
Nested Weighted Automata

Krishnendu Chatterjee and Thomas A. Henzinger and Jan Otop

Technical Report No. IST-2014-170-v1+1
Deposited at 19 Feb 2014 10:12
http://repository.ist.ac.at/170/1/main.pdf

IST Austria (Institute of Science and Technology Austria)
Am Campus 1
A-3400 Klosterneuburg, Austria

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268226319?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright © 2012, by the author(s).
All rights reserved.
Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for pro�t or
commercial advantage and that copies bear this notice and the full citation on the �rst page.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
speci�c permission.

Nested Weighted Automata?

Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop??

IST Austria

Abstract. Recently there has been a significant effort to add quantitative properties
in formal verification and synthesis. While weighted automata over finite and infi-
nite words provide a natural and flexible framework to express quantitative proper-
ties, perhaps surprisingly, several basic system properties such as average response
time cannot be expressed with weighted automata. In this work, we introduce nested
weighted automata as a new formalism for expressing important quantitative prop-
erties such as average response time. We establish an almost complete decidability
picture for the basic decision problems for nested weighted automata, and illustrate
its applicability in several domains.

1 Introduction

Traditionally, formal verification has focused on Boolean properties of systems, such as
“every request is eventually granted.” Automata-theoretic formalisms as well as temporal
logics have been studied as specification languages for such Boolean properties of reactive
systems. In recent years there has been a growing trend to extend specifications with quan-
titative aspects for expressing properties such as “the long-run average success rate of an
operation is at least one half” or “the long-run average (or the maximal, or the accumulated)
resource consumption is below a threshold.” Quantitative aspects of specifications are es-
sential for resource-constrained systems, such as embedded systems, and for performance
evaluation.

Weighted automata provide a natural and flexible framework for expressing quantita-
tive1 properties [8]. Weighted automata are an extension of finite automata in which every
transition is labeled by a rational weight. Thus, each run produces a sequence of weights,
and a value function compresses the sequence into a single value. For non-deterministic
weighted automata, the value of a word w is the infimum value of all runs over w. Initially,
weighted automata were studied over finite words with weights from a semiring and ring
multiplication as value function [10]. They have been extended to infinite words with limit
averaging or supremum as value function [8, 7, 5]. While weighted automata over semirings
can express several quantitative properties [15], they cannot express long-run averages.

Yet even weighted automata with limit-average value function, perhaps surprisingly,
are not capable of expressing basic quantitative properties of systems such as the long-
run average response time. The long-run average response time is the limit average of all

? This research was funded in part by the European Research Council (ERC) under grant agreement
267989 (QUAREM), by the Austrian Science Fund (FWF) project S11402-N23 (RiSE), FWF
Grant No P23499- N23, FWF NFN Grant No S11407-N23 (RiSE), ERC Start grant (279307:
Graph Games), and Microsoft faculty fellows award.

?? The third autor is on the leave from University of Wrocław
1 We use the term “quantitative” in a non-probabilistic sense, which assigns a quantitative value to

each infinite run of a system, representing long-run average or maximal response time, or power
consumption, or the like, rather than taking a probabilistic average over different runs.

distances between requests and subsequent grants along an infinite run. To see this, notice
that the value of a weighted automaton with limit-average value function is bounded by
the maximal weight that occurs in the automaton, whereas the long-average response time
can be unbounded. However, the long-run average response time can be computed if the
sum value function can be applied between requests and subsequent grants, and the values
of the sum function can be aggregated using a limit-average function. Such a mechanism
can be expressed naturally by an extension of weighted automata, called nested weighted
automata, which we introduce in this paper.

A nested weighted automaton consists of a master automaton and a set of slave au-
tomata. The master automaton runs over an infinite word, and at each transition of the
infinite run, it may invoke a slave automaton that runs over a finite subword of the infinite
word, starting from the position where the master automaton invokes the slave automaton.
Each slave automaton terminates after a finite number of steps and returns a value to the
master automaton. To compute its return value, each slave automaton is equipped with a
value function for finite words, and the master automaton aggregates all return values using
a value function for infinite words. While in case of unweighted finite automata, nested
automata are no more expressive than their non-nested counterpart, the class of nested
weighted automata is strictly more expressive than non-nested weighted automata. For ex-
ample, with nested weighted automata, the long-run average response time of a word can
be computed as follows: the master automaton has the limit-average value function, and
at every request, it invokes a slave automaton with sum value function, which counts the
number of transitions to the next grant.

Our contributions are three-fold. First, we introduce nested weighted automata over
infinite words (Section 3), which is a new formalism for expressing important quantitative
properties, such as long-run average response time, which cannot be specified by non-
nested weighted automata.

Second, we study the decidability of emptiness, universality, and inclusion for nested
weighted automata. We present an almost complete decidability picture for several natural
and well-studied value functions. On the positive side, we show that if the value func-
tions of the slave automata are max, min, or bounded sum, then the decision problems
for nested weighted automata can be reduced to corresponding problems for non-nested
weighted automata. Moreover, we show that if the value function of the master automaton
is limit average and the value function of the slave automata is non-negative sum (i.e., sum
over non-negative weights), which included the long-run average response time property,
then the emptiness question is decidable. The decidability proof is obtained by establish-
ing certain regularity properties of optimal runs, which can be used to reduce the problem
to the emptiness question for a non-nested weighted automata with limit-average value
function. On the negative side, we show that even for deterministic nested weighted au-
tomata with sup value function for the master automaton and sum value function for the
slave automata, the emptiness question is undecidable. This result is in sharp contrast to
non-nested weighted automata, where the emptiness and universality questions are always
decidable for deterministic automata, and the emptiness question is decidable also for non-
deterministic sup and sum automata. Our results are summarized in Table 1 and Table 2.

Third, we illustrate the applicability of nested weighted automata in several domains.
(1) We show that nested weighted automata provide a convenient and expressive formalism
to specify quantitative properties of systems such as long-run average response time (Ex-
ample 10 in Section 5.1). Nested weighted automata can be seen a quantitative extension
of monitor automata for the verification of Boolean properties [16], which are used heavily
also in run-time verification [13]. In case of Boolean properties, each monitor automaton

2

tracks a subproperty (which corresponds to slave automata in our formalism), and the re-
sults of the monitor automata are combined by a tester automaton (which corresponds to the
master automaton in our formalism). Hence our framework can also be seen as a first step
towards quantitative run-time verification, where the slave automata return values of sub-
properties, and the master automaton (assuming a commutative value function) computes
an on-the-fly the approximation of the value. (2) We show that the model-measuring prob-
lem of [14] can be expressed in the nested weighted automaton framework (Section 5.2).
The model-measuring problem asks, given a model and a specification, how robustly the
model satisfies the specification, i.e., how much the model can be perturbed without vi-
olating the specification. (3) As dual of the model-measuring problem, we introduce the
model-repair problem and show that it, as well, can be solved using nested weighted au-
tomata (Section 5.3). The model-repair problem asks, given a specification and a model
that does not satisfy the specification, for the minimal restriction of the model so that it sat-
isfies the specification. We show that we need nested weighted automata in order to express
interesting measures on models for the model-measuring and model-repair problems.
Related work. Weighted nested automata have been considered in [3] in the context of finite
words, where the weights are given oven semirings (it was further required that the semir-
ings of all master and slave automata coincide, while in our case, their value functions
may differ). The main objective of [3] was to assign values to Boolean nested automata,
whereas we consider nesting of weighted automata to express properties of infinite behav-
iors of systems. Properties such as long-run average response time cannot be expressed in
the framework of [3]. Deterministic automata with registers have been studied in [2] over
finite words. Our work is different because we consider infinite words and the nested con-
trol of automata. For example, the emptiness of register automata with max and sum value
functions is decidable, while we show it is undecidable for deterministic nested weighted
automata with these value functions.

2 Preliminaries

Words. Given a finite alphabet Σ of letters, a finite (resp. infinite) word w is a finite (resp.
infinite) sequence of letters. For a word w, we define w[i] as the i-th letter of w and w[i, j]
as the word w[i]w[i+ 1] . . . w[j]. We allow j to be∞ for infinite words. For a finite word
w, we denote by |w| its length; and for an infinite word the length is∞.
Non-deterministic automata. A (non-deterministic) automaton A is a tuple
(Σ,Q,Q0, δ, F), where Σ is the alphabet, Q is a finite set of states, Q0 ⊆ Q is a
set of initial states, δ ⊆ Q×Σ×Q is a transition relation, and F ⊆ Q is a set of accepting
states.
Runs. Given an automaton A and a word w, a run π = π[0]π[1] . . . is a sequence of states
such that π[0] ∈ Q0 and for every i ∈ {1, . . . , |w|}we have (π[i−1], w[i], π[i]) ∈ δ. Given
a word w, we denote by Run(w) the set of all possible runs on w.
Boolean acceptance. The acceptance of words is defined using the accepting states. A finite
run π of length j is accepting if π[j] ∈ F ; and an infinite run π is accepting, if there exists
infinitely many j such that π[j] ∈ F . Let Acc(w) ⊆ Run(w) denote the set of accepting
runs, and a word w is accepted, if Acc(w) is non-empty. We denote by LA the set of words
accepted by A.
Labeled and weighted automata. Given a finite alphabet Γ , a Γ -labeled automaton is an au-
tomaton whose transitions are labeled by elements from Γ . Formally, a labeled automaton
A is a tuple (Σ,Q,Q0, δ, F, C) such that (Σ,Q,Q0, δ, F) is an automaton and C : δ 7→ Γ .

3

A weighted automaton is a labeled automaton where Γ ⊆ Q, where Q is the set of rationals;
and the labels of the transitions are referred to as weights.

