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Abstract. We study observation-based strategies for partially-
observable Markov decision processes (POMDPs) with omega-regular
objectives. An observation-based strategy relies on partial information
about the history of a play, namely, on the past sequence of observa-
tions. We consider the qualitative analysis problem: given a POMDP

with an omega-regular objective, whether there is an observation-based
strategy to achieve the objective with probability 1 (almost-sure win-
ning), or with positive probability (positive winning). Our main results
are twofold. First, we present a complete picture of the computational
complexity of the qualitative analysis of POMDPs with parity objectives
(a canonical form to express omega-regular objectives) and its subclasses.
Our contribution consists in establishing several upper and lower bounds
that were not known in literature. Second, we present optimal bounds
(matching upper and lower bounds) on the memory required by pure
and randomized observation-based strategies for the qualitative analysis
of POMDPs with parity objectives and its subclasses.

1 Introduction

Markov decision processes. Markov decision processes (MDPs) provide a
model for systems that exhibit both probabilistic and nondeterministic behav-
ior. MDPs were originally introduced to model and solve control problems for
stochastic systems: there, nondeterminism represented the freedom in the choice
of control action, while the probabilistic component of the behavior described
the systems response to the control action. MDPs were later adopted as mod-
els for concurrent probabilistic systems, probabilistic systems operating in open
environments [11], and under-specified probabilistic systems [3]

System specifications. The specification that describes the desired set of be-
haviors in the analysis of MDPs in verification of probabilistic systems and con-
trol of stochastic systems is typically an ω-regular set of paths in the MDP.
A canonical way to express an ω-regular set of paths in MDPs is the classical
parity objectives. The important sub-class of parity objectives include reacha-
bility, safety, Büchi (liveness) and coBüchi (co-liveness) objectives. Thus MDPs
with parity objectives provides the theoretical framework to study important



problems such as verification of probabilistic systems and control of stochastic
systems.

Perfect vs. partial observations. MDPs can be broadly classified into two
class: (a) MDPs with perfect observation; and (b) MDPs with partial observa-
tion. Most results about MDPs make the hypothesis of perfect observation. In
this setting, the controller knows, during its interaction with the plant, the exact
state of the plant. In practice, this hypothesis is often not reasonable. For exam-
ple, in the context of hybrid systems, the controller acquires information about
the state of the plant using sensors with finite precision, which return imperfect
information about the state. Similarly, if the controller has only access to the
public variables of the plant, not to their private variables, then the controller
has only partial observation about the state of the plant. In these cases MDPs
with partial observation is the more appropriate model.

Qualitative and quantitative analysis. The analysis of MDPs with parity
objectives can be classified as the qualitative analysis and quantitative analysis.
Given an MDP with an ω-regular specification the qualitative analysis asks for
the computation of (a) the set of almost-sure winning states where the con-
troller can satisfy the specification with probability 1; and (b) the set of positive
winning states where the controller can satisfy the specification with positive
probability. The more general quantitative analysis asks for the computation of
the value at each state for the specification: the value at a state is the maxi-
mal probability with which the controller can satisfy the specification. MDPs
with partial observation (POMDPs) are considerably more complicated than
MDPs of perfect observation. First, decision problems for POMDPs usually lie
in higher complexity classes than their perfect-observation counter-parts: for
example, quantitative analysis for POMDPs with reachability objectives is un-
decidable whereas for MDPs with perfect observation the problem can be solved
in polynomial time. Second, in the context of POMDPs witness winning strate-
gies for qualitative analysis need memory even for simple objectives such as
safety and reachability. This is again in contrast to the perfect-observation case,
where memoryless strategies suffice for all parity objectives. Since the quantita-
tive analysis of is undecidable for the simplest objectives such as reachability and
safety for POMDPs, the qualitative analysis of POMDPs with parity objectives
and its sub-classes is an important theoretical problem.

Our results. The contributions of this paper are twofold. First, we complete
the picture for the complexity of qualitative analysis for POMDPs with par-
ity objectives. Second, we present a complete characterization of the memory
required by pure (deterministic) and randomized strategies for the qualitative
analysis of POMDPs for the various sub-classes of parity objectives. We now
present the details of our contribution. It was known from the results of [1] that
almost-sure winning for reachability and Büchi objectives can be achieved in
EXPTIME. It follows from the results of [1, 7] that the decision problem for
almost-sure winning of coBüchi objectives and positive winning of Büchi ob-
jectives is undecidable. The EXPTIME-completeness for almost-sure winning
for safety objectives follows from the results on games with partial observa-



