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Evolution of fast root gravitropism in seed plants

Yuzhou Zhang'#, Guanghui Xiao® 24, Xiaojuan Wang® 23, Xixi Zhang' & Jifi Friml® '

An important adaptation during colonization of land by plants is gravitropic growth of roots,
which enabled roots to reach water and nutrients, and firmly anchor plants in the ground.
Here we provide insights into the evolution of an efficient root gravitropic mechanism in the
seed plants. Architectural innovation, with gravity perception constrained in the root tips
along with a shootward transport route for the phytohormone auxin, appeared only upon the
emergence of seed plants. Interspecies complementation and protein domain swapping
revealed functional innovations within the PIN family of auxin transporters leading to the
evolution of gravitropism-specific PINs. The unique apical/shootward subcellular localization
of PIN proteins is the major evolutionary innovation that connected the anatomically sepa-
rated sites of gravity perception and growth response via the mobile auxin signal. We con-
clude that the crucial anatomical and functional components emerged hand-in-hand to
facilitate the evolution of fast gravitropic response, which is one of the major adaptations of
seed plants to dry land.
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onquest of the land by plants marks one of the most

important transition during evolution of life on Earth!-%.

For plants to thrive in this new environment, number of
dramatic developmental adaptations occurred®; among them, the
evolution of efficient root gravitropic response that allows roots to
grow deep into the soil. The early diverging land plants were non-
vascular plants without true roots but with the root hair-like
organ rhizoids, a structure, which helps plants to attach to the soil
surface as an early adaptation to the land environment®-8. The
fossil evidence indicates that the true roots emerged in the vas-
cular plants®, and in the flowering plants the root has evolved into
an organ to grow downwards along the gravity vector with two
main purposes: anchoring in the soil and providing a source of
water and nutrients for growth of the above-ground parts of the
plants!?,

Root gravitropism of flowering plants is well characterized and
comprises three temporally and spatially distinct phases: gravity
perception, transmission of the gravitropic signal, and ultimately
the growth response itself'!-14. Unlike in green algae Chara,
whose root hair-like structure rhizoids utilize the barium sulfate
(BaSOy) crystal-containing vacuoles as the gravity-perceiving
organelles!®, the gravity perception in flowering plant roots
occurs by gravity-induced sedimentation of the dense starch-filled
amyloplasts within the specialized columella cells of the root
apex. Gravity signal is further transmitted by the intercellular
signal auxin with the aid of the auxin importers and exporters
from the AUX1/LAX and PIN protein families, respectively!'>-20.
Gravity perception leads to the polarization of PIN transporters
(PIN3 and PIN7) to the bottom side of columella cells, thus
driving the redirection of auxin flow downwards?!-23. Along the
lower root side, mediated by PIN2 protein, auxin is further
translocated to the place of auxin response, the elongation
zone!324-30, There in the root, unlike in shoots, where auxin
promotes growth, auxin rapidly inhibits growth at the lower side
and this asymmetry leads to the downward root bending31-3>.
Notably, some findings suggest that, besides the major mechan-
ism of gravity perception by the amyloplast sedimentation in the
root cap, there is a secondary, amyloplast-independent site of
gravity sensing in the distal elongation zone of flowering plant
roots>®.

Despite the profound importance of root gravitropism in plant
growth and adaption, most of the related works only focus on the
flowering plants, especially the model plant Arabidopsis thaliana.
The mechanism of root gravitropism has never been system-
atically compared throughout the plant kingdom and its evolu-
tionary origin remains unknown. Answering this fundamental
question would reveal how, during plant evolutionary history,
root evolved to be such an efficient device to respond to the Earth
gravity.

Results

Slow and fast root gravitropism during plant evolution. To
obtain a broad view of the evolutionary origin of root gravi-
tropism, we selected various plant species representing the
lineages of mosses, lycophytes, ferns, gymnosperms, and flower-
ing plants, including dicots and monocots, and analyzed their
root gravitropic response (Fig. 1). Mosses, including the model
Physcomitrella patens, have rhizoids but no true roots3”. After
gravistimulation (90° reorientation), the rhizoid showed a much
slower gravitropism than the typical roots of flowering plants
such as A. thaliana (Fig. 1 and Supplementary Fig. 1la). Lyco-
phytes and ferns have a true root, but the model lycophyte
Selaginella moellendorffii and the model fern Ceratopteris
richardii showed much slower gravitropism than the roots of the
flowering plants A. thaliana, Gossypium arboretum, or Oryza

sativa (Fig. 1 and Supplementary Fig. 1b, c). In contrast, the seed
plant gymnosperm Pinus taeda showed the fast root gravitropism
comparable to that of the flowering plants and much faster than
that of the lycophyte S. moellendorffii and the fern C. richardii
(Fig. 1). As the growth rates among these diverse plant roots are
disparate (Supplementary Fig. 2a), to exclude the effect of the
growth rate during the evaluation of root gravitropism, we eval-
uated the vertical growth index (VGI)3® on roots with the same
root elongation (~2mm) after the gravistimulation. The results
further confirmed the much slower root gravitropism of non-seed
plants as compared with that of the seed plants (Supplementary
Fig. 2b, ¢).