Semantics of weighted automata. To define the semantics of weighted automata we need to
define the value of a run (that combines the sequence of weights of a run to a single value)
and the value across runs (that combines values of different runs to a single value). To define
values of runs, we will consider value functions f that assign real numbers to sequences
of rationals. Given a word w, every run π of A on w defines a sequence of weights of
successive transitions of A, i.e., C(π) = (C(π[i− 1], w[i], π[i]))1≤i≤|w|; and the value of
the run π is defined as f(C(π)). We will denote by (C(π))[i] the cost of the i-th transition,
i.e., C(π[i − 1], w[i], π[i]). The value of a word w assigned by the automaton A, denoted
by LA(w), is the infimum of the set of values of all accepting runs; i.e., infπ∈Acc(w) f(π),
and we have the usual semantics that infimum of an empty set is infinite. To indicate a
particular value function f that defines the semantics, we will call a weighted automatonA
an f -automaton.

Types of automata. A weighted automaton is
– deterministic iff Q0 is singleton and the transition relation is a function; and
– functional iff for every word w, all accepting runs on w have the same value.

Value functions. We will consider the classical functions and their variants for value func-
tions. For finite runs we consider the following value functions: for runs of length n we
have
1. Max and min: MAX(π) = maxni=1(C(π))[i] and MIN(π) = minni=1(C(π))[i].
2. Sum and variants: the sum function SUM(π) =

∑|π|
i=1(C(π))[i], the absolute sum

SUM+(π) =
∑|π|
i=1 Abs((C(π))[i]) is sum of the absolute values of the weights (Abs

denotes the absolute value of a number), and the bounded sum objective returns the
sum if all the partial absolute sums are below a bound B, otherwise it returns the
bound B, i.e., formally, SUMB(π) = SUM(π), if for all prefixes π′ of π we have
Abs(SUM(π′)) ≤ B, otherwise B.

We denote the above class of value functions for finite words as FinVal =
{MAX,MIN, SUM, SUM+, SUMB}. For infinite runs we consider:

1. Supremum and Infimum, and Limit supremum and Limit infimum: SUP(π) =
sup{(C(π))[i] : i > 0}, INF(π) = inf{(C(π))[i] : i > 0}, LIMSUP(π) =
lim sup{(C(π))[i] : i > 0}, and LIMINF(π) = lim inf{(C(π))[i] : i > 0}.

2. Limit average: LIMAVG(π) = lim supk→∞
1
k ·

∑k
i=1(C(π))[i].

We denote the above class of value functions for infinite words as InfVal =
{SUP, INF, LIMSUP, LIMINF, LIMAVG}.
Decision questions. We consider the standard emptiness and universality questions. Given
an f -automaton A and a threshold λ, the emptiness (resp. universality) question asks
whether there exists a word w such that LA(w) ≤ λ (resp. for all words w we have
LA(w) ≤ λ). We summarize the main results from the literature related to the decision
questions of weighted automata for the class of value functions defined above.

Theorem 1. (1) The emptiness problem is decidable for all value functions we con-
sider [11, 15]. (2) The universality problem is undecidable for SUM-automata with
{−1, 0, 1} weights and LIMAVG automata with {0, 1} weights; and decidable for all other
value functions [1, 9, 4]. (3) The universality problem is decidable for all value functions
for deterministic and functional automata [12].

4

3 Nested Weighted Automata

In this section we introduce nested weighted automata. We start with an informal descrip-
tion.

Informal description. A nested weighted automaton consists of a labeled automaton over
infinite words, called the master automaton, a value function f , and a set of weighted
automata over finite words, called slave automata. A nested weighted automaton can be
viewed as follows: given an infinite word, we consider the run of the master automaton
on the word, but the weight of each transition is determined by dynamically running slave
automata; and then the value of a run is obtained using the value function f . That is, the
master automaton proceeds on an input word as an usual automaton, except that before it
takes a transition, it can start a slave automaton corresponding to the label of the current
transition. The slave automaton starts at the current position of the word of the master au-
tomaton and works on some finite part of the input word. Once a slave automaton finishes,
it returns its value to the master automaton, which treats the returned value as the weight
of the current transition that is being executed. Note that for some transitions the master
automaton might not invoke any slave automaton, and we refer to such transitions as silent
transitions. The value of the run of the master automaton is given by f applied to the se-
quence of values returned by slave automata (i.e., to compute the value function the silent
transitions are omitted). If one of the slave automata rejects, the nested weighted automaton
rejects. We now formalize the informal description.

Nested weighted automata. A nested weighted automaton is a tuple A =
〈Amas; f ;B1, . . . ,Bk〉, where Amas is an automaton over infinite words labeled by
{1, . . . , k} ∪ {⊥} either numbers (corresponding to indices of slave automata) or ⊥ (for
silent transitions), called the master automaton, f is a value function on infinite sequences,
and B1, . . . ,Bk are weighted automata over finite words, called slave automata.

Semantics: runs and values. Let w be an infinite word. A run of A on w is an infinite
sequence (Π,π1, π2, . . .) such that (i) Π is a run of Amas on w; (ii) idx obtained as the
sub-sequence of labels of transitions taken in Π by removing all ⊥-labeled transitions is
an infinite sequence; and (iii) for every i > 0 we have πi is a run of the automaton Bidx[i],
referenced by the label of the master automaton, on some finite word of w[pos(i), j], where
pos(i) denotes the position of the word where the i-th non-silent transition is taken and
j ≥ pos(i). The run (Π,π1, π2, . . .) is accepting if all runs Π,π1, π2, . . . are accepting
(i.e., Π satisfies its acceptance condition and each π1, π2, . . . ends in an accepting state).
The value of the run (Π,π1, π2, . . .) is defined as f(v(π1)v(π2) . . .), where v(πi) is the
value of the run πi in the corresponding slave automaton. The value of a word w assigned
by the automaton A, denoted by LA(w), is the infimum of the set of values of all accepting
runs.

Notation. Let f, g be value functions. We say that a nested weighted automaton A =
〈Amas;h;B1, . . . ,Bk〉 is an (f ; g)-automaton iff h = f and B1, . . . ,Bk are g-automata
(weighted automata over finite words with value function g). We illustrate the semantics of
nested weighted automata with an example.

Example. Consider the nested weighted automaton Astu = 〈A1
mas; LIMAVG;B1,B2〉

where each slave automaton is a SUM+-automaton. The automatonA1
mas has a single state

and two transitions (q0, a, q0) labeled by 1 and (q0, b, q0) labeled by 2. The slave automaton
B1 runs as long as it sees a letters, increasing its value by 1 at each step; and once it sees
b, it terminates. In other words, it counts the number of a letters to the first occurrence of
b. The automaton B2 is virtually the same, but it counts b letters until it sees a. Consider a

5

word (aaab)ω and its run is depicted in Figure 1. The value of the word is 3
4 . Note that Astu

accepts only words with infinite number of a’s and b’s, as otherwise, some slave automa-
ton would have to run infinitely long and not terminate. For word w = (anb)ω the value
is (n−1)n

2(n+1) , and this shows that the nested weighted automaton can return unbounded val-
ues (in contrast to a LIMAVG-automaton whose range is bounded by its maximal weight).
Consider a variant of the above automaton where we change the master automaton toA2

mas

shown in Fig 1. Intuitively, the slave automata counts the length of each block of a’s and
b’s and thus the value computed by the nested automaton is the average block length (or
average stuttering).

q0
(a, 1) (b, 2)

(a) A1
mas

qa q0

(a,⊥) (b,⊥)
(b, 2)

(a, 1)

(b) A2
mas

qa qF

(a, 1)

(b, 0)

(c) B1

a a a b a a a b

2 1 0 0 2

0 1 2 2

0 1 1

0 0

0 0

0 1 2 2

B1(aaab) = 2

B1(aab) = 1

B1(ab) = 0

B2(ba) = 0

B1(aaab) = 2

(d) A run of Astu

Fig. 1: The master automata (a) A1
mas, (b) A2

mas, the slave automaton (c) B1 and a run of the nested
automaton Astu .

Equivalence with weighted automata. We say that a nested weighted automaton A and a
weighted automaton A are equivalent iff their values coincide on each word, i.e., for all
w ∈ Σω we have LA(w) = LA(w).

Determinism of nested weighted automata. There are two reasons why a nested automaton
may be non-deterministic. The first one is standard: one of the components, the master
automaton or one of the slave automata is non-deterministic. The second one is more subtle:
it is the termination of slave automata. To accept, a slave automaton has to terminate in an
accepting state, but it not need to be the first time it visits an accepting state. It can run
longer to compute a different value. However, if the language L recognized by the slave
automaton is prefix-free, i.e., w ∈ L implies that no extension of w belongs to L, then it
has to terminate once it reaches an accepting state because it will have no other chance to
accept. This intuition suggests the following definition.

Types of nested weighted automata. A nested weighted automaton is deterministic iff the
master automaton and all slave automata are deterministic and each slave automaton recog-
nizes a prefix-free language. A nested weighted automaton is functional iff for every word
w, each accepting run on w has the same weight.

We will consider the decision questions of emptiness and universality for nested
weighted automata.

6

4 Decision Problems

In this section we study the decidability of the decision problems for nested weighted au-
tomata. We start with some simple observations.
Simple observations. Note that the emptiness (resp. universality) of f -automata and g-
automata reduces to the emptiness (resp. universality) of (f ; g)-automata: by simply con-
sidering dummy master or dummy slave automata. Hence by Theorem 1 it follows that the
universality problem is undecidable for (f ; SUM)-automata and (LIMAVG; g)-automata,
where f ∈ InfVal and g ∈ FinVal.

Theorem 2. (1) For f ∈ InfVal, the universality problem for (f ; SUM)-automata is unde-
cidable. (2) For g ∈ FinVal, the universality problem (LIMAVG; g)-automata is undecid-
able.

4.1 Regular Weighted Slave Automata
We present a general result that ensures decidability for the decision problems for a large
class of nested weighted automata. We now consider slave automata that can only return
values from a bounded domain, and present decidability results for them.

Definition 3 (Regular weighted automata). Let A be a weighted automaton over finite
words. We say that the weighted automaton A is a regular weighted automaton iff there is
a finite set {q1, . . . , qn} ⊆ Q and there are regular languages L1, . . . ,Ln such that

(i) every word accepted by A belongs to
⋃

1≤i≤n Li, and
(ii) for every w ∈ Li, each run of A on w has the weight qi.