tion. We show the following: (a) positive winning for reachability objectives is
NLOGSPACE-complete; (b) positive winning for safety and coBüchi objectives
can be achieved in EXPTIME; and (c) the almost-sure winning for reachability
and positive winning for safety objectives is EXPTIME-hard (hence it follows
that almost-sure winning for reachability and Büchi, and positive winning for
safety and coBüchi objectives are EXPTIME-complete). This completes the pic-
ture for complexity of qualitative analysis for POMDPs with parity objectives.
We present optimal memory bounds (matching upper and lower bound) for pure
and randomized strategies for qualitative analysis: (a) for positive winning with
reachability objectives randomized memoryless strategies suffice, and for pure
strategies linear memory is necessary and sufficient; (b) for almost-sure win-
ning of reachability and Büchi objectives, and for positive winning of safety and
coBüchi objectives, and almost-sure winning for safety objectives we show that
exponential memory is necessary and sufficient for both pure and randomized
strategies. For positive winning of Büchi and almost-sure winning for coBüchi
there is no bound on memory for strategies: this follows from the fact that these
problems are undecidable.

Related work. Though MDPs has been more widely studied under the hypoth-
esis of perfect observation, there are also several works that consider POMDPs.
The work of [10, 9] considers POMDPs with several quantitative objectives for
finite-horizon; whereas our work considers POMDPs with ω-regular objectives
specified as parity objectives. The works of [1] presents several results related
to the upper bound of qualitative analysis of POMDPs with parity objectives,
and the works of [1, 7] shows undecidability results for some problems related to
qualitative analysis of POMDPs with parity objectives. We present a solution
to the remaining problems related to the qualitative analysis of POMDPs with
parity objectives, and complete the picture.

2 Definitions

Notations. For a finite set A, a probability distribution on A is a function κ : A →
[0, 1] such that

∑

a∈A κ(a) = 1. We denote the set of probability distributions
on A by D(A). Given a distribution κ ∈ D(A), let Supp(κ) = {a ∈ A | κ(a) > 0}
be the support of κ.

Games and Markov decision processes of partial observation. A game structure
or a Markov decision process (MDP) (of partial observation) is a tuple G =
〈L, Σ, δ,O, γ〉, where L is a finite set of states, Σ is a finite set of actions, O is
a finite set of observations, and γ : O → 2L\∅ maps each observation to the set
of states that it represents. In case of game structures, δ ⊆ L × Σ × L is a set
of labeled transitions; and in case of MDPs δ : L × A → D(L) is a probabilistic
transition function. We require the following two properties on G: (i) for game
structures we require that for all ℓ ∈ L and all σ ∈ Σ, there exists ℓ′ ∈ L
such that (ℓ, σ, ℓ′) ∈ δ; and (ii) for game structures and MDPs we require that
the set {γ(o) | o ∈ O} partitions S. We refer to a game structure of partial
observation as a POG and an MDP of partial observation as a POMDP. We



say that G is a game structure or MDP of perfect observation if O = L and
γ(ℓ) = {ℓ} for all ℓ ∈ L. We often omit (O, γ) in the description of games and
MDPs of perfect observation. For a game structure G, for σ ∈ Σ and s ⊆ L, let
PostGσ (s) = {ℓ′ ∈ L | ∃ℓ ∈ s : (ℓ, σ, ℓ′) ∈ δ}; and for an MDP G, for σ ∈ Σ and
s ⊆ L, let PostGσ (s) = {ℓ′ ∈ L | ∃ℓ ∈ s : δ(ℓ, σ)(ℓ′) > 0}.

Plays. In a game structure, in each turn, Player 1 chooses an action in Σ, and
Player 2 resolves nondeterminism by choosing the successor state, and in MDPs
the successor state is chosen according to the probabilistic transition function. A
play in G is an infinite sequence π = ℓ0σ0ℓ1 . . . σn−1ℓnσn . . . such that for all i ≥
0, we have (a) (ℓi, σi, ℓi+1) ∈ δ if G is a game structure, and (b) δ(ℓi, σ)(ℓi+1) > 0
if G is an MDP. The prefix up to ℓn of the play π is denoted by π(n); its length
is |π(n)| = n + 1; and its last element is Last(π(n)) = ℓn. The observation
sequence of π is the unique infinite sequence γ−1(π) = o0σ0o1 . . . σn−1onσn . . .
such that for all i ≥ 0, we have ℓi ∈ γ(oi). Similarly, the observation sequence of
π(n) is the prefix up to on of γ−1(π). The set of infinite plays in G is denoted
Plays(G), and the set of corresponding finite prefixes is denoted Prefs(G). A
state ℓ ∈ L is reachable in G if there exists a prefix ρ ∈ Prefs(G) such that
Last(ρ) = ℓ. For a prefix ρ ∈ Prefs(G), the cone Cone(ρ) = { π ∈ Plays(G) |
ρ is a prefix of π } is the set of plays that extend ρ. The knowledge associated
with a finite observation sequence τ = o0σ0o1σ1 . . . σn−1on is the set K(τ) of
states in which a play can be after this sequence of observations, that is, K(τ) =
{Last(ρ) | ρ ∈ Prefs(G) and γ−1(ρ) = τ}.

