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Termination and Worst-Case Analysis of Recursive Programs

Abstract

We study the problem of developing efficient approaches for prov-
ing termination of recursive programs with one-dimensional ar-
rays. Ranking functions serve as a sound and complete approach
for proving termination of non-recursive programs without array
operations. First, we generalize ranking functions to the notion of
measure functions, and prove that measure functions (i) provide
a sound method to prove termination of recursive programs (with
one-dimensional arrays), and (ii) is both sound and complete over
recursive programs without array operations. Our second contribu-
tion is the synthesis of measure functions of specific forms in poly-
nomial time. More precisely, we prove that (i) polynomial mea-
sure functions over recursive programs can be synthesized in poly-
nomial time through Farkas’ Lemma and Handelman’s Theorem,
and (ii) measure functions involving logarithm and exponentiation
can be synthesized in polynomial time through abstraction of log-
arithmic or exponential terms and Handelman’s Theorem. A key
application of our method is the worst-case analysis of recursive
programs. While previous methods obtain worst-case polynomial
bounds of the form O(nk), where k is an integer, our polynomial-
time methods can synthesize bounds of the form O(n logn), as
well as O(nx), where x is not an integer. We show the applicabil-
ity of our automated technique to obtain worst-case complexity of
classical recursive algorithms such as (i) Merge-Sort, the divide-
and-conquer algorithm for the Closest-Pair problem, where we ob-
tain O(n logn) worst-case bound, and (ii) Karatsuba’s algorithm
for polynomial multiplication and Strassen’s algorithm for matrix
multiplication, where we obtain O(nx) bound, where x is not an
integer and close to the best-known bounds for the respective algo-
rithms. Finally, we present experimental results to demonstrate the
effectiveness of our approach.

1. Introduction
Automated analysis to obtain quantitative performance characteris-
tics of programs is a key feature of static analysis. Obtaining pre-
cise worst-case complexity bounds is a topic of both wide theoret-
ical and practical interest. The manual proof of such bounds can
be cumbersome as well as require mathematical ingenuity, e.g.,
the book The Art of Computer Programming by Knuth presents
several mathematically involved methods to obtain such precise
bounds [39, 40]. The derivation of such worst-case bounds re-
quire a lot of mathematical skills and is not an automated method.
However, the problem of deriving precise worst-case bounds is of
huge interest in program analysis: (a) first, in applications such
as for hard real-time systems, guarantees of worst-case behavior
is required; and (b) the bounds are useful in early detection of
egregious performance problems in large code bases. Works such
as [23, 24, 29, 30] provide an excellent motivation for the study of
automatic methods to obtain worst-case bounds for programs.

Given the importance of the problem of deriving worst-case
bounds, the problem has been studied in various different ways.

1. WCET analysis. The problem of worst-case execution time
(WCET) analysis is a large field of its own, that focus on
(but not limited to) sequential loop-free code with low level
hardware aspects [49].

2. Resource analysis. The use of abstract interpretation and type
systems to deal with loop, recursion, data-structures has also
been considered in details [4, 24, 38], such as using lin-
ear invariant generation to obtain disjunctive and non-linear
bounds [13], as well as potential based methods for handling
recursion and inductive data structures [29, 30].

3. Ranking functions. The notion of ranking functions is a pow-
erful technique for termination analysis of non-recursive pro-
grams [7, 8, 12, 15, 43, 46, 48, 50]. They serve as a sound and
complete approach for proving termination of non-recursive
programs without array operations [19], and they have also been
extended as ranking supermatingales for analysis of probabilis-
tic programs [9, 10, 17].

Given the above wide array of results, two aspects of the problem
has not been addressed yet.

1. Termination of recursive programs through ranking functions.
The use of ranking functions has been limited mostly to non-
recursive programs, and the use of ranking functions for re-
cursive programs and their use to obtain worst-case analysis
bounds has not been explored in depth.

2. Efficient methods for precise bounds. While previous works
present methods for disjunctive polynomial bounds [24] (such
as max(0, n) · (1 + max(n,m))), or multivariate polynomial
analysis [29], these works do not provide efficient (polynomial-
time) methods to synthesize bounds such as O(n logn) or
O(nx), where x is not an integer.

In this work we address these two aspects, i.e., termination of
recursive programs with ranking functions, and polynomial-time
methods for obtaining bounds such as O(n logn) and O(nx),
where x is not integral.

Our contributions. Our main contributions are as follows:

1. First, we generalize the notion of ranking functions for non-
recursive programs to the notion of measure functions for re-
cursive programs. We show that measure functions (i) provide
a sound method to prove termination of recursive programs, and
(ii) is both sound and complete over recursive programs with-
out array operations. Thus these results generalize the results
for non-recursive programs.

2. Second, we present polynomial-time procedure for handling of
measure functions of specific forms. More precisely, we prove
that (i) polynomial measure functions over recursive programs
can be synthesized in polynomial time through Farkas’ Lemma
and Handelman’s Theorem, and (ii) measure functions involv-
ing logarithm and exponentiation can be synthesized in poly-
nomial time through abstraction of logarithmic or exponential
terms and Handelman’s Theorem.

3. A key application of our method is the worst-case analysis of re-
cursive programs. Our polynomial-time procedure can synthe-
size bounds of the form O(n logn), as well as O(nx), where
x is not an integer. We show the applicability of our technique
to obtain worst-case complexity bounds for several classical re-
cursive programs:
• For Merge-Sort [14, Chapter 2], the divide-and-conquer

algorithm for the Closest-Pair problem [14, Chapter 33],
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we obtain O(n logn) worst-case bound, and the bounds
we obtain are asymptotically optimal. Note that previ-
ous polynomial-time methods are either not applicable, or
grossly over-estimate the bounds as O(n2).

• For Karatsuba’s algorithm for polynomial multiplication
(cf. [41]) we obtain a bound of O(n1.6), whereas the op-
timal bound is nlog2 3 ≈ O(n1.585), and for the classical
Strassen’s algorithm for fast matrix multiplication (cf. [14,
Chapter 4]) we obtain a bound of O(n2.9) whereas the
optimal bound is nlog2 7 ≈ O(n2.8074). Note that previ-
ous polynomial-time methods are either not applicable, or
grossly over-estimate the bounds as O(n2) and O(n3), re-
spectively.

4. Finally, we present experimental results to demonstrate the ef-
fectiveness of our approach.

Key novelty. The key novelty of our approach is that we show how
non-trivial non-linear worst-case upper bounds such asO(n logn)
andO(nx), where x is non-integral, can be soundly obtained, even
for recursive programs, in polynomial time using linear program-
ming. Moreover, as our computational tool is linear programming
the approach we provide is also relatively a scalable one. See Re-
mark 3 for further details.

Due to space restrictions, several technical details are relegated to
the Appendix (cf. the submitted supplementary material).

2. Recursive Programs
In this work our main contributions involve a new approach for
analysis of termination of recursive programs. To focus on the
new contributions, we consider a simple programming language
for recursive programs, with the basic capabilities for recursion
and array operation (we do not consider return statements). In
our language, (a) all scalar variables hold integers and all array
variables refer to finite sequences of integers in heap memory;
(b) scalar variables are call-by-value and array variables are call-
by-reference; (c) array indices count from 1, and out-of-range array
indices are deemed as runtime errors. Moreover, all assignments
to scalar variables are restricted to linear expressions and without
array entries. We first introduce some basic notations and concepts,
then illustrate the syntax of recursive programs and finally the
semantics.

2.1 Basic Notations and Concepts

For a set A, we denote by |A| the cardinality of A. We denote
by N, N0, Z, and R the sets of all positive integers, non-negative
integers, integers, and real numbers, respectively. Throughout the
paper, we use the special symbol ⊥ to indicate either the null array
(i.e., the array with length zero), runtime errors, or non-existing
memory addresses. Moreover, we use Seq to denote the set of finite
sequences of integers, and denote by ‖a‖ the length of a for any
a ∈ Seq. For each a ∈ Seq and d ∈ Z, we define a[d] as the d-
th entry of a, given 1 ≤ d ≤ ‖a‖. We will denote by X ,A two
disjoint countable sets of scalar and array variables, respectively.

Heaps. A heap is a function h from N0 into Seq such that h(0) = ⊥
and the set {d | h(d) 6= ⊥} is finite, where natural numbers are
interpreted as memory addresses. Intuitively, each h(d) refers to
the array stored at the memory address indicated by d.

Arithmetic Array Expressions. The set of arithmetic array ex-
pressions e over X and A is generated by the following grammar:

e ::= c | x | ‖ar‖ | ar[x] |
⌊
e

c

⌋
| e + e | e− e | e ∗ e

where c ∈ Z, x ∈ X and ar ∈ A. Informally, (i) ‖ar‖ refers to the
length of the array indicated by ar, (ii) ar[x] refers to the x-th entry

of the array indicated by ar, (iii) �
c

refers to division operation, (iv)
b�c refers to the floor operation, and (v) +,−, ∗ refer to addition,
subtraction and multiplication operation over integers, respectively.

Valuations. A valuation over X ,A is a function ν on X ∪ A such
that ν(x) ∈ Z and ν(ar) ∈ N0 for all x ∈ X and ar ∈ A.
Informally, a valuation assigns to each scalar an integer and to
each array variable a memory address. Under a valuation ν over
X ,A and a heap h, an arithmetic array expression e can be either
evaluated to an integer in the straightforward way if no division by
zero or out-of-range array-index occurs, or otherwise evaluated to
⊥; and we denote by eh(ν) the evaluation of e under ν and h. A
detailed description of evaluation of arithmetic array expressions is
provided in Appendix A.

Propositional Array Predicates. The set of propositional array
predicates φ over X andA is generated by the following grammar:

φ ::= e ≤ e | e ≥ e | ¬φ | φ ∧ φ | φ ∨ φ

where e represents an arithmetic array expression. Under a heap h,
the satisfaction relation |=h between valuations and propositional
array predicates is defined in the straightforward way through eval-
uation of arithmetic array expressions (cf. Appendix B for details).
We consider propositional array predicates in DNF (disjunctive
normal form).

2.2 The Syntax

In the sequel, we fix a countable set of scalar variables and a
countable set of array variables; and we also fix a countable set
of function names. W.l.o.g, these three sets are pairwise disjoint.
Each scalar variable (resp. array variable) holds an integer (resp. a
one-dimensional array of integers) upon instantiation.

The Syntax. The syntax of our recursive programs is illustrated by
the grammar in Fig. 1. Below we briefly explain the grammar.

• Variables: Expressions 〈pvar〉 and 〈arvar〉 range over scalar
and array variables, respectively.

• Function Names: Expressions 〈fname〉 range over function
names.

• Constants: Expressions 〈int〉 range over integers represented
as decimal numbers.

• Arithmetic Expressions: Expressions 〈aexpr〉 range over
arithmetic array expressions consisting of scalar variables,
array entries (cf. 〈arvar〉 [〈pvar〉]), floor operation (cf.
b〈aexpr〉/〈int〉c), lengths of arrays (cf. ‖〈arvar〉‖) and arith-
metic operations. Expressions 〈pexpr〉 are a subclass of
〈aexpr〉 which are linear expressions that does not involve ar-
ray entries.

• Parameters: Expressions 〈plist〉 range over lists of scalar/array
variables, and expressions 〈vlist〉 range over lists of 〈pexpr〉
expressions/array variables.

• Boolean Expressions: Expressions 〈bexpr〉 range over proposi-
tional array predicates over scalar and array variables.

• Statements: Various types of assignment statements are indi-
cated by ‘:=’; ‘skip’ is the statement that does nothing; condi-
tional branches are indicated by the keyword ‘if’; while-loops
are indicated by the keyword ‘while’; sequential compositions
are indicated by semicolon; finally, function calls are indicated
by fname (〈vlist〉).

• Programs: Each recursive program 〈prog〉 is a sequence of
function bodies, for which each function body 〈func〉 consists
of a function name followed by a list of parameters (composing
a function declaration) and a curly-bracketed statement.

Note that we do not specify a main function body as in e.g. C
programming language. Later we will fix an initial function name.
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〈prog〉 ::= 〈func〉〈prog〉 | 〈func〉

〈func〉 ::= 〈fname〉‘(’〈plist〉‘)’‘{’〈stmt〉‘}’
〈plist〉 ::= 〈pvar〉 | 〈arvar〉

| 〈pvar〉‘,’〈plist〉 | 〈arvar〉‘,’〈plist〉

〈stmt〉 ::= ‘skip’ | 〈pvar〉 ‘:=’ 〈pexpr〉
| 〈arvar〉‘[’〈pvar〉‘]’ ‘:=’ 〈aexpr〉
| 〈fname〉‘(’〈vlist〉‘)’

| ‘if’ 〈bexpr〉 ‘then’ 〈stmt〉 ‘else’ 〈stmt〉 ‘fi’

| ‘while’ 〈bexpr〉 ‘do’ 〈stmt〉 ‘od’

| 〈stmt〉 ‘;’ 〈stmt〉

〈pexpr〉 ::= 〈int〉 | 〈pvar〉 | ‘‖’〈arvar〉‘‖’
| 〈pexpr〉 ‘+’ 〈pexpr〉 | 〈pexpr〉 ‘−’ 〈pexpr〉

| 〈int〉 ‘∗’ 〈pexpr〉 | ‘
⌊

’
〈pexpr〉
〈int〉 ‘

⌋
’

〈aexpr〉 ::= 〈int〉 | 〈pvar〉
| 〈arvar〉‘[’〈pvar〉‘]’ | ‘‖’〈arvar〉‘‖’
| 〈aexpr〉 ‘+’ 〈aexpr〉 | 〈aexpr〉 ‘−’ 〈aexpr〉

| 〈aexpr〉 ‘∗’ 〈aexpr〉 | ‘
⌊

’
〈aexpr〉
〈int〉 ‘

⌋
’

〈vlist〉 ::= arvar | 〈pexpr〉
| 〈arvar〉‘,’〈vlist〉 | 〈pexpr〉‘,’〈vlist〉

〈literal〉 ::= 〈aexpr〉 ‘≤’ 〈aexpr〉 | 〈aexpr〉 ‘≥’ 〈aexpr〉
〈bexpr〉 ::= 〈literal〉 | ¬〈bexpr〉

| 〈bexpr〉 ‘or’ 〈bexpr〉 | 〈bexpr〉 ‘and’ 〈bexpr〉

Figure 1. Syntax of Recursive Programs

Assumptions. W.l.o.g, we consider further syntactical restrictions
for simplicity:

• Function Bodies: we consider that every parameter list 〈plist〉
contains no duplicate scalar/array variables, and the function
names from function bodies are distinct.

• Function Calls: we consider that no function call involves some
function name without function body (i.e., undeclared function
names), and values passed to each function call (cf. 〈vlist〉)
match types of the corresponding parameter list.

Statement Labelling. Given a recursive program, we assign a dis-
tinct natural number (called label in our context) to every assign-
ment/skip statement, function call, if/while-statement and terminal
line in the program. Informally, each label serves as a program
counter which indicates the next statement to be executed.