Regular value functions. A value function f is a regular value function iff all f -automata
are regular weighted automata. Examples of regular value functions are MIN,MAX, SUMB .
Key reduction lemma. In the following key lemma we establish that if the slave automata
are regular weighted automata, then nested weighted automata can be reduced to weighted
automata with the same value function as for the master automata. For regular weighted
slave automata, a weighted automaton can simulate a nested automaton in the following
way. Instead of starting a slave automaton, the weighted automaton guesses the weight of
the current transition (i.e., the value to be returned of the slave automaton) and checks that
the guessed weight is correct. The definition of regular weighted automata implies that such
a check can be done by a (non-weighted) finite automaton S. Thus, the weighted automaton
takes a universal transition such that in one branch it continues its execution and in another
it runs S. Observe that such a universal transition can be removed by a standard power-set
construction. Given a value function f , we denote by sil(f) the value function that applies
f on sequences after removing silent transitions. Lemma 4 along with Theorem 1 implies
Theorem 5.

Lemma 4 (Key reduction lemma). Let f ∈ InfVal be a value function. Consider a nested
weighted automaton A = 〈Amas; f ;B1, . . . ,Bk〉 such that all automata B1, . . . ,Bk are
regular weighted automata. There is an sil(f)-automatonA (weighted automaton), that can
be constructed in exponential time, which is equivalent to A; moreover, if A is functional,
then A is functional as well.

Theorem 5. Let g ∈ {MIN,MAX, SUMB}. The following assertions hold: (1) The empti-
ness and universality problems are decidable for non-deterministic (f ; g)-automata, where
f ∈ {INF, SUP, LIMINF, LIMSUP}. (2) The emptiness problem is decidable for non-
deterministic (LIMAVG; g)-automata. (3) The universality problem is decidable for func-
tional (LIMAVG; g)-automata.

7

Theorem 5 covers the case for all classes of slave automata other than SUM- and SUM+-
automata, which we consider in the following two subsections.

4.2 Undecidability Results for Slave SUM Automata

In this section we study (f ; SUM)-automata and (f ; SUM+)-automata. In contrast to the
reduction of Lemma 4, for example, (LIMAVG; SUM+) cannot be reduced to weighted
LIMAVG automata (Example 10).
Crucial negative result. We now present a crucial negative result. Note that for weighted
automata the emptiness problem is always decidable (for non-deterministic automata); and
all decision problems are decidable for deterministic automata. In sharp contrast we es-
tablish that for deterministic (SUP; SUM) automata the emptiness problem is undecidable.
The proof is a reduction from the halting problem of a two-counter (Minsky) machine to the
emptiness problem. The key idea is to ensure that words that encode valid computations of
the Minsky machine have value 0; and all invalid computations have value strictly greater
than 0. Basically, we need to check consistency of values of each counter at each step, which
is done as follows. The task of the master automaton is to ensure that tests on the counters
are consistent. The master automaton uses several slave automata to track the exact val-
ues of the counters. Each slave automaton operates on an alphabet which is increment and
decrement for the counters, as well as zero and positive test, and for each counter we have
three slave automata. For positions i < j, let balance between position i and j denote the
difference in the number of increments and decrements between i and j. For zero tests of a
counter, two slave automata are invoked: the first automaton (resp. second automaton) in-
crements (resp. decrements) with every increment operation on the counter and decrements
(resp. increments) with every decrement operation on the counter and terminates with the
value at the position of the next zero test. Intuitively, the two automata compute the bal-
ance and negative of the balance between two consecutive zero tests. Given the zero test
of the current position is satisfied, both automata returns zero iff the next zero test is also
satisfied, otherwise one of them return a positive value. For positive tests of a counter we
use the third slave automaton to compute the balance plus 1 between the current position
and the next zero test. The balance plus 1 do not exceed zero iff the current counter value
is positive. This establishes the undecidability for emptiness of (SUP; SUM)-automata, and
the proof also holds for (LIMSUP; SUM)-automata. Also observe that since we establish the
result for deterministic automata, we can take inverses of weights and change SUP (resp.
LIMSUP) to INF (resp. LIMINF) and the emptiness problem to the universality problem.

Theorem 6 (Crucial undecidability result). (1) The emptiness problem for deterministic
(SUP; SUM)- and (LIMSUP; SUM)-automata is undecidable. (2) The universality problem
for deterministic (INF; SUM)- and (LIMINF; SUM)-automata is undecidable.

4.3 Decidability Results for Slave SUM- and SUM+-Automata

We now establish the remaining decidability results, namely, for slave automata with SUM+

value functions, and emptiness for (INF; SUM)-automata and (LIMINF; SUM)-automata.
Intuitive proof ideas. For (f ; SUM+)-automata, for f ∈ InfVal \ {LIMAVG}, we show
that the decision problems can be reduced to the bounded sum value function; and then
derive the decidability results from Theorem 5. For (INF; SUM)-automata we show the
emptiness problem is decidable and the main argument is a reduction to the emptiness of
non-deterministic weighted automata with SUM value function. We summarize the results
in the following theorem.

8

Theorem 7. (1) The emptiness problem for (INF; SUM)-automata and (LIMINF; SUM)-
automata is decidable. (2) The universality problem for functional (SUP; SUM)-automata
and (LIMSUP; SUM)-automata is decidable. (3) For f ∈ {INF, SUP, LIMINF, LIMSUP},
the emptiness and the universality problems for (f ; SUM+)-automata are decidable.

Finally, we establish decidability of the emptiness problem with limit-average master
automaton and SUM+-automata as slaves. The key proof idea is to show that there exist
optimal runs for (LIMAVG; SUM+)-automata that coincide with the values of optimal runs
of a non-nested limit-average automata. This also allows us to show the decidability of the
universality problem for functional (LIMAVG; SUM+)-automata.

Theorem 8. The emptiness problem for (LIMAVG; SUM+)-automata is decidable; and the
universality problem for functional (LIMAVG; SUM+)-automata is decidable.

While we have established the decidability and undecidability of the decision problems
for nested weighted automata for almost all cases, there is one open problem which present
as a conjecture. Tables 1, 2 summarize our results.

Conjecture 9. The emptiness problem for non-deterministic (LIMAVG; SUM)-automata is
decidable.

INF SUP LIMINF LIMSUP LIMAVG

MIN, MAX, SUMB Emptiness Dec.(4) Dec.(4) Dec.(4) Dec.(4) Dec.(4)
Universality Dec.(4) Dec.(4) Dec.(4) Dec.(4) Dec.(4)

SUM
Emptiness Dec.(7) Undec.(6) Dec.(7) Undec.(6) Open (9)

Universality Undec.(6) Dec.(7) Undec.(6) Dec.(7) Open (9)

SUM+ Emptiness Dec.(7) Dec.(7) Dec.(7) Dec.(7) Dec.(8)
Universality Dec.(7) Dec.(7) Dec.(7) Dec.(7) Dec.(8)

Table 1: Decidability of the emptiness and universality problems for functional (f ; g)-automata.
Functions f are listed in the first row and functions g are in the first column. The undecidability
results hold even for deterministic automata. Next to each result there is a reference to the corre-
sponding theorem or conjecture.

INF SUP LIMINF LIMSUP LIMAVG

MIN, MAX, SUMB Emptiness Dec.(4) Dec.(4) Dec.(4) Dec.(4) Dec.(4)
Universality Dec.(4) Dec.(4) Dec.(4) Dec.(4) Undec.(2)

SUM
Emptiness Dec.(7) Undec.(6) Dec.(7) Undec.(6) Open (9)

Universality Undec.(6) Undec.(2) Undec.(6) Undec.(2) Undec.(2)

SUM+ Emptiness Dec.(7) Dec.(7) Dec.(7) Dec.(7) Dec.(8)
Universality Dec.(7) Dec.(7) Dec.(7) Dec.(7) Undec.(2)

Table 2: Decidability of the emptiness and universality problems for non-deterministic (f ; g)-
automata. The alignment is as in Table 1.

Discussion on expressiveness and inclusion. We discuss the expressiveness and inclusion
results for nested weighted automata. (1) Nested weighted automata can be strictly more

9

expressive than their non-nested counterpart; for example, (LIMAVG; SUM+) automata can
express average response time property which cannot be expressed by LIMAVG-automata
or SUM+-automata (see Example 10 in Section 5.1). (2) The emptiness and universality
problems reduce to the inclusion problem, where the inclusion problem given two automata
A1 and A2 asks whether for every word w we have LA1

(w) ≤ LA1
(w). Therefore, for

decidability of the inclusion problem both the emptiness and the universality problems
must be decidable. We establish that the inclusion problem is decidable for (f ; g)-automata
where f ∈ InfVal \ {LIMAVG} and g is a regular function. For further discussion see
Section G of Appendix.

5 Applications

In this section we discuss several applications of nested weighted automata.

5.1 Quantitative system properties

We first show that basic properties such as average response time can be expressed con-
veniently as a nested weighted automaton. We then argue that our framework is a natural
extension of the framework of monitor automata for Boolean verification, and is a step
towards quantitative run-time verification.

Example 10 (Average response time). Consider the specification for average response time
defined as follows: we consider words for the alphabet {r, g, n}, where r denotes a request,
g denotes a grant, and n denotes null (no request or grant). Consider a word w, and a
position i, such that w[i] is a request, and then the response time in position i is the distance
to the closest grant, i.e., the response is j − i where j > i is the least number greater than i
with w[j] = g. The average response time is the limit-average of the response times of the
requests. Consider a nested weighted automaton, with one slave automaton that has sum of
non-negative weights as the value function, and the master automaton with limit-average
value function. The master automaton for every letter r invokes the slave automaton, and for
g and n takes a silent transition (i.e., it is a single state automaton with r labeled as 1, and
g and n labeled as ⊥). The slave automaton counts the number of steps till the first g. The
nested automaton specifies the average response time property. As discussed in Section 1
since the average response time can be unbounded, they cannot be expressed as non-nested
limit-average automata.

