have Bi “ xΣ, Bi, δi, b
0
i , Fi, Eiy, where Ei Ď Bi

is a set of exit states having b0
i R Ei and FiXEi “ H. The states of the components

are disjoint, thus Bi X Bj “ H, for j ‰ i. We denote by B, F , and E the union

of all states, accepting states, and exit states, respectively, thus B “
Ť

iPrnsBi,

F “ Ť

iPrns Fi, and E “ Ť

iPrnsEi. Recall that a design D is a transducer over input

alphabet E and output alphabet rns. Consider a design D “ xE , rns, D, δD, d0, νy,

where ν : D Ñ rns.

We construct the composition system AL,D “ xΣ, QL,D, δL,D, q
0
L,D, FL,Dy as fol-

lows. The set of states QL,D Ď pBzEqˆD consists of pairs of a component state from

B and an design state from D. The component states are consistent with ν, thus

QL,D “
Ť

iPrnspBizEiq ˆ tq : νpqq “ iu. In exit states, the composition immediately

moves to the initial state of the next component, which is why the component states

of AL,D do not include E . Consider a state xb, qy P QL,D and a letter σ P Σ. Let

i P rns be such that b P Bi. When a run of AL,D reaches the state xb, qy, the compo-

nent Bi is in control. Recall that b is not an exit state. Let b1 “ δipb, σq. If b1 R Ei,

then Bi does not relinquish control after reading σ and δL,Dpxb, qy, σq “ xb1, qy. If

b1 P Ei, then Bi relinquishes control through b1, and it is the design’s task to choose

the next component to gain control. Let q1 “ δpq, b1q and let j “ νpq1q. Then, Bj
is the next component to gain control (possibly j “ i). Accordingly, we advance

D to q1 and continue to the initial state of Bj. Formally, δL,Dpxb, qy, σq “ xb0
j , q

1y.

(Recall that b0
j R Ej, so the new state is in QL,D.) Note also that a visit in b1

is skipped. The component that gains initial control is chosen according to νpd0q.

Thus, q0
L,D “ xb0

j , d
0y, where j “ νpd0q. Finally, the accepting states of AL,D are

these in which the component state is accepting, thus FL,D “ F ˆD. (Recall that

F X E “ H, so FL,D Ď QL,D.)

Proof of Theorem 5.1: Consider an MCG xK,E, tΣiuiPK , tfeuePEy. Recall that Σi

is the set of strategies for Player i that consists of multisets over E. We construct

a CLG with alphabet E Y
Ť

iPK Σi. For i P K, the specification Si for Player i

consists of |Σi| words. Every strategy s “ te1, . . . , enu (allowing duplicates) in Σi

contributes to LpSq the word s ¨ e1 ¨ e2 ¨ . . . ¨ en. We construct a library L with

|E| `
ř

iPK |Σi| components of two types: a strategy component Bs for each s P Σi

and a resource component Be for each e P E. In addition, L contains the component

128

Bacc that is depicted in Figure 2. Intuitively, a correct design must choose one

strategy component Bs and then use the component Be the same number of times e

appears in s. We continue to describe the components. For s P Σi, the component

Bs relinquishes control only if the letter s is read. It accepts every word in LpSiq
that does not start with s. For e P E, the resource component Be has an initial

state with an e-labeled transition to an exit state. Finally, the latency function for

the resource components coincides with latency functions of the resources in the

MCG, thus for e P E, we have fBe “ fe. The other latency functions are f ” 0. We

prove that there is a cost-preserving one-to-one and onto correspondence between

correct designs with respect to Si and strategies in Σi, implying the existence of the

required function between the profiles.

Consider i P K. We claim that there is a one-to-one and onto correspondence

between correct designs with respect to Si and strategies in Σi. Thus, there is a

one-to-one and onto correspondence between the sets of profiles in the MCG and the

CLG. We describe the design Ds that corresponds to the strategy s “ te1, . . . , enu P

Σi. The design Ds assigns initial control to the strategy component Bs. Recall that

Bs relinquishes control after reading the letter s. Then, Ds assigns control to the

components Be1 , . . . ,Ben and finally control is assigned to Bacc. Clearly the word

s ¨ e1 ¨ e2 ¨ ¨ ¨ en P LpSq is accepted, no other word that starts with s is accepted, and

since Bs accepts every word in LpSiq that does not start with s, we have that Ds is

correct. It is not hard to see that there are no other correct designs. To see that the

correspondence is onto, note that since control has to be assigned to some component

Bs, each correct design corresponds to a strategy s P Σi. Finally, consider a profile

P “ xDs1 , . . . ,Dsky that corresponds to the profile P 1 “ xs1, . . . , sky. Clearly, for

i P K, we have costipP q “ costipP
1q, and we are done.

Proof of Theorem 5.4: We describe the specification S. The alphabet is Σ “

t#u Y
Ť

iPrnst#
0
i , . . . ,#

m
i , xiu Y

Ť

jPrmstCj, C̃ju. The language LpSq includes 3m` 1

words. A long word # ¨w1 ¨ . . . ¨wn, where for i P rns, we have wi “ #0
ixi#

1
i . . . xi#

m
i ,

and 3m short words, which we describe next. For j P rms, let Cj “ `1
j _ `2

j _ `3
j .

For k P t1, 2, 3u, let jk be the index of the variable in the literal `kj . That is,

`1
j P txj1 , xj1u, `

2
j P txj2 , xj2u, and `3

j P txj3 , xj3u. For k P t1, 2, 3u, we have

CjxjkC̃jxjk P LpSq. Clearly it is possible to construct S so that its size is polynomial

in n and m.

The components of the library L are B0, Bjxi and Bj xi for j P rms and i P rns,

and BCj ,xjk for j P rms and k P t1, 2, 3u. The components of the library are depicted

in Figure 2. The latency functions of the components B0 and BCj ,xjk , for j P rms and

k P t1, 2, 3u is the constant function f ” 0. The latency function of the components

Bjxi , for j P rms and i P rns is the identity function fpxq “ x. Thus, using a

129

component Bjxi once costs 1.

Assume that ϕ is satisfiable, and let η : tx1, . . . , xnu Ñ tT, F u be a satisfying

assignment to the variables. We describe a correct design D with costpDq “ µ “

nm ` m. The component that gains control first is B0. We distinguish between

two types of words. First, assume B0 exists through e# after reading #. Thus, the

only word that should be accepted from this point is the suffix w1 ¨ . . . wm of the

long word in LpSq, where recall that for i P rns we have wi “ #0
ixi#

1
i . . . xi#

m
i . For

i P rns, assuming the prefix #w1 ¨ . . . ¨wi´1 has been read. If ηpxiq “ T , then control

is assigned to B1
 xi

, and otherwise control is assigned to B1
xi

. Then, the next m´ 1

assignments of control, assuming the prefix that is read is a prefix of wi, are to the

components B2
 xi
, . . . ,Bm xi if fpxiq “ T , and otherwise to B2

xi
, . . . ,Bmxi . If some other

word is read, control is assigned to Brej. Finally, control is assigned to Bacc. Note

that so far we have used nm components with identity latency, each with one use,

for a total cost of nm.

Recall that LpSq has 3m short words of the form CjxjlC̃jxjk , where j P rms

and k P t1, 2, 3u. When reading the prefix Cj of such a word, the component B0

relinquishes control through eCj . Assume, WLog, that fp`1
jq “ T (there must be

such a literal as f is a satisfying assignment). We refer to xj1 as the witness for Cj.

The component that gains control after B0 is BCj ,xj1 , which relinquishes control only

if xj1 is read. Let 0 ď j1 ă j be the number of clauses with index less than j that

have xj1 as their witness. The component that gains control after BCj ,xj1 is Bj1`1
xj1

.

This component has many exit states. If it exists after reading C̃jxj1 , then control is

assigned to Bacc, and otherwise control is assigned to Brej. Note that we have used

another m components with identity latency, where each component is used once.

Thus, the total cost of D is nm`m. It is not hard to see that D is correct, and we

are done.

For the other direction, assume there is a correct design D that costs at most

nm ` m. We define an assignment η : tx1, . . . , xnu Ñ tT, F u. Let i P rns. Since

the long word #w1 . . . wn is in LpSq, it must be in LpAL,Dq. Note that the only

components that can process the letter #0
i are B1

xi
and B1

 xi
. Thus, after reading

#w1 . . . wi´1, one of these components must gain control. We define ηpxiq “ T if

B1
 xi

gains control and ηpxiq “ F if B1
xi

gains control.

We claim that η is a satisfying assignment for ϕ. In order to do so, we make

two observations. First, recall that, for i P rns, if ηpxiq “ T , then B1
 xi

gains control

after #w1 . . . wi´1 is read. If the prefix #1
ixi of wi is read, then B2

 xi
must gain

control as this is the only component that can process the next prefix #2
ixi of wi.

Generalizing this observation, after reading #w1 . . . wi´1, if ηpxiq “ T , when reading

the word wi, the components that are in control are B1
 xi
, . . . ,Bm xi , and if ηpxiq “ F ,

then B1
xi
, . . . ,Bmxi are in control. Thus, D uses at least nm components with identity

130

latency.

Next, let j P rms with Cj “ `1
j_`

2
j_`

3
j such that `kj P txjk , xjku, for k P t1, 2, 3u.

Note that after reading the letter Cj control must be assigned to a component BCj ,xjk
as CjxjkC̃jxjk P LpSq and these are the only components that can process words

that start with one of the three letters xj1 , xj2 , or xj3 . Denote by `j and xj the literal

and variable with `j P txj, xju such that BCj ,xj gains control from D after Cj is

read. When xj is read in BCj ,xj , control is relinquished. Note that the component

that gains control next must be a component Bt`j , for t P rms, as these are the only

components that can process C̃jxj. Let d be the state in D that is reached after

reading Cjxj
2. We claim that there is no other word w P Σ˚ such that the run of

D on w reaches d. Indeed, the word C̃jxj is accepted from d and there is only one

word in LpSq that ends with this suffix.

Since we have already counted nm uses of components with identity latency and

D costs at most nm`m, we conclude that D uses exactly nm`m such components

each with a single use. Specifically, for j P rms, the component Bt`j that gains control

after Cjxj is read is used once and it is used when reading the word CjxjC̃jxj. Thus,

when reading the long word #w1 . . . wm it does not gain control, and by our definition

of η, we have ηp`jq “ T . We conclude that η is a satisfying assignment, and we are

done.

Proof of Theorem 5.5: We now describe the reduction in detail. Let ϕ “

C1 ^ . . . ^ Cm, where for j P rts we have Cj “ `1
j _ `2

j _ `3
j , we construct a

CLG G with three players such that ϕ P NAE iff G does not have a PNE. We

describe the specifications of the players. The alphabet is Σ “ t#,&, T, F, a, bu Y
Ť

iPrnst#
0
xi
, . . . ,#m

xi
, xi, #0

yi
, . . . ,#m

yi
, yiu Y

Ť

jPrmstCj, C̃ju Y
Ť

jPrmst`
1
j , `

2
j , `

3
ju. The

specification S3 for Player 3 consists of a single word w1 ¨ . . . ¨ wn, where for i P rns,

we have wi “ #0
xi
xi#

1
xi
. . . xi#

m
xi

. The specification S2 for Player 2 consists of two

words a3 and b5. The specification S1 for Player 1 consists of 6m ` 1 words. Simi-

larly to Player 3, it has a long word # ¨ v1 ¨ . . . ¨ vn, where for i P rns, we have vi “

#0
yi
yi#

1
yi
. . . yi#

m
yi

, and 6m short words, which we describe next. For j P rms, recall

that Cj “ `1
j _ `

2
j _ `

3
j . For k P t1, 2, 3u, we have Cj`

k
jTC̃jT`

k
j , Cj`

k
jFC̃jF`

k
j P LpS1q.

Clearly it is possible to construct S1,S2, and S3 so that their size is polynomial in

n and m.

We continue to describe the library L. For every i P rns and t P rms, there are

variable components Btxi , Bt xi , Btyi , and Bt yi , which have identity latency functions

and are similar to these in the lower bound proof of Theorem 5.4. The upper part

of the components is almost identical to these depicted in Figure 2. For example,

2Recall that D reads exit states and not words over Σ, so this notation is not formal and we

mean the exit states that are read during the run on the word.

131

B1
xi

relinquishes control after reading #0
xi
xi. The lower part is slightly different.

Consider j P rms and a literal ` that appears in Cj. Intuitively, as in Theorem 5.4,

designs of Player 1 and Player 3 correspond to assignments and must use either all

the components B1
` , . . . ,Bm` or all the components B1

 `, . . . ,Bm `. Choosing the first

corresponds to assigning value false to ` and choosing the second corresponds to

assigning value true to `. The components B1
` , . . . ,Bm` have a path labeled C̃jT`

that leads to an exit state. The components B1
 `, . . . ,Bm ` have a path labeled C̃jF`

that leads to an exit state.

For every j P rms, there are six components BCj ,`aj ,`bj for a ‰ b P t1, 2, 3u with

latency function f ” 0. The component BCj ,`aj ,`bj corresponds to assigning value

true to `aj and value false to `bj. Let c P t1, 2, 3u such that c ‰ a and c ‰ b. The

component BCj ,`aj ,`bj relinquishes control after reading `ajT and `bjT , after which a

correct design must assign control to components Bt1`aj and Bt2
 `bj

, for some t1, t2 P rms,

in order to accept the suffices C̃jT`
a
j and C̃jF`

b
j, respectively. The other words that

start with Cj are accepted for free. The component BCj ,`aj ,`bj accepts the words

`ajFC̃jF`
a
j , `

b
jTC̃jT`

b
j, `

c
jTC̃jT`

c
j, and `cjFC̃jF`

c
j.

