Quantitative Formal Methods Meets
Algorithmic Game Theory

Thesis submitted for the degree of Doctor of Philosophy

Guy Avni

Submitted to the Senate of the Hebrew University of Jerusalem

February, 2016

This work was carried out under the supervision of Orna Kupferman.

Acknowledgements

First and foremost, I would like to thank my advisor Orna Kupferman. It has been
one hell of a journey. At the end of my MSc studies, when I was deliberating on
which path to choose, she promised the Phd path “would be fun”. This is all the
convincing I needed, and I have to say that she kept her promise. The last time
I wrote an acknowledgement section and thanked her, I mentioned she taught me
how to write so that my writing was “reasonable” at the time. Looking back, my
view then was very superficial. What I referred to as “teaching writing” were merely
English syntax rules that I didn’t know. The teaching is much deeper. So deep,
that I don’t want to embarrass myself again and thank her on specific points. I feel
Orna has let me be her apprentice for these years and I thank her for teaching me
her craft. In addition to her guidance in the academia, I also see her as a role model
for life outside the academia, and thank her for the lessons there as well.

The work on this thesis had a few key moments. One of the crucial ones started
out as a standard mail, which I sent Orna. It involved some work that I ran into
and thought it was connected to what we were doing at the time. She replied that
it was nice, not related, but might be related to what she was doing with Tami. She
asked me if [wanted to join on the grounds that “It’s a lot of fun”. She didn’t get
that one wrong either. It was a pleasure working with Tami Tamir, Orna’s identical
twin sister. Tami guided me throughout the work on algorithmic game theory and
gave the complement to Orna’s guidance. Without her, this thesis would not have
been the same. I thank her greatly.

Also, I had the pleasure of working with Thomas Henzinger, and I'm looking
forward to working together in the future.

My accomplice throughout the past few years has been Shaull Almagor. We
shared an office, worked together, shared beds in conferences, and many drinks and
dinners (some ending better while others ending worse). Shaull helped make the
past few years enjoyable and I thank him greatly. The second ongoing member of
my office was Jonathan Moshieff. Apart from making it a nice place, he was a goto
guy for many topics ranging from combinatorics to managing bank accounts.

Life outside the academia was a roller coaster in these past few years. Holding
my hand through it is my wife Efrat. I hope I can ever even out with all she has
given in order for my thesis to succeed. The high points of the ride are inhabited
by my two daughters Tamar and Ella, who I thank for my second childhood. I also
thank my slightly extended family; my parents and brothers for their sincere caring
and giving throughout these years. An acknowledgement section is nothing without
a special thanks to my dog Bigi with whom I had fruitful discussion and debates in

our long nightly walks. To close, I thank my gariin mates for always being there.

Abstract

This thesis lies on the boundary between two fields: formal methods and algorithmic
game theory (AGT, for short). We adapt ideas from formal methods in AGT and
back. The goal in formal methods is to formally reason about systems. So, the bread
and butter of this field is the study of specifications and of ongoing computations.
AGT is a rapidly evolving field that takes a computational approach to game theory.
One of its subfields on which we focus, studies the stability of different classes of
games.

We start by applying the concept of a rich specification in network formation
games, which constitute a well studied class of games in AGT. A network is modeled
by a directed graph, and each player has a source and target vertex, which she wishes
to connect. The strategies of each player are the simple paths connecting her source
to the target. Each edge has a cost and the players that use the edge split the cost
evenly among them. The players’ objective in the traditional game are reachability.

We study an extension of network formation games in which the edges in the
network are labeled by letters from some alphabet and the players’ objectives are
given by a regular language over the same alphabet. In particular, the richer ob-
jectives are such that the paths selected by the players need not be simple, thus a
player may traverse some transitions several times. We refer to this extension as au-
tomata formation games. Edge costs are shared by the players with the share being
proportional to the number of times the edge is traversed. We study the stability
of automata formation games with respect to standard measures in AGT: existence
of equilibria, equilibrium efficiency, and we study computational problems for these
games.

Network formation games are a special case of cost-sharing games. Our automata
formation games give rise to an extension of cost-sharing games in which the players’
strategies consist of multisets of resources rather than sets of resources. We also
study multiset congestion games in which a greater load on a resource has a negative
effect on cost. We refer to the union of these two games as multiset resource-
allocation games, and we analyze the stability of this class of games and compare
with the games that it extends.

For the direction from AGT to formal methods, we analyze a problem in formal
methods as a resource-allocation game. Synthesis is the automated construction of a
system from its specification. In real life, hardware and software systems are rarely
constructed from scratch. Rather, a system is typically constructed from a library
of components. Lustig and Vardi formalized this intuition and studied a setting in
which a designer searches for a design, which is a recipe to glue the components

from the library together to form a compositional system. We extend on Lustig and

Vardi’s setting in two directions. We add costs to the components in the library, and
we consider a setting in which multiple designers use the same library of components.
The cost of a designer’s design is affected by the choices of the other designers. For
example, if the components are processors and the cost models running time, then
designers would prefer to use processors with lower load in order to increase their
system’s performance. A multiset resource allocation game arises from this setting.

We return to the direction from formal methods to AGT. Ongoing games are com-
mon in formal methods and we apply ideas from such games to resource-allocation
games. We relax two of the main assumptions of these games — the players choose
their strategies in one shot and the players move simultaneously. We introduce
and study dynamic resource-allocation games, which allow the players to choose re-
sources in an iterative and non-concurrent manner. The definitions of our game are
similar to the definitions of ongoing games in formal methods, while we ask stability
questions that originate from AGT.

Traditional formal methods are Boolean in nature: a system either satisfies its
specification or not. On the other hand, game theory is quantitative in nature:
each player has a value in an outcome of a game, which she wishes to increase. We
join a growing effort in recent years to lift traditional formal methods to reason
about quality. The automata-theoretic approach uses the theory of automata as a
unifying paradigm for system specification and verification. In the quantitative set-
ting, weighted finite automata (WFAs, for short) are an important class of automata
to model specifications as well as systems. We study several problems for WFAs.
The containment problem for WFAs is undecidable while it is a problem of great
practical importance. We suggest a heuristic approach to bypass its undecidability
that is based on adapting abstraction and simulation, which are well known in the
Boolean setting, to the quantitative setting. Next, we study a setting of partially-
specified quantitative systems, which is again well studied in the Boolean setting.
We model partial systems as WFAs with missing weights, and we study the problem
of completing a partial WFA such that it satisfies some given restrictions. Finally,
we introduce and study the problem of replacing nondeterminism in WFAs with
probabilistic transitions. We refer to this process as stochastization of WFAs, and
we study the problem of find a stochastization that does not alter “too much” the

weighted language of a given WFA.

Letter Indicating the Contribution
to Each Chapter

In all four chapters, I was the principal researcher. The first and third chapters are
joint work with Orna Kupferman and Tami Tamir. Tami is an expert in algorithmic
game theory. She guided me in these topics throughout these two works. The
second chapter is joint work with Orna Kupferman. The final chapter is joint work
with Orna Kupferman and Thomas Henzinger. Thomas is an expert in multi-agent

games. He helped guide me throughout this work.

Contents

1 Introduction
1.1 Game Theory
1.2 Quantitative Formal Methods

2 Network-Formation Games with Regular Objectives
3 Synthesis from Component Libraries with Costs

4 Congestion Games with Multisets of Resources

and Applications in Synthesis
5 Dynamic Congestion Games

6 Discussion

10
10
21

32

56

102

135

165

1 Introduction

The goal in formal methods is to formally reason about systems. Either proving
formally that a system satisfies its specification, synthesizing a system from a given
specification, or reasoning about other aspects of systems. Traditional formal meth-
ods are Boolean in nature: a system either satisfies its specification or not. In recent
years, there is a growing effort to lift traditional formal methods to reason about
quality. So, for example, rather than asking whether the system satisfies the spec-
ification, one might ask how well the system satisfies the specification. The origin
of the quantitative aspect can be in the system [24], the specification [3, 4], or both
[21].

In addition to the questions that arise when lifting Boolean questions to the
quantitative setting, other questions arise that may not have been considered at all in
the Boolean setting. For example, a specification can assign values to computations.
It makes sense to find a system that approximates the specification. Namely, it
assigns to every computation a value that is close to the one the specification assigns
to it. Such an approximation is less natural in the Boolean setting. We return to
approximation in the second part of the thesis.

In the first part of the thesis we focuses on the last type of questions, and in

particular, we study such questions on games.

1.1 Game Theory

We start with an example. As we mentioned above, a designer can have a specifi-
cation that assigns different values to systems. But a system rarely stands on its
own. Typically, a designer only designs one component of the system. The different
components either interact with each other, or compete for global resources. In the
later case, the value given by the specification can be the time it takes for it to
run. So, the value is affected by how much competition there is on the resources the
system uses. The designers are selfish. They only care about increasing the value
of their own component. So, a game arrises, which we formalize throughout this
section.

Many problems in formal methods are solved using games (c.f., [7]). Typically,
the games that are studied are two-player games; one player takes the role of the
system and plays against an adversary whose goal is to show that the system is faulty.
These games are zero-sum games; the system wins iff it can satisfy the specification
no matter how the adversary behaves. Also, many systems under consideration
in formal methods are reactive and non-terminating, thus the games are typically

ongoing games of infinite duration.

10

Recall the game that we described between several designers who design compo-
nents that compete for resources. It has a different flavor to it from the games that
are typically studied in formal methods. It is played between several designers, so
it is a multi-player game. The systems have values and the goal of the designers is
to maximizes their system’s value, so the game is not zero-sum. Finally, the game
“ends” when the designers choose a system, so it is a “one-round game” rather than
ongoing. The question we ask is also different. We are not interested in a “winning
strategy” for the system as in formal methods. Rather we want a “stable outcome”:
one in which the designers have no incentive to alter their chosen designs. The flavor
of this game as well as the questions asked are studied in algorithmic game theory
(AGT, for short). AGT is a rapidly growing field [45] that lies in the intersection
between several fields including computer science and economics.

We introduce the questions asked in AGT in more detail, while using a running
example of network formation games (NFGs, for short) [6], which constitutes a well
studied class of games in AGT. A network is modeled by a directed graph, and each
player has a source and target vertex, which she wishes to connect. The strategies
of each player are the simple paths connecting her source to the target. Each edge
has a cost and the players that use the edge, split the cost evenly between them.
The game is “one round” in the sense that the players select a path in one shot. A
profile is a vector of strategies (paths), one for each player.

We present the classic questions on NFGs. These questions in different variants
will accompany us throughout this thesis. (i) Existence of an equilibrium. Recall
that players are selfish. So, not all profiles are stable in the sense that players might
benefit from changing their strategy. In NFGs and in most games we consider, the
notion of stability that is considered is a Nash equilibrium (NE, for short)!. An
NE is a profile in which no player can benefit from a unilateral deviation. We ask
whether each instance of the game has a profile of pure strategies that constitutes an
NE. (ii) An analysis of equilibrium inefficiency. It is well known that decentralized
decision-making may lead to solutions that are sub-optimal from the point of view
of society as a whole. The cost of a profile is the sum of players’ costs in it. We
quantify the inefficiency incurred due to selfish behavior according to the price of
anarchy (PoA) [37] and price of stability (PoS) [6] measures. In both measures we
compare the cost of stable profiles against the social optimum profile (SO, for short),
which is the cheapest profile and is not necessarily stable. The PoA is the worst-case
inefficiency of a Nash equilibrium (that is, the ratio between the cost of the worst
NE and the SO). The PoS is the best-case inefficiency of a Nash equilibrium (that is,

IThroughout this thesis, we concentrate on pure strategies rather than considering mized strate-
gies, which allow choosing a probabilistic distribution on pure strategies. This is also the choice in

the vast majority of works in AGT on NFGs as well as the other games we consider.

11

the ratio between the cost of the best NE and the SO). (i7i) We study computational
questions that vary slightly according to the game under consideration. First, the
best-response problem; given strategies for the players 1,...,k — 1, find the optimal
strategy for Player k. Second, depending on the answer to question (i), we study
the existence of NE or the complexity of finding one. In some cases we also study
the complexity of finding the SO.

This thesis lies is the meeting point of formal methods, and in particular quanti-

tative formal methods, with AGT. We present several works that adapt ideas from

formal methods in AGT and back.

Automata formation games The players’ objectives in NFGs are can be thought
of as reachability; a player’s goal is to reach her destination. We extend network-
formation games to a setting in which the players have richer objectives. This
involves two changes of the underlying setting: First, the edges in the network are
labeled by letters from a designated alphabet. For example, the alphabet letters
model the security level of an edge or its bandwidth. Second, the objective of each
player is specified by a language over this alphabet. Each player has a regular
language and she should select a path labeled by a word in her objective language.
For example, a player’s language might restrict to paths traversing high security
links, or, if the game models a delivery service, a player’s language can require
multiple visits to a certain location.

If we view the network as a nondeterministic weighted finite automaton (WFA)
A, which we discuss in length later on, then the set of strategies for a player with
objective L is the set of accepting runs of A on some word in L. Accordingly,
we refer to our extension as automaton-formation games (AFGs, for short). Unlike
traditional NFGs, the runs selected by the players need not be simple, thus a player’s
path may traverse some edges several times. Edge costs are still shared by the
players, but now the share is split proportionally to the number of times the edge
is traversed. This latter issue is the main technical difference between AFGs and
NFGs, and as we shall see, it is very significant.

We study questions (i) — (zii) above for AFGs and compare the answers with
these in NFGs. The answer for question (i) in NFGs is positive; every NFG is
guaranteed to have an NE. In fact, NFGs are potential games, which have an even
stronger property; every sequence of improving moves of the players converges to an
NE. When the improving moves in the sequence are the best possible, the sequence
is often called a best-response dynamics. On the other hand, we show that even very
restrictive fragments of AFGs are not guaranteed to have an NE. Recall that the
network can be viewed as a WFA A. We consider the following classes of WFAs:

(1) all-accepting, in which all the states of A are accepting, thus its language is

12

prefix closed (2) uniform costs, in which all edges have the same cost, and (3) single
letter, in which A is over a single-letter alphabet. We consider the following classes
of specifications: (1) single word, where the language of each player is a single word,
and (2) symmetric, where all players have the same objective. We refer to AFGs
that are all-accepting, uniform costs, single letter, and single word as weak AFGs,
and we show that weak AFGs are not guaranteed to have an NE. Maybe even more
surprising, we show that symmetric instances of AFGs are not guaranteed to have
an NE.

Regarding question (i), of equilibrium inefficiency, we show that while the PoA
in AFGs agrees with the one in classical NFGs and is equal to the number of players,
the PoS also equals the number of players, again already for the very restricted weak
instances. This is in contrast with classical NFGs, where the PoS tends to log the
number of players. We do manage to find structural restrictions on the network
with which the social optimum is an NE, thus we have PoS= 1 for these instances.

Finally, we address (iiz), namely computational problems on AFGs. We show
that for some restricted instances, finding the SO can be done efficiently, while
for other restricted instances, the complexity agrees with the NP-completeness of
classical NFGs. The best-response problem is NP-complete, while it is in P for
NFGs. We show that deciding the existence of NE is ¥%-complete for AFGs. This
problem is not studied for NFGs as they are guaranteed to have an NE.

These results have been described in [14, 13] and in Chapter 2 of the thesis.

Multiset resource allocation games NFGs an be viewed as a special case of
cost-sharing games (SGs, for short). Such a game is played on a set of resources.
A player’s possible strategies is a collection of sets of resources. As in NFGs, each
resource has a cost that is split among the player that use it. In the cost-sharing
game that corresponds to an NFG, the resources are the edges of the graph and the
strategies of a player are the sets of edges that correspond to the simple paths that
connect her two vertices.

We view AFGs as cost-sharing games. Again, a strategy that corresponds to
a path consists of the edges that the path traverses. Recall that paths in AFGs
need not be simple. So, a resource may appear several times in a strategy in the
corresponding cost-sharing game, making it a multiset. Thus, AFGs are a special
case of multiset cost-sharing games.

Cost-sharing games model settings in which resources have costs, which are split
between the players using them. In such cases, the load on the resource, namely the
total number it is used, has a positive effect. However, in many settings, the load
on the resources has a negative effect. For example, returning to the network game,

the network can model a map of roads. A higher load on a road implies a traffic

13

jam that produces a higher cost for the players using it. We refer to such games as
congestion games (CGs, for short) [49]

Formally, a CG is similar to a cost-sharing game only that instead of resource
costs, each resource e has a latency function of the form ¢, : N — R, where £.() is
the cost of a single use of e when the load on it is . So, if Player ¢ uses e n; times, she
pays n; - L.(7y) for e. Cost-sharing games can be thought of as a special case of CGs
in which resource e has a cost ¢, and the latency function is ¢.(y) = c./. Note that
if Player i uses e n; times, then she pays c. - n;/7, which is the proportional sharing
rule we studied in the previous section. For convenience, we make the distinction
between cost-sharing and congestion games, and refer to their union as resource
allocation games (RAGs, for short). We introduce and study multiset RAGs.

Our results in terms of existence of NE and equilibrium inefficiency for AFGs
carry over to multiset cost-sharing games. We study these two questions for multiset
congestion games (MCGs, for short). In terms of NE existence, the answer depends
on the latency functions. For affine latency functions, i.e., functions of the form
a -z + b, we show good news; affine MCGs are potential games and are guaranteed
to have an NE. On the other hand, already for quadratic latency functions, there
are symmetric instances with no NE. We study the equilibrium inefficiency for affine
MCGs. We show that the PoA is PoA = 1+ ¢, where ¢ ~ 1.618 is the golden ratio,
and the PoS is between 2 and 1.631. Again, much stabler than in cost-sharing games.

In order to put our results in context, we compare our results with these known
for weighted congestion games (WCGs, for short) [42]. These are congestion games
in which each Player ¢ has a weight w; € IN, and his contribution to the load of
the resources she uses as well as her payments are multiplied by w;. WCGs can be
viewed as a special case of MCGs, where each resource in a strategy for Player ¢
repeats w; times.

We summarize the comparison between the classes of games in Table 1 below.
Our upper bounds for MCGs match the known upper bounds for WCGs. Whenever

our lower bounds match the ones of WCGs, they are given with much simpler

instances.
INE PoA PoS
Congestion Games || Yes 2.5[29] ~ 1.577[29, 25]
WCGs Affine | 1 + ¢[17] | & 1.577 < PoS < 2[20]
MCGs Affine | 1+ ¢ 1.631 < PoS <2

Table 1: A comparison between congestion games, WCGs, and MCGs.

These results have been described in [15] and in Chapter 4 of the thesis.

14

Synthesis from component libraries The results above can be seen as an adap-
tion of ideas from formal methods to AGT — strategies that are a multiset of resources
arise when we transition from a network with reachability objectives to an automa-
ton in which paths need not be simple. Here, we go in the other direction and apply
ideas from AGT to formal methods. Specifically, we show an application of MCGs
in the problem of synthesis from component libraries, which is a formalization of the
game we mentioned in the beginning of the introduction.

A central problem in formal methods is synthesis [47], namely the automated
construction of a system from its specification. In real life, hardware and software
systems are rarely constructed from scratch. Rather, a system is typically con-
structed from a library of components by gluing components from a library (allow-
ing multiple uses)[40]. For example, when designing an internet browser, a designer
does not implement the TCP protocol but uses existing implementations as black
boxes.

We follow the definitions of [40]. A design is a recipe to glue the components
together. The components are black boxes, so the design sees only the exit state
through which the component completes its computation and relinquishes control.
Based on this information, the design decides which component gets control next,
and so on. Given a design D and a library of components £ we can compose the
components according to the design to construct the compositional system Ag p,
which is a concrete system. The input to the synthesis from components problem
is a library £ and a specification S. The goal is to find a design D such that A, p
meets the specification S. We then refer to D as a correct design with respect to S.

We study synthesis from component libraries with costs in the closed and open
settings. In both settings, the specification is given by means of a deterministic
automaton S on finite words (DFA). In the closed setting, the specification is a
regular language over some alphabet ¥ and the library consists of box-DFAs (that is,
DFAs with exit states) over ¥. The compositional system here is a DFA. Correctness
means that the language over ¥ of the composition equals the language of S. In the
open setting, the specification § is over sets I and O of input and output signals,
and the library consists of box-I/O-transducers. The compositional system here
is a transducer over I and O. Correctness here means that the interaction of the
composition defined by D with all input sequences generates a computation over
I U O that is in the language of S.

We extend on Lustig and Vardi’s setting in two aspects. First, we assume that
components have a costs. The cost of a component models its quality and is paid
each time the component is used. For example, the cost of a component can be the
number of states in the component, so the total cost of design is the number of states

in the compositional system. It makes sense to find a cheaper system as this is a

15

system with less states that is assumed to be simpler. We study the the problem of
finding a correct design as well as the problem of finding a cheapest correct design
in the closed and open settings. In the closed setting, finding a correct design can be
done in polynomial time, and finding a cheapest correct design is NP-complete. In
the open setting, the design problem is EXPTIME-complete while finding a cheapest
correct design is NEXPTIME-complete.

The public cost is a cost that is affected by the choices of the other designers. For
example, it can be the price that needs to be paid in order to design the component.
Then, the designers who use the component share this price.

First, in order to capture a wide set of scenarios in practice, we associate with
each component in the library two types of costs: a private cost and a public cost.
The private cost models quality. It concerns the performance of the component and

We continue to our second extension of Lustig and Vardi’s work. In their work,
the library of components can be seen as if it is used by a single user. However,
component libraries are typically used by multiple users simultaneously. The quality
cost above can be thought of as a private cost. In the setting of multiple users, it
makes sense to consider a public cost that is affected by the choices of the users. We
assume that each component has a latency function as in RAGs. We distinguish
between positive and negative effects for load. In the cost-sharing setting, the users
who use a component share the price of constructing the component. On the other
hand, and maybe more reasonable is the congestion case. Components can be seen
as processors, then a higher load means a decrease in performance.

This setting gives rise to a RAG, which we refer to as a component library game
(CLG, for short). A CLG is given by a shared library £ and a specification S; for
each player. The resources in the corresponding RAG are the components. Player i’s
strategies are the correct designs with respect to S;. Note that a correct design D;
corresponds to a multiset of components, namely these components that the design
uses.

We show that our good and bad news in terms of NE existence and equilib-
rium inefficiency carry over from multiset RAGs to CLGs. We study computational
problems for CLGs and we focus on closed systems. Our results for cost-sharing and
congestion games coincide. We show that finding a best-response is NP-complete
and deciding the existence of NE is ¥%-complete.

These results have been described in [11, 15] and in Chapters 3 and 4 of the

thesis.

Cost-sharing scheduling games We study a restrictive class of multiset cost
sharing games in which the players’ multiset include a single resource. In this

setting, players can be thought of as jobs and resources as machines. Each job

16

has a set of machines that can process it, and each such machine has a different
processing time for the job. Each machine has an activation cost that needs to be
covered by the jobs assigned to it. Jobs assigned to a particular machine share its
cost proportionally to the load they generate.

Again, we study the three questions above. We study both unilateral and coordi-
nated deviations, distinguishing between instance having unit or arbitrary machine-
activation costs. Our results are detailed in Table 2, where k is the number of jobs

and m is the number of machines.

Activation Processing Pure Nash Equilibrium Strong Equilibrium
costs times = PoA PoS 3 SPoA SPoS
Unit arbitrary yes | min{m,k} | 1 no | min{m, %5 + i} | min{%Z, % + 1}
ni
machine-indp. yes | min{m, k} 1 yes | min{Z, %+ 1} | min{2Z £+ 1}
) arbitrary no' k k no k k
Arbitrary — 3
machine-indp. yes k* k yes k k

Table 2: Summary of our results. (1) Deciding whether a PNE exists is NP-complete.
(1) Adopted to our model from [6]. (S) Extension of [51].

These results have been described in [16] and do not appear in the thesis due to

lack of space.

Dynamic resource allocation games A key feature of RAGs is that the players
choose their strategies in one shot and concurrently. That is, a strategy for a player
is a subset of the resources — chosen as a whole, and the players choose their strategies
simultaneously. In many settings, however, resource sharing proceeds in a different
way. First, in many settings, the choices of the players are made resource by resource
as the game evolves. For example, when the network in an NFG models a map of
roads and players are drivers choosing routes, it makes sense to allow each driver
not to commit to a full route in the beginning of the game but rather to choose one
road (edge) at each junction (vertex), gradually composing the full route according
to the congestion observed. Second, in many settings, the choices of the players
are not made concurrently. We describe an example of such a setting, which is
inspired by [36]. We return to the example in which a network models a map of
roads. Driving on a road takes time. Assume it takes a duration of one unit of
time to complete an edge. Also, assume the players start driving on their paths at
different times in [0, 1]. So, the players who start at time ¢ will choose edges at times
t+ 1,t + 2,.... Specifically, the set of players that start driving at time ¢ choose
concurrently. Moreover, they are aware of the choices of players that started driving

at every time t' # t. With respect to these players, their choices are sequential.

17

We introduce and study dynamic resource allocation games, which allow the
players to choose resources in an iterative and non-concurrent manner. A dynamic
RAG is given by a pair G = (G, v), where G is a k-player RAG and v : {1,...,k} —
{1,...,k} is a scheduler. A dynamic RAG proceeds in phases. In each phase, each
player chooses one resource. A phase is partitioned into turns, and the scheduler
dictates which players proceed in each turn. Formally, Player ¢ moves at turn j if
v(1) = j. Note that the scheduler may assign the same turn to several players, in
which case they choose a resource simultaneously in a phase. Once all turns have
been taken, a phase is concluded and a new phase begins. There are two “extreme”
schedulers: (1) A sequential scheduler assigns different turns to all players, i.e., v is
a permutation, reflecting the fact that the players make their choices sequentially,
one player in each turn. (2) A concurrent scheduler assigns the same turn to all the
player; i.e., v(i) = 1 for all i € {1,..., k}, reflecting the fact that all players proceed
concurrently in the first (and only) turn in each phase. A strategy for a player in a
dynamic RAG maps the history of choices made by the players so far (that is, the
choices of all players in earlier phases as well as the choices of players that proceed
in earlier turns in the current phase) and returns his next choice. A player finishes
playing once the resources he has chosen satisfy the objective. The game terminates
once all players finish playing. A strategy profile in the game is a vector of strategies
— one for each player. The outcome of a profile is an assignment of a set of resources
to each player. The cost of each players in a profile is induced by the costs of the
resources in his set, which depends on their load and latency functions as in usual
RAG.

We adjust the questions we asked on RAGs to the dynamic setting. We start
with existence of equilibrium. We note that while the definition of NE applies
to all games, in particular to dynamic ones, an NE is less suited in this case as it
might include “uncredible threats”. A more appropriate notion of equilibria subgame
perfect equilibrium (SPE, for short) [50]. A strategy profile is a SPE if it represents
an NE of every subgame of the original game. Informally, in an SPE the players
must take into an account their observation of the game before making a choice.

We study the existence of SPE in different classes of dynamic RAGs. In addition
to the classification of RAGs to cost-sharing games and congestion games, we also
classify them by type of their strategies. We study singleton RAGs in which the
player’s actions consist of singletons of resources, and symmetric RAGs in which the
players’ actions are the same. We show that singleton symmetric congestion games
are guaranteed to have an SPE. We show that this class is maximal by showing a
singleton congestion game as well as a symmetric congestion with no SPE. We show
that cost-sharing games are not guaranteed to have an SPE as well. Here, however

we show that singleton cost-sharing games are guaranteed to have an SPE. We find

18

two of these results surprising. First, that an SPE is not guaranteed to exist, and
second, that while in the simultaneous setting cost-sharing games are less stable
than congestion games, the “order of stability” is not carried over to the dynamic
setting.

Next, we study the inefficiency of equilibrium for the two classes of games that
are guaranteed to have an SPE. We show that it coincides with the simultaneous
setting in both cases. Finally, we study computational problems for dynamic RAGs.
We show that deciding the existence of SPE is PSPACE-complete. We also study
the problem of finding a schedule that admits an SPE under given constraints on
the order the players move, and show that this problem is also PSPACE-complete.

These results are described in Chapter 5.

Repairing multi-player concurrent games The last work we present is more
formal methods in nature and has a somewhat different flavor from the previous
works. As mentioned above, synthesis is the automated construction of systems from
their specifications [47]. Here, we take a different approach to synthesizing systems
from components than the one we present above. We assume that the components
interact, where each component has its own objective. Thus, we consider a game in
which each component is modeled by a player.

The game that arrises from this setting is a multiplayer concurrent ongoing
game [23]. Such a game is played by moving a token on a directed graph. At each
state, players select concurrently an action, and the next position of the token is
decided according to the the vector of actions they choose. So, an outcome of the
game is an infinite sequence of states. Each player has an w-regular objective that
specifies which infinite paths meet his objective. Thus, the specification is a Boolean
specification; a path either satisfies the specification or not. We list two examples
of objectives. In reachability objectives each Player ¢ has a set of states S;. An
infinite path 7 satisfies his objective if 7 crosses a state in S;. In Biichi objectives
each Player ¢ again has a set of states S;. An infinite path 7 satisfies the objective
if it crosses .9; infinitely often. Note that a path might satisfy some of the players
objectives while refuting others. Thus, the game is not a zero-sum game.

It is easy to find instances of such games with no NE. We introduce and study
repair of multi-player games. We consider a setting with an authority (the designer)
that aims to stabilize the interaction among the components and to increase the
social welfare. In standard reactive synthesis [47], there are various ways to cope
with situations when a specification is not realizable. Obviously, the specification has
to be weakened, and this can be done either by adding assumptions on the behavior
of the environment, fairness included, or by giving up some of the requirements on

the system [28, 39]. In our setting, where the goal is to obtain stability, and the

19

game is not zero-sum, a repair may both weaken and strengthen the specifications,
which, in our main model, is modeled by modifications to the winning conditions.

The input to the specification-repair problem (SR problem, for short) is a game
along with a cost function, describing the cost of each repair. For example, in Biichi
games the cost function specifies, for each vertex v and player i, the cost of making
v accepting for Player ¢ and the cost of making v rejecting. The cost may be 0,
reflecting the fact that v is accepting or rejecting in the original specification of
Player i, or it may be oo, reflecting the fact that the original classification of v is a
feature of the specification that the designer is not allowed to modify. We consider
some useful classes of cost functions, like uniform costs — where all assignments
cost 1, except for one that has cost 0 and stands for the original classification of
the vertex, or dont-care costs — where several assignments have cost 0, reflecting a
don’t-care original classification, and all other assignments have cost oo.

The goal of the designer is to suggest a repair to the winning conditions with
which the game has an NE. One way to quantify the quality of a repair is its cost,
and indeed the problem also gets as input a bound on the budget that can be used
in the repairs. Another way, which has to do with the social welfare, considers the
specifications that are satisfied in the obtained NE. Specifically, in the rewarded
specification-repair problem (RSR problem, for short), the input also includes a
reward function that maps subsets of specifications to rewards. When the suggested
repair leads to an NE with a set W of “winners”, i.e., players whose objective is
satisfied, the designer gets a reward that corresponds to the specifications of the
players in W. The quality of a solution then refers both to the budget it requires
and to its reward.

Studying the SR and RSR problems, we distinguish between several classes, char-
acterized by the type of winning conditions, cost functions, and reward functions.
From a complexity point of view, we also distinguish between the case where the
number of players is arbitrary and the one where it is constant. The problem of
deciding whether an NE exists is known to be NP-complete with an arbitrary num-
ber of players for most common w-regular objectives, excluding Biichi where the
complexity is polynomial [23]. It is not too hard to lift the NP lower bound to the
SR and RSR problems. The main challenge is the Biichi case, where one should find
the cases where the polynomial complexity of deciding whether an NE exists can be
lifted to the SR and RSR problems, and the cases where the need to find a repair
shifts the complexity of the problem to NP. We show that the polynomial complex-
ity can be maintained for don’t-care costs, but the other settings are NP-complete.
We then check whether fixing the number of players can reduce the complexity of
the SR and RSR problems, either by analyzing the complexity of the algorithms for

an arbitrary number of players, or by introducing new algorithms. We show that

20

in many cases, we can solve the problem in polynomial time, mainly thanks to the
fact that it is possible to go over all possible subsets of players in search for a subset
that can win in an NE.

These results have been described in [1] and do not appear in the thesis due to

lack of space.

1.2 Quantitative Formal Methods

Game theory is quantitative in nature: every player has a value in an outcome of
a game, which she tries to increase. In the previous section we added aspects from
formal methods to game theory. Namely, we went from reachability objectives in
network formation games to richer objectives, we considered dynamics in resource
allocation games, and we considered an application of games to synthesis, which is
a problem in formal methods. In the second part, we take a dual approach. We
add aspects from game theory to traditional formal methods, and we focus in the

addition of quantitative outcomes.

Weighted automata The automata-theoretic approach uses the theory of au-
tomata as a unifying paradigm for system specification and verification [52, 53]. By
viewing computations as words (over the alphabet of possible assignments to vari-
ables of the system), we can view both the system and its specification as languages.
Questions like satisfiability of specifications or their satisfaction can then be reduced
to questions about automata and their languages.

Traditional automata accept or reject their input, and are therefore Boolean. In
recent years, there is growing need and interest in quantitative reasoning. Weighted
finite automaton (WFA, for short) map words to numerical values. Technically,
every transition in a weighted automaton A has a value, and the value of a run is
the sum of the costs of the transitions. The value that A assigns to a finite word w,
denoted val(A,w), is either the value of the most expensive or cheapest accepting
run of A on w, depending on the application?.

The rich structure of weighted automata makes them intriguing mathematical
objects. Fundamental problems that have been solved decades ago for Boolean
automata are still open or known to be undecidable in the weighted setting [44].
For example, while in the Boolean setting, nondeterminism does not add to the
expressive power of the automata, not all weighted automata can be determinized,

and the problem of deciding whether a given nondeterministic weighted automaton

°In general, weighted automata may be defined with respect to all semirings. For our applica-
tions here, we consider WFAs over Q, with the addition of the semi-ring being max or min and its

multiplication being +.

21

can be determinized is still open, in the sense we do not even know whether it is
decidable.

A problem of great interest in the context of automata is the containment prob-
lem. In the Boolean setting, the containment problem asks, given two automata A
and B, whether all the words in X* that are accepted by A are also accepted by
B. In the weighted setting, the “goal” of words is not just to get accepted, but also
to do so with a maximal value. Accordingly, the containment problem for WFAs
asks, given two WFAs A and B, whether every word accepted by A is also accepted
by B, and its value in A is less than or equal to its value in B. We then say that
B contains A, denoted A < B. In the Boolean setting, the containment problem
is PSPACE-complete [41]. In the weighted setting, the problem is in general unde-
cidable [2, 38]. The problem is indeed of great interest: In the automata-theoretic
approach to reasoning about systems and their specifications, containment amounts
to correctness of systems with respect to their specifications. The same motivation

applies for weighted systems, with the specifications being quantitative [27].

Making weighted containment feasible We suggest here a heuristic approach
to bypass the undecidability of the weighed containment problem. FEven in the
Boolean setting, where the containment problem is decidable, its PSPACE com-
plexity is an obstacle in practice and researchers have suggested two orthogonal
methods for coping with it. One is to replace containment by a pre-order that is
easier to check, with the leading such pre-order being the simulation preorder [43].
A second method, useful also in other paradigms for reasoning about the huge,
and possibly infinite, state space of systems is abstraction [19, 30]. Essentially, in
abstraction we hide some of the information about the system.

We apply both techniques to the weighted case. First, we extend the simulation
preorder of the Boolean setting to WFAs. For two WFAs A and B, we denote by
A < B the fact that A simulates B. We show that A < B implies weighted language
containment. Also, we show that deciding whether A simulates B can be done in
NP n coNP.

We then extend abstraction to the weighted case. Here, we assume that the
given WFAs A and B are equipped with abstraction functions a and (3, respectively.
Using these functions we construct over-approximation A¢ and Bf and under ap-
proximations A} and Bf , of A and B, respectively. It is not hard to see that if

¥ BY, then A < B, and that if Al & Bf, then A &€ B. We show that the above
is valid not just of containment but also for our weighted-simulation relation. This
gives rise to the following heuristics. We start by checking A < Bf and A £ B,
for some (typically coarse) initial abstraction functions a and . If we are lucky and

one of them holds, we are done. Otherwise, we use information from the decision

22

procedure to refine the abstractions.
These results have been described in [8] and do not appear in the thesis due to

lack of space.

When does abstraction help? While on the topic of abstraction, we make a
short detour to Boolean formal methods. The biggest advantage of abstraction
of DFAs is that it reduces the state space. One of its disadvantages is that it
increases the nondeterminism. In particular, an abstraction of a DFA need not
be deterministic. The fact abstraction does not preserve determinism is a serious
drawback as determinisism makes most algorithms simpler and it is even crucial in
some settings.

We ask whether, given the need to determinize an abstract automaton, abstrac-
tion still leads to smaller automata. Formally, consider a deterministic finite au-
tomaton (DFA, for short) A, and let A, be a nondeterministic finite automaton
obtained from A by applying an abstraction function «. Let D, be the minimal
DFA equivalent to A,. We ask whether D,, is smaller than A. If so, we say that «
is helpful.

We show that, surprisingly, abstractions are not always helpful. In fact, we show
a family of DFAs and abstraction functions for them for which the abstract automata
are exponentially bigger than the original automata. We also study the problem of
deciding whether a given abstraction function is helpful for a given DFA and show
that it is PSPACE-complete.

These results have been described in [9] and do not appear in the thesis due to

lack of space.

Parameterized weighted containment In addition to verification, the automata-
theoretic approach in the Boolean setting has proven useful also in reasoning about
partially-specified systems and specifications, where some components are not known
or hidden. Partially-specified systems are used mainly in stepwise design: One starts
with a system with “holes” and iteratively completes them in a way that satisfies
some specification [31, 32]. From the other direction, partially-specified specifica-
tions are used for system exploration. A primary example is query checking: [26],
the specification contains variables, and the goal is to find a maximal assignment to
the variables with which the explored system satisfies the specification.

We study partial specified systems and specifications in the quantitative set-
ting. We introduce and study parameterized weighted containment (PWC, for short):
given three WFAs A, B, and C, with B being partial, the goal is to find an assign-
ment to the missing costs in B so that we end up with B’ for which A < B’ < C. We

also consider a one-bound version of the problem, where only A or only C are given

23

in addition to B, and the goal is to find a minimal assignment with which A < B’
or, respectively, a maximal one with which B’ < C.

Since weighted containment is undecidable, we restrict the problem in two as-
pects. First, we study the PWC problem where all three WFAs are deterministic.
We show that the problem can be solved in polynomial time and the solution is
based on strong mathematical tools. We describe a convex polytope P < R¥ that
includes exactly all the legal assignments for the missing costs in B. The polytope
P is defined using exponentially many constraints, so reasoning about it naively
would give an exponential time algorithm. Fortunately, we are able to represent the
constraints in a compact manner using a separation oracle, and use the results of
[33, 34, 46] to reason about the polytope efficiently.

Our second restriction of the problem is to replace weighted containment with
weighted simulation, which we describe above and is decidable in NPncoNP. We
argue that the one-bound problem is not interesting, as a minimal /maximal solution
need not exist. For the two bound problem, we show that the problem is NP-
complete. Given the computational difficulty of handling nondeterministic WFAs
in general, we view these results as good news

These results have been described in [10] and do not appear in the thesis due to

lack of space.

Stochastization of weighted automata Probabilistic automata (PFAs, for short)
where introduced by Rabin in the 60s [48]. The idea is to replace nondeterminism
with probability. Each transition in a PFA has a probability, the probability of a
run is the product of the probabilities of the transitions it traverses, and the “value”
of a word is the probability of the accepting runs on it. Thus, it is a number in
[0,1].

We combine the probabilistic ideas in PFAs with the quantitative ideas of WFAs
to obtain a probabilistic weighted finite automaton (PWFA| for short). There, each
transition has two weights, which we refer to as the cost and the probability®. The
weight that the PWFA assigns to a word is then the expected cost of the runs on
it. That is, as in WFAs, the cost of each run is the sum the costs of the transitions
along the run, and as in PFAs, the contribution of each run to the weight of a word
depends on both its cost and probability. While PFAs have been extensively studied
(e.g., [18]), we are only aware of [35] in which PWFAs were considered.

We introduce and study stochastization of WFAs. Given a WFA A, stochastiza-
tion turns it into a PWFA A’ by labeling its transitions with probabilities. Recall

that in a WFA, the weight of a word is the minimal weight of a run on it. Stochasti-

3For technical reasons we assume here that no run of a WFA gets stuck and all runs are

accepting.

24

zation of a WFA A results in a PWFA A’ with the same set of runs, and the weight
of a word is the expected cost of these runs. Accordingly, the weight of a word in A’
can only increase with respect to its weight in A. Hence, we seek stochastizations
in which A" a-approximates A for the minimal possible factor o > 1. That is, the
value of every word in A’ is at most « times its value in A.

We describe one of the motivatations for stochastization of WFAs. In [5], the
authors describe a framework for using WFAs in order to reason about online algo-
rithms. An online algorithm can be viewed as a reactive system: at each round, the
environment issues a request, and the algorithm should process it. The sequence
of requests is not known in advance, and the goal of the algorithm is to minimize
the overall cost of processing the sequence. The most interesting question about an
online algorithm refers to its competitive ratio: the worst-case (with respect to all
input sequences) ratio between the cost of the algorithm and the cost of an optimal
solution — one that may be given by an offline algorithm, which knows the input
sequence in advance. An online algorithm that achieves a competitive ratio « is said
to be a-competitive.

The framework in [5] models optimization problems by WFAs, relates the “un-
bounded look ahead” of the optimal offline algorithm with nondeterminism, and
relates the “no look ahead” of online algorithms with determinism. So, given a
WFA A that models an online optimization problem, the authors study the prob-
lem of finding a determinization D of A that maintains the same states as the WFA
and only prunes transitions. Such a determinization corresponds to an online al-
gorithm. They show that if D a-approximates A, then the online algorithm that
corresponds to D is a-competitive.

We broaden the framework by considering randomized online algorithms, namely
ones that may toss coins in order to choose their actions. Indeed, it is well known that
many online algorithms that use randomized strategies achieve a better competitive
ratio [22]. Similar to the above, given a WFA A, we search for an a-stochastization
P of A. A randomized online algorithm that corresponds to P is then a-competitive.

Given a WFA A and a factor o > 1, the approximated stochastization problem
(AS problem, for short) is to decide whether there is a stochastization of A that
a-approximates it. We study the AS problem and show that it is in general unde-
cidable. Special tractable cases include two types of restrictions. First, restrictions
on «: we show that when o = 1, the problem coincides with determinization by
pruning of WFAs, which can be solved in polynomial time [5]. Then, restrictions on
the structure of the WFA: we define the class of constant-ambiguous WFAs, namely
WFAs whose degree of nondeterminism is a constant, and show that the AS problem
for them is in PSPACE. On the other hand, the AS problem is NP-hard already for

7-ambiguous WFAs, namely WFAs that have at most 7 runs on each word. Even

25

more restricted are tree-like WFAs, for which the problem can be solved in polyno-

mial time, and so is the problem of finding a minimal approximation factor a. We

show that these restricted classes are still expressive enough to model interesting

optimization problems.

These results have been described in [12] and do not appear in the thesis due to

lack of space.

References

1]

S. Almagor, G. Avni, and O. Kupferman. Repairing multi-player games. In 26th
International Conference on Concurrency Theory, CONCUR 2015, Madrid,
Spain, September 1.4, 2015, pages 325-339, 2015.

S. Almagor, U. Boker, and O. Kupferman. What’s decidable about weighted
automata? In 9th Int. Symp. on Automated Technology for Verification and
Analysis, volume 6996 of Lecture Notes in Computer Science, pages 482—491.
Springer, 2011.

S. Almagor, U. Boker, and O. Kupferman. Formalizing and reasoning about
quality. In Automata, Languages, and Programming - 40th International Collo-
quium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II, pages
15-27, 2013.

S. Almagor, U. Boker, and O. Kupferman. Discounting in LTL. In Tools and
Algorithms for the Construction and Analysis of Systems - 20th International
Conference, TACAS 201/, Held as Part of the Furopean Joint Conferences on
Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13,
2014. Proceedings, pages 424-439, 2014.

B. Aminof, O. Kupferman, and R. Lampert. Reasoning about online algorithms
with weighted automata. ACM Transactions on Algorithms, 6(2), 2010.

E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and
T. Roughgarden. The price of stability for network design with fair cost al-
location. SIAM J. Comput., 38(4):1602-1623, 2008.

K.R. Apt and E. Gréadel. Lectures in Game Theory for Computer Scientists.
Cambridge University Press, 2011.

G. Avni and O. Kupferman. Making weighted containment feasible: A heuristic
based on simulation and abstraction. In Proc. 23rd Int. Conf. on Concurrency
Theory, volume 7454, pages 84-99, 2012.

26

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[17]

[18]

[19]

G. Avni and O. Kupferman. When does abstraction help? Information Pro-
cessing Letters, 113:901-905, 2013.

G. Avni and O. Kupferman. Parameterized weighted containment. ACM Trans.
Comput. Log., 16(1):6:1-6:25, 2014.

G. Avni and O. Kupferman. Synthesis from component libraries with costs. In
Proc. 25th Int. Conf. on Concurrency Theory, pages 156-172, 2014.

G. Avni and O. Kupferman. Stochastization of weighted automata. In Math-
ematical Foundations of Computer Science 2015 - 40th International Sympo-
stum, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings, Part I, pages
89-102, 2015.

G. Avni, O. Kupferman, and T. Tamir. From reachability to temporal spec-
ifications in cost-sharing games. In Automated Reasoning - 7th International
Joint Conference, IJCAR 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 19-22, 201/. Proceedings, pages 1-15, 2014.

G. Avni, O. Kupferman, and T. Tamir. Network-formation games with regular
objectives. In Proc. 17th Int. Conf. on Foundations of Software Science and
Computation Structures, volume 8412 of Lecture Notes in Computer Science,
pages 119-133. Springer, 2014.

G. Avni, O. Kupferman, and T. Tamir. Congestion games with multisets of
resources and applications in synthesis. In Proc. 35th Conf. on Foundations of

Software Technology and Theoretical Computer Science, pages 365-379, 2015.

G. Avni and T. Tamir. Cost-sharing scheduling games on restricted unrelated
machines. In Algorithmic Game Theory - 8th International Symposium, SAGT
2015, Saarbricken, Germany, September 28-30, 2015, Proceedings, pages 69—
81, 2015.

B. Awerbuch, Y. Azar, and A. Epstein. The price of routing unsplittable flow.
SIAM J. Comput., 42(1):160-177, 2013.

P. Azaria. Introduction to Probabilistic Automata (Computer Science and Ap-
plied Mathematics). Academic Press, Inc., Orlando, FL, USA, 1971.

T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. On-
drusek, S.K. Rajamani, and A. Ustuner. Thorough static analysis of device
drivers. In FuroSys, 2006.

27

[20]

[21]

[22]

[23]

[24]

[25]

[20]

[27]

[28]

[31]

V. Bilo. A unifying tool for bounding the quality of non-cooperative solutions
in weighted congestion games. In WAQOA, pages 215-228, 2012.

U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman. Temporal specifi-
cations with accumulative values. ACM Trans. Comput. Log., 15(4):27:1-27:25,
2014.

A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

P. Bouyer, R. Brenguier, and N. Markey. Nash equilibria for reachability ob-
jectives in multi-player timed games. In CONCUR 2010 - Concurrency The-
ory, 21th International Conference, CONCUR 2010, Paris, France, August 31-
September 3, 2010. Proceedings, pages 192206, 2010.

P. Bouyer, U. Fahrenberg, K. Larsen, N. Markey, and J. Srba. Infinite runs in
weighted timed automata with energy constraints. In FORMATS, pages 3347,
2008.

[. Caragiannis, M. Flammini, C. Kaklamanis, P. Kanellopoulos, and
L. Moscardelli. Tight bounds for selfish and greedy load balancing. Algo-
rithmica, 61(3):606-637, 2011.

