
Optimal Tree-decomposition Balancing and Reachability
on Low Treewidth Graphs

Krishnendu Chatterjee† Rasmus Ibsen-Jensen† Andreas Pavlogiannis†

† IST Austria

Abstract. We consider graphs with n nodes together with their tree-decomposition that has b = O(n) bags and
width t, on the standard RAM computational model with wordsize W = Θ(logn). Our contributions are two-fold:
Our first contribution is an algorithm that given a graph and its tree-decomposition as input, computes a binary
and balanced tree-decomposition of width at most 4 · t + 3 of the graph in O(b) time and space, improving a
long-standing (from 1992) bound of O(n · logn) time for constant treewidth graphs. Our second contribution is on
reachability queries for low treewidth graphs. We build on our tree-balancing algorithm and present a data-structure
for graph reachability that requires O(n · t2) preprocessing time, O(n · t) space, and O(dt/ logne) time for pair
queries, andO(n·t·log t/ logn) time for single-source queries. For constant t our data-structure usesO(n) time for
preprocessing, O(1) time for pair queries, and O(n/ logn) time for single-source queries. This is (asymptotically)
optimal and is faster than DFS/BFS when answering more than a constant number of single-source queries.

Keywords: Graph algorithms; Low treewidth graphs; Reachability; Balanced tree-decomposition.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268226318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

In this work we consider two graph algorithmic problems where the input is a graph G with n nodes and a tree-
decomposition Tree(G) of G with b = O(n) bags and width t. In the first problem we consider the computation
of a binary and balanced (i.e., of height O(log n)) tree-decomposition of G with width O(t). In the second problem
we present a data-structure to support reachability queries (pair and single-source queries) on G. We consider the
computation on a standard RAM with wordsize W = Θ(log n).

Low treewidth graphs. A very well-known concept in graph theory is the notion of treewidth of a graph, which is
a measure of how similar a graph is to a tree (a graph has treewidth 1 precisely if it is a tree) [27]. The treewidth of
a graph is defined based on a tree-decomposition of the graph [20], see Section 2 for a formal definition. Beyond the
mathematical elegance of the treewidth property for graphs, there are many classes of graphs which arise in practice
and have low (even constant) treewidth. An important example is that the control-flow graph for goto-free programs for
many programming languages are of constant treewidth [30]. Also many chemical compounds have treewidth 3 [32].
For many other applications see the surveys [9,7]. Given a tree-decomposition of a graph with low treewidth t, many
problems on the graph become complexity-wise easier (i.e., many NP-complete problems for arbitrary graphs can be
solved in time polynomial in the size of the graph, but exponential in t, given a tree-decomposition [2,5,8]). Even
for problems that can be solved in polynomial time, faster algorithms can be obtained for low treewidth graphs, for
example, for the distance (or the shortest path) problem [12].

Tree-decomposition balancing. Tree-decomposition balancing is an important problem for low treewidth graphs. For
several problems over trees, it is much simpler to work on a balanced binary tree for algorithmic purposes (such as,
searching, indexing problems). This general phenomenon is also true for tree-decompositions, e.g., balanced tree-
decompositions are used to solve MSO (Monadic Second Order Logic) queries in log-space [15] as well as in other
circuit complexity classes [16]. Besides theoretical complexity, the balanced tree-decomposition is also useful in prac-
tical problems such as recursive control-flow graphs with constant treewidth [30], and it was shown that reachability
queries can be answered in time proportional to the height of the tree-decomposition [11]. We state the previous results
for computing balanced tree-decomposition only for constant treewidth graphs. There exists two known algorithms for
the problem: (1) an algorithm by [26] with running timeO(n · log n) andO(n) space; and (2) an algorithm by [15] that
requires nO(1) time1 and O(log n) space. In either case, the dependency on the treewidth is exponential, and a binary
and balanced tree-decomposition is constructed directly without any tree-decomposition being given (in contrast we
consider that a tree-decomposition is given as input).

Reachability/distance problems. The pair reachability (resp. distance2) problem is one of the most classic graph
algorithmic problems that, given a pair of nodes u, v, asks to compute if there is a path from u to v (resp. the weight
of the shortest path from u to v). The single-source variant problem given a node u asks to solve the pair problem
u, v for every node v. Finally, the all pairs variant asks to solve the pair problem for each pair u, v. While there
exist many classic algorithms for the distance problem, such as A∗-algorithm (pair) [21], Dijkstra’s algorithm (single-
source) [14], Bellman-Ford algorithm (single-source) [3,19,24], Floyd-Warshall algorithm (all pairs) [18,31,28], and
Johnson’s algorithm (all pairs) [22] and others for various special cases, there exist in essence only two different
algorithmic ideas for reachability: Fast matrix multiplication (all pairs) [17] and DFS/BFS (single-source) [13].

Previous results. The algorithmic question of the distance (pair, single-source, all pairs) problem for low treewidth
graphs has been considered extensively in the literature, and many algorithms have been presented [1,12,25]. The
previous results are incomparable, in the sense that the best algorithm depends on the treewidth and the number of
queries. Despite the many results for constant (or low) treewidth graphs, none of the previous results improves the
complexity for the basic reachability problem, i.e., the bound for DFS/BFS has not been improved in any of the
previous works.

1 the constant in the exponent depends on the treewidth
2 we mention the distance problem here, because most previous papers for low treewidth graphs have focused on the distance

problem instead of the reachability problem.

1

Our results. In this work, we present algorithms with optimal time complexity when used on constant treewidth
graphs. For our problems the input is a graph G with n nodes and a tree-decomposition of width t and O(n) bags. Our
main contributions are as follows:

1. Our contribution is an algorithm that computes a binary and balanced tree-decomposition of G with width at most
4 · t + 3 in O(n) time and space. We remark that improved algorithms for construction of tree-decompositions
is still an active research area, see for instance [10]. An important strength of our algorithm is that it can use any
tree-decomposition algorithm as a preprocessing step to compute an initial tree-decomposition, and then computes
a binary and balanced approximate tree-decomposition using linear additional time and space. Given an input tree-
decomposition of width t the output binary and balanced tree-decomposition of our algorithm has width at most
4 · t+3 (i.e., the width increases by a constant factor), and we also present an example family of graphs where the
treewidth is 2 · t − 1 but any balanced tree-decomposition must have width at least 3 · t − 1 (i.e., some constant
factor increase is unavoidable in general).

2. Our second contribution is a data-structure that supports reachability queries in G. The computational complexity
we achieve is as follows: (i)O(n·t2) preprocessing (construction) time; (ii)O(n·t) space; (iii)O(dt/ log ne) pair-
query time; and (vi)O(n·t·log t/ log n) time for single-source queries. Note that for constant treewidth graphs, the
data-structure is optimal in the sense that it only uses linear preprocessing time, and supports answering queries in
the size of the output (the output requires one bit per node, and thus has size Θ(n/W) = Θ(n/ log n)). Moreover,
also for constant treewidth graphs, the data-structure answers single-source queries faster than DFS/BFS, after
linear preprocessing time (which is asymptotically the same as for DFS/BFS). Thus there exists a constant c0
such that the total of the preprocessing and querying time of the data-structure is smaller than that of DFS/BFS
for answering at least c0 single-source queries. To the best of our knowledge, this is the first algorithm which
is faster than DFS/BFS for solving single-source reachability on an important class of sparse graphs. While our
data-structure achieves this using the so-called word-tricks, to the best of our knowledge, DFS/BFS have not
been made faster using word-tricks. Table 1 presents a comparison of our results with DFS/BFS for general, and
constant treewidth graphs.

While our main contributions are theoretical, we have implemented our data-structure for reachability and applied it on
examples of constant treewidth graphs that arise in practice as control-flow graphs of various programs. In Appendix A
we provide a comparison table which shows that the single-source query time of the data-structure is less than that of
DFS/BFS, even for relatively small graphs.

Important techniques. Our improvements are achieved by introducing the following new techniques.

1. (Balancing separator). We provide a data-structure that accepts queries of the following form: We fix a tree-
decomposition of a graph G, and the input to the queries is a connected component C of c bags defined by k
edge-cuts, and requires the output to be a bag B such that each connected sub-components of (C \ B) consists
of at most δ · c bags, for δ some constant smaller than 1. In our data-structure δ ≤ 1

2 . We show that our data-
structure can be constructed in O(n) time and space and has query time O(((log c)2 + k) · log k). Our main
intuition is to use an iterated binary search over the height and number of leaves to achieve the above bounds.
Previously, Reed [26] gave an algorithm that finds a balancing separator, with δ ≤ 3

4 , in O(c) time for constant
treewidth graphs. In the case k is constant, our algorithm requires O((log c)2) time as compared to the previous
O(c)-time algorithm. We then show how to use the above queries (while keeping k constant) to construct a binary
and balanced tree-decomposition.

2. (Local reachability). We present a simple and fast algorithm for local reachability computation (i.e., for each pair
of nodes u, v in the same bag of the tree-decomposition whether there is a path from u to v). Our algorithm uses
a list data-structure to store sets of nodes of the tree-decomposition. The algorithm is based on two passes of the
tree-decomposition, where we do path shortening in each. The algorithm uses O(n · t2) time and O(n · t) space
to compute local reachability for all n nodes. The concept of local reachability has been used before, such as
in [1], [12] and [23]. The previous algorithms compute the local distance (i.e., for each pair of nodes u, v in the
same bag, the distance from u to v), and our algorithm can also be extended to compute local distances with the
same time and space usage as for reachability (see Remark 1). However, the previous algorithms use Ω(b · t2)
space and Ω(b · t3) time (or Ω(b · t4) in case of [12]), where b is the number of bags, by storing explicitly all-pairs

2

reachability in each bag, and running Bellman-Ford or Floyd-Warshall type of algorithms in each pass. Note that
our algorithm uses both less space and less time, since n ≤ b/t.

Given a bag B let SB be the set of nodes in ancestor-bags or descendant-bags of B. Given a node u let Bu be the
top bag containing u. Given a binary and balanced tree-decomposition along with the local reachability computation,
it is straightforward to compute for each node u in each bag B which nodes in SB can reach u, and which nodes in
SB are reachable from u, in O(n · t2) time and O(n · t) space. Using this information we compute if a node u can
reach node v, by first finding the lowest common ancestor (LCA) bag B of Bu and Bv and then see if there is a path
from u to some node w in B and then from w to v in time O(dt/ log ne), by storing the reachability information in
words. Single-source queries from u are computed by traversing up the tree-decomposition from Bu, and by storing
the reachability information in words we get a query time of O(n · t · log t/ log n).

Organization. Section 2 presents definitions of graphs and tree-decompositions, and two key lemmas on tree-
decomposition properties. In Section 3 we present a data-structure for answering multiple balancing separator queries
on binary trees. Using this data-structure, in Section 4 we describe how given a tree-decomposition T of any graph
G, an approximate, balanced and binary tree-decomposition T ′ of G can be obtained in linear time in the size of T .
Section 5 presents a family of graphs G for which the width of any balanced tree-decomposition must increase by a
constant factor from the treewidth of G. Section 6 presents an algorithm for computing local reachability in a tree-
decomposition. Building on our balancing (Section 4) and local reachability (Section 6) algorithms, in Section 7 we
give a data-structure that preprocesses any constant treewidth graph in linear time and space, and supports answering
single-source and pair reachability queries in sublinear and constant time, respectively.