This notable difference in the gravitropic efficiency suggest that
there are two mechanistically distinct root gravitropic responses:
the slow, less efficient gravitropism of basal vascular plant species
and the fast root gravitropism, which might have originated in the
most recent common ancestor of the gymnosperms and flowering
plants after divergence of these seed plants from the basal
vascular plant lineages.

Origin of root apex-exclusive gravity perception. To determine
whether the root architectural innovation may have facilitated the
fast root gravitropism in seed plants during evolution, we ana-
lyzed the root structures of the representative plant species with a
focus on localization of starch-containing amyloplasts (Fig. 2a),
which act as the statoliths for the gravity perception in the root of
flowering plants3® (Supplementary Fig. 3a). Lugol’s staining for
starch granule location of the rhizoids of the moss P. patent
revealed that they were devoid of amyloplasts (Fig. 2b). In the
most primitive living vascular plants, the lycophyte S. moellen-
dorffii, amyloplasts have evolved and were found in the root but,
interestingly, these starch-filled cells were distributed not within
but above the root apex (Supplementary Fig. 4a). In the root of
the fern C. richardii, the amyloplasts were present both above and
within the root apex (Supplementary Fig. 4b). Only in seed plant,
the gymnosperm P. taeda, the amyploplasts were specifically
localized within the root apex (Supplementary Fig. 4c), which is
the same as the pattern of amyloplast accumulation in the roots of
the flowering plants, the dicots A. thaliana and G. arboretum, and
the monocot O. sativa (Supplementary Fig. 4d-f). These results
suggest that the amyloplast localization specifically confined to
the root apex might have originated in the common ancestor of
seed plants only after their divergence from the fern lineage.

To further confirm these results, we performed the modified
pseudo-Schiff-propidium iodide staining (mPS-PI) to observe
detailed root structure and starch granule localization in these
representative plant species. In the lycophyte S. moellendorffii, the
starch granules (amyloplasts) mainly localized at the two lateral
sides of the root above the apex and surrounded by the epidermal
cells, but they were absent in both the root apex and the vascular
bundle located in the middle of the root (Fig. 2¢). In the root of
the fern C. richardii, the localization of starch granules above the
root apex was similar to that observed in S. moellendorffii, but
they were also present in the root apex below the apical cell, a
single large pyramidal and quiescent center (QC)-like cell (yellow
arrow in Fig. 2d). Correlating with the observation of fast root
gravitropism (Fig. la), the starch granules in the gymnosperm
P. taeda specifically accumulated within the root apex below the
QC (Fig. 2e), which is similar to the localization pattern observed
in the flowering plants A. thaliana, G. arboretum, and O. sativa
(Fig. 2f-h).

In addition, we examined whether the amyloplasts in these
basal vascular plant roots served as the gravity-perceiving
statoliths of the flowering plants. Notably, the amyloplast
sedimentation analysis revealed that in contrast with the

2 | (2019)10:3480 | https://doi.org/10.1038/541467-019-11471-8 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11471-8

ARTICLE

Green plant lineages
1

Embryophyta —land plants |

Vascular plants |

Seed plants I

Ferns
C. richardii

Green algae Mosses
P. patens

Lycophytes
S. oel/endorffii

Gymnosperms
P. taeda

Flowering plants I

| |
Dicots Monocots

7~ \
O. sativa

A. thaliana

G. arboreum

G —

Slow root gravitropism

——

|

Fast root gravitropism

Fig. 1 Slow and fast mechanisms of root gravitropism during plant evolution. Slow gravitropic bending of the rhizoids of the moss P. patens, roots of the
lycophyte S. moellendorffii, and the fern C. richardii after a 90° reorientation of the seedlings. Much faster response of the gymnosperm P. taeda, the dicots
G. arboreum and A. thaliana, and the monocot O. sativa after gravistimulation. Scale bars, Tmm

amyloplasts in the root cap of A. thaliana, which were mainly
located at the basal ends of the cells and showed fast
sedimentation after the 180° reorientation, the amyloplasts in
the roots of the fern C. richardii and lycophyte S. moellendorffii
showed a random localization in the root cells and failed to
sediment after the 180° reorientation (Supplementary Fig. 5a-f).
These results strongly indicates that, unlike in flowering plant
roots, the gravity-sensing machinery with the amyloplast
sedimentation along the gravity vector did not evolve in roots
of these basal vascular plants.

All the results above show that the root architectural
innovation, in particular root apex-specific amyloplast localiza-
tion spatially separated from the elongation zone, coincides with
the advancement of the fast root gravitropism in seed plants. It
suggests that this particular arrangement of gravity perception
and growth control has been selected as a strategy for efficient
root gravitropism during plant evolution.