W. Chan. Temporal-logic queries. In Proc. 12th Int. Conf. on Computer Aided
Verification, volume 1855 of Lecture Notes in Computer Science, pages 450-463.
Springer, 2000.

K. Chatterjee, L. Doyen, and T. Henzinger. Quantative languages. In Proc.
17th Annual Conf. of the Furopean Association for Computer Science Logic,
pages 385-400, 2008.

K. Chatterjee, T. Henzinger, and B. Jobstmann. Environment assumptions for
synthesis. In Proc. 19th Int. Conf. on Concurrency Theory, volume 5201 of
Lecture Notes in Computer Science, pages 147-161. Springer, 2008.

G. Christodoulou and E. Koutsoupias. On the price of anarchy and stability of
correlated equilibria of linear congestion games. In ESA, pages 59-70, 2005.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
the static analysis of programs by construction or approximation of fixpoints.
In Proc. 4th ACM Symp. on Principles of Programming Languages, pages 238—
252. ACM, 1977.

E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

28

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

L. Fix, N. Francez, and O. Grumberg. Program composition and modular veri-
fication. In Proc. 18th Int. Collog. on Automata, Languages, and Programming,
pages 93-114, 1991.

M. Grotschel, L. Lovész, and A. Schrijver. The ellipsoid method and its conse-

quences in combinatorial optimization. Combinatorica, 1(2):169-197, 1981.

R. Karp and C. Papadimitriou. On linear characterizations of combinatorial
optimization problems. In Proc. 21st IEEE Symp. on Foundations of Computer
Science, pages 1-9, 1980.

S. Kiefer, A. S. Murawski, J. Ouaknine, B. Wachter, and J. Worrell. On the
complexity of equivalence and minimisation for g-weighted automata. Logical
Methods in Computer Science, 9(1), 2013.

R. Koch and M. Skutella. Nash equilibria and the price of anarchy for flows
over time. Theory Comput. Syst., 49(1):71-97, 2011.

E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. Computer Science
Review, 3(2):65-69, 2009.

D. Krob. The equality problem for rational series with multiplicities in the trop-

ical semiring is undecidable. International Journal of Algebra and Computation,
4(3):405-425, 1994.

W. Li, L. Dworkin, and S. A. Seshia. Mining assumptions for synthesis. In
9th IEEE/ACM International Conference on Formal Methods and Models for
Codesign, MEMOCODE 2011, Cambridge, UK, 11-13 July, 2011, pages 43-50,
2011.

Y. Lustig and M.Y. Vardi. Synthesis from component libraries. STTT, 15(5-
6):603-618, 2013.

A.R. Meyer and L.J. Stockmeyer. The equivalence problem for regular expres-
sions with squaring requires exponential time. In Proc. 13th IEEE Symp. on
Switching and Automata Theory, pages 125-129, 1972.

[. Milchtaich. Congestion games with player-specific payoff functions. Games
and Economic Behavior, 13(1):111 — 124, 1996.

R. Milner. An algebraic definition of simulation between programs. In Proc.
2nd Int. Joint Conf. on Artificial Intelligence, pages 481-489. British Computer
Society, 1971.

29

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

M. Mohri. Finite-state transducers in language and speech processing. Com-
putational Linguistics, 23(2):269-311, 1997.

N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic Game
Theory. Cambridge University Press, 2007.

M.W. Padberg and M. R. Rao. The Russian Method and Integer Programming.
Working paper series (Salomon Brothers Center for the Study of Financial

Institutions). Salomon Brothers Center for the Study of Financial Institutions,
1980.

A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th
ACM Symp. on Principles of Programming Languages, pages 179-190, 1989.

M. O. Rabin. Probabilistic automata. Information and Control, 6:230-245,
1963.

R.W. Rosenthal. A class of games possessing pure-strategy Nash equilibria.
International Journal of Game Theory, 2:65-67, 1973.

R. Selten. Spieltheoretische behandlung eines oligopolmodells mit nach-
fragetragheit. Zeitschrift fur die gesamte Staatswissenschaft, 121, 1965.

V. Syrgkanis. The complexity of equilibria in cost sharing games. In Proc. of the
6th International Conference on Internet and Network Economics, WINE'10,
pages 366377, 2010.

W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer
Science, pages 133-191, 1990.

M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information
and Computation, 115(1):1-37, 1994.

30

31

Network-Formation (Games with Regular
Objectives”
Guy Avnil Orna Kupfermant Tami Tamir®

Abstract

Classical network-formation games are played on a directed graph. Players
have reachability objectives, and each player has to select a path satisfying
his objective. Edges are associated with costs, and when several players use
the same edge, they evenly share its cost. The theoretical and practical as-
pects of network-formation games have been extensively studied and are well
understood. We introduce and study network-formation games with reqular
objectives. In our setting, the edges are labeled by alphabet letters and the
objective of each player is a regular language over the alphabet of labels, given
by means of an automaton or a temporal-logic formula. Thus, beyond reach-
ability properties, a player may restrict attention to paths that satisfy certain
properties, referring, for example, to the providers of the traversed edges, the
actions associated with them, their quality of service, security, etc.

Unlike the case of network-formation games with reachability objectives,
here the paths selected by the players need not be simple, thus a player may
traverse some transitions several times. Edge costs are shared by the players
with the share being proportional to the number of times the transition is tra-
versed. We study the existence of a pure Nash equilibrium (NE), convergence
of best-response-dynamics, the complexity of finding the social optimum, and
the inefficiency of a NE compared to a social-optimum solution. We examine
several classes of networks (for example, networks with uniform edge costs,
or alphabet of size 1) and several classes of regular objectives. We show that
many properties of classical network-formation games are no longer valid in
our game. In particular, a pure NE might not exist and the Price of Stability
equals the number of players (as opposed to logarithmic in the number of
players in the classic setting, where a pure NE always exists). In light of these
results, we also present special cases for which the resulting game is more
stable.

*Published is the proceedings of the 17th Foundations of Software Science and Computation
Structures, LNCS 8412, pages 119-133, Springer, 2014, and in the proceedings of the 7th Interna-
tional Joint Conference, LNCS 8562, pages 1-15, Springer, 2014. A full version was submitted.

tSchool of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel

School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel

§School of Computer Science, The Interdisciplinary Center, Herzliya, Israel

32

1 Introduction

Network design and formation is a fundamental well-studied challenge that involves
many interesting combinatorial optimization problems. In practice, network design
is often conducted by multiple strategic users whose individual costs are affected by
the decisions made by others. Early works on network design focus on analyzing
the efficiency and fairness properties associated with different sharing rules (e.g.,
[27, 35]). Following the emergence of the Internet, there has been an explosion
of studies employing game-theoretic analysis to explore Internet applications, such
as routing in computer networks and network formation [21, 1, 16, 2]. In network-
formation games (for a survey, see [40]), the network is modeled by a weighted graph.
The weight of an edge indicates the cost of activating the transition it models, which
is independent of the number of times the edge is used. Players have reachability
objectives, each given by sets of possible source and target nodes. Players share the
cost of edges used in order to fulfill their objectives. Since the costs are positive, the
runs traversed by the players are simple. Under the common Shapley cost-sharing
mechanism, the cost of an edge is shared evenly by the players that use it.

The players are selfish agents who attempt to minimize their own costs, rather
than to optimize some global objective. In network-design settings, this would mean
that the players selfishly select a path instead of being assigned one by a central
authority. The focus in game theory is on the stable outcomes of a given setting, or
the equilibrium points. A Nash equilibrium (NE) is a profile of the players’ strategies
such that no player can decrease his cost by an unilateral deviation from his current
strategy, that is, assuming that the strategies of the other players do not change.!

Reachability objectives enable the players to specify possible sources and targets.
Often, however, it is desirable to refer also to other properties of the selected paths.
For example, in a communication setting, edges may belong to different providers,
and a user may like to specify requirements like “all edges are operated by the
same provider” or “no edge operated by AT&T is followed by an edge operated
by Verizon”. Edges may also have different quality or security levels (e.g., “noisy
channel”, “high-bandwidth channel”, or “encrypted channel”), and again, users may
like to specify their preferences with respect to these properties. In planning or in
production systems, nodes of the network correspond to configurations, and edges
correspond to the application of actions. The objectives of the players are sequences
of actions that fulfill a certain plan, which is often more involved than just reacha-
bility [25]; for example “once the arm is up, do not put it down until the block is

placed”.

!Throughout this paper, we concentrate on pure strategies and pure deviations, as is the case

for the vast literature on cost-sharing games.

33

The challenge of reasoning about behaviors has been extensively studied in the
context of formal verification. While early research concerned the input-output
relations of terminating programs, current research focuses on on-going behaviors
of reactive systems [26]. The interaction between the components of a reactive
system correspond to a multi-agent game, and indeed in recent years we see an
exciting transfer of concepts and ideas between the areas of game theory and formal
verification: logics for specifying multi-agent systems [3, 13|, studies of equilibria
in games that correspond to the synthesis problem [12, 11, 20], an extension of
mechanism design to on-going behaviors [30], studies of non-zero-sum games in
formal methods [14, 10], and more.

In this paper we extend network-formation games to a setting in which the players
can specify regular objectives. This involves two changes of the underlying setting:
First, the edges in the network are labeled by letters from a designated alphabet.
Second, the objective of each player is specified by a language over this alphabet.
Each player should select a path labeled by a word in his objective language. Thus,
if we view the network as a nondeterministic weighted finite automaton (WFA) A,
then the set of strategies for a player with objective L is the set of accepting runs
of A on some word in L. Accordingly, we refer to our extension as automaton-
formation games. As in classical network-formation games, players share the cost
of edges they use. Unlike the classical game, the runs selected by the players need
not be simple, thus a player may traverse some edges several times. Edge costs are
shared by the players, with the share being proportional to the number of times
the edge is traversed. This latter issue is the main technical difference between
automaton-formation and network-formation games, and as we shall see, it is very
significant.

Many variants of cost-sharing games have been studied. A generalization of the
network-formation game of [2] in which players are weighted and a player’s share
in an edge cost is proportional to its weight is considered in [15], where it is shown
that the weighted game does not necessarily have a pure NE. In congestion games,
sharing of a resource increases its cost. Studied variants of congestion games include
settings in which players’ payments depend on the resource they choose to use, the
set of players using this resource, or both [34, 31, 32, 23]. In some of these variants
a NE is guaranteed to exist while in others it is not.

All the variants above are different from automaton-formation games, where
a player needs to select a multiset of resources (namely, the edges he is going to
traverse) rather than a set without repetitions. In the context of formal methods,
an appealing application of such games is that of synthesis from components, where
the resources are components from a library, and agents need to synthesize their

objectives using the components, possibly by a repeated use of some components.

34

In some settings, the components have construction costs (e.g., the money paid to the
designer of the component), in which case the corresponding multiset game is a cost-
sharing game [6], and our results here can be generalized to apply for this settings.
In other settings, the components have congestion effects (e.g., the components are
CPUs, and the more players that use them, the slower the performance is), in which
case the corresponding game is a multiset congestion game [9)].

We study the theoretical and practical aspects of automaton-formation games. In
addition to the general game, we consider classes of instances that have to do with
the network, the specifications, or to their combination. Recall that the network
can be viewed as a WFA A. We consider the following classes of WFAs: (1) all-
accepting, in which all the states of A are accepting, thus its language is prefix
closed (2) uniform costs, in which all edges have the same cost, and (3) single letter,
in which A is over a single-letter alphabet. We consider the following classes of
specifications: (1) single word, where the language of each player is a single word,
(2) symmetric, where all players have the same objective. We also consider classes
of instances that are intersections of the above classes.

Each of the restricted classes we consider corresponds to a real-life variant of the
general setting. Let us elaborate below on single-letter instances. The language of
an automaton over a single letter {a} induces a subset of IN, namely the numbers

. Accordingly, single-letter instances

k € IN such that the automaton accepts a
correspond to settings in which a player specifies possible lengths of paths. Several
communication protocols are based on the fact that a message must pass a pre-
defined length before reaching its destination. This includes onion routing, where
the message is encrypted in layers [38], or proof-of-work protocols that are used to
deter denial of service attacks and other service abuses such as spam (e.g., [19]).
We provide a complete picture of the following questions for various instances
(for formal definitions, see Section 2): (i) Existence of a pure Nash equilibrium. That
is, whether each instance of the game has a profile of pure strategies that constitutes
a NE. As we show, unlike the case of classical network design games, a pure NE
might not exist in general automaton-formation games and even in very restricted
instances of it. (i¢) The complexity of finding the social optimum (SO). The SO is
a profile that minimizes the total cost of the edges used by all players; thus the one
obtained when the players obey some centralized authority. We show that for some
restricted instances finding the SO can be done efficiently, while for other restricted
instances, the complexity agrees with the NP-completeness of classical network-
formation games. (i7i) An analysis of equilibrium inefficiency. It is well known that
decentralized decision-making may lead to solutions that are sub-optimal from the
point of view of society as a whole. We quantify the inefficiency incurred due to

selfish behavior according to the price of anarchy (PoA) [29, 36] and price of stability

35

(PoS) [2] measures. The PoA is the worst-case inefficiency of a Nash equilibrium
(that is, the ratio between the worst NE and the SO). The PoS is the best-case
inefficiency of a Nash equilibrium (that is, the ratio between the best NE and the
SO). We show that while the PoA in automaton-formation games agrees with the one
in classical network-formation games and is equal to the number of players, the PoS
also equals the number of players, again already in very restricted instances. This
is in contrast with classical network-formation games, where the PoS tends to log
the number of players. Thus, the fact that players may choose to use edges several
times significantly increases the challenge of finding a stable solution as well as the
inefficiency incurred due to selfish behavior. We find this as the most technically
challenging result of this work. We do manage to find structural restrictions on the
network with which the social optimum is a NE.

The technical challenge of our setting is demonstrated in the seemingly easy
instance in which all players have the same objective. Such symmetric instances
are known to be the simplest to handle in all cost-sharing and congestion games
studied so far. Specifically, in network-formation games, the social optimum in
symmetric instances is also a NE and the PoS is 1. Moreover, in some games [22],
computing a NE is PLS-complete in general, but solvable in polynomial time for
symmetric instances. Indeed, once all players have the same objective, it is not
conceivable that a player would want to deviate from the social-optimum solution,
where each of the k players pays % of the cost of the optimal solution. We show that,
surprisingly, symmetric instances in AF-games are not simple at all. Specifically, a
NE is not guaranteed to exist in the general case, and in single-letter networks, the
social optimum might not be a NE, and the PoS is at least k—fl In particular, for
symmetric two-player AF games, we have that PoS = PoA = 2. We also show that

the PoA equals the number of players already for very restricted instances.

2 Preliminaries

2.1 Automaton-formation games

A nondeterministic finite weighted automaton on finite words (WFA, for short) is
a tuple A = (X,Q, A, qo, F,c), where ¥ is an alphabet, @) is a set of states, A <
@ x X x @ is a transition relation, ¢y € () is an initial state, F' < @ is a set of
accepting states, and ¢ : A — IR is a function that maps each transition to the cost
of its formation [33]. A run of A on a word w = wy,...,w, € ¥* is a sequence
of states m = 7%, 7!, ..., 7" such that 7° = ¢ and for every 0 < i < n we have
A(7? wiyq, 7). The run 7 is accepting iff 7@ € F. The length of 7 is n, whereas

its size, denoted |r|, is the number of different transitions in it. Note that |7| < n.

36

An automaton-formation game (AF game, for short) between k selfish players is
a pair (A, O), where A is a WFA over some alphabet 3 and O is a k-tuple of regular
languages over Y. Thus, the objective of Player ¢ is a regular language L;, and he
needs to choose a word w; € L; and an accepting run of A on w; in a way that
minimizes his payments. The cost of each transition is shared by the players that
use it in their selected runs, where the share of a player in the cost of a transition e
is proportional to the number of times e is used by the player. Formally, The set of
strategies for Player ¢ is S; = {7 : m is an accepting run of A on some word in L;}.
We assume that S; is not empty. We refer to the set S = &1 x ... x & as the set of
profiles of the game.

Consider a profile P = {7y, g, ...,). Werefer to m; as a sequence of transitions.
1

Let m; = €5, ... ,efi, and let np : A — IN be a function that maps each transition in
A to the number of times it is traversed by all the strategies in P, taking into an
account several traversals in a single strategy. Denote by 7;(e) the number of times e
is traversed in 7;, that is, n;(e) = |{1 < j < £ : el = e}|. Then, np(e) = D._, . mi(e).

The cost of player i in the profile P is

cost;(P) = Z

EET;

ni(e)
np(e)
For example, consider the WFA A depicted in Figure 1. The label e; : a,1 on

the transition from ¢g to ¢; indicates that this transition, which we refer to as ey,

c(e). (1)

traverses the letter a and its cost is 1. We consider a games between two players.
Player 1’s objective is the language is Ly = {ab’ : i > 2} and Player 2’s language is
{ab,ba}. Thus, S = {{e1,eq, e}, {e1,e2,€2,€2},...} and So = {{es, ea}, {€1, e2}}.
Consider the profile P = ({e1,eq,€2},{€3,e4}), the strategies in P are disjoint,
and we have cost;(P) = 2 + 2 = 4,costo(P) = 1 +3 = 4. For the profile
P = ({e1, 2,2}, {e1, e2}), it holds that mi(e1) = na(e1) and ni(e2) = 2 - na(e2).
Therefore, cost;(P') = 1 + 2 = 23 and costy(P') =

er:0,3
es:0,2 @ es:a,? @ er:a,l

Figure 1: An example of a WFA.

We consider the following instances of AF games. Let G = (A, O). We start with
instances obtained by imposing restrictions on the WFA A. In one-letter instances,
A is over a singleton alphabet, i.e., || = 1. When depicting such WFAs, we omit the
letters on the transitions. In all-accepting instances, all the states in A are accepting;
ie., F = Q. In uniform-costs instances, all the transitions in the WFA have the

same cost, which we normalize to 1. Formally, for every e € A, we have c¢(e) = 1. We

37

continue to restrictions on the objectives in O. In single-word instances, each of the
languages in O consists of a single word. In symmetric instances, the languages in O
coicide, thus the players all have the same objective. We also consider combinations
on the restrictions. In particular, we say that (A, O) is weak if it is one-letter,
all states are accepting, costs are uniform, and objectives are single words. Weak
instances are simple indeed — each player only specifies a length of a path he should
patrol, ending anywhere in the WFA,| where the cost of all transitions is the same.
As we shall see, many of our hardness results and lower bounds hold already for the

class of weak instances.

2.2 Nash equilibrium, social optimum, and equilibrium in-

efficiency

For a profile P, a strategy m; for Player i, and a strategy , let P[m; < 7] denote
the profile obtained from P by replacing the strategy for Player ¢ by w. A profile
P € S is a pure Nash equilibrium (NE) if no player ¢ can benefit from unilaterally
deviating from his run in P to another run; i.e., for every player ¢ and every run
7 € §; it holds that cost;(P[m; < 7|) = cost;(P). In our example, the profile P is
not a NE, since Player 2 can reduce his payments by deviating to profile P’.

The (social) cost of a profile P, denoted cost(P), is the sum of costs of the
players in P. Thus, cost(P) = Y}, _,, cost;(P). Equivalently, if we view P as a set
of transitions, with e € P iff there is 7 € P for which e € 7, then cost(P) = > _p c(e).
We denote by OPT the cost of an optimal solution; i.e., OPT = minpcg cost(P). It
is well known that decentralized decision-making may lead to sub-optimal solutions
from the point of view of society as a whole. We quantify the inefficiency incurred
due to self-interested behavior according to the price of anarchy (PoA) [29, 36] and
price of stability (PoS) [2] measures. The PoA is the worst-case inefficiency of a Nash
equilibrium, while the PoS measures the best-case inefficiency of a Nash equilibrium.

Formally,

Definition 2.1 Let G be a family of games, and let G € G be a game in G. Let
Y(G) be the set of Nash equilibria of the game G. Assume that Y (G) # .

e The price of anarchy of G is the ratio between the maximal cost of a NE and
the social optimum of G. That is, PoA(G) = maxpey(q) cost(P)/OPT(G).
The price of anarchy of the family of games G is PoA(G) = supgegPoA(G).

e The price of stability of G is the ratio between the minimal cost of a NE and
the social optimum of G. That is, PoS(G) = minpey(q) cost(P)/OPT(G).
The price of stability of the family of games G is PoS(G) = supgegPoS(G).

38

Uniform sharing rule: A different cost-sharing rule that could be adopted for
automaton-formation games is the uniform sharing rule, according to which the
cost of a transition e is equally shared by the players that traverse e, independent
of the number of times e is traversed by each player. Formally, let kp(e) be the
number of runs that use the transition e at least once in a profile P. Then, the cost
of including a transition e at least once in a run is c(e)/kp(e). This sharing rule
induces a potential game, where the potential function is identical to the one used
in the analysis of the classical network design game [2]. Specifically, let ®(P) =
Ycrcle) - H(kp(e)), where Hy = 0, and Hy, = 1+1/2+4 ...+ 1/k. Then, ®(P) is a
potential function whose value reduces with every improving step of a player, thus
a pure NE exists and BRD is guaranteed to converge. The similarity with classical
network-formation games makes the study of this setting straightforward. Thus,
throughout this paper we only consider the proportional sharing rule as defined in
(1) above.

3 Properties of Automaton-Formation Games

In this section we study the theoretical properties of AF games: existence of NE
and equilibrium inefficiency. We show that AF games need not have a pure Nash
equilibrium. This holds already in the very restricted class of weak instances, and
is in contrast with network-formation games. There, BRD converges and a pure NE
always exists 2. We then analyze the PoS in AF games and show that there too, the

situation is significantly less stable than in network-formation games.

Theorem 3.1 Automaton-formation games need not have a pure NE. This holds

already for the class of weak instances.

Proof: Consider the WFA A depicted in Figure 2 and consider a game with k = 2
players. The language of each player consists of a single word. Recall that in one-
letter instances we care only about the lengths of the objective words. Let these be ¢,
and 0o, with /1 » f5 » 0 that are multiples of 12. For example, ¢; = 30000, {5 = 300.
Let (5 and Cy denote the cycles of length 3 and 4 in A, respectively. Let D3 denote
the path of length 3 from ¢y to ¢;. Every run of A consists of some repetitions of
these cycles possibly with one pass on Djs.

We claim that no pure NE exists in this instance. Since we consider long runs,

the fact that the last cycle might be partial is ignored in the calculations below.

2Best-response-dynamics (BRD) is a local-search method where in each step some player is
chosen and plays his best-response strategy, given that the strategies of the other players do not

change.

39

Figure 2: A weak instance of AF games with no NE.

We first show that the only candidate runs for Player 1 that might be part of a
NE profile are m; = (6’4)%1 and 7) = Dj - (Cg)%’l. If Player 1 uses both C5 and
C, multiple times, then, given that ¢; » (5, he must almost fully pay for at least
one of these cycles, thus, deviating to the run that repeats this fully-paid cycle is
beneficial.

When Player 1 plays 71, Player 2’s best response is my = (04)%2. In the profile
{rr1, ™), Player 1 pays almost all the cost of Cy, so the players’ costs are (4 — ¢,).
This is not a NE. Indeed, since {5 » 0, then by deviating to 7}, the share of Player 1
in D3 reduces to almost 0, and the players’ costs in (7], m2), are (3 + &,4 —¢). This
profile is not a NE as Player 2’s best response is 75 = Dy - (Cg)%?’l. Indeed, in the
profile (7], 7}), the players’ costs are (4.5 — ¢,1.5 + ¢) as they share the cost of Ds
and Player 1 pays almost all the cost of (3. This is not a NE either, as Player 1
would deviate to the profile {7y, 7)), in which the players’ costs are (4 — €,3 + ¢€).
The latter is still not a NE, as Player 2 would head back to {7, m). We conclude

that no NE exists in this game. O

The fact a pure NE may not exist is a significant difference between standard
cost-sharing games and AF games. The bad news do not end here and extend to
equilibrium inefficiency. We first note that the cost of any NE is at most & times
the social optimum (as otherwise, some player pays more than the cost of the SO
and can benefit from migrating to his strategy in the SO). Thus, it holds that
PoS < PoA < k. The following theorem shows that this is tight already for highly

restricted instances.

Theorem 3.2 The PoS in AF games equals the number of players. This holds

already for the class of weak instances.

Proof: We show that for every k,6 > 0 there exists a simple game with &
players for which the PoS is more than k& — §. Given k and ¢, let » be an integer
such that r > max{k, = — 1}. Consider the WFA A depicted in Figure 3. Let
L = {1, ly,... 4y for by = ... =l and {; » l5 » 0 denote the lengths of the
objective words. Thus, Player 1 has an ‘extra-long word” and the other £ —1 players
have words of the same, long, length. Let C, and C,,; denote, respectively, the
cycles of length r and r + 1 to the right of go. Let D, denote the path of length

40

r from qg to ¢, and let Dy, denote the ‘lasso’ consisting of the kr-path and the
single-edge loop to the left of gq.

(z k - r edges

Figure 3: A weak instance of AF games for which PoS = k.

. .« e e .« ..
(r 4+ 1)-edge cycle r-edgecycle &

The social optimum of this game is to buy C,.;. Its cost is » + 1. However, as
we show, the profile P in which all players use Dy, is the only NE in this game. We
first show that P is a NE. In this profile, Player 1 pays r + 1 — ¢ and each other
player pays r + ¢/(k — 1). No player will deviate to a run that includes edges from
the right side of A. Next, we show that P is the only NE of this game: Every run
on the right side of A consists of some repetitions of C,, and C,, possibly with one
traversal of D,. Since we consider long runs, the fact that the last cycle might be
partial is ignored in the calculations below.

In the social optimum profile, Player 1 pays r + 1 — ¢ and each of the other
players pays £/(k —1). The social optimum is not a NE as Player 1 would deviate to
D, -C¥ and will reduce his cost to r +¢’. The other players, in turn, will also deviate
to D, - C}. In the profile in which they are all selecting a run of the form D, - CF,
Player 1 pays r 4+ r/k —e > r + 1 and prefers to return to C},,. The other players
will join him sequentially, until the non-stable social optimum is reached. Thus, no
NE that uses the right part of A exists. Finally, it is easy to see that no run that
involves edges from both the left and right sides of A or includes both C,.; and C.
can be part of a NE.

The cost of the NE profile is kr+1 and the PoS is therefore % =k— ’:: > k—0.

[

4 Computational Complexity Issues in AF Games

In this section we study the computational complexity of three problems: finding the
cost of the social optimum, finding the best-response of a player, and deciding the
existence of a NE. Recall that the social optimum (SO) is a profile that minimizes
the total cost the players pay. It is well-known that finding the social optimum in a
network-formation game is NP-complete. We show that this hardness is carried over
to simple instances of AF games. On the positive side, we identify non-trivial classes
of instances, for which it is possible to compute the SO efficiently. The other issue
we consider is the complexity of finding the best strategy of a single player, given the

current profile, namely, the best-response of a player. In network-formation games,

41

computing the best-response reduces to a shortest-path problem, which can be solved
efficiently. We show that in AF games, the problem is NP-complete. Finally, recall
that AF games are not guaranteed to have a NE. We study the problem of deciding,
given an AF game, whether it has a NE. We term this problem INE. We show that
the INE problem is ¥%-complete.

We start with the problem of finding the value of the social optimum.

Theorem 4.1 Finding the value of the social optimum in AF games is NP-complete.
Moreover, finding the social optimum s NP-complete already in single-worded in-

stances that are also uniform-cost and are either single-lettered or all-accepting.

Proof: We start with membership in NP. Given a WFA A with objectives
wi, ..., wg and value ¢ € IR, we can guess a witness profile P and check whether it
satisfies cost(P) < ¢ in polynomial time. For proving hardness, we show a reduction
from the Set-Cover (SC) problem. Consider an input (U, S, m) to SC. Recall that
U is a set of elements, S = {C},...,C.} < 2Y is a collection of subsets of elements
of U, and m € IN. Then, (U, S,m) is in SC iff there is a subset S’ of S of size at
most m that covers U. That is, |S'| <m and (Jsee C = U.

Given an input (U, S, m) to SC, we construct a uniform-cost single-letter WFA
A and a vector of k integers, where the i-th integer corresponds to the length of
the (single) word in L;. We fix a value y, such that (U,S,m) in SC iff the SO
value of the game played on A with the objectives in {L;} is y. We construct
A = {a},Q,q0, A, {quce}, c) as follows (see an example in the left of Figure 4).
The set () includes the initial and accepting states, a state for every set in .S, and
intermediate states required for the disjoint runs defined below. Without loss of
generality, we assume that U = {1,...,k}. Consider an element i € U. For every
C € S such that ¢ € C, there is a disjoint run of length ¢ from C to ¢u... Also,
for every C' € S, there is a transition {(qp, C') in A. The cost of all transitions in
Ais 1. For every 1 < i < k, the length of the word in |L;| is i + 1. We define
w=m+ (1+2+...+ k). The size of A is clearly polynomial in |U]| and |S].

Figure 4: The WFAs produced by the reduction for U = {1,2,3} and S = {{1,2},{2,3}}.

The construction for uniform-cost all-accepting instances is very similar (see an
example in the right of Figure 4). Let z = [log(n)] and ¥ = {0,1}. For C € S
and ¢ € C, we have a z-length path from C to ¢,. that is labeled with the binary

42

representation of ¢ — 1 (padded with preceding zeros if needed). The label on all
transitions from ¢o to the S states is 0. For 1 < ¢ < k, the word for Player ¢ is a
single 0 letter followed by the binary representation of i — 1. The size of A is clearly
polynomial in |U| and |S].

We claim that there exists a set-cover of size m iff OPT < m+(1+2+...+k) for
the uniform-cost single-letter instance and OPT < m + k- z for the uniform-cost all-
accepting instance. We prove the claim for the uniform-cost single-letter instance.
The proof for the uniform-cost all-accepting instance is very similar. For the first
direction, let S" = {s;,,...,s;,. } be a set cover. We show a profile P = {my,..., 7}
such that cost(P) < m+ (1+2+ ...+ k). Recall that the input length for Player ¢
is i + 1. Since S’ is a set cover, there is a set s € S’ with i € s. We define
the run m; to proceed from ¢y to s and from there to ¢u.. on a run of length i.
Clearly, the runs my, ..., m, are all legal-accepting runs. Moreover, the runs use m
transitions from {go} x S € E. Thus, cost(P) < m+ (1 +2+ ... + k), implying
OPT <m+ (1+2+...+k), and we are done.

For the second direction, assume OPT = m/+(14+2+...+k) < m+(1+2+...+k),
we prove that there is a set cover of size m’. Let S* = (my,...,m). Thus, OPT =
cost(S*) = m/. Let S’ < S be such that s € S’ iff the transition (g, s) is used in one
of the runs in S*. Note that the run of every player consists of a transition (qo, s)
followed by a disjoint run of length i to gue. Therefore, OPT = m/+(1+2+...4+k),
and, |S'| = m’ < m. We claim that S’ is a set cover. For every i € U, the first
transition in the run is a transition {(qq, s) for some s € S, as otherwise, player i can
not proceed to q,.. along a run of length 7. By our definition of S” we have s € S’,

thus ¢ € U is covered.]

The hardness results in Theorem 4.1 for single-word specification use one of two
properties: either there is more than one letter, or not all states are accepting.
We show that finding the SO in instances that have both properties can be done
efficiently, even for specifications with arbitrary number of words.

For a language L; over ¥ = {a}, let short(i) = min;{a’ € L;} denote the length
of the shortest word in L;. For a set O of languages over ¥ = {a}, let £,,,.(0) =
max; short(i) denote the length of the longest shortest word in O. Clearly, any
solution, in particular the social optimum, must include a run of length ¢,,,.(O).
Thus the cost of the social optimum is at least the cost of the cheapest run of
length £,,,:(0O). Moreover, since the WFA is single-letter and all-accepting, the
other players can choose runs that are prefixes of this cheapest run, and no additional
transitions should be acquired. We show that finding the cheapest such run can be

done efficiently.

Theorem 4.2 The cost of the social optimum in a single-letter all-accepting in-

43

stance (A, O) is the cost of the cheapest run of length {p,q..(O). Moreover, this cost

can be found in polynomial time.

Proof: Clearly, any solution, in particular the social optimum, must include a
run of length £,,,,(0O). Thus the cost of the social optimum is at least the cost of
the cheapest run of length ¢,,,,.(0). Moreover, since there are no target vertices,
the other players can be assigned runs that are prefixes of the cheapest run, and no
additional transitions should be acquired.

We claim that finding the cheapest such run can be done efficiently. Recall that
qo is the initial state in A, and let |Q| = n. We view A as a weighted-directed graph
G = (V, E, c), where the vertices V are the states @, there is an edge e € E between
two vertices if there is a transition between the two corresponding states, and the
cost of the edges is the same as the cost of the transition in A. For 0 < i < n, let
d; : V xV — Q" be the function that, given two vertices u, v € V, returns the value
of the cheapest pah of length ¢ from u to v, and oo if no such path exists. Note
that there is no requirement that the path is simple, and indeed we may traverse
cycles in order to accommodate ¢ transitions. The function d : V x V — Q7 returns
the value of the cheapest path of any length between two given vertices. Given two
vertices u,v € V', computing d(u,v) can be done using Dijkstra’s algorithm, and,
given an index ¢ € IN, it is possible to compute d;(u,v) by a slight variation of the
Bellman-Ford algorithm.

We distinguish between two cases. If £,,,. > 2n — 2, we claim that the value of
the social optimum is min{d(qo, v) + d(v,v) : v € V}. If {100 < 2n—2, then we claim
that the value of the social optimum is the minimum value of d;(qo,v) + d;(v,v),
where v €V, 0 <1 < lpae, 0 < J < lpae — 1, and if j = 0, then ¢ = 4,4,

We start with the first case. Assume £, > 2n — 2. Let ALG = min{d(qy,v) +
d(v,v) : v e V}. Recall that S* is the social optimum profile, and OPT = cost(S*).
For the first direction, we claim that ALG < OPT'. Let w be a run in S* of length
lmaz, Where we assume 7 is a sequence of transitions. Clearly, OPT > cost(r).
Since ALG takes the minimum over all vertices, it suffices to prove that cost(mw) >
d(qo,v) +d(v,v) for some v € V. We view 7 as a path in the graph G, and we claim
that 7 contains a sub-path that starts in ¢y and ends in v and a sub-path that is a
cycle from v to itself, for some v € V. Thus, OPT > cost(n) = cost(x) + cost(y) =
d(qo,v) +d(v,v) = ALG. We continue to prove the claim. Since £,,,,, > n, there is a
vertex v that appears twice in m. We split 7 into two paths, at the first appearance
of v. That is, 7 = x - ¢/, where x is a path that ends in v and v does not appear in
x again. Note that if v = qg, then 7 = ¢/. Since 7 is a legal run, it starts in ¢, and
we have that x is a path from ¢y to v. We continue to prove that there is a cycle y

from v to itself that is contained in y’. Indeed, since v appears at least twice in 7,

44

and since y' is a sequence of transitions that starts in v, we have that v appears in
y' at least twice, and we are done.

We continue to prove that ALG = OPT. Let v € V be the vertex that attains
the minimum in min{d(qy,v) + d(v,v) : v € V}. Let 7 = 71 - 75 be a run such that
is a simple path from gy to v with cost(m) = d(qo,v) and 75 is a simple cycle from
v to itself with cost(my) = d(v,v). We claim that cost(r) = OPT. Since 71 and 7,
are simple, we have |11| <n —1 and || <n — 1. Thus, |7| < 2n — 2. We extend 7
to a path of length ¢,,,, by traversing the loop 7, many times. Clearly, 7 is a legal
run of the automaton A on a word of length ¢,,,,. Consider the profile S in which
the players choose runs that are prefixes of 7. Since the only transitions used in S
are those in 7, we have cost(S) = cost(r). Since S* is the social optimum, we have
ALG = cost(S) = cost(S*) = OPT, and we are done.

The case in which /,,,, < 2n — 2 is proven in a similar manner. O]

We turn to prove the hardness of finding the best-response of a player. Our proof
is valid already for a single player that needs to select a strategy on a WFA that is
not used by other players (one-player game).

Theorem 4.3 Finding the best-response of a player in AF games is NP-complete.

Proof: We start with membership in NP. Given a WFA A with objectives
Ly,..., L, and value ¢ € IR, we can guess a witness profile P and check whether it
satisfies cost(P) < ¢ in polynomial time.

For proving hardness, we show a reduction from the Set-Cover (SC) problem.
Consider an input (U, S;m) to SC. Recall that U = {1,...,n} is a set of elements,
S ={Cy,...,C.} < 2Y is a collection of subsets of elements of U, and m € IN. Then,
(U, S;m) is in SC iff there is a subset S’ of S of size at most m that covers U. That
is, |S'] <m and (Joeq C = U.

Given an input (U, S, m) to SC, we construct a game (A, O) such that (U, S, m)
is in SC iff the SO in the game is at most [. The game is a one-player game. We start
by describing the specification L of the player. The alphabet of L is S U U and it is
given by the regular expression (C1+. .. +Cy,)-1-(C1+. . . +Cy,)-2-.. - (Ci+.. .+Cp)n.
The WFA A is over the alphabet S UU. There is a single initial state ¢;, and a state
for every set in S. For 1 < ¢ < z, there is a Cj-labeled transition from ¢;, to the
state C;, and for every j € C;, there is a j-labeled transition from the state C; back
t0 @in. The first type of transitions cost 1 and the second cost 0 (for an example see
Figure 5).

We prove the correctness of the reduction: For the first direction, assume there
is a set cover of at most [. Consider the word w in which, for every 1 < j < n, the

letter that precedes j is C; € S such that C; is in the set cover. Clearly, w € L and

45

Figure 5: The WFA produced by the reduction for U = {1,2,3} and S = {{1,2},{2, 3}}.

since it uses at most [letters from S, the profile in which the player chooses it, costs
at most [. Thus, the SO is also at most [. For the other direction, assume the SO is
attained in a profile with the word w € L. It is not hard to see that the letters from

S that appear in w form a set cover of size at most [. L]

We turn to study the problem of deciding whether a NE exists. We show that
INE is complete for X1 — the second level of the polynomial hierarchy. Namely, de-
cision problems solvable in polynomial time by a nondeterministic Turing machine
augmented by an oracle for an NP-complete problem. An oracle for a computational
problem is a black box that is able to produce a solution for any instance of the
problem in a single operation. Thus, for every problem P € X1’ there is a machine
such that for every x € P there is a polynomial accepting computation (with poly-
nomial many queries to the oracle). As co-NP is the dual complexity class of NP,
the dual complexity class of ¥¥ is TI¥. Thus, a problem P is X1'-complete iff its
complement P is II}-complete.

The upper bound is easy: guess a profile, and use k calls to an oracle for the
best-response problem to verify that no player can benefit from deviating. For the
lower bound, we alter the reduction in [6], for the INE problem in a similar game.
The reduction is from the complement of the min-max vertex cover problem, which

is known to ¥¥-complete [28].

Theorem 4.4 The problem of deciding whether an AF has a NE is 3%-complete.

5 Tractable Instances of AF Games

In the example in Theorem 3.1, Player 1 deviates from a run on the shortest (and
cheapest) possible path to a run that uses a longer path. By doing so, most of the
cost of the original path, which is a prefix of the new path and accounts to most
of its cost, goes to Player 2. We consider semi-weak games in which the WFA is
uniform-cost, all-accepting, and single-letter, but the objectives need not be a single
word. We identify a property of such games that prevents this type of deviation and
which guarantees that the social optimum a NE. Thus, we identify a family of AF

games in which a NE exists, finding the SO is easy, and the PoS is 1.

46

Definition 5.1 Consider a semi-weak game (A, O). A lasso is a path u-v, where u
is a simple path that starts from the initial state and v is a simple cycle. A lasso v is
minimal in A if A does not have shorter lassos. Note that for minimal lassos u - v,
we have that unv = . We say that A is resistant if it has no cycles or there is a

minimal lasso v = u-v such that for every other lasso v' we have |[u\v'|+ |v| < [V \v|.

Consider a resistant weak game (A, O). In order to prove that the social optimum
is a NE, we proceed as follows. Let v be the lasso that is the witness for the resistance
of A. We show that the profile S* in which all players choose runs that use only
the lasso v or a prefix of it, is a NE. The proof is technical and we go over all the
possible types of deviations for a player and use the weak properties of the network
along with its resistance. By Theorem 4.2, the cost of the profile is the SO. Hence
the following.

Theorem 5.1 For resistant semi-weak games, the social optimum s a NE.

Proof: Consider a resistant semi-weak game (A, O), thus A has no cycles or
there is a minimal lasso in A that satisfies the resistance requirements. Recall that
by Theorem 4.2, the social optimum is the profile $* in which all players use prefixes
of the cheapest run of length ¢,,,,(0). Formally, let ¢; = ly > ... = {;, where for
1 <i <k, ¢; be the minimal length of a word in L;. That is, {1 = ,,4:(O). Then,
S* = (my,...,m), where for 1 < i < k, the run 7; is of length ¢; and m; uses the
lasso that is the witness for resistance, or an acyclic path if the lasso’s length is
larger than /.

We claim that S* is a NE. Assume otherwise, thus there are 1 < i < k and 7}
such that cost;(S*) > cost;(S*[i < 7.]). Assume Wlog that |7}| = ¢; as otherwise
Player i can deviate to a prefix of length ¢; of 7} and only improve his payment. We
use S’ to refer to S*[i « m}]. For 1 < j <k, let v; be the set of transitions that are
used in ;. Similarly, let] be the transitions used in 7j. Note that vy, ..., v, V] are
paths of transitions.

We distinguish between four cases. In the first case, both v; and v} are simple
paths. First, note that every transition in v; n v} costs the same for Player ¢ in
both profiles. Next, we claim that every transition in v/\r; costs at least as much
as any transition in »/\r;. Indeed, since all players use prefixes of vy, the sharing
along the path monotonically decreases. That is, assuming v; = t1,...,t,, then for
1 <j<n-1,in S* the number of players using transition ¢; is at least that of
tj+1. Since A has uniform transition costs, the claim follows. Finally, since the runs
are simple, the sizes of v;\v, and v/\v; are equal. Thus, cost;(S*) < cost;(S’), and
we reach a contradiction to the fact that Player ¢ deviates.

In the second case, v; is simple and v} is lasso. Thus, |v)| < |v|. If |V = |vi],

we return to the previous case. We assume |V/| < |v;|, and show that we reach a

47

contradiction to our assumption that A is resistant. Recall that |v]| > |v|. If 1
uses a lasso, then v/ is a shorter lasso, contradicting the minimality of the witness
lasso for resistance. If m; does not use a lasso, then we reach a contradiction to our
assumption that the witness lasso has length greater than /.

In the third case, v; is a lasso and v/ is simple. Thus, v; = v;. Consider a
transition e € v;. Let z. and 2, be the number of times Player ¢ uses e in 7; and
m;, respectively. Thus, z. > 0 and 2/, < 1. Let y. be the number of times the other
players use e in S* and also in S’ as none of them alter their strategy. Consider
a transition e € y; having 2/, = 1. That is, Player ¢ reduces his number of uses of
transition e from x. to 1. Since the number of times Player ¢ uses a transition in 7
is at most 1, there are (z. — 1) transitions that are not used by Player i in 7; and
are used once in 7. Since v; = vy, these transitions are all in /\r; and Player i pays
1 for each of them. Consider a transition e € v;. Let cost§(S*) and cost{(S”) be the
cost Player ¢ pays for transition e in profiles S* and S’, respectively. If 2, = 1, then

by the above

T, 1
—(n
Ye T e “Yet1

cost; (S*) — cost{(S') =

(Te — 1)) =

o $eye+xe+y2_yexg_xg_y2xe <0
(Ye +2e) - (Ye + 1) b

Similarly, if 2/, = 0, then the change in cost incurred by e is:

x
t5(S*) — cost§(S') = —— — 1. <0
cost$ (S™) — cost$ (S") . Te

Since cost;(S*)—cost;(S") = Y. costs(S*)—cost§(S"), we have cost; (S*)—cost;(S") <
0, and thus cost;(S*) < cost;(S"), which is a contradiction to the fact that Player i
deviates.

We continue to the final case in which both v; and v} are lassos. As in the
previous case, v; = ;. Recall that the lasso 14 is the lasso that is the witness for
the resistance of A. We show that the lasso v/ violates our requirement for v; and
thus we reach a contradiction. Let v; = u - v, where u is a simple path from the

initial state and v is a simple cycle. Thus,
cost;(S*) = cost;(S*,u) + cost;(S*,v) < cost;(S*,u N v)) + |u\vi| + |v|.
Also,
costi(S") = cost;(S',u N) + costi (S, V] nv) + [V\wi| = costi (ST, unvp) + |v\vi.
Subtracting both inequalities we get:
cost;(S*) — cost;(S') < [u\vj| + [v] — |v)\w].

48

Since cost;(S*) — cost;(S") > 0, we get:
vi\vil > [u\wj] + o],

which is a contradiction to the resistance of A, and we are done.]

A corollary of Theorem 5.1 is the following:
Corollary 5.2 For resistant semi-weak games, we have PoS= 1.

We note that resistance can be defined also in WFAs with non-uniform costs, with
cost(v) replacing |v|. Resistance, however, is not sufficient in the slightly stronger
model where the WFA is single-letter and all-accepting but not uniform-cost. In-
deed, given k, we show a such a game in which the PoS is kx, for a parameter x that
can be arbitrarily close to 1. Consider the WFA A in Figure 5. Note that A has a
single lasso and is thus a resistant WFA. The parameter ¢; is a function of x, and
the players’ objectives are single words of lengths ¢; » ¢5 » ... » £, » 0. Similar
to the proof of Theorem 3.2, there is only one NE in the game, which is when all
players choose the left chain. The social optimum is attained when all players use
the self-loop, and thus for a game in this family, PoS = kT:” Since x tends to 1, we

have PoS = k for resistant all-accepting single-letter games.

Figure 6: A resistant all-accepting single-letter game in which the PoS tend to k.

6 Surprises in Symmetric Instances

In this section we consider the class of symmetric instances, where all players share
the same objective. That is, there exists a language L, such that for all 1 <1 < k,
we have L; = L. In such instances it is tempting to believe that the social optimum
is also a NE, as all players evenly share the cost of the solution that optimizes their
common objective. While this is indeed the case in all known symmetric games, we
show that, surprisingly, this is not valid for AF-games, in fact already for the class
of one-letter, all accepting, unit-cost and single-word instances.

Moreover, we start by showing that a NE need not exist in general symmetric

mstances.

Theorem 6.1 Symmetric instances of AF-games need not have a pure NE.

49

Proof: Consider a WFA A consisting of a single accepting state with two self
loops, labeled (a, 1) and (b, % —€). Let n; and ny be such that 0 < ny < ny. We
define L = a® + ab™ + aab™ + aaab. We denote the 4 strategies available to each of
the players by A, B,C, and D, with A = (6,0) indicating 6 uses of the a transition
and 0 uses of the b transition, B = (1,n1), C' = (2,ny), and D = (3,1).

In order to show that there is no NE, we only have to show that the four profiles
in which the players follow the same strategy are not a NE. Indeed, it is easy to see
that for every other profile, one of the players would deviate to one of these profiles.
Now, in profile (A, A) both players pay % as they split the cost of the a-transition
evenly. This is not a NE as Player 1 (or, symmetrically, Player 2) would deviate to
(B, A), where he pays % for the a-transition and the full price of the b-transition,
which is % — ¢, thus he pays % — €.

In profile (B, B), both players pay % for the a-transition plus ﬁ — € for the
b-transition, which sums to 0.678 — e¢. This is not a NE, as Player 1 would deviate
to (C, B), where he pays % for the a-transition and, as ns « ny, only € for the
b-transition.

In profile (C,C’), again both players pay 0.678 — e¢. By deviating to (D, C),
Player 1 reduces his payment to % + €. Finally, in profile (D, D), both players pay
0.678 — € and when deviating to (A4, D), Player 1 reduces his payment to . O

We turn to study the equilibrium inefficiency, starting with the PoA. It is easy
to see that in symmetric AF games, we have PoA = k. This bound is achieved, as
in the classic network-formation game, by a network with two parallel edges labeled
by a and having costs k£ and 1. The players all have the same specification L = {a}.
The profile in which all players select the expensive path is a NE. We show that

PoA = k is achieved even for weak symmetric instances.