Table 1: Algorithms for pair- and single-source reachability queries on a directed graph with n nodes, m edges, and a
tree-decomposition of width t. The model of computation is the standard RAM model with wordsize W = Θ(log n).
Row 1a is the standard DFS/BFS, and row 1b is the result of this paper for any treewidth. Rows 2a and 2b are the
results we obtain for constant treewidth.

Row Preprocessing time Space usage Pair query time Single-source query time From
1a – O(dm/ logne) O(m) O(m) DFS/BFS [13]
1b O(n · t2) O(n · t) O(d t

log n e) O(n · t · log t/ logn) Theorem 5
2a – O(dn/ logne) O(n) O(n) DFS/BFS [13]
2b O(n) O(n) O(1) O(n/ logn) Corollary 2

2 Definitions

Graphs. We consider a directed graph G = (V,E) where V is a set of n nodes and E ⊆ V × V is an edge relation
of m edges. Two nodes u, v ∈ V are called neighbors if (u, v) ∈ E. Given a set X ⊆ V , we denote with G � X
the subgraph (X,E ∩ (X × X)) of G induced by the set of nodes X . A path P : u v is a sequence of nodes
(x1, . . . , xk) such that u = x1, v = xk, and for all 1 ≤ i ≤ k − 1 we have (xi, xi+1) ∈ E. The path P is acyclic
if every node appears at most once in P . The length of P is k − 1, and a single node is by itself a 0-length path. We
denote with E∗ ⊆ V × V the transitive closure of E, i.e., (u, v) ∈ E∗ iff there exists a path P : u v. Given a path
P we use the set notation u ∈ P to say that a node u appears in P , and A ∩ P to refer to the set of nodes that appear
in both P and a set A.

Trees. A (rooted) tree T = (VT , ET) is an undirected graph with a distinguished node r which is the root such that
there is a unique acyclic path P v

u : u v for each pair of nodes u, v. The size of T is |VT |. Given a tree T with root
r, the level Lv(u) of a node u is the length of the path P r

u from u to the root r, and every node in P r
u is an ancestor of

u. If v is an ancestor of u, then u is a descendant of v. Note that a node u is both an ancestor and descendant of itself.
For a pair of nodes u, v ∈ VT , the lowest common ancestor (LCA) of u and v is the common ancestor of u and v with
the largest level. The parent u of v is the unique ancestor of v in level Lv(v− 1), and v is a child of u. A leaf of T is a

3

node with no children. For a node u ∈ VT , we denote with T (u) the subtree of T rooted in u (i.e., the tree consisting
of all descendants of u), and with su the number of nodes in T (u). The tree T is binary if every node has at most two
children. The height of T is maxu Lv(u) (i.e., it is the length of the longest path P r

u), and T is balanced if its height is
O(log n).

Connected components in trees. Given a tree T , a connected component C ⊆ VT of T is a set of nodes of T such
that for every pair of nodes u, v ∈ C, the unique acyclic path P v

u in T visits only nodes in C. Given a node u and
a connected component C we denote with sCu the number of nodes in T (u) � C. A set of nodes X ⊆ VT is called a
border if for all pairs (u, v) ∈ X ×X such that u 6= v we have that neither u nor v is an ancestor of the other. Given a
rooted tree T , we represent a connected component C of T as a component pair (rC , XC) where rC is the unique node
of C with the smallest level (called the root of C) and XC is a border. A node u is considered to belong to C iff u is a
descendant of rC in T and the path rC u does not contain any node of the border XC (i.e., C is obtained from T by
cutting the edge of each node from {rC} ∪XC to its parent).

Balancing separator. For a binary tree T and a connected component C, a balancing separator of C is a node u ∈ C
such that removal of u splits C to at most three connected components (Ci)1<i≤3 with |Ci| ≤ |C|2 for all i.

Tree-decomposition. Given a graph G, a tree-decomposition Tree(G) = (VT , ET) is a tree with the following prop-
erties.

T1: VT = {B1, . . . , Bb : for all 1 ≤ i ≤ b. Bi ⊆ V } and
⋃

Bi∈VT
Bi = V .

T2: For all (u, v) ∈ E there exists Bi ∈ VT such that u, v ∈ Bi.
T3: For all i, j, k such that there exist paths Bi Bk and Bk Bj in Tree(G), we have Bi ∩Bj ⊆ Bk.

The sets Bi which are nodes in VT are called bags. The width of a tree-decomposition Tree(G) is the size of the
largest bag minus 1, and the treewidth of G is the width of a minimum-width tree-decomposition of G. Let G be a
graph, T = Tree(G), and B0 be the root of T . For u ∈ V , we say that a bag B is the root bag of u if B is the bag
with the smallest level among all bags that contain u. By definition, for every node u there exists a unique bag which
is the root of u. We often write Bu for the root bag of u, i.e., Bu = argminBi∈VT : u∈Bi

Lv (Bi), and denote with
Lv(u) = Lv (Bu). A bag B is said to introduce a node u ∈ B if either B is a leaf, or u does not appear in any child of
B. In the this work we consider that every tree-decomposition Tree(G) is binary (if not, a tree-decomposition can be
made binary by a standard process that increases the size of the tree-decomposition by a constant factor while keeping
the width the same).

See Figure 1 for an example of a graph and a tree-decomposition of it. The following lemma states a well-known
“separator property” of tree-decompositions.

1

8

9

2

10

3

6

4

7 5

8, 9, 10

1, 8, 9

2, 8, 10

2, 3, 10

7, 8, 9

6, 7, 9

4, 6, 9 5, 6, 7

Fig. 1: A graph G with treewidth 2 (left) and a corresponding tree-decomposition Tree(G) (right).

4

Lemma 1. Consider a graph G = (V,E), a tree-decomposition T = Tree(G) and a bag B of T . Denote with
(Ci)1≤i≤3 the components of T created by removing B from T , and let Vi be the set of nodes that appear in bags of
component Ci. For every i 6= j, nodes u ∈ Vi, v ∈ Vj and P : u v, we that have P ∩B 6= ∅ (i.e., all paths between
u and v go through some node in B).

Using Lemma 1, we can prove the following version, which will also be useful throughout the paper.

Lemma 2. Consider a graph G = (V,E) and a tree-decomposition Tree(G). Let u, v ∈ V , and consider bags B1

and Bj such that u ∈ B1 and v ∈ Bj . Let P ′ : B1, B2, . . . , Bj be the unique acyclic path in T from B1 to Bj . For
each i ∈ {1, . . . , j − 1} and for each path P : u v, there exists a node xi ∈ (Bi ∩Bi+1 ∩ P).

Proof. Let T = Tree(G). Fix a number i ∈ {1, . . . , j−1}. We argue that for each path P : u v, there exists a node
xi ∈ (Bi ∩ Bi+1 ∩ P). We construct a tree T ′, which is similar to T except that instead of having an edge between
bag Bi and bag Bi+1, there is a new bag B, that contains the nodes in Bi ∩ Bi+1, and there is an edge between Bi

and B and one between B and Bi+1. It is easy to see that T ′ forms a tree-decomposition of G, from the definition. By
Lemma 1, each bag B′ in the unique path P ′′ : B1, . . . , Bi, B,Bi+1, . . . , Bj in T ′ separates u from v in G. Hence,
each path u v must go through some node in B, and the result follows. ut

Nice tree-decomposition. A tree-decomposition T = Tree(G) is called nice if every bag B is one of the following
types:

Leaf. |B| = 1.
Forget. B has exactly one child B′, and B ⊂ B′ and |B| = |B′| − 1.
Introduce. B has exactly one child B′, and B′ ⊂ B and |B′| = |B| − 1.
Join. B has exactly two children B1, B2, and B = B1 = B2.

For technical convenience in this paper, we also require that the root of a nice tree-decomposition has size 1. Note that
in a nice tree-decomposition, every bag is the root bag of at most one node.

Model and word tricks. We consider a standard RAM model with word size W = Θ(log n), where n is the size of
the input. Our reachability algorithm (in Section 7) uses so called “word tricks” heavily. We use constant time lowest
common ancestor and level ancestor queries which also require word tricks.

3 A Data-structure for Balancing Separator Queries in Trees

In this section we consider the problem of finding balancing separators in a fixed binary tree T = (VT , ET). When
the problem needs to be solved several times on T for different components, T can be preprocessed once such that
each balancing separator is obtained potentially faster (without traversing the whole component). We provide a data-
structure for this purpose.

Problem description. Consider a fixed binary tree T = (VT , ET). Given a component C of T as input, the problem
consists of finding a balancing separator of C.

Classic algorithmic solution. The problem admits a well-known O(|C|) time algorithm described as follows.

First, apply a post-order traversal on T � C, and store in each node u the size sCu of T (u) � C. Then, start from
the root of T � C, and for current node u, and as long as u is not a balancing separator move to the neighbor v
of u in the largest component Ci created by removing u. In particular, if v1, v2 are the children of u, proceed
to the child vi with sCvi ≥

|C|
2 .

5

The correctness follows from the fact with each step the size of the largest component Ci reduces at least by 1, and
hence after at most |C|2 steps, all components (Ci)1<i≤3 created by removing u have size at most |C|2 , and u is a
balancing separator.

A data structure for balancing separator queries. The preprocessing phase of the data structure receives the binary
tree T = (VT , ET) as input. After preprocessing, the data structure supports queries for any component C of T ,
represented as a component pair (rC , XC). The goal is to preprocess T in linear time, and answer each balancing
separator query (rC , XC) in time that depends only logarithmically on |C|, and slightly superlinearly on |XC |. We
present a data-structure BalSep that achieves the desired preprocessing and querying time bounds.

BalSep Preprocessing. The preprocessing of BalSep consists of the following steps.

1. Apply a post-order traversal on T and assign to each leaf v a leaf-index lv that equals the number of leaves that
have been visited before v (i.e., the leftmost leaf is assigned leaf-index 0, the leftmost of the remaining leaves
is assigned leaf-index 1 etc). To each node u assign an index number iu that equals its visit time. Additionally,
store the size su of T (u), and numbers l`u, lru containing the smallest and largest leaf-index of leaves in T (u)
respectively.

2. Preprocess T to return for any node u and number k, the ancestor of u at level k in O(1) time [4]. This is similar
to preprocessing for answering LCA queries in constant time.

Note that a node u is an ancestor of a node v iff l`u ≤ l`v and lru ≥ lrv and Lv(u) ≤ Lv(v), which can be checked in
O(1) time. Figure 2 shows an example of the preprocessing.

2

5

1

3

4

6

7 8

ii si li l`i lri
1 7 8 - 0 3
2 5 6 - 0 2
3 6 1 3 3 3
4 3 4 - 0 1
5 4 1 2 2 2
6 2 3 - 0 1
7 0 1 0 0 0
8 1 1 1 1 1

Fig. 2: Preprocessing of BalSep on the tree-decomposition of Figure 1, where the bags have been numbered from 1 to
8.