Fast root gravitropism-specific PIN2 of Arabidopsis. In Arabi-
dopsis, the directional auxin flow from the apex to the elongation
zone is driven by PIN2 auxin transporter that is localized at the
shootward sides of root epidermal cells?02%30, PIN2 plays a
pivotal role in fast root gravitropism of flowering plant Arabi-
dopsis, as disruption of PIN2 blocks the gravity-induced asym-
metric auxin redistribution and result in the defective root
gravitropism?® (Fig. 3a and Supplementary Fig. 3b, c).

There are eight PIN genes in A. thaliana that can be divided
into three lineages based on their lengths of hydrophilic loop
(HL) and subcellular localizations?0-42: the canonical, plasma
membrane (PM)-localized PINs (PIN1, PIN2, PIN3, PIN4, and
PIN?7), the endoplasmic reticulum (ER)-localized PIN5 and PINS,
and PING6 with dual PM and ER localization?-42. To determine
which of the PINs can mediate the fast root gravitropism, we used
the Arabidopsis PIN2 promoter to drive the expression of the
seven PINs in a loss-of-function pin2 mutant (Fig. 3a—d). The
non-canonical PIN6 and PIN5 were not able to rescue the pin2

mutant (Fig. 3¢, d), and also of the canonical PINs only PIN2 was
able to complement the defective root gravitropism phenotype of
pin2 (Fig. 3b). These results were confirmed by quantification of
root gravitropism using the VGI (Supplementary Fig. 6a, b),
confirming that only PIN2 can mediate fast root gravitropism in
Arabidopsis.

Evolution of PIN2 functionality in fast root gravitropism.
Next, we wanted to know when this PIN2-specific function arose
during plant evolution. First, to obtain a broad view of the evo-
lution of PIN2 during the green plant diversification, we used the
full-length protein sequence of Arabidopsis PIN2 as a query in
searches against the available databases for 14 species represent-
ing the green algae, the most primitive living land plant march-
antiophyta (liverworts), mosses, lycophytes, ferns, ggmnosperms,
and flowering plants (Supplementary Fig. 7). Then we aligned
these PIN protein sequences and constructed a phylogenetic tree
(Supplementary Fig. 8). According to the comprehensive PIN
phylogeny by Bennett et al.#2, the PIN2 proteins were only pre-
sent in the flowering plants, which is congruent with our phy-
logenetic tree. However, it leaves open whether there are PIN
proteins in gymnosperms that are functionally similar to the
flowering plant PIN2 in root gravitropism.

So to test when the PIN2-specific functionality in root
gravitropism has evolved, we performed interspecies genetic
complementation experiments with PIN genes from various
representative plant lineages expressed in Arabidopsis pin2
mutant under the control of the Arabidopsis PIN2 promoter.
The evolutionary most primitive PIN gene known to date from
the basal Streptophyte green alga Klebsormidium flaccidum
(KfPIN) was unable to rescue the defects in root gravitropism
in the pin2 mutant (Fig. 3e), although it is a functional auxin
transporter (Skokan et al., submitted). Similarly, the single
canonical PIN (MpPINZ) found in the Marchantia
polymorpha*243, a probable representative of the earliest diver-
ging land plants®, also failed to complement the defective pin2
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Fig. 2 Exclusive root apex-specific amyloplast localization in seed plants. a Living representative species from different plant lineages included in the
analysis (from left to right): K. flaccidum (green alga), P. patens (moss), S. moellendorffii (lycophyte), C. richardii (fern), P. taeda (gymnosperm), G. arboreum,
and A. thaliana (dicots), and O. sativa (monocot). b Lugol's staining of the rhizoid (P. patens). c-h mPS-PI staining of the root tips from S. moellendorffii (¢), C.
richardii (d), P. taeda (e), G. arboreum (f), A. thaliana (g), and O. sativa (h). The blue arrows indicate root hair initiation. The yellow arrows indicate the apical
cell (QC-like cell) in the fern C. richardii and the QC in seed plants. The dashed red rectangles indicate the zone with amyloplasts. Scale bars, 20 um

root gravitropism (Fig. 3f). Representative canonical PINs from
the non-vascular plant, the moss P. patens (ie., PpPINA and
PpPINB from clade 6), the basal vascular plants, the lycophyte S.
moellendorffii (i.e., SmPINR and SmPINU from clade 6), and the
fern C. richardii (i.e., CrPIN] and CrPINN from clade 7), all failed
to replace the fast root gravitropism function of Arabidopsis
AtPIN2 (Fig. 3g-i and Supplementary Fig. 9). In the basal seed
plant gymnosperm P. taeda (Pt), we identified five PIN genes,
distributed in the five clades of the PIN phylogeny*2, but domain
prediction clearly indicated that the PtPINF protein is not
complete. Therefore, we cloned the four PIN genes from the other
four clades to perform the interspecies complementation experi-
ments. In contrast to other PIN genes from the P. taeda, only two,
PtPINH and PtPING, were able to rescue the defective root
gravitropism phenotype of the Arabidopsis pin2 mutant (Fig. 3j).
The quantitative PCR analysis revealed that the two PIN genes of
P. taeda, PtPING and PtPINH, were strongly expressed in the root
tip as compared with shoot and the other part of the root
(Supplementary Fig. 10a-c), thus resembling the expression
pattern of PIN2 in the flowering plant root. The auxin transport
assay with 3H-labeled indoleacetic acid (*H-IAA) showed efficient
shootward auxin transport from the root tip of P. taeda that was
sensitive to the N-I-naphthylphthalamic acid (NPA), an
established inhibitor of auxin transport** (Supplementary