Theorem 6.2 The PoA equals the number of players, already for weak symmetric

mstances.

Proof: We show a lower bound of k. The example is a generalization of the
PoA in cost sharing games [2]. For k players, consider the weak instance depicted
in Figure 6, where all players have the length k. Intuitively, the social optimum is
attained when all players use the loop {qo, qo) and thus OPT = 1. The worst NE is
when all players use the run qoq; . .. g, and its cost is clearly k. Formally, there are

two NEs in the game:

e The cheap NE is when all players use the loop {qo, qo). This is indeed a NE

because if a player deviates, he must buy at least the transition {(qg, q1). Thus,

1

he pays at least 1, which is higher than 1, which is what he pays when all

players use the loop.

50

e The expensive NE is when all players use the run qo, q1, ..., qc. This is a NE
because a player has two options to deviate. Either to the run that uses only
the loop, which costs 1, or to a run that uses the loop and some prefix of
qo,q1, - - - » Qk, Which costs at least 1 + % Since he currently pays 1, he has no

intention of deviating to either runs.

Since the cheap NE costs 1 and the expensive one costs k, we get PoA = k. L]

Figure 7: The WFA A for which a symmetric game with |L| = 1 achieves PoA = k.

We now turn to the PoS analysis. We first demonstrate the anomaly of having
PoS > 1 with the two-player game appearing in Figure 8. All the states in the
WFA A are accepting, and the objectives of both players is a single long word. The
social optimum is when both players traverse the loop qg, g1, qo. Its cost is 2 + €, so
each player pays 1 4 5. This, however, is not a NE, as Player 1 (or, symmetrically,
Player 2) prefers to deviate to the run qo, g1, q1, q1, - - ., where he pays the cost of the
loop ¢1,¢1 and his share in the transition from ¢y to ¢;. We can choose the length of
the objective word and € so that this share is smaller than 7, justifying his deviation.
Note that the new situation is not a NE either, as Player 2, who now pays 2, is
going to join Player 1, resulting in an unfortunate NE in which both players pay
1.5.

2

~(@]__Tep:

€

Figure 8: The WFA A for which the SO in a symmetric game is not a NE.

It is not hard to extend the example from Figure 8 to & > 2 players by changing
the 2-valued transition to k, and adjusting € and the lengths of the players accord-
ingly. The social optimum and the only NE are as in the two-player example. Thus,
the PoS in the resulting game is 1 + %

A higher lower bound of 1 + ﬁ is shown in the following theorem. Although
both bounds tend to 1 as k grows to infinity, this bound is clearly stronger. Also,
for k£ = 2, the bound PoS =1 + ﬁ = 2 is tight. We conjecture that % is tight

for every k > 1.

Theorem 6.3 In a symmetric k-player game, the PoS is at least %

o1

Proof: For k > 2, we describe a family of symmetric games for which the PoS
tends to ﬁ For n > 1, the game G, uses the WFA that is depicted in Figure 9.
Note that this is a one-letter instance in which all states are accepting. The players
have an identical specification, consisting of a single word w of length ¢ » 0. We
choose £ and € = ¢y > ... > ¢, as follows. Let Cy, ..., C, denote, respectively, the
cycles with costs (k" +), (k" ' +¢€1),...,(k+€n_1),1. Let rg, ..., r, be lasso-runs
on w that end in Cy, ..., (), respectively. Consider 0 <7 <n — 1 and let P; be the
profile in which all players choose the run r;. We choose ¢ and ¢; so that Player 1
benefits from deviating from P; to the run r;,1, thus P; is not a NE. Note that by
deviating from r; to r;,1, Player 1 pays the same amount for the path leading to C;.
However, his share of the loop C; decreases drastically as he uses the k" ‘-valued
transition only once whereas the other players use it close to ¢ times. On the other
hand, he now buys the loop C;,; by himself. Thus, the change in his payment change
is % (k" 4 e) — (€ + k70D ¢ 1), We choose €41 and £ so that T > €+,

thus the deviation is beneficial.

kn kn—l kn_2 k2]f
€0 €1 €2 €n—2 €n—1

Figure 9: The network of the identical-specification game Gy, in which PoS tends to
k

k—1°

We claim that the only NE is when all players use the run r,. Indeed, it is
not hard to see that every profile in which a player selects a run that is not from
To, ...,y cannot be a NE. Also, a profile in which two players select runs r; and r;,
for 1 < i < j < n, cannot be a NE as the player using r; can decreases his payment
by joining the other player in r;. Finally, by our selection of €y, ..., €,, and ¢, every
profile in which all the players choose the run r;, for 0 <7 < n — 1, is not a NE.

Clearly, the social optimum is attained when all players choose the run ry, and
its cost is k™ + e. Since the cost of the only NE in the game is > _,_, k™~ the PoS

in this family of games tends to % as n grows to infinity and € to 0. [

Finally, we note that our hardness result in Theorem 4.3 implies that finding the
social optimum in a symmetric AF-game is NP-complete. Indeed, since the social
optimum is the cheapest run on some word in L, finding the best-response in a one-
player game is equivalent to finding the social optimum in a symmetric game. This
is contrast with other cost-sharing and congestion game (e.g. [22], where the social

optimum in symmetric games can be computed using a reduction to max-flow).

Acknowledgments. We thank Michal Feldman, Noam Nisan, and Michael Schapira

52

for helpful discussions.

References

[1]

2]

S. Albers, S. Elits, E. Even-Dar, Y. Mansour, and L. Roditty. On Nash Equilibria
for a Network Creation Game. In Proc. 17th SODA, pages 89-98, 2006.

E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Rough-
garden. The Price of Stability for Network Design with Fair Cost Allocation.
SIAM J. Comput. 38(4): 1602-1623, 2008.

R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49(5):672-713, 2002.

B. Aminof, O. Kupferman, and R. Lampert, Reasoning about online algorithms
with weighted automata, ACM Transactions on Algorithms, 6(2), 2010.

B. Alpern and F.B. Schneider. Recognizing safety and liveness. Distributed
computing, 2:117-126, 1987.

G. Avni and O. Kupferman, Synthesis from Component Libraries with Costs, In
Proc. 25th CONCUR, pages 156172, 2014.

G. Avni, O. Kupferman, T. Tamir, Network-Formation Games with Regular
Objectives In Proc. 17th FoSSaCS, pages 119-133, 2014.

G. Avni, O. Kupferman, T. Tamir, From Reachability to Temporal Specifications
in Cost-Sharing Games, In Proc. 7th I[JCAR, pages 1-15, 2014.

G. Avni, O. Kupferman, T. Tamir, Congestion Games with Multisets of Re-

sources and Applications in Synthesis, Submitted.

[10] T. Brihaye, V. Bruyere, J. De Pril, and H. Gimbert. On subgame perfection

in quantitative reachability games. Logical Methods in Computer Science, 9(1),
2012.

[11] K. Chatterjee. Nash equilibrium for upward-closed objectives. In Proc. 15th

CSL, LNCS 4207, pages 271-286. Springer, 2006.

[12] K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Games with secure equi-

libria. Theoretical Computer Science, 365(1-2):67-82, 2006.

[13] K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy logic. In Proc. 18th

CONCUR, pages 59-73, 2007.

23

[14] K. Chatterjee, R. Majumdar, and M. Jurdzinski. On Nash equilibria in stochas-
tic games. In Proc. 13th CSL, LNCS 3210, pages 26-40. Springer, 2004.

[15] H. Chen and T. Roughgarden. Network Design with Weighted Players, Theory
of Computing Systems, 45(2), 302-324, 2009.

[16] J.R. Correa, A. S. Schulz, and N. E. Stier-Moses. Selfish Routing in Capacitated
Networks. Mathematics of Operations Research 29: 961-976, 2004.

[17] N. Daniele, F. Guinchiglia, and M.Y. Vardi. Improved automata generation for
linear temporal logic. In Proc. 11th CAV, LNCS 1633, pages 249-260. Springer,
1999.

[18] M. Droste, W. Kuich, and H. Vogler (eds.), Handbook of Weighted Automata,
Springer, 2009.

[19] C. Dwork and M. Naor. Pricing via Processing or Combatting Junk Mail, In
Proc. 12th CRYPTO, pages 139-177, 1992.

[20] D. Fisman, O. Kupferman, and Y. Lustig. Rational synthesis. In Proc. 16th
TACAS, LNCS 6015, pages 190-204. Springer, 2010.

[21] A. Fabrikant, A. Luthra, E. Maneva, C. Papadimitriou, and S. Shenker. On a
network creation game. In Proc. 22nd PODC, pages 347-351, 2003.

[22] A. Fabrikant, C. Papadimitriou, and K. Talwarl, The Complexity of Pure Nash
Equilibria, Proc. 36th STOC, pages 604—612, 2004.

[23] M. Feldman and T. Tamir. Conflicting Congestion Effects in Resource Alloca-
tion Games. Journal of Operations Research 60(3), pages 529-540, 2012.

[24] P. von Falkenhausen and T. Harks. Optimal Cost Sharing Protocols for Schedul-
ing Games. In Proc. 12th EC, pages 285-294, 2011.

[25] G. de Giacomo and M. Y. Vardi. Automata-Theoretic Approach to Planning
for Temporally Extended Goals, In Furopean Conferences on Planning, pages
226-238, 1999.

[26] D. Harel and A. Pnueli. On the development of reactive systems. In Logics
and Models of Concurrent Systems, volume F-13 of NATO Advanced Summer
Institutes, pages 477-498. Springer, 1985.

[27] S. Herzog, S. Shenker, and D. Estrin. Sharing the “Cost” of Multicast Trees:
An Axiomatic Analysis. IEEE/ACM Transactions on Networking, 1997.

o4

[28] K-I. Ko and C-L. Lin. On the complexity of min-max optimization problems
and their approximation. In Minimax and Applications, volume 4 of Nonconvex

Optimization and Its Applications, pages 219-239. Springer, 1995.

[29] E. Koutsoupias and C. Papadimitriou. Worst-case Equilibria. Computer Science
Review,3(2): 65-69, 2009.

[30] O. Kupferman and T. Tamir. Coping with selfish on-going behaviors. Infor-
mation and Computation, 210:1-12, 2012.

[31] M. Mavronicolas, I. Milchtaich, B. Monien, and K. Tiemann. Congestion Games
with Player-specific Constants. In Proc 32nd MFCS, pp. 633-644, 2007.

[32] I. Milchtaich. Weighted Congestion Games With Separable Preferences. Games
and Economic Behavior, 67, 750-757, 2009.

[33] M. Mohri. Finite-state transducers in language and speech processing. Com-
putational Linguistics, 23(2):269-311, 1997.

[34] D. Monderer and L. Shapley. Potential Games. Games and Economic Behavior,
14:124-143, 1996.

[35] H. Moulin and S. Shenker. Strategyproof Sharing of Submodular Costs: Budget
Balance Versus Efficiency. Journal of Economic Theory, 18: 511-533, 2001.

[36] C. Papadimitriou. Algorithms, Games, and the Internet. In Proc 33rd STOC,
pages 749-753, 2001.

[37] R. Paes Leme, V. Syrgkanis, E. Tardos. The curse of simultaneity. Innovations
in Theoretical Computer Science (ITCS), pages 60-67, 2012.

[38] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anonymous Connections
and Onion Routing IEEE J. on Selected Areas in Communication, Issue on

Copyright and Privacy Protection, 1998.

[39] R. W. Rosenthal. A Class of Games Possessing Pure-Strategqy Nash Equilibria.
International Journal of Game Theory, 2: 65-67, 1975.

[40] E. Tardos and T. Wexler. Network Formation Games and the Potential Func-
tion Method, In Algorithmic Game Theory, Cambridge University Press, 2007.

[41] B. Vécking. In N. Nisan, T. Roughgarden, E. Tardos and V. Vazirani, eds.,
Algorithmic Game Theory. Chapter 20: Selfish Load Balancing. Cambridge
Unwversity Press, 2007.

5}

Synthesis from Component Libraries with
Costs”

Guy Avnil Orna Kupfermant

Abstract

Synthesis is the automated construction of a system from its specifica-
tion. In real life, hardware and software systems are rarely constructed from
scratch. Rather, a system is typically constructed from a library of compo-
nents. Lustig and Vardi formalized this intuition and studied LTL synthesis
from component libraries. In real life, designers seek optimal systems. In
this paper we add optimality considerations to the setting. We distinguish
between quality considerations (for example, size — the smaller a system is,
the better it is), and pricing (for example, the payment to the company who
manufactured the component). We study the problem of designing systems
with minimal quality-cost and price. A key point is that while the quality
cost is individual — the choices of a designer are independent of choices made
by other designers that use the same library, pricing gives rise to a resource-
allocation game — designers that use the same component share its price, with
the share being proportional to the number of uses (a component can be used
several times in a design). We study both closed and open settings, and in
both we solve the problem of finding an optimal design. In a setting with
multiple designers, we also study the game-theoretic problems of the induced

resource-allocation game.

1 Introduction

Synthesis is the automated construction of a system from its specification. The clas-
sical approach to synthesis is to extract a system from a proof that the specification
is satisfiable. In the late 1980s, researchers realized that the classical approach to
synthesis is well suited to closed systems, but not to open (also called reactive) sys-

tems [1, 28]. A reactive system interacts with its environment, and a correct system

*Published in the proceedings of the 25th Concurrency theory, LNCS 8704, pages 156-172,

Springer, 2013. A full version was submitted.
fSchool of Computer Science and Engineering, The Hebrew University, Israel
School of Computer Science and Engineering, The Hebrew University, Israel

26

should have a strategy to satisfy the specification with respect to all environments.
It turns out that the existence of such a strategy is stronger than satisfiability, and
is termed reliability.

In spite of the rich theory developed for synthesis, in both the closed and open
settings, little of this theory has been reduced to practice. This is in contrast with
verification algorithms, which are extensively applied in practice. We distinguish
between algorithmic and conceptual reasons for the little impact of synthesis in prac-
tice. The algorithmic reasons include the high complexity of the synthesis problem
(PSPACE-complete in the closed setting [32] and 2EXPTIME-complete in the open
setting [28], for specifications in LTL) as well as the intricacy of the algorithms in
the open setting — the traditional approach involves determinization of automata on
infinite words [31] and a solution of parity games [22].

We find the argument about the algorithmic challenge less compelling. First,
experience with verification shows that even nonelementary algorithms can be prac-
tical, since the worst-case complexity does not arise often. For example, while the
model-checking problem for specifications in second-order logic has nonelementary
complexity, the model-checking tool MONA [16] successfully verifies many specifi-
cations given in second-order logic. Furthermore, in some sense, synthesis is not
harder than verification: the complexity of synthesis is given with respect to the
specification only, whereas the complexity of verification is given with respect to
the specification and the system, which is typically much larger than the specifica-
tion. About the intercity of the algorithms, in the last decade we have seen quite
many alternatives to the traditional approach — Safraless algorithms that avoid de-
terminization and parity games, and reduce synthesis to problems that are simpler
and are amenable to optimizations and symbolic implementations [19, 25, 26].

The arguments about the conceptual and methodological reasons are more com-
pelling. We see here three main challenges, relevant in both the closed and open
settings. First, unlike verification, where a specification can be decomposed into sub-
specifications, each can be checked independently, in synthesis the starting point is
one comprehensive specification. This inability to decompose or evolve the specifica-
tion is related to the second challenge. In practice, we rarely construct systems from
scratch or from one comprehensive specification. Rather, systems are constructed
from existing components. This is true for both hardware systems, where we see
IP cores or design libraries, and software systems, where web APIs and libraries of
functions and objects are common. Third, while in verification we only automate
the check of the system, automating its design is by far more risky and unpredictable
— there are typically many ways to satisfy a satisfiable or realizable specification,
and designers will be willing to give up manual design only if they can count on the

automated synthesis tool to construct systems of comparable quality. Traditional

57

synthesis algorithms do not attempt to address the quality issue.

In this paper we continue earlier efforts to cope with the above conceptual chal-
lenges. Our contribution extends both the setting and the results of earlier work.
The realization that design of systems proceeds by composition of underlying com-
ponents is not new to the verification community. For example, [20] proposed a
framework for component-based modelling that uses an abstract layered model of
components, and [14] initiated a series of works on interface theories for component-
based design, possibly with a reuse of components in a library [15]. The need to
consider components is more evident in the context of software, where, for example,
recursion is possible, so components have to be equipped with mechanisms for call
and return [4]. The setting and technical details, however, are different from these
in the synthesis problem we consider here. The closer to our work here is [27], which
studied LTL synthesis from reusable component libraries. Lustig and Vardi studied
two notions of component composition. In the first notion, termed data-flow com-
position, components are cascaded so that the outputs of one component are fed
to other components. In the second notion, termed control-flow composition, the
composition is flat and control flows among the different components. The second
notion, which turns out to be the decidable one [27], is particularly suitable for
modelling web-service orchestration, where users are typically offered services and
interact with different parties [3].

Let us turn now to the quality issue. Traditional formal methods are based on
a Boolean satisfaction notion: a system satisfies, or not, a given specification. The
richness of today’s systems, however, calls for specification formalisms that are multi-
valued. The multi-valued setting arises directly in probabilistic and weighted systems
and arises indirectly in applications where multi-valued satisfaction is used in order
to model quantitative properties of the system like its size, security level, or quality.
Reasoning about quantitative properties of systems is an active area of research in
recent years, yielding quantitative specification formalisms and algorithms [13, 18,
12, 2, 11]. In quantitative reasoning, the Boolean satisfaction notion is refined and
one can talk about the cost, or reward, of using a system, or, in our component-based
setting, the cost of using a component from the library.

In order to capture a wide set of scenarios in practice, we associate with each
component in the library two costs: a quality cost and a construction cost. The
quality cost, as describes above, concerns the performance of the component and
is paid each time the component is used. The construction cost is the cost of
adding the component to the library. Thus, a design that uses a component pays
its construction cost once. When several designs use the same component, they
share its construction cost. This corresponds to real-life scenarios, where users pay,

for example, for web-services, and indeed their price is influenced by the market

o8

demand.

In [5], the authors study the problem of synthesizing a hierarchical system from a
library of components that satisfies a specification while attempting to find a succinct
system. They assume that rather than one specification, the input is a sequence of
specifications ¢q, ..., ¢,, that attempt to guide the synthesis. The construction is
then incremental. At step 7, a component that satisfies ¢; is added to the library.
The component C,, is then output as the final system.

We study synthesis from component libraries with costs in the closed and open
settings. In both settings, the specification is given by means of a deterministic
automaton S on finite words (DFA).! In the closed setting, the specification is a
regular language over some alphabet ¥ and the library consists of box-DFAs (that
is, DFAs with exit states) over 3. In the open setting, the specification S is over sets
I and O of input and output signals, and the library consists of box-1/O-transducers.
The boxes are black, in the sense that a design that uses components from the library
does not see ¥ (or I U O) nor it sees the behavior inside the components. Rather,
the mode of operation is as in the control-flow composition of [27]: the design gives
control to one of the components in the library. It then sees only the exit state
through which the component completes its computation and relinquishes control.
Based on this information, the design decides which component gets control next,
and so on.

In more technical details, the synthesis problem gets as input the specification
S as well as a library £ of components By, ..., B,. The goal is to return a correct
design — a transducer D that reads the exit states of the components and outputs
the next component to gain control. In the closed setting, correctness means that
the language over ¥ that is generated by the composition defined by D is equal to
the language of §. In the open setting, correctness means that the interaction of
the composition defined by D with all input sequences generates a computation over
I U O that is in the language of S.

We first study the problem without cost and reduce it to the solution of a two-
player safety game G, s. In the closed setting, the game is of full information and
the problem can be solved in polynomial time. In the open setting, the flexibility
that the design have in responding to different input sequences introduces partial
information to the game, and the problem is EXPTIME-complete. We note that
in [27], where the open setting was studied and the specification is given by means

of an LTL formula, the complexity is 2EXPTIME-complete, thus one could have

Tt is possible to extend our results to specifications in LTL. We prefer to work with deterministic
automata, as this setting isolates the complexity and technical challenges of the design problem and
avoids the domination of the doubly-exponential complexity of going from LTL to deterministic

automata.

29

expected our complexity to be only polynomial. We prove, however, hardness in
EXPTIME, showing that it is not just the need to transfer the LTL formula to a
deterministic formalism that leads to the high complexity.

We then turn to integrate cost to the story. As explained above, there are two
types of costs associated with each component B; in £. The first type, quality
cost, can be studied for each design in isolation. We show that even there, the
combinatorial setting is not simple. While for the closed setting an optimal design
can be induced from a memoryless strategy of the designer in the game G, s, making
the problem of finding an optimal design NP-complete, seeking designs of optimal
cost may require sophisticated compositions in the open setting. In particular, we
show that optimal designs may be exponentially larger than other correct designs?,
and that an optimal design may not be induced by a memoryless strategy in G, s.
We are still able to bound the size of an optimal transducer by the size of G, s, and
show that the optimal synthesis problem is NEXPTIME-complete.

The second type of cost, namely construction cost, depends not only on choices
made by the designer, but also on choices made by designers of other specifications
that use the library. Indeed, recall that the construction cost of a component is
shared by designers that use this component, with the share being proportional to
the number of uses (a component can be used several times in a design). Hence, the
setting gives rise to a resource-allocation game [30, 17]. Unlike traditional resource-
allocation games, where players’ strategies are sets of resources, here each strategy is
a multiset — the components a designer needs. As has been the case in [8], the setting
of multisets makes the game less stable. We show that the game is not guaranteed
to have a Nash Equilibrium (NE), and that the problem of deciding whether an
NE exists is ¥2’-complete. We then turn to the more algorithmic related problems
and show that the problems of finding an optimal design given the choices of the
other designers (a.k.a. the best-response problem, in algorithmic game theory) and
of finding designs that minimize the total cost for all specifications (a.k.a. the social
optimum) are both NP-complete.

Recently, in [9], the setting of synthesis from component libraries by multiple
users has been considered also for the setting in which the costs of the components
have congestion effects rather than cost-sharing as we study here. For example,
components might model processors and cost can model performance. When many
users use the same component, congestion increases and performance decreases.

While the cost model we describe above is suited for some settings, e.g., in cases
where the goal is to minimize the number of states in the system, in other settings

a computation-based cost model is more appropriate. For example, in a system that

2Recall that “optimal” here refers to the quality-cost function.

60

issues grants upon requests, a goal of the designer can be to design a system that
minimizes the waiting time for a grant once a request is received. A standard model
for reasoning about such costs of computations is lattice automata [24]. Such an
automaton assigns to each word a value which is an element of some lattice.

We study the closed synthesis problem from component libraries where the spec-
ification is given by a deterministic lattice automaton (LDFA, for short) and the
components are box LDFAs. Thus, our goal is to compose the components in the
library to construct an LDFA that is equivalent to the specification LDFA, where
equivalence means that the two automata assign the same values to all words. We
are able to show that the problem can be solved in polynomial time using a similar
idea to that in Boolean setting. Our solution introduces a new type of LDFAs,
which compensate for the lack of a canonical minimal LDFA [21] and might be of

independent interest.

2 Preliminaries

Automata, transducers, and boxes A deterministic finite automaton (DFA,
for short) is a tuple A = (3, @, 9, qo,), where X is an alphabet, () is a set of states,
0 : @ x X — (@ is a partial transition function, ¢y € @ is an initial states, and
F < @ is a set of accepting states. We extend ¢ to words in an expected way, thus
0* 1 Q x X* — @ is such that for ¢ € @), we have 0*(q,¢) = ¢ and for w € ¥* and
o € X, we have 0*(q,w - o) = 0(6*(q,w),0). When ¢ = ¢y, we sometimes omit it,
thus 0*(w) is the state that A reaches after reading w. We assume that all states
are reachable from ¢, thus for every ¢ € () there exists a word w € ¥* such that
d*(w) = q. We refer to the size of A, denoted |.A], as the number of its states.

The run of A on a word w = wy,...w, € X* is the sequence of states r =
To,T1,- -, Ty such that rqg = gy and for every 0 < i < n—1 we have r;;1 = 0(r;, wi11).
The run r is accepting iff r, € F. The language of A, denoted L(.A), is the set of
words w € ¥* such that the run of A on w is accepting, or, equivalently, 0*(w) € F'.
For g € @), we denote by L(.A%) the language of the DFA that is the same as A only
with initial state q. Note that since A is deterministic and ¢ is partial, there is at
most one run of A on each word.

A transducer models an interaction between a system and its environment. It
is similar to a DFA except that in addition to X, which is referred to as the input
alphabet, denoted ¥, there is an output alphabet, denoted X, and rather than
being classified to accepting or rejecting, each state is labeled by a letter from Yo3.
Formally, a transducer is a tuple T = (3;,%0, @, qo, 9, V), where ¥; is an input
alphabet, ¥ is an output alphabet, @), qo, and § : Q x ¥X; — @ are as in a DFA,

3These transducers are sometimes referred to as Moore machines.

61

and v : Q — Yo is an output function. We require 7 to be receptive. That is, ¢ is
complete, so for every input word w € X7, there is a run of 7 on w. Consider an
input word w = wy,...,w, € Xj. Let r = rq,...,r, be the run of 7 on w. The
computation of T in w is then o1,...,0, € (X1 x Xp)*, where for 1 < i < n, we
have o; = (w;, v(r;_1)). We define the language of T, denoted L(7), as the set of all
its computations. For a specification L < (X; x ¥p)*, we say that T realizes L iff
L(T) < L. Thus, no matter what the input sequence is, the interaction of 7~ with
the environment generates a computation that satisfies the specification. For two
words u € X7 and v € XF, of length n we define the product of the two words, denoted
U@ v, as w = wy ... w, € (X5 x Xp)*, where, for 1 < i < n, we have w; = {u;, v;).

By adding exit states to DFAs and transducers, we can view them as components
from which we can compose systems. Formally, we consider two types of components.
Closed components are modeled by boz-DFAs and open components are modeled by
boz-transducers. A box-DFA augments a DFA by a set of exit states. Thus, a box-
DFA is a tuple (3, Q, 9, qo, F, E), where E € @ is a nonempty set of exit states.
There are no outgoing transitions from an exit state. Also, the initial state cannot
be an exit state and exit states are not accepting. Thus, g0 ¢ £ and F n E = .
Box-transducers are defined similarly, and their exit states are not labeled, thus
v:Q\E — Y.

Component libraries A component libraryis a collection of boxes £ = {By, ..., B,}.
We say that L is a closed library if the boxes are box-DFAs, and is an open library if
the boxes are box-transducers. Let [n] = {1,...,n}. In the first case, for i € [n], let
B, = (%,C;,6;, Y, F;, E;). In the second case, B; = (X1, %0, C;, d;, ¢, v;, E;). Note
that all boxes in £ share the same alphabet (input and output alphabet, in the case
of transducers). We assume that the states of the components are disjoint, thus
for every i # j € [n], we have C; n C; = J. We use the following abbreviations
C = Uiepy Cis Co = Usepmicl}s F = Uigpny Fis and € = Ujep,) Ei- We define the size
of L as |C|.

We start by describing the intuition for composition of closed libraries. A design
is a recipe to compose the components of a library £ (allowing multiple uses) into a
DFA. A run of the design on a word starts in an initial state of one of the components
in £. We say that this component has the initial control. When a component is in
control, the run uses its states, follows its transition function, and if the run ends,
it is accepting iff it ends in one of the components’ accepting states. A component
relinquishes control when the run reaches one of its exit states. It is then the design’s
duty to assign control to the next component, which gains control through its initial
state.

Formally, a design is a transducer D with input alphabet £ and output alphabet

62

[n]. We can think of D as running beside the components. When a component
reaches an exit state e, then D reads the input letter e, proceeds to its next state,
and outputs the index of the component to gain control next. Note that D does not
read the alphabet ¥ and has no information about the states that the component
visits. It only sees which exit state has been reached.

Consider a design D = (£, [n], D,§,d°,v) and a closed library £. We formalize
the behavior of D by means of the composition DFA A, p that simulates the run of D
along with the runs of the box-DFAs. Formally, A,p = (X, Qrp,dcp, q%,D, Frp)
is defined as follows. The set of states Qz.p < (C\E) x D consists of pairs of a
component state from C and an design state from S. The component states are
consistent with v, thus Qzp = U (Ci\E:) x {q : v(¢) = i}. In exit states, the
composition immediately moves to the initial state of the next component, which is
why the component states of Az p do not include €. Consider a state {(c,q) € Qz.p
and a letter 0 € ¥. Let ¢ € [n] be such that ¢ € C;. When a run of A, p reaches
the state {c,q), the component B5; is in control. Recall that ¢ is not an exit state.
Let ¢ = §i(c,0). If ¢ ¢ E; then B; does not relinquish control after reading
o and 0zp({c,q),0) = {c,q). If ¢ € E;, then B; relinquishes control through
c, and it is the design’s task to choose the next component to gain control. Let
¢ = 6(q,c) and let j = v(¢’). Then, B; is the next component to gain control
(possibly j = 7). Accordingly, we advance D to ¢’ and continue to the initial state
of B;. Formally, o, p({c,q),0) = {c},q'). (Recall that ¢ ¢ Ej, so the new state is
in Qrp.) Note also that a visit in ¢ is skipped. The component that gains initial
control is chosen according to v(d’). Thus, ¢ 5, = (¢},d), where j = v(d°). Finally,
the accepting states of A, p are these in which the component state is accepting,
thus Frp = F x D.

The definition of a composition for an open library is similar. There, the com-
position is a transducer Tpp = <21,Eo,Qﬁ,Dﬁc,D,qg,p,Vc,D% where Qr.p, q%’D,
and 6, p are as in the closed setting, except that d.p reads letters in 7, and
vep({e, @) = vi(c), for i € [n] such that c € C;.

Consider a closed-library £, a design D, and the run r of Az p on w = wy - - - wy.
We partition w according to positions in which control is transferred among com-
ponents. Equivalently, positions in which r skips visits in exit states. Thus, w =
Yo - - - Y is such that for all 0 < i < k, we have that y; € X% and the composition
A, p takes a transfer transition exactly when it reads the last letter of y;. An ex-
ception is yg, which may be empty (this happens when r ends upon entering the
last component to gain control). We then say that w is suffiz-less. The definitions

in the open setting are similar.

63

3 The Design Problem

The design problem gets as input a component library £ and a specification that
is given by means of a DFA §. The problem is to decide whether there exists a
correct design for § using the components in £. In the closed setting, a design D is
correct if L(Azp) = L(S). In the open setting, D is correct if the transducer 7z p
realizes §. Our solution to the design problem reduces it to the problem of finding
the winner in a turn-based two-player game, defined below.

A turn-based two-player game is played on an arena (V, A, Vj, a), where V =
Vi u V; is a set of vertices that are partitioned between Player 1 and Player 2,
A <V xV is aset of directed edges, Vy < V is a set of initial vertices, and « is
an objective for Player 1, specifying a subset of V. We consider here safety games,
where a@ € V' is a set of vertices that are safe for Player 1. The game is played as
follows. Initially, Player 1 places a token on one of the vertices in V. Assume the
token is placed on a vertex v € V' at the beginning of a round. The player that owns
v is the player that moves the token to the next vertex, where the legal vertices to
continue to are {v' € V : (v,v") € A}. The outcome of the game is a play m € V¥.
The play is winning for Player 1 if for every ¢ > 1, we have m; € a. Otherwise,
Player 2 wins.

A strategy for Player i, for i € {1,2}, is a recipe that, given a prefix of a play,
tells the player what his next move should be. Thus, it is a function f; : V*-V;, - V
such that for every play 7 -v € V* with v € V;, we have (v, fi(7 - v)) € A. Since
Player 1 moves first, we require that f;(¢) is defined and is in Vj. For strategies fi
and f, for players 1 and 2 respectively, the play out(f1, f2) € V¥ is the unique play
that is the outcome the game when the players follow their strategies. A strategy
fi for Player ¢ is memoryless if it depends only in the current vertex, thus it is a
function f; : V; - V.

A strategy is winning for a player if by using it he wins against every strategy of
the other player. Formally, a strategy f; is winning for Player 1 iff for every strategy
fo for Player 2, Player 1 wins the play out(f1, f2). The definition for Player 2 is dual.
It is well known that safety games are determined, namely, exactly one player has a
winning strategy, and admits memoryless strategies, namely, Player ¢ has a winning
strategy iff he has a memoryless winning strategy. Deciding the winner of a safety

game can done in linear time.

Solving the design problem We describe the intuition of our solution for the
design problems. Given a library £ and a specification & we construct a safety
game G, s such that Player 1 wins G, s iff there is a correct design for S using the

components in £. Intuitively, Player 1’s goal is to construct a correct design, thus he

64

chooses the components to gain control. Player 2 challenges the design that Player 1
chooses, thus he chooses a word (over ¥ in the closed setting and over ¥; x Yo in
the open setting) and wins if his word is a witness for the incorrectness of Player 1’s

design.

Closed designs The input to the closed-design problem is a closed-library £ and
a DFA & over the alphabet 3. The goal is to find a correct design D. Recall
that D is correct if the DFA A, p that is constructed from £ using D satisfies
L(Azp) = L(S). We assume that S is the minimal DFA for the language L(S).

Theorem 3.1 The closed-design problem can be solved in polynomaial time.

Proof: Given a closed-library £ and a DFA § = (3, S, ds, s°, Fs), we describe
a safety game G, s such that Player 1 wins G, s iff there is a design of S using
components from £. Recall that £ consists of box-DFAs B; = (%, C;, 6, &0, Fy, E)),
for ¢ € [n], and that we use C, Cy, &, and F to denote the union of all states, initial
states, exit states, and accepting states in all the components of £. The number of
vertices in G s is [(Cop u &) x S| and it can be constructed in polynomial time. Since
solving safety games can be done in linear time, the theorem follows.

We define Gr s = (V, E, Vp,). First, V = (Cou&) xS and V = Cy x {s°}. Recall
that Player 1 moves when it is time to decide the next (or first) component to gain
control. Accordingly, V; = & x S. Also, Player 2 challenges the design suggested by
Player 1 and chooses the word that is processed in a component that gains control,
so Vo =Cyx S.

Consider a vertex (e, s) € V. Player 1 selects the next component to gain control.
This component gains control through its initial state. Accordingly, £ contains edges
e, 8),{?, s)), for every i € [n]. Note that since no letter is read when control is
passed, we do not advance the state in S. Consider a vertex v = (¢}, s) € V. Player 2
selects the word that is read in the component B;, or equivalently, he selects the exit
state from which B; relinquishes control. Thus, E contains an edge {{c?, s),{e, s'))
iff there exists a word u € ¥£* such that 6(u) = e and J&(s,u) = ¢

We now turn to define the winning condition. All the vertices in Vj are in a. A
vertex v € V5 is not in « if it is possible to extend the word traversed for reaching
v to a witness for the incorrectness of D. Accordingly, a vertex {c?, s) is not in « if
one of the following holds. First (“the suffix witness”), there is a finite word that
is read inside the current component and witnesses the incorrectness. Formally,
there is u € ¥* such that 6} (u) € F; and 0%(s,u) ¢ Fs, or 0} (u) € C;)\(F; v E;)
and §5(s,u) € Fs. Second (“the infix witness”), there are two words that reach
the same exit state of the current component yet the behavior of S along them is
different. Formally, there exist words u,u’ € ¥* such that §f(u) = 6F(v') € E; and

65

0%(s,u) # 0%(s,u’). Intuitively, the minimality of S enables us to extend either u or
v’ to an incorrectness witness. Given £ and S, the game G, s can be constructed in
polynomial time.

We claim that there is a correct design D iff Player 1 wins G, s. Assume first that
there is a correct design D = (&, [n], D, 6, d°, v, thus L(Azp) = L(S). We construct
a winning strategy fp for Player 1. The strategy fp proceeds like D. First, fp(e) =
(9, 8%, with i = v(d"). Then, for a finite play m, let {eg, 50),{e1,51) - ..{€m, Smy be
its projection on Vj. Thus, eg,...,e, € £ and sg,..., S, € S. We define fp(7) =
(A, sy, for i = v(6%(eg, ... em)).

We claim that fp is a winning strategy. Assume towards contradiction that there
is a Player 2 strategy f, that wins against fp. Let m = out(fp, f2), let (¢}, s) be
its first vertex that is not in «, and let w be the word in X* that Player 2 follows
along the prefix of m that reaches {(c?,s). Finally, let d € D be such that (¢}, d) is
the state that A, p reaches when it reads w. Since we define fp to agree with D,
then the component state of this state in A, p is indeed .

We distinguish between two cases. First, if {(c?,s) exits a because of a suffix
witness, let u € ¥* be such that 67(u) € F; and 0%(s,u) ¢ Fs. (The case where
0f(u) ¢ (F; u E;) and 0%(s,u) € Fs is similar). Let ¢ = §f(u). The run of Az p on
w - u ends in the state (6} (u), s). Since 0} (u) € F;, we have w-u € L(Agzp). By the
definition of F, we have that d%(w) = s. Since 0%(s,u) ¢ Fs, we have w - u ¢ L(S).
Thus, L(Azp) # L(S), and we reach a contradiction to the correctness of D.

In the second case, of an infix witness, there exist words u,u’ € ¥X* such that
0f(u) = of(u') € E; and d%(s,u) = p # p' = 65(s,u’). Since S is a minimal DFA
for L(S), we have L(SP) # L(S?). Thus, wlog, there is a word z € L(SP)\L(SY).
Recall that 0 p(w) = (¢}, d). Let d' = dp(d,e) and j = v(d'). Since 6} p(w - u) =
0f p(w-u') = (), d"), we have 67 p(w-u-z) = 05 p(w-u'-z). Thus, w-u-z € L(Azp)
iff w-u'-ze L(Azp). However, w-u-z € L(S) and w-u' -z ¢ L(S). Thus, we reach
a contradiction to the correctness of D, and we are done.

Assume now that Player 1 wins the game G, s. Let f be a memoryless winning
strategy for Player 1. We construct a correct design Dy from f. Note that all
the successors of a vertex in V; are in V,. Thus, f : Vi — Vi, We define Dy =
(&,|n], D, d,s° v) as follows. First, D = V5 = Cy x S. Consider a state v = {(c?, s) €
Vo n a. Recall that ¢! is the initial state of the component B;. Since v € «, the
lack of an infix witness implies that for every exit state e € E; there is exactly one
state s’ € S such that {{c?, s),{e,s')y € E. We define §(v,e) = f({e,s’)). Note that
if v¢ aore¢ E;, then we can define §(v, e) arbitrarily. The labeling function v is
defined as expected, with v({c?, s)) = i.

We prove that Dy is a correct design. Assume towards contradiction that there is
aword w € L(Azp,)\L(S). The case where w € L(S)\L(Arp,) is similar. Consider

66

the run r of AE,Df on w. Let B;,,...,B; € L* be sequence of components that r
traverses and e;,,...,e; , € £ be the corresponding exit states. Let yi,...,un
be the partition of w according to D. Thus, for 1 < j < m, we have y; € ¥ and
67 (yi) = e;; € By, and y,, € ¥*. Since w € L(Agp,), we have 6} (wy) € F;,,. Note
that the word y; - - - y,,—1 € ¥ is suffix-less, thus 527@ (Y1 Y1) = (&), d) for
some d € D with v(d) = 4,,. Since we defined D; to agree with f on the components
that gain control, the finite play 7 that is the outcome of the game when Player 1
plays f and Player 2 chooses the exit states e;,,...,e; _, reaches the Player 2 vertex
v ={cd ,s) eV, for s € S such that 65(y1 - ym-1) = s. We claim that v ¢ .
Indeed, &7 (ym) € F; and since w ¢ L(S), we have y,, ¢ L(S®). Thus, 7 is a winning
play for Player 2, contradicting our assumption that f is a winning strategy, and we

are done.]

Open designs We continue to study the open setting. Recall that there, the input
is a DFA S over the alphabet ¥; x ¥ and an open library £. The goal is to find
a correct design D or return that no such design exists, where D is correct if the
composition transducer 7. p realizes L(S).

Lustig and Vardi [27] studied the design problem in a setting in which the spec-
ification is given by means of an LTL formula. They showed that the problem is
2EXPTIME-complete. Given an LTL formula one can construct a deterministic par-
ity automaton that recognizes the language of words that satisfy the formula. The
size of the automaton is doubly-exponential in the size of the formula. Thus, one
might guess that the design problem in a setting in which the specification is given
by means of a DFA would be solvable in polynomial time. We show that this is not
the case and that the problem is EXPTIME-complete. As in [27], our upper bound
is based on the ability to “summarize” the activity inside the components. Starting
with an LTL formula, the solution in [27] has to combine the complexity involved
in the translation of the LTL formula into an automaton with the complexity of
finding a design, which is done by going throughout a universal word automaton
that is expanded to a tree automaton. Starting with a deterministic automaton,
our solution directly uses games. The interesting contribution, however, is the lower
bound, showing that problem is EXPTIME-hard even when the specification is given

by means of a deterministic automaton. We start with the upper bound.
Theorem 3.2 The open-design problem is in EXPTIME.

Proof: Given an open-library £ and a DFA S = (X7 x ¥, S, ds,5°, Fs), we
describe a safety game G, s such that Player 1 wins G, s iff there is a design for S

using components from £. The number of vertices in G, s is exponential in S and

67

C. Since solving safety games can be done in linear time, membership in EXPTIME
follows.

We define Grs = (V, E,Vy,a) as follows.* Recall that C, Cy, £, and F are
the union of all states, initial states, exit states, and accepting states in all the
components of £. We define V = (Cyu £) x 29 with V; = € x 2° and V5 = Cy x 25,
Also, Vo = Cy x {{s°}}. As in the closed-setting, Player 1 selects the components
that gain control, thus for a vertex (e, Ty € V; we have {{e, T),{?,T)) € E, for every
&) € Cy. Player 2 selects the word that is processed in the component, or equivalently,
the exit state from which it relinquishes control, thus for a vertex v = {(¢?, Ty € V; we
have (¢, T),{e,T")) € E iff for every s’ € T there is a state s € T and a word u € %
such that 6f(u) = e and, assuming w € (3; x Xp)* is the computation of B; that
corresponds to u, we have §%(s,w) = s'. Note that for ¢ € Cy, T € 2, and e € &,
there is at most one, nonempty, subset 7" € 25 such that {(c},T),{e,T")y € E. The
set of vertices that are loosing for Player 1 consists of states (¢!, T € V5 from which
Player 2 can generate a suffix-witness to the incorrectness of the design. Formally,
(2, T) € v iff there exists u € L(B;) and s € T such that u ¢ L(S®).

We claim that there is a correct design D iff Player 1 wins G, s. For the first
direction, consider a correct design D, thus L(7.p) < L(S). We construct a winning
Player 1 strategy fp. Recall that a design reads exit states and outputs components.
Further recall that assuming the game does not end, a Player 2 move is a choice of
an exit state. We define fp so that it responds to Player 2’s choice the same way D
responds. We define fp(e) = (¢}, {{s°}}) for i = v(d"), thus fp and D assign initial
control to the same component. Consider a finite play = and let {e1, T), ..., {em, Tm)
be the projection of © on Vs, thus eq,...,e, € € and Ti,...,T,, € 2°. We define
fo(m) = (0, T,,> where v(65(e1, ..., em)) = i.

We claim that fp is a winning strategy. Assume towards contradiction that
there is a Player 2 strategy f, that wins against fp. Let m = (¢}, {s°}), {e;,, T1),
(e, T1), iy, To), . L€y T, (), Tp,) be the finite losing prefix of out(fp, fu),
thus (¢} ,T,) ¢ . Since (¢} ,T,) ¢ « there is a state s,, € T, and a word
Wy, € L(B;) such that w,, ¢ L(S*"). It is not hard to see that there are words
Wi, ..., W1 € (X1 x Xp)* and states s1,..., 8,1 € S such that for 1 <j<m—1
we have w; € L(B;,), 5Z(ngij) = ¢;;, 05(w1) = s1, and 0%(sj, w;) = sjp1. It is
not hard to see that since we defined fp to agree with D, the components that gain

control in the run of 7,p on w = w; - ... w,, are B;,,..., B, , thus it is possible to

Tm)

prove by induction that w € L(7zp). Moreover, the run of S on w is not accepting,

4A different way to construct G. s would be to go through a partial-information game (see
Theorem 3.3) with vertices in C x S, where Player 1 cannot distinguish between vertices {e, d) and
(e,d"y for e € £ and d,d’ € S. The game S is the corresponding game. We describe it directly,

which also shows that the exponential dependency is only in S.

68

thus w € L(Tzp)\L(S), and we reach a contradiction to the correctness of D.

We continue to the second direction. Assume Player 1 wins the game G, s.
Thus, he has a memoryless winning strategy fp from which we construct a design
D. Intuitively, in D, we skip exit states and proceed according to fp. Thus, the
states of D are Vo = Cy x 2°. Consider a state (), Ty € Vs, where recall that ¢? is
the initial state of the component B; € £, and an exit state e € E; of B;. Recall
that there is a unique subset 7" € 2 such that {((?,T),{e,T")y € E. We define
op({c},T).e) = fo(e, T")).

We claim that D is a correct design. Assume towards contradiction that there is
a word w € L(Tzp)\L(S). Consider the run r of T, p on w. Let B;,,...,B;, € L*
be sequence of components that r traverses. Let wq,...,w,, be the partition of w
according to D. That is, for 1 < j < m, the subword wj; is induced while r is in
component B;; and 07 (w;) € Ej;. Let my, = €;,,...,€;, , € E" be the exit states that
r visits. Note that since B; , gains control last the word wy - ... - w,,_; is suffix-less,
thus 07 p(wy - ... - Wm-1) = (¢} ,d) for some d € D having v(d) = i,,. Moreover,
Wy, € L(B;,,). Since we defined D to agree with fp on the components that gain

control, the finite play 7 that is the outcome of the game when Player 1 plays

fp and Player 2 chooses the exit states e;,,...,e; , reaches the Player 2 vertex
v =/{& ,T) € Vs, for some T € 2°. We claim that v ¢ a. Indeed, the definition
of E implies that there is a vertex s € T such that 6%(wy - ... wy,—1) = s. Since

w ¢ L(S), we have w,, ¢ L(S°) and w,, € L(B;,). Thus, 7 is a winning play for
Player 2, contradicting our assumption that fp is a winning strategy, and we are
done. 0O

We continue to study the lower bound.
Theorem 3.3 The open-design problem is EXPTIME-hard.

Proof: = We describe a reduction from the problem of deciding whether Player 1
has a winning strategy in a partial-information safety game, known to be EXPTIME-
complete [10].

Partial-information games (PI games, for short) are a variant of the full-information
games (FI games, for short) defined above in which Player 1 has imperfect informa-
tion [29]. The vertices, which we refer to as locations, denoted L, are partitioned
into observations, denoted 0. Player 1 is unaware of the location on which the to-
ken is placed and is only aware of the observation it is in. Accordingly, In his turn,
Player 1 cannot select the next location to move the token to. Instead, the edges
in the game are labeled with actions, denoted I'. In each round, Player 1 selects
an action and Player 2 resolves nondeterminism and chooses the next location the

token moves to. Initially, the token is placed on [° € L. The set of labeled edges in

69

the game is A € L x I' x L, and the safety objective « is given with respect to the
observations, thus a < O.

Formally, a PI game is played on an arena (I', L, O, ly, T,), where T is a set of
actions, L is a set of locations, O < 2¥ is a set of observations that form a partition
of L (that is, O = {Ly, ..., L} where for all i # j € [k], we have that L, n L; = (J,
and Uie[k] L; = L), ly € L is an initial location, T < L x I" x L are labeled edges, and
« is a winning condition defined with respect to O. In particular, in safety games
a < O are safe observations for Player 1. We require that for every location [€ L
and action a € I', there is a location !’ € L such that {l,a,l') € T.