Quantitative monitor automata. In verification of Boolean properties, the formalism with
monitor automata is a very convenient way to express system properties [16]. The specifica-
tion for a system can be decomposed into subproperties, and each monitor automata tracks
a subproperty. Whether the system satisfies the property or not is inferred from the results
of the monitor automata. Monitor automata are specially useful for safety properties, and
widely used in run-time verification [13]. Our nested weighted automata framework can
be seen as a natural extension of the formalism provided by monitor automata. Each slave
automaton can specify a subproperty of the system, and the master automaton combines the
result obtained from all the slave automata. Moreover, our nested weighted automata can
be seen as the first step towards quantitative run-time verification. Each slave automaton
acts as a monitor and returns values of subproperties of the system. If the value function of
the master automaton is commutative (as in all our examples), the master automaton can
compute an on-the-fly approximation of the value function for finite words.

10

5.2 Model measuring

The model-measuring problem [14] asks, given a model and a specification, what is the
maximal distance ρ such that all models within distance ρ from the model satisfy the spec-
ification. Formally, a model M and a specification S are Boolean automata. Given M , a
similarity measure (of M) is a function dM from infinite words to positive real numbers
such that for all traces w in LM we have dM (w) = 0. Similarity measures extend to mod-
els in a natural way; i.e., dM (M ′) = sup{dM (w) : w is a trace of M ′}. The stability
radius of S in M w.r.t. the similarity measure dM , denoted by srdM (M,S), is defined as
srdM (M,S) = sup{ρ ≥ 0 : ∀M ′(dM (M ′) < ρ ⇒ LM ⊆ LS)}. We are interested in
similarity measures dM defined by nested weighted automata. Note that dM is independent
of the specification. The model-measuring decision problem of whether srdM (M,S) ≤ λ
reduces to the emptiness decision question [14]. We now show how nested weighted au-
tomata can define interesting similarity measures dM .

Example 11 (Bounded delays). Consider a model M for two parties communicating
through a channel, where every sent packet is delivered in the next state. We define a simi-
larity measure dM , such that dM (w) = k ifw obeys the rules ofM , except that each packet
can be delayed and the maximum delay in the trace w is k. The similarity measure dM can
be defined as follows. To obtain dM we first construct a relaxation MR from M in which,
each sent packet is delivered after some finite time. The similarity measure is defined as an
(SUP; SUM+)-automaton AD that computes the maximum delay. It works as follows. At
each step at which a packet is sent, the master automaton starts a slave SUM+-automaton
that counts the number of steps until the packet is delivered. At steps at which no packet
is sent, the master automaton takes a silent transition. The product automaton MR and AD
defines the desired similarity measure (see Appendix for further details).

5.3 Model repair

The model-repair problem, given a model and a specification, asks for the minimal restric-
tion of the model such that the specification is satisfied. Given a modelM , a repair measure
dM is a function from infinite words to real numbers such that dM (w) < ∞ iff w ∈ LM .
Intuitively, the measure evaluates the hardness of traces of M , which can be used to evalu-
ate severity of the violation of the specification. We are interested in dM specified by nested
weighted automata. Given a modelM , a repair measure dM , and a real number r, we define
the language d<rM as {w : dM (w) < r}. The model-repair decision problem, given a model
M , a repair measure dM , and a specification S, asks whether sup{r : d<rM ⊆ LS} ≤ λ.
The model-repair decision problem also reduces to the emptiness question.

Example 12 (Context-switches). Consider a system consisting of a scheduler and two pro-
grams. The scheduler starts processes infinitely often and does preemptive scheduling. To
obtain a finite-state model, we consider that only a single instance of each program may
run at a given time. Consider the repair measure dM that represents the negative of the
minimal slot length, i.e., for all w we have dM (w) = −k iff each process in the execution
w, runs for at least k steps. The repair measure can be defined by a functional (SUP; SUM)-
automaton AR as follows. After each context-switch, the master automaton starts an au-
tomaton that computes the running time until the next context-switch and multiplies it by
−1 (i.e., add −1 at each step). At steps at which there is no context switch, the master
automaton takes a silent transition. It follows that the supremum of all those values is the
length of the shortest running time of a process multiplied by −1. Although, the emptiness

11

problem is undecidable for (SUP; SUM)-automata, the automaton AR has only non-positive
weights. The emptiness problem for (SUP; SUM)-automata with non-positive weights re-
duces to the universality problem for (INF; SUM+)-automata, which is decidable.

6 Conclusion and Future Work

In this work we introduced the framework of nested weighted automata as a new and ex-
pressive formalism to specify quantitative properties. We studied the decidability of the ba-
sic decision questions. There are several directions for future work. First, we have an open
conjecture (Conjecture 9) regarding the decidability of the emptiness of non-deterministic
(LIMAVG; SUM)-automata. Second, another interesting direction would be to establish op-
timal complexity results for the decision problems. Third, there are several possible exten-
sions of the nested weighted automata model, such as, considering (i) two-way master and
slave automata, (ii) multiple levels of nesting; and (iii) instead of infimum across paths con-
sider average measures across paths (i.e., probability distribution over runs and expected
value of the runs as in [6]).

References

1. S. Almagor, U. Boker, and O. Kupferman. What’s decidable about weighted automata? In ATVA,
pages 482–491. LNCS 6996, Springer, 2011.

2. R. Alur, L. D’Antoni, J. V. Deshmukh, M. Raghothaman, and Y. Yuan. Regular functions and
cost register automata. In LICS, pages 13–22. IEEE Computer Society, 2013.

3. B. Bollig, P. Gastin, B. Monmege, and M. Zeitoun. Pebble weighted automata and transitive
closure logics. In ICALP (2), pages 587–598. LNCS 6199, Springer, 2010.

4. K. Chatterjee, L. Doyen, H. Edelsbrunner, T. A. Henzinger, and P. Rannou. Mean-payoff au-
tomaton expressions. CoRR, abs/1006.1492, 2010.

5. K. Chatterjee, L. Doyen, and T. A. Henzinger. Alternating weighted automata. In FCT’09, pages
3–13. Springer-Verlag, 2009.

6. K. Chatterjee, L. Doyen, and T. A. Henzinger. Probabilistic weighted automata. In CONCUR,
pages 244–258. LNCS 5710, Springer, 2009.

7. K. Chatterjee, L. Doyen, and T. A. Henzinger. Expressiveness and closure properties for quanti-
tative languages. Logical Methods in Computer Science, 6(3), 2010.

8. K. Chatterjee, L. Doyen, and T. A. Henzinger. Quantitative languages. ACM Trans. Comput.
Log., 11(4), 2010.

9. A. Degorre, L. Doyen, R. Gentilini, J.-F. Raskin, and S. Torunczyk. Energy and mean-payoff
games with imperfect information. In CSL, pages 260–274. LNCS 6247, Springer, 2010.

10. M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata. Springer Publishing
Company, Incorporated, 1st edition, 2009.

11. J. Filar and K. Vrieze. Competitive Markov decision processes. Springer-Verlag New York, Inc.,
New York, USA, 1996.

12. E. Filiot, R. Gentilini, and J.-F. Raskin. Quantitative languages defined by functional automata.
In CONCUR, pages 132–146. LNCS 7454, Springer, 2012.

13. K. Havelund and G. Rosu. Synthesizing monitors for safety properties. In TACAS, pages 342–
356. LNCS 2280, Springer, 2002.

14. T. A. Henzinger and J. Otop. From model checking to model measuring. In CONCUR, pages
273–287. LNCS 8052, Springer, 2013.

15. M. Mohri. Semiring frameworks and algorithms for shortest-distance problems. Journal of
Automata, Languages and Combinatorics, 7(3):321–350, 2002.

16. A. Pnueli and A. Zaks. On the merits of temporal testers. In 25 Years of Model Checking, pages
172–195. LNCS 5000, Springer, 2008.

12

A Proofs from Section 4

Theorem 2. (1) For f ∈ InfVal, the universality problem for (f ; SUM)-automata is unde-
cidable. (2) For g ∈ FinVal, the universality problem (LIMAVG; g)-automata is undecid-
able.

Proof (of (1)). We show a reduction of the universality problem for SUM-automata with
weights {−1, 0, 1}, which is undecidable (Theorem 1), to the universality problem for
(f ; SUM)-automata, where f ∈ {INF, SUP, LIMINF, LIMSUP}. The case f = LIMAVG
follows from (2).

Let A be a SUM-automaton with weights {−1, 0, 1}. Consider an (INF; SUM)-
automaton A that works as follows. Its acceptance condition enforces that it accepts only
words with infinitely many # letters, i.e., the words the form w1#w2# At each #
letter the master automaton starts an instance of A as a slave automaton that works to the
successive # letter. On the positions with a letter different than #, the master automaton
takes a silent transition. Then, the value of a word w1#w2# . . . is equal to the infimum
of values LA(wi). In particular, LA((w#)ω) = LA(w). It follows that the universality
problems for A and A coincide.

The same construction shows a reduction of the universality problem for SUM-automata
to the universality problem for (LIMINF; SUM)-automata (resp. (SUP; SUM)-automata,
(LIMSUP; SUM)-automata). ut

Proof (of (2)). For every g ∈ FinVal we can define two dummy g-automata,A0 (resp.A1)
that immediately accept and return the value 0 (resp. 1). Therefore, such (LIMAVG; g)-
automata can simulate all LIMAVG-automata with weights 0, 1, whose universality prob-
lem is undecidable (Theorem 1). Therefore, the universality problem for (LIMAVG; g)-
automata is undecidable as well. ut

B Proofs from Section 4.1

In the following key lemma we establish that if the slave automata are regular weighted au-
tomata, then nested weighted automata can be reduced to weighted automata with the same
value function as for the master automata. For regular weighted slave automata, a weighted
automaton can simulate a nested automaton in the following way. Instead of starting a slave
automaton, the weighted automaton guesses the weight of the current transition (i.e., the
value to be returned of the slave automaton) and checks that the guessed weight is correct.
The definition of regular weighted automata implies that such a check can be done by a
(non-weighted) finite automaton S. Thus, the weighted automaton takes a universal transi-
tion such that in one branch it continues its execution and in another it runs S. Observe that
such a universal transition can be removed by a standard power-set construction.