We illustrate with an example of a recursive program together with
its labelling, which implements the Merge-Sort algorithm.
Example 1. Fig. 2 depicts a recursive program for the Merge-Sort
algorithm [14, Chapter 2]. The numbers on the leftmost side are the
labels assigned to statements which represent program counters,
where mergesort starts from label 1 and ends at 7, and merge starts
from label 1 and ends at 15.

mergesort(ar, i, j, tmp) {
1 : i f 1 ≤ i and i ≤ j − 1 then
2 : k := i+ b j−i+1

2 c − 1 ;
3 : mergesort(ar, i, k, tmp) ;
4 : mergesort(ar, k + 1, j, tmp) ;
5 : merge(i, j, k, ar, tmp)
6 : e l s e sk ip

f i
7 : }

merge(i, j, k, ar, tmp) {
1 : m := i ; 2 : n := k + 1 ; 3 : l := i ;
4 : whi le l ≤ j do
5 : i f ar[m] ≤ ar[n] then
6 : tmp[l] := ar[m] ;
7 : m := m+ 1

e l s e
8 : tmp[l] := ar[n] ;
9 : n := n+ 1

f i ;
1 0 : l := l + 1

od ;
1 1 : l := i ;
1 2 : whi le l ≤ j do
1 3 : ar[l] := tmp[l] ;
1 4 : l := l + 1

od
1 5 : }

Figure 2. A program that implements Merge-Sort

2.3 The Semantics

We use control-flow graphs (CFGs) to specify the semantics of
recursive programs. The notion of CFGs is illustrated as follows.
Definition 1 (Control-Flow Graphs). A control-flow graph (CFG)
is a triple which takes the form (†)

(†)
(

F ,
{(

Lf ,Lf
b,Lf

a,Lf
c, V

f
p , V

f
ar, `

f
in, `

f
out
)}

f∈F
, {→f}f∈F

)
where:

• F is a finite set of function names;
• each Lf is a finite set of labels attached to the function name f,

which is partitioned into (i) the set Lf
b of conditional-branching

labels, (ii) the set Lf
a of assignment labels and (iii) the set Lf

c
of function-call labels;

• each V f
p (resp. V f

ar) is the set of scalar variables (resp. array
variables) attached to f;

• each `f
in (resp. `f

out) is the initial label (resp. terminal label) in
Lf ;

• each→f is a relation whose every member is a triple of the form
(`, α, `′) for which ` (resp. `′) is the source label (resp. target
label) of the triple such that ` ∈ Lf (resp. `′ ∈ Lf ), and α is
1. either a propositional array predicate φ over V f

p (as the set
of scalar variables) and V f

ar if ` ∈ Lf
b,

2. or an update function which maps every pair of the form
(ν, h) with ν being a valuation over V f

p , V
f

ar and h being a
heap to a pair of the same form if ` ∈ Lf

a,
3. or a pair (g, f) with g ∈ F and f being a value-passing

function which maps every pair of a valuation over V f
p , V

f
ar

and a heap to a valuation over V g
p , V

g
ar if ` ∈ Lf

c.

W.l.o.g, we consider that all labels are natural numbers.
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Definition 2 (Valuations Valf ). We denote by Valf the set of valua-
tions over V f

p , V
f

ar, for each f ∈ F . We say that a valuation ν ∈ Valf
is initial if ν(q) = 0 whenever q ∈ V f

p ∪V f
ar and q does not appear

in the parameter list of f.

Informally, a function name f, a label ` ∈ Lf , a valuation ν ∈ Valf
and a heap h reflects that the current status of a recursive program is
under function name f, right before the execution of the statement
labelled ` in the function body named f, with values specified by
ν and with heap content h, respectively. Labels in Lf

b correspond
to conditional-branching statements indicated by the keyword ‘if’
or ‘while’ in the function body with function name f; labels in Lf

a
correspond to assignment statements indicated by ‘:=’ or skip;
labels in Lf

c correspond to function calls. Moreover, the label `f
in

(resp. `f
out) corresponds to the initial statement to be executed (resp.

the terminal program counter) in the function body with function
name f. Besides, each relation →f specifies the transitions (as
triples) between labels within the function body named f, together
with additional information specific to different types of labels;
finally, each update function updates the current valuation and heap
w.r.t its corresponding assignment label, and each value-passing
function outputs the initial valuation to the function call to be
executed.

It is intuitively clear that any recursive program can be transformed
into a corresponding CFG: one first constructs each→f (for f ∈ F )
for each of its function bodies and then group them together. To
construct each →f , we first construct the partial relation →P,f
inductively on the structure of P for each statement P appearing
in the function body of f, then define →f as →Pf ,f for which
Pf is the function body of f. Each relation →P,f involves two
distinguished labels, namely `P,fin and `P,fout, that intuitively represent
the label assigned to the first instruction to be executed in P and
the terminal program counter of P , respectively; after the inductive
construction, `f

in, `
f
out are defined as `Pf ,f

in , `
Pf ,f
out , respectively.

Due to page limit, we put the detailed transformation in Ap-
pendix C. An example of CFGs is illustrated in Example 2.
Example 2. The CFG of the mergesort program of Fig. 2 is
depicted in Fig. 4 and Fig. 5, where

φ := 1 ≤ i ∧ i ≤ j − 1, ψ := l ≤ j, ϕ := ar[m] ≤ ar[n],
id indicates the identity function and fi, gi’s are given in Fig. 3.

Based on CFGs, we illustrate the semantics of recursive programs
as follows. The semantics models executions of a recursive pro-
gram as runs, and is defined through the standard notion of call
stack. Below we fix a recursive program W and its CFG taking the
form (†). Let Pf be the function body of an arbitrary function name
f in F . We first define the notion of stack element which captures
all information within a function call.
Definition 3 (Stack Elements). A stack element σ (ofW ) is a letter
that represents a triple (f, `, ν) where f ∈ F , ` ∈ Lf and ν ∈ Valf .

Thus, a stack element (f, `, ν) specifies that the current function
name is f, the next statement to be executed is the one labelled
with ` and the current valuation of scalar and array variables w.r.t
f is ν. Then we define the notion of configuration which captures
all information needed to describe the current status of W , i.e., a
configuration records both the whole trace of the call stacks and the
current heap.
Definition 4 (Configurations). A configuration (of W ) is a pair
(w, h) where w is a finite word of stack elements (including the
empty word ε) and h is a heap.

The Semantics. Given a stack element c and a heap h, the run
ρ(c, h) is an infinite sequence {(wj , hj)}j∈N0 of configurations
inductively defined as follows.

• Initialization: w0 := c and h0 := h.
• Termination: If either wj = ε or wj is a single letter σ =

(f, `f
out, ν), for f ∈ F and ν ∈ Valf , then wj+1 := ε and

hj+1 := hj . Note that even though we start with some stack
element, the termination ensures that the stack is empty.

• Inductive Step: Assume that (wj , hj) = ((f, `, ν)·w′, h). Then:
1. assignment: if ` ∈ Lf

a, (`, f, `′) is the only triple in→f and
(ν′, h′) = f(ν, h), then

(i) (wj+1, hj+1) := ((f, `′, ν′) · w′, h′)

whenever `′ 6= `f
out and otherwise

(ii) (wj+1, hj+1) := (w′, h′);

2. conditional-branching: if ` ∈ Lf
b and (`, φ, `′) is the only

triple in→f such that ν |=h φ, then

(i) (wj+1, hj+1) := ((f, `′, ν) · w′, h)

whenever `′ 6= `f
out and otherwise

(ii) (wj+1, hj+1) := (w′, h);

3. function-call: if ` ∈ Lf
c and (`, (g, f), `′) is the only triple

in→f , then

(i) (wj+1, hj+1) := ((g, `g
in, f(ν, h)) · (f, `′, ν) · w′, h)

whenever `′ 6= `f
out and otherwise

(ii) (wj+1, hj+1) := ((g, `g
in, f(ν, h)) · w′, h).

3. Termination over Recursive Programs
In this section, we describe the notion of termination time for
recursive programs and the problem we study. Below we fix a
recursive program W and its CFG taking the form (†). We first
define the notion of termination time which corresponds directly to
the running time of a recursive program.
Definition 5 (Termination Time). Let c be a stack element and h be
a heap. The termination time of the run ρ(c, h) = {(wj , hj)}j∈N0 ,
denoted by T (c, h), is defined as

T (c, h) := min{j | either (i) wj = ε or

(ii) wj is a single letter σ = (f, `f
out, ν) for f ∈ F and ν ∈ Valf}

where min ∅ :=∞.

Thus, T (c, h) is the number of steps until termination starting from
c, h. Note that in the definition above, along with empty stack,
we also consider when there is the last function terminating. The
component about last function terminating is technical, because it
allows more elegant definitions of measure functions later.
Remark 1. Definition 5 measures the termination time w.r.t an
initial stack element and an initial heap in a stepwise fashion:
execution of every triple in

⋃
f∈F→f takes one unit-time.

A disadvantage of the notion of termination time is that it crucially
depends on the actual content of the heap, which makes the task
of analysis difficult. To overcome this difficulty, we focus on a
variant of termination time that abstracts away the heap contents.
To achieve this, we first define the notion of abstract valuations.
Definition 6 (Abstract Valuations Valf ). An abstract valuation w.r.t
a function name f is a function µ on V f

p ∪ V f
ar such that µ(x) ∈ Z

for all x ∈ V f
p and µ(ar) ∈ N0 for all ar ∈ V f

ar, where µ(ar) is
interpreted directly as a non-negative integer rather than a memory
address. An abstract valuation µ w.r.t f is initial if µ(q) = 0
whenever q ∈ V f

p ∪ V f
ar and q is not involved in the parameter list

of f (i.e., a “local variable”). We denote by Valf the set of abstract
valuations w.r.t f.
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i fi

1 k ← i+ b i−j+1
2 c − 1

2 (i, j)← (i, k)
(ar, tmp)← (ar, tmp)

3 (i, j)← (k + 1, j)
(ar, tmp)← (ar, tmp)

4 (i, j, k)← (i, j, k)
(ar, tmp)← (ar, tmp)

i gi
1 m← i

2 n← k + 1
3 l← i
4 m← m+ 1
5 n← n+ 1
6 l← l + 1

Figure 3. Illustration for Fig. 4 and Fig. 5, where
q is the concrete entity held by the scalar/array
variable q under the valuation at runtime, and
each function is represented in the form “p← q”
meaning “q assigned to p” where only the rele-
vant variable is shown for assignment functions.

1

2

3

4

5

6

7

φ

f1

(mergesort, f2)

(mergesort, f3)

(merge, f4)

¬φ

id

Figure 4. The
part of CFG for
mergesort in Fig. 2

1 2 3 4

11 5

6

7

8

9

10

12

13

14

15

g1 g2 g3

ψ
¬ψ

ϕ¬ϕ

idid

g4
g5

g6

g3

ψ¬ψ

id

g6

Figure 5. The part of CFG for merge in Fig. 2

Given a valuation ν ∈ Valf and a heap h, the abstract valua-
tion µ[ν, h] w.r.t f is defined such that µ[ν, h](x) = ν(x) and
µ[ν, h](ar) = ‖h(ν(ar))‖ for all x ∈ V f

p and ar ∈ V f
ar. The pur-

pose to introduce the notion of abstract valuation is to abstract away
array entries and to record solely the length of the array. Since the
satisfaction of a propositional array predicate φ without the appear-
ance of array entries can be defined directly on abstract valuations
µ, we write µ |= φ if there exist a valuation ν and a heap h such
that µ = µ[ν, h] and ν |=h φ.

Definition 7 (Function f for f ). Given an update function f
appearing in the CFG ofW and an abstract valuation µ, we define
f(µ) := µ[f(ν, h)] for some ν, h such that µ = µ[ν, h]; and given
a value-passing function f appearing in the CFG of W and an
abstract valuation µ, we define f(µ) := µ[f(ν, h), h] for some ν, h
such that µ = µ[ν, h].

Note that both the f(µ)’s are well-defined due to our setting on as-
signment statements and function-calls. Now we define the abstract
stack elements and abstract termination time as follows.
Definition 8 (Abstract Stack Elements and Abstract Termination
Time). An abstract stack element is a triple (f, `, µ) where f ∈ F ,
` ∈ Lf and µ ∈ Valf . For each abstract stack element (f, `, µ), the
abstract termination time T (f, `, µ) is defined by

T (f, `, µ) := sup{T ((f, `, ν), h) | ν ∈ Valf ,
h is a heap and µ = µ[ν, h]} .

Informally, T (�) abstracts T (�) by taking the supremum over all
possible array entries, thus naturally provides an upper bound for
T (�).

In this paper, we study the problem of providing upper bounds for
T (�). A very useful notion to achieve this is an invariant for the
input recursive program, where an invariant specifies a logical for-
mulae which all “reachable” abstract stack elements must satisfy.
We define reachable stack elements and invariants below.
Definition 9 (Reachable stack elements). A pair (c, h), where c is
a stack element and h is a heap, is reachable w.r.t a function name
f∗ and a propositional array predicate φ∗ over V f∗

p , V f∗
ar if there

exist a stack element (f∗, `f∗
in , ν

′), a finite word w of stack elements,

and a heap h′ such that ν′ |=h′ φ
∗ and the configuration (c · w, h)

appears in the run ρ((f∗, `f∗
in , ν

′), h′). An abstract stack element
(f, `, µ) is reachable w.r.t f∗ ∈ F and propositional array predicate
φ∗ over V f∗

p , V f∗
ar if there exists a reachable pair ((f, `, ν), h) w.r.t

f∗, φ∗ such that µ = µ[ν, h].
Definition 10 (Invariants). An invariant I w.r.t a function name
f∗ and a propositional array predicate φ∗ over V f∗

p , V f∗
ar is a

function which maps every pair (f, `) satisfying f ∈ F and ` ∈
Lf\{`f

out} to a propositional array predicate over V f
p , V

f
ar which is

without the appearance of array entries (i.e., ar[x]’s) or floored
expressions (i.e. b�c), such that for all abstract stack elements
(f, `, µ) reachable w.r.t f∗, φ∗, we have µ |= I(f, `) whenever
` 6= `f

out.

The RECTERMBOU problem. In this work we consider the algo-
rithmic problem of providing upper bounds for termination time of
recursive programs, which we refer to as the RECTERMBOU prob-
lem, formally, defined as follows:

• Input: a recursive program W , a function name f∗, a proposi-
tional array predicate φ∗ over V f∗

p , V f∗
ar without array entries

and an invariant I w.r.t f∗, φ∗;
• Output: a function h : Valf → [0,∞] (in certain finite

representation) from abstract valuations to [0,∞] such that
T (f∗, `f∗

in , µ) ≤ h(µ) for all µ ∈ Valf such that µ |= φ∗.

4. Measure Functions
In this section we introduce the notion of measure functions for
recursive programs. The main contributions of this section are as
follows: (1) The notion of ranking functions for non-recursive pro-
grams is generalized to the notion of measure functions to present
upper bounds on (abstract) termination time for recursive pro-
grams. (2) We present soundness (Theorem 1), as well as complete-
ness when there are no array operations (Theorem 2). (3) Finally,
we present the notion of significant labels which reduces the task
of synthesizing measure functions instead of the whole program to
the case of significant labels only. From our soundness result (The-
orem 1) it follows that it suffices to synthesize measure functions
to solve the RECTERMBOU problem, and we consider the synthe-
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sis problem in the following section. We start with the notion of
measure functions.

In the whole section, we fix a recursive program W together with
its CFG taking the form (†), a(n initial) function name f∗ ∈ F
and a propositional array predicate φ∗ over V f∗

p , V f∗
ar without array

entries. For each f ∈ F and ` ∈ Lf\{`f
out}, we defineDf,` to be the

set of all abstract valuations µ w.r.t f such that (f, `, µ) is reachable
w.r.t f∗, φ∗.
Definition 11 (Measure Functions). A measure function w.r.t f∗, φ∗
is a function g from the set of abstract stack elements into [0,∞]
such that for all abstract stack elements (f, `, µ), the following
conditions hold:

• C1: if ` = `f
out, then g(f, `, µ) = 0;

• C2: if ` ∈ Lf
a\{`f

out}, µ ∈ Df,` and (`, f, `′) is the only triple
in→f with source label `, then

g(f, `′, f(µ)) + 1 ≤ g(f, `, µ);

(recall that f for f in Definition 7);
• C3: if ` ∈ Lf

c\{`f
out}, µ ∈ Df,` and (`, (g, f), `′) is the only

triple in→f with source label `, then

1 + g(g, `g
in, f(µ)) + g(f, `′, µ) ≤ g(f, `, µ);

• C4: if ` ∈ Lf
b\{`f

out}, µ ∈ Df,` and (`, φ, `1), (`,¬φ, `2) are
namely two triples in→f with source label `, then (i)

1µ|=φ · g(f, `1, µ) + 1µ|=¬φ · g(f, `2, µ) + 1 ≤ g(f, `, µ)
whenever φ does not involve array entries and (ii) otherwise

max{g(f, `1, µ), g(f, `2, µ)}+ 1 ≤ g(f, `, µ).