Query intuition. Now we turn our attention to querying. We first make some claims on how after the above prepro-
cessing, certain operations on any component C can be made fast. Afterwards we give a formal description of the
querying based on such operations.

Fact 1. Given a node u ∈ C, the indexes iv of nodes v ∈ XC that are descendants of u form contiguous interval.
Formally, if v1, v2 ∈ XC are descendants of u with iv1 ≤ iv2 , then every v ∈ XC with iv1 ≤ iv ≤ iv2 is a descendant
of u.

Median leaf. Given a node u ∈ C, let v range over all leaves of T (u) � C (note that v is either a leaf of T , or the
parent of a node in XC). A node w is called the median leaf of T (u) � C if iw is the median of all iv (we take the
median of a sorted sequence (x1, . . . xk) to be the element at position bk2 c+ 1). Consider a component pair (rC , XC)
with |XC | = k. We make the following claims.

6

Claim 1. The pair (rC , XC) can be processed in O(k · log k) time, so that for any u ∈ C, the size sCu of T (u) � C can
be determined in O(log k) time.

Proof. Let YC = (v1, . . . , vk) be the list of nodes of XC sorted according to their index, and SC = (s0, s1, . . . , sk)

such that s0 = 0 and si =
∑i

j=1 svj (recall that svj is the size of T (vj)). The list SC can be constructed inO(k · log k)
time, and si is the sum of the sizes of the subtrees rooted at the border nodes v1, . . . vi. By Fact 1, there is a leftmost
v` and a rightmost vr node in YC such that for all ` ≤ i ≤ r, we have that vi is a descendant of u. It follows that the
size of T (u) � C is sCu = su − sr + s`−1. Finally, both v` and vr can be determined by a binary search in YC , and thus
in O(log k) time. ut

Claim 2. The pair (rC , XC) can be processed inO(k · log k) time, so that for any u ∈ C, the median leafw of T (u) � C
can be determined in O(log k) time.

Proof. Let YC = (v1, . . . , vk) be the list of nodes of XC sorted according to their index. For a border node vj ∈ XC ,
let bvj = 1 if the parent of vj is a leaf of C and vj is either a right child or the only child, else bvj = 0. Let
LC = (l0, l1, . . . , lk) such that l0 = 0 and li =

∑i
j=1 (l

r
vj − l

`
vj + 1− bvj), (recall that lrvj

and lrvj are respectively
the smallest and largest leaf-indexes of T (vj)). The list LC can be constructed in O(k · log k) time, and li is the sum
of the number of leaves of the subtrees rooted at the border nodes v1, . . . vi minus the number of parents of v1, . . . vi
that are leaves in T � C (i.e., it is the number of leaves of T (rC) that are “hidden” by the border up to vi, minus
the new leaves that the border introduces until vi). Given a node u ∈ C, let j1 and j2 be such that vj1 and vj2 are
respectively the leftmost and rightmost nodes in YC that are descendants of u. For each j1 ≤ i ≤ j2, the number of
leaves in T (u) � C with index < ivi is fu(i) = l`vi − l`u − (li−1 − lj1−1). The number of leaves in T (u) � C is
g(u) = lru − l`u + 1− (lj2 − lj1−1). Let j be such that vj is the rightmost descendant of u in YC with fu(j) ≤ b g(u)2 c.
There are two cases:

1. If fu(j) = b g(u)2 c and bvj = 1, let w be the parent of vj and thus a leaf of T (u) � C. Then there are b g(u)2 c + 1
leaves in T (u) � C with index ≤ iw, and hence w is the median leaf of T (u) � C.

2. Else, let w be the leaf of T with leaf-index lw = lrvj + b g(u)2 c − fu(j) + 1. Note that w is a leaf of T (u) � C,
otherwise w is a leaf of T (vj′) for some j′ > j, which contradicts our choice of j because then fu(j′)− fu(j) ≤
b g(u)2 c − fu(j) thus fu(j′) ≤ b g(u)2 c. There are b g(u)2 c+ 1 leaves of T (u) � (C) with index ≤ iw, hence w is the
median leaf of T (u) � C.

Finally, each j1, j2, j can be determined by a binary search on YC , thus in O(log k) time. ut

BalSep Querying. We now give a formal description of the querying. Given a query (rC , XC), the balancing separator
u of C is found by the following recursive process, initially starting with w = rC .

Step 1. Given a node w ∈ C, find the median leaf v of T (w) � C.
Step 2. Given w and v, obtain the node x that is ancestor of v in level bLv(w)+Lv(v)

2 c (observe that x is the middle node
of the path w v).

Step 3. Execute according to the following conditions.
Cond. C1: If sCx ≥

|C|
2 and for each child xi of x we have sCxi

≤ |C|2 , take u = x and terminate.
Cond. C2: If sCx ≥

|C|
2 and for some child xi of x we have sCxi

> |C|
2 , set w = xi and goto Step 1 (i.e., repeat the

process for the new w).
Cond. C3: Finally, if sCx <

|C|
2 , set v = x and goto Step 2 (i.e., continue the binary search in the new (sub) path

w v).

For the nodesw, v of the above process, we denote with Cwv the component pair (w,X∪{v}), whereX ⊆ XC contains
all nodes of XC that do not exist in T (v). The following two lemmas establish the correctness and time complexity of
a query on BalSep.

Lemma 3. On query (rC , XC), BalSep correctly returns a balancing separator u of C.

7

Proof. First note that a node u is a balancing separator of C iff condition C1 holds. Every time condition C2 or C3
is executed, the component Cwv reduces in size. We argue inductively that Cwv always contains a node that satisfies
condition C1. The claim is true initially, since Cwv = C. Now assume the claim holds for some w and v, and let x be
the current node examined in conditions C1-C3, and w′, v′ be the new pair of nodes obtained in the next iteration,
because C1 did not hold. In case of C2, every node x′ ∈ Cwv \ Cw

′

v′ either has sCx′ >
|C|
2 (if x′ is an ancestor of x), or

sCx′ <
|C|
2 (if x′ is a descendant of x and x′ 6= x). In case of C3, every node x′ ∈ Cwv \ Cw

′

v′ has sCx′ <
|C|
2 . Thus in both

cases the component Cwv \ Cw
′

v′ does not contain a balancing separator. By the induction hypothesis, such a separator
exists in Cwv and hence we get that u ∈ Cw′

v′ . ut

Lemma 4. The query phase of BalSep requires O(log2 |C| · log |XC |+ |XC | · logXC)) time.

Proof. Given a pair of nodes w, v, there will be O(log |C|) choices of x on the path P : w v, since every such
path has length at most |C|, and every such choice of x halves the length of P . Every time the search moves from a
component Cwv to a component Cw′

v′ via a child xi = w′ of x that is not in the path w v, the number of leaves in
T (w) � Cw′

v′ is half of that of T (w) � Cwv , and hence such choice for xi can be made O(log |C|) times. This concludes
that the above conditions C2 and C3 will hold O(log2 |C|) times. Finally, by Claims 1 and 2, after processing C in
O(|XC | · log |XC |) time, every median leaf v and sizes sCx, sCxi

can be obtained in O(log |XC |) time. Hence every
execution of conditions C2 or C3 requires O(log |XC |) time, and the desired result follows. ut

We conclude the results of this section with the following theorem.

Theorem 1. Consider a binary tree T with n nodes, and a sequence of balancing separator queries of the form
(rC , XC). The data-structure BalSep preprocesses T inO(n) time, and answers each query with a balancing separator
of C in O(log2 |C| · log |XC |+ |XC | · log |XC |) time.

4 Balancing a Tree-Decomposition in Linear Time

In this section we show how given a graphG and a tree-decomposition Tree(G) of b bags and width t, we can construct
in O(b) time and space a balanced binary tree-decomposition with O(b) bags and width at most 4 · t+ 3. The process
has two conceptual steps. First, we construct a rank tree RG of G that is balanced, and then show how to turn RG to a
tree-decomposition R̂G by a simple modification.

Constructing a rank tree. In the following, we consider that Tree(G) = (VT , ET) is binary, has width t, and |VT | = b
bags. Given Tree(G), we assign to each bag B ∈ VT a rank r(B) ∈ N according to the following recursive algorithm
Rank. Rank operates on input (C, f, k) where C is a component of Tree(G) represented as a component pair (rC , XC),
f ∈ {False,True} a is flag, and k ∈ N is the rank to be assigned, as follows.

1. If C contains a single bag B, assign r(B) = k and terminate.
2. Else, if f = True, find the bag B that is a balancing separator of C. Assign r(B) = k, and call Rank recursively

on input (Ci,¬f, k + 1) for each component (Ci)1<i≤3 created from C by removing B.
3. Else, if f = False, let L range over all the LCAs of every pair of bags B1, B2 ∈ XC and B = argmaxL Lv(B).

If |XC | ≥ 2 then such B exists, and assign r(B) = k, and call Rank recursively on input (Ci,¬f, k + 1) for each
component (Ci)1<i≤3 created from C by removing B. Else, call Rank recursively on input (C,¬f, k).

Algorithm Rank induces a ternary rank tree RG of G such that the root is the unique bag B with r(B) = 0, and a bag
B′ is the i-th child of a bag B iff B′ is the separator of the sub-component Ci of the component C of which B is a
separator. The level i of RG contains all bags B with r(B) = i. Given the rank function r denote the neighborhood of
a bag B with

Nh(B) = {B′ ∈ VT : r(B′) < r(B) and for all intermediate bags
B′′ in the path B B′, r(B) ≤ r(B′′)}

8

i.e, Nh(B) consists of the bags B′ that have smaller rank than B, and that B can reach through a path that traverses
intermediate bags of larger rank. The following facts are easy to obtain.

Fact 2. For each bag B that is a separator of a component represented as a component pair (rC , XC) in Rank, if
r(rC) < r(B) then Nh(B) = XC ∪ {rC} otherwise Nh(B) = XC . Hence we always have XC ⊆ Nh(B) and
|XC | ≤ |Nh(B)| ≤ |XC |+ 1.

Fact 3. Let B and B′ be respectively a bag and its parent in RG. Then Nh(B) ⊆ Nh(B′)∪{B′}, and thus |Nh(B)| ≤
|Nh(B′)|+ 1.

Intuitively, for a bag B, the set Nh(B) is the set of bags separating the component for which B was chosen as a
separator by Rank from the rest of the graph. Since every bag in RG corresponds to a bag in Tree(G), the bags of RG

already cover all nodes and edges of G (i.e., properties T1 and T2 of a tree-decomposition). In the following we show
how RG can be modified to also satisfy condition T3, i.e., that every node u appears in a contiguous subtree of RG.
Given a bag B, we denote with NhV(B) = B ∪

⋃
B′∈Nh(B)B

′, i.e., NhV(B) is the set of nodes of G that appear in B
and its neighborhood. In Lemma 5 we will show the crucial property that for all nodes u and paths P : B1 B2 in
RG such that B1 is ancestor of B2 and u ∈ (B1 ∩B2), for all bags B ∈ P we have that u ∈ NhV(B). We start with a
basic claim that will be useful throughout this section.