Lemma 1. Let G = 〈L, l0, Σ, δ,O, γ〉 be a POG or a POMDP. For σ ∈ Σ, ℓ ∈ L,
and ρ, ρ′ ∈ Prefs(G) with ρ′ = ρ · σ · ℓ, let oℓ ∈ O be the unique observation such
that ℓ ∈ γ(oℓ). Then K(γ−1(ρ′)) = PostGσ (K(γ−1(ρ))) ∩ γ(oℓ).

Strategies. A pure strategy in G for Player 1 is a function α : Prefs(G) → Σ.
A randomized strategy in G for Player 1 is a function α : Prefs(G) → D(Σ).
A (pure or randomized) strategy α for Player 1 is observation-based if for all
prefixes ρ, ρ′ ∈ Prefs(G), if γ−1(ρ) = γ−1(ρ′), then α(ρ) = α(ρ′). In the sequel,
we are interested in the existence of observation-based strategies for Player 1. A
pure strategy in G for Player 2 is a function β : Prefs(G) × Σ → L such that for
all ρ ∈ Prefs(G) and all σ ∈ Σ, we have (Last(ρ), σ, β(ρ, σ)) ∈ δ. A randomized
strategy in G for Player 2 is a function β : Prefs(G) × Σ → D(L) such that for
all ρ ∈ Prefs(G), all σ ∈ Σ, and all ℓ ∈ Supp(β(ρ, σ)), we have (Last(ρ), σ, ℓ) ∈ δ.
We denote by AG, AO

G, and BG the set of all Player-1 strategies, the set of all
observation-based Player-1 strategies, and the set of all Player-2 strategies in G,
respectively.

Memory requirements of strategies. An equivalent definition of strategies is
as follows. Let Mem be a set called memory. An observation-based strategy with
memory can be described as a pair of functions: (a) a memory-update function
αu: O × Mem → Mem that, given the memory and the current observation,
updates the memory; and (b) a next-action function αn: O × Mem → D(Σ)
that, given the memory and the observation, specifies the probability distribution



of the next action (a pure strategy specifies the next action, rather than the
probability distribution over actions). A strategy is finite-memory if the memory
Mem is finite and for a finite-memory strategy α the size of the strategy is the
size of its memory, i.e., |M |. A strategy is memoryless if the memory Mem is
a singleton set. The memoryless strategies do not depend on the history of a
play, but only on the current state. Each memoryless strategy for player 1 can
be specified as a function α: O → D(Σ).

Objectives. An objective for G is a set φ of infinite sequences of observations and
actions, that is, φ ⊆ (O × Σ)ω. A play π = ℓ0σ0ℓ1 . . . σn−1ℓnσn . . . ∈ Plays(G)
satisfies the objective φ, denoted π |= φ, if γ−1(π) ∈ φ. Objectives are generally
Borel measurable: a Borel objective is a Borel set in the Cantor topology on
(O × Σ)ω [8]. We specifically consider reachability, safety, Büchi, coBüchi, and
parity objectives, all of them Borel measurable. The parity objectives are a
canonical form to express all ω-regular objectives [12]. For a play π = ℓ0σ0ℓ1 . . . ,
we write Inf(π) for the set of observations that appear infinitely often in γ−1(π),
that is, Inf(π) = {o ∈ O | ℓi ∈ γ(o) for infinitely many i’s}.

– Reachability and safety objectives. Given a set T ⊆ O of target observations,
the reachability objective Reach(T ) requires that an observation in T be
visited at least once, that is, Reach(T ) = { ℓ0σ0ℓ1σ1 . . . ∈ Plays(G) | ∃k ≥
0·∃o ∈ T : ℓk ∈ γ(o)}. Dually, the safety objective Safe(T ) requires that only
observations in T be visited. Formally, Safe(T ) = { ℓ0σ0ℓ1σ1 . . . ∈ Plays(G) |
∀k ≥ 0 · ∃o ∈ T : ℓk ∈ γ(o) }.