Informally, C1 is the condition for terminal labels; C2 is the one
for assignment labels; C3 is for function-call labels and C4 is for
conditional-branching labels. Intuitively, a measure function is a
function whose values do not increase along the execution (or run)
of a recursive program.

4.1 Soundness and Partial-completeness

In this section we establish soundness and partial-completeness of
measure functions. First, we establish the soundness of measure
functions, i.e., they provide an upper bound on (abstract) termina-
tion time (proof in Appendix D of the supplementary material). The
proof is basically a case analysis and inductive argument.
Theorem 1 (Soundness). For all measure functions g w.r.t f∗, φ∗,
it holds that for all abstract valuations µ w.r.t f∗ such that µ |= φ∗,
we have T (f∗, `f∗

in , µ) ≤ g(f∗, `f∗
in , µ).

Remark 2. The notion of measure function is a direct generaliza-
tion of ranking functions to recursion. This can be observed from
the fact that once condition C3 is omitted, then Definition 11 coin-
cides with a ranking function for non-recursive programs.

Below we show that when W does not have array variables, then
the abstract termination time function is a measure function for W
(proof in Appendix D).
Theorem 2 (Partial Completeness). If W does not involve array
variables, then there exists a measure function g w.r.t f∗, φ∗ satis-
fying that for all abstract valuations µ w.r.t f∗ such that µ |= φ∗,
we have T (f∗, `f∗

in , µ) = g(f∗, `f∗
in , µ).

4.2 Significant labels

By Theorem 1, to obtain an upper bound on abstract termination
time, an algorithm only needs to synthesize a measure function in
a particular form. The computational problem is to synthesize a
measure function, and an algorithm needs to synthesize a function
over abstract valuations at all labels of all function names. This
computational step can be expensive when the input program is

“large”. In this section we show that the algorithm only needs to
synthesize them at significant labels only.

Definition 12 (Significant Labels Lf
s). Let f ∈ F . A label ` ∈ Lf

is significant if it corresponds to one of the following two cases: (i)
` = `f

in or (ii) ` = `P,fin for some while-loop P appearing in the
function body of f. We denote by Lf

s the set of significant locations
in Lf .

Informally, a significant label is a label where (abstract) valuations
cannot be easily deduced from other labels, namely valuations at
the start of the function-call and at the initial label of a while
loop. In the following definition, we illustrate how one can obtain a
measure function from a function defined only on significant labels.
Definition 13 (Transformation from g to ĝ). Let g be a function
from {

(f, `, µ) | f ∈ F , ` ∈ Lf
s, µ ∈ Valf

}
into [0,∞]. The function expanded from g, denoted by ĝ, is a
function from the set of all abstract stack elements into [0,∞]
inductively defined through the procedure described as follows.

1. Initial Step. If ` ∈ Lf
s, then ĝ(f, `, µ) := g(f, `, µ) .

2. Termination. If ` = `f
out, then ĝ(f, `, µ) := 0 .

3. Assignment. If ` ∈ Lf
a\Lf

s with (`, f, `′) being the only triple in
→f and ĝ(f, `′, �) is already defined, then

ĝ(f, `, µ) := 1 + ĝ(f, `′, f(µ)) .

Recall that f for f is defined in Definition 7.
4. Conditional-Branching. If ` ∈ Lf

b\Lf
s with (`, φ, `1),

(`,¬φ, `2) being namely the two triples in →f and both
ĝ(f, `1, �) and ĝ(f, `2, �) is already defined, then

ĝ(f, `, µ) := 1µ|=φ · ĝ(f, `1, µ) + 1µ|=¬φ · ĝ(f, `2, µ) + 1
in the case that φ does not involve array entries, and otherwise

ĝ(f, `, µ) := max{ĝ(f, `1, µ), ĝ(f, `2, µ)}+ 1 .

5. Function-Call. If ` ∈ Lf
c\Lf

s with (`, (g, f), `′) being the only
triple in→f and ĝ(f, `′, �) is already defined, then

ĝ(f, `, µ) := g(g, `g
in, f(µ)) + ĝ(f, `′, µ) + 1 .

Note that in Definition 13, we have not technically shown that ĝ
is defined over all abstract stack elements. The following technical
lemma shows that the function ĝ is indeed well-defined (proof in
Appendix E).
Lemma 1. For each function g from{

(f, `, µ) | f ∈ F , ` ∈ Lf
s, µ ∈ Valf

}
into [0,∞], the function ĝ is well-defined.
Example 3. In Fig. 2, label 1 in function-call mergesort and labels
1, 4, 12 in merge are significant labels.

With Definition 13, it is possible to obtain a measure function by
imposing constraints on a function defined at significant labels
only. In order to avoid direct manipulation of Df,`’s (reachable
abstract valuations), we further fix an invariant w.r.t f∗ and use it to
over-approximateDf,`’s. Then we obtain the following proposition
(proof in Appendix F).
Proposition 1. Let g be a function from{

(f, `, µ) | f ∈ F , ` ∈ Lf
s, µ ∈ Valf

}
into [0,∞] and ĝ be defined as in Definition 13. Let I be an
invariant w.r.t f∗, φ∗. Consider that for all abstract stack elements
(f, `, µ) such that ` ∈ Lf

s and µ |= I(f, `), the following conditions
hold:
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• C2’: if ` ∈ Lf
a and (`, f, `′) is the only triple in→f with source

label `, then ĝ(f, `′, f(µ)) + 1 ≤ ĝ(f, `, µ);
• C3’: if ` ∈ Lf

c and (`, (g, f), `′) is the only triple in →f with
source label `, then 1+ĝ(g, `g

in, f(µ))+ĝ(f, `′, µ) ≤ ĝ(f, `, µ);
• C4’: if ` ∈ Lf

b and (`, φ, `1), (`,¬φ, `2) are namely two triples
in→f with source label `, then (i)

1µ|=φ · ĝ(f, `1, µ) + 1µ|=¬φ · ĝ(f, `2, µ) + 1 ≤ ĝ(f, `, µ)
whenever φ does not involve array entries and (ii) otherwise

max{ĝ(f, `1, µ), ĝ(f, `2, µ)}+ 1 ≤ ĝ(f, `, µ).

Then ĝ is a measure function w.r.t f∗, φ∗.
Note that from Definition 13, conditions C2’-C4’ essentially spec-
ify constraints on g. This allows an algorithm to synthesize a mea-
sure function only at significant labels.

5. The Synthesis Algorithm
In this section, we present our algorithm, namely SYNALGO, for
synthesizing measure functions, which by Theorem 1 is also a
sound approach for the RECTERMBOU problem. The synthesis
algorithm is designed to synthesize one function over abstraction
valuations at each function name and appropriate significant label,
so that conditions C2’-C4’ in Proposition 1 are fulfilled.We will
present the main conceptual details of our algorithm, and some
technical details are relegated to Appendix G. We first present an
overview of our solution.

Overview of the solution. We present the overview of our solution
which has the following four steps.

1. Step 1. Since one key aspect of our result is to obtain bounds
of the form O(n logn) as well as O(nx), where x is not
an integer, we first consider general form of upper bounds
that involve logarithm and exponentiation (Step 1(a)), and then
consider templates with the general form of upper bounds for
significant labels (Step 1(b)).

2. Step 2. The second step considers the template generated in
Step 1 for significant labels and generate templates for all la-
bels. This step relatively straightforward.

3. Step 3. The third step establishes constraint triples according
to the invariant given by the input and the template obtained in
Step 2. This step is also straightforward.

4. Step 4. The fourth step is the significant step which involves
solving the constraint triples generated in Step 3. The first sub-
step (Step 4(a)) is to consider abstractions of logarithm, expo-
nentiation, and floor expressions. The next step (Step 4(b)) re-
quires to obtain linear constraints over the abstract variables.
We use Farkas’ lemma for a lower bound for abstract variables
and use Lagrange’s Mean-Value Theorem (LMVT) to obtain
sound and linear constraints for abstract logarithmic and expo-
nentiation variables. The next (and the final) step (Step 4(c))
requires to solve the unknown coefficients of the template. This
requires the solution of positive polynomial over a polyhedron,
and we use Handelman’s theorem to solve this step.

Informal illustration of the conceptual steps. Since the most inter-
esting conceptual contributions are in Step 4, we present an illus-
tration of the key ideas on simple examples.
Example 4. Consider that the task is to synthesize a measure
function for Merge-Sort which takes a form similar to 2 · n · logn
at some label, where n is the variable representing the length of the
array. Then due to condition C3 our algorithm needs to detect that

2 · n · lnn− 2 ·
⌊
n

2

⌋
· ln
⌊
n

2

⌋
− 2 ·

⌈
n

2

⌉
· ln
⌈
n

2

⌉
− n ≥ 0 (1)

under the invariant condition n ≥ 2. The algorithm first abstracts
the logarithm and floored expression as independent fresh variables

as follows:

w1 :=
⌈
n

2

⌉
, w2 :=

⌊
n

2

⌋
, w3 := n

u1 := ln
⌈
n

2

⌉
, u2 := ln

⌊
n

2

⌋
, u3 := lnn

where w3 is introduced only for convenience. By applying Farkas’
Lemma with n ≥ 2 and properties of the floor operation, our
algorithm generates the following inequalities:

w1 ≥ 1, w2 ≥ 1, w3 − 1
2 ≤ w2 ≤

w3

2 ≤ w1 ≤
w3 + 1

2 . (2)

Below we present a set of constraints, which we refer as (‡) (and we
will use them later as well, in Example 9). Based on (2), the algo-
rithm generates the following inequalities (‡) through (a) proper-
ties of logarithm, (b) the fact that the global minima of the function
x 7→ x

log x over (0,∞) is attained at constant e, and (c) apply-
ing Lagrange’s Mean-Value Theorem (LMVT) over the logarithmic
function x 7→ ln x.

• u1 ≥ 0, u2 ≥ 0, u3 ≥ ln 2;
• wj ≥ e · uj (for 1 ≤ j ≤ 3);
• u2 ≤ u3 − ln 2 and u3 ≤ ln 2 + u2 + 1

2 ;
• u1 ≤ u3 − ln 2 + 1

2 and u3 ≤ u1 + ln 2;
• u2 ≤ u1 and u1 ≤ u2 + 1.

The first inequality above of (‡) use Farkas’ Lemma, the second
is the global minimality, and all the rests use LMVT. While above
we have transcendental numbers ln 2 and e, for our purpose it suf-
fices to replace them by approximate constants, such as constants
2.7182 and 2.7183 (resp., 0.6931 and 0.6932) for lower and upper
approximations of e (resp., ln 2). Finally, the algorithm transforms
(1) into

2 · w3 · u3 − 2 · w1 · u1 − 2 · w2 · u2 − w3 ≥ 0 (3)

and then checks whether (3) holds under the generated inequalities.
Observe that (3) is non-linear, which we show how to solve in
polynomial time through the sound form of Handelman’s Theorem.
Example 5. Consider that our task is to synthesize a measure func-
tion for Karatsuba’s algorithm [41] for polynomial multiplication
which takes a form similar to 2 ·n1.8 at some label, where n repre-
sents the maximal degree of the input polynomials and is a power
of 2. Then due to condition C3, our algorithm needs to detect:

2 · n1.6 − 4 ·
(
n

2

)1.6
− n ≥ 0 (4)

under the invariant condition n ≥ 2. The algorithm first abstracts
n1.6, n0.6 as stand-alone variables u, v, respectively. Then the al-
gorithm generates the following inequalities using Farkas’ Lemma
(the first two inequalities) and through properties of exponentiation
(the rest of them):

u ≥ 21.6, v ≥ 20.6, u ≥ 20.6 · n, u ≥ 2 · v, n ≥ 20.4 · v. (5)

Finally, the algorithm transforms (4) into

2 · u− 4 ·
(1

2

)1.6
· u− n ≥ 0 (6)

and checks whether (6) holds under (5) together with n ≥ 2
through the sound form of Handelman’s Theorem. Also note that
above we have constants such as 21.8 and 20.8, but again we can
use appropriate lower and upper rational constants for approxima-
tion.

Below we fix an input recursive program W , with its CFG taking
the form (†), an input function name f∗ ∈ F , an input propositional
array predicate φ∗ and an input invariant I w.r.t f∗, φ∗. We will
present our algorithm in four steps, and let us first consider our
running example.
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Example 6. Consider the recursive program mergesort as our
running example for this section. Alongside the input program, the
other inputs are as follows: (i) f∗ := mergesort; (ii) φ∗(i, j) :=
1 ≤ i ∧ i ≤ j; and (iii) the input invariant I is given by

• I(mergesort, 1) = I(merge, 1) := φ∗(i, j), and
• I(merge, 4) = I(merge, 12) := φ∗(i, j) ∧ l ≤ j + 1.

Note that due to Proposition 1, it suffices to specify invariant at
significant labels only.

5.1 Step 1 of SYNALGO

Step 1(a): General Form of Upper-Bound Functions. In order
to capture worst-case complexity upper-bounds of recursive pro-
grams, the general form of an upper-bound function incorporates
terms from program variables and array lengths (i.e, ‖�‖). More-
over, in order to capture more intricate complexity upper-bound
related to positive quantities (such as array lengths), our algorithm
incorporates two types of extensions of terms.

1. Logarithmic terms. The first extension, which we call log -
extension, is the extension with terms from

ln x, ln (x− y + 1), ln ‖ar‖ (7)

where x, y are program variables appearing in the parameter list
of f, ar is an array variable appearing in the parameter list of f
and ln (�) is the natural logarithm function with base e.

2. Exponentiation terms. The second extension, which we call
exp-extension, is the extension with terms from

xk, (x− y + 1)k, ‖ar‖k (8)

where x, y are program variables appearing in the parameter
list of f, ar is an array variable appearing in the parameter list
of f and k is a positive rational (i.e., not necessarily integer)
exponent.

The intuition is that x (resp. x − y + 1) may represent the length
between array indices 1 and x or other positive quantities (resp. the
length between array indices y and x).

Setup of General Form of Upper-Bound Functions. Then we set the
general form of an upper-bound function for any function name f
and any ` ∈ Lf

s to be a function on Valf defined through a finite
sum ∑

i

ci · gi (9)

where each ci is a constant rational scalar and each gi is a finite
product of terms from program variables in V f

p , lengths of array
variables in

{
‖ar‖ | ar ∈ V f

ar
}

and extensions from either (7) or
(8).

Function JeK from e. A finite sum e in the form (9) defines a function
JeK on Valf in the way that for each µ ∈ Valf :

1. JeK(µ) := 0 if µ 6|= I(f, `);
2. otherwise, JeK(µ) is defined as the evaluation result of e when

assigning µ(x) to each x ∈ V f
p and µ(ar) to each occurrence

of ‖ar‖.

Note that in the definition of JeK, we do not consider the case when
log or exponentiation is undefined. However, we will see later that
log and exponentiation will always be well-defined.

Step 1(b): Templates.

For complexity bounds, as in all previous works (such as [9, 10,
12, 15, 43, 46, 50]), we consider that the template for the form
of upper bounds is chosen manually, (where the template consists
of the term extension from either log -extension or exp-extension

with exponent k and a natural number m ≥ 1). The algorithm first
sets up a template η for a measure function w.r.t f∗, φ∗. In detail,
the algorithm builds η by assigning to each function name f and
significant label ` ∈ Lf

s an expression η(f, `) in the form (9), except
for that (i) ci’s in (9) are interpreted as distinct scalar variables
whose actual values are to be synthesized and (ii) gi’s in (9) range
over all finite products of terms with at most m multiplicands;
and in order to ensure that logarithm and exponentiation are well-
defined over I(f, `), we consider that:

(§) ln x, xk (resp. ln (x− y + 1), (x − y + 1)k) appear in
η(f, `) only when x − 1 ≥ 0 (resp. x − y ≥ 0) can be
inferred from the propositional array predicate I(f, `).