Claim 3. For all B1, B2 ∈ VT , let B be their LCA in RG and P be the unique acyclic path B1 B2 in Tree(G) .
Then B ∈ P and all B′ in P are descendants of B in RG.

Proof. Let C be the smallest component processed by Rank that contains both B1 and B2. Then B was chosen as a
separator for C, hence B ∈ P , and by the recursion, all B′ in B1 B2 will be descendants of B in RG. ut

We say that a pair of bags (B1, B2) form a gap of some node u in a tree T of bags (e.g., RG) if u ∈ B1 ∩ B2 and for
the unique acyclic path P : B1 B2 in T we have that |P | ≥ 2 (i.e., there is at least one intermediate bag in P) and
for all intermediate bags B in P we have u 6∈ B.

Lemma 5. For every node u, and pair of bags (B1, B2) that form a gap of u in RG, such that B1 is an ancestor of
B2, for every intermediate bag B in P : B1 B2 in RG, we have that u ∈ NhV(B).

Proof. The proof is by showing that B1 ∈ Nh(B). Fix arbitrarily such a bag B, and since B is ancestor of B2 we have
that r(B2) > r(B). Let P1 : B B2 and P2 : B2 B1 be paths in Tree(G). We argue that for all intermediate
bags B′ in P1 and P2, we have that r(B′) > r(B). When B′ is an intermediate bag of P1, the statement follows from
Claim 3 since the LCA of B and B2 in RG is B. Now consider that B′ is an intermediate bag in P2. From property
T3 of a tree-decomposition, since u ∈ B1 and u ∈ B2, then u ∈ B′. Since B1 is the LCA of B1 and B2 in RG, by
Claim 3 B′ is a descendant of B1 in RG. Let B′′ be the LCA of B2 and B′ in RG, and B′′ is also a descendant of B1.
By Claim 3, B′′ is a node in the path P3 : B2 B′ in Tree(G), hence u ∈ B′′. Since (B1, B2) form a gap of u, it
follows that B′′ = B2, and B′ is a descendant of B2, hence r(B′) > r(B2) > r(B).

The above conclude that all intermediate nodes B′ in the path B B1 in Tree(G) have rank r(B′) > r(B), and since
r(B1) < r(B), we have that B1 ∈ Nh(B). Since, u ∈ B1 it is u ∈ NhV(B) and the desired result follows. ut

Procedure Replace. Lemma 5 suggests a way to turn the rank tree RG to a tree-decomposition.Let R̂G = Replace(RG)

be the tree obtained by replacing each bag B of RG with NhV(B). For a bag B in RG let B̂ be the corresponding bag
in R̂G and vice versa. The following lemma states that R̂G is a tree-decomposition of G.

Lemma 6. R̂G = Replace(RG) is a tree-decomposition of G.

9

Proof. It is straightforward to see that the bags of R̂G cover all nodes and edges of G (properties T1 and T2 of the
definition of tree-decomposition), because for each bag B, we have that B̂ is a supserset of B. It remains to show that
every node u appears in a contiguous subtree of R̂G (i.e., that property T3 is satisfied). Assume towards contradiction
otherwise, and it follows that there exist bags B̂1 and B̂2 in R̂G that form a gap of some node u and let P̂ : B̂1 B̂2

be the path between them. Observe that for any bag B, if u 6∈ B, but u ∈ B̂, then u is also in the parent of B̂, by
Fact 3. Hence, if u 6∈ (B1 ∩B2), then u is in a parent of either B̂1 or B̂2.

First we establish that one B̂i must be ancestor of the other. If not, let L̂ be the LCA of B̂1 and B̂2 in RG. Since L̂ ∈ P̂ ,
we get that u 6∈ L̂. Hence, u 6∈ L and thus u 6∈ (B1 ∩ B2) by Claim 3 and property T3 of tree-decomposition. This
indicates that u is in a parent of either B̂1 or B̂2. But P̂ goes through both parents, contradicting that B̂1 and B̂2 form
a gap.

Next, consider that B̂1 is an ancestor of B̂2 (the case where B̂1 is a descendant of B̂2 is symmetric). Observe that
u 6∈ (B1 ∩ B2), since otherwise we get a contradiction from Lemma 5. We have that u ∈ B2, since otherwise u also
appears in the parent of B̂2, which is in P̂ . Hence we have that u 6∈ B1. Let bag B′ ∈ Nh(B1) be such that u ∈ B′,
and let L′ be the LCA of B′ and B2 in RG. It follows that L′ is an ancestor of B1. By Claim 3, L′ appears in the
path B′ B2 in Tree(G), and hence, by property T3 of tree-decomposition we have that u ∈ L′. Let B′′ be the first
bag in the path B1 L′ in RG that contains u. Observe that u does not appear in any intermediate bag of the path
P : B1 B2, because otherwise it contradicts that B̂1 and B̂2 form a gap of u. Hence, u does not appear in any
intermediate bag of the path P ′ : B′′ B1 B2, thus B′′ and B2 form a gap of u in RG. By Lemma 5, for each B
in P ′, and thus especially for the ones in P , we have that B̂ contains u, contradicting that B̂1 and B̂2 form a gap of u.
The desired result follows. ut

Lemma 6 states that R̂G obtained by replacing each bag of RG with NhV(B) is a tree-decomposition of G. The
remaining of the section focuses on showing that R̂G is a balanced approximate tree-decomposition of G, and that it
can be constructed in O(b) time and space. The following lemma states that RG is balanced (of height O(log b)) and
|Nh(B)| ≤ 3 for each bag B of RG.

Lemma 7. The following assertions hold:

1. The height of R̂G is O(log b).
2. For each bag B̂ of R̂G, we have |B̂| ≤ 4 · (t+ 1).

Proof. We prove each item separately by showing that (i) the height of RG is O(log b), and (ii) |Nh(B)| ≤ 3.

1. It is clear that the height of RG equals the recursion depth of Rank. Because of the alternating flag, the size of each
input component is at halved at least every two successive recursive calls. Hence, at recursion level i, for each
component C processed by Rank in that level we have |C| ≤ b · 2−bi/2c. The recursion stops when |C| = 1, hence
the height of RG is O(log b).

2. Let B be any bag, and B′ its parent in RG. By Fact 3, |Nh(B)| can increase by at most one from its parent’s.
Observe that each bag B with 2 ≤ |Nh(B)| ≤ 3 which is assigned a rank with f = False appears in the path
B1 B2 in Tree(G) of every two distinct bags B1, B2 ∈ Nh(B). Hence for each child B′ of B in RG we have
that Bi ∈ Nh(B′) for at most one Bi ∈ Nh(B), and thus |Nh(B′)| ≤ 2. Since the flag f alternates between every
successive recursive calls of Rank, we get that for every pair of parent-child bags B1 and B2, it is |Nh(Bi)| ≤ 2
for at least one i ∈ {1, 2}. The desired result follows.

ut

Algorithm Balance. We are now ready to outline the algorithm Balance, which takes as input a tree-decomposition
Tree(G) of a graph G, and returns a balanced binary tree-decomposition of G. Balance is based on Rank, with
additional preprocessing from Section 3 to obtain the separator bags of Rank fast. Balance operates as follows:

1. Preprocess Tree(G) using the BalSep data-structure from Section 3 so that on recursive call (C, f, k) of Rank with
f = True, a balancing separator B of C is returned.

10

2. Preprocess Tree(G) to answer LCA queries in O(1) time. On recursive call (C, f, k) of Rank with f = False,
obtain LCAs L in O(1) time.

3. Return Replace(RG).

In Figure 3 we give an example of Balance executed on a tree-decomposition Tree(G). First, Tree(G) is turned into
a binary and balanced tree RG and then into a binary and balanced tree R̂G. If the numbers are pointers to bags, such
that Tree(G) is a tree-decomposition for G, then R̂G is a binary and balanced tree-decomposition of G.

1

2

3

4

5

6

7

⇒

1

2

4

6

753

⇒

1,2

2,4

4

4,6

7,64,5,62,3,4

Tree(G) RG R̂GTree(G) RG R̂GTree(G) RG R̂GTree(G) RG R̂GTree(G) RG R̂GTree(G) RG R̂G

Fig. 3: Given the tree-decomposition Tree(G) on the left, the graph in the middle is the corresponding RG and the one
on the right is the corresponding balanced tree-decomposition R̂G = Replace(RG) after replacing each bag B with
NhV(B).

Lemma 8. Algorithm Balance runs in O(b) time and space.

Proof. Let B be any bag that was assigned a rank when Rank was executed for a component pair (rC , XC). By Fact 2
and Lemma 7 Item 2, it is |XC | ≤ |Nh(B)| ≤ 3. By Theorem 1, Tree(G) can be preprocessed in O(b) time, such that
each balancing separator of component C is obtained in O(log2 |C| · log |XC | + |XC | · log |XC |) = O(log2 |C|) time.
Hence when f = True, Rank spends O(log2 |C|) time in C. Moreover, with O(b) additional preprocessing time, when
f = False, in O(1) time the desired bag B is obtained via at most three LCA queries of O(1) time each. We can write
the following recurrences for the time complexity Tf (b) of Rank on input of size b and flag f :

TTrue(b) ≤
3∑

i=1

TFalse
(
γiTrue · b

)
+O

(
log2 b

)
TFalse(b) ≤

3∑
i=1

TTrue
(
γiFalse · b

)
+O(1)

with γiTrue ≤ 1
2 and

∑
i γ

i
True < 1 and

∑
i γ

i
False < 1. Initially the algorithm is called with f = True, and the running

time T (b) satisfies the recurrence

T (b) ≤
9∑

i=1

T
(
γi · b

)
+O

(
log2 b

)
with γi ≤ 1

2 and
∑

i γi < 1. It is easy to verify that T (b) = O(b) as desired. The space complexity follows. ut

We are now ready to wrap-up the results of this section. Given a tree-decomposition Tree(G) of b bags and width t,
Balance constructs a tree R̂G which, by Lemma 6 is a tree-decomposition of G. By Lemma 7, R̂G is balanced, and
has width at most 4 · t + 3. Finally, R̂G can be turned from ternary to binary with only a constant increase in its size,
while maintaining the properties of being balanced and having width at most 4 · t+ 3. These lead us to the following
theorem.

11

Theorem 2. Given a graph G, let T (G) be the time and S(G) be the space required for constructing a tree-
decomposition T = Tree(G) of b bags and width t. Then a balanced binary tree-decomposition T ′ of G with O(b)
bags and width at most 4 · t+ 3 can be constructed in O(T (G) + b) time and O(S(G) + b) space.

We remark that in the statement of Theorem 2, the tree-decomposition T ′ is stored implicitly, as a rank tree RG, where
each bagB stores (at most) four pointers to bags in Tree(G), i.e., the bags corresponding to the bags in ({B}∪Nh(B)).
Storing each bag of T ′ explicitly requires O(b · t) time and and space (rather than O(b)).