Similarly to the proof of Theorem 5.4, a correct design Dη for Player 3 corre-

sponds to an assignment η : tx1, . . . , xnu Ñ tT, F u and a correct design Dρ corre-

sponds to an assignment ρ : ty1, . . . , ynu Ñ tT, F u. Moreover, every correct design

Dρ must use mn` 2m variable components. Assuming Player 3 chooses the design

Dη, then there is a Player 1 correct design Dρ that uses only variable components

with load 1 iff the pair xη, ρy is legal for ϕ.

We describe the rest of the components in the library. There are components Bacc
and Brej that have constant latency function 0 and appear at the end of runs. We do

not specify when they gain control below as it is immediate. There are components

BA0 , BB0 , A, and B, with latency functions 0, 0, fApxq “ x2 ` 125 and fBpxq “ 4x2,

respectively. The component BA0 relinquishes control after reading a and accepts the

word b5. Dually, the component BB0 relinquishes control after reading b and accepts

the word a3. The components A and B relinquish control after reading a and b,

respectively. Thus, a correct Player 2 design must assign initial control to either BA0
or BB0 , and then assign control two times to A and four times to B, respectively.

The component BALL is identical to S1. Thus, Player 1 has a correct design that

uses only it, and we refer to this design as DALL. Regardless of what design the

other players choose, Player 1 pays 1100 `mn ` 2m for DALL. The component B0

has a constant latency function 33. It relinquishes control through a unique exit

state if #,&, or Cj, for j P rms is read. Thus, a correct Player 1 design that does

not use BALL must assign initial control to B0. When B0 relinquishes control after

reading #, control must be assigned to mn variable components, after reading Cj,

132

for some j P rms, control must be assigned to some component BCj ,`aj ,`bj as described

in the above, and after reading &, control must be assigned to A for six consecutive

times and then to B for one time.

We prove that the reduction is correct. Assume that ϕ R NAE, thus there

is an assignment η : tx1, . . . , xnu Ñ tT, F u such that for every assignment ρ :

ty1, . . . , ynu Ñ tT, F u, we have that xη, ρy is illegal for ϕ. We claim that the profile

P “ xDALL,DB,Dηy is a PNE. Clearly Player 2 does not deviate. Since Player 1

uses DALL it does not use any of the variable components and all the designs of

Player 3 cost the same, thus Player 3 does not deviate as well. Assume Player 1

benefits from deviating to a design Dρ. Since Player 2 uses DB, Player 1 pays for

his uses of B0, A, and B a cost of 33 ` 966 ` 100 “ 1099. Recall that Dρ uses

nm ` 2m variable components. Since cost1pP q “ 1100 ` nm ` 2m and we assume

that deviating to Dρ is beneficial, the load on every variable component that is used

in Dρ must be 1. Thus, similarly to the proof of Theorem 5.4, we can show that

xη, ρy is legal for ϕ, which is a contradiction. Next, assume that ϕ P NAE. We show

that there is no PNE in G. Consider a profile in which Player 3 chooses the design

Dη, and let ρ be an assignment such that xρ, ηy is legal for ϕ. It is not hard to see

that choosing Dη or DALL dominates every other choice of design for Player 1. In

Table 2 we show that no matter which design Player 2 chooses, there is no PNE,

and we are done.

Dρ DALL
DA 1099`mn` 2m, 400 1100`mn` 2m, 256

DB 1138`mn` 2m, 378 1100`mn` 2m, 288

Table 2: Players costs. Each entry describes the cost of Player 1 followed by the

cost of Player 2.

B Splittable (Non-Atomic) Games

In a splittable game each player can split his task among several strategies. This

model suits several applications, in particular planning of preemptive production.

Splittable games are well-understood in classical and weighted congestion games

[29, 8]. We define the corresponding MCG and show that the positive PNE-existence

result, known for weighted congestion games, carry over to games with multisets of

resources.

Recall that Σi is the strategy space of Player i, where Σi “ tmi,1, . . . ,mi,ciu and

133

for each 1 ď j ď ci, mi,j is a multiset over E. A splitted strategy for a player i is

given by ŝi “ xαi,1, . . . , αi,ciy such that
řci
j“1 αj “ 1.

A profile of a game G is a set P “ xŝ1, ŝ2, . . . , ŝky of strategies selected by the

players. For a resource e P E, the load that player i generates on e is Le,ipP q “
řci
j“1 αj ¨mi,jpeq. The load on e in P , is LepP q “

ř

1ďiďk Le,ipP q.

The players’ costs are defined as in the unsplittable model, that is, given a

profile P , a resource e P E, and 1 ď i ď k, the cost of e for Player i in P

is coste,ipP q “ Le,ipP q ¨ fepLepP qq. The cost of Player i in the profile P is then

costipP q “
ř

ePE coste,ipP q.

A profile P is a PNE if for every player i the cost of i when playing xαi,1, . . . , αi,ciy

is not higher than playing x. . . , αi,v1 ` δ, . . . , αi,v2 ´ δ, . . .y for all v1, v2 and δ. In

particular, it means that the marginal cost for all strategies with αi ą 0 is the

same. The proof of the following theorem is identical to the corresponding proof for

classical CGs [29].

Theorem B.1 Every splittable MCG has a PNE.

For example, consider the instance in Example 1, where Σi “ xta
2, bu, tb2, cu, tc2, auy

for i “ 1, 2. The profile P “ xt1
2
, 1

3
, 1

6
u, t1

6
, 1

3
, 1

2
uy is a (non-unique) PNE. For each

e P ta, b, cu, we have LapP q “ 2 ¨ 1
2
`1 ¨ 1

6
`2 ¨ 1

6
`1 ¨ 1

2
“ 2, LbpP q “ 2 and LcpP q “ 2,

thus cost1pP q “ cost2pP q “ 4 ¨ 3 “ 12. This profile is a PNE, since all strategies

have the same marginal cost.

134

Dynamic Resource Allocation Games∗

Guy Avni† Thomas A. Henzinger‡ Orna Kupferman§

Abstract

In resource allocation games, selfish players share resources that are needed

in order to fulfill their objectives. The cost of using a resource depends on

the load on it. In the traditional setting, the players make their choices

concurrently and in one-shot. That is, a strategy for a player is a subset of

the resources. We introduce and study dynamic resource allocation games. In

this setting, the game proceeds in phases. In each phase each player chooses

one resource. A scheduler dictates the order in which the players proceed in a

phase, possibly scheduling several players to proceed concurrently. The game

ends when each player has collected a set of resources that fulfills his objective.

The cost for each player then depends on this set as well as on the load on the

resources in it – we consider both congestion and cost-sharing games. A prime

application of dynamic resource allocation games is the setting of networks

in which players choose their routes edge by edge, with choices depending on

earlier choices of other players. We study the stability of dynamic resource

allocation games, where the appropriate notion of stability is that of subgame

perfect equilibrium, study the inefficiency incurred due to selfish behavior, and

also study problems that are particular to the dynamic setting, like constraints

on the order in which resources can be chosen or the problem of finding a

scheduler that achieves stability.

1 Introduction

Resource allocation games (RAGs, for short) [23] model settings in which selfish

agents share resources that are needed in order to fulfill their objectives. The cost

of using a resource depends on the load on it. Formally, a k-player RAG G is given

by a set E of resources and a set of possible strategies for each player. Each strategy

is a subset of resources, fulfilling some objective of the player. Each resource e P E

is associated with a latency function `e : NÑ R, where `epγq is the cost of a single

∗Submitted for publication.
†School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
‡IST Austria
§School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel

135

use of e when it has load γ. For example, in network formation games (NFGs, for

short) [2], a network is modeled by a directed graph, and each player has a source

and a target vertex. In the corresponding RAG, the resources are the edges of the

graph and the objective of each player is to connect his source and target. Thus,

a strategy for a player is a set of edges that form a simple path from the source to

the target. Each edge may participate in paths of several players. When an edge e

is used by m players, each of them pays `epmq for his use.

A key feature of RAGs is that the players choose how to fulfill their objectives in

one shot and concurrently . Indeed, a strategy for a player is a subset of the resources

– chosen as a whole, and the players choose their strategies simultaneously. In

many settings, however, resource sharing proceeds in a different way. First, in many

settings, the choices of the players are made resource by resource as the game evolves.

For example, when the network in an NFG models a map of roads and players are

drivers choosing routes, it makes sense to allow each driver not to commit to a full

route in the beginning of the game but rather to choose one road (edge) at each

junction (vertex), gradually composing the full route according to the congestion

observed. Second, players may not reach the junctions together. Rather, in each

“turn” of the game, only a subset of the players (say, these that have a green light)

proceed and chose their next road.

As another example to a rich composition and scheduling of strategies, consider

the setting of synthesis from component libraries [17], where a designer synthesizes a

system from existing components.It is shown in [4, 6] that when multiple designers

use the same library, a RAG arises. Here too, the choice of components may be made

during the design process and may evolve according to choices of other designers.

In this work we introduce and study dynamic resource allocation games, which

allow the players to choose resources in an iterative and non-concurrent manner.

A dynamic RAG is given by a pair G “ xG, νy, where G is a k-player RAG and

ν : t1, . . . , ku Ñ t1, . . . , ku is a scheduler. A dynamic RAG proceeds in phases. In

each phase, each player chooses one resource. A phase is partitioned into at most

kturns, and the scheduler dictates which players proceed in each turn: Player i moves

at turn νpiq. Note that the scheduler may assign the same turn to several players,

in which case they choose a resource simultaneously in a phase. Once all turns have

been taken, a phase is concluded and a new phase begins. There are two “extreme”

schedulers: (1) A sequential scheduler assigns different turns to all players, i.e., ν is

a permutation, reflecting the fact that the players make their choices sequentially,

one player in each turn. (2) A concurrent scheduler assigns the same turn to all

the player; i.e., νpiq “ 1 for all i P t1, . . . , ku, reflecting the fact that all players

proceed concurrently in the first (and only) turn in each phase. A strategy for a

player in a dynamic RAG maps the history of choices made by the players so far

136

(that is, the choices of all players in earlier phases as well as the choices of players

that proceed in earlier turns in the current phase) to the player’s next choice. A

player finishes playing once the resources she has chosen satisfy the objective. The

game terminates once all players finish playing. A strategy profile in the game is a

vector of strategies – one for each player. The outcome of a profile is an assignment

of a set of resources to each player. The cost of each player in a profile is induced

by the costs of the resources in his set, which depends on their load and latency

functions as in usual RAGs.

We illustrate the intricacy of the selecting the resources in phases in the following

example.

Example 1.1 Consider the 4-player network formation game that is depicted in

Figure 1. The interesting edges have names, e.g., a, b, c . . ., and their latency func-

tion is depicted below the edge. For example, we have `apxq “ x and `c1pxq “ 10x.

The other edges have latency function 0. The source and target of a node of Player i

are depicted with a node called s and t, respectively, and with a subscript i. For

example, Player 2’s source is s1,2 and he has two targets tL2 and tR2 . The players’

strategies are paths from one of their sources to one of their targets.

Consider a dynamic version of the game in which Player i chooses an edge at

turn i. At first look, it seems that edge g will never be chosen. However, we show

that Player 1’s optimal strategy uses it. Player 1 has three options in the first turn,

either choose g, a, or b. Assume he chooses a (and dually b). Then, we claim that

Player 2 will choose b. Note that Players 3 and 4 move oposite of Player 2 no matter

how Player 1 moves, as they prefer avoiding a load of 2 on c1 and c2, which costs

20 each, even at the cost of a load of 3 on f , which costs only 3. Knowing this,

Player 2 prefers using b alone over sharing a with Player 1. Since the loads on a

and e are 1 and 3, respectively, Player 1’s cost is 1` 3 “ 4.

On the other hand, if Player 1 chooses g in the first phase, he postpones revealing

his choice between left and right. If Player 2 proceeds left, then Players 3 and 4

proceed right, and Player 1 proceeds left in the second phase. Now, the load on a

and e is 2 and 1, respectively, thus Player 1’s cost is 1
2
` 2` 1 “ 31

2
.

s1,2

g

1/2 · x

x
sL
3

10x
sL
4

10x
tL
2

x
tL
1,3,4

ac1c2

e

x
sR
3

10x
sR
4

10x
tR
2

x
tR
1,3,4

b d1 d2

f

Figure 1: A network formation game in which it is beneficial to select a path that

is not simple.

137

The concept of what we refer to as a dynamic game is old and dates back to Von

Neumann’s work on extensive form games [20]. Most work on RAGs consider the

simultaneous setting. However, there have been different takes on adding dynamicity

to RAGs. In [19], the authors refine the notion of NE by considering lookahead

equilibria; a player predicts the reactions of the other players to his deviations, and

he deviates only if the outcome is beneficial. The depth of lookahead is bounded and

is a parameter to the equilibria. A similar setting was applied to RAGs in [7], where

the players are restricted to choose a best-response move rather than a deviation

that might not be immediately beneficial. Concurrent ongoing games are commonly

used in formal methods to model the interaction between different components of a

system (c.f., [1]). In such a game, multiple players move a token on a graph. At each

node, each player selects a move, and the transition function determines the next

position of token, given the vector of moves the players selected. The objectives of

the players refer to the generated path and no costs are involved. Closest to our

model is the model of [16], and its subsequent works [8, 10]. They study RAGs in

which players arrive and select strategies one by one, yet in one shot.