To infer x − 1 ≥ 0 or x − y ≥ 0 from I(f, `), we utilize Farkas’
Lemma [16].
Theorem 3 (Farkas’ Lemma [16, 45]). Let A ∈ Rm×n, b ∈ Rm,
c ∈ Rn and d ∈ R. Assume that {x | Ax ≤ b} 6= ∅. Then

{x | Ax ≤ b} ⊆ {x | cTx ≤ d}

iff there exists y ∈ Rm such that y ≥ 0, ATy = c and bTy ≤ d.

By Farkas’ Lemma, there exists an algorithm that infers whether
x − 1 ≥ 0 (or x − y ≥ 0) holds under I(f, `) in polynomial time
through emptiness checking of polyhedra (cf. [44]) provided that
I(f, `) involves only linear (degree-1) polynomials.

Then η naturally induces a function JηK from{
(f, `, µ) | f ∈ F , ` ∈ Lf

s, µ ∈ Valf
}

into [0,∞] parametric over scalar variables such that JηK(f, `, µ) =
Jη(f, `)K(µ) for all appropriate abstract stack elements (f, `, µ).
Note that JηK is well-defined since logarithm and exponentiation is
well-defined over satisfaction sets of propositional array predicates
given by I .
Example 7. Consider our running example mergesort depicted
in Fig. 2. The algorithm establishes an expression in form (9)
for each η(mergesort, 1, �), η(merge, 1, �), η(merge, 4, �) and
η(merge, 12, �). For the sake of succinct illustration, we consider
the following simplified sub-forms:

• η(mergesort, 1, �) is represented by

1I(mergesort,1) · t1(i, j) + 1¬I(mergesort,1) · 0
where t1(i, j) := c1,1 + c1,2 · (j − i+ 1) · ln (j − i+ 1).

• η(merge, 1, �) is represented by

1I(merge,1) · t2(i, j) + 1¬I(merge,1) · 0

where t2(i, j) := c′1,1 + c′1,2 · (j − i+ 1).
• η(merge, 4, �) is represented by

1I(merge,4) · t3(i, j, l) + 1¬I(merge,4) · 0

where t3(i, j, l) := c′4,1 +c′4,2 ·(j − l + 1)+c′4,3 ·(j − i+ 1).
• η(merge, 12, �) is represented by

1I(merge,12) · t4(j, l) + 1¬I(merge,12) · 0

where t4(j, l) := c′12,1 + c′12,2 · (j − l + 1).

In the forms above, all cm,n, c′m,n’s are scalar variables.

5.2 Step 2 of SYNALGO

Step 2: Computation of ĴηK. Recall the transformation of a func-
tion g to ĝ in Definition 13, and the function JeK for e. We now
consider a template η, and the above two transformations give us
ĴηK. Formally, based on the template η, the algorithm computes ĴηK
by Definition 13, while treating scalar variables appearing in η as
undetermined constants. Then ĴηK is a function parametric over the
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scalar variables in η. Then by an easy induction, each ĴηK(f, `, �)
can be represented by an expression in the form

max

{∑
j

1φ1j · h1j , . . . ,
∑
j

1φmj · hmj

}
(10)

where

1. each φij is a propositional array predicate over V f
p , V

f
ar such

that (i) 1φij is interpreted as the indicator function µ 7→ 1µ|=φ
on Valf and (ii) for each i,

∨
j
φij is tautology and φij1 ∧ φij2

is unsatisfiable whenever j1 6= j2, and
2. each hij takes the form similar to (9) with the difference that

(i) each ci is either a scalar or a scalar variable appearing in η
and (ii) each gi is a finite product whose every multiplicand is
either some x ∈ V f

p , or some ‖ar‖, or some bec with e being
an instance of 〈pexpr〉, or some ln e (or ek) with e being an
instance of 〈pexpr〉.

For this step we use that array predicates are in DNF. For detailed
description see Appendix G.
Example 8. Consider again our running example mergesort (cf.
Fig. 2). After the computation of ĴηK, we obtain the following:

• ĴηK(mergesort, 2, �) is (represented) by

4 + 1φ∗(i,j) · t2(i, j) + 1φ∗(i+w,j) · t1(i+ w, j)
+ 1φ∗(i,i+w−1) · t1(i, i+ w − 1)

with w representing the floored expression b j−i+1
2 c, and is

further transformed by the algorithm equivalently into

4 + 1ϕ1 · (t2(i, j) + t1(i+ w, j) + t1(i, i+ w − 1))
+ 1ϕ2∨ϕ3 · t1(i+ w, j) + 1ϕ4 · t1(i, i+ w − 1)

with
ϕ1 := 1 ≤ i ∧ i+ w ≤ j ∧ 1 ≤ w, and
ϕ2 := i ≤ 0 ∧ 1 ≤ i+ w ∧ i+ w ≤ j, and
ϕ3 := i ≥ j + 1 ∧ 1 ≤ i+ w ∧ i+ w ≤ j ∧ w ≤ 0, and
ϕ4 := i ≥ j + 1 ∧ 1 ≤ i ∧ 1 ≤ w,

which conforms to form (10), where the constant 4 lies outside
every summand, every summand being identically zero is omit-
ted and some simplification over logical formulae which pre-
serves satisfaction relation are carried out.

• ĴηK(mergesort, 6, �) is the function with constant value 1;
• ĴηK(merge, 2, �) by 2 + 11≤i∧i≤j∧i≤j+1 · t3(i, j, i);
• ĴηK(merge, 5, �) by 4 + 11≤i∧i≤j∧l+1≤j+1 · t3(i, j, l + 1);
• ĴηK(merge, 11, �) by 1 + 11≤i∧i≤j∧i≤j+1 · t4(j, i);
• ĴηK(merge, 13, �) by 2 + 11≤i∧i≤j∧l+1≤j+1 · t4(j, l + 1);
• ĴηK(merge, 15, �) is the function with constant value 0.

5.3 Step 3 of SYNALGO

Illustration of Constraint Triples. By applying non-negativity
and C2’-C4’ to ĴηK, the algorithm establishes constraints over
scalar variables appearing in η. We organize each constraint as a
triple (f, φ, e) where

• f ∈ F ,
• φ is a propositional array predicate over V f

p , V
f

ar which is with-
out array entries and is a conjunction of atomic formulae (i.e.,
formulae of the form e′ ≥ 0 with e′ being an arithmetic array
expression without array entries), and

• e is an expression taking the form similar to (9) with the dif-
ference that (i) each ci is either a scalar, or a scalar variable
c appearing in η, or its reverse −c, and (ii) each gi is a finite
product whose every multiplicand is either some x ∈ V f

p , or

some ‖ar‖ with ar ∈ V f
ar, or some bec with e being an instance

of 〈pexpr〉, or some ln e (or ek) with e being an instance of
〈pexpr〉 over V f

p .

For each expression taking the form similar to (9), the function JeK
on Valf is defined in the way such that each JeK(µ) is the evaluation
result of e when assigning µ(x) to each x ∈ V f

p and µ(ar) to
each occurrence of ‖ar‖; under (§) (of Step 1(b)), logarithm and
exponentiation will always be well-defined.

A constraint triple (f, φ, e) encodes the following logical formula

∀µ ∈ Valf . (µ |= φ→ JeK(µ) ≥ 0) .

Multiple constraint triples are grouped into a single logical formula
through conjunction.

Step 3: Establishment of Constraint Triples. Based on ĴηK, the
algorithm generates constraint triples at each significant label of
some function name, then group all generated constraint triples to-
gether in a conjunctive way. To be more precise, at every significant
label ` of some function name f, the algorithm generates constraint
triples through non-negativity of measure functions and condition
C2’–C4’; after generating the constraint triples for each significant
label, the algorithm group them together in the conjunctive fash-
ion to form a single collection of constraint triples. For a detailed
procedure and illustration see Appendix G.

5.4 Step 4 of SYNALGO

Step 4: Solving Constraint Triples. To check whether the log-
ical formula encoded by generated constraint triples is valid, the
algorithm follows a sound method which treats each multiplicand,
other than program variables, in the form (10) as a stand-alone vari-
able, and transforms the validity of the formula into a system of
linear equalities over scalar variables appearing in η through Han-
delman’s Theorem.

Notations for the algorithm. In the following, we describe how the
algorithm transforms a constraint triple (f, φ, t) into a collection
of linear equalities involving scalar variables in η. Below given
any finite set Γ of polynomials over n variables, we denote by
Sat(Γ) := {x ∈ Rn | f(x) ≥ 0 for all f ∈ Γ}. Let (f, φ, t)
be any constraint triple such that φ =

∧
j
ej ≥ 0.

Step 4(a): Abstraction of Logarithm, Exponentiation, and
Floored Expressions. The first substep involves the following
computational steps, where item 2-4 use variables for abstraction,
and item 7 is approximation of floor expression, and other steps are
straightforward.

1. Initialization. First, the algorithm maintains a finite set of linear
(degree-1) polynomials Γ and sets it initially to the empty set.

2. Logarithm, Exponentiation, and Floored expressions. Next, the
algorithm computes the following subsets of 〈pexpr〉:
• EL := {e | ln e appears in t (as sub-expression)}.
• EE := {e | ek appears in t (as sub-expression)}.
• EF := {e | e appears in t and takes the form b �

c
c}.

Let E := EL ∪ EE ∪ EF .
3. Variables for Array-Lengths. Next, for each ar ∈ V f

ar that
appears in t, the algorithm introduces a fresh variable lar which
indicates ‖ar‖.

4. Variables for Logarithm, Exponentiation, Floor expressions.
Next, for each e ∈ E , the algorithm establishes fresh variables:
• Fresh variable ue which represents ln e for e ∈ EL.
• Two fresh variables ve, v′e such that ve indicates ek and v′e

indicates ek−1 for e ∈ EE .
• Fresh variable we indicating e for e ∈ EF .

After this step, the algorithm sets N to be the number of all
variables (i.e., all scalar variables and all fresh variables) and

9 2016/7/13



consider an implicit linear order over the variables so that a
valuation of these variables can be treated as a vector in RN .

5. Variable Substitution: from e to ẽ. Next, for each e which is
either (i) t, or some (ii) ej , or (iii) some expression in E , the
algorithm computes ẽ as the expression obtained from e by
substituting every lar for ‖ar‖, every ue′ for ln e′, every ve′
for (e′)k, and everywe′ satisfying that there is an appearance of
e′ (at some syntactical sub-part) in e such that this appearance
of e′ does not appear in some another e′′ ∈ E2 appearing in e.

6. Importing φ into Γ. The algorithm adds all ẽj into Γ.
7. Approximation of Floored Expressions. For each e ∈ EF such

that e = b e
′

c
c, the algorithm adds linear constraints on we

recursively as follows:
• Base Step. If e′ involves no nested floored expression, then

the algorithm into Γ either (i) adds ẽ′ − c ·we and c ·we −
ẽ′ + c− 1 when c ≥ 1 which is derived from

e′

c
− c− 1

c
≤ e ≤ e′

c
,

or (ii) adds c ·we− ẽ′ and ẽ′− c ·we− c− 1 when c ≤ −1
which follows from

e′

c
− c+ 1

c
≤ e ≤ e′

c
.

Second, the algorithm finds the largest te′ through Farkas’
Lemma such that

∀x ∈ RN .
(
x ∈ Sat(Γ)→ ẽ′(x) ≥ te′

)
holds; if such te′ exists, then the algorithm adds the con-
straint we ≥

⌊ te′
c

⌋
into Γ.

• Recursive Step. If e′ involves some nested floored expres-
sion, then the algorithm proceeds with ẽ′ recursively in the
same way as for the Base Step.

8. Emptiness Checking. The algorithm checks whether Sat(Γ) is
empty or not in polynomial time in the size of Γ (cf. [44]). If
Sat(Γ) = ∅, then the algorithm stops with no linear inequalities
generated; otherwise, the algorithm proceeds to the remaining
steps.

For the next step we will use Lagrange’s Mean-Value Theorem
(LMVT) to abstract logarithmic and exponential terms.
Theorem 4 (Lagrange’s Mean-Value Theorem [5, Chapter 6]). Let
f : [a, b] → R (for a < b) be a function continuous on [a, b] and
differentiable on (a, b). Then there exists a real number ξ ∈ (a, b)
such that f ′(ξ) = f(b)−f(a)

b−a .

Step 4(b): Linear Constraints for Abstracted Variables. The
second sub-step consists of the following computational steps
which handles extra linear constraints to be added into Γ. We
present the details for logarithm and similar technical details for
exponentiation terms are in Appendix G. Below we denote by E1
the set EL ∪ EE . In the first three items we use the ẽ notation intro-
duced in the Variable substitution (item 5) of Step 4(a).

1. Lower-Bound for Expressions in E1. For each e ∈ E1, we find
the largest te ∈ R such that the formula

∀x ∈ RN . (x ∈ Sat(Γ)→ ẽ(x) ≥ te)
holds, where ẽ is deemed as a polynomial over all variables and
ẽ(x) is the result of polynomial evaluation under the correspon-
dence between variables and coordinates of x specified by the
linear order This can be solved by Farkas’ Lemma and linear
programming, since ẽ is linear. Note that as long as Sat(Γ) 6= ∅
holds, it follows from (§) (of Step 1(b)) that te is well-defined
(since te cannot be arbitrarily large) and te ≥ 1.

2. Mutual No-Smaller-Than Inequalities over E1. For each pair
(e, e′) ∈ E1 × E1 such that e 6= e′, the algorithm finds real

numbers r(e,e′), b(e,e′) through Farkas’ Lemma and linear pro-
gramming such that (i) r(e,e′) ≥ 0 and (ii) both the formulae

∀x ∈ RN .
[
x ∈ Sat(Γ)→ ẽ(x)−

(
re,e′ · ẽ′(x) + be,e′

)
≥ 0
]

and

∀x ∈ RN .
[
x ∈ Sat(Γ)→ re,e′ · ẽ′(x) + be,e′ ≥ 1

]
hold. The algorithm first finds the maximal value r∗e,e′ over all
feasible (re,e′ , be,e′)’s, then finds the maximal b∗e,e′ over all fea-
sible (r∗e,e′ , be,e′)’s. If such r∗e,e′ does not exist, the algorithm
simply leaves r∗e,e′ undefined. Note that once r∗e,e′ exists and
JΓK is non-empty, then b∗e,e′ exists since be,e′ cannot be arbitrar-
ily large once r∗e,e′ is fixed.

3. Mutual No-Greater-Than Inequalities over E1. For each pair
(e, e′) ∈ E1 × E1 such that e 6= e′, the algorithm finds real
numbers r(e,e′), b(e,e′) through Farkas’ Lemma and linear pro-
gramming such that (i) r(e,e′) ≥ 0 and (ii) the formula

∀x ∈ RN .
[
x ∈ Sat(Γ)→

(
re,e′ · ẽ′(x) + be,e′

)
− ẽ(x) ≥ 0

]
holds. The algorithm then finds the minimal value (r∗e,e′ ,b∗e,e′ )
similarly as above.

4. Constraints for Logarithm. For each variable ue, the algorithm
adds into Γ the polynomial expression

ẽ−
(

1te≤e · e+ 1te>e ·
te

ln te

)
· ue

due to the fact that the function d 7→ d
ln d (d ≥ 1) has global

minima at e, and the polynomial expression ue − ln te due to
the definition of te.

5. Constraints for Exponentiation. The details are in Appendix G.
6. Mutual No-Smaller-Than Inequalities over ue’s. For each pair

(e, e′) ∈ E1×E1 such that e 6= e′ and r∗e,e′ , b
∗
e,e′ are successfully

found and r∗e,e′ > 0, the algorithm adds

ue − ln r∗e,e′ − ue′ + 1b∗
e,e′

<0 ·
(
te′ +

b∗e,e′

r∗
e,e′

)−1

·
(
−
b∗e,e′

r∗
e,e′

)
into Γ. This is due to the fact that JeK−

(
r∗e,e′ · Je′K + b∗e,e′

)
≥

0 implies (recall JeK from e defined before Step 1(b))) the
following:

ln JeK ≥ ln r∗e,e′ + ln
(

Je′K +
b∗e,e′

r∗
e,e′

)
= ln r∗e,e′ + ln Je′K

+
(

ln
(

Je′K +
b∗e,e′

r∗
e,e′

)
− ln Je′K

)
≥ ln r∗e,e′ + ln Je′K

− 1b∗
e,e′

<0 ·
(
te′ +

b∗e,e′

r∗
e,e′

)−1

·
(
−
b∗e,e′

r∗
e,e′

)
,

where the last step is obtained from Lagrange’s Mean-Value
Theorem and by distinguishing whether b∗e,e′ ≥ 0 or not. Note

that one has te′ +
b∗
e,e′
r∗
e,e′
≥ 1 due to the maximal choice of te′ .