The game proceeds similarly to FI games. At the beginning of the game, a token
is placed on the initial location [y. Assume the token is on a location [€ L. Player 1
moves first and selects an action a € I'. Player 2 resolves non-determinism and selects
a location I’ € L such that (l,a,l’) € T. Since Player 1 only observes the member
in O in which [is, a strategy for Player 1 is a function f; : (O -I')* - O — I'. Since
Player 2 has complete information, a strategy for him is a function fo : LT -T' — L
such that for a play @ = lo, ..., l,, and an action a € ', we have (I,,,, a, fo(m,a)) € Y.
The definition of winning strategies are as in the full-information setting.

Consider a PI safety game G = (T', L, O, 1°, T, a). We construct a library £ and a
DFA § such that there is a correct design for S using the components of L iff Player 1
wins G. Recall that a design reads an exit state and outputs the component that
gets control next. Also, a Player 1 strategy in G reads observations and outputs
actions. Accordingly, the library £ consists of box-transducers B,, one for every
action a € I'. The exit states of the components correspond to the observations in
O. That is, when a component exits through an observation L; € O, the design
decides which component B, € L gains control, which corresponds to a Player 1
strategy that chooses the action a € I" from the observation L;.

Next, we define words to correspond to Player 2 strategies. Recall that Player 2
resolves nondeterminism in G. That is, when the token is in location [€ L and
Player 1 selects an action a € T, Player 2 selects an edge {l,a,l’y € T and the
token moves to the location !. Accordingly, ¥; = Y, thus a word in ¥} is a
sequence of edges. We define the specification § so that a word witnesses the
incorrectness of the design only if it corresponds to a loosing path in G, where
oy a1, 1),y ag, 15y, (o ag, 1), ..o i1, Gm-1,1.,) € T* is a loosing path if for all
1 <i<m-—1we have that [=, and [, ¢ a.

Finally, we define the components so that a correct design corresponds to a
winning Player 1 strategy. For a € ', the component B, € £ can process every edge
that is labeled with a. When reading such an edge it relinquishes control, and when
reading an edge that is labeled with b # a, the component enters a sink which is

intuitively a rejecting sink. Thus, in order to avoid processing a word w = t;...%,,

70

that corresponds to a loosing path, a design must assign control to some component
B, with a # a;, after reading the input prefix ¢;...¢; 1, for 1 <7 < m.
Formally, for a € T', we define the box-transducer B, = (T,{T, L},{c?,c"} u

a’ ~a

O, 64, Va, O), where v,(c?) = T, v,(c’) = L, and ¢, is defined as follows. Con-
sider an edge {l,a,l") € T. We define 6,(c2,{l,a,l'y) = P, for the observation P with
! € P. For an edge {I,b,I'y € T, with b # a, we define §,(c2,{l,b,I')) = . The
state ¢’ is a sink, thus 6,(c'¥,0) = ' for all o € ;. Note that the component B,
relinquishes control and outputs T when it reads a transition labeled a. Otherwise,
it gets stuck in the rejecting sink.

The specification is given by the DFA S = (X7 x X0, S, ds,1°, Fs), where S =
L U {S4c}, the accepting states Fs are the states that do not belong to observations
in o, thus Fs = S\ Jpe, P, and we describe ds in the following. Consider a location
l € L. For every edge t = {l,a,l’) € T we define ds(l,{t, T)) = I'. For every other
letter 0 € X1 x Xp, we define d5(1,0) = S

Note that a word w € (X; x ¥p)* is not in L(S) if it is of the form w = w; Dw, €
(31 x Xp)* for we € T* and wy € X7 corresponds to a loosing path in G. That is,
w=1ty...ty,, wherety,... t,, € T, t; =% ay,ly), for 1 <i < m, the target location
of the transition ¢; is the source location of t;,1, and assuming t,, = {t;—1, Gm, tm),
we have t,, ¢ . Recall that a component B, € L relinquishes control after reading
an edge that the action a € I" participates in. When reading an edge that a does not
participate in, B, enters a sink and outputs L. Thus, in order to avoid processing
the word w as in the above, a design must assign control to some component B,
with a # a;, after reading the input prefix ¢;...%;_1, for 1 <i < m.

We claim that Player 1 wins G iff there is a correct design D for S using the
components in £. For the first direction, consider a Player 1 winning strategy f;.
We construct a design D inductively. Let a; = f1(FP,), where Py € O is such that
[° € P,. The first component to gain control is B,,. Consider a run on some word,
and let B,,, P1, Ba,, P, . .. B,,, Py be the sequence of components and corresponding
exit states that the run visits. Recall that Py,..., P, are observations in O. Let
7 = Py, a1, P, ..., P, where’ € Py. Note that 7 might not correspond to a path in
G, in which case D assigns control to an arbitrary component. Otherwise, assuming
f1(m) = a1, D assigns control to By, ..

We claim that D is a correct design. Assume towards contradiction that there
is a word w € L(Tzp)\L(S). Since w ¢ L(S), its projection on X is in T* and the
projection of w on Xy is a loosing path 1, ..., t,,. For 1 <i <m,lett; = {;_1,a;,1;),
where Iy = [°. Let r be the run of 7z p on w. Since the projection of w on g
is a sequence of T’s, the sequence of components and exit states that r passes
is By, P1,...,Ba,,, Pn. Indeed, if for 1 < ¢ < m and b # a;, the component

By € L is in control when a; is read, the component outputs L. Let m be the path

71

that corresponds to ti,...,tm, thus @ = ly,...,l,, where | = [°. Consider the
Player 2 strategy f, that selects the edges ti,...,t,. Since by our definition of the
components in £, for 1 < i < m, we have [; € P;, we can prove by induction that 7
is a prefix of out(fi, f2). Since [, ¢ «, the strategy f, is winning against f;, which
is a contradiction to the fact that it is a winning strategy, and we are done.

For the second direction, consider a correct design D. We define a Player 1
strategy fp inductively as follows. We abuse notation and refer to the labeling
function v of D as a function from its states D to £. Assume the first component
that D assigns control to is B,, € £. For the observation Py such that I° € P,
we define fi(P) = a;. Consider a play m = lo,ly,...,ln, where I = I°. Let
T=DPF,a,P,..., a,, P,suchthat for]1 <i<mwehavel; € P;. Letay,...,a,, €T’
such that, for 1 < i < m we have {l;_1,a;,l;) € T. Let 65(P;,...P,) = d and let
v(d) = B,,, € L. We define fp(1) = ap,.

We claim that fp is a winning strategy. Assume towards contradiction that
there is a Player 2 strategy fo and a finite prefix 7 of out(fp, f2) that is winning for
Player 2. Let 7 = t1,...,t,, be the edges that m traverses. Consider the run of 7. p
on 7. We can prove by induction that by our definition of fp, for 1 < i < m, when
the letter t; = {l;_1, a;, ;) is read, the component B,, is in control. Thus, the output
of Tzp when reading the word 7 is a sequence w of |7| T’s. Since 7 corresponds
to a loosing path, we have 7 @ w € L(7zp)\L(S), which is a contradiction to the

correctness of D, and we are done. O]

4 Libraries with Costs

Given a library and a specification, there are possibly many, in fact infinitely many,
designs that are solutions to the design problem. As a trivial example, assume that
L(S) = a* and that the library contains a component B that traverses the letter a
(that is, B consists of an accepting initial state that has an a-transition to an exit
state). An optimal design for S uses B once: it has a single state with a self loop
in which B is called. Other designs can use B arbitrarily many times. When we
wrote “optimal” above, we assumed that the smaller the design is, the better it is.
In this section we would like to formalize the notion of optimality and add to the
composition picture different costs that components in the libraries may have.

In order to capture a wide set of scenarios in practice, we associate with each
component in £ two costs: a construction cost and a quality cost. The costs are
given by the functions c-cost, g-cost : L — IR* U {0}, respectively. The construction
cost of a component is the cost of adding it to the library. Thus, a design that uses a

component pays its construction cost once, and (as would be the case in Section 6),

72

when several designs use a component, they share its construction cost. The quality
cost measures the performance of the component, and involves, for example, its
number of states. Accordingly, a design pays the quality cost of a component every
time it uses it, and the fact the component is used by other designs is not important.®

Formally, consider a library £ = {By, ..., B,} and adesign D = {[n], E, D, d°, §,v).
The number of times D uses a component B; is nused(D, B;) = |{d € D : v(d) = i}|.
The set of components that are used in D, is used(D) = {B; : nused(D, B;) > 1}.
The cost of a design is then cost(D) = X 5c,eeq(py ¢-C0st(B) +nused(D, B) - g-cost(B).

We state the problem of finding the cheapest design as a decision problem. For a
specification DFA S, a library £, and a threshold p, we say that an input (S, L,)
is in BCD (standing for “bounded cost design”) iff there exists a correct design D
such that cost(D) < p. In this section we study the BCD problem in a setting with
a single user. Thus, decisions are independent of other users of the library, which,
recall, may influence the construction cost.

In section 3, we reduced the design problem to the problem of the solution of a
safety game. In particular, we showed how a winning strategy in the game induces
a correct design. Note that while we know that safety games admits memoryless
strategies, there is no guarantee that memoryless strategies are guaranteed to lead
to optimal designs. We first study this point and show that, surprisingly, while
memoryless strategies are sufficient for obtaining an optimal design in the closed
setting, this is not the case in the open setting. The source of the difference is the
fact that the language of a design in the open setting may be strictly contained
in the language of the specification. The approximation may enable the user to
generate a design that is more complex and is still cheaper in terms of cost. This
is related to the fact that over approximating the language of a DFA may result in
exponentially bigger DFAs [6]. We are still able to bound the size of the cheapest
design by the size of the game.

4.1 On the optimality and non-optimality of memoryless
strategies
Consider a closed library £ and a DFA §. Recall that a correct design for S from

components in £ is induced by a winning strategy of Player 1 in the game G, s

(see Theorem 3.1). If the winning strategy is not memoryless, we can trim it to

50ne might consider a different quality-cost model, which takes into an account the cost of
computations. The cost of a design is then the maximal or expected cost of its computations. Such
a cost model is appropriate for measures like the running time or other complexity measures. We
take here a global approach, which is appropriate for measures like the number of states or security

level.

73

a memoryless one and obtain a design whose state space is a subset of the design
induced by the original strategy. Since the design has no flexibility with respect to

the language of S, we cannot do better. Hence the following lemma.

Lemma 4.1 Consider a closed library L and a DFA S. For every p = 0, if there
is a correct design D with cost(D) < u, then there is a correct design D’ induced by

a memoryless strategy for Player 1 in G s such that cost(D') < p.

Proof: Consider a correct design D with cost(D) < p. Let fp be a winning
Player 1 strategy in the safety game G, s as constructed in the proof of Theorem 3.1.
Note that while we know that safety games admit memoryless strategies, there is no
guarantee that memoryless strategies are guaranteed to lead to minimal-cost designs.
Thus, fp need not be a memoryless strategy. We construct a Player 1 memoryless
strategy fp by trimming fp in every memoryfull vertex. Then, we construct a design
D’ from f7, and show that it costs no more than D.

In order to prove the claim formally, we need a few definitions. Consider a
Player 1 vertex v = {e,s) € V;. We define adj(fp,v) € V to be the vertices fp
continues to from v. That is, u € adj(fp,v) if there is a play 7, that ends in v and
is an outcome of the game when Player 1 plays fp and Player 2 plays some strategy,
and fp(m,) = u. We refer to 7, as a witness play for u € adj(fp,v). Note that there
can be many witness plays for a vertex in adj(fp,v). Further note that if adj(fp,v)
is a singleton, then v is a memoryless vertex with respect to fp. Consider a vertex
u = (Y, sy € adj(fp,v). Intuitively, since we define fp to assign control as D, and
since fp continues to u after m,, there must be a state d, € D with v(d,) = 1.
Thus, d, is a witness state for the fact that fp(m,) = u. Again, there can be several
witness states for a vertex in adj(fp,v). Formally, let m, be a witness play for u
and let w, € X* be the word that is induced by the Player 2 choices in 7,. That is,
0%(w,) = s, where recall that v = (e, s). Moreover, let ey, ..., e, be the exit states
that are traversed in m,, and let d,, = 6%(e; ... e,). Since fp assigns control to the
same components as D, the run of A, p on w, ends in the state <c?, dy,). We refer
to w, and d, as a witness word and state for u, respectively.

We define fr, as follows. For every v € Vi, we choose a vertex u € adj(fp,v)
arbitrarily and define fj(v) = w. It is not hard to prove that f5 is a winning
strategy. Let D’ be the design that corresponds to f, and is constructed as in the
proof of Theorem 3.1. Since f1, is winning, D’ is a correct design. We claim that
cost(D') < cost(D). Recall that the states of D" are the Player 2 vertices in G, s.
Further recall that in the construction of D" we skip Player 1 vertices and proceed
according to f7,. Consider a reachable Player 2 vertex (¢, s). We denote by v/ the
labeling function of D’. Recall that ¢? is the initial state of the component B; € £

and v/({c?, s)) = i. First, we claim that if a component is used in D’ then it is used

74

in D, thus used(D') < used(D). Indeed, if B; € used(D’), there is a state in D’ that
corresponds to a reachable Player 2 vertex v = (c¥, s), for some s € S. Let s, be a
witness state of v. Since the labeling of s, is v(s,) = i, we have B; € used(D). We
conclude that the sum of construction costs that is incurred by D’ is at most that
of D.

We prove that the sum of quality costs incurred by D’ is at most that of D. We
prove that for every B; € used(D') we have nused(D',B;) < nused(D,B;). For a
reachable vertex v € V5 let d, € D be an arbitrary choice of witness state of v. Let
w, be the corresponding witness word. We show that the mapping from a reachable
vertex v € V5 to d, € D is a one-to-one mapping. Consider v, u € V5 with d, = d,.
Let d = d, = d,. Let i = v(d). Since the component-state of v and u is the initial
state of B;, we have v = (¢, s) and u = (¢!, s'). To conclude the proof, we show
that s = s, thus v = u. We claim that L(S®) = L(S*) and since S is a minimal
DFA, it would follow that s = s’. Recall that w, and w, are the witness words for
v and u, respectively, thus d%(w,) = s and 0%(w,) = s’. Moreover, since w, and w,
are the witness words that correspond to the witness states d, = d, = d, we have
0f p(wy) = 0f p(wy) = (¢, d). Consider a word z € ¥*. If 2 € L(S®), then since
0%(w,) = s, we have w,-x € L(S). Since D is a correct design, w,-x € L(Azp). Thus,
07 p(wy-r) is an accepting state. Since 07 p(w,) = 07 p(w,), we have w,-z € L(Arzp)
and in turn w, -z € L(S). Since 0%(w,) = s', we have u € L(S*). The other direction

is symmetric, and we are done. [

While Lemma 4.1 seems intuitive, it does not hold in the setting of open systems.
There, a design has the freedom to generate a language that is a subset of L(S), as
long as it stays receptive. This flexibility allows the design to generate a language
that need not be related to the structure of the game G, s, which may significantly

reduce its cost. Formally, we have the following.

Lemma 4.2 There is an open library L and a family of DFAs S,, such that S,, has
a correct design D,, with cost 1 but every correct design for S, that is induced by a

memoryless strategy for Player 1 in G s, has cost n.

Proof: We define S, = (X1 x X0, Sy, ds,, 59, Fs, >, where ¥; = {0,1,#}, Yo =
{0,1,_}, and S,, ds, and Fgs, are as follows. Essentially, after reading a prefix of i
#’s, for 1 < i < n, the design should arrange its outputs so that the i-th and (n+1)-
th letters agree (they are 0 and 0, or are 1 and 1). One method to do it is to count
the number of #’s and then check the corresponding indices. Another method is to
keep track of all the first n input letters and make sure that they repeat. The key
idea is that while in the second method we strengthen the specification (agreement
is checked with respect to all i’s, ignoring the length of the #-prefix), it is still
receptive, which is exactly the flexibility that the open setting allows. We define

5

S, and the library £ so that the structure of G, s, supports the first method, but
counting each # has a cost of 1. Consequently, a memoryless strategy of Player 1
in G s, induces a design that counts, and is therefore of cost n, whereas an optimal
design follows the second method, and since it does not count the number of #’s,
its cost is only 1.

We can now describe the DFA S, in more detail. It consists of n chains, sharing
an accepting sink s,.. and a rejecting sink s,.;. For 0 <4 < n—1, we describe the i-th
chain, which is depicted in Figure 1. When describing ds, , for ease of presentation,
we sometimes omit the letter in ¥; or ¥ and we mean that every letter in the
respective alphabet is allowed. For 0 < i < n — 1, we define dg, (8, #) = sp' and
Ss,(sn,#) = si. Note that words of the form #'a;1ab0 or #'a;0azbl are not in
L(S,), where if 0 <4 <n—1, then a; € (0+ 1), ay e (0+1)"""' and be (0 + 1),
and if ¢ > n — 1 then the lengths of a;, as, and b are n—1, 0, and n — 1, respectively.
We require that after reading a word in #*(() + i)" there is an output of n letters in
{0,1}. Thus, for n < j < n+i+ 1, we define 5571(5;’0,)= 5Sn(3;’17—) = Spej. Also,
S, accepts every word that has a # after the initial prefix of # letters. Thus, for
1 < j <, we define ds, (s}, #) = Sace, and for i + 1 < j <n+i+1andte {0,1}

we define 55n(s§’t, #) = Sace-

Figure 1: A description of the i-th chain of the specification §,,.

The library £ is depicted in Figure 2. The quality and construction costs of all
the components is 0, except for By which has ¢-cost(B;) = 1 and c-cost(B;) = 0.

Figure 2: The library £. Exit states are square nodes and the output of a state is

written in the node.

We First claim that every correct design must cost at least 1. Indeed, such a
design must use B; at least once. Otherwise, the output sequence for the input
word #0"*! is a sequence in _*. Recall that we require that after reading a word in
#*(0 + 1) there is an output of n letters in {0, 1}, thus such a design is incorrect.

We describe a correct design D,, with cost(D,,) = 1. Intuitively, as explained
above, D,, does not track the number of #’s that are read and can thus use B; only
once. Instead, D, keeps track of all of the n input letters in {0,1} that follow the

76

sequence in #*. Thus, after 0 or 1 is read, By gains control for n consecutive times.
Then, assuming the word u € {0, 1}" is read in the first phase, control is alternated
between B3 and B, so that the word v € {0,1}" is output, where u and v represent
the same vector. Note that D,, uses the components By, Bs, and B, exponentially
many times in n.

Formally, we define D,, = (X;,%0, Dy, 0p,,d’, v). We define v(d°) = 1 and
op, (d° el) = d°. When By relinquishes control through ej or e} control is passed
to By for n consecutive times. During this phase, D,, remembers the vector in
{6, i}” that is read, thus D, has 2% states. Next, the components B; and By
alternate control for n times as we describe in the following. Consider an input word
w=#"ay...a,b, whereay, ..., a, € {0,1}" and be {0,1}" for 0 < m < n—1. After
reading w either B3 or By relinquish control. If a,,,1; = 0, then the next component
to gain control is B3 and otherwise it is By. After n alternations of control By is
assigned control indefinitely.

Since the initial state of D,, is the only state that is labeled with By, we have
nused(By) = 1, thus cost(D,,) = 1. We claim that D,, is a correct design. Indeed,
note that L(7;p,) consists of two types of words. The first type are prefixes of
words in #*ab0*, for a € {0,1}" and b € {0, 1}" that represent the same vector, thus
for 1 <i <mn,if a; = 0, then b; = 0 and if a; = 1, then b; = 1. The second type are
words that have a prefix in #*(0 + 1)*#. Clearly, L(Tz.p,) S L(S,), and we are
done. [

4.2 Solving the BCD problem

Theorem 4.3 The BCD problem is NP-complete for closed designs.

Proof: Consider an input (S, L, u) to the BCD problem. By Lemma 4.1, we
can restrict the search for a correct design D with cost(D) < u to these induced
by a memoryless strategy for Player 1 in G s. By the definition of the game G, s,
such a design has at most |Cy x S| states. Since checking if a design is correct and
calculating its cost can be done in polynomial time, membership in NP follows.

For the lower bound, we describe a reduction from SET-COVER. Consider an
input (U, T, i) to SET-COVER, where U = {1,...,l} isauniverse, T = {T,..., T}
is a set of subsets over U, i.e., T; € U, for 1 <i < m, and u € IN. We construct a
closed-library £ and a DFA S such that there is a design D that costs at most p iff
there is a set-cover of size at most pu.

We construct the DFA S over the alphabet U as a chain of [+ 1 states that
accepts only the word 12...[. There are m + 2 components in £. For 1 < i < m,

the component B; corresponds to the set T;. Its initial state is ¢? and it has an exit

7

i
o
The last two components are B,.. and B,.;. For consistency we also refer to these

state e} for every element j € T;. For j € T; there is a transition §;(c},j) = e

components as B, 1 and B, 2, respectively. They consist of a single initial non-
exit state that is accepting in B, and rejecting in B,.;. For B; € L, we define
c-cost(B;) = 1 and we define c-cost(Ba..) = c-cost(B,.;) = 0. Finally, the quality
cost of the components is 0, thus we define ¢-cost = 0.

We claim that there is a set cover of size at most p iff there is a design of cost at
most u. For the first direction, consider a set cover 7" < T with |T’| < u. For j € U,
let cover(j) be the index such that j € Tepper(j) and Tepper(;y € T'. We construct
a design D with cost(D) < p. We define D so that when Az p reads the word
1...l, the component that gets j-th control, for 1 < j < I, is Begyer(j)- If the j-th
input letter is j* # j, then the next component to gain control is B,.;. Finally, the
component that gains [+ 1-th control is B..

Formally, D = (&, [m+2], D, dp,dy,v), where {dy, ..., d;, dc, dre; } and we define
v and ép as follows. For 1 < j < [, we define v(d;) = cover(j). For 1 < i < m,
recall that the component B; has an exit state e§- for every j € T;. For 7 < [and
1 < i < m, we define op(d;,e’) = dj;1 and we define dp(d;, e}) = dyee. For j # i,

707
we define dp(d;, e?) = dy¢j. It is not hard to see that L(Ag) = {12...1}, and thus
D is a correct design. The components that D uses are the ones that correspond to
the sets in 7", thus D uses at most p components with construction cost 1, and its
cost is at most p.

For the other direction, assume there is a correct design D with cost(D) < p.
Consider the collection 7" < T of sets that correspond to the components {v(d) :
de D and v(d) ¢ {Bace, Brej}}- We claim that 7" is a set cover with at most p sets.
Since cost(D) < pu, it uses at most u components that correspond to sets in T', thus
|T'| < p. We are left to show that 7" is a set cover. Consider the run r of Az p
on the word 1...[. Since D is correct, r is accepting. Specifically it does not get
stuck. Since the components we described above relinquish control after reading a
single letter, the control is passed [+ 1 times during r. Let B;,...,B;,B;,, be
the sequence of components that gain control. Consider j € U. We claim that j
is covered in T”. Since r does not get stuck, there is a transition labeled j in the
component B;,, the j-th component to gain control in r. Thus, j € T;,, the set in T

that corresponds to B;,. Since T;, € T", j is covered, and we are done. L]

Remark 4.4 Note that a different attempt to reduce SET-COVER to the BCD
problem would be to define the components as in the proof of Theorem 4.3 and
define § so that it accepts one-letter words for each element in U. However, this
attempt fails since, intuitively, a design does not know which letter is going to be

read. Even if there is a set cover 7" < T and control is assigned to the component B;

78

where T; € T’ a letter j € U\T; can be read. Thus, the fact that we use a one-word

specification allows a design to expect the next letter that should be read.

We turn to study the open setting, which is significantly harder than the closed
one. For the upper bound, we first show that while we cannot restrict attention
to designs induced by memoryless strategies, we can still bound the size of optimal

designs:

Theorem 4.5 For an open library £ with ¢ components and a specification S with

n states, a cheapest correct design D has at most (n72) -0 states.

Proof: Given § and L, assume towards contradiction that the cheapest smallest
design D for § using the components in £ has more than (n7/‘2) - { states.

Consider a word w € L(7zp). Let B;,...,B;, € L be the components that
are traversed in the run 7 of 7, p that induces w. Let w = wy - ... - w,,, where,
for 1 < j < m, the word w; is induced in the component B;,. We say that w is
suffix-less if w,, = €, thus r ends in the initial state of the last component to gain
control. We denote by m,(D) = e;,,...,€;_, € E* the sequence of exit states that
r Vvisits.

For a state d € D, we define the set S; < S so that s € Sy iff there exists a
suffix-less word w € (X7 x Xp)* such that 0%(w) = s and 055 (m, (D)) = d. Since D
has more than (nT/LQ) - £ states, there is a component B; € L such that the set D' < L
of states that are labeled with B; is larger than (n’/LQ) Thus, there must be two states
d,d € D’ that have Sy < S;. Note that v(d) = v(d') = i.

We construct a new design D’ by merging d’ into d. Formally, we define D’ =
D\{d'}. If d’ is the initial state of D, then we define d® = d and otherwise we
define d° = d°. Fort € D' and e € &, if dp(t,e) = d', then we define dp(t,e) = d,
and otherwise we define p/(t,e) = dp(t,e). Finally, for every ¢t € D’ we define
V() = v(t).

Clearly, for every component B € £ we have nused(D, B) = nused(D’, B), thus
cost(D) = cost(D’). Moreover, D’ has less states than D. Thus, in order complete

the contradiction and conclude the proof of the theorem, we prove the following.
Claim 4.6 We claim that D’ is a correct design, thus L(Tzp) < L(S).

In order to prove the claim we prove the following.

Claim 4.7 For every suffiz-less (w.r.t D') word x € L(Tzp) there is a suffiz-less
(w.r.t D) word y € L(Tzp) such that §%(x) = d%(y) and 03 (my (D)) = 63 (7 (D')).

Before proving the correctness of Claim 4.7 we show that it implies the cor-

rectness of Claim 4.6. Assume towards contradiction that there is a word w €

79

L(Tzp)\L(S). Let r be the run of 7, p that induces w and let B; € £ be the
last component to gain control in r. Let wq,...,w,, be the partition of w with
respect to D" and let © = wq - ... w,,_1. That is, z is the longest suffix-less prefix
of w. Note that 7,(D') = m,(D'). By Claim 4.7 there is a suffix-less (w.r.t D)
word y € L(Tzp) such that 65(x) = d4(y) and 05 (my (D)) = 6% (m(D')). Since
05 (my(D)) = 6% (m,(D')), the last component to gain control in the two runs is
B;. Since both z and y are suffix-free, the runs that induce them end in the initial
state of By, thus 67 p(y) = 07 p(x). Recall that w = x-w, € L(Tzp). Thus,
Y- wy € L(Tzp). Since 0%(y) = d5(x) and w ¢ L(S), we have y - w, ¢ L(S). Thus,
y-w, € L(Tzp)\L(S), and we reach a contradiction to the correctness of D, and we
are done.

We continue to prove Claim 4.7. Consider a suffix-less (w.r.t D') word z €
L(Tzp) and let r be the run of D’ on 7, (D’), which are the exit states that Tz pr
visits when inducing x. The proof is by induction on the number of visits of r to
d € D'. For the base case, r does not visit d. Thus, r is a run of D on 7, (D’), and
we define y = x.

Assume the claim is correct for runs with m visits to d and we prove for runs
with m + 1 visits. Let 7,(D’") = m,,(D’) - e - m,,(D’) such that 0%, (7., (D) -€) = d is
the last visit of r to d. Let x = x1-x9-x3, where 1 and x - x5 are suffix-less. That is,
assuming t = 0%, (m,, (D’)) and v/(t) = i, then x5 is the sub word of z that is induced
by the component B;, thus 6 (z3) = e € £. We distinguish between two cases. In
the first case x5 = ¢, thus 2; = € and d° = d, and we define y = z as in the base
case. In the second case, x5 # €. By the induction hypothesis, there is a suffix-less
(w.r.t D) word y; € (X1 x Xp)* such that 65 (my, (D)) = 65 (7, (D)) = t € D’ and
0 (y1) = 0%(xq1). If op(t,e) = d, then op/(t,e) = d and y = y; - x9 - z3 clearly meets
the requirements of the claim. Assume 0p(¢,e) = d’. Note that y; - xo is a suffix-less
(w.r.t D) word with 6% (my,..,(D)) = d'. Let 6%(y1 - x2) = s. Since Sy < Sy, there is
a suffix-less (w.r.t D) word z € (X7 x ¥p)* such that dp(7,(D)) = d and §%(z) = s.
We define y = z - x3, which clearly meets the requirements of the claim, and we are

done. O

Before we turn to the lower bound, we argue that the exponential blow-up proven

in Theorem 4.5 cannot be avoided:

Theorem 4.8 For everyn = 1, there is an open library L and specification S,, such
that the size of L is constant, the size of S, is O(n?), and every cheapest correct

design for S, that uses components from L has at least 2" states.

Proof: Consider the specification S, and library £ that are described in Lemma 4.2.
We claim that every correct design that costs 1 cannot count #’s and should thus

remember vectors in {0, 1}". Assume towards contradiction that there is a correct

80

design D with cost(D) = 1 and D has less than 2" states. Thus, nused(D, By) = 1.
Since D must assign initial control to By, its initial state d° is labeled with 1. We
claim that if B; relinquishes control after reading #, it is assigned control again.
Indeed, if one of the other components gains control, for the input word ##0"*! the
output sequence is a sequence in _*. Recall that we require that after reading a word
in #*(0 + 1)™ there is an output of n letters in {0, 1}, thus we reach a contradiction
to the correctness of D. We conclude that the initial state has a e;&—labeled self loop,
thus 0p(d°, el,) = d°.

Since D has less that 2" states and the components By, B3, and B, relinquish
control after reading a letter in {0,1}, there are two words a,b € {0,1}" such that
a # band 6} p(a) = 07 p(b). Let 0 <i <n—1such that, WLog, 1 = a; # b; = 0.
By the above, for the initial state ¢2 5, of Tzp we have oz (g p, #) = ¢2.p- Thus,
529(#’@6@') = 527D(#ib(~)i). Recall that S, requires that either 0 or 1 is output
after these words are read, thus either Bs or B, gain control. In the first case, the
output letter is 0 and the input word #%a0**! produces an output that violates the
specification, and in the second case 1 is output and the input word #°60°+! produces

an output that violates the specification, and we are done. [

Theorem 4.9 The BCD problem for open libraries is NEXPTIME-complete.

Proof: Membership in NEXPTIME follows from Theorem 4.5 and the fact we
can check the correctness of a design and calculate its cost in polynomial time.

For the lower bound, we describe a reduction from EXP-TILING. Consider an
input to EXP-TILING (T, V, H,n), where T' = {t1,...,t,} is a set of tiles, V, H <
T x T are vertical and horizontal relations, respectively, and n € IN is an index. We
say that (T, V, H,ny e EXP-TILING if it is possible to fill a 2" x 2" square with
the tiles in 7" that respects the two relations. Formally, (T, V, H,n) € EXP-TILING
if there is a function f : 2" x 2" — T such that for a,b € 2", if a < 2" then
V(f(a,b), f(a+1,b)), and if b < 2", then H(f(a,b), f(a,b+ 1)).

Given an input (T, V, H,n), we construct an input (£, S, k) to the open-BCD
problem such that there is an exponential tiling iff there is a correct design D with
cost(D) < 22! + 1. The idea behind the reduction is similar to that of Lemma 4.2.
We define ¥; = {0,1,#,c,v,h,_} and ¥p = {0,1,_} UT. For z € {0,1}", we use
i to refer to the {0,1} copy of z. The library £ has the same components as in
Lemma 4.2 with an additional tile component B; for every t € T. The component
B; outputs t in its initial state, and when reading ¢, v, or h, it relinquishes control.
When reading every other letter, it enters an accepting sink. The construction costs
of the components in £ is 0. We define g-cost(B;) = 2** + 1, and g-cost(B;) = 1 for
all t € T. The other components’ quality cost is 0.

81

Consider a correct design D with cost(D) < 2?1 + 1. We define S so that a
correct design must use By at least once, thus D uses it exactly once. Intuitively,
a-b, for a,b € {0,1}", can be thought of as two coordinates in a 2" x 2" square.
We define § so that after reading the word a - be {6, 1}2”, a component is output,
which can be thought of as the tile in the (a,b) coordinate in the square. The next
letter that can be read is either ¢, v, or h. Then, S enforces that the output is a - b,
(a+1)-b, and a- (b+ 1), respectively. Thus, we show that D uses exactly 22" tile
components and the tiling that it induces is legal.

Recall that D uses B; exactly once and uses at most 22" tile components. We
describe the specification S as an intersection of the languages of three DFAs. The
first DFA S, is similar to the specification in Theorem 4.8. The differences are that
there are 2n chains and after the sequence of 2n input letters, a letter (t,c), for
t € T', must be read. Thus, it guarantees that when D reads abe 2", for a,b e {6, 1}",
it outputs a word *"tab, where t € T and recall that a,b € {0,1}" represent the
same vectors as a and l~), respectively.

Consider a,b € {0,1}", and let d,; be the state of D that is reached after
reading the word @b. Then, control must be assigned to a tile component, thus
t= 1/((5}71)(515)) is a tile component. Consider the input word w = ¢ ?". If w is read
when D is at state d,;, the word a - b must be output. Recall that D uses at most
22" tile components. A key observation is the following. Consider a state d of D
that is labeled by a tile component. If D is in state d and ab is output when reading
w, then d = dgp.

The next DFA from which § is devised is S,. It guarantees that when D reads
the word abve_®" it outputs >"t;t;(a + 1)b for t;,t; € T with V(t;,t;). Finally, in
order to deal with the tiles in the top row, S, accepts every word that starts with a
prefix in #*1%(0 + 1)"v. The DFA S}, is defined similarly to S,,.

We define a tiling f by f(a,b) = v(dap) for a,b € {0,1}". We show that the
above observation implies that f respects V', and the proof for H similar. Consider
a,be {0,1}". If a = 1", then f(a,b) is in the top row, and there is nothing to prove.
Otherwise, we view a and b as numbers and claim that V(f(a,b), f(a+1,b)). Recall
that after reading ab, D reaches the state d,;, and the tile f(a,b) is output. By
the above, S, guarantees that if v is read, the next tile that is output respects V.
We claim that f(a + 1,b) is output. Indeed, when reading c¢_*", S, guarantees that
(@ 4 1)b must be output. By the observation above, d(q41)p is the only state of D
from which an input of ¢_?" produces an output of (a + 1)b.

The other direction, namely, if there is a tiling of 2™ x 2", then there is a design
that costs 22" + 1, is dual to the above. O

82

5 Computation-Based Cost

While the cost model we use in Section 4 is suited for some settings, e.g., in cases
where the goal is to minimize the number of states in the system, in other settings
a computation-based cost model is more appropriate. For example, in a system that
issues grants upon requests, a goal of the designer can be to design a system that
minimizes the waiting time for a grant once a request is received. A standard model
for reasoning about such costs of computations is lattice automata [24]. Such an
automaton assigns to each word a value which is an element of some lattice.

We study the synthesis problem from component libraries where the specification
is given by a deterministic lattice automaton (LDFA, for short) and the components
are box LDFAs. Thus, our goal is to compose the components in the library to
construct an LDFA that is equivalent to the specification LDFA, where equivalence
means that the two automata assign the same values to all words.

The compleity of problems on lattice automata typically coincide with the com-
plexity of the corresponding problem in the Boolean setting. An exception is the
problem of minimization of LDFAs, which is NP-complete [?]. It is shown in [?],
that there is no canonical minimal LDFA for a latticed language. Recall that mini-
mal DFAs play a key role in our upper bound for the design problem in the closed
setting (Theorem 3.1) as we assumed the specification is given as such a DFA.

Even with no canonical minimal LDFA for the language of the specification, we
show that the design problem can be solved in polynomial time. We assume the
specification is given as a separable LDFA, which is a type of LDFAs we introduce
here. In such an LDFA, every two states have a separating word (similar to minimal
DFAs). That is, if there are words w; and ws whose runs reach two different states,
then there is a word w such that w; - w gets a different value than w, - w. We show
that every latticed language has a separable LDFA of polynomial size. This result

might be of independent interest.

5.1 Lattice automata

Let (A, <) be a partially ordered set, and let P be a subset of A. An element a € A
is an upper bound on P if a > b for all b € P. Dually, a is a lower bound on P
if a < bforall be P. An element a € A is the least element of P if a € P and
a is a lower bound on P. Dually, a € A is the greatest element of P if a € P and
a is an upper bound on P. A partially ordered set (A, <) is a lattice if for every
two elements a,b € A both the least upper bound and the greatest lower bound of
{a, b} exist, in which case they are denoted a v b (a join b) and a A b (a meet b),

respectively. A lattice is complete if for every subset P < A both the least upper

83

bound and the greatest lower bound of P exist, in which case they are denoted \/ P
and A P, respectively. In particular, \/ A and /\ A are denoted T (top) and L
(bottom), respectively. A lattice (A, <) is finite if A is finite. Note that every finite
lattice is complete. A lattice (A, <) is distributive if for every a,b,c € A, we have

an(bve)=(anb)vianc)andav (bac)=(avbd) A(avec).

Ay As Ay

Figure 3: Some lattices

In Figure 3 we describe some finite lattices. The elements of the lattice A are the
usual truth values 1 (true) and 0 (false) with the order 0 < 1. The lattice A,, contains
the values 0,1,...,n — 1, with the order 0 <1 < ... <n —1. The lattice Ay is the
Cartesian product of two Ay lattices, thus (a,b) < (a’,V') if both a < @’ and b < V.
Finally, the lattice 212>} is the power set of {a,b, c} with the set-inclusion order.
In this lattice, join and meet coincide with union and intersection, respectively, and
we have, for example, {a} v {b} = {a,b}, {a} A {b} = L, {a,¢} v {b} = T, and
{a,c} A {b} = L.

Consider a lattice A (we abuse notation and refer to A also as a set of elements,
rather than a pair of a set with an order on it). For a set X of elements, an A-set
over X is a function S : X — A assigning to each element of X a value in A. Thus,
S e AX. Tt is convenient to think about S(z) as the truth value of the statement “x
is in S”. We say that an A-set S is Boolean if S(x) e {T, L} for all z € X.

Consider a lattice A and an alphabet ¥X. An A-language is an A-set over X*.
Thus, an A-language L : ¥* — A assigns a value in A to each word over X.

A deterministic lattice automaton on finite words (LDFA, for short) is a tuple
A=\ Q,0Q,0, F), where A is a finite lattice, 3 is a finite alphabet, @ is a finite
set of states, Qo € A9 is an A-set of initial states, § € A9*¥*? is an A-transition-
relation, and F € A® is an A-set of accepting states.

The fact that A is deterministic is reflected in two conditions on Qg and J. First,
there is at most one state ¢ € @, called the initial state of A, such that Qo(q) # L.
In addition, for every state g € Q and letter o € X, there is at most one state ¢’ € Q,
called the o-destination of q, such that 6(q,0,q¢') # L. The run of an LDFA on a
word w = o1 - 090, I8 a sequence r = qq, ..., q, of n + 1 states, where ¢q is the

initial state of A, and for all 1 < ¢ < n, it holds that ¢; is the o;-destination of

84

¢i—1. We extend the notion of destination to words. For a word w € ¥* and a state
q € Q, we use *(q,w) to refer to the w-destination of g. When ¢ € Qy, we omit
it and use 6*(w). The value of w is val(w) = Qo(q) A Aj—; 0(di-1,0i, @) A F(qn).
Intuitively, Qo(qo) is the value of gy being initial, d(¢;_1,0:,¢;) is the value of ¢;
being a successor of ¢;_; when o; is the input letter, F'(g,) is the value of ¢, being
accepting, and the value of w is the meet of all these values. The traversal value of w
is trav-val(w) = Qo(qo) A N\j—; 0(di—1, 0i, ¢;), and its acceptance value is F(g,). The
A-language of A, denoted L(.A), maps each word w to the value of its run in A. In
case such a run does not exist, the value of the word is 1. An example of an LDFA
can be found in Figure 5. We say that two LDFA A and B are equivalent iff they
assign the same values to all words, thus for w € ¥* we have val(A, w) = val(B,w).

Note that traditional deterministic automata over finite words (DFA, for short)
correspond to LDFA over the lattice As. Indeed, over As, a word is mapped to the
value T iff the run on it uses only transitions with value T and its final state has
value T.

An LDFA is simple if Qg and ¢ are Boolean. Note that the traversal value of a
run 7 of a simple LDFA is either I or T, thus the value of r is induced by F'. For
simplicity, in such LDFAs we assume 0 : Q) x X — Q.

The following lemma was proven in [24] and we give it here for completeness.

Lemma 5.1 [2/] Every LDFA over a lattice A with n states has an equivalent simple
LDFA with n - |A| states.

Proof: Consider an LDFA D = (A, X, D,dy, o, F). Intuitively, in the simple
LDFA D’ we “remember” the lattice value of a run of D. Formally, let D' =
(N,E, D x A, {dy, T),8 F"), where F'({d,l)) = ¢ A F(d) and we define §' below.
Recall that for every d € D and o € X, there is at most one state d’ € D such that
d(d,o,d") # L. We define 0'({d,{),0) = {(d',¢ A 0(d,0,d'))). Clearly, the size of
D' is |D| - |A|, and it is simple. Moreover, it is not hard to see that D and D’ are

equivalent.]

5.2 Separable LDFAs

Recall that in the Boolean setting, our solution to the closed design problem relied
on the fact that the specification was given as a minimal DFA. Specifically, we used
the fact that states in such a DFA have separating words. It is known that there
is no canonical minimal LDFA for a lattice language [21]. However, we show below
that it is possible to assume that the specification is given by means of an LDFA
whose states have separating words.

Formally, consider an LDFA D = (A, %, D, dy,d, F). We say that two states

dy,ds € D have a separating word, if there is a word w € X* such that for every two

85

words wy, wy € X* with 05(w;) = dy and 05(wse) = da, we have val(D,w; - w) #
val(D,wq-w). We say that D is separable if every two states have a separating word.

For example, consider the LDFA D that is depicted in Figure 5. The alphabet
of Dis ¥ = {1,2,3} and it is defined over the lattice (2% <). The states’ names
appear above them and their acceptance value inside. We show that D is not
separable. For this, we show that the states d; and dy are not separable, as for the
words wy = 1 and we = 2, we have 65(w;) = dy and 65(wy) = do, but there is no
word w such that val(D,w; - w) # val(D,ws - w). Indeed, words with a prefix w; or
wy have either a value of {a} or a value of L. If 1* is read after reading w; or ws,
then the value is {a}, and otherwise it is L. Note that it is not possible to simply
merge d; and dy as that would result in a change of the value of either the word 32

or the word 42.

dy do da
1 {a} L {ad 2 {2} 1{a}

2:4b) 1, {b} 5 {c} 2ch

Figure 4: An example of an LDFA in which the states d; and dy are not separable.

We show that every simple LDFA D has an equivalent simple separable LDFA
D’. By Lemma 5.1, this would imply that every LDFA has an equivalent separable
LDFA. Let D = (A, %, D, dy, §, F). We define an equivalence relation on D and use
it to construct D’'. Consider a join-irreducible element a € JI(A). We construct
a DFA D, with L(D,) = {w € ¥* : val(D,w) > a} as follows. We define D, =
(3, D, dy, d4, Fy), where for ¢ € Q and o € X, we have d,(q,0) = ¢ iff (¢, 0,¢) =T,
and d € F, iff a < F(d). Since D, is a DFA| its language has a canonical minimal
DFA D!. Moreover, the states of D, refine these of D, such that there is a mapping
fa from the states of D, to these of D! such that for two states dy,ds € D, we have
fa(dy) = fa(dy) iff for every word w € X%, we have w € L(D%) iff w € L(D%®).

We are ready to define the equivalence relation on D. We define d; ~ dy iff
F(dy) = F(ds) and for every a € JI(A) we have f,(d1) = fu(d2). Let D. be the
partition of D according to ~.

Consider two states di,dy € D such that d; ~ dy and a letter 0 € 2. We claim
that d} = 0(dy,0) ~ 6(dy, 0) = d. Assume otherwise, thus either F(d)) # F(d,) or
there is a € JI(A) such that f,(d}) # f.(d,). Assume that the second case holds.
Then, there is a word w € ¥*, such that a < val(D%,w) and a £ val(D%,w), or the
other way around. But then, the word o -w is separating for d; and ds, contradicting
the fact that f,(d1) = f.(d2). The proof for the first case is similar.

Let D' = (A, X, D.,dy, ¢, F"), where df, € D. is such that dy € dj, and ¢" and F’
are defined as follows. For A€ D_, d € A, and 0 € X, we define §'(A,0) = A’ iff

86

d(d,o) € A'. Then, F'(A) = F(d). By the above, ¢’ is well defined.

For example, consider the simple LDFA D that is equivalent to the one in Fig-
ure 5. Here, we do not state the values of the transitions as they are all T. Note
that the states (dy, {a}) and {ds, {a}) are not separable and in D’ they are merged.

Figure 5: A simple LDFA that is equivalent to the one in Figure 5.

We claim that D’ is equivalent to D. Consider a word w = wy, ..., w, € ¥* and
let r =ro,7m,...,mand r’ = r{,r},..., 7 bethe runs of D and D’ on w, respectively.
It is not hard to prove by induction on ¢ that for every 0 < i < n, we have r; € r.
Since D and D’ are simple, we have val(D,w) = F(r,) and val(D',w) = F'(r]). By
the claim, r,, € 7/, and by the definition of F’, we have F'(r!) = F(r,), and we are
done.

Finally, we claim that D’ is separable. Consider two words wy,ws € ¥* such
that A; = 85 (w1) # 05 (we) = Ag. If F(Ay) # F(Asg), then € is a separating word.
Assume F(A;) = F(A,), and we show that they have a separating word. Let d; =
0% (wy) and dy = 55 (we). By the above, we have d; € A; and dy € Ay. Since Ay # A,,
there is a € JI(A) such that f,(di) # fu(dz). Thus, there is a word w € ¥* such
that a < val(D™,w) and a € val(D%,w), or the other way around. Note that since
D is simple, we have val(D,w; - w) = val (D, w) and val(D, w, - w) = val (D%, w).
Since D and D’ are equivalent, they assign the same values to the words w; - w and
wy - w, thus we have a < val(D',wy - w) and a € val(D’,w; - w). Recall that two
lattice values x,y € A are equal iff for every a € JI(A), we have a < z iff a < y.
Thus, we have that val(D',w; - w) # val(D',w, - w), and we are done.

Note that the size of D’ is at most the size of D. We conclude with the following.

Theorem 5.2 FEvery simple LDFA with n states has an equivalent simple LDFA

with at most n states.

Recall that in Lemma 5.1, the construction of a simple LDFA results in a blowup

in the size of lattice. Thus, we have the following.

Corollary 5.3 FEvery LDFA with n states over a lattice A has an equivalent simple
separable LDFA of size at most n - |Al.

87

5.3 The closed-lattice synthesis problem

Consider a library £ of box-LDFAs and a design D. Recall that a design in the
Boolean setting is a recipe to construct an LDFA by glueing the components in L.
Given a design D, we refer to Az p as the compositional LDFA that is constructed
using D and the components from £. We can now define the lattice closed-design
problem. Given a library of box-LDFAs £ and a specification LDFA S, decide
whether there is a design D such that A, p is equivalent to S. Recall that in the
lattice setting this means that S and A. p assign the same values to all words. We
assume that the components in £ as well as S are all defined with respect to the

same lattice.
Theorem 5.4 The lattice closed design problem can be solved in polynomaial time.

Proof: The solution here is similar to that of the closed design problem in
Theorem 3.1. Given a library £ of box-LDFAs and a specification LDFA S, we
construct a full information safety game G, s such that Player 1 wins iff there is
a design for § using the components of £. Recall that a safety game is a turn-
based two player game in which Player 1 wins iff the token that the players move
stays within the “safe” vertices. Again, similar to the Boolean setting, Player 1’s
strategies correspond to designs. He select the first component to gain control, and
once a component relinquishes control, he selects which component gains control
next.

Player 2 challenges Player 1’s choice of design. In the Boolean setting, he selects
the word that is read while a component is in control, which amounts to selecting
an exit state from which the component relinquishes control. In the lattice setting,
different runs that exit through the same exit state might have different traversal
values. Player 1 should not know what the traversal value is. This has the sense
of partial information, which caused the exponential blowup in the open setting.
However, we are able to bypass this problem. Assume Player 1 assigns control to a
components B;, and Player 2 selects the exit state e. Then, we maintain both the
join and the meet of all possible values of runs that exit through e.