Lemma 4 (Key reduction lemma). Let f ∈ InfVal be a value function. Consider a nested
weighted automaton A = 〈Amas; f ;B1, . . . ,Bk〉 such that all automata B1, . . . ,Bk are
regular weighted automata. There is an sil(f)-automatonA (weighted automaton), that can
be constructed in exponential time, which is equivalent to A; moreover, if A is functional,
then A is functional as well.

Proof. Assume that each slave automaton Bi has the weights from the set {−n, . . . , n}.
Then, since all of the slave automata are regular weighted automata, for all i ∈ {1, . . . , k}
and j ∈ {−n, . . . , n} there is a deterministic finite word automaton Si,j that recognizes the

13

language of all words w such that LBi
(w) = j. Since Bi is a regular weighted automaton,

it accepts precisely when one of the automata Si,0, . . . ,Si,n accepts.
We define QS (resp. FS) as the disjoint union of the sets of states (resp. the sets of

accepting states states) of all automata Si,j . Let Qm (resp. Fm) be the set of all states
(resp. all accepting states) the master automaton Amas. We define a relation STEP ⊆
2QS × Σ × 2QS , which is the union of transition relations lifted to sets of states, i.e.,
({q1, . . . , ql}, a, {q′1, . . . , q′l}) ∈ STEP iff for every m ∈ {1, . . . , l}, some automaton Si,j
has a transition (qm, a, q

′
m).

We define A, which we show is equivalent to A, as a generalized Büchi automaton,
which differs from an automaton over infinite words (Büchi automaton) in the acceptance
condition. An acceptance condition in a generalized Büchi automaton is a sequence of
F1, . . . , Fs of sets of states. A run is accepting iff for each d ∈ {1, . . . , s} there is a state
from Fd visited infinitely often. There is a straightforward reduction of a generalized Büchi
automaton to a Büchi automaton, and we omit the reduction and for technical convenience
consider generalized Büchi condition for the proof.

The automaton A works as follows. It simulates the execution of the master automa-
ton. Every time the master automaton starts a slave automaton Bi, the automaton guesses
the value j that Bi returns and checks it, i.e., it starts simulating the automaton Si,j , by
including the initial state of Si,j in a set of states P1. The automaton A maintains two sets
of states of simulated automata, P1 and P2: states in P1 and P2 represent states of Si,j and
basically, there are states in P2 until all automata corresponding to them terminate. Once
they do, P2 is empty and all states from P1 are copied to P2. Intuitively, the role of P1

and P2 is to ensure that each automaton terminates, by enforcing P2 to be empty infinitely
often. We now formally define A = 〈Σ,Q, q0, C, δ, F 〉 as follows:

1. Q = Qm × ({−n, . . . , n} ∪ {⊥})× 2QS × 2QS

2. q0 = 〈qm0 , 0, ∅, ∅〉, where qm0 is the initial state of the master automaton
3. (〈q, j, P1, P2〉, a, 〈q′, j′, P ′1, P ′2〉) ∈ δ iff (q, a, q′) is a valid transition of the master

automaton labeled by i and one of the following holds (intuitive descriptions follow):
(a) j = ⊥, P ′1 = P ′′1 \ FS , P ′2 = P ′′2 \ FS , where STEP(P1, a, P

′′
1) and

STEP(P2, a, P
′′
2),

(b) j 6= ⊥, P2 = ∅, P ′1 = {qi,j0 } and P ′2 = P ′′2 \ FS , where STEP(P1, a, P
′′
2) and qi0

is the initial state of Si,j , the automaton that checks that the slave automaton Bi

started at the current position returns the value j,
(c) j 6= ⊥, P2 6= ∅, P ′1 = (P ′′1 ∪ {q

i,j′

0 }) \ FS and P ′2 = P ′′2 \ FS , where
STEP(P1, a, P

′′
1) and STEP(P2, a, P

′′
2)

The intuitive descriptions are as follows: (a) the first transition corresponds to a silent
transition, and hence we compute the successor states of sets P1 and P2 and remove the
accepting states (that correspond to automata that terminate); (b) the second transition
is similar to the first case but here a new automaton that simulates the slave automaton
is started, but since P2 is empty we compute the next P ′2 from the successor of P1

according to STEP but after removing the accepting states, and the new P1 is the initial
state of the simulating automaton; and (c) the third transition is very similar to the first
transition just that the initial state of the simulating automaton is added to the P ′1.

4. the cost function is defined as C(〈q, j, P1, P2〉, a, 〈q′, j′, P ′1, P ′2〉) = j′,
5. F consists of F1 = Fm × ({−n, . . . , n} ∪ {⊥}) × 2QS × 2QS and F2 = Qm ×

({−n, . . . , n} ∪ {⊥})× 2QS ×∅. Intuitively, F1 ensures that the acceptance condition
of the master automaton is satisfied and F2 ensures that P2 is empty infinitely often.

In the remaining part we shall prove correctness of the construction by showing that for
every infinite word w

14

(i) for every run of A on w of the value x, there is a run of A of the value x, and
(ii) for every run of A of the value x, there is a run of A of the value x.

(i): Assume that (Π,π1, π2, . . .) is a run of A on w of the value x. We construct induc-
tively a sequence r that corresponds (Π,π1, π2, . . .), which will be transformed into a run
γ of A. For each πs, which is a run of some slave automaton Bi of the value j, we define
p[s] as the position in w at which the run πs starts and ηs as a minimal length accepting
run of the automaton Si,j on some subword of w[p[s], s′]. The run ηs contains only a single
accepting state, which is the last state.

Now, we define a pre-run r, which is a sequence of quadruples of a state of the master
automaton, the current weight and two sets of runs of Si,j . We define r by induction. First,
r[0] is defined as (qm0 , 0, ∅, ∅), where qm0 is the initial state of Amas. For l ≥ 0, given
r[l] = 〈q, j,G,H〉, we define r[l + 1] as follows: (intuitively, G (resp. H) represent sets of
runs which will later be converted to sets of states for P1 (resp. P2))

1. If the master automaton takes a silent transition, then r[l+ 1] = 〈Π[l + 1],⊥,G′,H′〉,
such that G′ = G′′ \ FS and H′ = H′′ \ FS , where G′ (resp. H′) consists of the runs
from G (resp.H) where each run has the first element removed.

2. If the master automaton takes a transition labeled with i, then r[l + 1] =
〈Π[l + 1], j′,G′,H′〉, where s is such that l = p[s], j′ is the value of πs and G′,H′
are defined as follows:
(a) If H = ∅, G′ = {ηs} and H′ = H′′ \ FS , where H′′ consists of the runs from G

with the first element removed.
(b) If H 6= ∅, G′ = G′′ \ FS and H′ = H′′ \ FS , where G′′ consists of the runs from
G with the first element removed andH′′ consists of the runs fromH with the first
element removed and the run ηs.

Now, we define γ from r by projecting runs in the third and fourth components on the
first element, i.e., for every l ≥ 0, where r[l] = 〈q, j,G,H〉, we define γ[l] as 〈q, j, P1, P2〉,
where P1 (resp. P2) are the sets of first elements of runs in G (resp. H). One can easily
check that γ is an accepting run of A. Moreover, each transition of γ has the same weight
as the corresponding transition of the master automaton in A. Hence, the value of γ is x,
the same as the value of (Π,π1, π2, . . .).

(ii): Assume thatA has a run β of the value x. First, observe thatΠ defined as a projec-
tion of β on the first component is a valid accepting run of Amas. We shall prove that for
every l ≥ 0 such that l-th transition 〈Π[l], w[l], Π[l + 1]〉 is labeled by i ∈ {0, . . . , k}, i.e.,
it is non-silent, there is a run of Bi of the weight j, where β[l+1] = 〈Π[l + 1], j, P1, P2〉.
Then, we can readily conclude that A has a run of the value x. Consider such a posi-
tion l ≥ 0. Since the transition taken by A has the weight j, the state qi,j0 belongs P1

in β[l + 1] = 〈q, j, P1, P2〉. One can track the descendant states of qi,j0 and notice that
some descendant of qi,j0 belongs to FS . Indeed, if qi,j0 has no descendant from FS , it would
have infinitely many descendants, which would prevent the fourth component P2 be empty
infinitely often.

Functionality: Assume that A is functional. Consider a word w and two runs of A a
word w. Denote by c1, c2 the values of these runs. Then, A has also runs of values c1, c2 on
w. Due to functionality of A we have c1 = c2. It follows that A is functional. ut

Now, we prove two very simple lemmata regarding weighted automata with silent
moves.

Lemma 13. Let f ∈ {INF, SUP, LIMINF, LIMSUP}. For every sil(f)-automaton A there
is an (computable in linear time) f -automaton A′ equivalent to A.

15

Proof. Given an sil(f)-automaton A, where f ∈ InfVal, we define the automaton A` as
the f -automaton that results from A by substituting each silent transition by a transition
of the weight `. Observe that for every sil(INF)-automaton A for every infinite word w we
have LA(w) ≤ λ iff LA(λ+1)(w) ≤ λ. The same equivalence holds for every sil(SUP)-
automaton A and its variant A(λ−1). Thus, the emptiness and universality problems for
sil(INF)-automata (resp. sil(SUP)-automata) and INF-automata (resp. SUP-automata) coin-
cide. Now, a run of an sil(INF)-automaton is accepting only if it contains infinitely many
non-silent transitions. Therefore, the above equivalences hold for f ∈ {LIMINF, LIMSUP}
and the corresponding problems coincide. ut

Lemma 14. The emptiness problem for sil(LIMAVG)-automata is decidable.