– Büchi and coBüchi objectives. The Büchi objective Buchi(T ) requires that
an observation in T be visited infinitely often, that is, Buchi(T ) = { π |
Inf(π) ∩ T 6= ∅ }. Dually, the coBüchi objective coBuchi(T ) requires that
only observations in T be visited infinitely often. Formally, coBuchi(T ) =
{ π | Inf(π) ⊆ T }.

– Parity objectives. For d ∈ N, let p : O → { 0, 1, . . . , d} be a priority function,
which maps each observation to a nonnegative integer priority. The parity
objective Parity(p) requires that the minimum priority that appears infinitely
often be even. Formally, Parity(p) = { π | min{ p(o) | o ∈ Inf(π) } is even }.

Observe that by definition, for all objectives φ, if π |= φ and γ−1(π) = γ−1(π′),
then π′ |= φ. Given a Büchi objective Buchi(T ) consider the priority function
p : O → { 0, 1 } such that p(o) = 0 if o ∈ T , and 1 otherwise; then we have
Parity(p) = Buchi(T ). Similarly, given a coBüchi objective coBuchi(T ) consider
the priority function p : O → {1, 2} such that p(o) = 2 if o ∈ T , and 1 otherwise;
then we have Parity(p) = coBuchi(T ). Hence Büchi and coBüchi objectives are
special cases of parity objectives with two priorities.

Almost-sure and positive winning. An event is a measurable set of plays, and
given strategies α and β for the two players (resp. a strategy α for Player 1
in MDPs), the probabilities of events are uniquely defined [13]. For a Borel

objective φ, we denote by Prα,β
ℓ (φ) (resp. Prα

ℓ (φ) for MDPs) the probability that
φ is satisfied from the starting state ℓ given the strategies α and β (resp. given the



strategy α). Given a game structure G and a state ℓ, a strategy α for Player 1
is almost-sure winning (almost winning in short) (resp. positive winning) for
the objective φ from ℓ if for all randomized strategies β for Player 2, we have
Prα,β

ℓ (φ) = 1 (resp. Prα,β
ℓ (φ) > 0). Given an MDP G and a state ℓ, a strategy α

for Player 1 is almost winning (resp. positive winning) for the objective φ from
ℓ if we have Prα

ℓ (φ) = 1 (resp. Prα
ℓ (φ) > 0). We are interested in the decision

problems of existence of observation-based strategies for Player 1 that is almost
winning (resp. positive winning) from a given state ℓ.

3 Upper Bounds for the Qualitative Analysis of POMDPs

In this section we present upper bounds for the qualitative analysis of POMDPs.
It follows from the results of [1] that the decision problems for almost winning
for POMDPs with reachability, safety, and Büchi objectives can be solved in
EXPTIME. It also follows from the results of [1] that the decision problem
for almost winning for coBüchi objectives is undecidable if the strategies are
restricted to be pure, and the results of [7] shows that the problem remains
undecidable even if randomized strategies are considered. It also from the above
results that the decision problem for positive winning in POMDPs with Büchi
objectives is undecidable. In this section we present upper bounds for the decision
problems for positive winning for safety, reachability and coBüchi objectives to
complete the results on upper bounds on qualitative analysis of POMDPs.

3.1 Positive winning for reachability objectives

We first argue that the decision problem for positive winning with reachability
objectives in POMDPs is NLOGSPACE-complete.

Reduction to graph reachability. Given a POMDP G = 〈L, Σ, δ,O, γ〉 consider
the graph G = 〈L, E〉 as follows: (ℓ, ℓ′) ∈ E if there exists an action σ ∈ Σ
such that δ(ℓ, σ)(ℓ′) > 0. Let T ⊆ O be the set of target observations, and let
T =

⋃

o∈T γ(o) be the set of states that belong to the target observation. Let
ℓ be a starting state, then the following assertions hold: (a) if there is a path
π in G that reaches a state t ∈ T , then the randomized memoryless strategy
for Player 1 in G that plays all actions uniformly at random ensures that the
path π is executed in G with positive probability (i.e., ensure positive winning
for Reach(T ) in G from ℓ); and (b) if there is no path in G to reach T from ℓ,
then there is no strategy (and hence no observation-based strategy) for Player 1
in G to achieve Reach(T ). This shows that positive winning in POMDPs can
be decided in NLOGSPACE. Graphs are a special case of POMDPs and hence
graph reachability can be reduced to reachability with positive probability in
POMDPs. Hence it follows that the decision problem for positive winning with
reachability objectives is NLOGSPACE-complete.