7. Mutual No-Greater-Than Inequalities over ue’s. Similar to the
previous item, the algorithm establishes mutual no-greater-than
inequalities over ue’s.

Note that in item 4 and item 6 above, we have logarithmic terms
such as ln te and ln r∗e,e′ , but note that both te and r∗e,e′ are already
determined constants, and hence their approximations can be used
(recall Example 4).
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Example 9. Consider again our running example in Fig. 2. We
pick the generated constraint triple

(mergesort, i− 1 ≥ 0 ∧ j − i− w ≥ 0 ∧ w − 1 ≥ 0, t)
with t := t1(i, j)− t2(i, j)− t1(i+ w, j)− t1(i, i+ w − 1)− 5
as an example on the generation of linear (in-)equalities. First, the
algorithm assigns a variable w to represent the floored expression⌊
j−i+1

2

⌋
. Second, the algorithm establishes ui to represent ln ei

(1 ≤ i ≤ 3), where e1 := j−i−
⌊
j−i+1

2

⌋
+1, and e2 :=

⌊
j−i+1

2

⌋
,

and e3 := j − i+ 1. Note that now one has that

t̃ :=c1,1 + c1,2 · ẽ3 · u3 −
(
c′1,1 + c′1,2 · (j − i+ 1)

)
− (c1,1 + c1,2 · ẽ1 · u1)− (c1,1 + c1,2 · ẽ2 · u2) .

Third, the algorithm establishes the inequalities

w ≤ j − i+ 1
2 , w ≥ j − i

2 , w ≥ 1

for the floored expression
⌊
j−i+1

2

⌋
. Next, the algorithm obtains

tej ’s by deducing that ẽ1 ≥ 1, ẽ2 ≥ 1, and ẽ3 ≥ 2. Then, the
algorithm deduces the following constraints:

1. ẽ2 ≤ 1
2 · ẽ3 and ẽ3 ≤ 2 · ẽ2 + 1;

2. ẽ2 ≥ 1
2 · ẽ3 − 1

2 and ẽ3 ≥ 2 · ẽ2;
3. ẽ1 ≤ 1

2 · ẽ3 + 1
2 and ẽ3 ≤ 2 · ẽ1;

4. ẽ1 ≥ 1
2 · ẽ3 and ẽ3 ≥ 2 · ẽ1 − 1;

5. ẽ2 ≤ ẽ1 and ẽ1 ≤ ẽ2 + 1;
6. ẽ2 ≥ ẽ1 − 1 and ẽ1 ≥ ẽ2.

Next, the algorithm adds the constraints formulated under (‡) in
Example 4 into Γ, with each ẽj being represented by wj . Finally,
the algorithm establishes linear equalities through Handelman’s
Theorem on Γ and t.

Step 4(c): Solving Unknown Coefficients in the Template. For
this step, we use Handelman’s Theorem, which we present below.
Definition 14 (Monoid). Let Γ be a finite subset of some polyno-
mial ring R[x1, . . . , xm] such that all elements of Γ are polynomi-
als of degree 1. The monoid of Γ is defined by:

Monoid(Γ) :=
{ k∏
i=1

hi | k ∈ N0 and h1, . . . , hk ∈ Γ
}
.

Theorem 5 (Handelman’s Theorem [25]). Let R[x1, . . . , xm] be
the polynomial ring with variables x1, . . . , xm (for m ≥ 1). Let
g ∈ R[x1, . . . , xm] and Γ be a finite subset of R[x1, . . . , xm] such
that all elements of Γ are polynomials of degree 1. If (i) the set
Sat(Γ) is compact and non-empty and (ii) g(x) > 0 for all x ∈ Y ,
then

g =
n∑
i=1

ci · ui (11)

for some n ∈ N, non-negative real numbers c1, . . . , cn ≥ 0 and
u1, . . . , un ∈ Monoid(Γ).

Basically, Handelman’s Theorem gives a characterization of posi-
tive polynomials over polytopes. In this paper, we concentrate on
Eq. (11) which provides a sound form for a non-negative polyno-
mial over a general (i.e. possibly unbounded) polyhedron. In Propo-
sition 2 (in Appendix G), we show that Eq. (11) encompasses a
simple proof system for non-negative polynomials over polyhedra.

Then the final step involves the following computational steps.

1. Application of Handelman’s Theorem. First, the algorithm reads
a natural number m, which is the maximal number of multipli-
cands in each summand at the right-hand-side of Eq. (11). Then,

randwalk(i, j) {

i f 2 ∗ i+ 3 ∗ j ≤ 100
then
i := i− 1 ;
j := j + 1 ;
randwalk(i, j)

e l s e sk ip
f i }

| nestedloop(i, j,m, n) {
|
| i f i ≤ m then
| i f j ≤ n then j := j + 1
| e l s e i := i+ 1 ; j := 0
| f i ;
| nestedloop(i, j,m, n)
| e l s e sk ip
| f i }

Figure 6. Programs for Sect 6.1

the algorithm establish a fresh scalar variable λh for each poly-
nomial h in Monoid(Γ) with no more than m multiplicands
from Γ, and establish linear (in-)equalities over scalar variables
λh’s and those in η by equating coefficients of the same mono-
mials at the left- and right-hand-side of the following polyno-
mial equality t̃ =

∑
h
λh · h and incorporating all constraints

of the form λh ≥ 0.
2. Solving Scalar Variables. The algorithm collects all linear in-

equalities extracted from constraint triples conjunctively as a
single system of linear inequalities and solve it through linear-
programming algorithms.

We now state our main result for synthesis of measure functions
(proof in Appendix G).
Theorem 6. Our algorithm, SYNALGO, is a polynomial-time
algorithm and a sound approach for the RECTERMBOU prob-
lem, i.e., if SYNALGO succeeds to synthesize a function g on{

(f, `, µ) | f ∈ F , ` ∈ Lf
s, µ ∈ Valf

}
, then ĝ is a measure function

and an upper bound on the abstract termination time.
Remark 3. We remark two aspects of our algorithm.

1. Scalability. Our algorithm only requires solving linear inequal-
ities. Since linear-programming solvers have been widely stud-
ied and experimented, the scalability of our approach directly
depends on the linear-programming solvers. Hence the ap-
proach we present is relatively a scalable one.

2. Novelty. A key novelty of our approach is to obtain non-trivial
non-linear bounds (such as O(n logn) , O(nx), where x is
not an integer) by using only linear programming. The novel
technical steps are: (a) use of abstraction variables; (b) use of
LMVT and Farkas’ lemma to obtain sound linear constraints
over abstract variables; and (c) use of Handelman’s Theorem
to solve the constraints in polynomial time.

6. Applications and Experimental Results
In this section we explain how our sound algorithm is applicable
for termination analysis of recursive programs as well as to obtain
non-trivial worst-case bounds.

6.1 Termination of recursive programs

For termination of recursive programs we consider two examples,
described below.

Example 1: Walk on two-dimensional plane. We first consider a
simple deterministic walk on a two-dimensional plane, until a
boundary is reached. We consider the walk as a recursive proce-
dure given in the left part of Fig. 6. With a linear template, our
algorithm synthesizes a linear measure function.

Example 2: Nested loop. We consider a recursive procedure that
implements a nested loop, given in the right part of Fig. 6, and with
a quadratic template, our algorithm synthesizes a quadratic measure
function.
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The above two examples are simple representative of recursive
programs, and our polynomial-time algorithm can synthesize linear
and quadratic bounds for the termination of recursive programs.

6.2 Non-trivial worst-case bounds

For worst-case upper bounds of non-trivial form, we consider four
classical examples from the literature.

Merge-Sort. We have already illustrated (as running example), how
our algorithm can synthesize O(n logn) bound for Merge-Sort.

Closest-pair. The closest pair problem consider a set n of two-
dimensional points and asks for the pair of points that have short-
est Euclidean distance between them. We consider the closest-
pair problem algorithm from (cf. [14, Chapter 33]) (also see Ap-
pendix H for the pseudo-code). Similar, to the Merge-Sort problem,
we obtain an O(n logn) bound for the algorithm.

Strassen’s algorithm. We consider one of the classic sub-cubic
algorithm for Matrix multiplication. For simplicity, we consider
matrices given as one dimensional arrays along with the row and
column number n. The Strassen algorithm (cf. [14, Chapter 4]) has
a worst-case running time of nlog2 7. We present the pseudo-code of
Strassen’s algorithm in our programming language in Appendix H.
Using a template of n2.9, our algorithm synthesizes a measure
function (basically, using constraints as illustrated in Example 5).

Karatsuba’s algorithm. We consider two polynomials p1 = a0 +
a1x + a2x

2 + . . . + anx
n−1 and p2 = b0 + b1x + b2x

2 +
. . . + bnx

n−1, where the coefficients ai’s and bi’s are represented
as arrays. The computational problem asks to compute the coeffi-
cients of the polynomial obtained by multiplication of p1 and p2,
and considers that n is a power of 2. While the most naive algo-
rithm is quadratic, Karatsuba’s algorithm (cf. [41]) is a classical
sub-quadratic algorithm for the problem with running time nlog2 3.
We present the pseudo-code Karatsuba’s algorithm in our program-
ming language in Appendix H. Using a template of n1.6, our algo-
rithm synthesizes a measure function (basically, using constraints
as illustrated in Example 5).

The above four examples show that our sound approach can synthe-
size non-trivial worst-case complexity bounds for several classical
algorithms.

6.3 Experimental results

Below we present experimental results on the examples explained
in the above two subsections. We implement our algorithm that
basically generates a set of linear constraints, which we use
lp solve [1] for solving linear programming. Our experimental re-
sults are presented in Table 1. The maximal number of multipli-
cands in Eq. 11 was set as 2. Moreover, since Merge-Sort is essen-
tially similar to Closest-Pair we only report the results for Merge-
Sort. For detailed description of approximation constants (as men-
tioned in Example 4) see Appendix H. Moreover, all results were
obtained quite efficiently (within few minutes), and were obtained
on 2.5GHz AMD processor over Debian 3.2.78 OS. Note that our
main contribution is algorithmic, and our implementation can be
made more efficient with optimizations. Thus we report the final
outcome of our result.

7. Related Work

In this section we discuss the related work. Our work is most
closely related to automatic amortized analysis [20, 27–29, 31–
33, 37, 38], as well as the SPEED project [22–24]. All these works

Example η(`0, )
Deterministic Walk 4 · (102− 2 · i− 3 · j)

Nested Loop 8 · (m− i+ 1) · n+ 2
Merge-Sort 1.293 · n · lnn− 1.293n+ 7.7069
Karatsuba 23.0314 · n1.6 − 21.0314
Strassen 1200.2125 · n2.9 + 10.1467 · n2 + 7.4789

Table 1. Experimental Results

focus on worst-case bounds for programs. There are two key dif-
ferences to our methodology. First, our methods are based on ex-
tension of ranking functions to recursive programs, whereas pre-
vious works either use potential functions, or abstract interpreta-
tion. Second, our approach gives a polynomial-time algorithm to
derive bounds such as O(n logn) and O(nx), where x is not inte-
ger, whereas none of the previous methods can derive such bounds
in polynomial time.

Other approaches for bounds analysis involve recurrence relations,
such as, [2–4, 18, 21]. Even for relatively simple programs the
recurrence are quite complex, and cannot be solved using standard
techniques. In contrast, our approach can synthesize non-trivial
complexity bounds using linear programming.

Ranking functions for intraprocedural analysis has been widely
studied [7, 8, 12, 15, 43, 46, 48, 50]. Most works have focussed
on linear or polynomial ranking functions [12, 15, 43, 46, 48, 50].
Such ranking functions can only derive linear or polynomial
bounds for programs without recursion. In contrast, we can de-
rive much more complex bounds for recursive programs. The no-
tion of ranking functions have been extended to ranking super-
martingales [9, 10, 17] for probabilistic programs without recur-
sion. These works cannot derive non-polynomial bounds for termi-
nation.

Several other works present proof rules for deterministic pro-
grams [26] as well as for probabilistic programs [36, 42]. None
of these works can be automated.

Other related approaches are sized types [11, 34, 35], and poly-
nomial resource bounds [47]. Again none of these approaches can
yield bounds like O(n logn) or O(nx), for x non-integral.

8. Conclusion

In this paper, we presented two major contributions. First, we
present the notion of measure function (cf. Sect. 4) and present
soundness and partial completeness for proving termination of re-
cursive programs. Second, we present a synthesis technique for
measure functions with logarithm or exponentiation through (i)
abstraction of logarithmic and exponential terms and (ii) Farkas’
Lemma, LMVT, and Handelman’s Theorem (cf. Sect. 5). Since
Farkas’ Lemma, LMVT, and Handelman’s Theorem reduce our
synthesis problems into linear programming, our technique leads
to an efficient (polynomial-time) algorithm for synthesizing mea-
sure functions even with logarithmic or exponential terms. We il-
lustrated by experiments that our technique can capture worst-case
complexity of classical recursive programs with non-trivial worst-
case bounds: our technique detectsO(n logn)-complexity for both
Merge-Sort and the divide-and-conquer algorithm for the Closest-
Pair problem (O(n logn)), O(n1.6) for Karatsuba’s algorithm for
polynomial multiplication, and O(n2.9) for Strassen’s algorithm
for matrix multiplication. The bound we obtain for Karatsuba’s and
Strassen’s algorithm are close to the optimal bounds known. In this
work we focussed on recursive programs with arrays. An interest-
ing direction of future work is to extend our technique to other data-
structures.
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A. Evaluation of Arithmetic Array Expressions

Below we fix a countable set X of scalar variables and a countable
set A of array variables such that X ∩ A = ∅. We also fix a heap
h. Given an arithmetic expression e over X ,A and a valuation on
X ,A, the element eh(ν) is defined inductively on the structure of e
as follows:

• ch(ν) := c;
• xh(ν) := ν(x);
• ‖ar‖h(ν) := ‖h (ν(ar))‖;
• (ar[x])h(ν) := h (ν(ar)) [ν(x)] if 1 ≤ ν(x) ≤ ‖h (ν(ar))‖,

and (ar[x])h(ν) := ⊥ otherwise;

•
⌊

e
c

⌋
h
(ν) :=

⌊
eh(ν)
c

⌋
if c 6= 0 and eh(ν) 6= ⊥, and

⌊
e
c

⌋
h
(ν) :=

⊥ otherwise;
• (e + e′)h(ν) := eh(ν) + e′h(ν) if e(ν), e′h(ν) ∈ Z, and

(e + e)h(ν) := ⊥ otherwise;
• (e− e′)h(ν) := eh(ν) − e′h(ν) if eh(ν), e′h(ν) ∈ Z, and

(e− e′)h(ν) := ⊥ otherwise;
• (e ∗ e′)h(ν) := eh(ν) · e′h(ν) if eh(ν), e′h(ν) ∈ Z, and

(e ∗ e′)h(ν) := ⊥ otherwise.

B. Semantics of Propositional Array Predicates

Let X ,A be disjoint countable sets of scalar and array variables,
respectively. And let h be a heap. The satisfaction relation |=h be-
tween valuations ν and propositional array predicates φ is defined
inductively as follows:

• ν |=h e on e′ (on∈ {≤,≥}) iff eh(ν), e′h(ν) 6= ⊥ and eh(ν) on
e′h(ν);

• ν |=h ¬φ iff ν 6|=h φ;
• ν |=h φ1 ∧ φ2 iff ν |=h φ1 and ν |=h φ2;
• ν |=h φ1 ∨ φ2 iff ν |=h φ1 or ν |=h φ2.