Our dynamic games differ from all of these games in two aspects. We allow the

players to reveal their choice of resources in parts, thus we allow “breaking” the

strategies into parts. Moreover, the choices the players make in all these games are

either concurrent of sequential, and we allow a mix between the two. These two

concepts are natural and general, and can be applied to other games and settings.

The first question that arises in the context of games, and on which we focus in

this work, is the existence of a stable outcome of the game. In the context of RAGs,

the most prominent stability concept is that of a Nash equilibrium (NE, for short) –

a profile such that no player can decrease his cost by unilaterally deviating from his

current strategy. It is well known that every RAG has an NE [23]. The definition

of an NE applies to all games, and can also be applied to our dynamic RAGs. As

we demonstrate in Example 2.1, the dynamic setting calls for a different stability

concept, as some NEs need not be achievable by rational players in the dynamic

setting. Essentially, it follows from the fact that rational players take the history of

the game into account when they make their choices in intermediate phases, ruling

out some choices that are rational only in a concurrent and one-shot setting. To

overcome this limitation of NE, the notion of subgame perfect equilibrium (SPE, for

short) was introduced in [27], which we define formally in Section 2.

Classifying RAGs, we refer to the type of their latency functions as well as the

type of the objectives of the players. Congestion games [24] are RAGs in which the

latency functions are increasing, whereas in cost-sharing games [2], each resource

has a cost that is split between the players that use it (in particular, the latency

functions are decreasing). In terms of objectives, we consider singleton RAGs, in

138

which the objectives of the players are singletons of resources, and symmetric RAGs,

in which all players have the same objective.

Our most interesting results are in terms of equilibrium existence. It is easy to

show, and similar results are well known, that every dynamic RAG with a sequential

scheduler has an SPE. The proof uses backwards induction on the tree of all possible

outcomes of the game (see Theorem 3.1 for details). One could hope to achieve a

similar proof also for schedulers that are not sequential, especially given the fact

that every RAG has an NE. Quite surprisingly, however, we show that this is not

the case. For congestion games, we show examples of a singleton congestion game

and a symmetric congestion game with no SPE. Moreover, the latency function in

both cases is linear. On the positive side, we show that singleton and symmetric

congestion games are guaranteed to have an SPE for every scheduler. For cost-

sharing games, we also show an example with no SPE. In the cost-sharing setting,

however, we show that singleton objectives are sufficient to guarantee the existence

of an SPE in all schedules. It follows that singleton dynamic congestion games are

less stable than singleton dynamic cost-sharing games. This is interesting, as in the

on-shot concurrent setting, congestion games are known to be more stable than cost-

sharing games in various parameters. One would expect that this “order of stability”

would carry over to the dynamic setting, as is the case in other extensions of the

traditional setting. For example, an NE is not guaranteed for weighted cost-sharing

games [9] as well as very restrictive classes of multiset cost-sharing games [5], whereas

every linear weighted congestion game [12] and even linear multiset congestion game

is guaranteed to have an NE [6]. Also, as we detail in Section 4, there are classes

of congestion games that are guaranteed to have a strong equilibrium whereas the

cost-sharing counterpart does not [13].

It is well known that decentralized decision-making may lead to solutions that

are sub-optimal from the point of view of society as a whole. In simultaneous games,

the standard measures to quantify the inefficiency incurred due to selfish behavior

is the price of anarchy (PoA) [15] and price of stability (PoS) [2]. In both measures

we compare against the social optimum (SO, for short), namely the cheapest profile.

The PoA is the worst-case inefficiency of an NE (that is, the ratio between the cost of

a worst NE and the SO). The PoS is the best-case inefficiency of a Nash equilibrium

(that is, the ratio between the cost of a best NE and the social optimum). For the

dynamic setting we adjust these two measures to consider SPEs rather than NEs,

and we refer to them as DPoA and DPoS. We study the equilibrium inefficiency in

the classes of games that have SPEs. We show that the DPoA and DPoS in dynamic

singleton cost-sharing games as well as dynamic singleton congestion games coincide

with the PoA and PoS in the corresponding simultaneous class. As mentioned above,

[16, 8, 10] study games in which players arrive one after. Since their games are

139

sequential, they always have an SPE. They study the sequential PoA, and show

that it can either be equal, below, or above the PoA of the corresponding class of

RAGs.

We then turn to study computational problems for dynamic RAGs. First, we

study the problem of deciding whether a given dynamic RAG has an SPE. We show

that the problem is PSPACE-complete for both congestion and cost-sharing games.

Our lower bound for cost-sharing games implies that finding an SPE in sequential

games is PSPACE-hard. To the best of our knowledge, while this problem was

solved in [16] for congestion games, we are the first to solve it for cost-sharing

games. We also study the problem of finding a schedule that admits an SPE under

given constraints on the order the players move, and show that this problem is also

PSPACE-complete. Finally, we consider dynamic games in which there is an order

on the resources that the players choose. So, if for two resources e1 and e2, we have

e1 ă e2, then a player cannot choose e1 in a later phase than e2. The motivation

for an order on resources is natural. For example, returning to network formation

games, a driver can only extend the path he chooses as the choices are made during

driving. We show that all our results carry over to the ordered case.

Due to lack of space, some proofs and examples are given in the appendix.

2 Preliminaries

Resource allocation games For k ě 1, let rks “ t1, . . . , ku. A resource-

allocation game (RAG, for short) is a tuple G “ trks, E, tΣiuiPrks, t`euePEu, where

rks is a set of k players; E is a set of resources; for i P rks, the set Σi Ď 2E is a set of

objectives1 for Player i; and, for e P E, we have that `e : N Ñ R is a latency func-

tion. The game proceeds in one-round in which the players select simultaneously

one of their objectives. A profile P “ xσ1, . . . , σky P Σ1 ˆ . . . ˆ Σk is a choice of an

objective for each player. For e P E, we denote by nusedpP, eq the number of times

e is used in P , thus nusedpP, eq “ |ti P rks : e P σiu|. For i P rks, the cost of Player i

in P , denoted costipP q, is
ř

ePσi
`epnusedpP, eqq.

Classes of RAGs are characterized by the type of latency functions and types of

objectives. In congestion games (CGs, for short), the latency functions are increas-

ing. An exceptionally stable class of CGs are ones in which the latency functions

are linear (c.f., [12, 6]); every resource e P E has two constants ae and be, and the

latency function is `epxq “ ae ¨ x ` be. In cost-sharing games (SG, for short), each

resource e P E has a cost ce and the players that use the resource share its cost,

1We use “objectives” here rather than “strategies” as the second will later be used for dynamic

games.

140

thus the latency function for e is `epxq “
ce
x

. In particular, the latency functions are

decreasing. We use DCGs and DSGs to refer to dynamic CGs and dynamic SGs,

respectively. In terms of objectives, we study symmetric games, where the players’

sets of objectives are equal, thus Σi “ Σj for all i, j P rks, and singleton games,

where each σ P Σi is a singleton, for every i P rks.

Dynamic resource allocation games A dynamic RAG is pair G “ xG, νy, where

G is a RAG and ν : rks Ñ rks is a scheduler. Intuitively, in a dynamic game, rather

than revealing their objectives at once, the game proceeds in phases: in each phase,

each player reveals one resource in his objective. Each phase is partitioned into

at most k turns. The scheduler dictates the order in which the players proceed

in a phase by assigning to each player his turn in the phases. If the scheduler

assigns the same turn to several players, they select a resource concurrently. Once

all players take their turn, a phase is concluded and a new phase begins. There are

two “extreme” schedulers: (1) players get different turns, i.e., ν is a permutation, (2)

all players move in one turn, i.e., ν ” 1. We refer to games with these schedulers as

sequential and concurrent, respectively. Note that ν might not be an onto function.

For simplicity, we assume that, for j ą 1, if turn j is assigned a player, then so is

turn j ´ 1. We use tν to denote the last turn according to ν, thus tν “ maxi νpiq.

Let EK “ E Y tKu, where K is a special symbol that represents the fact that

a player finished playing. Consider a turn j P rks. We denote by beforepjq the set

of players that play before turn j; thus beforepjq “ ti P rks : νpiq ă ju. A player

has full knowledge of the resources that have been chosen in previous phases and

the resources chosen in previous turns in the current phase. A strategy for Player i

in G is a function fi : pE
rks
K q

˚ ¨ pE
beforepνpiqq
K q Ñ EK. A profile P “ xf1, . . . , fky is a

choice of a strategy for each player. The outcome of the game given a profile P ,

denoted outpP q, is an infinite sequence of functions π1, π2, . . ., where for i ě 1, we

have πi : rks Ñ EK. We define the sequence inductively as follows. Let m ě 1 and

j P rks. Assume m ´ 1 phases have been played as well as j ´ 1 turns in the m-th

phase, thus π1, π2, . . . , πm´1 are defined as well as πmj´1 : beforepjq Ñ EK. We define

πmj as follows. Consider a player i with νpiq “ j. The resource Player i chooses in

the m-th phase is fipπ
1, . . . , πm´1, πmj´1q. Finally, we define πm “ πmtν .

We restrict attention to legal strategies for the players, namely ones in which the

collection of resources chosen by Player i in all phases is an objective in Σi. Also, once

Player i chooses K, then he has finished playing and all his choices in future phases

must also be K. Formally, for a profile P “ xf1, . . . , fky with outpP q “ π1, π2, . . .

and i P rks, let outipP q be π1piq, π2piq, For j ě 1, let ej “ πjpiq be the resource

Player i selects in the j-th phase. Thus, outipP q is an infinite sequence over EK.

We say that fi is legal if (1) there is an index m such that ej P E for all j ă m

141

and ej “ K for all j ě m, and (2) the set te1, . . . , em´1u is an objective in Σi. (In

particular, a player cannot select a resource multiple times nor a resource that is not

a member in his chosen objective). We refer to an outcome in which the players use

legal strategies as a legal outcome and a prefix of a legal outcome as a legal history.

In outpP q, every player selects a set of resources. The cost of a player is calculated

similarly to RAGs. That is, his cost for a resource e, assuming the load on it is γ,

is `epγq, and his total cost is the sum of costs of the resources he uses. When the

outcome of a profile P in a dynamic RAG coincides with the outcome of a profile Q

in a RAG G, we say that P and Q are matching profiles.

Equilibria concepts A Nash equilibrium2 (NE, for short) in a game is a profile in

which no player has an incentive to unilaterally deviate from his strategy. Formally,

for a profile P , let P riÐ f 1is be the profile in which Player i switches to the strategy

f 1i and all other players use their strategies in P . Then, a profile P is a NE if for every

i P rks and every legal strategy f 1i for Player i, we have costipP q ď costipP riÐ f 1isq.

It is well known that every RAG is guaranteed to have an NE [23].

The definition of NE applies to all games, in particular to dynamic ones. Every

NE Q in a RAG G matches an NE in a dynamic game xG, νy, for some scheduler

ν, in which the players ignore the history of the play and follow their objectives in

Q. However, such a strategy is not rational. Thus, one could argue that an NE is

not necessarily achievable in a dynamic setting. We illustrate this in the following

example.

Example 2.1 Consider a two-player DCG with resources ta, bu, latency functions

`apxq “ x and `bpxq “ 1.5x, and objectives Σ1 “ Σ2 “ ttau, tbuu. Consider the

sequential scheduling in which Player 1 moves first followed by Player 2. Since the

players’ objectives are singletons, the dynamic game consists of one phase. Consider

the Player 2 strategy f2 that “promises” to select the resource a no matter what

Player 1 selects, thus f2paq “ f2pbq “ a. Let fa1 and f b1 be the Player 1 strategies

in which he selects a and b, respectively, thus fa1 pεq “ a and f b1pεq “ b. Note that

these are all of Player 1’s possible strategies. The profile P “ xf b1 , f2y is an NE.

Indeed, Player 2 pays 1, which is the least possible payment, so he has no incentive

to deviate. Also, by deviating to fa1 , Player 1’s payoff increases from 1.5 to 2, so he

has no incentive to deviate either. Note, however, that this strategy of Player 2 is

not rational. Indeed, when it is Player 2’s turn, he is aware of Player 1’s choice. If

Player 1 plays fa1 , then a rational Player 2 is not going to choose a, as this results

in a cost of 2, whereas by b, his cost will be 1.5. Thus, an NE profile with f2 may

2Throughout this paper, we consider pure strategies and deviations, as is the case in the vast

literature on RAGs.

142

not be achievable.