Fig. 10d, e). The shootward auxin transport efficiency in the
root of fern C. richardii is much lower than that in the P. taeda
and largely NPA-insensitive (Supplementary Fig. 10e). These
results suggest that the efficient shootward auxin transport along
with the required functional PIN proteins for fast root
gravitropism have originated in the seed plants after the
divergence from the basal vascular plant lineages. Notably, in
flowering plants, such as Arabidopsis and O. sativa, there is only
one PIN2 gene, whereas there are two PIN genes in gymnosperm
P. taeda and P. abies with the functional equivalent to the
Arabidopsis PIN2, suggesting that a duplication event of the
PING/H progenitor occurred during the evolution of
gymnosperms.

Heterologous expression of the PIN2 gene from the flowering
plant G. arboretum (GaPIN2) in Arabidopsis successfully
complemented the Arabidopsis pin2 mutant phenotype, indicat-
ing that this protein is functionally equivalent to Arabidopsis
AtPIN2 (Fig. 3k-m). A recent report showed that the monocot
rice PIN2 gene (OsPIN2) also could rescue the Arabidopsis pin2
mutant phenotype?>. These successful interspecies complementa-
tion experiments imply that the unique PING/H and PIN2 with
fast gravitropic function appeared and evolved in gymnosperm
and flowering plant lineages since the separation of the seed
plants from the vascular plants.
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Origin of apical PIN localization for shootward auxin flow. We
hypothesized that the shootward subcellular localization of the
PIN proteins was the innovation leading to fast gravitropism. To
confirm this, we analyzed the root epidermal cell localization of a
series of PIN-GFP fusion proteins driven by the Arabidopsis
native PIN2 promoter. In contrast to the Arabidopsis AtPIN2-
GFP fusion protein, which is predominantly localized at the
shootward side of the epidermal cells (Fig. 3n, o), the green alga
KfPIN-GFP showed non-polar and also lateral localization in
these cells (Fig. 3n, p). The marchantia MpPINZ-GFP, the moss
PpPINA-GFP and PpPINB-GFP, and the lycophyte SmPINR-

PPIN2::CrPINJ-GFP

PPIN2::PtPINI-GFP
DPIN2::PtPINE-GFP
PPINZ::PtPING-GFP

GFP fusion proteins showed non-polar localization at the PM of
the Arabidopsis root epidermal cells and occasionally aggregated
granules of these PIN proteins in the cytoplasm were also
observed (Fig. 3q-s and Supplementary Fig. 11). Interestingly, the
PpPINA and PpPINB proteins showed obvious polar cellular
localization in the moss P. patens rhizoid*3 (Supplementary
Fig. 12) but they did not acquire the specific ability to localize at
the shootward side of cells. The fern CrPINJ-GFP fusion protein
showed the predominately bipolar localization in Arabidopsis root
epidermal cells (Fig. 3n, t). The gymnosperm PtPINI-GFP pro-
teins showed bipolar and strong lateral localization in the
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Fig. 3 Origin of fast root gravitropism-specific PIN2 functions in seed plants. a-d In contrast to the wild type (Col), the pin2 mutant showed severe defects
in root gravitropism (a). Genetic complementation experiments showing that of the A. thaliana non-canonical (PIN5 and PIN6) and canonical (PINT, PIN2,
PIN3, PIN4, and PIN7) PINs, only PIN2 rescues the defective pin2 gravitropism (b-d). Scale bars, 1cm. e-m Interspecies complementation experiments with
orthologous PIN2 genes from green alga (KfPIN) (e), marchantiophyte (MpPINZ) (f), moss (PpPINA) (g), lycophyte (SmPINR) (h), fern (CrPINJ) (i),
gymnosperm (PtPINI, PtPINE, PtPINH, and PtPING) (j), Arabidopsis (AtPIN2) (k), and G. arboreum (GaPIN2) (I). Only the gymnosperm genes encoding
PtPINH and PtPING (Supplementary Fig. 8), and the flowering plant genes encoding AtPIN2 and GaPIN2 from the PIN2 clade were able to rescue the pin2
defects in root gravitropism (k-1). Scale bars, 1cm. m Quantification of VGI for the plants in e-1 (n >10 roots). Center lines show the medians; box limits
indicate the 25th and 75th percentiles as determined by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles,
outliers are represented by dots. Student's t-test, ***P < 0.001 and ns denotes P> 0.05, compared with the Col-0, respectively. n-x The subcellular
localization of AtPIN2 (o), KfPIN (p), MpPINZ (q), PpPINA (r), SmPINR (s), CrPINJ (t), PtPINE (u), PtPINI (v), PtPINH (w), and PtPING (x) in Arabidopsis
root epidermal cells. Only the gymnosperm genes encoding PtPINH and PtPING (w, x), and the flowering plant genes encoding AtPIN2 from the PIN2 clade
(o) were able to localize to the shootward cell side. The coding sequences were fused with GFP in the central HL and expression was driven under the
control of the Arabidopsis PIN2 promoter. Polarity index of the cellular localization of the PIN-GFP fusion proteins (n =150-200 cells from ten roots) (n).