Conversion to DNF. By standard operations, propositional array
predicates can be converted into DNF (disjunctive normal form).
This is because since all variables are integer, and predicates e > e′

or e < e′ in some DNF can be equivalently rewritten into e ≥ e′+1
or e ≤ e′ − 1, respectively. We will use the DNF form in Step 2 of
SYNALGO.

C. Control-Flow Graphs for Recursive Programs

In this part, we demonstrate inductively how the control-flow graph
of a recursive program can be constructed. Below we fix a recursive
programW and denote by F the set of function names appearing in
W . For each function name f ∈ F , we define Pf to be the function
body of f, and define V f

p , V
f

ar be the set of scalar and resp. array
variables appearing in Pf and the parameter list of f.

The control-flow graph of W is constructed by first constructing
the counterparts {→f}f∈F for each of its function bodies and then
grouping them together. To construct each →f , we first construct
the partial relation→P,f inductively on the structure of P for each
statement P which involves variables solely from V f

p ∪ V f
ar, then

define→f as→Pf ,f .

Let f ∈ F . Given an assignment statement of the form ar[x]:=e
which involves variables solely from V f

p∪V f
ar, a valuation ν ∈ Valf

and a heap h, we denote by hν [e/ar[x]] the heap such that

(hν [e/ar[x]]) (d) =
h(d) if d 6= ν(ar)
h(d)[eh(ν)/ν(x)] if d = ν(ar), eh(ν) 6= ⊥

and ν(x) ∈ [1, ‖h(ν(ar))‖] ∩ N
⊥ otherwise

where h(d)[eh(ν)/ν(x)] is the array obtained from h(d) by sim-
ply changing h(d)[ν(x)] to eh(ν). Moreover, given an assign-
ment statement of the form x:=e involving variables solely from
V f

p ∪ V f
ar, a valuation ν ∈ Valf and a heap h, we denote by νh[e/x]

the valuation over V f
p , V

f
ar such that

(νh[e/x]) (q) =

ν(q) if q ∈ (V f
p\{x}) ∪ V f

ar
eh(ν) if q = x and eh(ν) 6= ⊥
0 if q = x and eh(ν) = ⊥

.

Finally, given a function call g(q′1, . . . , q′k) with variables solely
from V f

p ∪ V f
ar and its declaration being g(q1, . . . , qk), a valuation

ν ∈ Valf and a heap h, we define νh[g, {q′j}1≤j≤k] to be a valuation
over V g

p , V
g

ar by:

νh[g, {q′j}1≤j≤k](qj) :=
0 if qj ∈ V g

p and (q′j)h(ν) = ⊥
(q′j)h(ν) if qj ∈ V g

p and (q′j)h(ν) 6= ⊥
ν(q′j) if qj ∈ V g

ar

and νh[g, {q′j}1≤j≤k](q) := 0 for each q ∈ V g
p \{q1, . . . , qk}.

Now the inductive construction for each →P,f is demonstrated
as follows. For each statement P which involves variables solely
from V f

p ∪V f
ar, the relation→P,f involves two distinguished labels,

namely `P,fin and `P,fout, that intuitively represent the label assigned
to the first instruction to be executed in P and the terminal pro-
gram counter of P , respectively. After the inductive construction,
`f

in, `
f
out are defined as `Pf ,f

in , `
Pf ,f
out , respectively.

1. Assignments and Skips. For P of the form

x:=e, ar[x]:=e or skip,

→P,f involves a new assignment label `P,fin (as the initial label)
and a new conditional-branching label `P,fout (as the terminal
label), and contains a sole triple(

`P,fin , (ν, h) 7→ (νh[e/x], h), `P,fout
)

or (
`P,fin , (ν, h) 7→ (ν, hν [e/ar[x]]), `P,fout

)
or (

`P,fin , (ν, h) 7→ (ν, h), `P,fout
)
,

respectively.
2. Function Calls. For P of the form

g(q′1, . . . , q′k),

→P,f involves a new function-call label `P,fin and a new
conditional-branching label `P,fout, and contains a sole triple(

`P,fin ,
(
g, (ν, h) 7→ νh[g, {q′j}1≤j≤k]

)
, `P,fout

)
.

3. Sequential Statements. For

P=Q1;Q2,

we take the disjoint union of→Q1,f and→Q2,f , while redefin-
ing `Q1,f

out to be `Q2,f
in and putting `P,fin := `Q1,f

in and `P,fout :=
`Q2,f

out .
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4. Conditional-Branching Statements. For

P=if φ then Q1 else Q2 fi

with φ being a propositional array predicate, we first add two
new conditional-branching labels `Pin, `

P
out, then take the dis-

joint union of →Q1,f and →Q2,f while simultaneously identi-
fying both `Q1,f

out and `Q2,f
out with `P,fout, and finally obtain→P,f by

adding two triples (`P,fin , φ, `
Q1,f
in ) and (`P,fin ,¬φ, `

Q2,f
in ) into the

disjoint union of→Q1,f and→Q2,f .
5. While Statements. For

P=while φ do Q od,

we add a new conditional-branching label `P,fout as a terminal
label and obtain →P,f by adding triples (`Q,fout, φ, `

Q,f
in ) and

(`Q,fout,¬φ, `
P,f
out) into→Q,f , and define `P,fin := `Q,fout.

D. Proofs for Theorem 1 and Theorem 2

Theorem 1. For all measure functions g w.r.t f∗, φ∗, it holds that for
all abstract valuations µ w.r.t f∗ such that µ |= φ∗, T (f∗, `f∗

in , µ) ≤
g(f∗, `f∗

in , µ) .

Proof. Let g be a measure function w.r.t f∗. For each non-negative
integer n, define

Tn(c, h) := min {n, T (c, h)}
and

Tn(f, `, µ) := min
{
n, T (f, `, µ)

}
for all stack elements c, heaps h and abstract stack elements
(f, `, µ). Clearly, for all abstract stack elements (f, `, µ), it holds
that lim

n→∞
Tn(f, `, µ) = T (f, `, µ) and

(‡) Tn(f, `, µ) = sup{Tn((f, `, ν), h) | ν ∈ Valf ,
h is a heap and µ = µ[ν, h]}

for all n ∈ N0.

We prove by induction on n that

Tn(f, `, µ) ≤ g(f, `, µ)
for all n ∈ N0 and for all abstract stack elements (f, `, µ) such that
either ` = `f

out or µ ∈ Df,`, which directly implies the theorem.

Base Step The base step n ∈ {0, 1} is straightforward since one
has for all abstract stack elements (f, `, µ),

1. T 0(f, `, µ) = 0 and g(f, `, µ) ≥ 0 from definition, and
2. T 1(f, `, µ) = 1 6̀=`f

out
and

g(f, `, µ) · 1` 6=`f
out∧µ∈Df,`

≥ 1` 6=`f
out∧µ∈Df,`

from non-negativity and conditions C2–C4 of measure func-
tions.

Inductive Step Assume that n ≥ 1. Consider any abstract stack
element (f, `, µ) such that either ` = `f

out or µ ∈ Df,`. The
case ` = `f

out is straightforward since Tn+1(f, `, µ) = 0 by
definition. Below we assume that µ ∈ Df,` and let ((f, `, ν), h) be
any reachable pair ((f, `, ν), h) w.r.t f∗, φ∗ such that µ = µ[ν, h].
We clarify several cases below.

1. Case 1 (Assignment): ` ∈ Lf
a and (`, f, `′) is the sole triple

in →f with source label `. Then one easily obtains from the
semantics that

Tn+1((f, `, ν), h) = 1 + Tn((f, `′, ν′), h′)

where (ν′, h′) := f(ν, h). It follows from (‡) and arbitrary
choice of (ν, h) that

Tn+1(f, `, µ) ≤ 1 + Tn(f, `′, f(µ)).

By induction hypothesis, C2 and the fact that f(µ) ∈ Df,`′

whenever `′ 6= `f
out, one obtains Tn+1(f, `, µ) ≤ g(f, `, µ).

2. Case 2 (Function-Call): ` ∈ Lf
c and (`, (g, f), `′) is the sole

triple in→f with source label `. Then one obtains that

T ((f, `, ν), h) =∞
whenever T ((g, `g

in, f(ν, h)), h) =∞ and

T ((f, `, ν), h) = 1 + T ((g, `g
in, f(ν, h)), h) + T ((f, `′, ν), h′)

otherwise, where h′ is the unique heap after the execution of g.
It follows from the absence of array-creation statement in our
programming language that

Tn+1((f, `, ν), h) = 1 + Tn ((g, `g
in, f(ν, h)), h) (= n+ 1)

whenever T ((g, `g
in, f(ν, h)), h) =∞ and

Tn+1((f, `, ν), h) ≤ 1+Tn ((g, `g
in, f(ν, h)), h)+Tn((f, `′, ν), h′)

otherwise, which implies that

Tn+1(f, `, µ) ≤ 1 + Tn
(
g, `g

in, f(µ)
)

+ Tn(f, `′, µ).

Note that f(µ) ∈ Dg,`g
in

. If T
(
g, `g

in, f(µ)
)

= ∞, then

by induction hypothesis, g
(
g, `g

in, f(µ)
)
≥ n and hence

g(f, `, µ) ≥ n + 1 by C3; otherwise, it holds that µ ∈ Df,`′

whenever `′ 6= `f
out, implying Tn(f, `′, µ) ≤ g(f, `′, µ) from

the induction hypothesis. In either case, by induction hypothesis
and C3, one has Tn+1(f, `, µ) ≤ g(f, `, µ).

3. Case 3 (Conditional-Branching): ` ∈ Lf
b and (`, φ, `1),

(`,¬φ, `2) are namely two triples in →f with source label `.
Then one easily obtains that

T ((f, `, ν), h) =
{

1 + T ((f, `1, ν)), h) if ν |=h φ

1 + T ((f, `2, ν)), h) if ν |=h ¬φ
.

It follows that

Tn+1((f, `, ν), h) =
{

1 + Tn ((f, `1, ν)), h) if ν |=h φ

1 + Tn ((f, `2, ν)), h) if ν |=h ¬φ
.

On one hand, assume that φ involve no array entries. Then

Tn+1(f, `, µ) ≤ 1+1µ|=φ·Tn(f, `1, µ)+1µ|=¬φ·Tn(f, `2, µ) .

W.l.o.g, we assume that µ |= φ, since the case µ |= ¬φ is com-
pletely symmetrical. Then since (f, `1, µ) is reachable w.r.t f∗
whenever `1 6= `f

out, one obtains Tn(f, `1, µ) ≤ g(f, `1, µ)
from induction hypothesis, which implies Tn+1(f, `, µ) ≤
g(f, `, µ) from C4. On the other hand, assume that φ involve
array entries. In the case that ν |=h φ, one has (f, `1, µ) is
reachable w.r.t f∗ and hence

Tn+1((f, `, ν), h) = 1 + Tn((f, `1, ν), h) ≤ 1 + g(f, `1, µ)
from (‡) and induction hypothesis; for the other case (i.e., ν |=h

¬φ), one can deduce similarly that

Tn+1((f, `, ν), h) ≤ 1 + g(f, `2, µ).
Hence, in all cases,

Tn+1((f, `, ν), h) ≤ 1 + max{g(f, `1, µ), g(f, `2, µ)}.

By the arbitrary choice of (ν, h) and C4, Tn+1(f, `, µ) ≤
g(f, `, µ).

In all three cases above, the inductive step is proved.
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Theorem 2. IfW does not involve array variables, then there exists
a measure function g w.r.t f∗, φ∗ satisfying that for all abstract val-
uations µ w.r.t f∗ such that µ |= φ∗, T (f∗, `f∗

in , µ) = g(f∗, `f∗
in , µ).

Proof. Let the function g be defined by g(f, `, µ) := T (f, `, µ) for
all abstract stack elements (f, `, µ). SinceW does not involve array
entries, the function g satisfies conditions C1–C4 with equality.
Thus g is a measure function.

E. Proof for Lemma 1

Lemma 1. For each function g from{
(f, `, µ) | f ∈ F , ` ∈ Lf

s, µ ∈ Valf
}

into [0,∞], ĝ is well-defined.

Proof. Suppose that ĝ is not well-defined, i.e., there exists some
f ∈ F and `0 ∈ Lf such that ĝ(f, `0, �) remains undefined. Then by
the inductive procedure, there exists a triple (`0, α, `1) in→f such
that ĝ(f, `1, �) remains undefined. With the same reasoning, one can
inductively construct an infinite sequence {`j}j∈N0 such that each
ĝ(f, `j , �) remains undefined. Since Lf is finite, there exist j1, j2
such that j1 6= j2 and `j1 = `j2 . It follows from our semantics
that there exists j∗ such that j1 ≤ j∗ ≤ j2 and `j∗ corresponds to
the initial label of a while-loop in W . Contradiction to the fact that
`j∗ ∈ Lf

s.

F. Proof for Proposition 1

Proposition 1. Let g be a function from{
(f, `, µ) | f ∈ F , ` ∈ Lf

s, µ ∈ Valf
}

into [0,∞] and ĝ be defined as in Definition 13. Let I be an in-
variant w.r.t f∗. Assume that for all abstract stack elements (f, `, µ)
such that ` ∈ Lf

s and µ |= I(f, `),

• C2’ if ` ∈ Lf
a and (`, f, `′) is the sole triple in→f with source

label `, then ĝ(f, `′, f(µ)) + 1 ≤ ĝ(f, `, µ);
• C3’ if ` ∈ Lf

c and (`, (g, f), `′) is the sole triple in →f with
source label `, then 1+ĝ(g, `g

in, f(µ))+ĝ(f, `′, µ) ≤ ĝ(f, `, µ);
• C4’ if ` ∈ Lf

b and (`, φ, `1), (`,¬φ, `2) are namely two triples
in→f with source label `, then (i)

1µ|=φ · ĝ(f, `1, µ) + 1µ|=¬φ · ĝ(f, `2, µ) + 1 ≤ ĝ(f, `, µ)
whenever φ does not involve array entries and (ii)

max{ĝ(f, `1, µ), ĝ(f, `2, µ)}+ 1 ≤ ĝ(f, `, µ)
otherwise.

Then ĝ is a measure function w.r.t f∗, φ∗.

Proof. The proof follows directly from the fact that (i) Df,` ⊆
I(f, `) for all f ∈ F and ` ∈ Lf\{`f

out}, (ii) C2’-C4’ directly im-
plies C2-C4 for ` ∈ Lf

s and (iii) C1-C4 are automatically satisfied
for ` 6∈ Lf

s by Definition 13.

G. Omitted Details for Sect. 5

In this section, we present the omitted details on our algorithm for
synthesizing measure functions. As mentioned before, the synthesis
algorithm is designed to synthesize one function over abstraction

valuations at each function name and appropriate significant label,
so that conditions C2’-C4’ in Proposition 1 are fulfilled.

Below we fix an input recursive program W , with its CFG being(
F ,
{(

Lf ,Lf
b,Lf

a,Lf
c, V

f
p , V

f
ar, `

f
in, `

f
out
)}

f∈F
, {→f}f∈F

)
,

an input function name f∗ ∈ F , an input propositional array
predicate φ∗ and an input invariant I w.r.t f∗, φ∗. We demonstrate
our algorithm step in step as follows.

G.1 Step 1 of SYNALGO

All details are presented in the main article.

G.2 Step 2 of SYNALGO

Computation of ĴηK In the computation, we use the fact that for
real-valued functions {fi}1≤i≤m, {gj}1≤j≤n and h, it holds that

max {fi}i + max {gj}j = max{fi + gj}i,j
and

h ·max{fi}i = max{h · fi}i
provided that h is everywhere non-negative, where the maximum
function over a finite set of functions is defined in pointwise fash-
ion. Moreover, we use the facts that (i)

1µ|=φ1 · 1µ|=φ2 = 1µ|=φ1∧φ2

for all propositional array predicates φ1, φ2 and abstract valuations
µ, and (ii)(

m∑
i=1

1φi · gi

)
+

(
n∑
j=1

1ψj · hj

)
=

m∑
i=1

n∑
j=1

1φi∧ψj ·(hi+gj)

provided that (a)
∨
i
φi,
∨
j
ψj are both tautology and (b) φi1 ∧

φi2 , ψj1 ∧ ψj2 are both unsatisfiable whenever i1 6= i2 and j1 6=
j2, and (iii) propositional array predicates without array entries
are closed under substitution of expressions in 〈pexpr〉 for scalar
variables.