Theorem 1. Given a POMDP G with a reachability objective and a starting
state ℓ, the decision problem that whether there is a positive winning strategy
from ℓ is NLOGSPACE-complete.



3.2 Positive winning for safety and coBüchi objectives

In this section we show that the decision problem for positive winning with
safety and coBüchi objectives for POMDPs can be solved in EXPTIME. We first
present the result for safety objectives, and the result is based on the subset (or
knowledge-based) construction.
Subset construction. Given a POMDP G = 〈L, Σ, δ,O, γ〉, we define the
knowledge-based subset construction of G as the MDP of perfect observation:

GK = 〈L, Σ, δK〉,

where L = 2L\{∅}, and δK(s1, σ)(s2) > 0 iff there exists an observation o ∈ O
such that s2 = PostGσ (s1) ∩ γ(o) and s2 6= ∅. Moreover, all transition positive
probabilities are assigned such that the probability distribution is uniform over
its support. We refer to states in GK as cells. A (pure or randomized) strategy in
GK is called a knowledge-based strategy. To distinguish between a general strat-
egy in G, an observation-based strategy in G, and a knowledge-based strategy
in GK, we often use the notations α, αo, and αK, respectively.

Lemma 2. For all cells s ∈ L that are reachable in GK from a starting location
s′ ⊆ γ(o′) for some observation o′ ∈ O, for all observations o ∈ O, either
s ⊆ γ(o) or s ∩ γ(o) = ∅.

By an abuse of notation, we define the observation sequence of a play
π = s0σ0s1 . . . σn−1snσn . . . ∈ Plays(GK) as the infinite sequence γ−1(π) =
o0σ0o1 . . . σn−1onσn . . . of observations such that for all i ≥ 0, we have si ⊆
γ(oi). This sequence is unique by Lemma 2. The play π satisfies an objective
φ ⊆ (O × Σ)ω if γ−1(π) ∈ φ. Given a POMDP G with a target set T of obser-
vations, and the safety objective Safe(T ) without loss of generality we assume
that every state ℓ ∈ L such that γ−1(ℓ) 6∈ T is an absorbing state (i.e., state
with only self-loops as out-going transitions): we assume so because if a play
reaches a state with an observation not in T , then the play is anyway loosing
for Player 1.

Lemma 3. Consider a POMDP G and the MDP GK constructed by subset con-
struction. Let T be the set of target observations, and let F = { s ⊆ L | s ⊆
γ(o), o ∈ T }. Let W be the set of cells in GK such that Player 1 has a positive
winning strategy for the objective Safe(F ). The following assertions hold:

1. If the initial knowledge for Player 1 is a cell in W in G, then there is an
observation-based strategy in G to satisfy Safe(T ) with positive probability.

2. If the initial knowledge for Player 1 is a cell in 2L \ W , then there is no
observation-based strategy for Player 1 to satisfy Safe(T ) with positive prob-
ability.

Proof. We present the proof in two parts. WLOG we assume that every state
with observations not in T is absorbing, and hence cells in 2L \ F are also
absorbing.



1. Since GK is an MDP of perfect observation, it follows that if there is a
positive winning strategy for the safety objective Safe(F ), then there is a
pure memoryless strategy in GK that is also positive winning for Safe(F ) [6,
5]. Let αK be a pure memoryless positive winning strategy for Player 1 in
GK for the objective Safe(F ) from the cells in W . Define αo a strategy for
Player 1 in G as follows: for every ρ ∈ Prefs(G), let αo(ρ) = αK(ρK) where
ρK is defined from ρ = ℓ0σ0ℓ1 . . . σn−1ℓn by ρK = s0σ0s1 . . . σn−1sn where
si = K(γ−1(ℓ0σ0ℓ1 . . . σi−1ℓi)) for each 0 ≤ i ≤ n. Clearly, αo is a pure
observation-based strategy as γ−1(ρ) = γ−1(ρ′) implies ρK = ρ′K. Since the
strategy αK is pure memoryless in GK, the strategy αo is a finite-memory
pure strategy with at most exponential (2O(|L|)) memory. Once the strategy
αK is fixed in GK we obtain a Markov chain. Since αK is positive winning,
it follows that in the Markov chain obtained, from every cell in W a closed
recurrent set C ⊆ W ⊆ F is reached with positive probability. Hence if the
strategy αo constructed from αK is fixed in G and the initial knowledge is a
cell in W , then it ensures the following: (a) there exist a subset O of states
in L that are labeled by observations in T , and once the set O is reached,
then the set O is never left (this corresponds to the closed recurrent set C in
GK); and (b) with positive probability a path is executed that goes through
only states labeled by observations in T , and reaches the set O. Hence the
strategy αo is positive winning in G, given the initial knowledge is a cell in
W .