The new tree-decomposition R̂G can be made nice by a standard process which increases the height by a factor of at
most t.

Corollary 1. Given a graph G, let T (G) be the time and S(G) be the space required for constructing a tree-
decomposition T = Tree(G) of b bags and width t. Then a nice binary tree-decomposition T ′ of G of width at
most 4 · t+ 3 and height O(t · log b) can be constructed in O(T (G) + b · t) time and O(S(G) + b · t) space.

5 Lower Bound on Width of Balanced Tree-decompositons

In this section we will argue there exists a family {Gn
t | n ≥ 3 · t ∧ n ≡ 0 (mod t)} of graphs, such that the graph

Gn
t has n nodes and treewidth 2 · t − 1 and any tree-decomposition of Gn

t , with width t′ and of height h is such that
either h ≥ n

2·t′ or t′ ≥ 3 · t− 1. Note that if t is o(n/ log n), then only in the later case can the tree-decomposition be
balanced. Thus, the width must increase by a factor when one constructs balanced tree-decompositions.

The graph Gn
t . The graph Gn

t is defined as follows. Let n′ = n
t . For each i ∈ {1, . . . , n′}, let Vi be a set of t nodes,

such that Vi∩Vj = ∅ for i 6= j and V =
⋃

i Vi. Also, let V0 = Vn′+1 = ∅. For each i ∈ {1, . . . , n′}, each node u ∈ Vi
has an edge to each other node in Vi−1 ∪ Vi ∪ Vi+1. There is an illustration of G18

3 in Figure 4.

v11

v12

v13

V1

v21

v22

v23

V2

v31

v32

v33

V3

v41

v42

v43

V4

v51

v52

v53

V5

v61

v62

v63

V6

Fig. 4: The graph G18
3 .

We will first argue that the treewidth of Gn
t is at most 2t− 1.

Lemma 9. For any t and n the treewidth of Gn
t is at most3 2 · t− 1.

Proof. For each i ∈ {1, . . . , n′ − 1} let bag Bi consist of Vi ∪ Vi+1, and for i ≤ n′ − 2, let it be connected to bag
Bi+1. It is easy to see that this is a tree-decomposition of Gn

t . ut

Next is a technical lemma that will let us do a case analysis at the end. For the remaining of this section, given a tree
of bags T of a graph G, we denote with Tv the set of nodes of G that appear in the bags of T .

3 the treewidth of Gn
t is exactly 2t− 1, but we will only show the upper bound

12

Lemma 10. For any t and n consider the graph Gn
t and a tree-decomposition Tree(Gn

t) = (VT , ET) of it of width t′

and height h. Either h ≥ n
2·t′ or there exists a bag B and numbers i, j where j − i ≥ 2 and such that Vi ∪ Vj ⊆ B.

Proof. For each bag B in VT with child-bags B1, . . . , Bk for some k we can without loss of generality assume that
(Tv(Bi) \ B) (resp. V \ Tv(B), if B is not the root) are non-empty, since we otherwise could simply remove the
subtree T (Bi) (resp. V \ Tv(B)) and still have a tree-decomposition with the same or lower height and width.

There are now two cases. Either (1) there exists a bag B with child-bags B1, . . . , Bk for some k ≥ 2 (or k ≥ 3, in
case B is the root); or (2) not. If not, the tree-decomposition forms a line with length at least n

t′ , hence no matter how
the root of the tree-decomposition is picked, the height is at least n

2·t′ .

Otherwise, in case (1), pick three nodes v1, v2, v3, one in each of (Tv(B1) \ B), (Tv(B2) \ B) and V \ Tv(B) (or
(Tv(B3) \ B) in case B is the root). Let i′, j′, k′ be such that v1 ∈ Vi′ , v2 ∈ Vj′ and v3 ∈ Vk′ . We consider the
case i′ ≤ j′ ≤ k′ (the others are similar). We have that j′ − i′ ≥ 2 (resp. k′ − j′ ≥ 2), since otherwise there is an
edge between v1 and v2 (resp. v2 and v3) and hence a path between them that does not intersect with nodes in B,
contradicting Lemma 1. Also, we have that there exists an i and a j such that i′ < i < j′ < j < k′ (hence, j − i ≥ 2)
and such that each node in Vi ∪ Vj is in B, since otherwise, there is atleast one node in Vi for i′ < i < j′ (resp.
in j′ < i < k′) which is not in B and thus no nodes in B on some path P : v1 v2 (resp. P : v2 v3), again
contradicting Lemma 1. This completes the proof ut

The graph G(i, j, t, n). Given numbers i and j and the graph Gn
t , for some t and n, let G(i, j, t, n) be the graph

similar toGn
t , except that it has an edge between each pair of nodes in Vi×Vj . There is an illustration ofG(2, 5, 3, 18)

in Figure 5.

v11

v12

v13

V1

v21

v22

v23

V2

v31

v32

v33

V3

v41

v42

v43

V4

v51

v52

v53

V5

v61

v62

v63

V6

Fig. 5: The graph G(2, 5, 3, 18).

The k-cops and robber game. For some integer k, the k-cops and robber game is a two-player zero-sum game on
a graph G, as defined by Seymour and Thomas [29]. Initially, player 1 selects a set of nodes X0 of size k, where he
places a cop on each. Afterwards, player 2 selects a node r0 ∈ (V \X0) and puts the robber on this node. At this point
round 1 begins. In round i, for each i ≥ 1, first player 1 selects a set of nodes Xi of size k and then player 2 selects a

13

node ri and a path P : ri−1 ri, such that for each node v ∈ P we have that v 6∈ (Xi ∩Xi−1). If player 2 can not
do so, player 1 wins, otherwise, the play continues with round i+ 1. Player 2 wins in case player 1 never does.

As shown by [29], we have that player 1 has a winning strategy if and only if the treewidth of G is at most k − 1.
Otherwise player 2 has a winning strategy and the treewidth of G is k or more.

We will next argue that the treewidth of G(i, j, t, n) is a factor larger than the one of Gn
t .

Lemma 11. For any i, j, t, n, where j − i ≥ 2 the graph G(i, j, t, n) has treewidth at least4 3 · t− 1.

Proof. We will argue that player 2 has a winning strategy in the (3t − 1)-cops and robber game on G(i, j, t, n). The
main idea of player 2’s winning strategy is to stay inside V ′ =

⋃j
`=i V`. Since j − i ≥ 2 we have that |V ′| ≥ 3 · t.

Observe that each node in V ′ has 3 · t − 1 adjacent nodes in V ′. The strategy is as follows: Let r0 be some node in
(V ′ \X0) (such a node exists, since |X0| = 3 · t − 1 and |V ′| ≥ 3 · t). In each round i, if ri−1 6∈ Xi, set ri = ri−1,
otherwise, pick a node ri ∈ V ′ adjacent to ri−1 such that ri 6∈ Xi and let P be the path (ri−1, ri). Such a node exists,
since ri−1 has 3 · t − 1 distinct adjacent nodes in V ′ (each different from ri−1), |Xi| = 3 · t − 1 and ri−1 ∈ Xi. In
either case, the cops will not catch the robber in that round and thus not ever. ut

We will next argue that any tree-decomposition of Gn
t has either large height or large width.

Lemma 12. For any n and t, consider a tree-decomposition Tree(Gn
t) of Gn

t of width t′ and height h. Either h ≥ n
2·t′

or t′ ≥ 3 · t− 1.

Proof. If h ≥ n
2t′ , we are done. Otherwise, letB be a bag and i, j numbers where j− i ≥ 2 and such that Vi∪Vj ⊆ B.

Such a bag and numbers exists by Lemma 10. But then, Tree(Gn
t) is also a tree-decomposition of G(i, j, t, n), since

each edge between Vi and Vj is in B. We therefore get, by Lemma 11 that the width of Tree(Gn
t) is at least 3 · t− 1.

ut

Theorem 3. For numbers n and t = o(n/ log n), the graph Gn
t has treewidth at most 2 · t − 1, but each balanced

tree-decomposition of Gn
t has width at least 3 · t− 1.

Proof. The bound on t implies that any tree-decomposition of width t′ < 3 · t − 1 and height h, such that h ≥ n
2·t′

cannot be balanced. The statement then follows from Lemmas 9 and 12. ut

6 Local Reachability

Consider a graph G = (V,E), with a tree-decomposition Tree(G) = (VT , ET) of |VT | = O(n) bags and width t.
Here we present an algorithm for computing “local reachability” in each bag, in particular, for each bag B and nodes
u, v ∈ B, compute whether (u, v) ∈ E∗. Our algorithm requires O(n · t2) time and O(n · t) space.

Use of the set-list data structure. We use various operations on a set data structure A that contains nodes from a
small subset VA ⊆ V (i.e., A ⊆ VA ⊆ V) of size bounded by t + 1, for t being the treewidth of G. Each set data
structure A is represented as a pair of lists (L1, L2) of size t+ 1 each. The list L1 stores VA in some predefined order
on V , and the list L2 is a binary list that indicates the elements of VA that are in A. The initialization of A takes
O(t · log t) time, simply by sorting VA in L1, and initializing L2 with ones in the indexes corresponding to elements
in A. Intersecting two sets A1, A2, and inserting in A1 all elements of VA1 ∩ A2 takes O(t) time, by simultaneously
traversing the corresponding L1 lists of the sets in-order.

4 the treewidth of G(i, j, t, n) is exactly 3t− 1, but we will only show the lower bound

14

Forward and backward edges. Given a graph G = (V,E) and its tree-decomposition Tree(G), we represent the
edges of G as two sets for each node u, using the set-list data structure:

FWD(u) = {v : (u, v) ∈ E and v ∈ Bu} ; BWD(u) = {v : (v, u) ∈ E and v ∈ Bu}

Clearly, for all u ∈ V , we have |FWD(u)| ≤ t + 1 and |BWD(u)| ≤ t + 1. The following lemma states that the sets
FWD(u) and BWD(u) store all edges in E. As a corollary, there are at most 2 · n · t edges in a graph G with treewidth
t. It is well-known that a slightly stronger statement can be shown (i.e. the number of edges is O(n · t), but the hidden
constant is below 2), but this statement suffices for our applications.

Lemma 13. For all (u, v) ∈ E, we have v ∈ FWD(u) or u ∈ BWD(v).

Proof. Consider some (u, v) ∈ E, such that Lv(v) ≤ Lv(u). By the definition of tree-decomposition, there exists
some Bi ∈ VT such that u, v ∈ Bi. Then v appears in all bags Bj in the unique acyclic path P : Bi Bv , and since
Lv(v) ≤ Lv(u), the bag Bu appears in P . Hence v ∈ Bu and v ∈ FWD(u). Similarly, if Lv(v) ≥ Lv(u), it follows
that u ∈ BWD(v). ut

Local reachability. We first extend the definition of forward and backward edges to reachability, and then define the
local reachability relation. Given a tree-decomposition T = Tree(G) of a graph G and a node u ∈ V , we define the
local forward and backward sets

FWD∗(u) = {v : (u, v) ∈ E∗ and v ∈ Bu} ; BWD∗(u) = {v : (v, u) ∈ E∗ and v ∈ Bu}

i.e., FWD∗(u) (resp. BWD∗(u)) is the set of nodes v that can be reached (resp. reach) u. Given a bag B, the local
reachability relation is defined as

LR (B) = {(u, v) : u, v ∈ B and v ∈ FWD∗(u) or u ∈ BWD∗(u)}.