Proof. Let A = (Σ,Q, q0, δ, F, C) be a sil(LIMAVG)-automaton. We define a LIMAVG-
automaton Afix such that for every accepting run η of A, the run η′, resulting from η by
removing silent transitions, is an accepting run of Afix, and vice versa, every accepting run
of Afix can be extended to a run of A by inserting silent transitions. The set of states of
Afix is the same as A and the transition relation of Afix consists of (q1, a, q2) such that
there is (q′1, a, q

′
2) ∈ δ and q′1 (resp. q2) is reachable from q1 (resp. q′2) by a path consisting

of only silent transitions. The weight of such a transition is the infimum over the weights
of transitions (q′1, a, q

′
2) ∈ δ that generate (q1, a, q2). If follows from the construction that

Afix has the stipulated properties and their optimal runs have the same value. Therefore, the
emptiness problem for sil(LIMAVG)-automata reduces in polynomial time to the emptiness
problem for LIMAVG-automata. ut

Theorem 5. Let g ∈ {MIN,MAX, SUMB}. The following assertions hold: (1) The empti-
ness and universality problems are decidable for non-deterministic (f ; g)-automata, where
f ∈ {INF, SUP, LIMINF, LIMSUP}. (2) The emptiness problem is decidable for non-
deterministic (LIMAVG; g)-automata. (3) The universality problem is decidable for func-
tional (LIMAVG; g)-automata.

Proof. (1): Let f ∈ {INF, SUP, LIMINF, LIMSUP} and g ∈ {MIN,MAX, SUMB}. Due to
Lemma 4 and Lemma 13, every (f ; g)-automaton is equivalent to some f -automaton. The
emptiness and universality problems are decidable for f -automata (Theorem 1).

(2): Lemma 4 state that (LIMAVG; g)-automata are equivalent to sil(LIMAVG)-
automata, which enjoy decidability of the emptiness problem (Lemma 14).

(3): The universality problem for functional (LIMAVG; g)-automata reduces to the
emptiness problem for functional (LIMAVG; g)-automata. It suffices to take inverses of
all weights in all slave automata of a given nested automaton. ut

C Proofs from Section 4.2

Theorem 6 (Crucial undecidability result). (1) The emptiness problem for deterministic
(SUP; SUM)- and (LIMSUP; SUM)-automata is undecidable. (2) The universality problem
for deterministic (INF; SUM)- and (LIMINF; SUM)-automata is undecidable.

Proof (of (1)). Given a Minsky’s machineM, we construct a deterministic (SUP; SUM)-
automaton A that accepts infinite words of the form w1#w2# Moreover, the value of
the word w1#w2# . . . is 0 iff each subword wi encodes an valid accepting computation
ofM. As the problem, given a Minsky’s machine, does it have an accepting computation
is undecidable, we conclude that the emptiness problem for deterministic (SUP; SUM)-
automata (resp. (LIMSUP; SUM)-automata) is undecidable.

16

A Minsky’s machine M is a finite automaton augmented with two counters c1, c2.
The counters can be incremented, decremented and tested whether they are zero or pos-
itive. The transitions of M depend on the values of counters, namely, whether they
are equal zero. That is, each transition has the following form (q, s, t) → (q′, v1, v2),
where s ∈ {c1 = 0, c1 > 0}, t ∈ {c2 = 0, c2 > 0} and v1, v2 ∈ {−1, 0, 1}. E.g.
(q, c1 = 0, c1 > 0)→ (q′,+1,−1) means that if the machine is in the state q, the value of
c1 is 0 and c2 greater than 0, then the next state is q′, c1 is incremented and c2 is decre-
mented.

We define two notions for Minsky’s machines, a run and a computation. A run of
a Minsky’s machine M is a sequence (q0, 0, 0), (q1, α1, β1), . . . , (qn, αn, βn) such that
for every i < n there is a transition of M (qi, s, t) → (qi+1, v1, v2) such that αi
satisfies s βi satisfies t, and αi+1 = αi + v1, βi+1 = βi + v2. A run is accept-
ing iff its last element is (qF , 0, 0). A computation of M is a sequence of elements
Q×{c1 = 0, c1 > 0}×{c2 = 0, c2 > 0}×{−1, 0, 1}×{−1, 0, 1} called configurations. A
computation (q0, c1 = 0, c2 = 0, 0, 0), (q1, t1, β1, x1, y1), . . . , (qn, c1 = 0, c2 = 0, xn, yn)
is valid iff there is an accepting run (q0, 0, 0), . . . , (qn, αn, βn) such that for every i ∈
{0, . . . , n}, αi =

∑i
j=0 xj and βi =

∑i
j=0 yj .

Consider a valid computation η and the corresponding accepting run π. For positions
i < j, let balance of c1 (resp. c2) between position i and j (in η) denote the difference in
the number of increments and decrements of c1 (resp. c2) between i and j. Since the initial
value of the counters is 0, the value of a counter c1 (resp. c2) in π[i] is precisely its balance
of c1 (resp. c2) between positions 1 and i. Thus, a zero test (non-zero test) at the position i
is valid iff the balance between positions 1 and i is 0 (is strictly positive).

Consider a computation η of a Minsky machineM. If it is invalid then there is a first
position in η such that the corresponding sequence over Q × N × N is not a run. There
a basically, two reasons for that: (i) M has no transition consistent with a step from η[i]
to η[i + 1] , (ii) the configuration at η[i] is inconsistent with the current values of c1, c2,
i.e., a zero or a non-zero test is inconsistent with the actual value of a counter. A Boolean
automaton can check whether the computation is invalid because of (i). We show how to
check (ii), i.e., validity of zero and non-zero tests, using a nested weighted automaton. We
will discuss only the first counter c1 as the construction for c2 is virtually the same.

First, we check validity of zero tests on c1. All zero tests on c1 are valid iff the bal-
ance of c1 between any two consecutive zero tests is zero. To check that this holds, the
nested automaton starts at each position i with a zero test two deterministic slave SUM-
automata: A+

c1=0,A
−
c1=0. The automaton A+

c1=0 computes the balance of c1 between i and
the next zero test of c1; it increments (decrements) its value whenever c1 is incremented
(decremented), and it terminates at the next zero test of c1. The automaton A−c1=0 does the
opposite, i.e., it computes the additive inverse of the balance between i and the next zero
test of c1. The values of these automata are inverses of each other and the maximum of
their values is the absolute value of the balance. Hence, the maximum of their values is
less-or-equal to zero iff the balance between i and the next zero test of c1 is 0. Thus, the
values of all slave automata A+

c1=0,A
−
c1=0 are less-or-equal to zero if and only if all zero

tests of c1 are valid.

Second, we check that non-zero tests are valid. To do that, the automaton starts at every
position i with a non-zero test a third slave SUM-automaton Ac1>0 that first increments its
value to 1 and then computes the balance between i and the next zero test. The value of c1
at the position i is strictly greater than 0 iff the balance between the position i and the next
position at which that counter is 0 does not exceed −1. Provided that verifying zero tests

17

succeeds, the value of Ac1>0 is less-or-equal to 0 iff the non-zero test at the position i is
valid.

The value of the nested automaton does not exceed 0 if and only if the values of all
slave automata are less-or-equal to 0, which holds precisely when all zero and non-zero
tests on c1 are valid. A similar construction can be repeated for the counter c2. In the
above construction up to four automata has to be started at any configuration, while nested
automata can start at most one slave automaton at each step. However, we can encode
configurations by some fixed number of letters. E.g. c $ $ $ $ where c is a letter that fully
encodes a configuration (q, α, β, x, y) and $ letters are used only to start enough slave
automata. It follows that A accepts a word w1#w2# . . . and assigns it the value 0 iff each
word wi encodes an valid accepting computation ofM.

Observe that the same automaton, A, considered as (LIMSUP; SUM)-automaton returns
the same result. Indeed, if a given Minsky’s machine does not have an accepting computa-
tion, each accepted word will have positive value. On the other hand, if there is an accept-
ing computation w, the value of (SUP; SUM)-automata and (LIMSUP; SUM)-automata the
word (w#)ω coincides, hence it is 0. ut

Proof (of (2)). The universality problem for deterministic (INF; SUM)-automata is the
dual of the emptiness problem for deterministic (SUP; SUM) automata. Indeed, consider
a deterministic (INF; SUM)-automaton A and the nested automaton A′ that results from
taking inverses of all weights in A and changing its value function to INF. One can easily
check that for every word w, the weight of w assigned by A is x, then A′ assigns to w the
weight −x. ut

D Proofs from Section 4.3

We prove Theorem 7 and the proofs are relatively straightforward.

Theorem 7. (1) The emptiness problem for (INF; SUM)-automata and (LIMINF; SUM)-
automata is decidable. (2) The universality problem for functional (SUP; SUM)-automata
and (LIMSUP; SUM)-automata is decidable. (3) For f ∈ {INF, SUP, LIMINF, LIMSUP},
the emptiness and the universality problems for (f ; SUM+)-automata are decidable.

Proof (of (1)). Let A = 〈Amas; INF;B1, . . . ,Bk〉 be an (INF; SUM)-automaton. We con-
struct a SUM-automaton over finite words A such that the emptiness problem for A and A
coincide. The automaton A works over words over the alphabet Σ ∪ {#, 1, . . . k} of the
form wiv#u′#u, where w, v, u, u′ ∈ Σ∗ and i ∈ {1, . . . k}, and the value of its run, if it is
accepting, is the value of the slave automaton Bi on the word v. The automatonA consists
of two components. The first, a Boolean one whose all weights are 0, ensures that A has
an accepting run on wvu′uω such that the slave automaton started at the beginning of the
word v is Bi and Bi accepts the word v. The second component is a weighted one and it
computes the value of Bi on v. Observe that the value of each run of A depends only on
a finite prefix of a word, i.e., for each run of A there is a finite prefix wvu′u such that the
value of that run equals LA(wiv#u′#u). It follows that the emptiness problem for A and
A coincide. ut

Proof (of (2)). The emptiness problem for functional INF-SUM automata is the dual of the
universality problem for functional SUP-SUM automata. It suffices to take inverses of all
weights. Thus, (2) follows from (1). ut

18

Proof (of (3) and (4)). Let λ be the threshold given in the emptiness (resp. universal-
ity) problem. Observe that for f ∈ {INF, SUP, LIMINF, LIMSUP}, for every word w, an
(f ; SUM+)-automaton has a run of the value not exceeding λ threshold iff (f ; SUMB)-
automaton, where B = λ + 1, has a run of the value not exceeding λ. It follows that the
emptiness (resp. universality) problem for (f ; SUM+)-automata reduces to the emptiness
(resp. universality) problem for (f ; SUMB)-automata, where B varies.