To overcome this issue, the notion of subgame perfect equilibrium (SPE, for short)

was introduced. In order to define SPE, we need to define a subgame of a dynamic

game. Let G “ xG, νy, where G “ xrks, E, tΣiuiPrks, tceuePEy. It is helpful to consider

the outcome tree TG of G, which is a finite rooted tree that contains all the legal

histories of G. Each internal node in TG corresponds to a legal history, its successors

correspond to possible extensions of the history, and each leaf corresponds to a

legal outcome. Consider a legal history h. We define a dynamic RAG Gh, which,

intuitively, is the game as G after the history h has been played. More formally,

the outcome tree of Gh is the subtree T hG whose root is the node h. We define the

costs in Gh so that the costs of the players in the leaves of T hG are the same as the

corresponding leaves in TG. Assume that h ends at the m-th turn. A profile P in

G corresponds to a trimming of TG in which the internal node h has exactly one

child h ¨ σ, where σ is the set of choices of the players in ν 1́
pmq when they play

according to their strategies in P . The profile P induces a profile P h in Gh, where

the trimming of T hG according to P h coincides with the trimming of G according to

P . We formally define the outcome tree and a subgame in Appendix A.

Definition 2.1 A profile P is an SPE if for every legal history h, the profile P h is

a NE in Gh.

Note that the profile P “ xf b1 , f2y in the example above is an NE but not an

SPE. Indeed, for the history h “ a, the profile P h is not a NE in Gh as Player 2 can

benefit from unilaterally deviating as described above.

3 Existence of SPE in Dynamic Congestion Games

It is easy to show that every sequential dynamic game has an SPE by unwinding

the outcome tree, and similar results have been shown before (c.f., [16]). The proof

can be found in Appendix B.

Theorem 3.1 Every sequential dynamic game has an SPE.

One could hope to prove that a general dynamic game G also has an SPE using

a similar unwinding of TG. Possibly using the well-known fact that every CG is

guaranteed to have an NE [23]. Unfortunately, and somewhat surprisingly, we show

that this is not possible. We show that (very restrictive) DCGs might not have an

SPE. For the good news, we identify a maximal fragment that is guaranteed to have

an SPE.

143

Recall that a CG is singleton when the players’ objectives consist of singletons

of resources, and a CG is symmetric if all the players agree on their objectives.

We start with the bad news and show that symmetric DCGs and singleton DCGs

need not have an SPE, even with linear latency functions. We then show that the

combination of these two restrictions is sufficient for existence of an SPE in a DCG.

Theorem 3.2 There is a symmetric linear DCG with no SPE.

Proof: We first describe a linear DCG with no SPE, and then alter it to make

it symmetric. Consider the following three-player linear CG G with resources E “

ta, a1, b, b1, cu and linear latency functions `apxq “ `bpxq “ x, `a1pxq “
3
4
x, `b1pxq “ 11

4
,

and `cpxq “ x ` 2
3
. Let Σ1 “ Σ2 “ tta, a1u, tb, b1u, tcuu and Σ3 “ ttcu, ta1, buu.

Consider the dynamic game G in which Players 1 and 2 move concurrently followed

by Player 3. Formally, G “ xG, νy, where νp1q “ νp2q “ 1 and νp3q “ 2.

We claim that there is no SPE in G. Note that since the players’ objectives are

disjoint, then once a player reveals the first choice of resource, he reveals the whole

objective he chooses, thus we analyze the game as if it takes place in one phase

in which the players’ reveal their whole objective. The profiles in which Players 1

and 2 choose the same objective are clearly not a SPE as they are not an NE in

the game Gε. As for the other profiles, in Figure 2, we go over half of them, and

show that none of them is an SPE. The other half is dual. The root of each tree is

labeled by the objectives of Players 1 and 2, and its branches according to Player 3’s

objectives. In the leaves we state Player 3’s payoff. In an SPE, Player 3 performs

a best-response according to the objectives he observes as otherwise the subgame is

not in an NE. We depict his choice with a bold edge. Beneath each tree we note

the payoffs of all the players in the profile, and the directed edges represent the

player that can benefit from unilaterally deviating. In Appendix C, we construct a

symmetric DCG G 1 by altering the game G above. We do this by adding a fourth

player and three new resources so that G 1 simulates G.

{a, a′}, {b, b′}

12

3
31

2

〈13

4
, 21

4
, 12

3
〉

{c} {a′, b}

{a, a′}, {c}

22

3
21

2

〈21

2
, 12

3
, 21

2
〉

{c} {a′, b}

{b, b′}, {c}

22

3
23

4

〈21

4
, 22

3
, 22

3
〉

{c} {a′, b}

{b, b′}, {a, a′}

12

3
31

2

〈21

4
, 13

4
, 12

3
〉

{c} {a′, b}

Figure 2: Profiles in the game G with no SPE.

Theorem 3.3 There is a singleton linear DCG with no SPE.

144

Proof: Consider the four-player linear singleton CG G with resources E “

ta, b, c, du and linear latency functions `apxq “ 41
2
¨ x, `bpxq “ 21

2
¨ x, `cpxq “ 3x,

and `dpxq “ 4x. Let Σ1 “ ttau, tcuu, Σ2 “ ttbu, tduu, Σ3 “ ttbu, tcuu, and Σ4 “

ttcu, tduu. Consider the dynamic game G in which Players 1 and 2 move concurrently,

then Player 3, and finally Player 4. Formally, G “ xG, νy, where νp1q “ νp2q “ 1,

νp3q “ 2, and νp4q “ 3.

We go over all the profiles in G and show that none of them is an SPE. The

profiles are depicted in Figure 3. Similar to Theorem 3.2, the root of each tree is

labeled by the objective of Players 1 and 2, its branches according to Players 3 and

4’s objectives, and in the leaves we state the payoffs of Players 3 and 4 assuming

they choose their best choice given the other players’ choices.

{a}, {b}

5, 3 5, 4 6, 6 3, 4

〈41

2
, 21

2
, 3, 4〉

{b} {c}

{c} {d} {c} {d}

{c}, {b}

5, 6 5, 4 9, 9 6, 4

〈3, 5, 5, 4〉

{b} {c}

{c} {d} {c} {d}

{c}, {d}

21

2
, 6 21

2
, 8 9, 9 6, 4

〈6, 4, 21

2
, 6〉

{b} {c}

{c} {d} {c} {d}

{c}, {d}

21

2
, 3 21

2
, 8 6, 6 3, 8

〈41

2
, 4, 21

2
, 3〉

{b} {c}

{c} {d} {c} {d}

Figure 3: The profiles of the singleton DCG with no SPE. Bold edges depict Play-

ers 3 and 4’s best choices given the other players choices. Directed edges represent

the player that can benefit from unilaterally deviating.

We now prove that combining the two restrictions does guarantee the existence

of SPE. We note that while our negative results hold for linear DCGs, which tend

to be stabler than other DCGs, our positive result holds for every increasing latency

functions.

Theorem 3.4 Every symmetric singleton DCG has an SPE.

Proof: Consider a symmetric singleton DCG G “ xG, νy. Recall that since G is

a singleton game, every outcome of G consists of one phase. Let P be an NE in G

(recall that according to [23] an NE exists in every CG). Since G is symmetric, we

can assume that, for 1 ď j ă k, the players that move in the j-th turn do not pay

more than the players that move after them. Formally, for i, i1 P rks, if νpiq ă νpi1q,

then costipP q ď costi1pP q. In particular, the players who move in the first turn pay

the least, and the players that move in the last turn pay the most. We construct

a profile Q in G and show that it is an SPE. Intuitively, in Q, the players follow

their objectives in P assuming the previous players also follow it. Since the costs are

increasing with turns, if Player i deviates, a following Player j will prefer switching

145

resources with Player i and also switching the costs. Thus, the deviation is not

beneficial for Player i. In Appendix D, We construct Q formally and prove that it

is an SPE.

4 Existence of SPE in Dynamic Cost-sharing Games

Cost sharing games tend to be less stable than congestion games in the concurrent

setting; for example, very simple fragments of multiset cost-sharing games do not

have an NE [5] while linear multiset congestion games are guaranteed to have an

NE [6]. In this section we are going to show that, surprisingly, there are classes of

games in which an SPE exists only in the cost-sharing setting. Still, SPE is not

guaranteed to exist in general DSGs. We start with the bad news.

Theorem 4.1 There is a DSG with no SPE.

Proof: Consider the following four-player SGG with resources E “ ta, a1, a2, b, b1, b2, c, c1, c2u

and costs ca “ cb “ cc “ 6, ca1 “ cb1 “ cc1 “ 4, and ca2 “ cb2 “ cc2 “ 3.

Let Σ1 “ tta, a1u, tb, b2uu, Σ2 “ ttb, b1u, tc, c2uu, Σ3 “ ttc, c1u, ta, a2uu, and Σ4 “

tta, a1u, tb, b1u, tc, c1uu. Consider the dynamic game G in which players 1,2, and 3

move concurrently followed by Player 4. Formally, G “ xG, νy, where νp1q “ νp2q “

νp3q “ 1 and νp4q “ 2.

We claim that there is no SPE in G. Similar to Theorem 3.2, since the players’

objectives are disjoint, we analyze the game as if it takes place in one phase. In

Figure 4, we depict some of the profiles and show that none of them are an SPE.

As in Theorem 3.2, the root of each tree is labeled by the objectives of Players 1, 2,

and 3, its branches according to Player 4’s choices, and in the leaves we state the

cost of Player 4 assuming he chooses his best choice given the other players’ choices.

Finally, it is not hard to show that every profile not on the cycle of profiles cannot

be an SPE.

{b, b′′}, {b, b′}, {a, a′′}

7 4 10

〈5, 4, 9, 4〉

{a, a′} {b, b′} {c, c′}

{a, a′}, {b, b′}, {a, a′′}

4 7 10

〈4, 10, 5, 4〉

{a, a′} {b, b′} {c, c′}

{a, a′}, {c, c′′}, {a, a′′}

4 10 7

〈4, 9, 5, 4〉

{a, a′} {b, b′} {c, c′}

{a, a′}, {c, c′′}, {c, c′}

7 10 4

〈10, 5, 4, 4〉

{a, a′} {b, b′} {c, c′}

Figure 4: Profiles in the game with no SPE. Bold edges depict Player 4’s best choice

given the other players choices. Directed edges represent the player that can benefit

from unilaterally deviating.

146

Recall that singleton DCGs are not guaranteed to have an SPE (Theorem 3.3).

On the other hand, we show below that singleton DSGs are guaranteed to have an

SPE. In order to find an SPE in such a game, we use a firmer notion of an equilibria

in SGs.

A strong equilibria (SE, for short) [3] which is stable against deviations of coali-

tions of players rather than deviations of a single player as in NEs. Formally, consider

a singleton SG G “ xrks, E, tΣiuiPrks, tceuePEy, a profile P “ xσ1, . . . , σky, a coalition

of players C Ď rks, and a joint move S P
Ť

iPC Σ
tiu
i for the members of the coalition.

We denote by P rC Ð Ss “ xσ11, . . . , σ
1
ky the profile in which the players in C switch

to their objective in S, thus σ1i “ Spiq for every i P C, and σ1i “ σi for i R C. We

say that S is beneficial for C if it is beneficial for all the members of the coalition,

thus for every i P C, we have costipP rC Ð Ssq ă costipP q. We say that P is an SE

if there is no coalition that has a beneficial move.

We show a connection between strong equilibria and SPEs in singleton SGs. It

is shown in [13] that every singleton SG has an SE.

Theorem 4.2 Consider a singleton DSG G “ xG, νy. Then, every strong equilib-

rium in G matches an SPE of G. In particular, every singleton DSG has an SPE.

Proof: We describe the intuition of the proof and the details can be found in

Appendix E. Consider a singleton DSG G “ xG, νy, and let Q be an SE in G. We

describe a profile P in G that matches Q, and we claim that it is an SPE. Consider

a history h that ends in the i-th turn. Assume the players that play in h follow their

objective in Q. Then, the players who play next, namely these in ν 1́
pi ` 1q, also

follow Q. Thus, P matches Q. The definition of the strategies in P for histories

that do not follow Q is inductive: assume only the players in ν 1́
piq choose differently

than in Q, then the subgame Gh is a singleton DSG. We find a strong equilibrium

in Gh and let the players in ν 1́
pi` 1q choose according to it.

We claim that P is an SPE. Assume towards contradiction that there is a Player i

who can benefit from a unilateral deviation to a resource e. Such a deviation initiates

subsequent deviations from players who choose in later turns than Player i. We

consider the outcome of the game, and the players that play differently than in Q.

Let I,D Ď rks be the set of players whose cost increases and decreases, respectively,

with respect to their cost in Q. We make several observations. Since Q is an SE,

we have I ‰ H. Moreover, there must be a player jI P I who deviates to e. Assume

Player jI chooses e1 in Q. Since G is a SG, there must be a player jD P D who

chooses e1 in Q, but deviates following Player i’s deviation. We continue recursively

and identify a sequence of resources e “ e1, e2, . . . such that for every j ě 1, there

are jI P I and jD P D such that both players deviate into ej. Moreover, Players jI

and pj`1qD use the same objective in Q. A contradiction follows from the fact that

147

since there are finitely many resources, the sequence has a loop.

Remark 4.3 One could suspect that existence of strong equilibria in the underlying

RAG implies existence of an SPE in the dynamic game. However, [13] shows that

singleton CGs are guaranteed to have an SE, while we show in Theorem 3.3 that

singleton DCGs are not guaranteed to have an SPE. In fact, [13] shows that every

NE in a singleton CG is also an SE, while it is shown in [25] that this is not the case

for singleton SGs.

One could also suspect that Theorem 4.2 generalizes to richer types of objectives.