Clearly, for all u ∈ V , we have |FWD∗(u)| ≤ t + 1 and |BWD∗(u)| ≤ t + 1. Given the sets FWD∗(u) and BWD∗(u)
for all u ∈ V , the relation LR (B) can be constructed in O(t2) time, for each B ∈ VT (note that actually storing
LR(B) explicitly for all B ∈ VT in total requires Ω(n · t2) space, which is beyond our space requirements). Similarly
to Lemma 13 it can be shown that for every bag B and all pairs of nodes u, v ∈ B, (u, v) ∈ E∗ iff u ∈ BWD∗(v) or
v ∈ FWD∗(u).

Subsuming tree-decomposition. Our algorithm LOCREACH for local reachability computation is more elegantly
stated on a nice tree-decomposition. In order to apply LOCREACH on any tree-decomposition T , we first construct
a nice tree-decomposition T ′ out of T , and then execute LOCREACH on T ′. Here we describe a slightly technical
construction of such a T ′ such that (i) T ′ uses asymptotically the same space as T , and (ii) the local forward and
backward sets of T and T ′ are equal.

Given a nice tree-decomposition T ′ = (V ′T , E
′
T) and a tree-decomposition T = (VT , ET) of a graph G, we say that

T ′ subsumes T if the following hold.

1. For every B′ ∈ V ′T there exists B ∈ V ′T such that B′ ⊆ B
2. For every B ∈ VT , there exists B′ ∈ V ′T with B = B′.

Claim 4. For every tree-decomposition T = (VT , ET) with b bags and width t there exists a tree-decomposition
T ′ = (V ′T , E

′
T) of O(b) bags and width t that subsumes T . Moreover, T ′ uses O(b · t) space and can be constructed in

O(b · t · log t) time.

Proof. Let B1, . . . Bb be the bags of VT . We present an informal outline of the construction. Along the construction,
we build a map f : V ′T → {1, . . . , b}. First, create T ′ identical to T , and for each Bi ∈ V ′T , sort the nodes of Bi in
some order, and let f(B) = i. Then, as long as one of the following cases holds, proceed accordingly.

15

1. If there exists a B ∈ V ′T with two children B1, B2 such that B 6= B1 or B 6= B2, insert bags B
1

and B
2

in V ′T
such that B

1
= B

2
= B. Make each B

i
a child of B, and parent of Bi. Set f(B

i
) = f(B).

2. If there exists aB ∈ V ′T which is the root bag of k > 1 nodes u1, . . . , uk, insert a line of k−1 bagsB1, . . . , Bk−1,
whereBi is the parent ofBi+1, andBi = B \{ui+1, . . . , uk}. MakeBk−1 the parent ofB and set f(Bi) = f(B)
for all i.

3. If there exists aB ∈ V ′T which introduces k > 1 nodes u1, . . . , uk, insert a line of k−1 bagsB1, . . . , Bk−1, where
Bi is the child of Bi+1, and Bi = B \ {ui+1, . . . , uk}. Make Bk−1 the unique child of B and set f(Bi) = f(B)
for all i.

Finally, in the above construction each B ∈ V ′T is not stored explicitly as a set, but implicitly as a pointer f(B) to a
bag Bf(B) of T , and (optionally) two integers iB , jB . A node u ∈ Bf(B) is considered to belong to B if one of the
following holds.

1. Bf(B) is not the root bag of u, and u is not introduced in Bf(B).
2. Bf(B) is the root bag of u and u is the i-th node with root bag Bf(B) and i ≤ iB .
3. u is the jth node introduced in Bf(B) and j ≤ jB .

It follows from the definitions that if none of the above three cases holds, T ′ is a nice tree-decomposition that subsumes
T . The construction requires O(b · t · log t) time to sort the nodes in each bag of T , and O(b · t) time to construct the
O(b · t) bags of T ′. The space used is O(b · t) for storing the original T , plus O(b · t) for storing a pointer and index
in each bag of T ′. ut

Algorithm LOCREACH. Given a graph G and a tree-decomposition T = Tree(G) with O(n) bags and width t, we
present an algorithm for computing the local forward and backward sets. First, construct a nice tree-decomposition
T ′ = (V ′T , E

′
T) of O(n · t) bags which subsumes T , using the construction of Claim 4. The computation is then

performed as a two-way pass on T ′. For each node u ∈ V maintain two sets FWD′(u) and BWD′(u) using the set-list
data structure, from the universe Bu. Initially set FWD′(u) = FWD(u) and BWD′(u) = BWD(u) for all u ∈ V . Given
a bag B, define

LR′ (B) = {(u, v) : u, v ∈ B and v ∈ FWD′(u) or u ∈ BWD′(u)}.

1. First pass. Traverse T ′ level by level starting from the leaves (bottom-up), and for each encountered bag Bx that
is the root bag of node x do as follows. For every pair of nodes u, v ∈ B for which (u, x), (x, v) ∈ LR′ (Bx), if
Lv(u) ≥ Lv(v) insert v in FWD′(u), otherwise insert u in BWD′(v).

2. Second pass. Traverse T ′ level by level starting from the root (top-down), and for each encountered bag Bx

that is the root bag of node x do as follows. For every pair of nodes u, v ∈ B for which (u, v) ∈ LR′ (Bx), if
v ∈ BWD′(x) insert u in BWD′(x), and if u ∈ FWD′(x) insert v in FWD′(x).

In the following we establish that at the end of the second pass it holds that FWD′(u) = FWD∗(u) and BWD′(u) =
BWD∗(u) for each u ∈ V . We say that a path P : x1, . . . , xk, is U-shaped in a bag B if x1, xk ∈ B and either k = 2,
or for every 1 < i < k, the root bag of Bxi

is in T (B). The following lemma captures the main intuition behind
U-shaped paths.

Lemma 14. Given a bag B and nodes u, v ∈ B such that exists an (acyclic) path P : u v which is U-shaped in B,
either |P | = 1 or P = (u, y1, . . . , yk, v) and P is U-shaped in Bx, where x = argmini Lv(yi).

Proof. Decompose P to P1 : u x and P2 : x v, and we first argue that each Pi is U-shaped inBx. We only focus
on P1, as the proof is similar for P2. For any intermediate node y of P1, the LCA L of Bx and By is Bx, otherwise by
Lemma 1 the subpath y x (or x y) of P1 would go through nodes of L of smaller level than Lv(x), contradicting
our choice of x. Hence, every By of intermediate nodes y of P1 is contained in T (Bx), and it remains to show that
u ∈ Bx. Since P is U-shaped in B, we have that Bx is a descendant of B. If B = Bx we are done, otherwise let B′ be
the parent of Bx. By Lemma 2, there is a node y ∈ B′ ∩ Bx ∩ P1, and it follows that Lv(y) < Lv(x). The only such

16

node in P1 is u, thus P1 is U-shaped in Bx. The same argument holds for P2, and it follows that P is U-shaped in Bx.
ut

Lemma 15. For each node u ∈ V , the algorithm LOCREACH correctly computes the sets FWD∗(u) and BWD∗(u).

Proof. It is clear that FWD′(u) ⊆ FWD∗(u) and BWD′(u) ⊆ BWD∗(u), that is, for every node v inserted in
FWD′(u) (resp. BWD′(u)) by the algorithm, we have (u, v) ∈ E∗ (resp. (v, u) ∈ E∗). The proof focuses on showing
FWD∗(u) ⊆ FWD′(u) and BWD∗(u) ⊆ BWD′(u). Note that by the initialization of FWD′(u) and BWD′(u) we have
FWD(u) ⊆ FWD′(u) and BWD(u) ⊆ BWD′(u). We first claim that after the first pass processes a bag B, for all
u, v ∈ B for which there exists a (acyclic) path P : u v that is U-shaped in B, we have (u, v) ∈ LR′ (B). The
claim follows by induction on the levels processed by the bottom-up pass.

1. It is trivially true for B being a leaf since |B| = 1.
2. If B is not a leaf, by Lemma 14 either |P | = 1, or P = (u, y1, . . . , yk, v) and P is U-shaped in Bx, where
x = argmini Lv(yi). If |P | = 1, the claim follows from the initialization of FWD′ and BWD′. Otherwise, if
Bx 6= B, the proof follows from the induction hypothesis, as Bx is a descendant of B. Finally, if Bx = B,
decompose P to P1 : u x and P2 : x v. Note that each such Pi is U-shaped in B, and by the same reasoning
(i.e., by either |Pi| = 1 or the induction hypothesis) we get that (u, x), (x, v) ∈ LR′(B). Hence, after LOCREACH
processes B, it will hold that either u ∈ BWD′(v) or vFWD′(u), and thus (u, v) ∈ LR′ (B).

We now claim that after the second pass processes a bag Bx that is the root bag of some node x, it holds that
FWD∗(x) ⊆ FWD′(x) and BWD∗(x) ⊆ BWD′(x). The claim follows by induction on the levels processed by the
top-down pass.

1. The statement holds trivially if Bx is the root, since |Bx| = 1.
2. We now proceed inductively to some internal bag Bx examined by the algorithm in the second pass. We only

focus on FWD′(x) (the argument is similar for BWD′(x)). Consider any node v such that there exists a (acyclic)
path P : x v. Let u be the first node in P for which Bu is not in T (Bx) and decompose P to P1 : x u
and P2 : u v. By the choice of u, we have that P1 is U-shaped, thus by the first pass (x, u) ∈ LR′(Bx). By
condition T3 of the tree-decomposition, Bv is an ancestor of Bx, and hence the induction hypothesis applies to
conclude that v ∈ FWD′(u) or u ∈ BWD′(v), and thus (u, v) ∈ LR′(Bx). Hence, after the second pass processes
Bx, we have v ∈ FWD′′(x), as desired.

Figure 6 depicts the two passes. At the end of the computation, for all x ∈ V we have FWD′(x) = FWD∗(x) and
BWD′(x) = BWD∗(x), as desired. ut

u

x

v

P1

P2

u ∈ BWD′(x)
v ∈ FWD′(x)

(a)

x

u

v

P1
P2

u ∈ FWD′(x)

v ∈ FWD′(u) or
u ∈ BWD′(v)

(b)

Fig. 6: Illustration of the two passes for the local reachability computation

17

Lemma 16. Algorithm LOCREACH requires O(n · t2) time and O(n · t) space.