Formally, assume £ consists of components of the form B; = (A, %, C;, &), F}, E;),
for i € [n]. As in the Boolean setting, we denote by C, Cy, and &, the union of the
sets of states, initial states, and exit states, respectively, of the components. Let
S =\, 3,8, s0, Fs). By Corollary 5.3, we can assume that S is a simple separable
LDFA.

We construct a game (V, E, Vy, a), where V} = & x A x A x S and V5 = Cy x A x
Ax S, Vi =Cox{T}x{T}x{so}, and E and « are defined as follows. All the vertices

in V] are safe, i.e., they are in . We describe when a vertex (¢}, (|, (+, s) in V3 is not

88

in . We alter the definitions we had in the Boolean setting of “infix witness” and
“suffix witness” to incorporate the lattice values. First, we have that {(c},¢,¢;,s)
is an infix witness if there exists words wq,wy € ¥* such that 6 (w;) = 6f(wy) € &€
and 0%(s,wy) # 0%(s,ws2). Second, we have that {(c},¢,(;,s) is a suffix witness
if there exists a word w € ¥* such that either val(B;,w) A ¢, # val(S*,w) or
val(B;,w) A £y # val(S*,w).

We describe the edges of the game. First, edges leaving Player 1 vertices are as
in the Boolean setting and corresponding to choosing the next component to gain
control; we have ((e, £}, l+,s),{(ch,l,,¢s,s)y € E, for every i € [n]. Vertices in V5\«
have no outgoing transitions. Consider a vertex v = {c{, (|, l,s) € Vo n a. Edges
leaving v correspond to a choice of exit state e of B;. Since v ¢ «, there is a state
s’ € S such that every word w € ¥* that has ¢*(w) = e also has §§(s,w) = s'. Finally,
the traversal values of these words might be different. We update the meet and join
of all these traversal values. Formally, there is an edge ((c}, ¢, (s, s),{e,?/, 58
iff there exists a word w € ¥* such that §f(w) = e and d5(s,w) = s, and (| =
0y A /\wez*z(szk(w):e trav-val(B;,w) and €, = {4 A \/wez*:(sj‘(w)=e trav-val (B;, w).

We claim that Player 1 wins G, s iff there is a correct design for S using the
component of L. For the first direction, assume Player 1 has a winning strategy fp
and let D be the corresponding design as in Theorem 3.1. We claim that D is a
correct design. Assume towards contradiction that there is a word w € ¥* such that
val(Azp,w) # val(S,w). Let w = wy -wy-...w, be the partition of w according to
the components that process it in Az p, and let ¢y, (s, ..., £, be the traversal values
of each of the sub-words in the corresponding component. Let B; be the component
that processes wy,. Note that val(Azp, w) = /\ cicpn_y li A val(Bj,wy,). Consider
the Player 2 strategy f,, that, intuitively, selects the word w; -. .. w,,_1. The vertex
in the game G, s that the game reaches is of the form v = (¢}, £}, (;,5) € V5. It is
not hard to show that £ < A, 1 b < 4.

We claim that v ¢ a, which will contradict the fact that fp is winning. Recall
that two lattice elements are equal iff their order with respect to all join irreducible
elements is the same. We distinguish between two cases. First, there is an element
a € JI(A) such that a < val(Azp,w) and a € val(S,w). We claim that a <
(¢, A wval(Bj,wy,)). Indeed, since a < val(Azp,w), we have a < val(B;,w,,) as
well as a < ¢;, for 1 < ¢ < m — 1. By the above, the latter implies that a < ¢;.
On the other hand, we claim that a € val(S®,w,,). It is not hard to see that
0%(wy - ... - wp—1) = s. Since S is simple, val(S,w) = val(S*, wy,), thus the claim
follows. We conclude that ¢4 A val(Bj, w.,) # val(S®, wy,), implying that v ¢ o, and
we are done. Showing that v ¢ o when a € val(Az p,w) and a < val(S,w), is done
similarly using /.

For the other direction, assume there is a correct design D, and we show that the

89

corresponding Player 1 strategy fp is a winning strategy in G, s. Assume otherwise,
and let f, be a Player 2 strategy that is winning against fp. Let v = (2, £, (;,5) ¢
that the game reaches. Assume v ¢ a because of an infix witness. The contradiction
is attained similarly to Theorem 3.1. Recall that in this case there are words wy, w9 €
¥* such that §f(wy) = 6F(we) € € but s1 = 0%5(s,wy) # 65(s,ws) = sy. Since S is
separable, there is a separating word w for s; and sg, thus val(S*', w) # val(S%,w).
But, since B; exists from the same exit state when reading w; and ws, the LDFA
A p assigns the same values to the words with suffix w; - w and ws - w, while they
get different values in S.

Assume v ¢ « because of a suffix witness. Thus, there is a word w € ¥* such
that either | A val(Bj, w) # val(S*,w) or ¢y A val(Bj, w) # val(S*,w). We prove
for the first case and the second is similar. Assume the play out(fp, f2) traverses
the components B;,, ..., B; and exit states ey, ..., e,. We choose words wy, ..., w,,
that the components traverse. Thus, we need, for every 1 < j < m that (5?" (w;) = ej.
Again, we distinguish between two cases. First, let a € JI(A) such that a< (l, A
val(B;,w)) and a € val(S*,w). Since a < £}, for every 1 < j < m, every word u € ¥*
such that ¢; (u) = €;, has a < trav-val(B;;,u). So we can choose any such word u as
w;. Note that since the intermediate vertices in the play out(fp, f2) are in «, it is not
hard to show that §&(wy-...-wy,,) = s. So, we have a < val(Azp,w;-. .. Wy, -w) while
a € val(S,w;-...wy, w), and we are done. For the second case, a € (¢, Aval(B;,w))
and a < val(S®,w). If a € val(B;,w), then we choose for each component some
word as in the above. If @ € ¢, then there is 1 < 7 < m and a word w; € ¥* such
that 67 (w;) = €; and a < trav-val(B;;, w;). We choose the other words as in the
above, so that we have a € val(Azp,w; - ... wy), and the proof is similar to the
above. L]

6 Libraries with Costs and Multiple Users

In this section we study the setting in which several designers, each with his own
specification, use the library. The construction cost of a component is now shared by
the designers that use it, with the share being proportional to the number of times
the component is used. For example, if c-cost(B) = 8 and there are two designers,
one that uses B once and a second that uses B three times, then the construction
costs of B of the two designers are 2 and 6, respectively. The quality cost of a
component is not shared. Thus, the cost a designer pays for a design depends on
the choices of the other users and he has an incentive to share the construction
costs of components with other designers. We model this setting as a multi-player

game, which we dub component library games (CLGs, for short). The game can be

90

thought of as a one-round game in which each player (user) selects a design that is
correct according to his specification. In this section we focus on closed designs.
Formally, a CLG is a tuple (£, Sy, . .., S), where L is a closed component library
and, for 1 <1 < k, the DFA S, is a specification for Player i. A strategy of Player i
is a design that is correct with respect to S;. We refer to a choice of designs for
all the players as a strategy profile. Consider a profile P = (Dy,...,Dy) and a
component B € L. The construction cost of B is split proportionally between the
players that use it. Formally, for 1 < i < k, recall that we use nused(B,D;) to
denote the number of times D; uses B. For a profile P, let nused(B, P) denote
the number of times B is used by all the designs in P. Thus, nused(B,P) =
D <ick Mused(B,D;). Then, the construction cost that Player i pays in P for B
is c-cost;(P, B) = c-cost(B) - “<dBDY) - Gince the quality costs of the components is

nused(B,P)
not shared, it is calculated as in Section 4. Thus, the cost Player ¢ pays in profile

P, denoted cost;(P) is Y. 5. c-cost;(P, B) + nused(B, D;) - g-cost(D;). We define the
cost of a profile P, denoted cost(P), as >}, costi(P).

For a profile P and a correct design D for Player i, let P[i < D] denote the
profile obtained from P by replacing the choice of design of Player i by D. A profile
P is a Nash equilibrium (NE) if no Player i can benefit by unilaterally deviating
from his choice in P to a different design; i.e., for every Player ¢ and every correct
design D with respect to S;, it holds that cost;(P[i < D]) = cost;(P).

Theorem 6.1 There is a CLG with no NE.

Proof: We adapt the example for multiset cost-sharing games from [7] to CLGs.
Consider the two-player CLG over the alphabet 3 = {a,b,c} in which Player 1
and 2’s specifications are (the single word) languages {ab} and {c}, respectively.
The library is depicted in Figure 6, where the quality costs of all components is 0,
c-cost(By) = 12, c-cost(By) = 5, c-cost(Bs) = 1, and c-cost(By) = c-cost(Bs) = 0.
Both players have two correct designs. For Player 1, the first design uses B; twice
and the second design uses By once and By once. There are also uses of B4 and Bs,
but since they can be used for free, we do not include them in the calculations. For
Player 2, the first design uses By once, and the second design uses B; once. The
table in Figure 6 shows the players’ costs in the four possible CLG’s profiles, and
indeed none of the profiles is a NE. [

We study computational problems for CLGs. The most basic problem is the
best-response problem (BR problem, for short). Given a profile P and i € [k], find
the cheapest correct design for Player ¢ with respect to the other players’ choices
in P. Apart from its practical importance, it is an important ingredient in the

solutions to the other problems we study. The next problem we study is finding the

91

82 : B4© H {31731}‘{31732}
By)¢ B () {Bs} | 5,12 5,13

By | 48 6,7

Figure 6: The library of the CLG with no NE, and the costs of the players in its
profiles.

social optimum (SO, for short), namely the profile that minimizes the total cost of all
players; thus the one obtained when the players obey some centralized authority. For
both the BR and SO problems, we study the decision (rather than search) variants,
where the input includes a threshold p. Finally, since CLGs are not guaranteed to
have a NE, we study the problem of deciding whether a given CLG has a NE. We
term this problem INE.

Definition 6.1 We define the decision problems formally as follows. Let G be a
CLG.

BR An input (G, P, i, u) is in BR, where P is a profile, i € |k], and p € IR, iff there
is a design D; that is correct with respect to S; such that cost;(P[i < D;]) < p.

SO An input {(G,puy is in SO, where p € IR, iff there is a profile P such that
cost(P) < p.

INE An input {G) is in ANE iff there is a NE profile in G.

Note that the BCD problem studied in Section 4 is a special case of BRP when
there is only one player. Also, in a setting with a single player, the SO and BR prob-
lems coincide, thus the lower bound of Theorem 4.3 applies to them. In Lemma 4.1
we showed that if there is a correct design D with cost(D) < p, then there is also a
correct design D', based on a memoryless strategy and hence having polynomially
many states, such that for every component B, we have nused(D’, B) < nused(D, B).
The arguments there apply in the more general case of CLGs. Thus, we have the

following.
Theorem 6.2 The BR and SO problems are NP-complete.

We continue to study the INE problem. We show that INE is complete for ¥ —
the second level of the polynomial hierarchy. Namely, decision problems solvable in
polynomial time by a nondeterministic Turing machine augmented by an oracle for
an NP-complete problem. An oracle for a computational problem is a black box that
is able to produce a solution for any instance of the problem in a single operation.

Thus, for every problem P € ¥3¥ there is a machine such that for every x € P there is

92

a polynomial accepting computation (with polynomial many queries to the oracle).
As co-NP is the dual complexity class of NP, the dual complexity class of ¥2 is TIZ.

Thus, a problem P is X}-complete iff its complement P is II5-complete.
Theorem 6.3 The INE problem is L -complete.

Proof: For the upper bound, we describe a nondeterministic Turing machine
with an oracle to SBR problem — the strict version of the BR problem, where we
seek a design whose cost is strictly smaller than p. Given a CLG G = (L, Sy, ..., Sk),
we guess a profile P = (D, ..., Dy), where for 1 < i < k, the design D; has at most
|Co x S;| states, where S; are the states of S;. First, we check whether P is a profile
of correct designs. That is, for i € [k], we check whether D; is a correct design with
respect to S;, which can be done in polynomial time. If there is an incorrect design
we terminate and reject. Next, we check whether P is a NE profile by checking if
there is a player that has a beneficial move from P. That is, for ¢ € [k], we feed
the oracle the input (G, P, i, cost;(P)). If the oracle answers YES, then Player ¢ can
benefit from deviating and P is not a NE in which case we reject. On the other hand,
if for every i € [k] the oracle answers NO, then P is a NE in which case we accept.
Clearly the machine recognizes ANE. Note that if G € ANE, one of the profiles P we
guess is a NE, and the computation in which we guess P is a polynomial accepting
computation.

For the lower bound, we show a reduction from the complement of the ITZ-
complete problem min-mazx vertex cover [23] (MMVC, for short). The input to the
MMVC problem is (G, I, J, N, i), where G = (V| E) is an undirected graph, I and .J
are sets of indices, N : V. — {V;; €V :ie [and j € J} partitions the vertices, and
1 € IN is a value. Note that since G is undirected, its edges are sets with two vertices.
We refer to the sets in the partition {V; ;}ies jes as neighborhoods and for v € V we
refer to N(v) as the neighborhood of v. Note that there is a coarser partition of V,
namely {V;}i,s, where V; = UjEJ

districts and, for v € V', use D(v) to denote the district v belongs to. For a function

Vi;. We refer to the elements in this partition as

t: I — J we define V; = (J,.; Viii)- Intuitively, ¢ is a choice of neighborhood in
each district. Let G; = (V}, E;) be the induced subgraph of G on the vertex set V;.
Formally, for e € E, we have e € E, iff e € V,. For a graph G, we say that V' < V
is a vertex cover of G if for every e = {u,v} € E we have V' n {u,v} # J. An
input (G, I, J, N, iy is in MMVC iff for any choice of neighborhoods in the districts
given by a function ¢, the smallest vertex cover of the resulting graph is at most
p. Formally, max;c;r min{|V’| : V' < V; is a vertex cover of G;} < u. We assume
without loss of generality that p < [V].

Consider an input (G, I,J, N,y to MMVC. We construct a CLG G with li-
brary £ and specifications Sy, Sy, ..., Sy such that G has a NE iff (G, I, J, N, u) ¢

93

MMVC. The alphabet ¥ consists of letters iiel, v, e V,and e € E. Let
E = {e1,...,en}. The specification of Player 0 consists of words of length 3|E| of
the form vy01e1 . . . Uy Upem, for some vy, ... v, € V (allowing duplicates). Fori e I,
the specifications of Player 4 consist of the single word i-(z)¢, where £ is a polynomial
in |V, which we define in the following.

We describe the components of £ (see Figure 7). When describing the compo-
nents’ costs we only refer to the construction cost as their quality costs are 0. The
simplest components are B,.. and B,.;. They consist of a single initial state that
is accepting in B,.. and rejecting in B,¢;. The cost of both these components is 0.
The next component is By, which is exactly Sy, and its cost is u+ 1. The rest of the
components have no accepting states. We describe these components by the words
that they can process. For each word there is a unique disjoint path from the initial
to a separate exit state. For every neighborhood V; ; there is a component B; ; € £
that costs (3|E| + 2)(u + 1). We refer to these components as neighborhood compo-
nents. The single-lettered words it can process are i, 7, and v for v € Vij. Also, it
can process the words voe for v € V\V;; and e € E, and ve for ve V;; and e € F
such that e n (V;\V; ;) # &. For every v € V there is a component B, that costs
1. We refer to these components as vertex components. The words it can process
are te for u € N(v) and e € E such that v € e. For i € I there is a component B;
that can process the word 7 and costs a very small value € > 0. The construction is

clearly polynomial in the input.

B,

. 1 { ueN (v) U e
(S ‘/27] O—D vee
[}

%)) 1;2 e
vy ¢ Vi
v3€V; jA U3 e 7
eN(Vi\Vi,;)#0

Figure 7: Some of the components in the library produced by the reduction from
MMVC.

2
E

We claim that (G, I, J, N,) ¢ MMVCiff G = (£, S, Sy, ...,8)) € INE. For the
first direction, assume (G, I, J, N, uy ¢ MMVC. Thus, there is a function ¢ : [— J
such that every vertex cover of V; has more than u vertices. We claim that the CLG
G has a NE. Consider the profile P in which Player 0 uses only the component B
and, for 7 € I, Player i uses the design D; 4(;), which we describe below, and uses only
the neighborhood component B; ;(; and the components B and B,.;. For i € I and
j € J, we describe the design D; ;. In D, ;, the component B; ; gains initial control. If
the component relinquishes control after reading the single-lettered word 7, it regains

control. If it relinquishes control after reading any other word, the design assigns

94

control to B,.;. Similarly, for ¢ times, control is given to B, ; assuming it reads the
word ¢, and otherwise control is given to B,.j. After B;; gains control £ + 1 times,
control is assigned to Bye.. Clearly, L(D; ;) = L(S;), thus it is a correct design for
Player 1.

Assume towards contradiction that P is not a NE. Thus, there is a player that
benefits from deviating. We start by showing that, for ¢ € I, Player ¢ cannot benefit
from deviating. Note that for j € J, no other player uses a component B;; in P.
Thus, deviating to a design D, ;, for j # t(i), would result in the same cost for
Player 4, and deviating to any other correct design would increase his cost, and is
clearly not beneficial.

We continue to show that Player 0 cannot benefit from a deviation. Assume to-
wards contradiction that there is a correct design D such that costy(P) > costy(P[0 <
D]). Consider the set V' < V of vertices that correspond to vertex components that
are used in D, thus v € V' iff B, € used(D). Recall that c-cost(By) = p + 1, thus
costo(P) = p+ 1. Since the construction costs of the vertex components is 1 and
Player 1 does not share them, we have |[V'| < p.

We claim that there is a vertex cover V” < V' n'V, for G;. Since |V'| < p,
this would contradict our assumption that (G, I, J, N,uy ¢ MMVC. Recall that
the cost of using a neighborhood component without sharing is more than pu + 1.
Since we assume Player 0 benefits from deviating to D, he must share all his uses of
these components. Since the neighborhood components that are used by the players
1,...,|I| are exactly these that are dictated by ¢, every neighborhood component
B, ; € used(D) has j = t(i).

We claim that for every e € E; there is a vertex v € V' n V; such that v € e.
Let E; = {e;,...,e;,} and j € [I]. Consider the word w = vie vie; ... ve;,_; for
some v € V. Since w is a prefix of a word in L(Sp), the run of A, p on w does not
get stuck. Since the last letter in w is in £ the component that gains control after
reading w is a neighborhood component, thus it is B; ;) for some ¢ € I.

Consider the word v’ = w - utie;; for u € V). Again, since w’ is a prefix of
a word in L(Sp) the run of A;p on w’ does not get stuck. Since u € V;, B;y
relinquishes control after reading u. We claim that a vertex component B, must
gain control next. Indeed, since u € Vj(;), the only neighborhood component that
is a candidate to process the word ue is B, ;). However, since u € G if it has an
endpoint that belongs to the district V;, then the endpoint is in V; ;). Thus, B;)
cannot process ue and it is processed by a vertex component B,. Note that since it
can process the word e, we have v € N(v), thus N(v) = V; ;). Moreover, v € e.
Clearly v € V' as D uses B,, and we are done.

For the second direction, assume (G,I,J, N,uy € MMVC. Assume towards

contradiction that there is a NE profile P in G. We distinguish between two cases.

95

In the first case, Player 0 does not use By. Recall that Player 0 has a correct design
that uses only By and costs p + 1. Moreover, every correct design that does use By
must use a neighborhood component B, ;, which costs (3|E| +2)(x + 1). Since P is
a NE, Player i, the only player that can use B, ;, uses B, ; at least 3|E| + 1 times.
We claim that Player ¢ has a beneficial deviation from P, contradicting the fact
that P is a NE. First, we bound cost;(P). Clearly, Player 0 uses B;; at most 3|E|
times, thus cost;(P) = %
Player i. Consider the design D that assigns initial control to B; ;. If it relinquishes

- cost(B; ;). We describe a beneficial deviation for

control after reading anything different from ¢, D assigns control to B,.;. Otherwise,
the component B;, which can process only the word 7, gains control ¢ consecutive
times after which By, gains control. It is not hard to see that L(D) = L(S;). Since
nused(D, B; ;) = 1 and nused(D, B;) = {, we have cost;(P[i < D]) < 3cost(B; ;) +¢.
For sufficiently small &, we have cost;(P) > cost;(P[i < D]), and we are done.

In the second case, the design Player 0 chooses in P is the design that uses
only the component By. Thus, costo(P) = p+ 1. Recall that for every i € I and
J € J, the design D, ; is a correct design for Player ¢ that uses only the neighborhood
component B; ;. It is not hard to see that since P is a NE, every Player i chooses
some design D; ;. Let ¢t : I — J be the function that corresponds to these players
choices. Since (G, I, J, N,y € MMVC, there is a vertex cover V' < V; of G; such
that [V'| < p.

We construct a design D for Player 0 that is a beneficial deviation from P.
Recall that Player 0’s specification is the set of words of length 3|E| of the form
V10161 .« . . Uy Um€m, Where E = {e1,...,en} and vy, ..., v, € V (allowing duplicates).
The definition of D is inductive. Let 1 <1 < |E|. Consider a word w € ¥* of length
3(l — 1) that can be extended to a word in L(Sp). That is, there is a word x € ¥*
such that w -z € L(Sy). For v € V, let w, = w - vie;,1. Note that w, can also be
extended to a word in L(Sy) (possibly with €). Assuming the run of A, p on w does
not get stuck and control is relinquished from some component after reading w, we
describe how D assigns control next such that the run of A, p on every w, does not
get stuck and control is relinquished after reading w,,.

We distinguish between two cases. In the first case, ¢; ¢ E;. Thus, there is
a vertex v € ¢\V;. Let V; be v’s district, thus V; = D(v). Let V;; < V; be the
neighborhood in V; that is selected by ¢, thus j = (7). Note that this since v ¢ V}, it
does not belong to V; ;. The component to which D assigns control after reading w
is the neighborhood component B; ;. Consider a vertex uw € V. If u ¢ V; ;, then when
reading ute the run in B; ; does not get stuck and control is relinquished at its end.
If w e V;;, then B, ; relinquishes control after reading u. In such a case we define
D to reassign control to B; ;. Note that the run of B, ; on ue; does not get stuck.
Indeed, the vertex v € ¢; is a witness to the fact that (Vi\Vi;) ne; # . Clearly,

96

control is relinquished after B; ; reads te;. If in one of the times B;; gains control
it relinquishes it after reading any other word z € ¥*, then there is no y € ¥* such
that w-x -y € L(Sp), and we assign control to B,.;.

In the second case, ¢; € E;. Thus, there is a vertex v in the vertex cover V’
such that v € ¢. Let N(v) = V;,;. Note that since v € V,, we have t(i) = j.
The component to which D assigns control after reading w is the neighborhood
component B; ;. Consider a vertex u € V. The case where u ¢ V; ; is similar to the
previous case. For u € V; ;, when B; ; reads wu, it relinquishes control. In such a case,
D assigns control to B,,. Since v € V; ; and v € ¢;, the component B, can process the
word ue;, and it relinquishes control after its end. Similarly to the above, if B; ; or
B, relinquish control after reading any other word x € ¥*, then we assign control to
B,.;. Finally, if [= |E|, we assign control By

Correctness of the design D is immediate from the construction. We claim that
costo(P[0 < D]) < p+ 1. Note that the D uses two types of components. The
first type is neighborhood components. Consider B;; € used(D). Note that we
constructed D so that j = ¢(i). Thus, Player 0 shares the cost of B; ; with Player i.
Recall that Player ¢ chooses the design D; ; that uses B, ; ¢ times. We define ¢ to be

sufficiently large so that the proportion of the cost that Player 0 pays is less than

1
2[El"

1. The second type of components D uses is vertex components. Since D uses vertex

Thus, the total cost Player 0 endures for neighborhood components is less than

components that correspond to vertices in the vertex cover V'’ the number of such
component that D uses is at most p, which is the total cost for these components.
Thus, costy(P[0 < D]) < u+ 1, and we are done. O

7 Discussion

Traditional synthesis algorithms assumed that the system is constructed from scratch.
Previous work adjusted synthesis algorithms to a reality in which systems are con-
structed from component libraries. We adjust the algorithms further, formalize the
notions of quality and cost and seek systems of high quality and low cost. We argue
that one should distinguish between quality considerations, which are independent
of uses of the library by other designs, and pricing considerations, which depend on
uses of the library by other designs.

Once we add multiple library users to the story, synthesis is modeled by a
resource-allocation game and involves ideas and techniques form algorithmic game
theory. In particular, different models for sharing the price of components can be
taken. Recall that in our model, users share the price of a component, with the

share being proportional to the number of uses. In some settings, a uniform sharing

97

rule may fit better, which also makes the game more stable. In other settings, a
more appropriate sharing rule would be the one used in congestion games — the
more a component is used, the higher is its price, reflecting, for example, a higher
load. Somewhat surprising, games with congestion effects turn out to be more sta-
ble than cost-sharing games [9]. Still, the complexity of the decision problems we
study here for CLGs match the ones for CLGs with congestion effects. Moreover,
synthesis of different specifications in different times gives rise to dynamic allocation
of components, and synthesis of collections of specifications by different users gives
rise to coalitions in the games. These notions are well studied in algorithmic game
theory and enable an even better modeling of the rich settings in which traditional

synthesis is applied.

References

[1] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable concurrent pro-
gram specifications. In Proc. 25th ICALP, LNCS 372, pages 1-17. Springer, 1989.

[2] S. Almagor, U. Boker, and O. Kupferman. Formalizing and reasoning about quality.
In Proc. 40th ICALP, LNCS 7966, pages 15 — 27. Springer, 2013.

[3] G. Alonso, F. Casati, H.A. Kuno, and V. Machiraju. Web Services - Concepts,
Architectures and Applications. Data-Centric Systems and Applications. Springer,
2004.

[4] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and
returns. In Proc. 10th TACAS, LNCS 2725, pages 67-79. Springer, 2004.

[5] B. Aminof, F. Mogavero, and A. Murano Synthesis of hierarchical systems. In Sci.
Comput. Program., volume 83, pages 5679, 2014.

[6] G. Avni and O. Kupferman. When does abstraction help? IPL, 113:901-905, 2013.
[7] T. Tamir. private communication.

[8] G. Avni, O. Kupferman, and T. Tamir. Network-formation games with regular ob-
jectives. In Proc. 17th FoSSaCS, LNCS 8412, pages 119-133. Springer, 2014.

[9] G. Avni, O. Kupferman, and T. Tamir. Congestion Games with Multisets of Resources
and Applications in Synthesis. In Proc. 35th FSTTCS, LIPIcs 45, pages 365-379,
Schloss Dagstuhl, 2015.

[10] D. Berwanger and L. Doyen. On the power of imperfect information. In Proc. 28th
TSTE TCS, pages 73-82, 2008.

98

[11]

[12]

[13]

[14]

[15]

[21]

[22]

[24]

[25]

[26]

A. Bohy, V. Bruyere, E. Filiot, and J-F. Raskin. Synthesis from LTL specifications
with mean-payoff objectives. In Proc. 19th TACAS, LNCS 7795, pages 169-184.
Springer, 2013.

U. Boker, K. Chatterjee, T.A. Henzinger, and O. Kupferman. Temporal specifications
with accumulative values. In Proc. 26th LICS, pages 43-52, 2011.

L. de Alfaro, M. Faella, T.A. Henzinger, R. Majumdar, and M. Stoelinga. Model
checking discounted temporal properties. T'CS, 345(1):139-170, 2005.

L. de Alfaro and T.A. Henzinger. Interface theories for component-based design. In
Proc. 1st EMSOFT, LNCS 2211, pages 148-165. Springer, 2001.

L. Doyen, T. A. Henzinger, B. Jobstmann, and T. Petrov. Interface theories with
component reuse. In Proc. 8th EMSOFT, pages 7988, 2008.

J. Elgaard, N. Klarlund, and A. Méller. Mona 1.x: new techniques for WS1S and
WS2S. In Proc. 10th CAV, LNCS 1427, pages 516-520. Springer, 1998.

A. Fabrikant, C. Papadimitriou, and K. Talwar. The complexity of pure nash equi-
libria. In Proc. 36th STOC, pages 604—612, 2004.

M. Faella, A. Legay, and M. Stoelinga. Model checking quantitative linear time logic.
ENTCS, 220(3):61-77, 2008.

E. Filiot, N. Jin, and J.-F. Raskin. Antichains and compositional algorithms for LTL
synthesis. FMSD, 39(3):261-296, 2011.

G. Gofller and J. Sifakis. Composition for component-based modeling. Sci. Comput.
Program., 55(1-3):161-183, 2005.

S. Halamish and O. Kupferman. Minimizing deterministic lattice automata. In Proc.
14th FoSSaCS, LNCS 6604, pages 199 — 213. Springer, 2011.

M. Jurdzinski. Small progress measures for solving parity games. In Proc. 17th
STACS, LNCS 1770, pages 290-301. Springer, 2000.

K-I. Ko and C-L. Lin. On the complexity of min-max optimization problems and their
approximation. In Minimaz and Applications, volume 4 of Nonconvex Optimization

and Its Applications, pages 219-239. Springer, 1995.

O. Kupferman and Y. Lustig. Lattice automata. In Proc. 8th VMCAI LNCS 4349,
pages 199 — 213. Springer, 2007.

O. Kupferman, N. Piterman, and M.Y. Vardi. Safraless compositional synthesis. In
Proc. 18th CAV, LNCS 4144, pages 31-44. Springer, 2006.

O. Kupferman and M.Y. Vardi. Safraless decision procedures. In Proc. 46th FOCS,
pages 531-540, 2005.

99

[27] Y. Lustig and M.Y. Vardi. Synthesis from component libraries. STTT 15:603-618,
2013.

[28] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th POPL,
pages 179-190, 1989.

[29] J.-F. Raskin, K. Chatterjee, L. Doyen, and T. Henzinger. Algorithms for w-regular
games with imperfect information. LMCS, 3(3), 2007.

[30] T. Roughgarden and E. Tardos. How bad is selfish routing? JACM, 49(2):236-259,
2002.

. dafra. On the complexity ol w-automata. In Proc. 29¢ , pages —327,
31] S. Saf On th lexi f In P 29th FOCS. 319-327
1988.

[32] A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logic.
JACM, 32:733-749, 1985.

100

101

Congestion Games with Multisets of

Resources and Applications in Synthesis*

1

Guy Avnil Orna Kupfermant Tami Tamir®

Abstract

In classical congestion games, players’ strategies are subsets of resources.
We introduce and study multiset congestion games, where players’ strategies
are multisets of resources. Thus, in each strategy a player may need to use
each resource a different number of times, and his cost for using the resource
depends on the load that he and the other players generate on the resource.

Beyond the theoretical interest in examining the effect of a repeated use of
resources, our study enables better understanding of non-cooperative systems
and environments whose behavior is not covered by previously studied models.
Indeed, congestion games with multiset-strategies arise, for example, in pro-
duction planing and network formation with tasks that are more involved than
reachability. We study in detail the application of synthesis from component
libraries: different users synthesize systems by gluing together components
from a component library. A component may be used in several systems and
may be used several times in a system. The performance of a component and
hence the system’s quality depends on the load on it.

Our results reveal how the richer setting of multisets congestion games
affects the stability and equilibrium efficiency compared to standard conges-
tion games. In particular, while we present very simple instances with no
pure Nash equilibrium and prove tighter and simpler lower bounds for equi-
librium inefficiency, we are also able to show that some of the positive results
known for affine and weighted congestion games apply to the richer setting of

multisets.

Introduction

Congestion games model non-cooperative resource sharing among selfish players.

Resources may be shared by the players and the cost of using a resource increases

*Published in the proceedings of the 35th Conference on Foundation of Software Technology

and Theoretical Computer Science, LIPIcs 45, pages 365-379, Schloss Dagstuhl, 2015.

tSchool of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel

§School of Computer Science, The Interdisciplinary Center, Israel

102

with the load on it. Such a cost paradigm models settings where high congestion
corresponds to lower quality of service or higher delay. Formally, each resource e is
associated with an increasing latency function f, : IN — IR, where f,(¢) is the cost
of a single use of e when it has load /.

Previous work on congestion games assumes that players’ strategies are subsets
of resources, as is the case in many applications, most notably routing and network
design. For example, in the setting of networks, players have reachability objectives
and strategies are subsets of edges, each inducing a simple path from the source
to the target [29, 3, 19]. We introduce and study multiset games, where players’
strategies are multisets of resources. Thus, a player may need a resource multiple
times — depending on the specific resource and strategy, and his cost for using the
resource depends on the load that he and the other players generate on it. Formally,
in multiset congestion games (MCGs, for short), a player that uses j times a resource
e that is used ¢ times by all players together, pays j - f.(¢) for these uses.

Beyond the theoretical interest in examining the effect of multisets on the extensively-
studied classical games, multiset congestion games arise naturally in many applica-
tions and environments. The use of multisets enables the specification of rich settings
that cannot be specified by means of subsets. We give here several examples.

As a first example, consider network formation. In addition to reachability tasks,
which involve simple paths (and hence, subsets of resources), researchers have stud-
ied tasks whose satisfaction may involve paths that are not simple. For example, a
user may want to specify that each traversal of a low-security channel is followed by
a visit to a check-sum node. A well-studied class of tasks that involve paths that
need not be simple are these associated with a specific length, such as patrols in a
geographical region. Several communication protocols are based on the fact that a
message must pass a pre-defined length before reaching its destination, either for
security reasons (e.g., in Onion routing, where the message is encrypted in layers
[27]) or for marketing purposes (e.g., advertisement spread in social networks). In
addition, tasks of a pre-defined length are the components of proof-of-work proto-
cols that are used to deter denial of service attacks and other service abuses such as
spam (e.g., [15]), and of several protocols for sensor networks [7]. The introduction
of multiset corresponds to strategies that are not necessarily simple paths [5].

In production systems or in planning, a system is modeled by a network whose
nodes correspond to configurations and whose edges correspond to actions performed
by resources. Users have tasks, that need to be fulfilled by taking sequences of
actions. This setting corresponds to an MCG in which the strategies of the players
are multisets of actions that fulfill their tasks, which indeed often involve repeated
execution of actions [13]; for example “once the arm is up, do not put it down until

the block is placed”. Also, multiset games can model preemptive scheduling, where

103

the processing of a job may split in several feasible ways among a set of machines.

Our last example, which we are going to study in detail, is synthesis form com-
ponent libraries. A central problem in formal methods is synthesis [26], namely the
automated construction of a system from its specification. In real life, hardware
and software systems are rarely constructed from scratch. Rather, a system is typi-
cally constructed from a library of components by gluing components from a library
(allowing multiple uses) [23]. For example, when designing an internet browser, a
designer does not implement the TCP protocol but uses existing implementations
as black boxes. The library of components is used by multiple users simultaneously,
and the usages are associated with costs. The usage cost can either decrease with
load (e.g., when the cost of a component represents its construction price, the users
of a component share this price) as was studied in [4], or increase with load (e.g.,
when the components are processors and a higher load means slower performance).
The later scenario induces an instance of an MCG.

Let us demonstrate the intricacy of the multiset setting with the question of the
existence of a pure Nash equilibrium (PNE). That is, whether each instance of the
game has a profile of pure strategies that constitutes a PNE — a profile such that
no player can decrease his cost by unilaterally deviating from his current strategy.
By [28], classical congestion games are potential games and thus always have a
PNE. Moreover, by [19], in a symmetric congestion game, a PNE can be found in
polynomial time. As we show in Example 1 below, a PNE might not exist in an
MCG even in a symmetric two-player game over identical resources.

Example 1: Consider the following symmetric MCG with two players and three
resources: a,b, and c. The players’ strategy space is {a, a, b} or {b,b,c} or {c, c,a}.
That is, a player needs to access some resource twice and the (cyclically) consequent
resource once. The latency function of all three resources is the same, specifically,
fa(0) = fp(€) = f.(¢) = ¢2. The players’ costs in all possible profiles are given in
Table 1. We show that no PNE exists in this game. Assume first that the two
players select distinct strategies, w.l.o.g. {a,a,b} and {b,b,c}. In this profile, a is
accessed twice, b is accessed three times, and c is accessed once. Thus, every access
of a,b and ¢ costs 4,9 and 1 respectively. The cost of Player 1 is 8 + 9 = 17, while
the cost of Player 2 is 18 + 1 = 19. By deviating to {c, ¢, a}, the cost of Player 2
will reduce to 17 (while the cost of Player 1 will increase to 19). Thus, no PNE in
which the players select different strategies exists. If the player select the the same
strategy, then one resource is accessed 4 times, and one resource is accessed twice,
implying that the cost of both players is 2- 16 + 1 -4 = 36, and any deviation is
profitable. We conclude that no PNE exists in the game. []
We study and answer the following questions in general and for various classes

of multiset congestion games (for formal definitions, see Section 2): (i) Existence

104

{a,a,b} | {b,b,c} | {c,c,a}
{a,a,b} || 36,36 | 19,17 | 17,19
b} | 17,19 | 36,36 | 19,17
{c,c,a} || 19,17 | 17,19 | 36,36

Table 1: Players costs. Each entry describes the cost of Player 1 followed by the
cost of Player 2.

of a PNE. (i) An analysis of equilibrium inefficiency. A social optimum (SO) of
the game is a profile that minimizes the total cost of the players; thus, the one
obtained when the players obey some centralized authority. It is well known that
decentralized decision-making may lead to solutions that are sub-optimal from the
point of view of society as a whole. We quantify the inefficiency incurred due to
selfish behavior according to the price of anarchy (PoA) [22] and price of stability
(PoS) [3] measures. The PoA is the worst-case inefficiency of a PNE (that is, the
ratio between the cost of a worst PNE and the SO). The PoS is the best-case
inefficiency of a Nash equilibrium (that is, the ratio between the cost of a best PNE
and the SO). (i7i7) Computational complexity of finding a PNE.

Before we turn to describe our results, let us review related work. Weighted
congestion games (WCGs, for short), introduced in [25], are congestion games in
which each player ¢ has a weight w; € IN, and his contribution to the load of the
resources he uses as well as his payments are multiplied by w;. WCGs can be viewed
as a special case of MCGs, where each resource in a strategy for Player ¢ repeats
w; times. A different extension of WCGs in which players may use a resource more
than once is integer splittable WCGSs [24, 30]. These games model the setting in
which a player has a number (integer) of tasks he needs to perform and can split
them among the resources. For example, in the network setting, a player might
need to send ¢ € IN packets from vertex s to t. He can send the packets on different
paths, but a packet cannot be split. MCGs are clearly more general than WCGs
and integer splittable WCGs — the ability to repeat each resource a different number
of times lead to a much more complex setting. Thus, it is interesting to compare
our results with these known for these games.

It is shown in [17, 21] that the existence of a PNE in WCGs depends on the
latency function: when the latency functions are either affine or exponential, WCGs
are guaranteed to admit a PNE, whereas WCGs with a polynomial latency function
need not have a PNE. In [24], the author shows that PNE always exists when the
latency functions are linear using a potential function argument. This argument fails

when the latency functions are convex, but [30] are still able to show that there is

105

always a PNE in these games. We are able to show that the exact potential function
of [17] applies also to (the much richer) affine MCGs (that is, MCGs with a affine
latency function), and thus they always admit a PNE. As demonstrated in Example
1, very simple MCGs with quadratic latency functions might have no PNE.

We turn on to results in the front of equilibrium inefficiency. In congestion games
with affine latency functions, both the PoA and PoS measures are well understood.
It was shown in [12] that PoS > 1 + \/Lg ~ 1.577 and is at most 1.6. A tight upper
bound was later shown in [10]. Also, PoA = 2 [12]. Going one step towards our
setting to the study of affine WCGs, [6] shows that PoA = 1 + ¢, where ¢ ~ 1.618
is the golden ratio. The PoS question is far from being settled. Only recently, [9]
shows a first upper bound of 2 for PoS in linear WCGs, which is a subclass of affine
WCGs. As far as we know, the only lower bound that is known for affine WCGs
is the lower bound from the unweighted setting. So there is a relatively large gap
between the upper- and lower-bounds for the PoS in these games.

We bound the potential function in order to show that every affine MCG G has
PoS(G) < 2. This improves and generalizes the result in [9]. Our most technically-
challenging result is the PoS lower-bound proof, which involves the construction
of a family G of linear MCGs. Essentially, the game Gj € G is parameterized by
the number of players and defined recursively. The use of multisets enables us to
to define a game in which, although the sharing of resources dramatically changes
between its profiles, the cost a player pays is equal in all of them. For k = 17
we obtain that PoS(Gy7) > 1.631. This is the first lower bound in these models
that exceeds the 1.577 lower bound in congestion games. Finally, the PNE in G
is achieved with dominant strategies, so our bound holds for stronger equilibrium
concepts.

As for the PoA, we show that MCGs with latency functions that are polynomials
of degree at most d have PoA = @Z“, where @, is the unique nonnegative real

4+l QObserve that ®, is a natural generalization of the

solution to (v + 1)¢ = z
golden ratio to higher degrees. Specifically, ; = ¢. For the upper bound, we adjust
the upper-bound proof of [2] to our setting. We show a simplified matching lower
bound; a simple two-player MCG with only two resources and latency functions of
the form f(¢) = ¢¢. For general latency functions we show that the PoA can be
arbitrarily high.

We turn to study the application of synthesis from component libraries by mul-
tiple players. Recall that in this application, different users synthesize systems from
components. A component may be used in several systems and may be used several
times in a system. The quality of a system depends on the load on its components.
This gives rise to an MCG, which we term a component library game (CLG, for

short). On the one hand, a CLG is a special case of MCG, so one could expect

106

positive results about MCGs to apply to CLGs. On the other hand, while in MCGs
the strategies of the players are given explicitly by means of multisets of resources, in
CLGs the strategies of the players are given symbolically by means of a specification
deterministic finite automaton — the one whose language has to be composed from
the library’s components.

We prove that every MCG has a corresponding CLG, implying that negative
results for MCGs apply to CLGs. Moreover, we show that the succinctness of the
presentation of the strategies makes decision problems about MCGs more complex
in the setting of CLGs. We demonstrate this by studying the complexity of the
best-response problem — deciding whether a player can benefit from a unilateral
deviation from his strategy, and the problem of deciding whether a PNE exists in
a given game. For the best-response problem, which is in P for MCGs, we prove
NP-completeness for CLGs. The problem of deciding the existence of a PNE is
known to be strongly NP-complete for weighted symmetric congestion games. For
network congestion games with player specific cost functions, this problem is NP-
complete for arbitrary networks, while a PNE can be found efficiently for constant
size networks [1]. We provide a simpler hardness proof for MCGs, which is valid also
for a constant number of resources, and we show that for CLGs the problem is ¥1-
complete. As good news, we are able to prove a “small-design property” for CLGs,
which bounds the number of strategies that one needs to consider and enables us
to lift to CLGs the positive results for MCGs with linear latency functions. Thus,
such CLGs always have a PNE and their PoS is at most 2.

Due to space constraints, some proofs and examples are given in the appendix.

2 Preliminaries

A multiset over a set E of elements is a generalization of a subset of E in which
each element may appear more than once. For a multiset A over F and an element
e € E, we use A(e) to denote the number of times e appears in A, and use e € A to
indicate that A(e) = 1. When describing multisets, we use ¢, for m € IN, to denote
m occurrences of e.

A multiset congestion game (MCG) is a tuple G = (K, F, {X;}ick, {fe}ecr),
where K = {1,...,k} is a set of players, E is a set of resources, for every 1 < i < k,
the strategy space ¥; of Player 7 is a collection of multisets over E, and for every
resource e € F, the latency function f.:IN — IR is a non-decreasing function. The
MCG G is an affine MCG if for every e € E, the latency function f, is affine, i.e.,
fe(x) = acz + be, for non-negative constants a, and b.. Similarly, we say that G is

a linear MCG if it is affine and for e € E we have b, = 0. We assume w.l.o.g. that

107

for e € E we have a, > 1. Classical congestion games are a special case of MCGs
where the players’ strategies are sets of resources. Weighted congestion games can
be viewed as a special case of MCGs, where for every 1 < ¢ < k, multiset s; € ¥ and
e € s;, we have s;(e) = w;.

A profile of a game G is a tuple P = {(s1,89,...,8,) € (X1 X g X ... x %) of
strategies selected by the players. For a resource e € E, we use L. ;(P) to denote the
number of times e is used in P by Player i. Note that L.;(P) = s;(e). We define
the load on e in P, denoted L.(P), as the number of times it is used by all players,
thus Le(P) = 3, cicp Les(P) 1.

In classical congestion games, all players that use a resource e pay f.(¢), where
¢ is the number of players that use e. As we formalize below, in MCGs, the pay-
ment of a player for using a resource e depends on the number of times he uses
it. Given a profile P, a resource ¢ € E/, and 1 < 7 < k, the cost of e for Player i
in P is costei(P) = Le¢;(P) - fe(Le(P)). That is, for each of the L.;(P) uses of e,
Player i pays f.(Le(P)). The cost of Player i in the profile P is then cost;(P) =
Yecr Costei(P) and the cost of the profile P is cost(P) = };,_, ., cost;(P). We also
refer to the cost of a resource e in P, namely cost.(P) = Y,._j cost.;(P).

Consider a game G. For a profile P, player ¢ € K, and a strategy s; € X for
Player i, let P[i < s;] denote the profile obtained from P by replacing the strategy
for Player i by si. A profile P is a pure Nash equilibrium (PNE) if no Player i can
benefit from unilaterally deviating from his strategy in P to another strategy; i.e.,
for every player i and every strategy s, € ¥ it holds that cost;(P[i < s;]) = cost;(P).

We denote by O PT the cost of a social-optimal solution; i.e., OPT = minp cost(P).
It is well known that decentralized decision-making may lead to sub-optimal solu-
tions from the point of view of society as a whole. We quantify the inefficiency
incurred due to self-interested behavior according to the price of anarchy (PoA) [22]
and price of stability (PoS) [3] measures. The PoA is the worst-case inefficiency
of a Nash equilibrium, while the PoS measures the best-case inefficiency of a Nash

equilibrium. Formally,

Definition 2.1 Let G be a family of games, and let G be a game in G. Let T(G)
be the set of Nash equilibria of the game G. Assume that Y(G) # .

e The price of anarchy of G is the ratio between the maximal cost of a PNE and
the social optimum of G. That is, PoA(G) = maxpey(q) cost(P)/OPT(G).
The price of anarchy of the family of games G is PoA(G) = supgeg PoA(G).

Since our strategies are multisets, we have that s;(e), for all i and e, is an integer. Our
considerations, however, are independent of this, thus all our results are valid also for games in
which strategies might include fractional demands for resources. In non-splittable (atomic) games,

the players must select a single strategy, even if fractional demands are allowed.

108

e The price of stability of G is the ratio between the minimal cost of a PNE
and the social optimum of G. That is, PoS(G) = minpey () cost(P)/OPT(G).
The price of stability of the family of games G is PoS(G) = supgegPoS(G).

3 Existence of a Pure Nash Equilibrium

As demonstrated in Example 1, MCGs are less stable than weighted congestion

games:

Theorem 3.1 There exists a symmetric two-player MCG with identical resources

and quadratic latency function that has no PNE.

On the positive side, we show that a PNE exists in all MCGs with affine latency
functions. We do so by showing that an exact potential function exists, which is a

generalization of the one in [9, 18].
Theorem 3.2 Affine MCGSs are potential games.

Proof: For a profile P and a resource e € F, define

kE k
O(P) = ac (Y. Lea(P) Lej(P)) + (be - Y Lei(P)).

i=1 j=i i=1
Also, ®(P) = >, . ®.(P). In the appendix, we prove that ® is an exact potential

eck ~¢€

function. (]

The negative result in Theorem 3.1 gives rise to the decision problem FPNE;
given an MCG, decide whether it has a PNE. Being a generalization of WCGs, the
hardness results known for WCGs imply that IPNE is NP-hard [14]. Using the
richer definition of MCGs, we show below a much simpler hardness proof. We also
show hardness for games with a constant number of resources, unlike congestion

games with user-specific cost functions [1].