That is, we can ask whether, for an DSG G “ xG, νy, an SE in G matches an SPE

in G. Theorem 4.1 shows that this is not the case as in the SG there, the profile

xtb, b2u, tb, b1u, ta, a2u, tb, b1uy is an SE.

Remark 4.4 Consider a symmetric DSG G “ xG, νy. The social optimum profile

O in G is attained when all the players choose the same cheapest objective, namely

the objective with the minimal sum of resource costs. It is not hard to see that O is

an NE as a deviation results in a more expensive objective with less sharing. Recall

that we study SPE in dynamic games as NE might contain strategies that will not

be used by rational players. Consider a profile P in G that matches O (note that

there can be many such profiles, and some can consist of strategies that are chosen

by rational players). The same arguments stated above imply that P is an NE.

Nevertheless, P may not be an SPE, as G might contain a subgame with no SPE.

5 Equilibrium Inefficiency

It is well known that decentralized decision-making may lead to sub-optimal solu-

tions from the point of view of society as a whole. We define the cost of a profile

P , denoted costpP q, to be
ř

iPrks costipP q. We denote by OPT the cost of a social-

optimal solution; i.e., OPT “ minP costpP q. Two standard measures that quantify

the inefficiency incurred due to self-interested behavior are the price of anarchy

(PoA) [15, 21] and price of stability (PoS) [2, 26]. The PoA is the worst-case inef-

ficiency of an NE; The PoA of a game G is the ratio between the cost of the most

expensive NE and the cost of the social optimum. The PoS measures the best-case

inefficiency of an NE, and is defined similarly with the cheapest NE. The PoA of a

family of games F is supGPF PoApGq, and the definition is similar for PoS.

In dynamic games we consider SPE rather than NE. We adapt the definitions

above accordingly, and we refer to the new measures as dynamic PoA and dynamic

PoS (DPoA and DPoS, for short). We study the equilibrium inefficiency in the

classes of games that are guaranteed to have an SPE, namely singleton DSGs and

symmetric singleton DCGs.

148

The lower bounds for the PoA and PoS for singleton SG and singleton symmetric

CGs follow to the dynamic setting as we can consider the scheduler in which all

players choose simultaneously in the first turn. The upper bounds on the DPoS for

singleton symmetric DCGs follow from the fact that every NE in singleton symmetric

CGs matches an SPE in the corresponding dynamic game. For singleton DSG, recall

that an SE in the traditional game matches an SPE in the dynamic game. It is shown

in [29] that singleton SGs have an SE whose cost is at most logpkq ¨ OPT , which

coincides with the logpkq lower bound. Finally, the upper bound on the DPoA for

singleton DSGs follows from the same argument as traditional games. For congestion

games, it follows by applying a recent result by [10] to our setting. The details can

be found in Appendix F.

Theorem 5.1 The DPoA and DPoS in singleton DSGs and singleton symmetric

DCGs coincide with the PoA and PoS in singleton SGs and singleton symmetric

CGs, respectively.

6 Deciding the Existence of SPE

In the previous sections we showed that dynamic RAGs are not guaranteed to have

an SPE. A natural decision problem arises, which we refer to as DSPE: given a

dynamic RAG, decide whether it has an SPE. We show that the problem is PSPACE-

complete in DSGs as well as DCGs. We start with the lower bound. The crux of

the proof is given in the following lemma.

Lemma 6.1 Given a QBF instance ψ, there is a fully sequential game Gψ that is

either a DCG or a DSG, and two constants γ, δ ą 0, such that in every SPE P in

Gψ, (1) if ψ is true, then cost1pP q ă γ, and (2) if ψ is false, then cost1pP q ą δ.

Proof: For DCGs, such a construction is described in [16], which uses a con-

struction by [28] in order to simulate the logic of a NAND gate by means of a CG.

For SGs, we describe the construction below, which is inspired by the construction

in [16].

The input to the TQBF problem is a Boolean circuit ψ with inputs x1, . . . , xn,

where the variables are partitioned into sets of existential variables E1, . . . , Em and

universal variables A1, . . . , Am. We say that ψ is true (in which case it is in TQBF)

iff DE1@A1 . . . DEm@Amψ. Wlog, we assume that ψ is composed only of NAND gates.

This is indeed wlog from every Boolean circuit ϕ we can construct an equivalent

circuit ϕ1, with only NAND gates in polynomial time.

We describe a DSG that simulates the logic of a NAND gate. We refer to the

game as a gate game (see an example in Figure 5). The gate game simulates a gate

149

with two inputs and r outputs. It has r ` 2 players, where the first two players

correspond to the two inputs of the gate, and we refer to them as I1 and I2, and the

other players, which we refer to as O1, . . . , Or, correspond to the outputs to the gate.

The resources are tij0, i
j
1 : j P t1, 2uu Y tgj, oj0, o

j
1 : j P t1, . . . , ruu standing for input,

gate, and output resources. The costs of the input resources is 1, the costs of the

gate resources is 3ε, and every 0-output resource costs 1 while 1-output resources

cost 1 ` 1.1ε. Each player has two objectives: a 1 objective and a 0 objective. For

j “ 1, 2, let ΣIj “ tti
j
0u, ti

j
1, g

1, . . . , gruu. For j “ 1, . . . , r, let ΣOj “ tto
j
1u, tg

j, oj0uu.

Finally, the game is sequential. The exact order is not important as long as the

input players play before the output players.

In Appendix G we prove that a gate game simulates the logic of a NAND gate.

Namely, in the unique SPE of the game, the output players select their 1-objectives

iff the input players select their 0-objectives. We also show how to connect gate

games to construct a game that simulates the logic of a given circuit.

x1

x2

x3

9x1, x2 8x3

G1

G2
G3

G4

i1
0

i1
1

i2
0

i2
1

i3
0

i3
1

g1
1

g2
1

g2

o
1,1

0

o
1,1

1

o
1,2

0

o
1,2

1

o2
0

o2
1

g3 o3
0

o3
1

g4 o4
0

o4
1

Figure 5: An input ψ to TQBF and the resulting dynamic game. An edge between

two resources represents the fact that they belong to the same objective of one of

the players.

To conclude the lower-bound proof, we combine between the game that is con-

structed in Lemma 6.1 and a game that has no SPE as in the examples we show in

the previous sections. For the upper bound, consider a dynamic RAG G, and let TG
be the outcome tree of G. Recall that there is a one-to-one correspondence between

leaves in TG and legal outcomes of G. In order to decide in PSPACE whether G has

an SPE, we guess a leaf l in TG and verify that it is an outcome of an SPE. Thus,

we ask if there is an SPE P in G whose outcome corresponds to l.

Theorem 6.2 The DSPE problem is PSPACE-complete for dynamic RAGs.

7 Efficient Stable Scheduling

The underlying assumption in game theory is that the players are selfish yet an

authority may construct components of the game, and its challenge is to do so in

a way that leads to stability. In some settings, the RAG is fixed and the authority

150

only has the power schedule the players. We assume that we are given a set S of

constraints on schedulers that the authority can impose. A constraint s P S is either

a sequential constraint, of the form i1 ă i2, for i1, i2 P rks, stating that Player i1

moves before Player i2, or a concurrent constraint, of the form i1 “ i2, stating that

the Players i1 and i2 move concurrently. Scheduling has a price. The input also

contains a value function c : S Ñ Q that assigns to each constraint a cost or a

reward. Intuitively, when cpsq “ γ ě 0, it means that the authority pays γ in order

to force s in ν. Then, when cpsq “ γ ď 0, it means that the authority is rewarded γ

if ν respects s. Consider a scheduler ν. Let R Ď S be the set of constraints satisfied

by ν. Then, costS,cpνq “
ř

sPR cpsq.

The budgeted scheduling problem (BS problem, for short) gets as input a RAG

G, a set of constraints S, a value function c : S Ñ Q, and a budget β. The

goal is to decide whether there is a scheduler ν with costS,cpνq ď β such that the

dynamic game xG, νy has an SPE. The proof of the following theorem can be found

in Appendix I.

Theorem 7.1 The BS problem is PSPACE-complete.

8 Games with Ordered Resources

In many settings it makes sense to restrict the order in which the players select

their objectives. For example, recall that a network formation games is played on a

network, and each player chooses a path that connect his source and target vertices.

When decisions are taken while the path is being generated, it is often the case that

a player cannot select the edges on his path in any order. Rather, he must extend

his path one edge at a time. The corresponding constraints state that if a player

uses an edge xu, vy, then, unless u is the source vertex, in a previous phase an edge

that ends in u must have been chosen.

Generally speaking, we assume a dynamic game is also given by a partial order

ă on the resources. A legal strategy is one that does not violate the order. Thus,

if the sequence of choices for a player in some outcome is e1, e2, . . . , em, then there

are no 1 ď i ă j ď m such that ej ă ei. We restrict the players to choose only legal

strategies and we assume there is at least one legal strategy for each player.

Theorem 8.1 Our results in terms of SPE existence, equilibrium inefficiency, and

computational complexity coincide for ordered dynamic games and dynamic games.

Proof: Note that ordered dynamic games generalize dynamic games as we allow

using the empty partial order. So, all our bad news follow to this setting. In terms of

equilibrium existence and inefficiency, our good news are for singleton games. Such

151

games cannot be ordered. As for computational complexity, our upper bounds can

easily be adapted to ordered games.

9 Discussion and Future Research

We studied an addition of dynamics to resource allocation games. The dynamics we

studied extend traditional RAGs in two natural ways: the players select one resource

at a time rather than choosing their whole objective in one shot, and the players

perform choices in an ordering that is neither sequential nor fully concurrent. A

future research direction is to apply these two natural extensions to other games.

We studied stable solutions of dynamic RAGs while focusing on SPE. We showed

classes of dynamic RAGs that are guaranteed to have an SPE, and showed that most

classes need not have one. The existence of a stable outcome is crucial, and a natural

future research direction is a quest for stable classes. In addition to restrictions on

the setting, like symmetry or singleton objectives, one can think about different

mechanisms for allocating costs to resources – possibly ones that take the dynamics

into account, and, similar to issues we have studied in the paper, the ability to

stability via controlled scheduling.

Finally, the question of the benefits of choosing redundant resources becomes of

special interest in the dynamic setting. Recall that we require the set of resources

that a player chooses in an outcome of a game to be one of his objectives. Allow-

ing players to use redundant resources amounts to weakening this requirement and

replacing it by one in which the set (in fact, multiset) of resources that a player

chooses contains one of his objectives. In the traditional setting, it is not hard to

see that choosing a redundant resource cannot be beneficial. In the dynamic setting

this is not the case, as a player may choose a redundant resource in order to mislead

the other players or in order to “pass” in his turn (a variant of Example 1.1, in which

we remove Player 1’s objectives that include the resource g, demonstrates this). An

interesting direction for future research is the study of a game in which players are

allowed to choose redundant resources.

References

[1] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic.

Journal of the ACM, 49(5):672–713, 2002.

[2] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and

T. Roughgarden. The price of stability for network design with fair cost al-

location. SIAM J. Comput., 38(4):1602–1623, 2008.

152

[3] R. Aumann. Acceptable points in games of perfect information. Contributions

to the Theory of Games, 4:287–324, 1959.

[4] G. Avni and O. Kupferman. Synthesis from component libraries with costs. In

Proc. 25th Int. Conf. on Concurrency Theory, pages 156–172, 2014.

[5] G. Avni, O. Kupferman, and T. Tamir. Network-formation games with regular

objectives. In Proc. 17th Int. Conf. on Foundations of Software Science and

Computation Structures, volume 8412 of Lecture Notes in Computer Science,

pages 119–133. Springer, 2014.

[6] G. Avni, O. Kupferman, and T. Tamir. Congestion games with multisets of

resources and applications in synthesis. In Proc. 35th Conf. on Foundations of

Software Technology and Theoretical Computer Science, pages 365–379, 2015.

[7] V. Bilò, A. Fanelli, and L. Moscardelli. On lookahead equilibria in congestion

games. In Web and Internet Economics - 9th International Conference, WINE

2013, Cambridge, MA, USA, December 11-14, 2013, Proceedings, pages 54–67,

2013.

[8] J. R. Correa, J. de Jong, B. de Keijzer, and M. Uetz. The curse of sequen-

tiality in routing games. In Web and Internet Economics - 11th International

Conference, WINE 2015, Amsterdam, The Netherlands, December 9-12, 2015,

Proceedings, pages 258–271, 2015.

[9] H. Chen and T. Roughgarden. Network design with weighted players. Theory

Comput. Syst., 45(2):302–324, 2009.

[10] J. de Jong and M. Uetz. The sequential price of anarchy for atomic congestion

games. In Web and Internet Economics - 10th International Conference, WINE

2014, Beijing, China, December 14-17, 2014. Proceedings, pages 429–434, 2014.

[11] D. Fotakis. Stackelberg strategies for atomic congestion games. In Algorithms

- ESA 2007, 15th Annual European Symposium, Eilat, Israel, October 8-10,

2007, Proceedings, pages 299–310, 2007.

[12] T. Harks and M. Klimm. On the existence of pure Nash equilibria in weighted

congestion games. Math. Oper. Res., 37(3):419–436, 2012.

[13] R. Holzman and N. Law-Yone. Strong equilibrium in congestion games. Games

and Economic Behavior, 21(1-2):85–101, 1997.

[14] R. Koch and M. Skutella. Nash equilibria and the price of anarchy for flows

over time. Theory Comput. Syst., 49(1):71–97, 2011.