Since SUMB is a regular value function, and regular languages certifying it can be ef-
fectively in linear time in B, Lemma 4 implies that for f ∈ {INF, SUP, LIMINF, LIMSUP},
the universality problem for (f ; SUM+)-automata reduces (in exponential time) to the uni-
versality problem for sil(f)-automata, which is decidable (Lemma 13). ut

E The proof of Theorem 8

Theorem 8. The emptiness problem for (LIMAVG; SUM+)-automata is decidable; and the
universality problem for functional (LIMAVG; SUM+)-automata is decidable.

We prove decidability of the emptiness and the universality problem in separate sub-
sections.

E.1 The proof of decidability of the emptiness problem for (LIMAVG; SUM+)-
automata.

Lemma 15. The emptiness problem for (LIMAVG; SUM+)-automata reduces to the empti-
ness problem for deterministic (LIMAVG; SUM+)-automata.

Proof. The emptiness problem can be regarded as a single player game who chooses let-
ters and transitions to satisfy the objective. Thus, we can extend the alphabet such that each
letter uniquely determines transitions for the master and slave automata. This is the key
intuition to reduce the emptiness question to one for deterministic automata. The deter-
minization by extension of alphabet enforces that the following condition on runs holds:
(Cond *) all slave automata that at a position s in a word are in the same state, take the
same transition. We need to show that imposing (Cond *) does not affect the value of opti-
mal runs.

Consider (LIMAVG; SUM+)-automaton A and its optimal run (Π,π1, π2, . . .). If A
does not have an accepting run of finite value, we take any accepting run. Consider πi, πj
that are in the same state at the position s in the word, i.e., πi[i′] = πj [j

′], where i′, j′
are the position is πi, πj corresponding to the position s in w. We choose from the suffixes
πi[i
′, |πi|], πj [j′, |πj |] the one with the smaller value and change the suffixes of both runs

to the chosen one. If these suffixes have the same value, we chose the shorter one. Such
a transformation does not increase the value of the partial sums and does not introduce
infinite runs of slave automata. Indeed, a run of each slave automaton can be changed by
such an operation only finitely many times. Thus, this transformation can be applied to any
pair of slave runs to obtain an optimal run satisfying (Cond *). ut

Given a deterministic nested automaton A, we define Qs as the disjoint union of the
sets of states of all slave automata of A. For an infinite word w, we say that (qm, A) is
the configuration at the position p in w if qm is the state of the master automaton of A
at the position p and A ⊆ Qs is the set of states of all slave automata at the position p.
We denote by conf(A) the number of configurations of A. We define the multiplicity mult

19

at the position p as the function mult : A 7→ N, where A is as above, such that mult(q)
specifies the number of slave automata in the state q at the position p. The configuration
together with the multiplicity give a complete description of the state of A at the position
p. We define Cw[1,p],multw[1,p] as the configuration and the multiplicity at the position p.
Since A is deterministic, Cw[1,p],multw[1,p] are uniquely determined (and the same) for all
words w[1, p]w′.

Definition 16. A run of an (LIMAVG; SUM+)-automaton is of width bounded by c iff at
each position the number of running slave automata is bounded by c.

Lemma 17. Let A be a deterministic (LIMAVG; SUM+)-automaton that recognizes a non-
empty language. There is a constant c exponentially bounded in |A| and a deterministic
(LIMAVG; SUM+)-automaton A0 equivalent to A that has an optimal run of width bounded
by c. The maximal weight of A0 is bounded by 2 · c.

As in deterministic each word has the unique run, so we call an infinite word w optimal
iff the run on w is optimal. Before we prove Lemma 17, we show its vital component:

Lemma 18. Let A be a deterministic (LIMAVG; SUM+)-automaton that recognizes a non-
empty language. Let N = (|Qs|+2) · conf(A). There is an optimal word of A such that for
some s0 > 0, at each position s > s0 at most 2 ·N slave automata will accumulate (past
the position s) value grater than 4 ·N.

Proof. For a multiplicity mult we define its restriction to N, mult �N, as mult �N (q) =
min(mult(q),N), for every q ∈ dom(mult).

Consider any optimal word uw such that at the position |u| there are 2 · N slave au-
tomata that will accumulate in w (past the position |u| in uw) value grater than 4 ·N. We
show a transformation of uw to uw′, such that uw′ has the same value and at the posi-
tion |u| no slave automaton will accumulate in w′ value grater than 4 · N. Let j0 > |u|
be a position in uw with an accepting state and let j1, . . . , jn be the positions at which
each of slave automata started before the position |u| finishes. Note that n ≤ |Qs|. As
slave automata work on finite words such j1, . . . , jn exist. Finally, let j be the first position
greater than max(j0, j1, . . . , jn) with the configuration Cuw[1,j−|u|] = Cu and multiplicity
multuw[1,−|u|] �N= multu �N. There are only finitely many positions |u| for which such
j does not exist. Next, as there is no bound on j, we remove from w[1, j − |u|] all cy-
cles that do not contain neither of positions j0, . . . , jn. The resulting word v has the length
bounded by (|Qs| + 2) · conf(A) = N as n ≤ |Qs|. It follows that for every q ∈ A we
have multuv(q) ≤ N and multuv(q) ≤ multu(q) �N. Indeed, since cycle removal does
not increase the multiplicity, for every q ∈ A we have multuv(q) ≤ multuw[1,j](q) and
multuw[1,j] �N= multu �N. We show that the partial sum of weights of the master au-
tomaton at the position |uv| in uvw is smaller than the partial sum at the position |u| is
uw, which implies that the transformation uw → uvw, removes a position violating our
assumption, and even applied infinitely many times, preserves optimality of the resulting
words.

Let val be a function with dom(val) = dom(multu) such that val(q) is the value ac-
cumulated in w (past the position |u| i uw) by any slave automaton that is in the state q
at the position |u|. Equivalently, that is the value accumulated by the same automaton past
the position |uv| in uvw. We call a slave automaton active if val(q) ≥ 4 ·N, where q is
the state of that automaton at the position |u| (resp. |uv|). The value of the partial sum up
to the position |u| in uw is the value of all slave automata started before |u|. It consists of
(1) + (2), where

20

– (1) is the value all inactive slave automata plus the value of active slave automata
accumulated up to the position |u|, and

– (2) is the value accumulated in w by all active automata past the position |u|.

Observe that (2) =
∑
q∈A val(q) · multu(q), where A is the set of states of active slave

automata at the position |u|. The value of the partial sum up to the position |uv| in uvw
consists of (1)′ + (2)′ + (3), where

– (1)′ is the value all inactive slave automata plus the value of active slave automata
accumulated up to the position |u| does not exceed (1),

– (2)′ is the value accumulated by active automata in w past position |uv|, and
– (3) is the value accumulated by all active slave automata on the word v, i.e., between

the positions |u| and |uv| in uvw.

Note that (1)′ is bounded by (1), (3) is bounded by 2 · N · |v| ≤ 2 · N2, and (2)′ =∑
q∈A val(q) ·multuv(q). We claim that (2)− (2)′ > (3), which means that the partial sum

at the position |uv| in uvw is smaller than the partial sum at the position |u| in uw. Indeed,∑
q∈Amultu(q) − multuv(q

′) > 2 · N − N = N and for each q ∈ A, val(q) ≥ 4 · N,
therefore (2)− (2)′ is at least 4 ·N2, which is greater than (3).

It follows that aforementioned transformation, even applied infinitely many times, will
not increase the value of the resulting word. Therefore, there is s0 and an optimal word
such that at each position s > s0 at most 2 ·N will accumulate value grater than 4 ·N. ut

Proof (of Lemma 17). We transform the automaton A to an equivalent deterministic
(LIMAVG; SUM+)-automaton A0, which has an optimal run such that at each position the
number of running slave automata is bounded by c. Due to Lemma 18 there is s0 and an
optimal word such that at each position s > s0, at most 2 ·N slave automata accumulate
value grater than 4 ·N past the position s. We call that word wopt.

The define an automaton A0 by modifying A in two ways. First, we extend the input
alphabet to include the marking of the position s0 in wopt. Prior to that marking, a modified
automaton starts only dummy slave automata that immediately terminate. Past that marking
is simulates A Second, we modify each slave automaton of A in such a way that is runs as
long as it can accumulate the value exceeding 4 ·N. More precisely, the master automaton
starts only automata that return values exceeding 4·N. For other slave automata it “guesses”
their value from the set {0, . . . , 4 ·N} and runs a dummy automaton that takes only a single
transition of this weight. As it is deterministic, we assume that the “guess” is encoded in the
input word. Started slave automata run as long as they can accumulate the value exceeding
4 ·N. Once a slave automaton guesses that this is not possible, it takes a transition of the
weight 4 ·N and terminates. Again, that “guess” is encoded in the input word, therefore the
master automaton is able to verify that this “guess” is correct.

The automaton A0 simulates the runs of A past the position s0 and each running slave
automaton accumulates the value exceeding 4 ·N. Therefore, there is a run of A0 on a word
corresponding to wopt such that at most 2 ·N + 1 slave automata runs concurrently. The
automaton A0 is equivalent to A, as the return values of slave automata pas the position s0

are the same and the LIMAVG value function does not depend on finite prefixes. ut

Lemma 19. Let A be a deterministic (LIMAVG; SUM+)-automaton that has an accepting
run. There is an optimal run of A such that among every consecutive conf(A) steps, the
master automaton of A takes a non-silent transition.