Theorem 3.3 Given an instance of an MCG, it is strongly NP-complete to decide
whether the game has a PNE, as well as to find a PNE given that one exists. For

games with a constant number of resources, the problems are NP-Complete.

Remark 3.3.1: In splittable (non-atomic) games, each player can split his task
among several strategies. This can be seen as if each player is replaced by M — o
identical players all having the same strategy space scaled by 1/M. This model suits
several applications, in particular planning of preemptive production. Splittable
games are well-understood in classical and weighted congestion games [29, 8]. In
Appendix B we define the corresponding MCG and show that the positive PNE-
existence result, known for weighted congestion games, carry over to games with

multisets of resources. L]

109

4 Equilibrium Inefficiency in MCGs

4.1 The Price of Stability

The PoS problem in affine congestion games is settled: [12, 10] show that PoS =
1+ \/ig ~ 1.577. For affine WCGs, the problem was open for a long time, and only
recently progress was made by [9], who showed that PoS < 2 for linear WCGs.
As far as we know, there is no known lower bound for linear WCGs that exceeds
the 1.577 bound for unweighted games. We show that every affine MCG G has
PoS(G) < 2. Thus, we both improve the result to include affine functions, tighten
the bound, and generalize it. For the lower bound, we show a family of linear MCGs
G that has PoS(G) > 1.631. We start with the upper bound.

Theorem 4.1 FEvery affine MCG G has PoS(G) < 2.

Proof: Consider an affine MCG G and a profile P. It is not hard to see that
for the potential function ® that is presented in Theorem 3.2 we have ®(P) <
cost(P). Moreover, for e € E we have 20.(P) = cost.(P) — ac)<<, L2 (P) —
be Y1cich Lei(P). Thus, ®(P) > cost(P). The theorem follows using standard
techniques: cost(0) = ®(0) = ®(N) > scost(N), where O is the social optimum
and N is a PNE that is reached from O by a sequence of best-respond moves of the
players. Then, PoS(G) < costN) 9 The details of the proof can be found in the

cost(O)
appendix. [

Note that while the PoS can get arbitrarily close to 2, it is strictly smaller than
2 for every game instance. The proof in [9], on the other hand, only shows PoS < 2
for the family of affine MCGs, and our result does not improve this bound.

For the lower bound, we show a family of linear MCG G = {Gj}i>o that are
parameterized by the number of players. Using a computerized simulation, we obtain
that for the game with 17 players, we have PoS(G17) > 1.631. We leave open the
problem of calculating the exact value the PoS tends to as the number of players
increases. The graph depicted in Figure 3 in the appendix, of PoS(Gy) as a function
of k, hints that the answer is only slightly higher than 1.631.

The PNE in the games in the family is achieved with dominant strategies, and

thus it is resistant to stronger types of equilibria.
Theorem 4.2 There is a linear MCG G with PoS(G) > 1.631.

Proof: = We define a family of games {Gy}r>2 as follows. The game G, is played
by k players, thus K = {1,...,k}. For Player 1, all strategies ¥ = {O}} consists
of a single multiset. For ease of presentation we sometimes refer to OF as NF. For

i > 2, the strategy space of Player i consists of two multisets, X¥ = {OF NF}. We

110

define Gy, so that for all k& = 2, the profile O, = (OF, ..., OF) is the social optimum
and the profile N}, = (NF,... NF) is the only PNE.

When describing the games in the family, we partition the resources into types
and describe a multiset as a collection of triples. A triple (¢, y,) stands for y different
resources of type ¢, each appearing [times. For example, {{(a,2,1),{(b,1,3),{c,2,2)}
stands for the multiset {ai,as,by,b1,b1,c1,¢1,¢,¢2}. In all games and resources,
there are two types of latency functions; the identity function, or identity plus
epsilon, where the second type of function are linear functions of the form f(z) =
(14 €) -z, for some € > 0. The latency function of resources of the same type is
the same, and we use the terms “a has identity latency” and “b has identity plus €
latency” to indicate that all the resources a’ of type a have f,(j) = j and all the
resources O’ of type b have fy(j) = (1 + €) - 7, for all numbers j of uses.

The definition of Gj is complicated and we start by describing the idea in the
construction of GG, and G3. In the appendix we also describe G4. We start by
describing G5. The game G5 is defined with respect to two types of resources, a and b,
with identity and identity plus € latency, respectively. We define Player 1’s strategy
space X2 = {O?%} and Player 2’s strategy space X3 = {O3, N3}, with O = N7 =
{a,2,1y and O% = (b,1,2). That is, 32 = {{a1,as}} and 32 = {{a, as}, {b1,b1}}.
Clearly, the profile Ny = (O}, N2) is the only PNE in Gb.

We continue to describe GG5. The game G3 is defined with respect to four types
of resources, a, b, ¢! and ¢?, where b has identity plus € latency, ¢! has identity
plus € latency, and the other resources have identity latency. Let x3 = 3! = 6. We
define 33 = {03}, X2 = {03, N3}, and X5 = {O3, N3}, with O3 = Nj = (a,x3,1),
03 = (0.%.2), 03 = (¢4 %,9.(2 5. D}, and N} = {(b,%,1). (.23,). We
claim that N3 = (O3, N3, N3) is the only PNE. Our goal here is not to show a
complete proof, but to demonstrate the idea of the construction. It is not hard
to see that Player 2 deviates to N3 from the profile O3 = (O3, 03, 02), Player 3
deviates from the resulting profile N3 = (O3, N3, N3). The crux of the construction
is to keep Player 2 from deviating back from N;. Note that since Player 3 uses
the b-type resources once in N3, when Player 2 deviates from N3 to O3, their load
increases to 3. Thus, costy(N3[2 < 03]) =3(3-2- (1 +¢€)) > 6(3-1) = costy(N3)
and the deviation is not beneficial.

We define the game Gy, for k > 2, as follows. Let xp = k!. Player 1’s strategy
space consists of a single multiset OF = {e; 1, 7y, 1). For 2 < i < k, assume we have
defined the strategies and resources for players 1,...,7 — 1. We define Player i’s
strategies as follows. We start with the multiset N¥, which does not introduce new
resources. We define N = Uigjqi1{(t,z,1) : {t,xz,]) < OF}. The definition of
OF is more involved, but the idea is simple. We define OF so that it satisfies two

properties. First, OF uses new resources. That is, for every 1 < j < i — 1, both

111

OF n Of = ¢ and OF n Nf = (. Consider the profile P, in which, for every
1 < j < i, Player j uses Nf and, for every i <[< k, Player [uses OF. We define
OF so that when all resources have identity latency, cost;(P;) = cost;(P;[i < NF]).
For every multiset (¢4, %;q4,1) in NF, which we have just defined, we introduce a
multiset {e;p, Tip, lipy in OF that uses new resources, where b is a unique index that
is arbitrarily chosen, and zj and [} are defined as follows. Let I = [{j : ¢;, € NF}|.
We define l;;, = 1+ 1 and z;, = x;,4/l;p. Since Of uses new resources, showing the
first property is easy. In the appendix we show it satisfies a much stronger property.
Claim 4.2.1: Consider £k € IN, a profile P in Gy, and 1 < ¢ < k. Assume
Player i plays O% in P. When the latency functions are identity, we have cost;(P) =
cost;(P[i < N}]).
To complete the construction, we define the latency functions so that for every
2 <1 < k, we have that e; ;-type resources have identity plus ¢; latency for 0 < e; <
. < €. By Claim 4.2.1 there are such values that make N* a dominant strategy
for Player . Thus, the only PNE in Gy, for k > 2, is the profile N, = (OF N},
..., NFY. Next, we identify the social optimum.

Claim 4.2.2: The profile Oy, = (O%, ... OF) is the social optimum.
Once we identify Oy, as the social optimum and N, as the only PNE, the cal-

culation of the PoS boils down to calculating their costs, which we do using a
computer. Specifically, we have PoS(G17) = 1.6316, and we depict the values of Gy,
for 2 < k < 17, in Figure 3 in the appendix. [

Remark 4.2.1: We conjecture that the correct value for the PoS is closer to our
lower bound of 1.631 rather than to the upper bound of 2. In the appendix we show
a more careful analysis of the potential function than the one in Theorem 4.1 that
shows that for every linear MCG G we have PoS(G) < 2— ZGECO— W, where N¢g
and Og denote the cheapest PNE and the social optimum of G, respectively. Also,
we show that for every n > 2, for the MCG G,, that is described in Theorem 4.2,

the inequality in the expression is essentially an equality. O

Remark 4.2.2: We can alter the family in Theorem 4.2 to have quadratic latency
functions instead of identity functions. Although Claim 4.2.1 does not hold in the
altered family, a computerized simulation shows that the NV strategies are still dom-
inant strategies. Also, using a computerized simulation, we show that the PoS for
G15 is 2.399, higher than the upper bound of 2.362 for congestion games, which is
shown in [9, 11]. [

112

4.2 The Price of Anarchy

In this section we study the PoA for MCGs. We start with MCGs with polynomial
latency functions and show that the upper bound proven in [2] for WCGs can be
adjusted to our setting. Being a special case of MCGs, the matching lower bound
for WCGs applies too. Still, we present a different and much simpler lower-bound
example, which uses a two-player singleton MCG. In a singleton game, each strat-
egy consists of (multiple accesses to) a single resource. Finally, when the latency
functions are not restricted to be polynomials, we show that the PoA is unbounded,
and it is unbounded already in a singleton MCG with only two players.

We start by showing that the PoA in polynomial MCGs is not higher than in
polynomial WCGs. The proof adjusts the one known for WCGs [2] to our setting.
For d € IN, we denote by P, the set of polynomials of degree at most d.

Theorem 4.3 The PoA in MCGs with latency functions in Py is at most (IJZH,

where ®4 is the unique nonnegative real solution to (x + 1)% = z4*1.

Next, we show a matching lower bound that is stronger and simpler than the

one in [2].

Theorem 4.4 Ford e IN, the PoA in two-player singleton MCG with latency func-

tions in Py is at least ®IT.

Proof: Let d € IN. Consider the two-player singleton MCG G with resources
E = {e1, s}, strategy spaces X1 = {ef,ed} and Xy = {e,e%}, and for £ € IR, we
define the latency functions f, (¢) = f.,(¢) = ¢%. We define x = ®; and y = 1. Since
x > y the social optimum is attained in the profile (e}, €4 and its cost is 2y? = 2.
Recall that in MCGs, the players’ strategies are multisets. In particular, x should
be a natural number. To fix this, we consider a family of MCGs in which the ratio
between x and y tends to the ratio above.

We claim that the profile N = (e}, %) is a PNE. This would imply that PoA(G) =
2”?1 = @g“, which would conclude the proof. We continue to prove the claim.
The cost of a player in N is x - 2% = !
y-(z+y)? = (z+1)% Our definition of z implies that 2%+ = (z + 1)%. Thus, the
cost does not change after deviating. Since the players are symmetric, we conclude
that the profile N is a PNE, and we are done. L]

and by deviating, the cost changes to

Finally, by taking variants with factorial latency functions to the game described

in Theorem 4.4, we are able to increase the PoA in an unbounded manner.

Theorem 4.5 The PoA in two-player MCGSs is unbounded.

113

5 Synthesis from Component Libraries

In this section we describe the application of MCGs in synthesis from component
libraries. As briefly explained in Section 1, in this application, different users synthe-
size systems by gluing together components from a component library. A component
may be used in several systems and may be used several times in a system. The
performance of a component and hence the system’s quality depends on the load
on it. We describe the setting in more detail, formalize it by means of MCGs, and
relate to the results studied in earlier sections.

Today’s rapid development of complex and safety-critical systems requires reli-
able verification methods. In formal methods, we reason about systems and their
specifications by solving mathematical questions about their models. A central prob-
lem in formal methods is synthesis, namely the automated construction of a system
from its specification. In real life, systems are rarely constructed from scratch.
Rather, a system is typically constructed from a library of components by gluing
components from the library [23]. In this setting, the input to the synthesis prob-
lem is a specification and a library of components, and the goal is to construct
from the components a system that exhibits exactly the behaviors specified in the

specification.

Remark 5.0.1: The above setting corresponds to closed systems, whose behavior is
independent of their environment. It is possible to generalize the definitions to open
systems, which interact with their environment. In [4], we studied both the closed
and open settings in the context of cost-sharing (rather than congestion) games.
The technical challenges that have to do with the system being open are orthogonal
to these that arise from the congestion effects, and on which we focus in this work.

[

In our setting, we use deterministic finite automata (DFAs, for short) to model
the specification and use box-DFAs to model the components in the library. Formally,
aDFAis A = (X,Q, 6, q, F), where X is an alphabet,) is a set of states, § : Qx> —
(@ is a partial transition function, gy € () is an initial states, and F' < (@) is a set
of accepting states. The run of A on a word w = wy,...w, € X* is the sequence
of states r = rg,ry,...,7, such that ry = g9 and for every 0 < i < n — 1, we have
Tir1 = 0(r;, wiy1). Now, a box-DFA B is a DFA augmented with a set of exit states.
When a run of B reaches an exit state, it moves to another box-DFA, as we formalize
below.

The input to the synthesis from component libraries problem is a specification
DFA S over an alphabet 3 and a library of box-DFAs components £ = {By, ..., B,}.
The goal is to produce a design, which is a recipe to compose the components from

L to a DFA. A design is correct if the language of the system it induces coincides

114

with that of the specification.

Intuitively, the design can be thought of as a scheduler; it passes control between
the different components in £. When a component B; is in control, it reads letters in
., visits the states of B;, follows its transition function, and if the run terminates, it is
accepting iff it terminates in one of B;’s accepting states. A component relinquishes
control when the run reaches one of its exit states. It is then the design’s duty to
choose the next component, which gains control through its initial state.

Formally (see an example in Figure 1), a transducer is a DFA that has, in addition
to the input alphabet that labels the transitions, also an output alphabet that labels
the states. Also, a transducer has no rejecting states. Let [n] = {1,...,n}. A
design is a transducer D whose input alphabet is the set £ of all exit states of all
the components in £ and whose output alphabet is [n]. We can think of D as
running beside the components. When a component reaches an exit state e, then
D reads the input letter e, proceeds to its next state, and outputs the index of the
component to gain control next. Note that the components in the library are black
boxes: the design D does not read the alphabet ¥ of the components and has no
information about the states that the component visits. It only sees which exit state
have been reached. Given a library £ and a design D, their composition is a DFA
A p obtained by composing the components in £ according to D. We say that a
design D is correct with respect to a specification DFA S iff L(Azp) = L(S). In
the appendix we construct A, p formally.

For example, consider the library £ = {B, B2} over the alphabet ¥ = {a, b, c},
and the design D that are depicted in Figure 1. We describe the run on the word
bc. The component that gains initial control is B; as the initial state of D outputs
1. The run in By proceeds with the letter b to the exit state e; and relinquishes
control. Intuitively, control is passed to the design that advances with the letter e;
to the state that outputs 2. Thus, the component By gains control, and it gains it
through its initial state. Then, the letter c is read, By proceeds to the exit state
ez and relinquishes control. The design advances with the letter es to a state that
outputs 1, and control is assigned to B;. Since the initial state of By is rejecting,
the word ab is rejected. As a second example, consider the word ab. Again, B; gains
initial control. After visiting the exit state es, control is reassigned to B;. Finally,
after visiting the state e;, control is assigned to By, where the run ends. Since the

initial state of By is accepting, the run is accepting.

€2 . €2 a, a
> | D e (00

Figure 1: An example of a library £ = {By,B,}, a design D, and the resulting

composition Az p.

115

The synthesis problem defined above is aimed at synthesizing correct designs. We
now add costs to the setting. A component library game (CLG, for short) is a tuple
(K, L,{S:}iex, {fB}Bec), where K = {1,...,k} is a set of players, £ is a collection
of box-DFAs, the objective of Player i € K is given by means of a specification DFA
S;, and, as in MCGs, the latency function fz for a component B € £ maps the load
on B to its cost with this load. For i € K, the set of strategies for Player i is the set
of designs that are correct with respect to S;. A CLG corresponds to an MCG with
a slight difference that there might be infinitely many correct designs. Consider a
profile P = (Dy,...,Dy). For a component B € L, we use Lg;(P) to denote the
number of times Player ¢ uses B in P. Recall that each state in the transducer D;
is labeled by a component in £. We define Lg;(P) to be the number of states in D;
that are labeled with B. The rest of the definitions are as in MCGs.

We first show that every MCG can be translated to a CLG:

Theorem 5.1 Consider a k-player MCG G. There is a CLG G’ between k players
with corresponding profiles. Formally, there is a one-to-one and onto function f
from profiles of G to profiles of G' such that for every profiles P in G and Player
i € [k], we have that cost;(P) = cost;(f(P)).

Proof: Consider an MCG (K, E,{%;}ick, { fe}eer). Recall that ¥; is the set of
strategies for Player ¢ that consists of multisets over E. We construct a CLG with
alphabet E U | J,.x X;. For i € K, the specification S; for Player i consists of |¥;]
words. Every strategy s = {ey,...,e,} (allowing duplicates) in ¥; contributes to
L(S) the word s - ey -ey-... e, We construct a library £ with |E| + Y., |2
components of two types: a strategy component B, for each s € X; and a resource
component B, for each e € E. In addition, £ contains the component B,.. that is
depicted in Figure 2. Intuitively, a correct design must choose one strategy compo-
nent By and then use the component B, the same number of times e appears in s.
We continue to describe the components. For s € 3J;, the component B, relinquishes
control only if the letter s is read. It accepts every word in L(S;) that does not
start with s. For e € F, the resource component B, has an initial state with an
e-labeled transition to an exit state. Finally, the latency function for the resource
components coincides with latency functions of the resources in the MCG, thus for
e € F, we have fz, = f.. The other latency functions are f = 0. In the appendix we
prove that there is a cost-preserving one-to-one and onto correspondence between
correct designs with respect to §; and strategies in ¥;, implying the existence of the

required function between the profiles. L]

Theorem 5.1 implies that the negative results we show for MCGs apply to CLGs:
Corollary 5.2 There is a CLG with quadratic latency functions with no PNE; for

116

2<1I<m-1

: ‘M’EiGCj

a€{1,2,3}
3 b= (amod 3)+1
2<i<m-1 ¢=(bmod 3) + 1

Figure 2: The components in the library L.

CLGs with affine latency functions, we have PoS(CLG) > 1.631; for d € IN, the

PoA in a two-player singleton MCG with latency functions in Py is at least 6193“.

Remark 5.2.1: We note that the positive results for CLGs with linear latency
functions, namely existence of PNE and PoS(CLG) < 2, do not follow immediately
from Theorem 3.2, as its proof relies on the fact that an MCG has only finitely many
profiles. Since the strategy space of a player might have infinitely many strategies,
a CLG might have infinitely many profiles. In order to show that CLGs with linear
latency functions have a PNE we need Lemma 5.3 below, which implies that even
in games with infinitely many profiles, there is a best response dynamics that only
traverses profiles with “small” designs. Such a traversal is guaranteed to reach a

PNE as there are only finitely many such profiles. [

Computational complexity We turn to study two computational problems for
CLGs: finding a best-response and deciding the existence of a PNE. We show that
the succinctness of the representation of the objectives of the players in CLGs makes
these problems much harder than for MCGs. Our upper bounds rely on the following
lemma. The lemma is proven in [4] for cost-sharing games, and the considerations

in the proof there applies also for congestion games.

Lemma 5.3 Consider a library L, a specification S, and a correct design D. There
is a correct design D' with at most |S| - |L| states, where |L]| is the number of states
i the components of L, such that for every component B € L, the number of times

D' uses B is at most the number of times D uses B.

We start with the best-response problem (BR problem, for short): Given an
MCG G between k players, a profile P, an index ¢ € K, and p € IR, decide whether
Player i has a strategy S! such that cost;(P[i < S!]) < p.

Theorem 5.4 The BR problem for MCGs is in P. For CLGs it is NP-complete, and

NP-hardness holds already for games with one player and linear latency functions.

117

Proof: Showing that the BR problem is in P for MCGs follows easily from the
fact the set of strategies for Player i is given implicitly and calculating the cost for
a player in a profile can be done in polynomial time.

The upper bound for CLGs follows from Lemma 5.3, which implies an upper
bound on the size of the cheapest correct designs. Since checking whether a design
is correct and calculating its cost can both be done in polynomial time, membership
in NP follows.

We continue to the lower bound. We describe the intuition of the reduction
and the formal definition along with the correctness proof can be found in the
appendix. Given a 3SAT formula ¢ with clauses C', ..., C,, and variables x1, ..., z,,
we construct a library £ and a specification S such that there is a design D that
costs at most u = nm + m iff ¢ is satisfiable. The library £ consists of an initial
component By, variable components B] and BZ_ for j € [m] and i € [n], clause
components B, ., for j € [m] and k € {1, 2,3}, and component B, and B,.;. The
components of the library are depicted in Figure 2. The latency function of the
variable components is the identity function f(x) = z, thus using such a component
once costs 1. The latency functions of the other components is the constant function
f =0, thus using such components any number of times is free.

Intuitively, a correct design corresponds to an assignment to the variable and

must use nm variable components as follows. For i € [n], either use all the com-

ponents B;i, ..., B or all the components Biw ..., BT, with a single use each.
Thus, a correct design implies an assignment 7 : {x1,...,x,} — {7, F'}. Choosing

1

ﬁxi7 *

Bl ,...,B corresponds to n(x;) = F and choosing B
n(z;) = F.

Additionally, in order to verify that a correct design corresponds to a satisfying

™m
.., B, corresponds to

assignment, it must use m clause components and m more variable components
as follows. Consider a correct design D, and let n : {xy,...,2,} — {T, F} be the
corresponding assignment as described above. For every j € [m], D must use a clause
component B, ., where recall that the clause C; includes a literal £ € {x;, ~x;}.
Using the component B, ,, requires D to use a variable component B}, for some
t € [m]. So, a correct design uses a total of nm + m components with identity
latency. If n(¢) = F, then B} is already in use and a second use will cost more than

1, implying that the design costs more than nm + m. L]

The next problem we study is deciding the existence of a PNE. As we show
in Theorem 3.3, the problem is NP-complete for MCGs. As we show below, the

succinctness of the representation makes this problem harder for CLGs.
Theorem 5.5 The 3IPNE problem for CLGs is X5 -complete.

Proof: The upper bound is easy and follows from Lemma 5.3. For the lower

118

bound we show a reduction from the complement of not all equal ¥3 3SAT (NAE,
for short), which is known to be ¥F'-complete [16]. An input to NAE is a 3CNF
formula ¢ over variables x1,...,%,, y1,...,yn. It is in NAE if for every assignment
n:{xy,...,x,} — {T, F} there is an assignment p : {y1,...,y,} — {T, F'} such that
every clause in ¢ has a literal that gets value truth and a literal that gets value false
(in 1 or p, according to whether the variable is an x or a y variable). We say that
such a pair of assignments (1, p) is legal for .

Given a 3CNF formula ¢, we construct a CLG G with three players such that
¢ € NAE iff G does not have a PNE. We describe the intuition of the reduction.
The details can be found in the appendix. There is a one-to-one correspondence
between Player 3 correct designs and assignments to the variables {x1,...,z,}. For
an assignment n : {x1,...,x,} — {T,F} we refer to the corresponding correct
design by D,. Consider a legal pair of assignments (1, p), and assume Player 3
chooses the design D,,. Similarly to the proof of Theorem 5.4, the library contains
variable components with identity latency function. We construct the library and
the players’ objectives so that there is a correct design D, for Player 1 that uses
mn + 2m variable components each with load 1 iff (n, p) is a legal pair for ¢. More
technically, both D, and D, use mn variable components that correspond to the
variables x1,...,x, and yi, ..., yn, respectively. For every j € [m], assuming the j-
th clause is £j v €5 v €3, the design D, must use two additional variable components
621 and BZ, for a # b € {1,2,3} and t;,t5 € [m], which corresponds to n or p
assigning value true to ¢ and value false to E;’-.

Player 1 has an additional correct design D, in which he does not share any
components regardless of the other players’ choices. Player 2 has two possible de-
signs D4 and Dp. Assume Player 3 chooses a design D,. We describe the interac-
tion between Player 1 and Player 2. We define the library and the players’ objec-
tives so that when Player 1 chooses some design D,, Player 2 prefers Dp over Dy,
thus costy((D,, Da, D)) > costy((D,, Dp, D,)). When Player 2 plays Dp, Player 1
prefers D 41,1, over every design D, thus cost,((D,, D, D,)) > cost1({Darr, Dp, Dy)).
When Player 1 chooses D4y 1., Player 2 prefers D4 over Dg, thus costs((Darr, Pg, D,)) >
costs((D,, Da, D,)). Finally, when Player 2 chooses D4, Player 1 prefers the design
D, iff the pair (n, p) is legal for ¢, thus costi({Darr,Da,D,)) > cost1({(D,, Da,
D,)), for a legal pair (n, p).

Thus, if ¢ € NAE, then for every assignment 7, there is an assignment p such
that (1, p) is a legal pair. Then, assuming Player 3 chooses a design D,,, Player 1
prefers either choosing Darr, or D, over every other design, where (1, p) is a legal
pair. By the above, there is no PNE in the game. If ¢ ¢ NAE, then there is an
assignment 7 such that for every assignment p, the pair (n, p) is illegal. Then, the
profile (Darr,Da, D, is a PNE, and we are done.]

119

References

[1]

2]

[9]

[10]

[11]

[12]

H. Ackermann and A. Skopalik. Complexity of pure Nash equilibria in player-
specific network congestion games. Internet Mathematics, 5(4):321-515, 2008.

S. Aland, D. Dumrauf, M. Gairing, B. Monien, and F. Schoppmann. Exact price
of anarchy for polynomial congestion games. SIAM J. Comput., 40(5):1211—
1233, 2011.

E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and
T. Roughgarden. The price of stability for network design with fair cost al-
location. SIAM J. Comput., 38(4):1602-1623, 2008.

G. Avni and O. Kupferman. Synthesis from component libraries with costs. In
Proc. 25th CONCUR, LNCS 8704, pages 156-172. Springer, 2014.

G. Avni, O. Kupferman, and T. Tamir. Network-formation games with regular
objectives. In Proc. 17th FoSSaCS, LNCS 8412, pages 119-133. Springer, 2014.

B. Awerbuch, Y. Azar, and A. Epstein. The price of routing unsplittable flow.
SIAM J. Comput., 42(1):160-177, 2013.

N. Basilico, N. Gatti, and F. Amigoni. Leader-follower strategies for robotic
patrolling in environments with arbitrary topologies. In Proc. 8th AAMAS,
2009.

K. Bhawalkar, M. Gairing, and T. Roughgarden. Weighted congestion games:
Price of anarchy, universal worst-case examples, and tightness. In ESA (2),
pages 17-28, 2010.

V. Bilo. A unifying tool for bounding the quality of non-cooperative solutions
in weighted congestion games. In WAOA, pages 215228, 2012.

[. Caragiannis, M. Flammini, C. Kaklamanis, P. Kanellopoulos, and
L. Moscardelli. Tight bounds for selfish and greedy load balancing. Algo-
rithmica, 61(3):606-637, 2011.

G. Christodoulou and M. Gairing. Price of stability in polynomial congestion
games. In Proc. 40th ICALP, pages 496507, 2013.

G. Christodoulou and E. Koutsoupias. On the price of anarchy and stability of
correlated equilibria of linear congestion games. In ESA, pages 59-70, 2005.

120

[13]

[17]

[18]

[21]

[22]

[23]

N. Daniele, F. Guinchiglia, and M.Y. Vardi. Improved automata generation for
linear temporal logic. In Proc. 11th CAV, LNCS 1633, pages 249-260. Springer,
1999.

J. Dunkel and A.S. Schulz. On the complexity of pure-strategy nash equilib-
ria in congestion and local-effect games. Mathematics of Operations Research,
33(4):851-868, 2008.

C. Dwork and M. Naor. Pricing via processing, or, combatting junk mail. In
Proc. CRYPTO, pages 139-177, 2009.

T. Eiter and G. Gottlob Note on the complexity of some eigenvector problems.
Technical Report CD-TR 95/89, Christian Doppler Laboratory for Expert Sys-
tems, T'U Vienna, 1995.

D. Fotakis, S. Kontogiannis, and P. Spirakis. Selfish unsplittable flows. Theo-
retical Computer Science, 348(2-3):226-239, 2005.

D. Fotakis, S. Kontogiannis, and P. Spirakis. Symmetry in Network Congestion
Games: Pure Equilibria and Anarchy Cost. In Proc. WAQOA, pages 161-175,
2005.

A. Fabrikant, C. Papadimitriou, and K. Talwar. The complexity of pure Nash
equilibria. In Proc. 36th STOC, pages 604-612, 2004.

M. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. W. Freeman and Co., 1979.

T. Harks and M. Klimm. On the existence of pure Nash equilibria in weighted
congestion games. Math. Oper. Res., 37(3):419-436, 2012.

E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. Computer Science
Review, 3(2):65-69, 2009.

Y. Lustig and M.Y. Vardi. Synthesis from component libraries. STTT, 15(5-
6):603-618, 2013.

C. Meyers. Network flow problems and congestion games: complexity and ap-
proximation results. PhD thesis, MIT, 2006.

[. Milchtaich. Congestion games with player-specific payoff functions. Games
and Economic Behavior, 13(1):111 — 124, 1996.

A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL,
pages 179-190, 1989.

121

[27) M.G. Reed, P.F. Syverson, and D.M. Goldschlag. Anonymous connections and
onion routing. IEEE J. on Selected Areas in Communication, 1998. Issue on

Copyright and Privacy Protection.

[28] R.W. Rosenthal. A class of games possessing pure-strategy Nash equilibria.
International Journal of Game Theory, 2:65-67, 1973.

[29] T. Roughgarden and E. Tardos. How bad is selfish routing? JACM, 49(2):236—-
259, 2002.

[30] L. Tran-Thanh, M. Polukarov, A. C. Chapman, A. Rogers, and N. R. Jennings.
On the existence of pure strategy nash equilibria in integer-splittable weighted
congestion games. In SAGT, pages 236-253, 2011.

A Proofs

The function ® in Theorem 3.2 is an exact potential function: Consider
a profile P, and assume Player ¢ deviates from his strategy s; in P to a strategy
s;, and let P’ be the resulting profile. We claim that ®(P) > ®(P’). Moreover,
O(P) — ®(P') is exactly the gain of Player i from the deviation.

Consider a transition e € E. Note that for every j # ¢, we have L. ;(P) =
L. ;(P"). Thus, for j,j" # i, the values a. - L. j(P) - L. j(P) and b. - L. j(P) appear
both in ®.(P) and ®.(P’). Thus,

(I)e(P) - (I)6<P/> =

i(P)Lej(P)+be Lei(P)— (ae‘(ZLe,i(P')'Le,j(P'))+be'Le,i(P')> =

j=1

I
&
Ing
&

= L.;(P) - (ae - Le(P) + be) — Lei(P) - (ae - L(P") + be) = costei(P) — cost.;(P").
Note that if L. ;(P) = L.;,(P') = 0, then ®.(P) — ®.(P’) = 0. Thus,

O(P)—P(P') = Z O (P)—D (P = Z coste i(P)—coste ;(P') = cost;(P)—cost;(P").

eeFE eeFE

Since we assume Player i improves his cost, we have cost;(P) > cost;(P’), and we

are done.]

Proof of Theorem 3.3: The problem is clearly in NP. For the hardness proof we
present a reduction from the 3-Partition Problem, which is known to be strongly
NP-hard [20]. Given a set of 3m integers A = {sy, So, ..., S3m} Whose total sum is
m.S, and for every 1 < i < 3m it holds that S/4 < s; < S/2, the goal is to decide

whether it is possible to partition A into sets of size 3, each with total sum S.

122

Given A, define the following MCG G over 3m + 2 players and m + 4 resources

{e1,€9,...,em,2,a,b,c}. The latency functions of the resources are f, (z) = ... =
feu(2) = 23 fo(2) = [22/S] - S; fulz) = max(0, (z — 1)%); fo(z) = fo(z) = 2. For
every 1 < i < 3m, the strategy space of Player i is {{e]'},..., {€%},{z%,a}}. The

additional two players play the no-PNE game introduced in Example 1, thus we have
the same strategy space {{a,a,b}, {b,b,c},{c,c,a}}. We show that a PNE exists in
G if and only if a 3-partition of A exists.

If a 3-partition of A exists, then a PNE exists: the first 3m players can split
between the resources ey, ..., e,,, causing load S on each resource, thus, cost s; - .S
for each player 1 < i < 3m. A deviation to {z,a} will cause cost s; - S + 1 and is
therefore not beneficial. Since the latency function of a is lower than the latency
functions of b and ¢, and the first 3m players do not cause any load on a, it is easy
to verify that the profile {{a,a,b} and {c,c,a}} is stable for the two last players
(achieving costs 9 and 12).

If a 3-partition does not exist, then we claim that in every profile, exactly one
out of the first 3m players selects {z* a}. If no players selects this strategy, then
at least one of the resources eq,...,e,, has load larger than S and a deviation to
{z%,a} is beneficial for any of the players using this resource. If more than one
player selects this strategy, then the load on z is L, > 2s,,;, > S/2. Combining the
facts that f,(z) = [22/S]-S and L, > S/2, we get that f,(L,) = 25, thus, deviating
to a resource ey, ..., e, with load less than 1.5S5 (by averaging argument, at least
one such resource exists) is beneficial.

Given that exactly one player selects {z,a}, we have that the load on a is 1.
Thus, the two last players face exactly the game introduced in Example 1 - that has
no PNE. We conclude that a PNE exists if and only if a 3-partition exists. Moreover,
even if a 3-partition exists, it is strongly NP-hard to find it, and therefore, finding
a PNE is strongly NP-hard as well.

In a similar way, it is possible to define a reduction from FEqual-Partition, in
which 2n integers should split into two sets of the same cardinality and the same
total sum. The induced game will be over six resources: the first two will be assigned
the partition items, and the four additional items will have the same role as z,a,b
and c¢ in the above reduction. Thus, the hardness proof is valid also for games
with a constant number of resources, unlike congestion games with user-specific

cost functions [1]. O

Proof of Theorem 4.1: Our proof is based on the potential function defined in
[9, 18] (see Theorem 3.2). Consider a affine MCG G. We claim that for every profile
P in G we have:

% - cost(P) < ®(P) < cost(P).

123

In order to prove the claim, we prove that for every e € E:

1
5 cost.(P) < ®.(P) < cost.(P).

For the second inequality, recall that cost.(P) = 3, _icp. Lei(P) - (ac - Le(P) + be)
and Le(P) = >}, ;< Les(P). Thus,

k

coste(P) = ¥ Lei(P)-(ac Y Lej(P)+b.) = az Z Lw(P).Le,Z-(P)m-Z Lei(P) =

i=1 j=1

k k k
= Qe - ZZLe,j(P)) Le,i(P) + be - ;Le,i(P) = (I)e(P)

i=1j=i

We continue to prove the first inequality. Using the same calculations as above, we

have: L
coste(P) = ©e(P) = ac- 3. > Lej(P) - Les(P) =
i=2j=1
k k k k
—ac-), Lej(P) - Lei(P) = ®c(P) = ac Y. Lei(P)” = be). Lea(P).
i=1j=i+1 i=1 =1
Thus,

k k
coste(P) =2-®.(P) — aez Lei(P)? - beZ Lei(P).
i=1 i=1

Since e, be, and L. ;(P), for 1 < i < k, are all positive, we get that cost.(P) <
2.9, (P), and we are done. O

A description of GG, from Theorem 4.2:

The game G4 is defined with respect to resources a,b,ct, c?, d', d?, d*, and d*,
where the latency of a,b,c!', and ¢? are as in G5, d' has latency identity plus €”
and d?,d?, and d* have identity latency. Let x4 = 4!. The strategies of players 1,2

and 3, are the same as in G5 only that we use x4 instead of x3. We define O} =

{(d', 28, 4), (d?, 2, 2), (d®, %2, 1),{d", %, 1)} and N = {(a,x4,1),{b, %5, 1), (c", %, 1),{c*, &, 1)}
Again, we claim that N, is the only PNE in the game. Note that with a slight ad-
justment due to the transition from x3 to x4, our calculations in G3 are valid here.
So, to illustrate the idea why N, is the only PNE, we show that Player 4 deviates
from Ny[4 < O}] to N, and that players 2 and 3 do not benefit by deviating from
Ny to O3 and Oj, respectively. Thus, costs(Ns[4 «— Of]) = Z(4-4- (1 +€")) +
24(2-2) + % 4+ 2. In the profile Ny[4 — Of], the load on the a-type resources
is 3, the load on the b-type resources is 1, and the load on the c'- and c*type
resources is 0. Thus, in Ny, the loads increase to 4,2,1, and 1, respectively, and
costs(Ny) = 24(4-1) +5(2-1-(1+€)) + 2 (1-1-(1+¢€)) + % (1-1). We choose € > ¢ so
that costy(Ny[4 < OF]) > costy(N,). We continue to show that players 2 and 3 do

124

not benefit by deviating from N, to Of. In N, the load on the b-type resources is 2,
and in Ny[2 < O3] the load increases to 4 as Player 2 has two uses of every b-type re-
source. Thus, costy(Ny) = 24(4-1) < 12(4-2-(1+€)) = costa(N4[2 < O3]). Similarly,
costz(Ny) = 24(4-1)+12(2:1-(1+€)) > 8(4-3-(1+¢))+12(2-1) = costz(Ny[3 < O3]).
Recall that 24 = 4! = 24. Thus, cost(N,;) = 24(4-4) +12(2-2- (1 +¢)) + 8+ 12 and
cost(Oy) = 24+12(2-2(1+€)) +8(3-3(1+€)) +12+6(4-4(1+€")) +6(2-2) + 8+ 12,
and thus, PoS(G4) = 1.527.

.........

PoS
n

0 5 10 15

Number of players

Figure 3: A graph of PoS(Gy) as a function of k. The value of PoS(Gy7) is 1.6316.

Proof of Claim 4.2.1: We prove the claim by induction on k. For the base case,
k = 2 and the correctness of the claim is shown in the description of G5 above.
We assume correctness for k£ — 1 and prove for k. Consider 1 < ¢ < k and a
profile P = (PF,..., PF) having P¥ = OF. Let P’ = P[i < NF|. We claim that
cost;(P) > cost;(P’).

We distinguish between two cases. In the first case, 7 # k. Let Q) = <P1k_1, cee P,f__ll ,
where for 2 < j < k, if Pf = Nf, then Pf_l = N]’-“_1 and otherwise Pf = Of and
Pf‘l = Of_l. Let Q" = Q[i «— N!']. By the induction hypothesis, cost;(Q) =
cost;(Q'). We distinguish between two cases. In the first case P = OF, and by the
construction, Player k does not share any of its resources. It is not hard to prove
that i - cost;(P) = KIA - cost;(Q) and ﬁ - cost;(P') = xkl,l (@), and the claim

follows.

For the second case, P,f = N}. Recall that N} has a single use for every resource
in NF or O}, for 1 < j < k — 1. Specifically, for every e € OF we have L.(P) =
Le(Q) + 1, and for every e € NF we have L.(P’) = L.(Q") + 1. Thus,

COSt ZLez e e ZLez e e ZLez e e ZLez

eEOk eEOk eEO’c eeO’C

Since L. ;(P) = L.;(Q), we have
Z Lez e e Z Lez e e(Q)) = COSti(Q)’

eeOk eEOk

125

By the induction hypothesis, cost;(Q) = cost;(Q’). Going the opposite direction, we

have cost;(Q') = X cnk Lei(P') -+ fe(Le(Q')). Note that Y, _ox Lei(P) = |OF|. We
show in the construction that |OF| = |[NF| = >, _yr Lei(P'). To conclude,

costi(P) = . Leg(P)- fo(Le(Q))+ D, Lea(P') =) Lei(P')-fo(Le(P')) = cost;(P').
eeNF eeNF ee Nk

We continue to prove the second case in which ¢+ = k. Recall that we construct
OF and Nf to that cost,(Oy) = costy(Ny). We claim that cost,(Oy) = costy(P)
and costy(Ny) = costy(P'), which would conclude the proof. Recall that in the
construction of OF we use new resources. Thus, Player k does not share any resources
when he plays OF, and we have costy(O) = costy(P). We continue to show that
costy(Ny,) = costy(P'). Tt is not hard to prove by induction on k, that for every
two profiles S and S’ in Gy, we have >, o Lc(S) = Xcp Le(S), where Ej, are
the resources of the game Gj. When Player k plays NF, he uses every resource in
E3\O¥ exactly once. Since OF uses new resources, when Player k plays NF, the load
on e € Of is 0, and D, Le(Ny) = Zee(Ek\o,’g) Le(Ni). Let y = 3o icpy Feir To
conclude the proof,

coste(Ne) = Y Lea(Ni) - folLe(Ni)) =y + D Le(N,
eeNik eeNik
= Y+ > Le(Ne) =y + Y Le(P) - 1 = costy(P).
eel eel

[

Proof of Claim 4.2.2: Assume towards contradiction that the social optimum
profile P* is not O. Let 1 < i < k be the highest index of a player that uses his
NF strategy in P*. We claim that the profile P" in which Player i plays OF has
cost(P*) > cost(P'). For i < j < k, in P*, Player j uses his Oé‘f strategy, and
thus does not share any resources with Player ¢ in P’. It follows that cost;(P*) =
cost;(P'). For 1 < j < i, since Player i shares resources with Player j in P* and
does not share resources in P’, we have that cost;(P*) > cost;(P’). Moreover, since
the e;-type resources have identity latency, we have cost;(P*) > 1 + cost;(P’). By
the construction, we have cost;(P*) = cost;(P') + ¢;, and it is possible to select ¢;
so that cost(P’) < cost(P*), which is a contradiction to the minimality of P*, and

we are done. (]

Proof of Remark 4.2.1: For the upper bound, consider a linear MCG G and let
N be a PNE profile that is reached by a sequence of best-response moves from the
social optimum O. We tighten our analysis from Theorem 4.1. For e € F, we have
costo(N) = 2005t(N) = . - ¥ ey L2(N) > /i, - 1oy Lea(N) = o - L(N) =

coste(N). Thus, cost.(N) = 2 — 4/ coste(N) and cost(=23 4/ cost.(N).

126

Let N’ be the cheapest PNE profile. Then, Y _p+/cost.(N) = Y _p+/cost.(N')
and PoS(G) < 2 — cost 1 (0) - X, .y A/ coste(N).

For the lower bound, we show that the inequality is essentially an equality for
the MCGs in the family described in Theorem 4.2. Consider £ € IN. Since in
the social optimum in Gj the resources are used by exactly one player, we have
®(O},) = cost(O},). Claim 4.2.1 implies that, essentially, ®(O0;) = ®(N;). Finally,
since in Nj a resource is used by a player at most one time, we have ®(N,) =
2cost(Np)+35 D er \/costo(Ny,). Thus, PoS(Gy) = 2—cost™ (Or)- 3.y A/ coste(Ny).
Since N}, is the only PNE in Gy, we are done.

Proof of Theorem 4.3: Recall that P, is the set of polynomials of degree at most
d. The proof relies on the following lemma [2]: Let d € IN. Then,

m11]1R {1 A :Vx,ye R, f € Py we have y-f(z+y) < Ay-f(y)+p-z f(z)} (IDZH-
(A p)e
(1)

Consider an MCG G, and let N be a PNE profile and O be the social optimum
profile. Consider 1 < ¢ < k. Recall that for a profile P and resource e € E, we use
P, to denote the load on e in P, the latency function on e € F is f, € Py, and for
1 < i<k, we use P! to denote the multiset that Player ¢ chooses in P and P‘(e)
the number of times Player 7 uses e in P’. By the definition of a PNE, we have
cost;(N) < cost;(N[i < O"]). Next,

cost;(N[i — O']) = Y 0'(e) - fo(N. = Nl + O%) < Y1 0'(e) - fo(Ne + O.),

eeE eel

where the last inequality follows from the fact that the latency functions we

consider are monotonically increasing.

cost(N) = Z cost;(Z Z O'(e) - f.(N. + O,) Z Oe - fe(Ne + Oy).

1<i<k 1<i<kecE eelR

Let A, 1 € IR that minimize the expression in (1). Then,
D0 foNe+0) < DA Oc - f(Oc) + - Ne - f(Ne) = X+ cost(O) + - cost(N).
ek el

Rearranging yields the theorem.
Proof of Theorem 4.5: We show a family of two-player congestion games in which
the PoA is arbitrarily high. For n € IN, we define the game G,,. The resources are
E = {e1,e3}. The strategy spaces of the players are mirrored. Player 1’s strategy

space is X1 = {ey,el} and Player 2 strategy space is Yo = {e},es}. The latency

functions are both the factorial function, i.e., fe, (1) = fe, (1) = .

127

We continue to calculate PoA(G),). Clearly, the social optimum is attained in
the profile (e, eo) and its cost is 2. We claim that the profile N = (e}, e}) is a PNE.
Indeed, cost;(N) = n - n!, and by deviating to e;, his cost increases to 1 - (n + 1)!.
The proof for Player 2 is dual. Since cost(N) = 2n - n!, we have PoA(G,,) = n - nl,

and we are done.]

A formal construction of the DFA A, p: Recall that the library of components
is L ={Bi,...,B,}. Forice [n], we have B; = (3, B;,;, 8}, F};, E;), where E; < B;
is a set of exit states having b? ¢ F; and F; n E; = (J. The states of the components
are disjoint, thus B, n B; = J, for j # i. We denote by B, F, and £ the union
ie[n] B;,
F = Uie[n] F;, and £ = Uie[n] E;. Recall that a design D is a transducer over input
alphabet £ and output alphabet [n]. Consider a design D = (&€, [n], D, dp,d°,v),

where v : D — [n].

of all states, accepting states, and exit states, respectively, thus B = [

We construct the composition system Az p = (X, Qrp, rp, q%jD, Frp) as fol-
lows. The set of states Qzp < (B\E) x D consists of pairs of a component state from
B and an design state from D. The component states are consistent with v, thus
Qrp = Uiy (Bi\E:) x {q : v(q) = i}. In exit states, the composition immediately
moves to the initial state of the next component, which is why the component states
of Az p do not include €. Consider a state (b,q) € Qzp and a letter 0 € X. Let
i € [n] be such that b € B;. When a run of A, p reaches the state (b, ¢), the compo-
nent B; is in control. Recall that b is not an exit state. Let O’ = 0;(b,0). If b’ ¢ E;,
then B; does not relinquish control after reading o and . p({b, ¢),0) = V', q). If
b' € E;, then B; relinquishes control through &', and it is the design’s task to choose
the next component to gain control. Let ¢’ = 6(¢,b') and let j = v(q¢’). Then, B,
is the next component to gain control (possibly j =). Accordingly, we advance
D to ¢’ and continue to the initial state of B;. Formally, 6, p((b, ¢),0) = <b?, q>.
(Recall that b;’ ¢ L;, so the new state is in Yz p.) Note also that a visit in ¢/
is skipped. The component that gains initial control is chosen according to v(d°).
Thus, q2p = (b9,d%), where j = v(d°). Finally, the accepting states of Az p are
these in which the component state is accepting, thus Frp = F x D. (Recall that
Fn€E=g,80 Frp < Qrp.)

Proof of Theorem 5.1: Consider an MCG (K, E, {3; }ick, { fe}eer). Recall that ¥;
is the set of strategies for Player ¢ that consists of multisets over E. We construct
a CLG with alphabet E U (J, ;- 2;. For i € K, the specification S; for Player 4
consists of |¥;| words. Every strategy s = {ey,...,e,} (allowing duplicates) in 3};
contributes to L(S) the word s -e; - eg - ... e,. We construct a library £ with
|E| + >..cx |Xi] components of two types: a strategy component Bs for each s € %;

and a resource component B, for each e € E. In addition, £ contains the component

128

B,e. that is depicted in Figure 2. Intuitively, a correct design must choose one
strategy component B and then use the component B, the same number of times e
appears in s. We continue to describe the components. For s € ¥;, the component
B, relinquishes control only if the letter s is read. It accepts every word in L(S;)
that does not start with s. For e € F, the resource component B, has an initial
state with an e-labeled transition to an exit state. Finally, the latency function for
the resource components coincides with latency functions of the resources in the
MCG, thus for e € E/, we have fg, = f.. The other latency functions are f = 0. We
prove that there is a cost-preserving one-to-one and onto correspondence between
correct designs with respect to §; and strategies in ¥;, implying the existence of the
required function between the profiles.