Proof. By Claim 4, the construction of T ′ is done inO(n · t · log t) time andO(n · t) space. The algorithm LOCREACH
examines each of the O(n · t) bags B once in each pass, hence it spends O(n · t) time in traversing T ′. For each bag
Bx, LOCREACH spends O(t2) time to iterate over all pairs u, v ∈ Bx, and O(t) time to update each of the O(t) FWD′

and BWD′ sets, hence it spends O(t2) time in total in Bx. There are n such bags Bx that are the root bags of a node x,
hence the total time of LOCREACH is O(n · t2). The space bound follows from the size of all forward and backward
sets, and the size required to store T and T ′. ut

Theorem 4. Given a graph G = (V,E) and a tree-decomposition Tree(G) of G of width t and O(n) bags, the
algorithm LOCREACH correctly computes the local forward and backward sets, and uses O(n · t2) time and O(n · t)
space.

Remark 1. Given a weight function w : E → Z, the two passes of LOCREACH can be easily modified to compute the
local distances in each bag (i.e., for any pair of nodes u, v in a bag, the weight of the minimum weight u v path),
with no time or space overhead. Informally, every time a node v is inserted to the FWD∗(u) (or u to BWD∗(v)), we
also insert a number r which corresponds to the weight of the minimum weight path between u and v, among all paths
examined so far. Lemma 15 can be used to show that eventually all acyclic paths between u and v are considered, thus
discovering the distance from u to v (or reporting that a negative cycle exists). The focus of the present work is on
reachability, and these claims will not be presented formally.

7 Optimal Reachability for Low Treewidth Graphs

In this section we present a data-structure Reachability which takes as input a graph G of n nodes and treewidth t, and
preprocess it in order to answer single-source and pair reachability queries.

Intuition. Informally, the preprocessing consists of first obtaining a binary and balanced tree-decomposition T of G,
and computing the local reachability information in each bag. Then, the whole of preprocessing is done on T , by
constructing two types of sets, which are represented as bit sequences and packed into words of lengthW = Θ(log n).
Initially, every node u receives an index iu, such that for every bag B, the indexes of nodes whose root bag is in T (B)
form a contiguous interval. Then, the following two types of sets are constructed.

1. Sets that store information about subtrees. Specifically, for every node u, the set Fu stores the relative indexes of
nodes v that can be reached from u, and whose root bag is in T (Bu). These sets are used to answer single-source
queries.

2. Sets that store information about parents. Specifically, for every node u, two sequences of sets are stored
(Fi

u)0≤i≤Lv(u), (T
i
u)0≤i≤Lv(u), such that Fi

u (resp. Ti
u) contains the relative indexes of nodes v in the ancestor

bag Bi of Bu at level i, such that (u, v) ∈ E∗ (resp. (v, u) ∈ E∗). These sets are used to answer pair queries.

The sets of the first type are constructed by a bottom-up pass, whereas the sets of the second type are constructed by a
top-down pass. Both passes are based on the separator property of tree-decompositions (recall Lemma 1 and Lemma 2),
which informally states that reachability properties between nodes in distant bags will be captured transitively, through
nodes in intermediate bags.

Reachability Preprocessing. We now give a formal description of the preprocessing of Reachability that takes as input
a graphG of n nodes and treewidth t, and preprocesses it in order to answer single-source and pair reachability queries.
We say that we “insert” set A to set A′ meaning that we replace A′ with A ∪A′. Sets are represented as bit sequences
where 1 denotes membership in the set, and the operation of inserting a set A “at the i-th position” of a set A′ is
performed by taking the bit-wise logical OR between A and the segment [i, i+ |A|] of A′. The preprocessing consists
of the following steps.

18

1. Obtain a binary, balanced tree-decomposition T = Tree(G) of G with O(n) bags and width t (from Theorem 2),
and preprocess T to answer LCA queries in O(1) time (since T is balanced, this is standard).

2. Compute the local forward and backward sets of each node u ∈ V (from Theorem 4).
3. Apply a pre-order traversal on T , and assign an incremental index iu to each node u at the time the root bag B of
u is visited. If there are multiple nodes u for which B is the root bag, assign the indexes to those nodes in some
arbitrary order. Additionally, store the number su of nodes whose root bags are in T (B) with index at least iu.
Finally, for each bag B and u ∈ B, assign a unique local index lBu to u, and store in B the number of nodes aB
contained in all ancestors of B, and the number bB of nodes in B.

4. For every node u, initialize a bit set Fu of length su, pack it into words, and set the first bit to 1. Traverse T
bottom-up, and for every bag B do as follows. For every pair of nodes (u, v) ∈ LR(B) such that B is the root bag
of v and iu < iv , insert Fv to the segment [iv − iu, iv − iu + sv] of Fu (hence, the nodes reachable from v now
become reachable from u, through v).

5. For every node u initialize two sequences of bit sets (Ti
u)0≤i≤Lv(u), (F

i
u)0≤i≤Lv(u), each of size bBi , where Bi is

the ancestor of Bu at level i, and pack them into consecutive words.
6. Traverse T top-down, and maintain two sequences of bit sets (T

i

x)0≤i≤Lv(B) and (F
i

x)0≤i≤Lv(B) for every node x

in the current bag B, where the size of T
i

x and F
i

x is the size bBi of the ancestor of B in level i. Initially, B is the
root of T , and set the position lBw of F

0

x (resp. T
0

x) to 1 for every node w in FWD∗(x) (resp. BWD∗(x)). For each
encountered bag B, do as follows:
(a) Delete all set sequences (T

i

x)i and (F
i

x)i for each x 6∈ B.
(b) For each remaining set sequence of a node x, create a set Tx (resp. Fx) of bB 0s, and for every w ∈ B such

that (x,w) ∈ LR(B) (resp. (w, x) ∈ LR(B)), set the lBw -th bit of Fx (resp. Tx) to 1. Append the set Tx (resp.
Fx) to (T

i

x)i (resp. (F
i

x)i).
(c) For each u ∈ B whose root bag is B initialize set sequences (F

i

u)i and (T
i

u)i of aB + bB 0s each, and set

the bit at position lBu of F
Lv(B)

u and T
Lv(B)

u to 1. For every w ∈ FWD∗(u) (resp. w ∈ BWD∗(u)), insert (F
i

w)i

(resp. (T
i

w)i) to (F
i

u)i (resp. (T
i

u)i).
(d) Finally, set (Fi

u)i (resp. (Ti
u)i) equal to (F

i

u)i (resp. (T
i

u)i).

It is fairly straightforward that at the end of the preprocessing, the i-th position of each set Fu is 1 only if (u, v) ∈ E∗,
where v is such that iv− iu = i. The following lemma states the opposite direction, namely that all such i-th positions
will be 1, as long as the path P : u v only visits nodes with certain indexes.

Lemma 17. At the end of preprocessing, for every node u and v with iu ≤ iv ≤ iu + su, if there exists a path
P : u v such that for every w ∈ P , we have iu ≤ iw ≤ iu + su, then the iv − iu-th bit of Fu is 1.

Proof. We prove inductively the following claim. For every ancestor B of Bv , if there exists w ∈ B and a path
P1 : w v, then exists x ∈ B ∩ P1 such that ix ≤ iv ≤ ix + sx and the iv − ix-th bit of Fx is 1. The proof is by
induction on the length of P2 : B Bv .

1. If |P2| = 0, the statement is true by taking x = v, since the 0-th bit of Fv is 1.
2. If |P2| > 0, examine the child B′ of B in P2. By Lemma 2, there exists x ∈ B ∩ B′ ∩ P , and let P3 : x v.

By the induction hypothesis there exists some y ∈ B′ ∩ P3 with iy ≤ iv ≤ iy + sy and the iv − iy-th bit of
Fy is 1. If y ∈ B, we are done. Otherwise, B′ is the root bag of y, and by the local distance computation, it is
(x, y) ∈ LR(B′). Additionally, by construction ix ≤ iy and sx ≥ sy + iy − ix, thus by the induction hypothesis,
ix ≤ iv ≤ ix+ sx. Then Fy is inserted in position iy− ix of Fx, thus the bit at position iy− ix+ iv− iy = iv− ix
of Fx will be 1, and we are done.

When Bu is examined, by the above claim there exists x ∈ P such that ix ≤ iv and the iv − ix-th bit of Fx is 1. If
x = u we are done. Otherwise, Bu is also the root bag of x, and Fx is inserted in position ix− iu of Fu, and hence the
bit at position ix − iu + iv − ix = iv − iu of Fx will be 1, as desired. ut

Lemma 18. At the end of preprocessing, for every node u and v ∈ Bi where Bi is the ancestor of Bu at level i, we
have that if (u, v) ∈ E∗ (resp. (v, u) ∈ E∗), then the lBi

v -th bit of Fi
u (resp. Ti

u) is 1 .

19

Proof. The proof is by application of Lemma 2 inductively on the path Bi B, similarly to Lemma 17. ut

Lemma 19. Given a graph G with n nodes and treewidth t, let T (G) be the time and S(G) be the space required for
constructing a tree-decomposition of G with O(n) bags and width t. The preprocessing phase of Reachability on G
requires O(T (G) + n · t2) time and O(S(G) + n · t) space.

Proof. We establish the complexity of each preprocessing step separately.

1. By Theorem 2, this step requiresO(T (G)+n) time andO(S(G)+n) space for obtaining a binary, balanced tree-
decomposition of b = O(n) bags, O(t) width, and height h = O(log b) = O(log n). By a standard construction
for balanced trees, preprocessing T to answer LCA queries in O(1) time requires O(b) = O(n) time.

2. By Theorem 4, this step requires O(n · t2) time and O(n · t) space.
3. Every bagB is visited once, and all operations onB take constant time, hence this step requiresO(b ·t) = O(n ·t)

time.
4. The space required in this step is the space for storing all the sets Fu of size su each, packed into words of length
W :

∑
u∈V

⌈ su
W

⌉
=

h∑
i=0

∑
u:Lv(u)=i

⌈ su
W

⌉
≤

h∑
i=0

∑
u:Lv(u)=i

(su
W

+ 1
)

=
1

W
·

h∑
i=0

∑
u:Lv(u)=i

su +

h∑
i=0

∑
u:Lv(u)=i

1 ≤ 1

W
·

h∑
i=0

n · t+ n = O(n · t)

since h = O(log n) and W = Θ(log n). Note that we have
∑

u:Lv(u)=i su ≤ n · t because |
⋃

u Fu| ≤ n and every
element of

⋃
u Fu belongs to at most t such sets Fu (i.e., for those u that share the same root bag at level i). The

time required in this step is O(n · t) in total for iterating over all pairs of nodes (u, v) in each bag B such that B
is the root bag of either u or v, and O(n · t) for the set operations, by amortizing a constant number of operations
per word used.

5. The time and space required for storing each sequence of the sets (Fi
u)0≤i≤Lv(u) and (Ti

u)0≤i≤Lv(u) is:

∑
u∈V

2 ·
⌈
aBu

+ bBu

W

⌉
≤ 2 · n ·

⌈
t · h
W

⌉
= O(n · t)

since aBu
+ bBu

≤ t · h, h = O(log n) and W = Θ(log n).
6. The space required is the space for storing the set sequences (T

i

v) and (F
i

v), which is O(t2) by a similar argument
as in the previous item. The time required is O(t) for initializing every new set sequence (T

i

u) and (F
i

u) and this
will happen once for each node u at its root bag Bu, hence the total time is O(n · t).

ut

Reachability Querying. Given the preprocessing of Reachability, each query is answered as follows.