2. Let W = 2L \ W be the set of cells in GK such that there is no positive
winning strategy for the objective Safe(F ). Hence from any cell in W , for
any knowledge-based strategy for Player 1 the following property hold: the
play remains in W and reaches cells in W \F with some positive probability
η > 0 in 2|L| steps. It follows if the initial knowledge for Player 1 in G is a
cell in W , then for any observation-based strategy in G, the probability to
reach an observation in O \ T in k · 2|L| steps is at least 1 − (1 − η′)k, for
some η′ > 0. As k goes to ∞, the value of 1− (1− η′)k goes to 1. Hence the
probability to stay safe in T is 0 for any observation-based Player 1 strategy,
with the initial knowledge in W .

The result follows. �

In the case of POMDPs, given the starting state is a state ℓ ∈ L, the initial
knowledge is the cell γ−1(ℓ). Hence the decision problem for positive winning
in POMDPs with safety objectives can be solved by solving the same problem
for MDPs with perfect observation of exponential size. Since positive winning in
MDPs of perfect observation with safety objectives can be solved in polynomial
time [6, 5], we obtain an EXPTIME upper bound for POMDPs.

Theorem 2. Given a POMDP G with a safety objective and a starting state ℓ,
the decision problem that whether there is a positive winning strategy from ℓ can
be decided in EXPTIME.

Positive winning for coBüchi objectives. We now show that we can solve
positive winning for POMDPs with coBüchi objectives by iteratively solving for



positive winning with reachability and safety objectives in POMDPs. Let G be a
POMDP with a coBüchi objective coBuchi(T ), where T ⊆ O. We construct the
MDP GK of perfect observation, and let C = { s ⊆ L | s ⊆ γ(o), o ∈ T }. We
consider the positive winning for the coBüchi objective coBuchi(C) in GK. The
set W of positive winning cells in GK is obtained as follows:

1. let W0 = ∅;

2. we obtain Wi+1 from Wi as follows: let Zi be the set of cells in GK such
that Player 1 can ensure staying safe in C ∪ Wi with positive probability,
and Wi+1 is obtained as the set of states that can reach Zi with positive
probability.

It follows from above that if the current knowledge is a cell in Wi+1, then either
Wi is reached with positive probability or the play eventually only visits states
in C. It follows from the proof of correctness for positive winning in POMDPs
with safety objective, that if the current knowledge is a cell in Wi+1, then there
is an observation-based strategy for Player 1 to ensure coBuchi(T ). Let W be
the fixpoint of the iteration, i.e., for some k we have Wk = Wk+1 = W . Let
W = 2L \ W . Then the following assertions hold.

1. From any cell W , Player 1 cannot ensure positive probability to stay safe in
C ∪W . Otherwise, such a cell would have been included in Zk+1 and hence
it would contradict that Wk = Wk+1. Hence for every Player 1 knowledge-
based strategy, if the initial knowledge is a cell in W , then the set (2L\C)∩W
is reached with probability 1. It follows that if the current knowledge is a
cell in W , then for any observation-based strategy in G, observations in the
set O \ T is reached with probability 1.

2. From every cell W , Player 1 cannot ensure to reach W with positive prob-
ability. Hence for every knowledge-based strategy for Player 1, if the initial
knowledge is a cell in W , then the play stays safe in W with probability 1.
Hence given a knowledge-based strategy for Player 1, from every cell in W ,
the set (2L \ C) ∩ W is reached with probability 1 and the game stays safe
in W . It follows that the set (2L \ C) ∩ W is visited with infinitely often
with probability 1, and this ensures that from W the coBüchi condition is
falsified with probability 1. Hence if the initial knowledge is a cell in W , then
for any observation-based strategy in G, the coBüchi objective coBuchi(T )
is falsified with probability 1.

Hence by iteratively solving positive winning in POMDPs with reachability and
safety objectives, the positive winning in POMDPs with coBüchi objectives can
be achieved. Hence we have the following result.

Theorem 3. Given a POMDP G with a coBüchi objective and a starting state
ℓ, the decision problem that whether there is a positive winning strategy from ℓ
can be decided in EXPTIME.