Scale bars, 10 um. Source data are provided as a Source Data file

Arabidopsis root epidermal cells (Fig. 3u), whereas most of the
PtPINE-GFP fusion proteins showed rootward/bipolar localiza-
tion (Fig. 3v). Only the gymnosperm proteins PtPINH-GFP and
PtPING-GFP were predominantly localized at the shootward side
of the root epidermal cells (Fig. 3w, x), which correlates with their
ability to complement the Arabidopsis pin2 mutant phenotype
(Fig. 3j), and efficient shootward auxin transport in the root tip of
P. taeda (Supplementary Fig. 10d, e).

Moreover, the amino acid sequence alignments revealed that
the key phosphorylation sites of Arabidopsis PIN2 (AtPIN2),
which were identified in its central HL and critical for
PIN2 shootward subcellular localization and its function in root
gravitropism*®, have been evolutionarily conserved in other
flowering plant PIN2 and gymnosperm PING/H (Supplementary
Fig. 13). This is consistent with the shootward localization and
conserved function of these PIN2-like proteins in root gravitrop-
ism as revealed by the successful interspecies complementation
experiments.

Our results indicate that during the evolution of land plants,
the specific shootward cellular localization of PIN2 appeared
together with the efficient shootward auxin transport and fast
gravitropic response was among the crucial innovations, which
endowed PIN2 with its specific ability to mediate this process in
seed plants.

Functional innovations of PIN2 during plant evolution. Our
analysis revealed that the shootward localized PIN protein, which
mediates fast root gravitropism, evolved only in seed plants.
However, it is still unclear what functional innovations at the
sequence level were important for the unique PIN2 function in
fast root gravitropism.

The intergenic domain swapping experiments combined with
interspecies complementation experiments showed that when the
central HL of the green alga KfPIN was replaced by the HL of the
Arabidopsis AtPIN2 (Fig. 4a, upper panel), the hybrid PIN
protein (denoted as X1) still failed to complement the Arabidopsis
pin2 mutant root gravitropism phenotype (Fig. 4a, middle panel).
Consistent with this, the hybrid PIN (X1-GFP) also showed
abnormal cellular localization (shootward/bipolar localization) in
Arabidopsis root epidermal cells (Fig. 4a, lower panel), suggesting
that the transmembrane domains (TMDs) of PIN also contribute
to the regulation of the PIN2 polar localization and its function in
root gravitropism (Fig. 4h). However, when the central HL of
MpPINZ from the primitive living land plant was replaced by the
central HL of AtPIN2, this hybrid PIN (denoted as X2) X2-GFP
fusion protein was predominantly localized at the shootward side
of Arabidopsis root epidermal cells and was able to rescue the
defective root gravitropism phenotype of the Arabidopsis pin2
mutant (Fig. 4b). These results, combined with the observation of

the X1-GFP protein property (Fig. 4a), strongly suggests that a
functional innovation in the TMDs of the PIN2 predecessor
occurred in the common ancestor of land plants after their
divergence from the green alga lineage.

Moreover, when we replaced the central HL of the lycophyte
SmPINR or the fern CrPIN] with the Arabidopsis AtPIN2 central
HL (Fig. 4c, upper panel), both hybrid PINs (denoted as X3 and
X4, respectively), similar to marchantiophyta hybrid X2 also
showed shootward localization in Arabidopsis epidermal cells and
were able to rescue the impaired gravitropism phenotype of pin2
(Fig. 4c, middle/lower panels). These results suggest that after the
first functional innovation of the ancestral PIN protein in the
early diverging land plants, the function of the canonical PIN
TMDs in root gravitropism has been evolutionarily conserved
during the evolution of the vascular plants after they split from
the bryophyte lineages.

We postulated that another functional innovation of PIN2
occurred in its central HL in the most recent common ancestor of
the seed plants (gymnosperms and flowering plants), because the
gymnosperm PtPING-GFP and flowering plant AtPIN2-GFP
fusion proteins were able to rescue the pin2 mutant phenotype,
and these proteins predominantly localized at the shootward side
of the Arabidopsis root epidermal cells (Fig. 4d), indicating that
not only functional TMDs but also a functional HL, both
contributing to their polar localization and fast root gravitropism,
were acquired by these PIN2 proteins. To further test our
hypothesis that the functional PIN2 central HL in root
gravitropism originated in seed plants after the divergence from
the fern lineage, we fused the central HL of PtPING from the
gymnosperm P. taeda with the TMDs of the fern protein CrPINJ,
and investigated its function in root gravitropism (Fig. 4e, upper
panel). This hybrid PIN (denoted as X5) was able to complement
the defective root gravitropism phenotype of the Arabidopsis pin2
mutant and also showed the shootward localization in root
epidermal cells (Fig. 4e-g, middle/lower panels).