153

[15] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. Computer Science

Review, 3(2):65–69, 2009.

[16] R. P. Leme, V. Syrgkanis, and E. Tardos. The curse of simultaneity. In Inno-

vations in Theoretical Computer Science 2012, Cambridge, MA, USA, January

8-10, 2012, pages 60–67, 2012.

[17] Y. Lustig and M.Y. Vardi. Synthesis from component libraries. STTT, 15(5-

6):603–618, 2013.

[18] I. Milchtaich. Congestion games with player-specific payoff functions. Games

and Economic Behavior, 13(1):111 – 124, 1996.

[19] V. S. Mirrokni, N. Thain, and A. Vetta. A theoretical examination of prac-

tical game playing: Lookahead search. In Algorithmic Game Theory - 5th

International Symposium, SAGT 2012, Barcelona, Spain, October 22-23, 2012.

Proceedings, pages 251–262, 2012.

[20] J. Neumann. Zur theorie der gesellschaftsspiele. Mathematische Annalen,

100(1):295–320.

[21] C. H. Papadimitriou. Algorithms, games, and the internet. In Proc. 33rd ACM

Symp. on Theory of Computing, pages 749–753, 2001.

[22] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th

ACM Symp. on Principles of Programming Languages, pages 179–190, 1989.

[23] R.W. Rosenthal. A class of games possessing pure-strategy Nash equilibria.

International Journal of Game Theory, 2:65–67, 1973.

[24] T. Roughgarden and E. Tardos. How bad is selfish routing? Journal of the

ACM, 49(2):236–259, 2002.

[25] O. Rozenfeld and M. Tennenholtz. Strong and correlated strong equilibria

in monotone congestion games. In Internet and Network Economics, Second

International Workshop, WINE 2006, Patras, Greece, December 15-17, 2006,

Proceedings, pages 74–86, 2006.

[26] A. S. Schulz and N. E. Stier Moses. On the performance of user equilibria in

traffic networks. In Proceedings of the Fourteenth Annual ACM-SIAM Sym-

posium on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland,

USA., pages 86–87, 2003.

[27] R. Selten. Spieltheoretische behandlung eines oligopolmodells mit nach-

frageträgheit. Zeitschrift für die gesamte Staatswissenschaft, 121, 1965.

154

[28] A. Skopalik and B. Vöcking. Inapproximability of pure nash equilibria. In

Proceedings of the 40th Annual ACM Symposium on Theory of Computing,

Victoria, British Columbia, Canada, May 17-20, 2008, pages 355–364, 2008.

[29] V. Syrgkanis. The complexity of equilibria in cost sharing games. In Proc. of the

6th International Conference on Internet and Network Economics, WINE’10,

pages 366–377, 2010.

A Full Definitions: Outcome Trees and Subgames

We denote by TG, the outcome tree of a dynamic RAG G “ xG, νy. The root of

TG corresponds to the empty prefix ε. Recall that tν is the maximal turn in ν. Let

m ě 1, and j P rtνs, and consider a node that corresponds to a prefix h of a legal

outcome, after m´1 phases have been played as well as j´1 turns in the m-th phase.

Thus, h “ π1, . . . , πm´1, πmj´1, where πlr : rks Ñ EK and πmj´1 : beforepjq Ñ EK. We

say that h is controlled by the players in ν 1́
pjq. Note that if ν is sequential, then

each node is controlled by exactly one player. The children of the node h contain all

the possible extensions of h with a legal joint move by the players in ν 1́
pjq. Thus, a

child h1 of h is a prefix of a legal outcome and it is of the form h1 “ π1, . . . , πm´1, πmj ,

where πmj : beforepj`1q Ñ EK, and πmj and πmj´1 agree on beforepjq. The edge xh, h1y

in TG corresponds to the joint move σ : ν 1́
pjq Ñ EK, where for every i P ν 1́

pjq we

have σpiq “ πmj piq. We sometimes use h ¨ σ to refer to h1. Note that if j “ tν , then

h1 is of the form π1, . . . , πm, πm`1
1 . Finally, h is a leaf if j “ tν and all players have

finished playing in the m-th phase, thus the choices of all the players in the next

phases must be K. Clearly, TG is a finite tree.

Consider a profile P “ xf1, . . . , fky. It is possible to trim TG according to P so

that each internal node h has exactly one child h ¨ σ, where σ is the joint objective

in which the players who control h follow P . That is, for each Player i who controls

h we have σpiq “ fiphq. Note that by trimming TG according to P , we leave exactly

one leaf l that is reachable from the root. Note that both outpP q as well as the leaf

l correspond to the same profile in the underlying RAG G. For every i P rks, the

cost of Player i in l is costipP q.

We proceed to define a subgame. Let h “ π1, . . . , πm´1, πmj´1 be a legal history.

Note that m´1 phases have been played as well as j´1 turns in the m-th phase, and

the players that should play next are ν 1́
pjq. The subgame Gh “ xGh, νhy of G is a

dynamic RAG with Gh “ xrks, E, tΣ
h
i uiPrks, tfeuePEy, where the sets Σh

i of objectives

are defined as follows. Consider i P rks. Let e1, . . . , em be the choices of Player i in

h over EK. Let m1 ď m be the last index such that em1 P E. Let σhi “ te1, . . . , em1u

be the edges in E that Player i collects during h, and let nusedph, eq be the load

155

generated on e in h by all the players, thus nusedph, eq “ |ti P rks : e P σhi u|.

The set of objectives of Player i in Gh is Σh
i . Each objective in Σh

i corresponds

to an objective in Σi (that is, Player i’s objectives in G), minus the resources that

have been collected in h, thus Σh
i “ tσzσ

h
i : σ P Σiu. The cost Player i pays in a

profile P “ xσ1, . . . , σky takes into account also the use of resources in the history

h, thus costipP q “
ř

ePpσipeqYσhi peqq
`epnusedph, eq ` nusedpP, eqq. Recall that j ´ 1

turns have been played in the last phase in h. Thus, we “shift” the scheduler νh

by j. For l P rks, the players ν 1́
plq who are scheduled to play in the l-th turn by

ν, are scheduled to play in the
`

pl ´ jq mod k
˘

` 1 turn by νh. In particular, for

every i P ν 1́
pjq, we have νhpiq “ 1. Finally, consider a strategy f in G. We define

a strategy fh in the game Gh by fhpxq “ fph ¨ xq. Given a profile P “ xf1, . . . , fky,

the corresponding profile in Gh is P h “ xfh1 , . . . , f
h
k y.

B Proof of Theorem 3.1

Given a sequential game G, we construct an SPE by “unwinding” the outcome tree

TG in a backwards inductive manner. Consider an internal node h in TG. Since G
is sequential, there is a unique Player i who controls h. If h is a leaf, then K is the

only choice Player i can make, and we set his strategy to select K. Assume h is

an internal node, and let e1, . . . , em be the possible resources Player i can select in

h. Let h1, . . . , hm be the children of the node h in TG. Assume by induction that

there is an SPE in the games Gh1 , . . . ,Ghm , and let γ1, . . . , γm be Player i’s costs in

these SPEs. We set Player i’s choice in h to be a resource el that minimizes his

payment, thus γl “ mintγ1, . . . , γmu. Clearly, this profile is an NE in the subgame

Gh. We refer to this choice of Player i as a best response to the history h that he

observes. Note that every choice of Player i that achieves a higher cost is not an

NE. In particular, if at every node h there is a unique best response for the player

that controls h, then there is a unique SPE in G.

C Proof of Theorem 3.2

To conclude the proof, we construct a symmetric CG G1 by altering the game G

above. We add a fourth player and three new resources d, e, and f , with latency

functions `dpxq “ 10x, `epxq “ 25x, and `f pxq “ 30. The other resources are as in

G. The objectives of the players’ are symmetric. They consist of Σ1YΣ2, where we

add d to every strategy in Σ1 and e to every strategy in Σ2. We also add a singleton

objective tfu. Formally, the objectives are ttfuu Y tσ Y tdu : σ P Σ1u Y tσ Y teu :

σ P Σ2u. Finally, we define a scheduler ν 1 that is similar to ν only that Player 4

156

moves last, thus ν 1p1q “ ν 1p2q “ 1, ν 1p3q “ 2, and ν 1p4q “ 3.

We claim that G 1 “ xG1, ν 1y has no SPE. We claim that in every profile that is

a candidate to be an SPE, the choice of Players 1 and 2 in the first phase is d, the

choice of Player 3 is e, and the choice of Player 4 is f . This follows from the following

three properties: (1) the costs of these three resources is much higher than that of

the other resources, so the players’ best response in the first phase is to minimize

the cost they pay for them, (2) using d at most twice is more beneficial than using

e, and using d three times is more costly than using e once, and (3) using e once is

more beneficial than using f once, and using f once is more beneficial than using

e twice. Once the first phase is played, the analysis is the same as in the game G,

which we proved not to have an SPE.

D Proof of Theorem 3.4

We construct a profile Q “ xf1, . . . , fky in G and show that it is an SPE. Consider

a history h. For a resource e P E, we define nusedph, eq and nusedpP, eq to be the

loads on e in h and P , respectively. We say that h is consistent with P if for every

e P E, we have nusedph, eq ď nusedpP, eq. When P is clear from the context we do

not state it implicitly.

We first define the strategies in Q w.r.t. consistent histories. Consider such a

history h that ends before the j-th turn, thus the players who control the node h

in TG are ν 1́
pjq. We define the strategies in Q as if the players in ν 1́

pjq move in

a sequential order. Let i1, i2, . . . , in be an arbitrary order on the players in ν 1́
pjq.

Then, for 1 ď l ď n, we define the strategy fil of Player il to perform a best response

to the objectives of players in beforepjq, whose objectives he observes, and as if he

also observes the objectives of the players i1, . . . , il´1 who also move in the j-th turn.

We formally define fil . Let h1 be the history h concatenated with the objec-

tives of the players i1, . . . , il´1. We say that a resource e P E is full in h1 if

nusedph1, eq “ nusedpP, eq. Recall that fil is defined w.r.t. h. We define filphq

to be a resource e that is not full after h1 and, assuming all resources will even-

tually be filled up, choosing e will cost the least for Player il, thus e minimizes

t`epnusedpP, eqq : nusedph1, eq ă nusedpP, equ. Note that since players never choose

a resource that is full, the history h concatenated with the choices in the j-th turn,

is a consistent history.

We have not yet defined the strategies in Q w.r.t. histories that are inconsistent

with P . Still, we can show that for every history h that is consistent with P , the

profile Qh is an NE in Gh. Assume that h ends before the j-th turn. We first show

that for every Player i P ν 1́
pjq, choosing a resource that is not full in h dominates

157

choosing a resource that is already full. That is, no matter how the other players

move, it is always more beneficial to choose a resource that is not yet full over one

that is full. Then, all that is left in order to prove that Qh is an NE, is to show that

no player can benefit from deviating to a resource that is not full. Such a deviation

results in a history that is consistent with P for which we have defined the strategies

in Q. Intuitively, such a deviation is not beneficial as we defined Q so that players

that move first pay less. By deviating, a player will “switch” costs with a player

that moves after him, thus his cost cannot decrease.

We make an observation before proving the claim. Assume the players ν 1́
pjq

select a joint objective σ such that h ¨σ is a history consistent with P . It is not hard

to see that outpQh¨σq is also consistent with P . Thus, for each Player i P ν 1́
pjq, we

have costipQ
hq “ costi1pP q, for some i1 P rks (possibly i1 “ i). Note that Qh is a

profile in the game Gh whereas P is a profile in the game G.

We proceed to prove that for every i P ν 1́
pjq, Player i cannot benefit from

unilaterally deviating from the profile Qh in the game Gh. Assume towards contra-

diction that Player i can benefit from unilaterally deviating and choosing a resource

e P E. Recall that since G is a singleton game, Player i does not move again.

Let σ be the joint move at h according to Qh, and let h1 “ h ¨ σ. We distinguish

between two cases. First, assume the resource e is full in the history h1. Thus,

nusedph1, eq “ nusedpP, eq. Note that Player i’s deviation forms a history that is

not consistent with P and we have not yet defined the strategies in Q w.r.t such

histories. Still, we can show that such a deviation is not beneficial. Note that the

load on e, no matter how the other players move is at least nusedpP, eq ` 1. Re-

call that costipQ
hq “ costi1pP q, for some i1 P rks. Since G is a symmetric game,

Player i1 can choose the objective e, thus e P Σi1 . Since P is an NE, we have

costi1pP q ď costi1pP ri
1 Ð esq. Note that the load on e in the profile P ri1 Ð es is ex-

actly nusedpP, eq` 1. Since G is a congestion game, the cost of e increases with the

load on it. Thus, the cost Player i pays after deviating is at least costi1pP ri
1 Ð esq,

which is not beneficial, and we reach a contradiction.

In the second case, the resource e to which Player i deviates is not full in the

history h1. Let h2 be the history after Player i’s deviation. Then, h2 is a history

consistent with P , and Q is defined w.r.t h2. Let P 1 be the profile in G that

corresponds to the outcome of Q in the subgame Gh2 . Let l P rks be the player

that selects e in P 1. Thus, costipP
1q “ costlpQq. Recall that according to Q, at h,

Player i should select the cheapest resource that is not full. Since Player i deviates,

the resource e is not that cheapest resource. So, Player l moves after Player i, where

by “after” we either mean that νpiq ă νplq or νpiq “ νplq but i comes before l in

the arbitrary order we fix for the players in νpiq-th turn. Thus, costlpQq ě costipQq,

and the deviation is not beneficial for Player i.