21

Proof. Consider an optimal run of A on a word w and positions i, j such that i + 2 ·
conf(A) < j and A takes only silent transitions between i and j.

Observe that there are positions i < i′, j′ < j with the same configuration. Consider
a word w′ resulting from removing w[i′, j′] from w. The partial sum of the weights of the
master automaton up to the position j−(j′−i′) onw′ does not exceed the partial sum up to
the position j on w. These partial sums are divided, in the average, by the same number of
steps. Thus, the value of the word will not increase even if we can carry out this operation
infinitely often. One should be careful not to remove all positions with accepting states.
However, it is not a serous problem as we can insert sparsely subwords with an accepting
state (after 1, 2, . . . , 2k, . . . time increase steps). Such an operation will not increase the
limit average of the run. ut

Lemma 20. The emptiness problem for (LIMAVG; SUM+)-automata reduces to the empti-
ness problem for sil(LIMAVG)-automata.

Proof. Let A be a (LIMAVG; SUM+)-automaton. Due to Lemma 17 it can be transformed
to an equivalent automaton A′ which has an optimal run of width bounded by c, i.e., such
that at each position the number of running slave automata is bounded by c.

We define a sil(LIMAVG)-automaton A such that the emptiness problems for A′ and
A coincide. The automaton A that simulate runs of A′ of width bounded by c works as
follows. It keeps track of the current configuration and the multiplicity of A′; it needs to
check that consecutive configurations and multiplicities follow form the transitions of A′
A reader can convince itself that such an automaton can be easily constructed. There is a
bijective correspondence between runs of A′ of width bounded by c and runs ofA. That is,
given a run of A one can construct a run of A′ of width bounded by c, and vice versa. In
particular, there is an optimal run of A′ that can be simulated by A.

However, there is a substantial difference in how A′ and A aggregate their weights. In
A′ a slave automaton started at a position k computes its value and returns it as a weight of
the transition at the position k, whereas inA, a simulated slave automaton runs concurrently
to the master automaton and it adds its weights to the value of A′ at each step. One can
imagine a matrix that stores at the position (i, j) the weight of the transition of j-th slave
automaton at the position i. Then, the value of A′ is the limit average of the sums of rows,
whereas the value ofA is the limit average of the sums of columns. Despite this difference,
we show that the value of an optimal run of A and an optimal run of A′ coincide, which
implies that the emptiness problem for A and A′ coincide.

2 3 1 0 0 master automaton

0 1 0 1 slave automaton 1

1 0 1 1 slave automaton 2

0 1 0 slave automaton 3

0 2 0 3 1 simulation weights

0 1 0 1

1 0 1 1

0 1 0

Observe that for every run (Π,π1, π2, . . .) of A′ with at most c concurrently running
slave automata, and the corresponding simulation run η ofA the following holds: for every
k we have

∑k
i=1(C(η))[i] ≤

∑k
i=1(C(πi)). Therefore, the value of the optimal run of A

does not exceed the value of the optimal run of A′.
Conversely, consider an optimal run η of A. Since A is a sil(LIMAVG)-automaton, the

partial limit average sums of η converge. Consider a sequence {ai}i≥0 with a0 = 4 and
ai+1 = ai + log ai. Observe that |{ai : ai < k}| = o(k), i.e., limk→∞ |{ai:ai<k}|k = 0.
Let η′ be a run obtained from η by injecting reset words on positions ai in η, i.e., the words

22

that terminate all slave automata that are currently active. Such words exist and their length
is bounded by |Qs| · conf(A). The value of η′ is the same as the value of η. Indeed, for
every k > 0 we have

k∑
i=1

(C(η))[i] ≤
k∑
i=1

(C(η′))[i] ≤ (

k∑
i=1

(C(η))[i] + o(k))

The first inequality is clear and the second follows from the fact that there are |{ai : ai <
k}| = o(k) reset words up to the position k and the cost contribution of each of them is
bounded by the product of (1),(2),(3), where (1) is the maximal length of a reset word,
(2) is the number of currently running slave automata, and (3) is the maximal weight a
slave automaton can take. Note that (1),(2),(3) are bounded by a constant, hence the total
contribution of inserted reset words up to the position k is o(k). Due to Lemma 19, there
are at least k

conf(A) non-silent transitions up to position k. Hence the limit averages of η and
η′ are equal, i.e., η′ is an optimal run of A′ as well.

Now, we consider a run of (Π,π1, π2, . . .) of A′ that corresponds to η′. Observe that
each slave automaton started at the position k, terminates after at most log k steps. There-
fore, we have that the partial sum of weights of (Π,π1, π2, . . .) up to k is bounded by the
partial sum of weights in η′ up to k + log k, i.e., for every k,

k∑
i=1

(C(η′))[i] ≤
k∑
i=1

(C(πi)) ≤
k+log k∑
i=1

(C(η′))[i]

However, each (C(η′))[i] is bounded by a constant, the maximal weight of slave au-
tomata in A times the number of slave automata. Therefore,

∑k+log k
i=k+1 (C(η′))[i] =

O(log k). Again, since the number of non-silent transitions up to the position k is
O(k), limk→∞

O(log k)
O(k) = 0 and the limit averages of (C(η′))[1], (C(η′))[2], . . . and

C(π1), C(π2), . . . are equal. Thus, the value of an optimal run of A′ does not exceed the
value of an optimal run of A. In consequence, the values of optimal runs of A, A′ and A
coincide.

ut

F The universality problem for functional (LIMAVG; SUM+)-
automata.

Universality, in contrast to emptiness, is a two player game. The maximizer, whose ob-
jective is to maximize the value of the resulting run, chooses the letters and minimizer
chooses the transition of the automaton. That game is a game with imperfect information
(blind game for the maximizer), i.e., the choices of maximizer do not depend on the choice
of the transitions of the minimizer. However, since the nested automaton is functional, the
outcome of the game does not depend on the choices of the minimizer, provided that the
resulting run is accepting. Therefore, we can assume that the maximizer chooses letters and
transitions and its objective is to construct an accepting run of the maximal value.

Lemma 21. Let A be a functional (LIMAVG; SUM+)-automaton whose all slave automata
have weights {0, 1}. Then, one of the following holds:

1. For every accepting run, there is a position s0 such that every slave automaton started
after s0 accumulates the value not exceeding conf(A).

23

2. The automaton A has an accepting run of infinite value (whose value exceeds every
λ > 0).

Proof. Assume that (1) does not hold. Then, there is an accepting run such that some slave
automaton returns values that exceed the value conf(A) infinitely often. Observe that if a
slave automaton B accumulates a value exceeding conf(A) during a run π, then the nested
automaton A is in the same configuration at least twice during the run π and meanwhile B
increases its value. Therefore, one can pump the run of the nested automaton to increase
the value returned by B. It follows that we can pump successively the run on A such that
infinitely often the following holds: a slave automaton started at a position k accumulates
the value exceeding k2. A run with such a property has an infinite weight according to the
semantics LIMAVG(π) = lim supk→∞

1
k ·

∑k
i=1(C(π))[i]. ut

Now, we are ready to prove decidability of the universality problem for functional
(LIMAVG; SUM+)-automata.

Proof. If (1) holds, A is equivalent to a functional (LIMAVG; SUMB), whereB = conf(A),
which in turn is equivalent to a functional sil(LIMAVG)-automaton. The universality prob-
lem is decidable for sil(LIMAVG)-automata (Lemma 14). Otherwise, if (2) holds, then
an answer to the universality problem for A is “No” for every λ. Now, it can be de-
tected whether (1) or (2) holds by reduction to the universality problem for functional
(LIMSUP; SUM+)-automata. ut

G The inclusion problem

The emptiness and universality problems reduce to the inclusion problem. Therefore, a
class of nested weighted automata can have decidability for the inclusion problem only if
both the emptiness and the universality problems are decidable.
Non-deterministic nested weighted automata. Hence, in the non-deterministic case, for
value functions studied in Table 2, the inclusion problem can be decidable only in two
cases:

1. for (f ; g)-automata, where g is regular value function, and f ∈ InfVal \ {LIMAVG};
2. for (f ; SUM+)-automata, where f ∈ {INF, LIMINF, SUP, LIMSUP}.

In fact, in (2) case the inclusion problem is undecidable as well. Indeed, inclusion
of SUM+-automata over finite words reduces to the inclusion of (f ; SUM+)-automata,
where f ∈ {INF, LIMINF, SUP, LIMSUP}. It has been shown in [1] that the inclu-
sion problem for SUM+-automata is undecidable. Therefore, the inclusion problem in
(2) case is undecidable. As automata in (1) case are equivalent to f -automata for f ∈
{INF, LIMINF, SUP, LIMSUP} (Lemma 13), the inclusion problem is decidable [8].

H Details of example from Section 5.2

Consider the model M for two processes communicating through a channel, where ev-
ery sent packet is delivered in the next state. Let $ denote the event of neither send-
ing or receiving packets, s1 and r1 (resp. s2 and r2) the send and receive for process 1
(resp. process 2). The language of M can be described as a regular expression as follows:
(($)∗ · (s1r1)

∗ · ($)∗ · (s2r2)
∗)ω . Note that dM must assign value 0 to every trace in the

24

language of M . However dM needs to assign values to traces where the delivery of pack-
ets can be delayed by a finite amount. Hence we first need to relax the language of M as
MR such that every packet sent is received with a finite delay; and dM assigns values to
traces in the language of MR. The relaxed language MR is obtained as follows: consider
the following languages L1 and L2

L1 = (($)∗ · (s1($)
∗r1)

∗ · ($)∗)ω; and L2 = (($)∗ · (s2($)
∗r2)

∗ · ($)∗)ω;

where L1 denotes that every sent for process 1 can be delayed by a finite amount and
analogously L2 for process 2. The language of MR is the shuffle (arbitrary interleavings)
of L1 and L2. The products of the automaton AD defined in Section 5.2 along with an
automaton for MR gives the desired similarity measure for the example.

25