These results further confirmed that the PIN shootward
localization was the crucial functional innovation enabling
PIN2 to mediate fast root gravitropism in flowering plants. It
also shows that this occurred through in two steps during plant
evolution: (i) early (at the onset of land plants) functional
innovations in the TMD and (ii) later innovations (after the
divergence of the seed plants) in the central HL.

Discussion

Our systematic comparison of the root bending dynamics in
different species revealed at least two distinct modes of root
gravitropic response in the plant kingdom: (i) slow, rudimentary
response of early diverging vascular plant lineages (lycophytes
and ferns) and (ii) much more effective, faster gravitropic

6 | (2019)10:3480 | https://doi.org/10.1038/541467-019-11471-8 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

Green plant lineages
|

Land plants |

Vascular plants I
_____ J_________ Seedplantsl

b MpPINZ-TMD ' ' € SmPINR-TMD  CrPINJ-TMD d PtPING-TMD AtPIN2-TMD e CrPINJ-TMD

(x1)

pin2; pin2; 1 pin2; pin2;
PpPIN2::X1-GFP PpPIN2::X2-GFP : PpPIN2::X3-GFP PpPIN2::X4-GFP

pin2; pin2;
PPIN2::PtPING-GFP pPIN2::AtPIN2-GFP

pin2;
PpPIN2::X5-GFP

" n
- ' [ o
| ]
. ' )
14 ] — :
: AN . e @
y . ' S
S ' - n Q. a
w i
a : a > Q a : 2 LQL; \' . a
(i " ' [y [y [y . 9 i [y
Sl T C g S ' s s o
j Y~ . < X X R - 1% X
a/s N T N . T T ) a
M " [ s [ . I} g = [
]
f 15 % e % o+ O Wl Shootward [l Bipolar Rootward D PM/ER localization
$ * T 100 shootward/rootward polarity
0.8 'g' intracellular trafficking
g 80 Transport activity
b —_
0.6 3
$ 3 60
04 2
- = 000000000 Yoo fo > hoo
02 - 5 40
[<}
o P00 0000 ) 9) 00 900000 Joo) 9) oo\ b0
0- 20
I T T T T T 1 ™MD
&K C?QQ OQQ GQQ QQQ OQQ 0
A P W S & & £ LSS
\V\(L' \$Q" \$Q" @Qf Q‘g \$Q" +’\ +‘l,’ ,‘:b +b<’ & *\3" Transport activity
SRS AP SN AR < » Apical/Basal polari
o gf of of & of Q pical/Basal polarity
&R S ¢
2
\\

Q\
Fig. 4 Functional innovations of PIN2 during plant evolution. a-e Hybrid PIN (X1) with the central hydrophilic loop (HL) of green alga KfPIN substituted by
the Arabidopsis AtPIN2 HL fused with GFP (HL-GFP) failed to rescue the pin2 mutant (a, middle panel). Hybrid PIN proteins (X2-X4) with the central HL of
marchantiophyte MpPINZ, lycophyte SmPINR, and fern CrPINJ replaced by the Arabidopsis AtPIN2 HL-GFP were able to rescue the defective root
gravitropism phenotype of the Arabidopsis pin2 mutant (b, ¢, middle panels). The PtPING and AtPIN2 proteins with GFP fused with the central HL can
complement the pin2 mutant phenotype (d, middle panel). Scale bars, Tcm. The hybrid PIN protein (X5) with the central HL of CrPINJ replaced with the
gymnosperm PtPING HL fused with GFP successfully complemented the Arabidopsis pin2 mutant phenotype (e, middle panel). The cellular localization of
hybrid PIN proteins (X1-X5) and the PIN2-GFP and PtPING-GFP fusion proteins in Arabidopsis root epidermal cells with expression driven by the AtPIN2
promoter (a-e, lower panels). All and only PIN2 chimeric proteins that were able to localize to the shootward cell side also rescued the pin2 gravitropism.
Scale bars, 10 um. The red and blue dashed lines indicate the separate two functional innovations at different plant evolution stages. f Quantification of
vertical growth index (VGI) for the transgenic lines in a-e (n >10 roots). Center lines show the medians; box limits indicate the 25th and 75th percentiles
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Student's t-test, ***P < 0.001, compared with the pin2;pPIN2::X1-GFP, respectively. g Polarity index of the cellular localization of the PINs in epidermal cells
in (a-e, lower panels) (n=150 to 200 cells from ten roots). h Schematic showing the contributions of the TMDs and the HL domain to PIN2 functions.
Source data are provided as a Source Data file