4 Lower Bounds for the Qualitative Analysis of POMDPs

In this section we present lower bounds for the qualitative analysis of POMDPs.
We first present the lower bounds for MDPs with perfect observation.

4.1 Lower bounds for MDPs with perfect observations

In the previous section we argued that for reachability objectives even in
POMDPs that positive winning problem can be solved in NLOGSPACE. The
lower bound of NLOGSPACE follows from a simple reduction of the reacha-
bility problem in graphs. For safety objectives and almost winning it is known
that an MDP can be equivalently considered as a game where Player 2 makes
choices of the successors from the support of the probability distribution of the
transition function, and the almost winning set is same in the MDP and the
game. Similarly, there is a reduction of games of perfect observations to MDPs
of perfect observation for almost winning with safety objectives. Since the prob-
lem of almost winning in games of perfect observation is PTIME-complete, the
result follows. We now show that the almost winning problem for reachability
and the positive winning problem for safety objectives is PTIME-complete for
MDPs with perfect observation.

Reduction from Circuit-Value-Problem (CVP). The CVP is as follows:
let N = { 1, 2, . . . , n } be a set of AND and OR gates, and I be a set of inputs.
The set of inputs is partitioned into I0 and I1; I0 is the set of inputs set to 0
(false) and I1 is the set of inputs set to 1 (true). Every gate receives two inputs
and produces an output; the inputs of a gate are outputs of another gate or an
input from the set I. The connection graph of the circuit must be acyclic. Let
the gate represented by the node 1 be the output node. The problem of deciding
whether the output is 1 or 0 is PTIME-complete. We now present reduction of
the CVP to MDPs with perfect observation for almost winning with reachability,
and positive winning with safety objectives.

1. Almost reachability. Given the CVP, we construct the MDP of perfect obser-
vation as follows: (a) the set states is N ∪ I; (b) the action set is Σ = { l, r };
(c) the transition function is as follows: every node in I is absorbing, and
for a state that represents a gate, (i) if it is a OR gate, then for the action
l the left input gate is chosen with probability 1, and for the action r the
right input gate is chosen with probability 1; and (ii) if it is AND gate, then
irrespective of the action the left and right input gate is chosen with proba-
bility 1/2. The output of the CVP from node 1 is 1 iff the set I1 is reached
from the state 1 in the MDP with probability 1 (i.e., the state 1 is almost
winning for the reachability objective Reach(I1).)

2. Positive safety. For positive winning with safety objectives, we take the CVP,
apply the same reduction as the reduction for almost reachability with the
following modifications: every state in I0 remains absorbing and from every
state in I1 the next state is the starting state 1 with probability 1 irrespective
of the action. The set of safety target is the set I1 ∪ N . If the output of the



CVP problem is 1, then from the starting state the set I1 is reached with
probability 1, and hence the safety objective with the target N∪I1 is ensured
with probability 1. If the output of the CVP problem is 0, then from the
starting state the set I0 is reached with positive probability η > 0 in n steps
against all strategies. Since from every state in I1 the successor state is the
state 1, it follows that the probability to reach I0 from the starting state 1
in k · (n + 1) steps is at least 1 − (1 − η)k, and this goes to 1 as k goes to
∞. Hence it follows that from state 1, the answer to the positive winning for
the safety objective Safe(N ∪ I1) is YES iff the output to the CVP is 1.

Theorem 4. Let G be an MDP of perfect observation, and let T be a sub-
set of states. Whether the set T can be reached with positive probability is
NLOGSPACE-complete; and whether the set T can reached with probability 1
or whether the safety in the set T can be ensured with probability 1 or positive
probability is PTIME-complete.

4.2 Lower bounds for POMDPs

We have already shown that positive winning with reachability objectives in
POMDPs is NLOGSPACE-complete. As in the case of MDPs with perfect ob-
servation, for safety objectives and almost winning a POMDP can be equivalently
considered as a game of partial observation where Player 2 makes choices of the
successors from the support of the probability distribution of the transition func-
tion, and the almost winning set is same in the POMDP and the game. Since the
problem of almost winning in games of partial observation with safety objective
is EXPTIME-complete [2], the EXPTIME-completeness result follows. We now
show that almost winning with reachability objectives and positive winning with
safety objectives is EXPTIME-complete. Before the result we first present a dis-
cussion on Alternating Polynomial-space (PSPACE) Turing Machines (APTM).
Discussion. Let M be APTM and w be a input word, then there is an exponential
bound on the number of configuration states. Hence if M can accept the word
w, then it can be done within some k|w| steps, here |w| is the length of the word
w, and k|w| is bounded by exponential in |w|. We construct an equivalent APTM
M ′ that behaves as M but keeps track (in polynomial space) in a counter the
number of steps of M , and given a word |w|, if the number of steps crosses k|w|

without accepting, then the word is rejected. The machine M ′ is equivalent to
M and reaches the accepting or rejecting states in a number of steps bounded by
an exponential in the length of the input word. The problem of given an APTM
M and a word w, whether M accepts w is EXPTIME-complete.