G.3 Step 3 of SYNALGO

Establishment of Constraint Triples Based on ĴηK, the algorithm
generates constraint triples at each significant label of some func-
tion name, then group all generated constraint triples together in a
conjunctive way.

At every significant label ` of some function name f, the algorithm
generates constraint triples as follows. Let a disjunctive normal
form of I(f, `) be

∨
l
Ψl
`. The algorithm first generate constraint

triples related to non-negativity of measure functions.

• Non-negativity: The algorithm generates the collection of con-
straint triples {(

f,Ψl
`, η(f, `, �)

)}
l
.

Then the algorithm generates constraint triples attached to ` and f
through C2’-C4’ as follows. Let

• Case 1 (C2’): ` ∈ Lf
s ∩ Lf

a and (`, f, `′) is the sole triple in→f

with source label `. As ĴηK(f, `′, �) can be represented in form
(10), ĴηK(f, `′, f(�)) can also be represented by an expression

max

{∑
j

1φ1j · h1j , . . . ,
∑
j

1φmj · hmj

}
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in the form (10). Let a disjunctive normal form of each formula
I(f, `) ∧ φij be

∨
l
Φlij . Then the algorithm generates the col-

lection of constraint triples{(
f,Φlij , η(f, `, �)− hij − 1

)}
i,j,l

.

• Case 2 (C3’): ` ∈ Lf
c and (`, (g, f), `′) is the sole triple in

→f with source label `. Let ĴηK
(
g, `g

in, f(�)
)

+ ĴηK(f, `′, �) be
represented by the expression

max

{∑
j

1φ1j · h1j , . . . ,
∑
j

1φmj · hmj

}
in the form (10). Let a disjunctive normal form of each formula
I(f, `) ∧ φij be

∨
l
Φlij . Then the algorithm generates the col-

lection of constraint triples{(
f,Φlij , η(f, `, �)− hij − 1

)}
i,j,l

.

• Case 3 (C4’): ` ∈ Lf
b and (`, φ, `1), (`,¬φ, `2) are namely

two triples in →f with source label `. Let h be the parametric
function

1φ · ĴηK(f, `1, �) + 1¬φ · ĴηK(f, `2, �)
if φ does not involve array entries, and be

max
{

ĴηK(f, `1, �), ĴηK(f, `2, �)
}

otherwise. Then h can be represented by an expression

max

{∑
j

1φ1j · h1j , . . . ,
∑
j

1φmj · hmj

}
in the form (10). Let a disjunctive normal form of each formula
I(f, `) ∧ φij be

∨
l
Φlij . Then the algorithm generates the col-

lection of constraint triples{(
f,Φlij , η(f, `, �)− hij − 1

)}
i,j,l

.

After generating the constraint triples for each significant label, the
algorithm group them together in the conjunctive fashion to form a
single collection of constraint triples.
Example 10. Consider our running example mergesort (cf.
Fig. 2). On one hand, the algorithm generates the following non-
trivial constraint triples from non-negativity:

• (mergesort, i− 1 ≥ 0 ∧ j − i ≥ 0, t1(i, j));
• (merge, i− 1 ≥ 0 ∧ j − i ≥ 0, t2(i, j));
• (merge, i− 1 ≥ 0 ∧ j − i ≥ 0 ∧ j − l + 1 ≥ 0, t3(i, j, l));
• (merge, i− 1 ≥ 0 ∧ j − i ≥ 0 ∧ j − l + 1 ≥ 0, t4(j, l)).

On the other hand, the algorithm generates the following constraint
triples from C2’–C4’ as follows.

• (from C4’ at (mergesort, 1)) From the calculation of

1φ · ĴηK(mergesort, 2, �) + 1¬φ · ĴηK(mergesort, 6, �)
where φ := i− 1 ≥ 0∧ j− i− 1 ≥ 0, the algorithm generates
the following constraint triples:

(mergesort, ϕ1, t) with

ϕ1 := i− 1 ≥ 0 ∧ j − i− w ≥ 0 ∧ w − 1 ≥ 0 and

t := t1(i, j)− t2(i, j)− t1(i+w, j)− t1(i, i+w−1)−5;
(mergesort, ϕ2, t1(i, j)− 2) with

ϕ2 := i− 1 ≥ 0 ∧ j − i ≥ 0 ∧ i− j ≥ 0.

where w represents b i−j+1
2 c.

• (from C2’ at (merge, 1)) From the calculation of

ĴηK(merge, 2, f(�))
where f is the assignment function which only updates value
held by m to be that by i, the algorithm generates the following
constraint triple:

(merge, i− 1 ≥ 0 ∧ j − i ≥ 0, t2(i, j)− t3(i, j, i)− 1).
• (from C4’ at (merge, 4)) From the calculation of

1φ · ĴηK(merge, 5, �) + 1¬φ · ĴηK(merge, 11, �)
where φ := j − l ≥ 0, the algorithm generates the following
valid constraint triples:

(merge, ϕ3, t3(i, j, l)− t3(i, j, l + 1)− 5) with

ϕ3 := 1 ≤ i ∧ i ≤ j ∧ j − l ≥ 0;
(merge, ϕ4, t3(i, j, l)− t4(j, i)− 2) with

ϕ4 := 1 ≤ i ∧ i ≤ j ∧ j + 1− l ≥ 0 ∧ l − j − 1 ≥ 0.
• (from C4’ at (merge, 12)) From the calculation of

1φ · ĴηK(mergesort, 13, �) + 1¬φ · ĴηK(mergesort, 15, �)
where φ := j − l ≥ 0, the algorithm generates the following
valid constraint triples:

(merge, ϕ5, t4(j, l)− t4(j, l + 1)− 3) with

ϕ5 := i− 1 ≥ 0 ∧ j − i ≥ 0 ∧ j − l ≥ 0;
(merge, ϕ6, t4(j, l)− 1) with

ϕ6 := i−1 ≥ 0∧j− i ≥ 0∧ l−j−1 ≥ 0∧j− l+1 ≥ 0.

G.4 Step 4 of SYNALGO

The following proposition shows that Eq. (11) encompasses a sim-
ple proof system for non-negative polynomials over polyhedra.
Proposition 2. Let Γ be a finite subset of some polynomial ring
R[x1, . . . , xm] such that all elements of Γ are polynomials of de-
gree 1. Let the collection of deduction systems {`d}d∈N be gener-
ate by the following rules:

f ∈ Γ
`1 f ≥ 0

c ∈ R, c ≥ 0
`1 c ≥ 0

`d f ≥ 0, c ∈ R, c ≥ 0
`d c · f ≥ 0

`d f1 ≥ 0,`d f2 ≥ 0
`d f1 + f2 ≥ 0

`d1 f1 ≥ 0,`d2 f2 ≥ 0
`d1+d2 f1 · f2 ≥ 0 .

Then for all d ∈ N and polynomials g ∈ R[x1, . . . , xm], if
`d g ≥ 0 then g =

∑n

i=1 ci · ui for some n ∈ N, non-negative
real numbers c1, . . . , cn ≥ 0 and u1, . . . , un ∈ Monoid(Γ) such
that every ui is a product of no more than d polynomials in Γ.

Proof. By an easy induction on d.

Solving Constraint Triples Step 4(a): Abstraction of Loga-
rithm, Exponentiation, and Floored Expression. All details of
Step 4(a) is in the main article.

Step 4(b): Generating Linear Constraints for Abstracted Vari-
ables.

3. Mutual No-Greater-Than Inequalities over E1. For each pair
(e, e′) ∈ E1 × E1 such that e 6= e′, the algorithm finds real
numbers r(e,e′), b(e,e′) through Farkas’ Lemma and linear pro-
gramming such that (i) r(e,e′) ≥ 0 and (ii) the formula

∀x ∈ RN .
[
x ∈ Sat(Γ)→

(
re,e′ · ẽ′(x) + be,e′

)
− ẽ(x) ≥ 0

]
18 2016/7/13



holds. The algorithm first finds the minimal value r∗e,e′ over all
feasible (re,e′ , be,e′)’s, then finds the minimal b∗e,e′ over all fea-
sible (r∗e,e′ , be,e′)’s. If such r∗e,e′ does not exists, the algorithm
simply leaves r∗e,e′ undefined. Note that once r∗e,e′ exists and
Sat(Γ) is non-empty, then b∗e,e′ exists since be,e′ cannot be ar-
bitrarily small once r∗e,e′ is fixed.

5. Constraints for Exponentiation. For each variable ve, the algo-
rithm adds into Γ polynomial expressions ve − tk−1

e · ẽ and
ve − tke due to the definition of te. And for each variable v′e, the
algorithm adds (i) v′e − tk−1

e and (ii) either v′e − tk−2
e · ẽ when

k ≥ 2 or ẽ− t2−ke · v′e when 1 < k < 2.
7. Mutual No-Greater-Than Inequalities over ue’s. For each pair

(e, e′) ∈ E1×E1 such that e 6= e′ and r∗e,e′ , b∗e,e′ are successfully
found and r∗e,e′ > 0, the algorithm adds

ue′ + ln r∗e,e − ue + 1b∗
e,e′
≥0 · t−1

e′ ·
b∗e,e′

r∗
e,e′

into Γ. This is because
(
r∗e,e′ · Je′K + b∗e,e′

)
− JeK ≥ 0 implies

ln JeK ≤ ln r∗e,e′ + ln
(

Je′K +
b∗e,e′
r∗
e,e′

)
= ln r∗e,e′ + ln Je′K

+
(

ln
(

Je′K +
b∗e,e′
r∗
e,e′

)
− ln Je′K

)
≤ ln r∗e,e′ + ln Je′K

+ 1b∗
e,e′
≥0 · t−1

e′ ·
b∗e,e′
r∗
e,e′

,

where the last step is obtained from Lagrange’s Mean-Value
Theorem and by distinguishing whether b∗e,e′ ≥ 0 or not. Note
that one has

te′ +
b∗e,e′
r∗
e,e′
≥ 1

due to the maximal choice of te′ and the fact that ẽ (as a
polynomial function) is everywhere greater than or equal to 1
under Sat(Γ) (cf. (§)).

8. Mutual No-Smaller-Than Inequalities over ve’s. For each pair
of variables of the form (ve, ve′) such that e 6= e′, r∗e,e′ , b

∗
e,e′ are

successfully found and r∗e,e′ > 0, b∗e,e′ ≥ 0, the algorithm adds

ve −
(
r∗e,e′
)k ·(ve′ + k ·

b∗e,e′

r∗
e,e′
· v′e′
)

into Γ. This is due to the fact that JeK−
(
r∗e,e′ · Je′K + b∗e,e′

)
≥ 0

implies

JeKk ≥
(
r∗e,e′
)k ·(Je′K +

b∗e,e′

r∗
e,e′

)k
≥

(
r∗e,e′
)k ·(Je′Kk +

(
Je′K +

b∗e,e′

r∗
e,e′

)k
− Je′Kk

)

≥
(
r∗e,e′
)k ·(Je′Kk + k · Je′Kk−1 ·

b∗e,e′

r∗
e,e′

)
.

where the last step is obtained from Lagrange’s Mean-Value
Theorem.

9. Mutual No-Greater-Than Inequalities over ve’s. For each pair
of variables of the form (ve, ve′) such that e 6= e′, r∗e,e′ , b

∗
e,e′ are

successfully found and r∗e,e′ > 0, b∗e,e′ ≥ 0, the algorithm adds(
r∗e,e′
)k ·(ve′ +

(
1b∗

e,e′
≤0 + 1b∗

e,e′
>0 ·Mk−1

)
· k ·

b∗e,e′
r∗
e,e′
· v′e′
)

− ve

into Γ, where M :=
b∗
e,e′

r∗
e,e′
·te′

+ 1. This is due to the fact that(
r∗e,e′ · Je′K + b∗e,e′

)
− JeK ≥ 0 implies

JeKk ≤
(
r∗e,e′
)k ·(Je′K +

b∗e,e′
r∗
e,e′

)k
≤

(
r∗e,e′
)k ·(Je′Kk +

(
Je′K +

b∗e,e′
r∗
e,e′

)k
− Je′Kk

)

≤
(
r∗e,e′
)k ·(Je′Kk +

(
1b∗

e,e′
≤0 + 1b∗

e,e′
>0 ·Mk−1

)
· k ·

b∗e,e′
r∗
e,e′
· Je′Kk−1

)
.

where the last step is obtained from Lagrange’s Mean-Value

Theorem and the fact that Je′K ≥ te′ implies Je′K +
b∗
e,e′

r∗
e,e′
≤

M · Je′K.

Step 4(c): Solving Unknown Coefficients in the Template. All
details are presented in the main article.

Theorem 6. Our algorithm, SYNALGO, is a polynomial-time
algorithm and a sound approach for the RECTERMBOU prob-
lem, i.e., if SYNALGO succeeds to synthesize a function g on{

(f, `, µ) | f ∈ F , ` ∈ Lf
s, µ ∈ Valf

}
, then ĝ is a measure function

and an upper bound on the abstract termination time.

Proof. The proof follows from the facts that (i) once the constraint
triples are fulfilled, then ĝ satisfies the conditions specified in
Proposition 1, (ii) the abstraction is an over approximation of the
floored expressions, logarithm terms and exponentiation terms, and
(iii) Handelman’s Theorem provides a sound form for positive
polynomials over polyhedra.

H. Experimental Details

In this part, we present the details for our experimental results.
To implement Closest-Pair algorithm, Karatsuba’s Algorithm and
Strassen’s Algorithm, we need to augment our syntax with array-
creation statement 〈arvar〉 := newar[〈aexpr〉] where 〈arvar〉
is restricted to local array variables of function calls and 〈aexpr〉
specifies the length of the new array to be created. The behaviour
of array-creation statement is similar to assignment statement. The
semantics (right before Section 3) is then augmented by the follow-
ing:

4. array-creation: if ` refers to an array-creation statement involv-
ing a local array variable ar and an 〈aexpr〉 expression e, then

(i)(wj+1, hj+1) := ((f, `′, ν′) � w′, h′)

whenever `′ 6= `f
out and otherwise

(i)(wj+1, hj+1) := (w′, h′)
where `′ is the unique successor of `, h′ is obtained from h by
first finding the least d such that h(d) 6= ⊥ and then changing
h(d) to be the array of length max{1, eh(ν)} with every entry
being 0, and ν′ is obtained by changing ν(ar) to d.
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Array-creation statement is treated much the same as skip in the
setting of measure functions (cf. Definition 11, Theorem 1, Def-
inition 12, Definition 13 and Proposition 1) with an exception
of change of array length, since we deem execution time of ev-
ery array-creation statement to be 1. Note that we stipulate every
newly-created array entry to be 0 simply to ensure that our se-
mantics is deterministic; in the following implementations of al-
gorithms we do not rely on this setting.

Pseudo-codes for Our Examples. Figure 7 and Figure 8 together
account for Karatsuba’s Algorithm. Figure 9 – Figure 12 demon-
strate the divide-and-conquer algorithm for Closest-Pair problem.
Figure 13 – Figure 15 show the Strassen’s algorithm. Invariants are
bracketed (i.e., [. . . ]) at significant labels in the programs.

Approximation constants. We use approximation of constants
upto four digits of precision. For example, we use the interval
[2.7182, 2.7183] (resp. [0.6931, 0.6932]) for tight approximation
of e (resp. ln 2). We use similar approximation for constants such
as 20.6 and 20.9.