bending of roots from seed plants (gymnosperm and flowering innovations of root architecture, in particular the presence of
plants). This difference in the gravitropic functionality may be gravity-sensing statoliths exclusively confined to the root apex,
related to the independent evolutionary origin of roots in these which we detected only in seed plants. As a consequence, the
plant groups?’ and also correlates with the anatomical apex-specific place of gravity perception in the root cap has
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evolved to be separated from the place of the growth response
necessitating a new signaling mechanism between these tissues
(Fig. 5). This has been enabled by the evolution of a new type of
PIN auxin transporter, which might be driven by the positive
natural selection (Supplementary Fig. 14) and was able to localize
to the shootward side of root epidermal cells. This functional
innovations occurred first at the onset of the land plants in the
PIN2 TMDs and later with advancement of the seed plants in its
central HL. These sequence changes resulted in the exclusively
shootward, subcellular localization of PIN2 to establish a new,
shootward auxin transport flow connecting the place of gravity
perception in the root cap and growth regulation in the elonga-
tion zone (Fig. 5).

Our genetic complementation experiments suggested that the
PING/H in gymnosperm and the PIN2 in flowering plants
evolved the similar biological property in mediating the fast root
gravitropism, but it is still unresolved whether this is resulted
from the convergence evolution of PIN2 and PING/PINH or
because they originated from a shared descent. The protein-level
phylogenetic analysis with PIN sequences from hundreds of
representative plant species showed that the PING/PINH and
PIN2 can be grouped in the same clade*?, supporting that gym-
nosperm PING/PINH are the co-orthologs of flowering plant
PIN2 and they may have originated in the most recent common

ancestor of the seed plants. However, the nucleotide-level phy-
logenetic analysis of the PIN family and modular structure ana-
lysis of the HL suggested that the function of PINH/PING and
PIN2 in root gravitropism evolved by convergence in gymnos-
perms and flowering plants*2,

In the flowering plant Arabidopsis, besides the AtPIN2, the
AtPIN3, and AtPIN7 from the PIN3 clade (Supplementary
Fig. 8), which are localized at the bottom side of the gravity-
sensing statocytes, are also involved in the root gravitropism.
Following a gravitropic stimulus, AtPIN3 and AtPIN7 rapidly
relocalize laterally within the first few minutes to facilitate the
asymmetrical auxin redistribution between the upper and lower
parts of the root?1:22 (Fig. 5). Interestingly, the recent protein-
level phylogenetic analysis revealed that the seed plant gymnos-
perm PINE can be grouped in the same clade with the PIN342,
Moreover, according to the phylogenetic tree, the PINE/PIN3
clade is clearly absent in the non-seed plant species. These results
are congruent with our observation that the fast root gravitropism
has evolved in the seed plants rather than in the non-seed plants,
which strongly suggests that also this PIN clade (PINE/PIN3)
evolved to facilitate the fast root gravitropism of the seed plants
after their divergence from the fern lineage. Notably, in some of
the monocots (e.g., O. sativa and Z. mays), the PIN3 clade is
missing as well (Supplementary Fig. 8). Given that the number of
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PIN family members in monocot dramatically expanded (Sup-
plementary Fig. 7b), some of the other monocot PIN clades
presumably replaced the PIN3 function in root gravitropism
during the evolution.

The seed plants, which may have evolved in the late Devonian
around 370 million years ago and represents a remarkable life-
history transition for photosynthetic organism, underwent dra-
matic evolutionary radiations and became the dominant group of
vascular plants in most habitats. Compared with their pre-
decessors, the seed plants evolved numerous characteristics to
facilitate their adaption, such as seed organs, which allowed them
to break their dependence on water for reproduction and embryo
development>48-30, Our work demonstrates how root anatomical
innovation, combined with the evolution of PIN auxin trans-
porters, led to the evolution of the seed plant root to become a
delicate and efficient organ to mediate fast gravitropism, which
might have facilitated their adaption to the new environment
along with numerous other evolved traits (e.g., hydrotropism and
other growth behaviors).

Methods

Search for PIN family members. The PIN coding sequences (CDS) in the fol-
lowing plants were identified by using the A. thaliana PIN2 protein sequence as
query in BLAST searches against Phytozome (https://phytozome.jgi.doe.gov/pz/
portal.html#!search?show=BLAST): M. polymorpha, P. patens, S. moellendorffii, A.
thaliana, O. sativa, and Zea mays. The CDS sequences of MvPIN in Mesostigma
viride and KfPIN in K. flaccidum (UTEX strain #321; GenBank number: KJ466099)
were obtained from the unpublished transcriptome database provided by E. D.
Cooper and C. F. Delwiche. The complementary DNA sequence of C. richardii PIN
was obtained from the transcriptome sequences of C. richardii (Jody Banks
unpublished data). The PIN sequences of Cystopteris fragilis was identified from
the 1KP project database (https://db.cngb.org/onekp/). The PIN sequences of P.
abies and P. taeda were identified from the Spruce Genome Project database
(http://congenie.org/start). The PIN CDS of Amborella trichopoda was identified
from the Amborella database (http://amborella.huck.psu.edu/wwwblast). The
accession numbers/IDs of the identified PIN genes are given in Supplementary
Table 1. The accession numbers/IDs of the PIN proteins in G. arboretum can be
found in Zhang et al.>l.