Consider ¢ € K. We claim that there is a one-to-one and onto correspondence
between correct designs with respect to S; and strategies in ;. Thus, there is a
one-to-one and onto correspondence between the sets of profiles in the MCG and the
CLG. We describe the design D; that corresponds to the strategy s = {e1,...,e,} €
Y. The design D, assigns initial control to the strategy component B,. Recall that
B relinquishes control after reading the letter s. Then, D; assigns control to the
components Be,, ..., B, and finally control is assigned to B,.. Clearly the word
s-e1-ey---e, € L(S) is accepted, no other word that starts with s is accepted, and
since B; accepts every word in L(S;) that does not start with s, we have that Dy is
correct. It is not hard to see that there are no other correct designs. To see that the
correspondence is onto, note that since control has to be assigned to some component
B, each correct design corresponds to a strategy s € ;. Finally, consider a profile
P = (Dy,,..., D,) that corresponds to the profile P’ = (s1,...,s;). Clearly, for

i € K, we have cost;(P) = cost;(P’), and we are done.

Proof of Theorem 5.4: We describe the specification S. The alphabet is > =
{# O Uiepi#s- #07 2} O U 1€ C;}. The language L(S) includes 3m + 1
words. A long word #-w - . . .- w,, where for i € [n], we have w; = #%x;#} ... v, #7,
and 3m short words, which we describe next. For j € [m], let C; = Ejl- v E? v 6?.
For k € {1,2,3}, let j, be the index of the variable in the literal (5. That is,
05 € {xj,,—xj}, 6 € {xj,, ~xj,}, and £ € {z},, ~x;}. For k € {1,2,3}, we have
Cjx;,Cizj, € L(S). Clearly it is possible to construct S so that its size is polynomial
in n and m.

The components of the library £ are By, BJ and B/, for j € [m] and i € [n],
and Bg; ., for j € [m] and k € {1,2,3}. The components of the library are depicted
in Figure 2. The latency functions of the components By and Bc; 4, , for j € [m] and
ke {1,2,3} is the constant function f = 0. The latency function of the components

Bi, for j € [m] and i € [n] is the identity function f(z) = x. Thus, using a

129

component B%i once costs 1.

Assume that ¢ is satisfiable, and let n : {z1,...,2,} — {T, F} be a satisfying
assignment to the variables. We describe a correct design D with cost(D) = p =
nm + m. The component that gains control first is By. We distinguish between

two types of words. First, assume By exists through ey after reading #. Thus, the

only word that should be accepted from this point is the suffix wy - ... w,, of the
long word in L(S), where recall that for i € [n] we have w; = #%z;#! ... x;#™. For
i € [n], assuming the prefix #wy - ... w;_; has been read. If n(x;) = T, then control

1

—x;)

is assigned to B and otherwise control is assigned to B;i. Then, the next m — 1
assignments of control, assuming the prefix that is read is a prefix of w;, are to the
components B2 ..., B™, if f(x;) = T, and otherwise to B2 , ..., B. If some other
word is read, control is assigned to B,.;. Finally, control is assigned to B,.. Note
that so far we have used nm components with identity latency, each with one use,
for a total cost of nm.

Recall that L(S) has 3m short words of the form Cjx;Cjx;,, where j € [m]
and k € {1,2,3}. When reading the prefix C; of such a word, the component By
relinquishes control through ec,. Assume, WLog, that f (Ejl) = T (there must be
such a literal as f is a satisfying assignment). We refer to z;, as the witness for Cj;.
The component that gains control after By is B, 4, , which relinquishes control only
if ;, is read. Let 0 < j' < j be the number of clauses with index less than j that
have z;, as their witness. The component that gains control after Be; ,; s B%;Jlrl
This component has many exit states. If it exists after reading Cz;,, then control is
assigned to By, and otherwise control is assigned to B,.;. Note that we have used
another m components with identity latency, where each component is used once.
Thus, the total cost of D is nm + m. It is not hard to see that D is correct, and we
are done.

For the other direction, assume there is a correct design D that costs at most
nm + m. We define an assignment 1 : {x,...,z,} — {T,F}. Let ¢ € [n]. Since
the long word #w ... w, is in L(S), it must be in L(Azp). Note that the only
components that can process the letter #) are B;i and lei. Thus, after reading
#wy ... w;_1, one of these components must gain control. We define n(z;) = T if
B, gains control and n(x;) = F if By, gains control.

We claim that 7 is a satisfying assignment for ¢. In order to do so, we make
two observations. First, recall that, for i € [n], if n(x;) = T', then BL_ gains control
after #wy ... w;_y is read. If the prefix #/z; of w; is read, then B2 must gain
control as this is the only component that can process the next prefix #2z; of w;.

Generalizing this observation, after reading #w ... w;_1, if n(z;) = T, when reading

the word w;, the components that are in control are lei, ., BT and if n(x) = F,
then B;i, ..., B} are in control. Thus, D uses at least nm components with identity

130

latency.

Next, let j € [m] with C; = £} v €2 v 3 such that ¢% € {x;,, —;, }, for k € {1,2,3}.
Note that after reading the letter C'; control must be assigned to a component Be; .,
as C,x;,Cjxj, € L(S) and these are the only components that can process words
that start with one of the three letters z;,, x;,, or z;,. Denote by ¢; and z; the literal
and variable with ¢; € {x;, —x;} such that B¢, ., gains control from D after C; is
read. When z; is read in Bg, ., control is relinquished. Note that the component
that gains control next must be a component Bﬁj, for t € [m], as these are the only
components that can process Cjz;. Let d be the state in D that is reached after
reading Cjz;2. We claim that there is no other word w € ¥* such that the run of
D on w reaches d. Indeed, the word C’jxj is accepted from d and there is only one
word in L(S) that ends with this suffix.

Since we have already counted nm uses of components with identity latency and
D costs at most nm + m, we conclude that D uses exactly nm +m such components
each with a single use. Specifically, for j € [m], the component Bﬁj that gains control
after C;z; is read is used once and it is used when reading the word Cjz;C;z;. Thus,
when reading the long word #w . . . w,, it does not gain control, and by our definition
of n, we have n(¢;) = T. We conclude that 7 is a satisfying assignment, and we are

done.

Proof of Theorem 5.5: We now describe the reduction in detail. Let ¢ =
Ci A ... A Cp, where for j € [t] we have C; = (; v {5 v (3, we construct a
CLG G with three players such that ¢ € NAE iff G does not have a PNE. We
describe the specifications of the players. The alphabet is ¥ = {#,&,T, F,a,b} U
Uiy {#0% o #m ai, #5 0 #00i O Usepmy (€5 G} U Ujepmp{6, €2, 63}, The
specification Ss for Player 3 consists of a single word wy - ... - w,, where for i € [n],
we have w; = #0 zi#. ... x;#5. The specification S, for Player 2 consists of two
words a® and b°. The specification S; for Player 1 consists of 6m + 1 words. Simi-
larly to Player 3, it has a long word # - vy - ... - v,, where for i € [n], we have v; =

giyi 1111 o YitEy and 6m short words, which we describe next. For j € [m], recall

that C; = ¢} v (2 v (3. For k € {1,2,3}, we have C{(*TC;T(*, C;t* FC; Ftk e L(S)).
Clearly it is possible to construct Sp, Ss, and Sz so that their size is polynomial in
n and m.

We continue to describe the library £. For every i € [n] and ¢ € [m], there are
variable components B., , BL, , B, , and B, , which have identity latency functions

and are similar to these in the lower bound proof of Theorem 5.4. The upper part

of the components is almost identical to these depicted in Figure 2. For example,

2Recall that D reads exit states and not words over ¥, so this notation is not formal and we

mean the exit states that are read during the run on the word.

131

Bi,i relinquishes control after reading #gixi. The lower part is slightly different.
Consider j € [m] and a literal ¢ that appears in C;. Intuitively, as in Theorem 5.4,
designs of Player 1 and Player 3 correspond to assignments and must use either all
the components B}, ..., B} or all the components B!, ... B™,. Choosing the first
corresponds to assigning value false to ¢ and choosing the second corresponds to
assigning value true to ¢. The components B}, ..., By have a path labeled éjTﬁ
that leads to an exit state. The components B!, ..., B™, have a path labeled C'jF 14
that leads to an exit state.

For every j € [m], there are six components Bcj,z;,eg for a # b € {1,2,3} with
latency function f = 0. The component BCj,€§,€§ corresponds to assigning value
true to ¢9 and value false to £%. Let ¢ € {1,2,3} such that ¢ # a and ¢ # b. The

component B e relinquishes control after reading (77" and E;’-T, after which a
I3

to

2, for some t1, 5 € [m],
J

correct design must assign control to components B2 and B
J

in order to accept the suffices @Tﬁ? and C’jF E?, respectively. The other words that
start with C; are accepted for free. The component BCM}W? accepts the words
(O FCF 08, (5T CT (5T CTLS, and (5FCiFIEC.

Similarly to the proof of Theorem 5.4, a correct design D,, for Player 3 corre-
sponds to an assignment 7 : {x1,...,2,} — {7, F} and a correct design D, corre-
sponds to an assignment p : {y1,...,yn} — {T, F'}. Moreover, every correct design
D, must use mn + 2m variable components. Assuming Player 3 chooses the design
D,,, then there is a Player 1 correct design D, that uses only variable components
with load 1 iff the pair (1, p) is legal for .

We describe the rest of the components in the library. There are components B
and B,.; that have constant latency function 0 and appear at the end of runs. We do
not specify when they gain control below as it is immediate. There are components
B¢, BE, A, and B, with latency functions 0, 0, fa(z) = 2% + 125 and fp(z) = 422,
respectively. The component B{' relinquishes control after reading a and accepts the
word b°. Dually, the component BF relinquishes control after reading b and accepts
the word a®. The components A and B relinquish control after reading a and b,
respectively. Thus, a correct Player 2 design must assign initial control to either B!
or BE, and then assign control two times to A and four times to B, respectively.
The component Bayy, is identical to S;. Thus, Player 1 has a correct design that
uses only it, and we refer to this design as Day;. Regardless of what design the
other players choose, Player 1 pays 1100 + mn + 2m for D4r. The component By
has a constant latency function 33. It relinquishes control through a unique exit
state if #, &, or Cj, for j € [m] is read. Thus, a correct Player 1 design that does
not use B4;;, must assign initial control to By. When By relinquishes control after

reading #, control must be assigned to mn variable components, after reading C},

132

for some j € [m], control must be assigned to some component Be, ogh 38 described
in the above, and after reading &, control must be assigned to A for six consecutive
times and then to B for one time.

We prove that the reduction is correct. Assume that ¢ ¢ NAE, thus there
is an assignment 7 : {x1,...,x,} — {7, F} such that for every assignment p :
{y1,...,yn} — {T, F'}, we have that (1, p) is illegal for ¢. We claim that the profile
P = (Dur1,Dp,D,) is a PNE. Clearly Player 2 does not deviate. Since Player 1
uses D,y it does not use any of the variable components and all the designs of
Player 3 cost the same, thus Player 3 does not deviate as well. Assume Player 1
benefits from deviating to a design D,. Since Player 2 uses Dp, Player 1 pays for
his uses of By, A, and B a cost of 33 + 966 + 100 = 1099. Recall that D, uses
nm + 2m variable components. Since cost;(P) = 1100 + nm + 2m and we assume
that deviating to D, is beneficial, the load on every variable component that is used
in D, must be 1. Thus, similarly to the proof of Theorem 5.4, we can show that
{n, py is legal for o, which is a contradiction. Next, assume that ¢ € NAE. We show
that there is no PNE in G. Consider a profile in which Player 3 chooses the design
D,;, and let p be an assignment such that (p,n) is legal for ¢. It is not hard to see
that choosing D,, or Drr dominates every other choice of design for Player 1. In
Table 2 we show that no matter which design Player 2 chooses, there is no PNE,

and we are done.

D, Darr
D4 || 1099 + mn + 2m, 400 | 1100 + mn + 2m, 256
Dpg || 1138 + mn + 2m, 378 | 1100 + mn + 2m, 288

Table 2: Players costs. Each entry describes the cost of Player 1 followed by the
cost of Player 2.

B Splittable (Non-Atomic) Games

In a splittable game each player can split his task among several strategies. This
model suits several applications, in particular planning of preemptive production.
Splittable games are well-understood in classical and weighted congestion games
[29, 8]. We define the corresponding MCG and show that the positive PNE-existence
result, known for weighted congestion games, carry over to games with multisets of
resources.

Recall that ¥; is the strategy space of Player ¢, where ¥; = {m;1,...,m;.,} and

133

for each 1 < j < ¢;, m;; is a multiset over /. A splitted strategy for a player ¢ is
given by §; = {;1,...,q; . such that Z;Ll aj = 1.

A profile of a game G is a set P = (81, 5y,..., 8, of strategies selected by the
players. For a resource e € F, the load that player ¢ generates on e is L ;(P) =
dsiaj-myj(e). The load on e in P, is Le(P) = X oop Lei(P)-

The players’ costs are defined as in the unsplittable model, that is, given a
profile P, a resource e € E, and 1 < i < k, the cost of e for Player i in P
is costei(P) = Le¢i(P) - fe(Le(P)). The cost of Player i in the profile P is then
costi(P) = Y. costei(P).

A profile P is a PNE if for every player ¢ the cost of ¢ when playing (o 1, ..., ®ic,)
is not higher than playing (..., a;y + 0,...,Q;p, — 0,...) for all v;,vy and §. In
particular, it means that the marginal cost for all strategies with a; > 0 is the

same. The proof of the following theorem is identical to the corresponding proof for
classical CGs [29].

Theorem B.1 Fvery splittable MCG has a PNE.

For example, consider the instance in Example 1, where &; = ({a?, b}, {b?, ¢}, {c?, a})
for i = 1,2. The profile P = ({1, 3,5}, {£,3,3}) is a (non-unique) PNE. For each
e € {a,b,c}, wehave Ly(P) =2-3+1-2+2-£+1-1 =2, Ly(P) = 2 and L.(P) = 2,
thus cost,(P) = costa(P) = 4 -3 = 12. This profile is a PNE, since all strategies

have the same marginal cost.

134

Dynamic Resource Allocation Games®

Guy Avnil Thomas A. Henzinger® Orna Kupferman?

Abstract

In resource allocation games, selfish players share resources that are needed
in order to fulfill their objectives. The cost of using a resource depends on
the load on it. In the traditional setting, the players make their choices
concurrently and in one-shot. That is, a strategy for a player is a subset of
the resources. We introduce and study dynamic resource allocation games. In
this setting, the game proceeds in phases. In each phase each player chooses
one resource. A scheduler dictates the order in which the players proceed in a
phase, possibly scheduling several players to proceed concurrently. The game
ends when each player has collected a set of resources that fulfills his objective.
The cost for each player then depends on this set as well as on the load on the
resources in it — we consider both congestion and cost-sharing games. A prime
application of dynamic resource allocation games is the setting of networks
in which players choose their routes edge by edge, with choices depending on
earlier choices of other players. We study the stability of dynamic resource
allocation games, where the appropriate notion of stability is that of subgame
perfect equilibrium, study the inefficiency incurred due to selfish behavior, and
also study problems that are particular to the dynamic setting, like constraints
on the order in which resources can be chosen or the problem of finding a

scheduler that achieves stability.

1 Introduction

Resource allocation games (RAGs, for short) [23] model settings in which selfish
agents share resources that are needed in order to fulfill their objectives. The cost
of using a resource depends on the load on it. Formally, a k-player RAG G is given
by a set E of resources and a set of possible strategies for each player. Each strategy
is a subset of resources, fulfilling some objective of the player. Each resource e € £

is associated with a latency function ¢, : N — R, where £.() is the cost of a single

*Submitted for publication.
tSchool of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel

HIST Austria
§School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel

135

use of e when it has load . For example, in network formation games (NFGs, for
short) [2], a network is modeled by a directed graph, and each player has a source
and a target vertex. In the corresponding RAG, the resources are the edges of the
graph and the objective of each player is to connect his source and target. Thus,
a strategy for a player is a set of edges that form a simple path from the source to
the target. Each edge may participate in paths of several players. When an edge e
is used by m players, each of them pays ¢.(m) for his use.

A key feature of RAGs is that the players choose how to fulfill their objectives in
one shot and concurrently. Indeed, a strategy for a player is a subset of the resources
— chosen as a whole, and the players choose their strategies simultaneously. In
many settings, however, resource sharing proceeds in a different way. First, in many
settings, the choices of the players are made resource by resource as the game evolves.
For example, when the network in an NFG models a map of roads and players are
drivers choosing routes, it makes sense to allow each driver not to commit to a full
route in the beginning of the game but rather to choose one road (edge) at each
junction (vertex), gradually composing the full route according to the congestion
observed. Second, players may not reach the junctions together. Rather, in each
“turn” of the game, only a subset of the players (say, these that have a green light)
proceed and chose their next road.

As another example to a rich composition and scheduling of strategies, consider
the setting of synthesis from component libraries [17], where a designer synthesizes a
system from existing components.It is shown in [4, 6] that when multiple designers
use the same library, a RAG arises. Here too, the choice of components may be made
during the design process and may evolve according to choices of other designers.

In this work we introduce and study dynamic resource allocation games, which
allow the players to choose resources in an iterative and non-concurrent manner.
A dynamic RAG is given by a pair G = (G,v), where G is a k-player RAG and
v:{l,...,k} = {1,... k} is a scheduler. A dynamic RAG proceeds in phases. In
each phase, each player chooses one resource. A phase is partitioned into at most
kturns, and the scheduler dictates which players proceed in each turn: Player i moves
at turn v(7). Note that the scheduler may assign the same turn to several players,
in which case they choose a resource simultaneously in a phase. Once all turns have
been taken, a phase is concluded and a new phase begins. There are two “extreme”
schedulers: (1) A sequential scheduler assigns different turns to all players, i.e., v is
a permutation, reflecting the fact that the players make their choices sequentially,
one player in each turn. (2) A concurrent scheduler assigns the same turn to all
the player; i.e., v(i) = 1 for all ¢ € {1,...,k}, reflecting the fact that all players
proceed concurrently in the first (and only) turn in each phase. A strategy for a

player in a dynamic RAG maps the history of choices made by the players so far

136

(that is, the choices of all players in earlier phases as well as the choices of players
that proceed in earlier turns in the current phase) to the player’s next choice. A
player finishes playing once the resources she has chosen satisfy the objective. The
game terminates once all players finish playing. A strategy profile in the game is a
vector of strategies — one for each player. The outcome of a profile is an assignment
of a set of resources to each player. The cost of each player in a profile is induced
by the costs of the resources in his set, which depends on their load and latency
functions as in usual RAGs.

We illustrate the intricacy of the selecting the resources in phases in the following

example.

Example 1.1 Consider the 4-player network formation game that is depicted in
Figure 1. The interesting edges have names, e.g., a,b,c..., and their latency func-
tion is depicted below the edge. For example, we have {,(x) = x and (., (z) = 10x.
The other edges have latency function 0. The source and target of a node of Player i
are depicted with a node called s and t, respectively, and with a subscript i. For
ezample, Player 2’s source is s15 and he has two targets t& and tlt. The players’
strategies are paths from one of their sources to one of their targets.

Consider a dynamic version of the game in which Player v chooses an edge at
turn i. At first look, it seems that edge g will never be chosen. However, we show
that Player 1’s optimal strateqy uses it. Player 1 has three options in the first turn,
either choose g, a, orb. Assume he chooses a (and dually b). Then, we claim that
Player 2 will choose b. Note that Players 3 and 4 move oposite of Player 2 no matter
how Player 1 mowves, as they prefer avoiding a load of 2 on ¢, and cy, which costs
20 each, even at the cost of a load of 3 on f, which costs only 3. Knowing this,
Player 2 prefers using b alone over sharing a with Player 1. Since the loads on a
and e are 1 and 3, respectively, Player 1’s cost is 1 + 3 = 4.

On the other hand, if Player 1 chooses g in the first phase, he postpones revealing
his choice between left and right. If Player 2 proceeds left, then Players 3 and 4
proceed right, and Player 1 proceeds left in the second phase. Now, the load on a
and e 1s 2 and 1, respectively, thus Player 1’s cost is % +2+1= 3%.]

dy ® doy

Figure 1: A network formation game in which it is beneficial to select a path that

is not simple.

137

The concept of what we refer to as a dynamic game is old and dates back to Von
Neumann’s work on extensive form games [20]. Most work on RAGs consider the
simultaneous setting. However, there have been different takes on adding dynamicity
to RAGs. In [19], the authors refine the notion of NE by considering lookahead
equilibria; a player predicts the reactions of the other players to his deviations, and
he deviates only if the outcome is beneficial. The depth of lookahead is bounded and
is a parameter to the equilibria. A similar setting was applied to RAGs in [7], where
the players are restricted to choose a best-response move rather than a deviation
that might not be immediately beneficial. Concurrent ongoing games are commonly
used in formal methods to model the interaction between different components of a
system (c.f., [1]). In such a game, multiple players move a token on a graph. At each
node, each player selects a move, and the transition function determines the next
position of token, given the vector of moves the players selected. The objectives of
the players refer to the generated path and no costs are involved. Closest to our
model is the model of [16], and its subsequent works [8, 10]. They study RAGs in
which players arrive and select strategies one by one, yet in one shot.

Our dynamic games differ from all of these games in two aspects. We allow the
players to reveal their choice of resources in parts, thus we allow “breaking” the
strategies into parts. Moreover, the choices the players make in all these games are
either concurrent of sequential, and we allow a mix between the two. These two
concepts are natural and general, and can be applied to other games and settings.

The first question that arises in the context of games, and on which we focus in
this work, is the existence of a stable outcome of the game. In the context of RAGs,
the most prominent stability concept is that of a Nash equilibrium (NE, for short) —
a profile such that no player can decrease his cost by unilaterally deviating from his
current strategy. It is well known that every RAG has an NE [23]. The definition
of an NE applies to all games, and can also be applied to our dynamic RAGs. As
we demonstrate in Example 2.1, the dynamic setting calls for a different stability
concept, as some NEs need not be achievable by rational players in the dynamic
setting. Essentially, it follows from the fact that rational players take the history of
the game into account when they make their choices in intermediate phases, ruling
out some choices that are rational only in a concurrent and one-shot setting. To
overcome this limitation of NE, the notion of subgame perfect equilibrium (SPE, for
short) was introduced in [27], which we define formally in Section 2.

Classifying RAGs, we refer to the type of their latency functions as well as the
type of the objectives of the players. Congestion games [24] are RAGs in which the
latency functions are increasing, whereas in cost-sharing games [2], each resource
has a cost that is split between the players that use it (in particular, the latency

functions are decreasing). In terms of objectives, we consider singleton RAGs, in

138

which the objectives of the players are singletons of resources, and symmetric RAGs,
in which all players have the same objective.

Our most interesting results are in terms of equilibrium existence. It is easy to
show, and similar results are well known, that every dynamic RAG with a sequential
scheduler has an SPE. The proof uses backwards induction on the tree of all possible
outcomes of the game (see Theorem 3.1 for details). One could hope to achieve a
similar proof also for schedulers that are not sequential, especially given the fact
that every RAG has an NE. Quite surprisingly, however, we show that this is not
the case. For congestion games, we show examples of a singleton congestion game
and a symmetric congestion game with no SPE. Moreover, the latency function in
both cases is linear. On the positive side, we show that singleton and symmetric
congestion games are guaranteed to have an SPE for every scheduler. For cost-
sharing games, we also show an example with no SPE. In the cost-sharing setting,
however, we show that singleton objectives are sufficient to guarantee the existence
of an SPE in all schedules. It follows that singleton dynamic congestion games are
less stable than singleton dynamic cost-sharing games. This is interesting, as in the
on-shot concurrent setting, congestion games are known to be more stable than cost-
sharing games in various parameters. One would expect that this “order of stability”
would carry over to the dynamic setting, as is the case in other extensions of the
traditional setting. For example, an NE is not guaranteed for weighted cost-sharing
games [9] as well as very restrictive classes of multiset cost-sharing games [5], whereas
every linear weighted congestion game [12] and even linear multiset congestion game
is guaranteed to have an NE [6]. Also, as we detail in Section 4, there are classes
of congestion games that are guaranteed to have a strong equilibrium whereas the
cost-sharing counterpart does not [13].

It is well known that decentralized decision-making may lead to solutions that
are sub-optimal from the point of view of society as a whole. In simultaneous games,
the standard measures to quantify the inefficiency incurred due to selfish behavior
is the price of anarchy (PoA) [15] and price of stability (PoS) [2]. In both measures
we compare against the social optimum (SO, for short), namely the cheapest profile.
The PoA is the worst-case inefficiency of an NE (that is, the ratio between the cost of
a worst NE and the SO). The PoS is the best-case inefficiency of a Nash equilibrium
(that is, the ratio between the cost of a best NE and the social optimum). For the
dynamic setting we adjust these two measures to consider SPEs rather than NEs,
and we refer to them as DPoA and DPoS. We study the equilibrium inefficiency in
the classes of games that have SPEs. We show that the DPoA and DPoS in dynamic
singleton cost-sharing games as well as dynamic singleton congestion games coincide
with the PoA and PoS in the corresponding simultaneous class. As mentioned above,

[16, 8, 10] study games in which players arrive one after. Since their games are

139

sequential, they always have an SPE. They study the sequential PoA, and show
that it can either be equal, below, or above the PoA of the corresponding class of
RAGsS.

We then turn to study computational problems for dynamic RAGs. First, we
study the problem of deciding whether a given dynamic RAG has an SPE. We show
that the problem is PSPACE-complete for both congestion and cost-sharing games.
Our lower bound for cost-sharing games implies that finding an SPE in sequential
games is PSPACE-hard. To the best of our knowledge, while this problem was
solved in [16] for congestion games, we are the first to solve it for cost-sharing
games. We also study the problem of finding a schedule that admits an SPE under
given constraints on the order the players move, and show that this problem is also
PSPACE-complete. Finally, we consider dynamic games in which there is an order
on the resources that the players choose. So, if for two resources e; and ez, we have
e; < eg, then a player cannot choose e; in a later phase than e;. The motivation
for an order on resources is natural. For example, returning to network formation
games, a driver can only extend the path he chooses as the choices are made during
driving. We show that all our results carry over to the ordered case.

Due to lack of space, some proofs and examples are given in the appendix.

2 Preliminaries

Resource allocation games For & > 1, let [k] = {1,...,k}. A resource-
allocation game (RAG, for short) is a tuple G = {[k], E, {Z;}icpi]s {e}ecr}, Where
[k] is a set of k players; E is a set of resources; for i € [k], the set ¥; < 2F is a set of
objectives! for Player i; and, for e € E, we have that ¢, : N — R is a latency func-
tion. The game proceeds in one-round in which the players select simultaneously
one of their objectives. A profile P = (01,...,0,) € X1 X ... X ¥} is a choice of an
objective for each player. For e € E, we denote by nused(P,e) the number of times
e is used in P, thus nused(P,e) = [{i € [k] : e € 0;}|. For i € [k], the cost of Player i
in P, denoted cost;(P), is Y., lc(nused(P,e)).

Classes of RAGs are characterized by the type of latency functions and types of
objectives. In congestion games (CGs, for short), the latency functions are increas-
ing. An exceptionally stable class of CGs are ones in which the latency functions
are linear (c.f., [12, 6]); every resource e € E has two constants a. and b,, and the
latency function is l.(z) = a. - © + be. In cost-sharing games (SG, for short), each

resource ¢ € E has a cost ¢, and the players that use the resource share its cost,

We use “objectives” here rather than “strategies” as the second will later be used for dynamic

games.

140

thus the latency function for e is .(x) = . In particular, the latency functions are
decreasing. We use DCGs and DSGs to refer to dynamic CGs and dynamic SGs,
respectively. In terms of objectives, we study symmetric games, where the players’
sets of objectives are equal, thus ¥, = X, for all 4,5 € [k], and singleton games,

where each o € ¥; is a singleton, for every i € [k].

Dynamic resource allocation games A dynamic RAG is pair G = (G, v), where
G is a RAG and v : [k] — [k] is a scheduler. Intuitively, in a dynamic game, rather
than revealing their objectives at once, the game proceeds in phases: in each phase,
each player reveals one resource in his objective. Each phase is partitioned into
at most k turns. The scheduler dictates the order in which the players proceed
in a phase by assigning to each player his turn in the phases. If the scheduler
assigns the same turn to several players, they select a resource concurrently. Once
all players take their turn, a phase is concluded and a new phase begins. There are
two “extreme” schedulers: (1) players get different turns, i.e., v is a permutation, (2)
all players move in one turn, i.e., v = 1. We refer to games with these schedulers as
sequential and concurrent, respectively. Note that v might not be an onto function.
For simplicity, we assume that, for j > 1, if turn j is assigned a player, then so is
turn j — 1. We use ¢, to denote the last turn according to v, thus ¢, = max; v (7).

Let £, = E u {L}, where L is a special symbol that represents the fact that
a player finished playing. Consider a turn j € [k]. We denote by before(j) the set
of players that play before turn j; thus before(j) = {i € [k] : v(i) < j}. A player
has full knowledge of the resources that have been chosen in previous phases and
the resources chosen in previous turns in the current phase. A strategy for Player ¢
in G is a function f; : (Eik])* : (Eiefore(y(i))) — E,. A profile P = {f1,..., fx) is a
choice of a strategy for each player. The outcome of the game given a profile P,
denoted out(P), is an infinite sequence of functions 7!, 72, ..., where for ¢ > 1, we
have 7 : [k] — E,. We define the sequence inductively as follows. Let m > 1 and
j € |k]. Assume m — 1 phases have been played as well as j — 1 turns in the m-th
phase, thus 7', 7%, ..., 7™~ are defined as well as 7", : before(j) — E,. We define
m;" as follows. Consider a player 7 with v(i) = j. The resource Player i chooses in
the m-th phase is f;(7!,..., 7™, 77 ,). Finally, we define 7™ = 77"

We restrict attention to legal strategies for the players, namely ones in which the
collection of resources chosen by Player ¢ in all phases is an objective in 3J;. Also, once
Player i chooses L, then he has finished playing and all his choices in future phases
must also be 1. Formally, for a profile P = {f1,..., fx) with out(P) = «t, 72, ...
and i € [k], let out;(P) be w*(i), 7%(),.... For j = 1, let e; = 7/ (4) be the resource
Player i selects in the j-th phase. Thus, out;(P) is an infinite sequence over E.

We say that f; is legal if (1) there is an index m such that e; € E for all j < m

141

and e; = L for all j > m, and (2) the set {ej1,...,e,_1} is an objective in ¥;. (In
particular, a player cannot select a resource multiple times nor a resource that is not
a member in his chosen objective). We refer to an outcome in which the players use
legal strategies as a legal outcome and a prefix of a legal outcome as a legal history.

In out(P), every player selects a set of resources. The cost of a player is calculated
similarly to RAGs. That is, his cost for a resource e, assuming the load on it is 7,
is £.(7), and his total cost is the sum of costs of the resources he uses. When the
outcome of a profile P in a dynamic RAG coincides with the outcome of a profile @)
in a RAG G, we say that P and () are matching profiles.

Equilibria concepts A Nash equilibrium? (NE, for short) in a game is a profile in
which no player has an incentive to unilaterally deviate from his strategy. Formally,
for a profile P, let P[i < f!] be the profile in which Player i switches to the strategy
f! and all other players use their strategies in P. Then, a profile P is a NE if for every
i € [k] and every legal strategy f/ for Player i, we have cost;(P) < cost;(P|i < f!]).
It is well known that every RAG is guaranteed to have an NE [23].

The definition of NE applies to all games, in particular to dynamic ones. Every
NE @ in a RAG G matches an NE in a dynamic game (G, v), for some scheduler
v, in which the players ignore the history of the play and follow their objectives in
. However, such a strategy is not rational. Thus, one could argue that an NE is
not necessarily achievable in a dynamic setting. We illustrate this in the following

example.

Example 2.1 Consider a two-player DCG with resources {a, b}, latency functions
lo(x) = z and ly(x) = 1.5z, and objectives ¥ = Lo = {{a}, {b}}. Consider the
sequential scheduling in which Player 1 mowves first followed by Player 2. Since the
players’ objectives are singletons, the dynamic game consists of one phase. Consider
the Player 2 strategy fo that “promises” to select the resource a mo matter what
Player 1 selects, thus fa(a) = fo(b) = a. Let f¢ and f° be the Player 1 strategies
in which he selects a and b, respectively, thus fi(¢) = a and fl(e) = b. Note that
these are all of Player 1’s possible strategies. The profile P = {f°, fo) is an NE.
Indeed, Player 2 pays 1, which is the least possible payment, so he has no incentive
to deviate. Also, by deviating to f{, Player 1’s payoff increases from 1.5 to 2, so he
has no incentive to deviate either. Note, however, that this strategy of Player 2 is
not rational. Indeed, when it is Player 2’s turn, he is aware of Player 1’s choice. If
Player 1 plays f{, then a rational Player 2 is not going to choose a, as this results

in a cost of 2, whereas by b, his cost will be 1.5. Thus, an NE profile with fs may

2Throughout this paper, we consider pure strategies and deviations, as is the case in the vast
literature on RAGs.

142

not be achievable. []

To overcome this issue, the notion of subgame perfect equilibrium (SPE, for short)
was introduced. In order to define SPE, we need to define a subgame of a dynamic
game. Let G = (G,v), where G = ([k], E, {3;}ic[r, {Cc}ecr). It is helpful to consider
the outcome tree Tg of G, which is a finite rooted tree that contains all the legal
histories of G. Each internal node in 7g corresponds to a legal history, its successors
correspond to possible extensions of the history, and each leaf corresponds to a
legal outcome. Consider a legal history h. We define a dynamic RAG Gj,, which,
intuitively, is the game as G after the history h has been played. More formally,
the outcome tree of G, is the subtree ’7'gh whose root is the node h. We define the
costs in G, so that the costs of the players in the leaves of 7:;’1 are the same as the
corresponding leaves in 7g. Assume that h ends at the m-th turn. A profile P in
G corresponds to a trimming of 75 in which the internal node h has exactly one
child h - &, where @ is the set of choices of the players in v~ (m) when they play
according to their strategies in P. The profile P induces a profile P* in G, where
the trimming of 77 according to P" coincides with the trimming of G according to

P. We formally define the outcome tree and a subgame in Appendix A.

Definition 2.1 A profile P is an SPE if for every legal history h, the profile P" is
a NE in Gj,.

Note that the profile P = {(f?, f,) in the example above is an NE but not an
SPE. Indeed, for the history h = a, the profile P" is not a NE in G;, as Player 2 can

benefit from unilaterally deviating as described above.

3 Existence of SPE in Dynamic Congestion Games

It is easy to show that every sequential dynamic game has an SPE by unwinding
the outcome tree, and similar results have been shown before (c.f., [16]). The proof

can be found in Appendix B.
Theorem 3.1 Fvery sequential dynamic game has an SPE.

One could hope to prove that a general dynamic game G also has an SPE using
a similar unwinding of 7g. Possibly using the well-known fact that every CG is
guaranteed to have an NE [23]. Unfortunately, and somewhat surprisingly, we show
that this is not possible. We show that (very restrictive) DCGs might not have an
SPE. For the good news, we identify a maximal fragment that is guaranteed to have
an SPE.

143

Recall that a CG is singleton when the players’ objectives consist of singletons
of resources, and a CG is symmetric if all the players agree on their objectives.
We start with the bad news and show that symmetric DCGs and singleton DCGs
need not have an SPE, even with linear latency functions. We then show that the

combination of these two restrictions is sufficient for existence of an SPE in a DCG.
Theorem 3.2 There is a symmetric linear DCG with no SPE.

Proof: We first describe a linear DCG with no SPE, and then alter it to make
it symmetric. Consider the following three-player linear CG G with resources F =
{a,d’,b,V, c} and linear latency functions {,(z) = ly(z) = z, by (z) = 3z, by (z) = 11,
and le(z) = 4+ 2. Let 51 = 35 = {{a,d'},{b,V'}, {c}} and 35 = {{c},{d’,b}}.
Consider the dynamic game G in which Players 1 and 2 move concurrently followed
by Player 3. Formally, G = (G, v), where v(1) = v(2) = 1 and v(3) = 2.

We claim that there is no SPE in G. Note that since the players’ objectives are
disjoint, then once a player reveals the first choice of resource, he reveals the whole
objective he chooses, thus we analyze the game as if it takes place in one phase
in which the players’ reveal their whole objective. The profiles in which Players 1
and 2 choose the same objective are clearly not a SPE as they are not an NE in
the game G.. As for the other profiles, in Figure 2, we go over half of them, and
show that none of them is an SPE. The other half is dual. The root of each tree is
labeled by the objectives of Players 1 and 2, and its branches according to Player 3’s
objectives. In the leaves we state Player 3’s payoff. In an SPE, Player 3 performs
a best-response according to the objectives he observes as otherwise the subgame is
not in an NE. We depict his choice with a bold edge. Beneath each tree we note
the payoffs of all the players in the profile, and the directed edges represent the
player that can benefit from unilaterally deviating. In Appendix C, we construct a
symmetric DCG G’ by altering the game G above. We do this by adding a fourth

player and three new resources so that G’ simulates G. L]

{a bW {a a'} {c} {b vy gy {b b/} {a '}

{c}/ \{a g {c}/ \{ e {c}/ \{a e / \{a g
1 :

2

win

3

3
e

NI vJ“\J
»M»—- w\m

win m\»—‘

(13,2 ,1%) (211 1

wlno

.2%) (2 2%,2%)

—~
[\]
e

)

NS
N

Figure 2: Profiles in the game G with no SPE.

Theorem 3.3 There is a singleton linear DCG with no SPE.

144

Proof: Consider the four-player linear singleton CG G with resources F =
{a,b,c,d} and linear latency functions (,(z) = 45 -z, {(x) = 21 -z, L(2) = 3x,
and ly(x) = 4x. Let ¥ = {{a}, {c}}, Lo = {{b},{d}}, ¥3 = {{b}, {c}}, and 4 =
{{c},{d}}. Consider the dynamic game G in which Players 1 and 2 move concurrently,
then Player 3, and finally Player 4. Formally, G = (G, v), where v(1) = v(2) = 1,
v(3) =2, and v(4) = 3.

We go over all the profiles in G and show that none of them is an SPE. The
profiles are depicted in Figure 3. Similar to Theorem 3.2, the root of each tree is
labeled by the objective of Players 1 and 2, its branches according to Players 3 and
4’s objectives, and in the leaves we state the payoffs of Players 3 and 4 assuming

they choose their best choice given the other players’ choices. [

e {c} oy {éi () {c} (@

A {c}/ \ld} {c}/ \{d} {c}/ \{d}t {3/ \{d} {c}/ \{d} {}) \{&} {c}/ \{d}
6,6 5,4 21,6 21,8 6,4 25,3 218 3,8
<4g.2§,3,4> (3,5,5,4) <G,4,2§,G> <4;,4,2;,3>

Figure 3: The profiles of the singleton DCG with no SPE. Bold edges depict Play-
ers 3 and 4’s best choices given the other players choices. Directed edges represent

the player that can benefit from unilaterally deviating.

We now prove that combining the two restrictions does guarantee the existence
of SPE. We note that while our negative results hold for linear DCGs, which tend
to be stabler than other DCGs, our positive result holds for every increasing latency

functions.
Theorem 3.4 FEvery symmetric singleton DCG has an SPE.

Proof: Consider a symmetric singleton DCG G = (G, v). Recall that since G is
a singleton game, every outcome of G consists of one phase. Let P be an NE in G
(recall that according to [23] an NE exists in every CG). Since G is symmetric, we
can assume that, for 1 < j < k, the players that move in the j-th turn do not pay
more than the players that move after them. Formally, for i, € [k], if v(i) < v(i'),
then cost;(P) < costy(P). In particular, the players who move in the first turn pay
the least, and the players that move in the last turn pay the most. We construct
a profile @) in G and show that it is an SPE. Intuitively, in @), the players follow
their objectives in P assuming the previous players also follow it. Since the costs are

increasing with turns, if Player ¢ deviates, a following Player ;5 will prefer switching

145

resources with Player ¢ and also switching the costs. Thus, the deviation is not
beneficial for Player i. In Appendix D, We construct @) formally and prove that it
is an SPE. [

4 Existence of SPE in Dynamic Cost-sharing Games

Cost sharing games tend to be less stable than congestion games in the concurrent
setting; for example, very simple fragments of multiset cost-sharing games do not
have an NE [5] while linear multiset congestion games are guaranteed to have an
NE [6]. In this section we are going to show that, surprisingly, there are classes of
games in which an SPE exists only in the cost-sharing setting. Still, SPE is not

guaranteed to exist in general DSGs. We start with the bad news.
Theorem 4.1 There is a DSG with no SPE.

Proof: Consider the following four-player SG G with resources E = {a, d’,a”,b,V/,b" ¢, , "}
and costs ¢, = ¢, = ¢, = 6, ¢y = cy = ¢ = 4, and ¢y = ¢ = co = 3.

Let ¥y = {{a,d'},{b,b"}}, Yo = {{b,V'},{c,"}}, B3 = {{c,d},{a,a"}}, and &, =

{{a,d'}, {b,0'}, {c,'}}. Consider the dynamic game G in which players 1,2, and 3

move concurrently followed by Player 4. Formally, G = (G, v), where v(1) = v(2) =

v(3) =1 and v(4) = 2.

We claim that there is no SPE in G. Similar to Theorem 3.2, since the players’
objectives are disjoint, we analyze the game as if it takes place in one phase. In
Figure 4, we depict some of the profiles and show that none of them are an SPE.
As in Theorem 3.2, the root of each tree is labeled by the objectives of Players 1, 2,
and 3, its branches according to Player 4’s choices, and in the leaves we state the
cost of Player 4 assuming he chooses his best choice given the other players’ choices.

Finally, it is not hard to show that every profile not on the cycle of profiles cannot
be an SPE. [

{b b”} {b b’} {a a”} {a a'}, {b,b'}, {a a”} {a, a’} {c "} a, a”} {a a'}; {c c”} {c '}

a0} / {bX{ca} {aa}/ wX{cc} fa.a') / {k{cu} a0’} / {bk{ca}
1

(5,4,9,4) (4,10,5,4) (4,9,5,4) (10,5,4, 4)

4

Figure 4: Profiles in the game with no SPE. Bold edges depict Player 4’s best choice
given the other players choices. Directed edges represent the player that can benefit

from unilaterally deviating.

146

Recall that singleton DCGs are not guaranteed to have an SPE (Theorem 3.3).
On the other hand, we show below that singleton DSGs are guaranteed to have an
SPE. In order to find an SPE in such a game, we use a firmer notion of an equilibria
in SGs.

A strong equilibria (SE, for short) [3] which is stable against deviations of coali-
tions of players rather than deviations of a single player as in NEs. Formally, consider
a singleton SG G = ([k], E, {E;}ic[s]> {Ce}ecE), a profile P = {0y, ...,0), a coalition
of players C' < [k], and a joint move S € | ;. El{i} for the members of the coalition.
We denote by P[C < S| ={01,...,0}) the profile in which the players in C' switch
to their objective in S, thus o, = S(i) for every i € C, and o = o; for i ¢ C. We
say that S is beneficial for C' if it is beneficial for all the members of the coalition,
thus for every ¢ € C, we have cost;(P[C < S]) < cost;(P). We say that P is an SE
if there is no coalition that has a beneficial move.

We show a connection between strong equilibria and SPEs in singleton SGs. It

is shown in [13] that every singleton SG has an SE.

Theorem 4.2 Consider a singleton DSG G = {(G,v). Then, every strong equilib-
rium in G matches an SPE of G. In particular, every singleton DSG has an SPE.

Proof: We describe the intuition of the proof and the details can be found in
Appendix E. Consider a singleton DSG G = (G, v), and let) be an SE in G. We
describe a profile P in G that matches @), and we claim that it is an SPE. Consider
a history h that ends in the i-th turn. Assume the players that play in h follow their
objective in Q. Then, the players who play next, namely these in v~ (i + 1), also
follow (). Thus, P matches (). The definition of the strategies in P for histories
that do not follow @ is inductive: assume only the players in v~ (i) choose differently
than in @, then the subgame G, is a singleton DSG. We find a strong equilibrium
in G, and let the players in v (i + 1) choose according to it.

We claim that P is an SPE. Assume towards contradiction that there is a Player ¢
who can benefit from a unilateral deviation to a resource e. Such a deviation initiates
subsequent deviations from players who choose in later turns than Player :. We
consider the outcome of the game, and the players that play differently than in Q.
Let I, D < [k] be the set of players whose cost increases and decreases, respectively,
with respect to their cost in (). We make several observations. Since @) is an SE,
we have [# (. Moreover, there must be a player j; € I who deviates to e. Assume
Player j; chooses ¢’ in). Since G is a SG, there must be a player jp, € D who
chooses €' in @), but deviates following Player i’s deviation. We continue recursively
and identify a sequence of resources e = ey, e, ... such that for every j > 1, there
are j;y € I and jp € D such that both players deviate into e;. Moreover, Players j;

and (7 + 1)p use the same objective in). A contradiction follows from the fact that

147

since there are finitely many resources, the sequence has a loop. O]

Remark 4.3 One could suspect that existence of strong equilibria in the underlying
RAG implies existence of an SPE in the dynamic game. However, [13] shows that
singleton CGs are guaranteed to have an SE, while we show in Theorem 3.3 that
singleton DCGs are not guaranteed to have an SPE. In fact, [13] shows that every
NE in a singleton CG is also an SE, while it is shown in [25] that this is not the case
for singleton SGs.

One could also suspect that Theorem 4.2 generalizes to richer types of objectives.
That is, we can ask whether, for an DSG G = (G, v), an SE in G matches an SPE
in G. Theorem 4.1 shows that this is not the case as in the SG there, the profile
b, 0"}, {b, '}, {a,a"},{b,b'}) is an SE.

Remark 4.4 Consider a symmetric DSG G = (G, v). The social optimum profile
O in G is attained when all the players choose the same cheapest objective, namely
the objective with the minimal sum of resource costs. It is not hard to see that O is
an NE as a deviation results in a more expensive objective with less sharing. Recall
that we study SPE in dynamic games as NE might contain strategies that will not
be used by rational players. Consider a profile P in G that matches O (note that
there can be many such profiles, and some can consist of strategies that are chosen
by rational players). The same arguments stated above imply that P is an NE.
Nevertheless, P may not be an SPE, as G might contain a subgame with no SPE.

5 Equilibrium Inefficiency

It is well known that decentralized decision-making may lead to sub-optimal solu-
tions from the point of view of society as a whole. We define the cost of a profile
P, denoted cost(P), to be 3., cost;(P). We denote by OPT the cost of a social-
optimal solution; i.e., OPT = minp cost(P). Two standard measures that quantify
the inefficiency incurred due to self-interested behavior are the price of anarchy
(PoA) [15, 21] and price of stability (PoS) [2, 26]. The PoA is the worst-case inef-
ficiency of an NE; The PoA of a game G is the ratio between the cost of the most
expensive NE and the cost of the social optimum. The PoS measures the best-case
inefficiency of an NE, and is defined similarly with the cheapest NE. The PoA of a
family of games F is supge r POA(G), and the definition is similar for PoS.

In dynamic games we consider SPE rather than NE. We adapt the definitions
above accordingly, and we refer to the new measures as dynamic PoA and dynamic
PoS (DPoA and DPoS, for short). We study the equilibrium inefficiency in the
classes of games that are guaranteed to have an SPE, namely singleton DSGs and

symmetric singleton DCGs.