/ / Initialize all array entries in A to be zero.
initialize(A, len) {

[len ≥ 1]
i := 1 ;
[len ≥ 1 ∧ i ≤ len+ 1]
whi le i ≤ len do
A[i] := 0 ;
i := i+ 1

od
}

/ / Copy first len entries from beginA in A into B from beginB.
copy(A, beginA,B, beginB, len) {

[len ≥ 1]
i := 1 ;
[len ≥ 1 ∧ i ≤ len+ 1]
whi le i ≤ len do
j := i+ beginA− 1 ;
k := i+ beginB − 1 ;
B[k] := A[j] ;
i := i+ 1 ;

od
}

/ / Add two arrays entrywise.
add(A, beginA,B, beginB, len) {

[len ≥ 1]
i := 1 ;
[len ≥ 1 ∧ i ≤ len+ 1]
whi le i ≤ len do
j := i+ beginA− 1 ;
k := i+ beginB − 1 ;
A[j] := A[j] +B[k] ;
i := i+ 1

od
}

/ / Subtract two arrays entrywise.
subtract(A, beginA,B, beginB, len) {

[len ≥ 1]
i := 1 ;
[len ≥ 1 ∧ i ≤ len+ 1]
whi le i ≤ len do
j := i+ beginA− 1 ;
k := i+ beginB − 1 ;
A[j] := A[j]−B[k] ;
i := i+ 1

od
}

Figure 7. Auxiliary Function Calls for Karatsuba’s Algorithm
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/ / The program calculates the product of polynomials A,B.
/ / The degree should be arranged in increasing order in both A,B.
/ / The result is stored in Ans.
/ / n is the length of both A and B and should be a power of 2.

karatsuba(A,B,Ans, n) {
[n ≥ 1]
i f n ≥ 2 then

t :=
⌊
n
2

⌋
;

/ / checking whether n is even
i f 2 ∗ t ≤ n and 2 ∗ t ≥ n then

/ / sub-divide A (resp. B) into P1, P2 (resp. Q1, Q2)
P1 := newar [t] ; copy(A, 1, P1, 1, t) ;
P2 := newar [t] ; copy(A, t+ 1, P2, 1, t) ;
Q1 := newar [t] ; copy(B, 1, Q1, 1, t) ;
Q2 := newar [t] ; copy(B, t+ 1, Q2, 1, t) ;

/ / T1 = P1 + P2 and T2 = Q1 +Q2
T1 := newar [t] ; T2 := newar [t] ;
copy(P1, 1, T1, 1, t) ; add(T1, 1, P2, 1, t) ;
copy(Q1, 1, T2, 1, t) ; add(T2, 1, Q2, 1, t) ;

/ / recursive calls
Z1 := newar [n− 1] ; karatsuba(P1, Q1, Z1, t) ;
Z2 := newar [n− 1] ; karatsuba(P2, Q2, Z2, t) ;
Z3 := newar [n− 1] ; karatsuba(T1, T2, Z3, t) ;

/ / adjusting Z3
subtract(Z3, 1, Z1, 1, n− 1) ;
subtract(Z3, 1, Z2, 1, n− 1) ;

/ / combining step
initialize(Ans, 2 ∗ n− 1) ;
add(Ans, 1, Z1, 1, n− 1) ;
add(Ans, 1, Z2, n, n− 1) ;
add(Ans, t+ 1, Z3, 1, n− 1)

e l s e sk ip / / If n is not even, simply fail.
f i

e l s e Ans[1] := A[1] ∗B[1] f i
}

Figure 8. Main Function Call for Karatsuba’s Algorithm

/ / Copy first len entries from beginA in A into B from beginB.
copy(A, beginA,B, beginB, len) {

[len ≥ 1]
i := 1 ;
[len ≥ 1 ∧ i ≤ len+ 1]
whi le i ≤ len do
j := i+ beginA− 1 ;
k := i+ beginB − 1 ;
B[k] := A[j] ;
i := i+ 1

od
}

/ / sorting A while adjusting B accordingly

mergesort(A,B, i, j, TA, TB) {
[1 ≤ i ∧ i ≤ j ]
i f 1 ≤ i and i ≤ j − 1 then
k := i+ b j−i+1

2 c − 1 ;
mergesort(A,B, i, k, TA, TB) ;
mergesort(A,B, k + 1, j, TA, TB) ;
merge(i, j, k, A,B, TA, TB)

e l s e
sk ip

f i
}

merge(i, j, k, A,B, TA, TB) {
[1 ≤ i ∧ i ≤ j ]
m := i ; n := k + 1 ; l := i ;
[1 ≤ i ∧ i ≤ j ∧ l ≤ j + 1 ]
whi le l ≤ j do

i f A[m] ≤ A[n] then
TA[l] := A[m] ;
TB [l] := B[m] ;
m := m+ 1

e l s e
TA[l] := A[n] ;
TB [l] := B[n] ;
n := n+ 1

f i ;
l := l + 1

od ;
l := i ;
[1 ≤ i ∧ i ≤ j ∧ l ≤ j + 1 ]
whi le l ≤ j do
A[l] := TA[l] ;
B[l] := TB [l] ;
l := l + 1

od
}

Figure 9. Merge-Sort and Copy for Closest-Pair
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/ / Caculates the shortest distance of a finite set of points.
/ /A stores x-coordinates and B stores y-coordinates.
/ / The return value is − 1 for single-point case.
/ / Otherwise, the return value is the square of the shortest distance.
/ / The return value is stored in Res[1].

clst pair main(A,B, i, j, Res) {
[1 ≤ i ∧ i ≤ j ]

/ / copying A,B into C,D
C := newar[j − i+ 1] ; D := newar[j − i+ 1] ;
copy(A, i, C, i, j − i+ 1) ; copy(B, i,D, i, j − i+ 1) ;

/ / arrays for sorting and mid-line use
TA := newar[j − i+ 1] ; TB := newar[j − i+ 1] ;

/ / sorting A,B in x-coordinate
mergesort(A,B, i, j, TA, TB) ;

/ / sorting C,D in y-coordinate
mergesort(D,C, i, j, TA, TB) ;

/ / solving the result
clst pair(A,B, i, j, C,D, TA, TB , Res)

}

Figure 10. Main Function Call for Closest-Pair

/ / principle recursive function call for solving Closest-Pair
/ / The return value is stored in Res[1].

clst pair(A,B, i, j, C,D, TA, TB , Res) {
[1 ≤ i ∧ i ≤ j ]
i f 1 ≤ i and i ≤ j − 3 then

/ / recursive case where there are at least 4 points

k := i+ b j−i+1
2 c − 1 ;

R1 := newar[1] ; R2 := newar[1] ;
clst pair(A,B, i, k, C,D, TA, TB , R1) ;
clst pair(A,B, k + 1, j, C,D, TA, TB , R2) ;

/ / taking the minimum
p := 1 ;
i f R1[p] ≥ R2[p] then
Res[p] := R1[p]

e l s e
Res[p] := R2[p]

f i ;

/ / fetch and scan the mid-line
fetch&scan(A,B, i, j, C,D, TA, TB , Res)

e l s e
/ / base case (fewer than 4 points)
base clstpair(A,B, i, j, Res)

f i
}

Figure 11. Principle Recursive Function Call for Closest-Pair

compare(A,B, i, j, Res) {
[1 ≤ i ∧ i ≤ j ]
i f Res[1] ≥ (A[i]−A[j])2 + (B[i]−B[j])2

or Res[1] ≤ −1
then Res[1] := (A[i]−A[j])2 + (B[i]−B[j])2

e l s e sk ip f i
}

/ / base case (fewer than 4 points)
base clstpair(A,B, i, j, Res) {

[1 ≤ i ∧ i ≤ j ]
Res[1] := −1 ;
i f i ≤ j and j ≤ i then

/ / single-point case
sk ip

e l s e
i f i+ 1 ≤ j and j ≤ i+ 1 then

/ / double-point case
compare(A,B, i, j, Res) ;

e l s e
/ / triple-point case
k := i+ 1 ;
compare(A,B, i, k,Res) ;
compare(A,B, i, j, Res) ;
compare(A,B, k, j, Res)

f i
f i ;

}

/ / fetch and scan the mid-line
fetch&scan(A,B, i, j, C,D, TA, TB , Res) {

/ / fetching the points on the mid-line
[1 ≤ i ∧ i ≤ j − 3 ]
l := i ; k := i+ b j−i+1

2 c − 1 ; n := k + 1 ; p := i
[1 ≤ i ∧ i ≤ j − 3 ∧ p ≤ j + 1 ∧ l ≤ j + 1 ]
whi le p ≤ j do

i f A[k] +A[n]− 2 ∗Res[1] ≤ 2 ∗ C[l]
and 2 ∗ C[l] ≤ A[k] +A[n] + 2 ∗Res[1]

then
TA[l] := C[l] ; TB [l] := D[l] ; l := l + 1

e l s e sk ip f i ;
p := p+ 1

od

i f l ≥ i+ 1 then
p := i ;

/ / scanning the points on the mid-line
[1 ≤ i ∧ i ≤ j − 3 ∧ l ≤ j + 1 ∧ p ≤ l ]
whi le p ≤ l − 1 do
m := p+ 1 ;

/ / checking 7 points ahead on the mid-line
[1 ≤ i ∧ i ≤ j ∧ l ≤ j + 1 ∧m ≤ p+ 8 ]
whi le m− p ≤ 7 and m ≤ l − 1 do

compare(TA, TB , p,m,Res) ;
m := m+ 1

od ;
p := p+ 1

od
e l s e sk ip f i

}

Figure 12. Other Function Calls for Closest-Pair
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/ / The program calculates the product A ·B of square matrices A,B.
/ / The result is stored in Ans.
/ / n is the row/column size of both A and B and should be a power of 2.
/ / Each of A,B is stored in an array of length n2.

strassen(A,B,Ans, n) {
[n ≥ 1]
i f n ≥ 2 then

t :=
⌊
n
2

⌋
;

/ / checking whether n is even
i f 2 ∗ t ≤ n and 2 ∗ t ≥ n then

/ / sub-divide A (resp. B) into Aij , Bij’s)
A1,1 := newar [t ∗ t] ; A1,2 := newar [t ∗ t] ;
A2,1 := newar [t ∗ t] ; A2,2 := newar [t ∗ t] ;
matrixtoblocks(A,A1,1, A1,2, A2,1, A2,2, n, t) ;
B1,1 := newar [t ∗ t] ; B1,2 := newar [t ∗ t] ;
B2,1 := newar [t ∗ t] ; B2,2 := newar [t ∗ t] ;
matrixtoblocks(B,B1,1, B1,2, B2,1, B2,2, n, t) ;

/ / sums of matrices
T1 := newar [t ∗ t] ; T2 := newar [t ∗ t] ;
copy(T1, A1,1, t) ; add(T1, A2,1, t) ;
copy(T2, B1,1, t) ; add(T2, B2,2, t) ;

T3 := newar [t ∗ t] ; T4 := newar [t ∗ t] ;
copy(T3, A2,1, t) ; add(T3, A2,2, t) ;
copy(T4, B1,2, t) ; subtract(T4, B2,2, t) ;

T5 := newar [t ∗ t] ; T6 := newar [t ∗ t] ;
copy(T5, B2,1, t) ; add(T5, B1,1, t) ;
copy(T6, A1,1, t) ; add(T6, A1,2, t) ;

T7 := newar [t ∗ t] ; T8 := newar [t ∗ t] ;
copy(T7, A2,1, t) ; subtract(T7, A1,1, t) ;
copy(T8, B1,1, t) ; add(T8, B1,2, t) ;

T9 := newar [t ∗ t] ; T10 := newar [t ∗ t] ;
copy(T9, A1,2, t) ; subtract(T9, A2,2, t) ;
copy(T10, B2,1, t) ; add(T10, B2,2, t) ;

/ / recursive calls
D1 := newar [t ∗ t] ; strassen(T1, T2, D1, t) ;
D2 := newar [t ∗ t] ; strassen(T3, B1,1, D2, t) ;
D3 := newar [t ∗ t] ; strassen(A1,1, T4, D3, t) ;
D4 := newar [t ∗ t] ; strassen(A2,2, T5, D4, t) ;
D5 := newar [t ∗ t] ; strassen(T6, B2,2, D5, t) ;
D6 := newar [t ∗ t] ; strassen(T7, T8, D6, t) ;
D7 := newar [t ∗ t] ; strassen(T9, T10, D7, t) ;

/ / combining stage
copy(A1,1, D1, t) ; add(A1,1, D4, t) ;
subtract(A1,1, D5, t) ; add(A1,1, D7, t) ;

copy(A1,2, D3, t) ; add(A1,2, D5, t) ;
copy(A2,1, D2, t) ; add(A2,1, D4, t) ;

copy(A2,2, D1, t) ; add(A2,2, D3, t) ;
subtract(A2,2, D2, t) ; add(A2,2, D6, t) ;

blockstomatrix(Ans,A1,1, A1,2, A2,1, A2,2, n, t)
e l s e sk ip / / If n is not even, simply fail.
f i

e l s e Ans[1] := A[1] ∗B[1] f i
}

Figure 13. Main Function Call for Strassen’s Algorithm

/ / Partition matrix A into block matrices.
matrixtoblocks(A,A1,1, A1,2, A2,1, A2,2, n, t) {

[ t ≥ 1 ]
i := 1 ;
[ t ≥ 1 ∧ i ≤ t+ 1 ]
whi le i ≤ t do
j := 1 ;

[ t ≥ 1 ∧ i ≤ t ∧ j ≤ t+ 1 ]
whi le j ≤ t do
l := (t− 1) ∗ i+ j ;
k := (n− 1) ∗ i+ j ; A1,1[l] := A[k] ;
k := (n− 1) ∗ i+ j + t ; A1,2[l] := A[k] ;
k := (n− 1) ∗ (i+ t) + j ; A2,1[l] := A[k] ;
k := (n− 1) ∗ (i+ t) + j + t ; A2,1[l] := A[k] ;
j := j + 1

od ;
i := i+ 1

od
}

/ / Construct matrix A from block matrices.
blockstomatrix(A,A1,1, A1,2, A2,1, A2,2, n, t) {

[ t ≥ 1 ]
i := 1 ;
[ t ≥ 1 ∧ i ≤ t+ 1 ]
whi le i ≤ t do
j := 1 ;

[ t ≥ 1 ∧ i ≤ t ∧ j ≤ t+ 1 ]
whi le j ≤ t do
l := (t− 1) ∗ i+ j ;
k := (n− 1) ∗ i+ j ; A[k] := A1,1[l] ;
k := (n− 1) ∗ i+ j + t ; A[k] := A1,2[l] ;
k := (n− 1) ∗ (i+ t) + j ; A[k] := A2,1[l] ;
k := (n− 1) ∗ (i+ t) + j + t ; A[k] := A2,1[l] ;
j := j + 1

od ;
i := i+ 1

od
}

/ / Copy square matrix B to A.
copy(A,B, n) {

[n ≥ 1]
i := 1 ;
[n ≥ 1 ∧ i ≤ n+ 1]
whi le i ≤ n do
j := 1
[n ≥ 1 ∧ i ≤ n ∧ j ≤ n+ 1]
whi le j ≤ n do
k := (n− 1) ∗ i+ j ; A[k] := B[k] ;
j := j + 1

od ;
i := i+ 1

od
}

Figure 14. Auxiliary Function Calls for Strassen’s Algorithm
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/ / Add two matrices (entrywise).
add(A,B, n) {

[n ≥ 1]
i := 1 ;
[n ≥ 1 ∧ i ≤ n+ 1]
whi le i ≤ n do
j := 1
[n ≥ 1 ∧ i ≤ n ∧ j ≤ n+ 1]
whi le j ≤ n do
k := (n− 1) ∗ i+ j ; A[k] := A[k] +B[k] ;
j := j + 1

od ;
i := i+ 1

od
}

/ / Subtract two matrices (entrywise).
subtract(A,B, n) {

[n ≥ 1]
i := 1 ;
[n ≥ 1 ∧ i ≤ n+ 1]
whi le i ≤ n do
j := 1
[n ≥ 1 ∧ i ≤ n ∧ j ≤ n+ 1]
whi le j ≤ n do
k := (n− 1) ∗ i+ j ; A[k] := A[k]−B[k] ;
j := j + 1

od ;
i := i+ 1

od
}

Figure 15. Matrix Addition and Subtraction for Strassen’s Algo-
rithm
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