Pair query. Given a pair query (u, v), find the LCA B of bags Bu and Bv . Obtain the sets FLv(B)
u and T

Lv(B)
v of size

bB . Both sets start in bit position aB of the sequences (Fi
u)i and (Ti

v)i. Return True iff the logical-AND of the
sets FLv(B)

u and T
Lv(B)
v contains a non-0 entry.

Single-source query. Given a single-source query u, create a bit set A of size n, initially all 0s. Then start from Bu,
and for every ancestor Bi of Bu at level i, for every node v ∈ Bi whose root bag is Bi, if the lBv -th bit of Fi

u is
1, insert Fv to the segment [iv, iv + sv] of A. Report that the set of nodes v reached from u is those for which the
iv-th bit of A is 1.

20

Lemma 20. After the preprocessing phase of Reachability, pair and single-source reachability queries are answered
correctly in O

(⌈
t

logn

⌉)
and O

(
n·t·log t
logn

)
time respectively.

Proof. The correctness of the pair query comes immediately from Lemma 18 and Lemma 1, which implies that every
path u v must go through the LCA ofBu andBv . The time complexity follows from theO

(⌈
t
W

⌉)
word operations

on the sets FLv(B)
u and T

Lv(B)
v of size O(t) each. Now consider the single-source query from a node u. Let v be any

node such that there is a path P : u v, and let x be the node with the smallest index in P . It follows from Lemma 1
that Bx is an ancestor of Bu, and by Lemma 17, the iv − ix bit in Fx will be 1. Hence when Bx is examined by the
query phase of Reachability, Fx will be inserted in position ix of A, and the iv bit of A will be 1. This concludes the
correctness of the single-source reachability query. Regarding the time complexity, there are at most t nodes u whose
root bag is the current examined bag Bi at level i, and the size of each Fu is min

(
b·t
2i , n

)
, hence:

h∑
i=0

t·
⌈
min

(
b · t
2i
, n

)
· 1

W

⌉
= t·

log t∑
i=0

⌈ n
W

⌉
+

h∑
i=log t

⌈
b · t

2i ·W

⌉ = t·
(
n · log t
W

+
b

W
+ h

)
= O

(
n · t · log t

log n

)

since h = O(log n), b = O(n) and W = Θ(log n). ut

Theorem 5. Given a graph G of n nodes and treewidth t, let T (G) be the time and S(G) be the space required
for constructing a tree-decomposition Tree(G) of O(n) bags and width t on a standard RAM with wordsize W =
Θ(log n). The data-structure Reachability requiresO(T (G)+n·t2) preprocessing time,O(S(G)+n·t) preprocessing

space, and correctly answers (i) pair reachability queries in O
(⌈

t
logn

⌉)
time, (ii) single-source reachability queries

in O
(

n·t·log t
logn

)
time.

Remark 2. A single-source query can alternatively be answered by breaking it down to n pair queries,
which requires O

(
n ·
⌈

t
logn

⌉)
time. Then the time required for a single-source query can be written as

O
(
min

(
n·t·log t
logn , n ·

⌈
t

logn

⌉))
.

Finally, for constant treewidth graphs we have that T (G) = O(n) and S(G) = O(n) [10], and thus along with
Theorem 5 we obtain the following corollary.

Corollary 2. Given a graph G of n nodes and constant treewidth, the data-structure Reachability requires O(n)
preprocessing time and space, and correctly answers (i) pair reachability queries in O(1) time, (ii) single-source

reachability queries in O
(

n
logn

)
time.

References

1. T. Akiba, C. Sommer, and K. Kawarabayashi. Shortest-Path Queries for Complex Networks: Exploiting Low Tree-width
Outside the Core. In 15th International Conference on Extending Database Technology (EDBT), pages 144–155, 2012.

2. S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems restricted to partial k-trees . Discrete Applied
Mathematics, 23(1):11 – 24, 1989.

3. R. Bellman. On a Routing Problem. Quarterly of Applied Mathematics, 16:87–90, 1958.
4. O. Berkman and U. Vishkin. Finding level-ancestors in trees. Journal of Computer and System Sciences, 48(2), 1994.
5. M. Bern, E. Lawler, and A. Wong. Linear-time computation of optimal subgraphs of decomposable graphs. Journal of

Algorithms, 8(2):216 – 235, 1987.

21

6. S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The dacapo benchmarks: Java benchmarking development and analysis. In Proceedings of the
21st Annual ACM SIGPLAN Conference on Object-oriented Programming Systems, Languages, and Applications, OOPSLA
’06, 2006.

7. H. Bodlaender. Discovering treewidth. In SOFSEM 2005: Theory and Practice of Computer Science, volume 3381 of Lecture
Notes in Computer Science, pages 1–16. Springer Berlin Heidelberg, 2005.

8. H. L. Bodlaender. Dynamic programming on graphs with bounded treewidth. In Automata, Languages and Programming,
volume 317 of Lecture Notes in Computer Science, pages 105–118. Springer Berlin Heidelberg, 1988.

9. H. L. Bodlaender. A tourist guide through treewidth. Acta Cybern., 11(1-2):1–21, 1993.
10. H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov, and M. Pilipczuk. An O(ckn) 5-Approximation

Algorithm for Treewidth. 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, 0:499–508, 2013.
11. K. Chatterjee, R. Ibsen-Jensen, and A. Pavlogiannis. Faster algorithms for algebraic path properties in recursive state machines

with constant treewidth. In POPL, 2015.
12. S. Chaudhuri and C. D. Zaroliagis. Shortest Paths in Digraphs of Small Treewidth. Part I: Sequential Algorithms. Algorithmica,

27:212–226, 1995.
13. T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction To Algorithms. MIT Press, 2001.
14. E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–271, 1959.
15. M. Elberfeld, A. Jakoby, and T. Tantau. Logspace versions of the theorems of Bodlaender and Courcelle. In Foundations of

Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, 2010.
16. M. Elberfeld, A. Jakoby, and T. Tantau. Algorithmic meta theorems for circuit classes of constant and logarithmic depth. In

29th International Symposium on Theoretical Aspects of Computer Science, STACS 2012, 2012.
17. M. J. Fischer and A. R. Meyer. Boolean Matrix Multiplication and Transitive Closure. In SWAT (FOCS), pages 129–131. IEEE

Computer Society, 1971.
18. R. W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345, 1962.
19. L. R. Ford. Network Flow Theory. Report P-923, The Rand Corporation, 1956.
20. R. Halin. S-functions for graphs. Journal of Geometry, 8(1-2):171–186, 1976.
21. P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths. IEEE

Transactions on Systems Science and Cybernetics, SSC-4(2):100–107, 1968.
22. D. B. Johnson. Efficient Algorithms for Shortest Paths in Sparse Networks. J. ACM, 24(1):1–13, Jan. 1977.
23. A. Maheshwari and N. Zeh. I/O-Efficient Algorithms for Graphs of Bounded Treewidth. Algorithmica, 54(3):413–469, 2009.
24. E. F. Moore. The shortest path through a maze. In Proceedings of the International Symposium on the Theory of Switching,

and Annals of the Computation Laboratory of Harvard University, pages 285–292. Harvard University Press, 1959.
25. L. R. Planken, M. M. de Weerdt, and R. P. van der Krogt. Computing all-pairs shortest paths by leveraging low treewidth. In

Proceedings of the Twenty-first International Conference on Automated Planning and Scheduling (ICAPS-11), pages 170–177.
AAAI Press, May 2011. Honourable mention for best student paper.

26. B. A. Reed. Finding approximate separators and computing tree width quickly. In Proceedings of the Twenty-fourth Annual
ACM Symposium on Theory of Computing, STOC ’92, 1992.

27. N. Robertson and P. Seymour. Graph minors. iii. planar tree-width. Journal of Combinatorial Theory, Series B, 36(1):49 – 64,
1984.

28. B. Roy. Transitivité et connexité. C. R. Acad. Sci. Paris, 249:216–218, 1959.
29. P. Seymour and R. Thomas. Graph searching and a min-max theorem for tree-width. Journal of Combinatorial Theory, Series

B, 58(1):22 – 33, 1993.
30. M. Thorup. All Structured Programs Have Small Tree Width and Good Register Allocation. Information and Computation,

142(2):159 – 181, 1998.
31. S. Warshall. A Theorem on Boolean Matrices. J. ACM, 9(1):11–12, Jan. 1962.
32. A. Yamaguchi, K. F. Aoki, and H. Mamitsuka. Graph complexity of chemical compounds in biological pathways, 2003.

22

A Experimental results

We have applied our algorithm Reachability to a number of benchmarks of the DaCapo benchmark suit [6] that
consist of real-world Java programs. Our results clearly demonstrate that our preprocessing is faster than the complete
preprocessing (all-pairs reachability) and we obtain a significant speedup of our single-source query over the BFS,
even by factors of 15-30 times faster. Each benchmark gives a collection of graphs (control-flow graph for methods
of the program). We report the average size and the average treewidth of the graphs (with at least five hundred nodes)
for each benchmark, and report the average running time over all pair queries, and all single-source queries (i.e., the
average is over all possible queries). Note that the advantages of Reachability are demonstrated on relatively small
graphs (n is small), which indicates that the hidden constants in the O-notations are small. The O(log n) improvement
over DFS/BFS will be more pronounced for larger n. Our results are reported in Table 2. We thank Prateesh Goyal for
a help with the implementation of our algorithm.

Preprocessing Query
Single Pair

n t Our Complete Preprocess Our No Preprocess Our No Preprocess
antlr 698 1.0 89027 136145 15.3 166.3 0.15 14.34
bloat 696 2.3 27597 54335 3.9 72.5 0.10 14.34
chart 1159 1.5 28887 90709 2.3 80.9 0.13 22.32

eclipse 656 1.6 44930 138905 6.7 239.1 0.19 15.76
fop 1209 1.7 36284 91795 2.9 60.6 0.12 43.0

hsqldb 698 1.0 73076 180333 13.0 219.0 0.14 13.89
jython 748 1.5 52176 68687 7.2 85.7 0.11 12.84
luindex 885 1.3 46212 142005 5.6 202.7 0.16 26.44
lusearch 885 1.3 63809 189251 12.8 211.4 0.13 26.01

pmd 644 1.4 37686 52527 2.5 83.9 0.13 12.5
xalan 698 1.0 70967 138420 8.0 235.0 0.19 14.28
Jflex 1091 1.6 60468 91742 3.1 50.8 0.11 20.46

muffin 1022 1.7 34733 66708 2.6 52.7 0.10 18.57
javac 711 1.8 43089 59793 4.8 75.2 0.11 11.86

polyglot 698 1.0 81762 150799 12.2 184.5 0.14 14.14
Table 2: Mean times in microseconds.

23

	 Optimal Tree-decomposition Balancing and Reachability on Low Treewidth Graphs