148

The lower bounds for the PoA and PoS for singleton SG and singleton symmetric
CGs follow to the dynamic setting as we can consider the scheduler in which all
players choose simultaneously in the first turn. The upper bounds on the DPoS for
singleton symmetric DCGs follow from the fact that every NE in singleton symmetric
CGs matches an SPE in the corresponding dynamic game. For singleton DSG, recall
that an SE in the traditional game matches an SPE in the dynamic game. It is shown
in [29] that singleton SGs have an SE whose cost is at most log(k) - OPT, which
coincides with the log(k) lower bound. Finally, the upper bound on the DPoA for
singleton DSGs follows from the same argument as traditional games. For congestion
games, it follows by applying a recent result by [10] to our setting. The details can
be found in Appendix F.

Theorem 5.1 The DPoA and DPoS in singleton DSGs and singleton symmetric
DCGs coincide with the PoA and PoS in singleton SGs and singleton symmetric
CGs, respectively.

6 Deciding the Existence of SPE

In the previous sections we showed that dynamic RAGs are not guaranteed to have
an SPE. A natural decision problem arises, which we refer to as ISPE: given a
dynamic RAG, decide whether it has an SPE. We show that the problem is PSPACE-
complete in DSGs as well as DCGs. We start with the lower bound. The crux of

the proof is given in the following lemma.

Lemma 6.1 Given a QBF instance 1, there is a fully sequential game G, that is
either a DCG or a DSG, and two constants v,0 > 0, such that in every SPE P in
Gy, (1) if ¢ is true, then costi(P) <y, and (2) if ¢ is false, then cost;(P) > 0.

Proof: For DCGs, such a construction is described in [16], which uses a con-
struction by [28] in order to simulate the logic of a NAND gate by means of a CG.
For SGs, we describe the construction below, which is inspired by the construction
in [16].

The input to the TQBF problem is a Boolean circuit ¢ with inputs z1, ..., x,,
where the variables are partitioned into sets of existential variables F, ..., E,, and
universal variables Ay, ..., A,,. We say that ¢ is true (in which case it is in TQBF)
it IE\VA;, ... JE, VA, Wlog, we assume that ¢ is composed only of NAND gates.
This is indeed wlog from every Boolean circuit ¢ we can construct an equivalent
circuit ', with only NAND gates in polynomial time.

We describe a DSG that simulates the logic of a NAND gate. We refer to the

game as a gate game (see an example in Figure 5). The gate game simulates a gate

149

with two inputs and r outputs. It has r + 2 players, where the first two players
correspond to the two inputs of the gate, and we refer to them as I; and I, and the
other players, which we refer to as Oq, . .., O,, correspond to the outputs to the gate.
The resources are {3}, : j € {1,2}} U {¢’, 0}, 0 : j € {1,...,7}} standing for input,
gate, and output resources. The costs of the input resources is 1, the costs of the
gate resources is 3¢, and every 0-output resource costs 1 while 1-output resources
cost 1 + 1.1e. Each player has two objectives: a 1 objective and a 0 objective. For
j=12let ¥, = {3, (i, g, ..., g3} Forj =1,...,7, let Yo, = {0’} {¢7, 0%} }.
Finally, the game is sequential. The exact order is not important as long as the
input players play before the output players.

In Appendix G we prove that a gate game simulates the logic of a NAND gate.
Namely, in the unique SPE of the game, the output players select their 1-objectives
iff the input players select their 0-objectives. We also show how to connect gate

games to construct a game that simulates the logic of a given circuit. L]

® &

Figure 5: An input ¢ to TQBF and the resulting dynamic game. An edge between
two resources represents the fact that they belong to the same objective of one of

the players.

To conclude the lower-bound proof, we combine between the game that is con-
structed in Lemma 6.1 and a game that has no SPE as in the examples we show in
the previous sections. For the upper bound, consider a dynamic RAG G, and let Tg
be the outcome tree of G. Recall that there is a one-to-one correspondence between
leaves in 7g and legal outcomes of G. In order to decide in PSPACE whether G has
an SPE, we guess a leaf [in 7g and verify that it is an outcome of an SPE. Thus,

we ask if there is an SPE P in G whose outcome corresponds to [.

Theorem 6.2 The 1SPE problem is PSPACE-complete for dynamic RAGs.

7 Efficient Stable Scheduling

The underlying assumption in game theory is that the players are selfish yet an
authority may construct components of the game, and its challenge is to do so in

a way that leads to stability. In some settings, the RAG is fixed and the authority

150

only has the power schedule the players. We assume that we are given a set S of
constraints on schedulers that the authority can impose. A constraint s € S is either
a sequential constraint, of the form i; < iy, for iy,is € [k], stating that Player i,
moves before Player iy, or a concurrent constraint, of the form iy, = 75, stating that
the Players 7; and 75 move concurrently. Scheduling has a price. The input also
contains a value function ¢ : S — Q that assigns to each constraint a cost or a
reward. Intuitively, when ¢(s) = > 0, it means that the authority pays 7 in order
to force s in v. Then, when ¢(s) = v < 0, it means that the authority is rewarded =
if v respects s. Consider a scheduler v. Let R < S be the set of constraints satisfied
by v. Then, costg (V) = > .5 c(s).

The budgeted scheduling problem (BS problem, for short) gets as input a RAG
G, a set of constraints S, a value function ¢ : S — @, and a budget 8. The
goal is to decide whether there is a scheduler v with costs.(v) < 8 such that the
dynamic game (G, v) has an SPE. The proof of the following theorem can be found
in Appendix 1.

Theorem 7.1 The BS problem is PSPACE-complete.

8 Games with Ordered Resources

In many settings it makes sense to restrict the order in which the players select
their objectives. For example, recall that a network formation games is played on a
network, and each player chooses a path that connect his source and target vertices.
When decisions are taken while the path is being generated, it is often the case that
a player cannot select the edges on his path in any order. Rather, he must extend
his path one edge at a time. The corresponding constraints state that if a player
uses an edge (u, v), then, unless u is the source vertex, in a previous phase an edge
that ends in © must have been chosen.

Generally speaking, we assume a dynamic game is also given by a partial order
< on the resources. A legal strategy is one that does not violate the order. Thus,
if the sequence of choices for a player in some outcome is ey, es,...,e,,, then there
are no 1 <1 < j < m such that e; < e;. We restrict the players to choose only legal

strategies and we assume there is at least one legal strategy for each player.

Theorem 8.1 Our results in terms of SPE existence, equilibrium inefficiency, and

computational complexity coincide for ordered dynamic games and dynamic games.

Proof: Note that ordered dynamic games generalize dynamic games as we allow
using the empty partial order. So, all our bad news follow to this setting. In terms of

equilibrium existence and inefficiency, our good news are for singleton games. Such

151

games cannot be ordered. As for computational complexity, our upper bounds can

easily be adapted to ordered games. [

9 Discussion and Future Research

We studied an addition of dynamics to resource allocation games. The dynamics we
studied extend traditional RAGs in two natural ways: the players select one resource
at a time rather than choosing their whole objective in one shot, and the players
perform choices in an ordering that is neither sequential nor fully concurrent. A
future research direction is to apply these two natural extensions to other games.

We studied stable solutions of dynamic RAGs while focusing on SPE. We showed
classes of dynamic RAGs that are guaranteed to have an SPE, and showed that most
classes need not have one. The existence of a stable outcome is crucial, and a natural
future research direction is a quest for stable classes. In addition to restrictions on
the setting, like symmetry or singleton objectives, one can think about different
mechanisms for allocating costs to resources — possibly ones that take the dynamics
into account, and, similar to issues we have studied in the paper, the ability to
stability via controlled scheduling.

Finally, the question of the benefits of choosing redundant resources becomes of
special interest in the dynamic setting. Recall that we require the set of resources
that a player chooses in an outcome of a game to be one of his objectives. Allow-
ing players to use redundant resources amounts to weakening this requirement and
replacing it by one in which the set (in fact, multiset) of resources that a player
chooses contains one of his objectives. In the traditional setting, it is not hard to
see that choosing a redundant resource cannot be beneficial. In the dynamic setting
this is not the case, as a player may choose a redundant resource in order to mislead
the other players or in order to “pass” in his turn (a variant of Example 1.1, in which
we remove Player 1’s objectives that include the resource g, demonstrates this). An
interesting direction for future research is the study of a game in which players are

allowed to choose redundant resources.

References

[1] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49(5):672-713, 2002.

[2] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and
T. Roughgarden. The price of stability for network design with fair cost al-
location. SIAM J. Comput., 38(4):1602-1623, 2008.

152

[3]

[7]

[11]

[12]

[13]

R. Aumann. Acceptable points in games of perfect information. Contributions
to the Theory of Games, 4:287-324, 1959.

G. Avni and O. Kupferman. Synthesis from component libraries with costs. In
Proc. 25th Int. Conf. on Concurrency Theory, pages 156-172, 2014.

G. Avni, O. Kupferman, and T. Tamir. Network-formation games with regular
objectives. In Proc. 17th Int. Conf. on Foundations of Software Science and
Computation Structures, volume 8412 of Lecture Notes in Computer Science,
pages 119-133. Springer, 2014.

G. Avni, O. Kupferman, and T. Tamir. Congestion games with multisets of
resources and applications in synthesis. In Proc. 35th Conf. on Foundations of

Software Technology and Theoretical Computer Science, pages 365-379, 2015.

V. Bilo, A. Fanelli, and L. Moscardelli. On lookahead equilibria in congestion
games. In Web and Internet Economics - 9th International Conference, WINE
2013, Cambridge, MA, USA, December 11-14, 2013, Proceedings, pages 5467,
2013.

J. R. Correa, J. de Jong, B. de Keijzer, and M. Uetz. The curse of sequen-
tiality in routing games. In Web and Internet Economics - 11th International
Conference, WINE 2015, Amsterdam, The Netherlands, December 9-12, 2015,
Proceedings, pages 258-271, 2015.

H. Chen and T. Roughgarden. Network design with weighted players. Theory
Comput. Syst., 45(2):302-324, 2009.

J. de Jong and M. Uetz. The sequential price of anarchy for atomic congestion
games. In Web and Internet Economics - 10th International Conference, WINE
2014, Beijing, China, December 14-17, 2014. Proceedings, pages 429-434, 2014.

D. Fotakis. Stackelberg strategies for atomic congestion games. In Algorithms
- ESA 2007, 15th Annual European Symposium, Filat, Israel, October 8-10,
2007, Proceedings, pages 299-310, 2007.

T. Harks and M. Klimm. On the existence of pure Nash equilibria in weighted
congestion games. Math. Oper. Res., 37(3):419-436, 2012.

R. Holzman and N. Law-Yone. Strong equilibrium in congestion games. Games
and Economic Behavior, 21(1-2):85-101, 1997.

R. Koch and M. Skutella. Nash equilibria and the price of anarchy for flows
over time. Theory Comput. Syst., 49(1):71-97, 2011.

153

[15] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. Computer Science
Review, 3(2):65-69, 2009.

[16] R. P. Leme, V. Syrgkanis, and E. Tardos. The curse of simultaneity. In Inno-
vations in Theoretical Computer Science 2012, Cambridge, MA, USA, January
8-10, 2012, pages 60-67, 2012.

[17] Y. Lustig and M.Y. Vardi. Synthesis from component libraries. STTT, 15(5-
6):603-618, 2013.

[18] I. Milchtaich. Congestion games with player-specific payoff functions. Games
and Economic Behavior, 13(1):111 — 124, 1996.

[19] V. S. Mirrokni, N. Thain, and A. Vetta. A theoretical examination of prac-
tical game playing: Lookahead search. In Algorithmic Game Theory - 5th
International Symposium, SAGT 2012, Barcelona, Spain, October 22-23, 2012.
Proceedings, pages 251-262, 2012.

[20] J. Neumann. Zur theorie der gesellschaftsspiele. Mathematische Annalen,
100(1):295-320.

[21] C. H. Papadimitriou. Algorithms, games, and the internet. In Proc. 33rd ACM
Symp. on Theory of Computing, pages 749-753, 2001.

[22] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th
ACM Symp. on Principles of Programming Languages, pages 179-190, 1989.

[23] R.W. Rosenthal. A class of games possessing pure-strategy Nash equilibria.
International Journal of Game Theory, 2:65-67, 1973.

[24] T. Roughgarden and E. Tardos. How bad is selfish routing? Journal of the
ACM, 49(2):236-259, 2002.

[25] O. Rozenfeld and M. Tennenholtz. Strong and correlated strong equilibria
in monotone congestion games. In Internet and Network Economics, Second
International Workshop, WINE 2006, Patras, Greece, December 15-17, 2006,
Proceedings, pages 74-86, 2006.

[26] A. S. Schulz and N. E. Stier Moses. On the performance of user equilibria in
traffic networks. In Proceedings of the Fourteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland,
USA., pages 86-87, 2003.

[27] R. Selten. Spieltheoretische behandlung eines oligopolmodells mit nach-
fragetragheit. Zeitschrift fir die gesamte Staatswissenschaft, 121, 1965.

154

[28] A. Skopalik and B. Vocking. Inapproximability of pure nash equilibria. In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
Victoria, British Columbia, Canada, May 17-20, 2008, pages 355-364, 2008.

[29] V. Syrgkanis. The complexity of equilibria in cost sharing games. In Proc. of the
6th International Conference on Internet and Network Economics, WINE’10,
pages 366377, 2010.

A Full Definitions: Outcome Trees and Subgames

We denote by 7g, the outcome tree of a dynamic RAG G = (G, v). The root of
Tg corresponds to the empty prefix €. Recall that ¢, is the maximal turn in v. Let
m > 1, and j € [t,], and consider a node that corresponds to a prefix h of a legal
outcome, after m —1 phases have been played as well as j—1 turns in the m-th phase.
Thus, h = «',..., 7™ ' 77" |, where 7} : [k] — E, and 7]", : before(j) — E.. We
say that h is controlled by the players in v~ (j). Note that if v is sequential, then
each node is controlled by exactly one player. The children of the node h contain all
the possible extensions of h with a legal joint move by the players in v~ (j). Thus, a
child 7’ of h is a prefix of a legal outcome and it is of the form b’ = 7', ..., 7™~ 77",
where 77" : before(j+1) — £, and 7] and 7} | agree on before(j). The edge (h, h')
in 75 corresponds to the joint move & : v (j) — E, where for every i € v (j) we

have 7 (i) = (7). We sometimes use h - @ to refer to h'. Note that if j = ,, then

1 m—+1

B’ is of the form #',... 7™ #""". Finally, h is a leaf if j = ¢, and all players have
finished playing in the m-th phase, thus the choices of all the players in the next
phases must be |. Clearly, 7Tg is a finite tree.

Consider a profile P = {fy,..., fx). It is possible to trim 7 according to P so
that each internal node h has exactly one child h - &, where @ is the joint objective
in which the players who control h follow P. That is, for each Player ¢« who controls
h we have 5(i) = f;(h). Note that by trimming 7g according to P, we leave exactly
one leaf [that is reachable from the root. Note that both out(P) as well as the leaf
[correspond to the same profile in the underlying RAG G. For every ¢ € [k], the
cost of Player ¢ in [is cost;(P).

m—1 _m

We proceed to define a subgame. Let h = 7, ..., 7 ST

be a legal history.
Note that m—1 phases have been played as well as 7 —1 turns in the m-th phase, and
the players that should play next are v~ (j). The subgame G, = (Gj,,v,) of G is a
dynamic RAG with G, = ([k], E, {Z!'} i, {fe }eer), where the sets £ of objectives
are defined as follows. Consider i € [k]. Let ey, ..., e, be the choices of Player i in
h over E|. Let m’ < m be the last index such that e, € E. Let ol = {e1,..., e}

be the edges in E that Player i collects during h, and let nused(h,e) be the load

155

generated on e in h by all the players, thus nused(h,e) = |{i € [k] : e € ol}|.
The set of objectives of Player i in G} is X%. Each objective in ¥ corresponds
to an objective in ¥; (that is, Player i’s objectives in), minus the resources that
have been collected in h, thus ¥ = {o\o" : o € X;}. The cost Player i pays in a
profile P = {0y, ...,0%) takes into account also the use of resources in the history
h, thus cost;(P) = Zee(ai(e)w?(e)) le(nused(h, e) + nused(P,e)). Recall that j — 1
turns have been played in the last phase in h. Thus, we “shift” the scheduler v,
by j. For [€ [k], the players v (I) who are scheduled to play in the I-th turn by
v, are scheduled to play in the ((l —7) mod k:) + 1 turn by v,. In particular, for
every i € v (j), we have v,(i) = 1. Finally, consider a strategy f in G. We define
a strategy f" in the game G, by f"(z) = f(h-x). Given a profile P = {(fi1,..., fi),
the corresponding profile in Gy, is P" = (ff, ..., fI".

B Proof of Theorem 3.1

Given a sequential game G, we construct an SPE by “unwinding” the outcome tree
Tg in a backwards inductive manner. Consider an internal node h in 7g. Since G
is sequential, there is a unique Player ¢ who controls h. If h is a leaf, then L is the
only choice Player ¢ can make, and we set his strategy to select L. Assume h is
an internal node, and let ey, ..., e, be the possible resources Player ¢ can select in
h. Let hy,...,h, be the children of the node h in 7g. Assume by induction that
there is an SPE in the games Gp,,,...,Gp,,, and let v, ..., 7, be Player i’s costs in
these SPEs. We set Player ¢’s choice in h to be a resource e; that minimizes his
payment, thus 4, = min{vy,...,vn}. Clearly, this profile is an NE in the subgame
Grn. We refer to this choice of Player i as a best response to the history h that he
observes. Note that every choice of Player ¢ that achieves a higher cost is not an
NE. In particular, if at every node h there is a unique best response for the player

that controls A, then there is a unique SPE in G.

C Proof of Theorem 3.2

To conclude the proof, we construct a symmetric CG G’ by altering the game G
above. We add a fourth player and three new resources d, e, and f, with latency
functions ¢4(x) = 10z, l.(z) = 25z, and ¢;(z) = 30. The other resources are as in
G. The objectives of the players’ are symmetric. They consist of 31 U ¥y, where we
add d to every strategy in >, and e to every strategy in 5. We also add a singleton
objective {f}. Formally, the objectives are {{f}} U {oc u{d}:0e X} u{ou {e}:

o € Yo}. Finally, we define a scheduler v/ that is similar to v only that Player 4

156

moves last, thus /(1) = /(2) = 1, V/(3) = 2, and /'(4) = 3.

We claim that G’ = (G’, V') has no SPE. We claim that in every profile that is
a candidate to be an SPE, the choice of Players 1 and 2 in the first phase is d, the
choice of Player 3 is e, and the choice of Player 4 is f. This follows from the following
three properties: (1) the costs of these three resources is much higher than that of
the other resources, so the players’ best response in the first phase is to minimize
the cost they pay for them, (2) using d at most twice is more beneficial than using
e, and using d three times is more costly than using e once, and (3) using e once is
more beneficial than using f once, and using f once is more beneficial than using
e twice. Once the first phase is played, the analysis is the same as in the game G,

which we proved not to have an SPE.

D Proof of Theorem 3.4

We construct a profile Q = {f1,..., fr) in G and show that it is an SPE. Consider
a history h. For a resource e € E, we define nused(h,e) and nused(P,e) to be the
loads on e in A and P, respectively. We say that h is consistent with P if for every
e € E, we have nused(h, e) < nused(P,e). When P is clear from the context we do
not state it implicitly.

We first define the strategies in () w.r.t. consistent histories. Consider such a
history h that ends before the j-th turn, thus the players who control the node h
in 7g are v (j). We define the strategies in @ as if the players in v~ (j) move in
a sequential order. Let iy,4s,...,i, be an arbitrary order on the players in v~ (j).
Then, for 1 <! < n, we define the strategy f;, of Player 7; to perform a best response

to the objectives of players in before(j), whose objectives he observes, and as if he

also observes the objectives of the players iy, ...,4;_; who also move in the j-th turn.
We formally define f;,. Let A’ be the history h concatenated with the objec-
tives of the players i1,...,7,_1. We say that a resource e € FE is full in A’ if

nused(h',e) = nused(P,e). Recall that f; is defined w.r.t. h. We define f; (h)
to be a resource e that is not full after A’ and, assuming all resources will even-
tually be filled up, choosing e will cost the least for Player i;, thus e minimizes
{l.(nused(P,e)) : nused(h',e) < nused(P,e)}. Note that since players never choose
a resource that is full, the history h concatenated with the choices in the j-th turn,
is a consistent history.

We have not yet defined the strategies in () w.r.t. histories that are inconsistent
with P. Still, we can show that for every history h that is consistent with P, the
profile Q" is an NE in G;,. Assume that A ends before the j-th turn. We first show

that for every Player i € v7'(j), choosing a resource that is not full in h dominates

157

choosing a resource that is already full. That is, no matter how the other players
move, it is always more beneficial to choose a resource that is not yet full over one
that is full. Then, all that is left in order to prove that Q" is an NE, is to show that
no player can benefit from deviating to a resource that is not full. Such a deviation
results in a history that is consistent with P for which we have defined the strategies
in Q. Intuitively, such a deviation is not beneficial as we defined @) so that players
that move first pay less. By deviating, a player will “switch” costs with a player
that moves after him, thus his cost cannot decrease.

We make an observation before proving the claim. Assume the players v~ ()
select a joint objective @ such that h -7 is a history consistent with P. It is not hard
to see that out(Q"?) is also consistent with P. Thus, for each Player i € v7(j), we
have cost;(Q") = costy(P), for some i’ € [k] (possibly ¢/ = i). Note that Q" is a
profile in the game G, whereas P is a profile in the game G.

We proceed to prove that for every i € v~ (j), Player i cannot benefit from
unilaterally deviating from the profile Q" in the game Gj,. Assume towards contra-
diction that Player ¢ can benefit from unilaterally deviating and choosing a resource
e € F. Recall that since G is a singleton game, Player ¢ does not move again.
Let & be the joint move at h according to Q", and let b’ = h-&. We distinguish
between two cases. First, assume the resource e is full in the history hA'. Thus,
nused(h',e) = nused(P,e). Note that Player i’s deviation forms a history that is
not consistent with P and we have not yet defined the strategies in) w.r.t such
histories. Still, we can show that such a deviation is not beneficial. Note that the
load on e, no matter how the other players move is at least nused(P,e) + 1. Re-
call that cost;(Q") = costy(P), for some i’ € [k]. Since G is a symmetric game,
Player ¢’ can choose the objective e, thus e € ¥;. Since P is an NE, we have
costy(P) < costy(Pli’ < e]). Note that the load on e in the profile P[i’ < e] is ex-
actly nused(P,e) + 1. Since G is a congestion game, the cost of e increases with the
load on it. Thus, the cost Player i pays after deviating is at least costy (P[i’ < e]),
which is not beneficial, and we reach a contradiction.

In the second case, the resource e to which Player ¢ deviates is not full in the
history hA’. Let h” be the history after Player i’s deviation. Then, h” is a history
consistent with P, and @ is defined w.r.t h”. Let P’ be the profile in G that
corresponds to the outcome of @ in the subgame Gy». Let [€ [k] be the player
that selects e in P’. Thus, cost;(P’') = cost;(Q). Recall that according to @, at h,
Player ¢ should select the cheapest resource that is not full. Since Player ¢ deviates,
the resource e is not that cheapest resource. So, Player [moves after Player i, where
by “after” we either mean that v(i) < v(l) or v(i) = v(l) but ¢ comes before [in
the arbitrary order we fix for the players in v(7)-th turn. Thus, cost;(Q) = cost;(Q),

and the deviation is not beneficial for Player i.

158

To conclude the proof, we complete the definition of the strategies in). The
definition is inductive. Let A’ be a history consistent with P, and let @ be a joint
move such that the history h = h'-7 is inconsistent. Since G is a singleton symmetric
game, so is the game G,. Thus, we find an NE profile P" in GG;, and continue as in

the above.

E Proof of Theorem 4.2

Let P = {f1,..., fry be the profile that is described in the body of the paper whose
outcome coincides with the SE). We claim that P is an SPE. Consider a history A
that ends before the j-th turn, where assume that the players in h follow their choices
in). For the other histories the proof is similar. Assume towards contradiction
that there is i € v (j) such that Player i can benefit from unilaterally deviating to
a strategy f/. We think of the outcome of P[i « f/] as a profile Q' = {(a1,...,0})
in G. Let C' < [k] be the players whose objectives in @ differ from their objectives
in Q. Let I, D < C be the partition of C' to players whose payoff in)" increase and
decrease, respectively, with respect to their outcome in (). Formally, if ¢ € I, then
costi(Q) = cost;(Q)'), and if i € D, then cost;(Q) < cost;(Q'). Since @ is an SE, the
coalition C' cannot all benefit, thus I # .

Consider a resource o such that there is a player j € D with o} = 0. We make
three observations. (1) there is j; € I such that o = o. Otherwise, in the game G,
the coalition of players in C' that play o in Q' can benefit from deviating from Q,
contradicting the fact that it is an SE.

(2) There is j, € D such that Players j; and js choose the same objective in @,
thus o;, = 0j,. Assume otherwise. Let Player j be the first player that “leaves”
0j,, thus Player j chooses 0}, in) and not in () and this is the first such player to
choose. Note that if j € I, then by staying in o,, his cost cannot increase, thus the
deviation is not beneficial, and we reach a contradiction.

(3) Note that o # of,. Indeed, players j; and j, pay the same in @ while
Player j;’s payoff in ' is higher than it is in) and Player j,’s payoff is lower.

Recall that we assume that Player i’s objective in () differs from his objective
in (' and that i € D. We find a sequence of resources ey, e, ..., and for every
J = 1, we associate with the resource e; two players j; € I and j; € D such that

/

— A .
G5, = 04, = €5

Consider j > 1. Assume there is a player j; € D with o} = e;. By (1), there is a

First, we define e; = o and we associate i with ey, thus 1; = i.

ji € I with o’ = e;, and we associate j; with e;. By (2), there is (j + 1)y € D such
that Players (j + 1)q and j; choose the same resource in P, thus o, = 0(;j;1),. We

define the next resource in the sequence €;.1 to be o(;) , which by (3) is different

J+1

159

from e;. We associate Player (j + 1), € D with e;;;, and continue inductively.
Since there are finitely many resources, there is a loop e,,e,,1,..., €5 1, €, in the
sequence above. For r < j < s—1, note that cost;,(Q’') = cost;,(Q') and cost;,(Q) =
cost(j+1),(Q). Moreover, cost; (Q') = cost;,(Q) and cost;,(Q) > cost;,(Q'). Com-
bining the above we have cost;,(Q) > cost;,(Q') = cost;,(Q)) = cost;(Q) =

cost(j+1),(Q), and we reach a contradiction.

F Proof of Theorem 5.1

The lower bounds for both measures are easy. Since we consider singleton games,
an NE in a singleton RAG is an SPE in the corresponding dynamic RAG with the
concurrent scheduler, i.e., all the players move simultaneously in the first round.
We continue to the upper bounds, and start with SGs. In SGs, we have PoS =
log(k) and PoA = k [2]. The proof for the upper bound for the DPoA is the same
as in RAGs: if a player’s cost is more than k times his cost in the social optimum
in some SPE, then he can deviate to his objective in the social optimum and reduce
his cost. For the upper bound on the DPoS, we note that the proof in Theorem 77
shows that a specific profile of an SG is an outcome of an SPE. It is shown in [29]
that the cost of this profile is at most log(k) - OPT, thus we have DPoS = log(k).
We conclude by studying CGs. In singleton symmetric CGs, we have PoA = 4/3
[11] and we are not aware of a tight bound on the PoS. For the DPoS, Theorem 3.4
shows that every NE in a symmetric singleton CG corresponds to an SPE. For
the DPoA, we use a claim from [10]. They show that with a sequential scheduler,
every outcome of an SPE in a symmetric singleton CG is an NE in the underlying

simultaneous game. Their proof works also for schedulers that are not sequential.

G Proof of Lemma 6.1

Note that the players’ objectives are disjoint, so we analyze the game as if it takes
place in one phase. We claim that a gate game simulates the semantics of a NAND
gate. Assume both input players select their 1 objective, which corresponds to the
case in which the input of the gate is two 1’s, thus the outputs should be 0. For
j € [r], we show that choosing the 0 objective is dominant for Player O;. Indeed,
if Player O; plays his 0 objective, the cost of the resource ¢’ is split between three
players, so the total cost for Player O; is 1 + €. On the other hand, the cost of
the 1 objective is 1 + 1.1e. Assume now that one of the input players chooses his 0
objective, thus the outputs should be 1. Then, choosing the 1 objective is dominant
for Player O, as the cost of the 0 objective is at least 1 + 1.5¢ while the cost of the

160

1 objective remains 1 + 1.1e.

Next, we describe how to connect two gate games. Let G and G’ be gate games
as in the above. We connect the corresponding gates such that the j-th output of
the first gate is fed as the first input to the second gate. In the combined game,
the players of G move before the players in G’'. Also, we merge between the output
resources of Player O, in G with the input resources of Player I in G’. More formally,
let Xp, = {{ol},{¢7,0)}} in G and Y= ({id},{i7,¢Y,...,¢™}} in G Then, in the
combined game, we have o] = i/l and o} = i{l. The cost of the first resource is 1 and
the second is 1 + 1.1e.

We claim that it is dominant for Player I to match Player O;’s choice of objec-
tive. Intuitively, this follows from the fact that the input and output resources cost
much more than the gate resources, so sharing the cost of the first is more beneficial
than sharing the second. More formally, assume Player O; plays his 1 objective. If
Player I; chooses his 1 objective, the cost of the resource 7{! is split between the two
players. So, Player I{’s cost, no matter what the other players play is a bit over
%. On the other hand, if he chooses his 0 objective, his cost is 1. Choosing the 1
objective in this case is clearly dominant. The case where Player O; chooses his 0
objective is dual.

We proceed to describe the game Gy, (see for example Figure 5). In G, there is a
gate game that corresponds to every NAND gate in ¢, and the games are connected
as in the above. For example, in Figure 5, for i € [4], let G; be the gate game that
corresponds to the gate ;. Consider the gate GG;. One of its outputs is fed as
input to G4 and the other to GG3. In G, the first pair of output resources are 0%’1
and oé’l, which also serve as input resources in the gate game G4. Thus, the set of
objectives of the first input player in G4 is {{oy"'}, {07, g4}}. Similarly, the second
pair of output resources are 0}’2 and 0(1)’2, which also serve as input resources in the
game Gj.

We are left to describe the inputs and output of the circuit and how they interact.
Assume the inputs to 1 are the variables x1,...,z,. Then, in addition to the players
who simulate the NAND gates, the game G, includes also n variable players. As in
the above, each variable player j € [n] has a 0 and 1 objective, which corresponds
to an assignment to the variable x;. Player x; serves as the input player in every
gate game that 2; appears in. So, Player z; has a 0 objective which is {i}} and a
1 objective, which includes an input resource zjl as well as gate resources as in the
above. For example, in Figure 5, the variable x5 is fed as input to the gates C'; and
(s, so the set of objectives of Player xy is {{i3}, {12, g1, g7, c2}}.

Recall that there is a partition F1,..., E,,, Ay,..., A, of x1,...,x,. The sched-
uler in G, schedules the variable players that correspond to the set of variables £

to move first, followed by the players who correspond to the set of variables A,

161

followed by Ejs, etc. The other players in G, who simulate the NAND gates follow
according to the rules above.

Finally, there is a special NAND gate in @ with only one output, where the
output of this gate is the output of the whole circuit. We refer to this gate as the
final gate and to the corresponding gate game as the final gate game. In Figure 5,
the final gate is Cy. Let Player O be the output player in the final gate game. Recall

that each variable player x; has a 1 objective with a resource 7] and a 0 objective

with an input resource zé Further recall that in a gate game, the 0 objective of the
output players includes a gate resource. We define Player O’s 0 objective to include
the gate resource g of the final gate game as well as all the input resources of the
universal variable players, thus it is {g} U {i},] : x; € Ay, ..., A,,}. The 1 objective
of Player O includes the input resources of all the existential variables players as
well as another gate resource ¢’ with cost 1.1e, which we use to maintain the gate
semantics, thus the 0 objective is {¢'} U {i},# : 2; € Ey,...,Ey,}. We assume
Wlog that the number of existential and universal variables in 1) is the same. So,
Player O’s cost for the input resources is the same in both of his objectives no matter
what the other players choose. Thus, the NAND semantics of the output gate is
maintained.

Let Player x; be the first variable player to move in G,. We claim that if 1
is true, then in every SPE P, we have cost,, (P) < % + ¢, and if v is false, then
cost,, (P) = 1. Assume that z; is an existential variable, and the proof is dual for
universal variables. Note that a cost of slightly over % for Player z; is achieved when
Player O shares the cost of the input resource Player x; uses. Thus, Player z;, as
well as all the existential players, have an incentive that the output of the circuit
¥ is 1. Indeed, if the output is 0, the Player O shares the input resources with the
universal players. Thus, if 1 is true, then the existential players can follow their
assignments and guarantee a cost of slightly over % On the other hand, if ¢ is false,
the universal players can guarantee a cost of slightly over %, making the cost of the

existential players slightly over 1.

H Proof of Theorem 6.2

We start with the lower bound and the case of dynamic CGs. Given a QBF instance
Y, we apply the construction in Lemma 6.1 to get a sequential CG G, and v, > 0
such that if ¢ is true, then cost;(G,) < v, and if ¢ is false, then cost;(Gy) > d. Let
G1 be the first 3-player game with no SPE that is described in Theorem 3.2. We
construct a dynamic CG G’, by merging G, and G, such that G’ has an SPE iff ¢

1s true.

162

We proceed to construct G'. We add two players k + 1 and k + 2 to G, that
take the roles of the first two players in G;. The role of Player 3 in G, is played by
Player 1 in Gy, so we add the objectives {a/, b} and {c} to ¥;. Players k + 1 and
k + 2 move first concurrently followed by Player 1 and the rest of the players in
Gy, which move sequentially. Recall that in every profile that is a candidate to be
an SPE in Gy, Player 3’s cost is at least 1% and at most 2%. We alter the latency
functions in G; so that in these profiles Player 3 pays at least v and at most §. Let
P be the SPE in G,,. We claim that if cost;(P) <+, then G’ has an SPE. Indeed, it
is not hard to see that the following profile is an SPE: Players k£ + 1 and k + 2 choose
{a,a’}, {c}), and the other players play according to P in every subgame. On the
other hand, if cost;(P) > 0, then, there is no SPE. Indeed, Player 1 prefers the
objectives originating from G; over these in ¢, and there is no SPE in the topmost
subgame as shown in Theorem 3.2.

The case of dynamic SGs is similar. Let G, be the output of the construction in
Lemma 6.1 and G5 the dynamic SG with no SPE that is described in Theorem 4.1.
We merge G, with Gy by letting the first player in G, take the role of the fourth
player in G, similar to the above. Note that in every candidate profile for an SPE
in Gy, Player 4’s cost is 4. We alter the costs in G, so that y =4 —eand 6 =4 +e.
Let P be an SPE in G;,. We claim that if cost;(P) < 7, then G’ has an SPE. Indeed,
it is not hard to see that the following profile is an SPE: the first three players in
Gy choose {({b,0"},{b,b'},{a,a"}), and the other players play according to P in every
subgame. On the other hand, if cost;(P) > §, then Player 4 always prefers his
objective in G, over his objective in P, and by the reasoning in Theorem 4.1, there
is no SPE in the topmost subgame, and we are done.

We continue to study the upper bound. Consider a dynamic RAG G, and let 7g
be the outcome tree of G. Recall that there is a one-to-one correspondence between
leaves in Tg and legal outcomes of G. We guess a leaf [in 7g and verify that it
is an outcome of an SPE. Thus, we ask if there is an SPE P in G whose outcome
corresponds to [.

In order to decide whether such a profile P exists, we traverse the path from
[to the root of 7g. Consider an internal node A and its child on this path h - @.
Intuitively, our guess of [fixes the joint objective in h to be . Consider a Player ¢
who controls & and a resource €, different from @ (i). Thus, 7[i < €] is a unilateral
deviation of Player ¢. We ask if it is possible to define the strategies in the other
internal nodes such that the deviation is not beneficial for Player i. Formally, we
ask if there is an SPE P’ in the subgame Gslie in which the cost of Player i is
at least his cost in [. This is done by calling the algorithm recursively with a slight
change to the base case. Recall that in order for P to be an SPE, it must be an NE

in every internal node in Tg. Thus, we verify that an SPE exists in every child h -’

163

of h that we have not yet considered. Thus, & and @’ differ by at least two entries.
This is again done by a recursive call to the algorithm. Clearly, the algorithm uses

polynomial space.

I Proof of Theorem 7.1

For the upper bound, given an input (G, (S, ¢), B), for G with k players, we go over
all schedulers v : [k] — [k]. For each scheduler v, we check whether costg.(v) <
and if so, we use the algorithm in Theorem 6.2 in order to decide whether the
game (G, v) has an SPE. In case it does, we accept. Clearly, the algorithm runs in
polynomial space and accepts iff the input is legal.

For the lower bound, we show a reduction from ISPE. Given an input (G,v)
to 3SPE we construct an input (G, (S, c), —(k — 1)?) to the BS problem as follows.
For every iy,i5 € [k], we add to S a constraint according to the order of 7; and i
in v. For example, if v(i;) < v(iz), then we add to S the constraint 7; < ip. All
constraints have cost —1. Clearly, the only scheduler that has cost at most —(k—1)?
is v, thus (G, v) € 3SPE iff (G, (S, c), —(k — 1)?) € BS, and we are done.?

3Note that often it is possible to force v with less than (k —1)? constraints. We have no reason

however to minimize the number of constraints in the reduction.

164

6 Discussion

In the first part of this thesis we studied topics in the border between formal methods
and algorithmic game theory. We showed a flow of ideas between the two areas while
focusing mainly on different aspects of resource-allocation games. For the direction
from formal methods to AGT, we generalized network formation games by allowing
the players to have richer objectives than reachability. The paths the players select
in the new game are no longer simple, so each strategy uses a multiset of edges
rather than a set of edges as in network formation games. We applied a similar
generalization to resource allocation games, and introduced and studied multiset
resource allocation games. We show that these generalizations reduce stability in
most cases while maintaining it in others.

Another extension of classic resource allocation games is our addition of dynamics
in the process of choosing the resources. While games in AGT are typically “one
round” games, ongoing games are natural in formal methods. So, the definitions in
this game are close in nature to games in formal methods whereas the questions we
ask are typical AGT questions.

For the direction from AGT to formal methods, we consider the problem of
synthesis in a multi-player setting and introduce new approaches for the definition
of cost of a synthesized system. We consider systems generated from components.
Each synthesized system has a cost, which is affected by its underlying components.
For example, the cost can be the price the players pay for the manufacturing of the
component, thus an increase of load has a positive effect as more players “split the
bill”. Dually, the components can be processors, where higher load means a decrease
in performance. Thus, on top of the game theoretic approach to synthesis, in which
each player tries to find a correct system we point to an “outer” game that concerns
costs. Here, the strategies of a player are the correct systems and we are looking for
a stable solution; namely one in which the players have no incentive to change their
system.

The work presented in the thesis sets the stage for further research in the field.
We describe some directions for future research. The immediate directions are the
problems we left open; e.g., the exact value of the PoS in affine multiset congestion
games. Next, recall that our extensions of resource allocation games are mostly less
stable than traditional games. Specifically, most multiset resource allocation games
are not guaranteed to have an NE, and most dynamic RAGs are not guaranteed
to have an SPE. An interesting direction would be to “restore stability” to these
games, where the rough goal is to ensure that the game under consideration has
a stable outcome. Such a goal was studied for resource allocation games with no

NE [2]. One way to achieve this would be to weaken the equilibrium we chose as a

165

measure for stability, while keeping it strong enough to be interesting. Another way
would be to consider subclasses of the general game in either its structure or the
objectives of the players. Finally, we can make assumptions that increase stability
like the ability to control some of the players [3]. That is, an authority can choose
some subset of the players and assign strategies to them, which they cannot change.
The other players act as normal players.

We proceed to describe less concrete directions. Resource allocation games can
be thought of as games that we find in the “wild”. These are mathematical objects
that attempt to model real-life settings. Our goal is to analyze these objects using
several measures: existence of equilibrium, the inefficiency of equilibria, etc. RAGs
are only one class of such “games in the wild” that are studied in AGT. Another
class is network creation games [1], which takes a different approach to networks from
network formation games, which we studied. There, the players model routers, and
they are the nodes of the network. Each router decides to which other routers it is
connected directly, so the strategies of each player consist of subsets of her adjacent
edges. Choosing a subset of edges corresponds to creating them. Once all routers
choose a strategy a graph is formed. The routers’ goal is to be “highly connected”
to the other routers in the network (for some definition of “highly connected”).
Clearly, constructing more edges increases connectivity. However, buying an edge
has a cost. If the price is high, a player might prefer to sacrifice her connectivity
and rely on edges that other players bought. It is interesting to apply concepts from
formal methods to this game or one of its many variants. For example, other than
the simple connectivity criteria, we can study a setting in which each router has a
specification that allows only a subset of paths, or a quantitative specification that
assigns values to paths and the goal would be to connectivity of high quality.

Finally, studying “games in the wild” is only one area in AGT. It is interesting
to study other areas that have meeting points with formal methods. For example,
in algorithmic mechanism design (AMD, for short), an authority tries to maximize
the social welfare or some other optimization goal, in the context of selfish players.
It is common to try and find a mechanism that is incentive compatible, namely a
mechanism in which the players achieve their best outcome by acting according to
their true preferences. Our work on repairing multi-player concurrent games draws
ideas from AMD. Indeed, we assumed an authority can alter the graph on which
the game takes place. The objective of the authority is to increase stability. But
the game is played by selfish players who only care about their personal gain.

The second part of the thesis focuses on lifting traditional formal methods to the
quantitative setting. We studied abstraction and simulation of weighted automata
and reasoning on partial-specified systems. Our work on adding costs to synthesis

from component libraries can be viewed as such a work. Here too, there are several

166

concrete directions for future research in each of the works we studied. For example,
we have not considered synthesis from component libraries with costs (even with a
single designer) with infinite-word specifications. We note that our definition of cost
for a design can be applied with no change to this setting.

We also considered the problem of stochastization of WFAs. We studied a frag-
ment of the general case, where the given WFA’s ambiguity is bounded. We left the
exact complexity of the problem open. Also, it is interesting to find other fragments
for which stochastization is decidable. Stochastization can be thought of a method
to avoid determinization, which is not always possible for WFAs, by constructing a
probabilistic WFA. We had strong constraints on the structure of the probabilistic
WFA, namely, it should be the same as the original WFA. It is interesting to weaken
these constraints while retaining decidability. Finally, stochastization is a general
concept that can be applied to other models such as Boolean automata that accepts

either finite or infinite words.

References

[1] A. Fabrikant, A. Luthra, E. Maneva, C. Papadimitriou, and S. Shenker. On a
network creation game. In ACM Symposium on Principles of Distributed Com-
puting, 2003.

[2] K. Kollias and T. Roughgarden. Restoring pure equilibria to weighted congestion
games. ACM Trans. Economics and Comput., 3(4):21, 2015.

[3] T. Roughgarden. Stackelberg scheduling strategies. SIAM J. Comput.,
33(2):332-350, 2004.

167

IR NPORND MW DOPAwR? 1T PRwnT 2w MATATT MO .0 NN 102 22IpAY 190AW 19N WK

DOPWAT NN MYRWIY MPRWY 71172 MY DX 090

MYW .AvT? 70171 K17 IMRW 171 W PR 237 ,pnwn YW ARYIN 992 :Iv20n ORI X7 2OpRwnT 1N
72077 2P IR LATNT PW PNONRT P02 KD IR UIDAT IR NPD0K NIWA (NINTYIA 1T ,NRT DAIRY N1PHRI0
UWS 9w 19T IR NPOON NIWA 772 IR HRWI HWN? IR NP1 NODIT T 2V N1ORTD MVw YW
DOUAIR" AT YRRN2 PRN 2RI 1KY NPORTID MIVCWH NN NODIT? MININIRT 22w 1T TIRA

971 DY DY 7R3 2PN AR NOPWIANR NIYA 2717 IR Dpwian 1191 Y0272 9°awa vl D7 an "odhpwinn
2P0 AR LIPR DOUMILIR DW MOW:T 19377 N°Y2A YW NIYOIOT T0I7 ¥ 023037 270 IR0 2O IR LT
NN2N0I2 OTMRIYT-101T NI Q2P IR ,NIN0N MWD NOTARY ,DUAIIR 2w M2pwn Nnown

NakplrlizatalaRalialayiehiyinl

RPN

X°77 NP9RTID MW 7I0AT DO2WORT QPIWAT NN NP0 MV PAw 2WNT DR NP T AT
ST 27N M2 2P 2°X191 "Nownann MATINa" "uaon" M 2oAwIn L1907 .M2Ivn Sw nvhnTe 3vpn
AWAN YT DOPAWNT NN AV WADNA RXAN ,MNINIRT D°IWA 1D DN K17 NN 2 PnwnT NN

DN DOPRWn S NMI2OXOT 1T T DN MIXIDI MYRY

YT R ,"NWA NP12" pAwR 0IRNT IR LQPAWAT DTN N1PYRTID MYWR MY N2vK 2P0 1R L7210
NIPM2 RO IPAY 2V APA0I00K LTV PR TIRTIP WO IPAW 2991 WA FIW° ,0RYPI pRwna .0opnwnT NIna
MR .PIAT DR 302 2P0 02 DOWRNWAY DAIPNWM L0 w0 2190na nwp oY IR 20TIRTIR CIW 192 D900
X7 PAW W PAUIVORY ,NINA NIN0A WO DWR 93,0707 W IpRw 939 72,37 pRwn YW 52010 oovEn
M2 PR PP0NY R SORDPIT PRWKRm 1Y PRwaT 172 SMvawan 27277 9w 01972 T 71901 nna
,NYD .0°AYD HW 27 1907 WP MR DR 02 JPRWW 90, WINT piwna v .002avn-10 19772 XY 120
MYRWY 0P WINN PAwnT 2w N0 DR 2°IP10 1R .IWR2 22WIRWET 19077 NY9IPXI010 0 DPon
M2 9K DOPWH DY NPWIT MORWIY 2pWwn SN MY ,5pwn MW W avp (2°pnwnn NYIN2 N1YITIN0N
,072RWA AOIR NN X7 IPAW HW 7°A0700KR 12 "20aRwn N A" prwnb nwAa pown DR 2097757 1K ,10
WA NPT 239 1907 12 90X PAwAR TINI2 NRT ,07MYD DWW 27 1907 ARWA2 WANYS JPAWI 19N WK

ARWN2 7T

P90 7AW LN VA2 .0°2°070 ATVIDT NV DR 222070 K ,N1RTD MYIWT 2°pnwna K v 111902
1WA 7PYAT DR 092077 R L9007 0220077 2w "paTa" 070 DY Naavn MXh RO 710 092000
MR T1Y2Y Y2 707902 WANWI? 2Wnanwn DW 27 19077 2PIWORMNY ,2°37 937 N 079701 1R .07
D°20 WMWY L7297 D7AR 2107 2037 ,5Wwnh MW MY YOI RIT 00V 787 YOWIN 2037 D man
L,V .00 999 7937 7OTNW NOvR RIXAY PO WANYH 93 .N27VAT MK DR TINY 7,007 20

LDPIPNWR D7 DOWHNWAN 0°2°277 0 Q°ARWNAT IWRD ,0°2RWA NN prwn 71X

PORDPIT PRWHTA NINIT N 2°9P1 1R .0°2ARWA NP0 PRwn? Nownnm MATINT N9 2P0 1R ,71027
25w 902 .0°25%W2 PHannw pawn 22PN 1R .2°2pna DM 22IpRWw 21 NAR D22 APA0I00R M2 jpnw 92

,2250 922 M2 1PRw 90 7N PR VAR "marnn' uwn ,mIng pnn 25w 93 LT ARWH M2 pnw 92

A9 TITIR PW NI INWYI T ATy

MWD NN NIPDAD MW
DAY Q°PRwaa DTN DX

7°91017°9% MLPIT ININ NYAP aWH NN

SR RO

0°2WI7°2 DOV TVO0I2°1INRT VI0? WA

2016 X125