Evolutionary analysis. PIN genes were translated into protein sequences and
subsequently aligned with ClustalX>2. Neighbor-joining (NJ) and maximum-
parsimony (MP) phylogenetic analyses were conducted with MEGA 7°3.
Maximum-likelihood (ML) phylogenetic analysis was conducted with PhyML
v3.0%%. NJ analysis was performed using the protein Poisson distances and the
pairwise deletion of gap sites. The default parameters were used for MP analysis.
The best-fitting substitution model for the ML analysis was selected with the
jModelTest2 program®. For each of three phylogenetic analyses, 1000 bootstrap
replicates were performed to evaluate the reliability of the phylogenetic trees.

Plant materials and growth conditions. Protonemal tissue of the moss P. patens
was subcultured several times for a minimum of 7 days on cellophane-covered
plates with BCD medium containing 5 mM ammonium tartrate and 0.8% agar.
Growth conditions were as follows: 24 °C in a long-day light regime, light intensity
55 umol m~2s~1. K. flaccidum plants were grown on solid or in liquid M-
medium®® with no sucrose added. The growth conditions were the same as those
for P. patens. Unless stated otherwise, other plant species were grown vertically in
Petri dishes on 0.5x Murashige and Skoog (MS) medium (pH 5.9) containing 1%
sucrose and 0.8% agar, at 18 °C under a long-day light regime (light intensity: 250
pmol m—2s~1). A. thaliana, P. taeda, and S. moellendorffii were grown at 22 °C,
whereas C. richardii, G. arboreum, and O. sativa were grown at 30 °C. The Ara-
bidopsis loss-of-function mutant pin2 and the starchless mutant pgm-1 were pre-
viously described3>%7. The VGI of Arabidopsis root was measured as previously
described8. For microscopic analyses of gravitropism, seedlings grown in Petri
dishes containing 0.5x MS medium were gravi-stimulated by rotating the stage 90°
for the specified amount of time before imaging. Bending angles were measured by
Image] for more than 60 seedlings per genotype (NIH; http://rsb.info.nih.gov/ij).

Shootward auxin transport assay. The seedlings were placed on new 0.5x MS
plates. Three seedlings for each plant species or treatment with three replicates.
Fifteen microliters of 3H-IAA was added into 10 mL of 0.5x MS medium with
1.25% agar to make a final 5uM 3H-IAA and then incubated at 65 °C. Five
miroliters of 3H-IAA droplet was placed on the root apex for 6h in the dark.
N-1-Naphthylphthalamic acid (NPA; 10 uM) was used as a control. There inde-
pendent experiments were carried out with a similar significant results.

Vector construction and complementation analysis. To generate plasmids for
genetic complementation analysis, PIN CDS from different plant species and 1.4 kb
PIN2 promoter were separately cloned into the Gateway entry vector pPDONR221
and pPONRP4P1r vector by BP reaction, and then they were fused and cloned into
Gateway destination vector pPB7m24GW.3 by LR reaction. To construct the PIN-
GFP fusion proteins, GFP was fused in-frame to the central HL of various PIN
open reading frames by performing overlapping PCR and the PCR products were
then cloned into the Gateway vector pB7m24GW.3 containing the Arabidopsis
PIN2 promoter as described above. The primers used to generate these constructs
are detailed in Supplementary Data 1. Transgenic Arabidopsis plants were gener-
ated using the floral dip method and selected on solid, half-strength MS medium
containing 15 mg/mL of Basta (Glufosinate).

Starch staining. Arabidopsis roots (7 days old) were dipped in Lugol’s staining
solution (Sigma-Aldrich) for 5 min, washed with distilled water, and then observed
under a differential interference contrast microscope (Leica DMRE). The starch
granules and cell walls in Arabidopsis root tips (7 days old) were stained using the
mPS-PI method and imaged with a confocal microscope as previously described?S.
In brief, whole seedlings were fixed in 50% methanol/10% acetic acid at 4 °C for up
to 24 h. The tissue was rinsed briefly with ddH,O and incubated in 1% periodic
acid at room temperature for 40 min. The tissue was then rinsed twice with ddH,0O
and incubated in Schiff reagent with PI (100 mM sodium metabisulphite, 0.15N
HCI, and 100 mg/mL PI) for 2 h until the plants were visibly stained. More than
three samples were transferred onto microscope slides and covered with chloral
hydrate solution (4 g chloral hydrate, 1 mL glycerol, and 2 mL water). The slides
were kept overnight at room temperature, after which excess chloral hydrate

was removed. The seedlings were mounted in Hoyer’s solution (30 g gum arabic,
200 g chloral hydrate, 20 g glycerol, and 50 mL water). The slides were left
undisturbed for at least 3 days before observation (excitation 488 nm and
emission 520-720 nm).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The data that support the findings of this study are available from the corresponding
author upon reasonable request. The source data underlying graphs and gels are provided
as a Source Data file.
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