158

To conclude the proof, we complete the definition of the strategies in Q. The

definition is inductive. Let h1 be a history consistent with P , and let σ be a joint

move such that the history h “ h1 ¨σ is inconsistent. Since G is a singleton symmetric

game, so is the game Gh. Thus, we find an NE profile P 1 in Gh and continue as in

the above.

E Proof of Theorem 4.2

Let P “ xf1, . . . , fky be the profile that is described in the body of the paper whose

outcome coincides with the SE Q. We claim that P is an SPE. Consider a history h

that ends before the j-th turn, where assume that the players in h follow their choices

in Q. For the other histories the proof is similar. Assume towards contradiction

that there is i P ν 1́
pjq such that Player i can benefit from unilaterally deviating to

a strategy f 1i . We think of the outcome of P ri Ð f 1is as a profile Q1 “ xσ11, . . . , σ
1
ky

in G. Let C Ď rks be the players whose objectives in Q1 differ from their objectives

in Q. Let I,D Ď C be the partition of C to players whose payoff in Q1 increase and

decrease, respectively, with respect to their outcome in Q. Formally, if i P I, then

costipQq ě costipQ
1q, and if i P D, then costipQq ă costipQ

1q. Since Q is an SE, the

coalition C cannot all benefit, thus I ‰ H.

Consider a resource σ such that there is a player j P D with σ1j “ σ. We make

three observations. (1) there is j1 P I such that σ1j1 “ σ. Otherwise, in the game G,

the coalition of players in C that play σ in Q1 can benefit from deviating from Q,

contradicting the fact that it is an SE.

(2) There is j2 P D such that Players j1 and j2 choose the same objective in Q,

thus σj1 “ σj2 . Assume otherwise. Let Player j be the first player that “leaves”

σj2 , thus Player j chooses σj2 in Q and not in Q1 and this is the first such player to

choose. Note that if j P I, then by staying in σj2 , his cost cannot increase, thus the

deviation is not beneficial, and we reach a contradiction.

(3) Note that σ1j1 ‰ σ1j2 . Indeed, players j1 and j2 pay the same in Q while

Player j1’s payoff in Q1 is higher than it is in Q and Player j2’s payoff is lower.

Recall that we assume that Player i’s objective in Q differs from his objective

in Q1 and that i P D. We find a sequence of resources e1, e2, . . ., and for every

j ě 1, we associate with the resource ej two players ji P I and jd P D such that

σ1ji “ σ1jd “ ej. First, we define e1 “ σ1i and we associate i with e1, thus 1d “ i.

Consider j ě 1. Assume there is a player jd P D with σ1jd “ ej. By (1), there is a

ji P I with σ1ji “ ej, and we associate ji with ej. By (2), there is pj ` 1qd P D such

that Players pj ` 1qd and ji choose the same resource in Ph, thus σji “ σpj`1qd . We

define the next resource in the sequence ej`1 to be σ1
pj`1qd

, which by (3) is different

159

from ej. We associate Player pj ` 1qd P D with ej`1, and continue inductively.

Since there are finitely many resources, there is a loop er, er`1, . . . , es´1, er in the

sequence above. For r ď j ď s´1, note that costjdpQ
1q “ costjipQ

1q and costjipQq “

costpj`1qdpQq. Moreover, costjipQ
1q ě costjipQq and costjdpQq ą costjdpQ

1q. Com-

bining the above we have costjdpQq ą costjdpQ
1q “ costjipQ

1q ě costjipQq “

costpj`1qdpQq, and we reach a contradiction.

F Proof of Theorem 5.1

The lower bounds for both measures are easy. Since we consider singleton games,

an NE in a singleton RAG is an SPE in the corresponding dynamic RAG with the

concurrent scheduler, i.e., all the players move simultaneously in the first round.

We continue to the upper bounds, and start with SGs. In SGs, we have PoS “

logpkq and PoA “ k [2]. The proof for the upper bound for the DPoA is the same

as in RAGs: if a player’s cost is more than k times his cost in the social optimum

in some SPE, then he can deviate to his objective in the social optimum and reduce

his cost. For the upper bound on the DPoS, we note that the proof in Theorem ??

shows that a specific profile of an SG is an outcome of an SPE. It is shown in [29]

that the cost of this profile is at most logpkq ¨OPT , thus we have DPoS “ logpkq.

We conclude by studying CGs. In singleton symmetric CGs, we have PoA “ 4{3

[11] and we are not aware of a tight bound on the PoS. For the DPoS, Theorem 3.4

shows that every NE in a symmetric singleton CG corresponds to an SPE. For

the DPoA, we use a claim from [10]. They show that with a sequential scheduler,

every outcome of an SPE in a symmetric singleton CG is an NE in the underlying

simultaneous game. Their proof works also for schedulers that are not sequential.

G Proof of Lemma 6.1

Note that the players’ objectives are disjoint, so we analyze the game as if it takes

place in one phase. We claim that a gate game simulates the semantics of a NAND

gate. Assume both input players select their 1 objective, which corresponds to the

case in which the input of the gate is two 1’s, thus the outputs should be 0. For

j P rrs, we show that choosing the 0 objective is dominant for Player Oj. Indeed,

if Player Oj plays his 0 objective, the cost of the resource gj is split between three

players, so the total cost for Player Oj is 1 ` ε. On the other hand, the cost of

the 1 objective is 1` 1.1ε. Assume now that one of the input players chooses his 0

objective, thus the outputs should be 1. Then, choosing the 1 objective is dominant

for Player Oj as the cost of the 0 objective is at least 1` 1.5ε while the cost of the

160

1 objective remains 1` 1.1ε.

Next, we describe how to connect two gate games. Let G and G 1 be gate games

as in the above. We connect the corresponding gates such that the j-th output of

the first gate is fed as the first input to the second gate. In the combined game,

the players of G move before the players in G 1. Also, we merge between the output

resources of Player Oj in G with the input resources of Player I 11 in G 1. More formally,

let ΣOj “ tto
j
1u, tg

j, oj0uu in G and ΣI 11
“ tti1j0 u, ti

1j
1 , c

11, . . . , c1ruu in G 1. Then, in the

combined game, we have oj1 “ i111 and oj0 “ i110 . The cost of the first resource is 1 and

the second is 1` 1.1ε.

We claim that it is dominant for Player I 11 to match Player Oj’s choice of objec-

tive. Intuitively, this follows from the fact that the input and output resources cost

much more than the gate resources, so sharing the cost of the first is more beneficial

than sharing the second. More formally, assume Player Oj plays his 1 objective. If

Player I 11 chooses his 1 objective, the cost of the resource i111 is split between the two

players. So, Player I 11’s cost, no matter what the other players play is a bit over
1
2
. On the other hand, if he chooses his 0 objective, his cost is 1. Choosing the 1

objective in this case is clearly dominant. The case where Player Oj chooses his 0

objective is dual.

We proceed to describe the game Gψ (see for example Figure 5). In Gψ, there is a

gate game that corresponds to every NAND gate in ψ, and the games are connected

as in the above. For example, in Figure 5, for i P r4s, let Gi be the gate game that

corresponds to the gate Gi. Consider the gate G1. One of its outputs is fed as

input to G4 and the other to G3. In G1, the first pair of output resources are o1,1
1

and o1,1
0 , which also serve as input resources in the gate game G4. Thus, the set of

objectives of the first input player in G4 is tto1,1
0 u, to

1,1
1 , g4uu. Similarly, the second

pair of output resources are o1,2
1 and o1,2

0 , which also serve as input resources in the

game G3.

We are left to describe the inputs and output of the circuit and how they interact.

Assume the inputs to ψ are the variables x1, . . . , xn. Then, in addition to the players

who simulate the NAND gates, the game Gψ includes also n variable players. As in

the above, each variable player j P rns has a 0 and 1 objective, which corresponds

to an assignment to the variable xj. Player xj serves as the input player in every

gate game that xj appears in. So, Player xj has a 0 objective which is tij0u and a

1 objective, which includes an input resource ij1 as well as gate resources as in the

above. For example, in Figure 5, the variable x2 is fed as input to the gates C1 and

C2, so the set of objectives of Player x2 is tti20u, ti
2
1, g

1
1, g

2
1, c2uu.

Recall that there is a partition E1, . . . , Em, A1, . . . , Am of x1, . . . , xn. The sched-

uler in Gψ schedules the variable players that correspond to the set of variables E1

to move first, followed by the players who correspond to the set of variables A1,

161

followed by E2, etc. The other players in Gψ who simulate the NAND gates follow

according to the rules above.

Finally, there is a special NAND gate in ψ with only one output, where the

output of this gate is the output of the whole circuit. We refer to this gate as the

final gate and to the corresponding gate game as the final gate game. In Figure 5,

the final gate is C4. Let Player O be the output player in the final gate game. Recall

that each variable player xj has a 1 objective with a resource ij1 and a 0 objective

with an input resource ij0. Further recall that in a gate game, the 0 objective of the

output players includes a gate resource. We define Player O’s 0 objective to include

the gate resource g of the final gate game as well as all the input resources of the

universal variable players, thus it is tgu Y tij0, i
j
1 : xj P A1, . . . , Amu. The 1 objective

of Player O includes the input resources of all the existential variables players as

well as another gate resource g1 with cost 1.1ε, which we use to maintain the gate

semantics, thus the 0 objective is tc1u Y tij0, i
j
1 : xj P E1, . . . , Emu. We assume

Wlog that the number of existential and universal variables in ψ is the same. So,

Player O’s cost for the input resources is the same in both of his objectives no matter

what the other players choose. Thus, the NAND semantics of the output gate is

maintained.

Let Player x1 be the first variable player to move in Gψ. We claim that if ψ

is true, then in every SPE P , we have costx1pP q ă
1
2
` ε1, and if ψ is false, then

costx1pP q ě 1. Assume that x1 is an existential variable, and the proof is dual for

universal variables. Note that a cost of slightly over 1
2

for Player xj is achieved when

Player O shares the cost of the input resource Player xj uses. Thus, Player xj, as

well as all the existential players, have an incentive that the output of the circuit

ψ is 1. Indeed, if the output is 0, the Player O shares the input resources with the

universal players. Thus, if ψ is true, then the existential players can follow their

assignments and guarantee a cost of slightly over 1
2
. On the other hand, if ψ is false,

the universal players can guarantee a cost of slightly over 1
2
, making the cost of the

existential players slightly over 1.

H Proof of Theorem 6.2

We start with the lower bound and the case of dynamic CGs. Given a QBF instance

ψ, we apply the construction in Lemma 6.1 to get a sequential CG Gψ and γ, δ ą 0

such that if ψ is true, then cost1pGψq ă γ, and if ψ is false, then cost1pGψq ą δ. Let

G1 be the first 3-player game with no SPE that is described in Theorem 3.2. We

construct a dynamic CG G 1, by merging Gψ and G1, such that G 1 has an SPE iff ψ

is true.

162

We proceed to construct G 1. We add two players k ` 1 and k ` 2 to Gψ that

take the roles of the first two players in G1. The role of Player 3 in G1 is played by

Player 1 in Gψ, so we add the objectives ta1, bu and tcu to Σ1. Players k ` 1 and

k ` 2 move first concurrently followed by Player 1 and the rest of the players in

Gψ, which move sequentially. Recall that in every profile that is a candidate to be

an SPE in G1, Player 3’s cost is at least 12
3

and at most 22
3
. We alter the latency

functions in G1 so that in these profiles Player 3 pays at least γ and at most δ. Let

P be the SPE in Gψ. We claim that if cost1pP q ă γ, then G 1 has an SPE. Indeed, it

is not hard to see that the following profile is an SPE: Players k`1 and k`2 choose

xta, a1u, tcuy, and the other players play according to P in every subgame. On the

other hand, if cost1pP q ą δ, then, there is no SPE. Indeed, Player 1 prefers the

objectives originating from G1 over these in G, and there is no SPE in the topmost

subgame as shown in Theorem 3.2.

The case of dynamic SGs is similar. Let Gψ be the output of the construction in

Lemma 6.1 and G2 the dynamic SG with no SPE that is described in Theorem 4.1.

We merge Gψ with G2 by letting the first player in Gψ take the role of the fourth

player in G2 similar to the above. Note that in every candidate profile for an SPE

in G2, Player 4’s cost is 4. We alter the costs in Gψ so that γ “ 4´ ε and δ “ 4` ε.

Let P be an SPE in Gψ. We claim that if cost1pP q ă γ, then G 1 has an SPE. Indeed,

it is not hard to see that the following profile is an SPE: the first three players in

G2 choose xtb, b2u, tb, b1u, ta, a2uy, and the other players play according to P in every

subgame. On the other hand, if cost1pP q ą δ, then Player 4 always prefers his

objective in G2 over his objective in P , and by the reasoning in Theorem 4.1, there

is no SPE in the topmost subgame, and we are done.

We continue to study the upper bound. Consider a dynamic RAG G, and let TG
be the outcome tree of G. Recall that there is a one-to-one correspondence between

leaves in TG and legal outcomes of G. We guess a leaf l in TG and verify that it

is an outcome of an SPE. Thus, we ask if there is an SPE P in G whose outcome

corresponds to l.

In order to decide whether such a profile P exists, we traverse the path from

l to the root of TG. Consider an internal node h and its child on this path h ¨ σ.

Intuitively, our guess of l fixes the joint objective in h to be σ. Consider a Player i

who controls h and a resource e1i different from σpiq. Thus, σriÐ e1is is a unilateral

deviation of Player i. We ask if it is possible to define the strategies in the other

internal nodes such that the deviation is not beneficial for Player i. Formally, we

ask if there is an SPE P 1 in the subgame GσriÐe1is in which the cost of Player i is

at least his cost in l. This is done by calling the algorithm recursively with a slight

change to the base case. Recall that in order for P to be an SPE, it must be an NE

in every internal node in TG. Thus, we verify that an SPE exists in every child h ¨σ1

163

of h that we have not yet considered. Thus, σ and σ1 differ by at least two entries.

This is again done by a recursive call to the algorithm. Clearly, the algorithm uses

polynomial space.

I Proof of Theorem 7.1

For the upper bound, given an input xG, xS, cy, βy, for G with k players, we go over

all schedulers ν : rks Ñ rks. For each scheduler ν, we check whether costS,cpνq ď β

and if so, we use the algorithm in Theorem 6.2 in order to decide whether the

game xG, νy has an SPE. In case it does, we accept. Clearly, the algorithm runs in

polynomial space and accepts iff the input is legal.

For the lower bound, we show a reduction from DSPE. Given an input xG, νy

to DSPE we construct an input xG, xS, cy,´pk ´ 1q2y to the BS problem as follows.

For every i1, i2 P rks, we add to S a constraint according to the order of i1 and i2

in ν. For example, if νpi1q ă νpi2q, then we add to S the constraint i1 ă i2. All

constraints have cost ´1. Clearly, the only scheduler that has cost at most ´pk´1q2

is ν, thus xG, νy P DSPE iff xG, xS, cy,´pk ´ 1q2y P BS, and we are done.3

3Note that often it is possible to force ν with less than pk´ 1q2 constraints. We have no reason

however to minimize the number of constraints in the reduction.

164

6 Discussion

In the first part of this thesis we studied topics in the border between formal methods

and algorithmic game theory. We showed a flow of ideas between the two areas while

focusing mainly on different aspects of resource-allocation games. For the direction

from formal methods to AGT, we generalized network formation games by allowing

the players to have richer objectives than reachability. The paths the players select

in the new game are no longer simple, so each strategy uses a multiset of edges

rather than a set of edges as in network formation games. We applied a similar

generalization to resource allocation games, and introduced and studied multiset

resource allocation games. We show that these generalizations reduce stability in

most cases while maintaining it in others.

Another extension of classic resource allocation games is our addition of dynamics

in the process of choosing the resources. While games in AGT are typically “one

round” games, ongoing games are natural in formal methods. So, the definitions in

this game are close in nature to games in formal methods whereas the questions we

ask are typical AGT questions.

For the direction from AGT to formal methods, we consider the problem of

synthesis in a multi-player setting and introduce new approaches for the definition

of cost of a synthesized system. We consider systems generated from components.

Each synthesized system has a cost, which is affected by its underlying components.

For example, the cost can be the price the players pay for the manufacturing of the

component, thus an increase of load has a positive effect as more players “split the

bill”. Dually, the components can be processors, where higher load means a decrease

in performance. Thus, on top of the game theoretic approach to synthesis, in which

each player tries to find a correct system we point to an “outer” game that concerns

costs. Here, the strategies of a player are the correct systems and we are looking for

a stable solution; namely one in which the players have no incentive to change their

system.

The work presented in the thesis sets the stage for further research in the field.

We describe some directions for future research. The immediate directions are the

problems we left open; e.g., the exact value of the PoS in affine multiset congestion

games. Next, recall that our extensions of resource allocation games are mostly less

stable than traditional games. Specifically, most multiset resource allocation games

are not guaranteed to have an NE, and most dynamic RAGs are not guaranteed

to have an SPE. An interesting direction would be to “restore stability” to these

games, where the rough goal is to ensure that the game under consideration has

a stable outcome. Such a goal was studied for resource allocation games with no

NE [2]. One way to achieve this would be to weaken the equilibrium we chose as a

165

measure for stability, while keeping it strong enough to be interesting. Another way

would be to consider subclasses of the general game in either its structure or the

objectives of the players. Finally, we can make assumptions that increase stability

like the ability to control some of the players [3]. That is, an authority can choose

some subset of the players and assign strategies to them, which they cannot change.

The other players act as normal players.

We proceed to describe less concrete directions. Resource allocation games can

be thought of as games that we find in the “wild”. These are mathematical objects

that attempt to model real-life settings. Our goal is to analyze these objects using

several measures: existence of equilibrium, the inefficiency of equilibria, etc. RAGs

are only one class of such “games in the wild” that are studied in AGT. Another

class is network creation games [1], which takes a different approach to networks from

network formation games, which we studied. There, the players model routers, and

they are the nodes of the network. Each router decides to which other routers it is

connected directly, so the strategies of each player consist of subsets of her adjacent

edges. Choosing a subset of edges corresponds to creating them. Once all routers

choose a strategy a graph is formed. The routers’ goal is to be “highly connected”

to the other routers in the network (for some definition of “highly connected”).

Clearly, constructing more edges increases connectivity. However, buying an edge

has a cost. If the price is high, a player might prefer to sacrifice her connectivity

and rely on edges that other players bought. It is interesting to apply concepts from

formal methods to this game or one of its many variants. For example, other than

the simple connectivity criteria, we can study a setting in which each router has a

specification that allows only a subset of paths, or a quantitative specification that

assigns values to paths and the goal would be to connectivity of high quality.

Finally, studying “games in the wild” is only one area in AGT. It is interesting

to study other areas that have meeting points with formal methods. For example,

in algorithmic mechanism design (AMD, for short), an authority tries to maximize

the social welfare or some other optimization goal, in the context of selfish players.

It is common to try and find a mechanism that is incentive compatible, namely a

mechanism in which the players achieve their best outcome by acting according to

their true preferences. Our work on repairing multi-player concurrent games draws

ideas from AMD. Indeed, we assumed an authority can alter the graph on which

the game takes place. The objective of the authority is to increase stability. But

the game is played by selfish players who only care about their personal gain.

The second part of the thesis focuses on lifting traditional formal methods to the

quantitative setting. We studied abstraction and simulation of weighted automata

and reasoning on partial-specified systems. Our work on adding costs to synthesis

from component libraries can be viewed as such a work. Here too, there are several

166

concrete directions for future research in each of the works we studied. For example,

we have not considered synthesis from component libraries with costs (even with a

single designer) with infinite-word specifications. We note that our definition of cost

for a design can be applied with no change to this setting.

We also considered the problem of stochastization of WFAs. We studied a frag-

ment of the general case, where the given WFA’s ambiguity is bounded. We left the

exact complexity of the problem open. Also, it is interesting to find other fragments

for which stochastization is decidable. Stochastization can be thought of a method

to avoid determinization, which is not always possible for WFAs, by constructing a

probabilistic WFA. We had strong constraints on the structure of the probabilistic

WFA, namely, it should be the same as the original WFA. It is interesting to weaken

these constraints while retaining decidability. Finally, stochastization is a general

concept that can be applied to other models such as Boolean automata that accepts

either finite or infinite words.

References

[1] A. Fabrikant, A. Luthra, E. Maneva, C. Papadimitriou, and S. Shenker. On a

network creation game. In ACM Symposium on Principles of Distributed Com-

puting, 2003.

[2] K. Kollias and T. Roughgarden. Restoring pure equilibria to weighted congestion

games. ACM Trans. Economics and Comput., 3(4):21, 2015.

[3] T. Roughgarden. Stackelberg scheduling strategies. SIAM J. Comput.,

33(2):332–350, 2004.

167

 כאשר ייתכן שמספר שחקנים יבחרו באותו תור. רוח ההגדרות של המשחק דומה למשחקים בשיטות פורמליות ואנו

 חוקרים את ייציבות בדומה לשאלות שנשאלות בתורת המשחקים.

 תורת המשחקים היא כמותית מטבעה: בכל תוצאה של משחק, לכל שחקן יש מחיר שאותו הוא מנסה למזער. שיטות

 פורמליות לאומת זאת, הן בוליאניות: מערכת מספקת את המפרט או לא. בחלק האחרון של התזה, אנו חוקרים הרחבה

 של שיטות פורמליות על ידי הוספת כמותיות. כאן למשל נשאל באיזו מידה מערכת מספקת את המפרט שלה. ישנו

 מאמץ גדול בשנים האחרונות להוספת כמותיות לשיטות פורמליות ואנו לוקחים חלק במאמץ זה. "אוטומטים

 ממושקלים" הם מודל נפוץ בשביל להביע מפרט ממושקל או למדל מערכת ממושקלת. אנו חוקרים כמה בעיות על מודל

 זה. אנו מציעים יוריסטיקה כדי להתגבר על חוסר הכריעות של בעית הכלת השפות של אוטומטים אלו, אנו חוקרים

 השלמת משקלות של אוטומטים, שממדלת מערכות חסרות, ואנו חוקרים החלפת חוסר­-דטרמינזם בהסתברות

 באוטומטים ממושקלים.

 תקציר
 עבודה זו חוקרת את התחום שבין שיטות פורמליות ותורת המשחקים החישובית. המטרה בשיטות פורמליות היא

 חקירה פורמלית של מערכות. לכן, מושגים כמו "מפרט" ו"התנהגות מתמשכת" נפוצים ונחקרים רבות בתחום זה.

 תורת המשחקים החישובית הוא תחום פורח בשנים האחרונות, ונמצא במפגש שבין תורת המשחקים ומדעי המחשב.

 שאלות נפוצות בתחום זה הן היציבות של משחקים שונים.

 תחילה, אנו חוקרים מעבר רעיונות משיטות פורמליות לתורת המשחקים. אנו חוקרים משחק "בניית רשת", שהוא ידוע

 בתורת המשחקים. במשחק הקלאסי, ישנה רשת ולכל שחקן יש קודקוד מקור ויעד. אסטרטגיה של שחקן היא בחירת

 מסלול בין שני קודקודים אלו. לכל קשת במסלול יש מחיר, והשחקנים שמשתמשים בה, חולקים בינהם את המחיר. אנו

 מציעים הרחבה של משחק זה, בה לכל שחקן יש מפרט, כל קשת ברשת מסומנת באות, ואסטרטגיה של שחקן היא

 בחירת מסלול שעומד במפרט שלו. ההבדל המשמעותי בין המשחק שלנו והמשחק הקלאסי הוא שמסלול ששחקן בוחר

 כבר לא בהרכח חסר­-מעגלים. כלומר, במשחק החדש, ייתכן ששחקן יבחר את אותה קשת מספר רב של פעמים. כעת,

 חלוקת המחיר פרופורציונלית למספר השימושים בקשת. אנו חוקרים את היציבות של המשחק החדש ביחס לשאלות

 הסטנדרטיות בתורת המשחקים: קיום של שווי משקל, יעילות שווי המשקל ושאלות חישוביות על משחקים אלו. כמו

 כן, אנו מכלילים את משחק הרשת למשחק "בחירת משאבים" בו אסטרטגיה של שחקן היא בחירת אוסף משאבים,

 כאשר ייתכן ושחקן ישתמש במשאב מספר רב של פעמים, זאת בניגוד למשחק הקלאסי בו ייתכן לכל היותר שימוש

 יחיד במשאב.

 בכיוון השני, מתורת המשחקים לשיטות פורמליות, אנו מרחיבים את בעיית הסינטזה מרכיבים. בבעיה זו, ישנה ספריה

 של רכיבים והמטרה היא ליצור מערכת על ידי "הדבקה" של הרכיבים מהספרייה. אנו מרחיבים את הבעיה בשני

 אופנים. אנו מוסיפים מחיר לכל רכיב, ומאפשרים למספר רב של משתמשים להשתמש בספריה בעת ובעונה אחת.

 המחיר של רכיב מושפע מכמה פעמים הוא מופיע במערכות השונות. למשל, רכיב יכול למדל מעבד, ושימושים רבים

 גורמים לעומס, מה שמוריד את איכות המערכת. כל משתמש מעוניין למצוא מערכת שתהיה זולה ככל הניתן. כעת,

 נוצר משחק בחירת משאבים, כאשר המשאבים הם הרכיבים והמשתמשים הם השחקנים.

 לבסוף, אנו חוקרים הוספת התנהגות מתמשכת למשחקי בחירת משאבים. אנו מקלים שתי הנחות מהמשחק הקלאסי:

 כל שחקן בוחר אסטרטגיה בבת אחת וכל השחקנים בוחרים במקביל. אנו חוקרים משחק שמתנהל בשלבים. בכל שלב

 כל שחקן בוחר משאב יחיד. כל שלב מחולק לתורות, וישנו "מתזמן" שקובע באיזה תור כל שחקן בוחר בכל שלב,

עבודה זו נעשתה בהדרכתה של אורנה קופרמן.

שיטות פורמליות כמותיות פוגשות

 את תורת המשחקים החישובית

חיבור לשם קבלת תואר דוקטור לפילוסופיה

גיא אבני

הוגש לסנט האוניברסיטה העברית בירושלים

פברואר 2016