Lower bounds. Let M be an APTM such that for every input word w, the
accepting or the rejecting state is reached within exponential steps in |w|. A
polynomial-time reduction RG of an APTM M and an input word w to a game
structure G of partial observation is given in [4] such that (a) RG(M, w) = G;
(b) there is a special accepting state in G; (c) M accepts w iff there is a
observation-based strategy for Player 1 in G to reach the accepting state with
probability 1. If the above reduction is applied to M , then the game structure



satisfies the following additional properties: there is a special rejecting state
that is absorbing, and for every observation-based strategy for Player 1, either
(a) against all Player 2 strategies the accepting state is reached with probabil-
ity 1; or (b) there is a pure Player 2 strategy that reaches the rejecting state
with positive probability η > 0 in 2|L| steps and the accepting or the rejecting
state is reached with probability 1 in 2|L| steps. We now present the reduction
to POMDPs:

1. Almost winning with reachability. Given APTM M and w, let G =
RG(M, w). We construct a POMDP G′ from G as follows: we only mod-
ify the transition function in G′ by uniformly choosing over the successor
choices. Formally, for a state ℓ ∈ L and an action σ ∈ Σ the probabilistic
transition function δ′ in G′ is as follows:

δ′(ℓ, σ)(ℓ′) =

{

0 (ℓ, σ, ℓ′) 6∈ δ;

1/|{ ℓ1 | (ℓ, σ, ℓ1) ∈ δ }| (ℓ, σ, ℓ′) ∈ δ.

Given an observation-based strategy for Player 1 in G, we consider the same
strategy in G′: (1) if the strategy the reaches accepting state with probabil-
ity 1 against all Player 2 strategies in G, then the strategy ensures that in
G′ the accepting state is reached with probability 1; and (2) otherwise there
is a pure Player 2 strategy β in G that ensures the rejecting state is reached
in 2|L| steps with probability η > 0, and with probability at least (1/|L|)|L|

the choices of the successors of strategy β is chosen in G′, and hence the
rejecting state is reached with probability at least (1/|L|)|L| · η > 0. It fol-
lows that in G′ there is an observation-based strategy for almost winning
the reachability objective with target of the accepting state iff there is such
a strategy in G. The result follows.

2. Positive winning with safety. The reduction is same as above. We obtain the
POMDP G′′ from the POMDP G′ above by making the following modifica-
tion: from the state accepting, the POMDP goes back to the initial state
with probability 1. If there is an observation-based strategy α for Player 1 in
G′ to reach the accepting state, then repeating the strategy α everytime the
accepting state is visited, it can be ensured that the rejecting state is reached
with probability 0. Otherwise, against every observation-based strategy for
Player 1, the probability to reach the rejecting state in k · (2|L| + 1) steps is
at least 1 − (1 − η′)k, where η′ = η · (1/|L|)|L| > 0 (this is because there is
a probability to reach the rejecting state with probability at least η′ in 2|L|

steps, and unless the rejecting state is reached the starting state is again
reached within 2|L| + 1 steps). Hence the probability to reach the rejecting
state is 1. It follows that G′ is almost winning for the reachability objective
with the target of the accepting state iff in G′′ there is an observation-based
strategy for Player 1 to ensure that the rejecting state is avoided with posi-
tive probability. This completes the proof of correctness of the reduction.

Hence we have the following theorem, and the results are summarized in
Table 1.



Theorem 5. Let G be a POMDP and T be a set of observations. Whether the
set T can be reached with positive probability is NLOGSPACE-complete; and
whether the set T can reached with probability 1 or whether the safety in the set
T can be ensured with probability 1 or positive probability is EXPTIME-complete.

Positive Almost

Reachability NLOGSPACE-complete (up+lo) EXPTIME-complete (lo)

Safety EXPTIME-complete (up+lo) EXPTIME-complete

Büchi Undecidable EXPTIME-complete (lo)

coBüchi EXPTIME-complete (up+lo) Undecidable

Parity Undecidable Undecidable

Table 1. Computational complexity of POMDPs with different classes of parity objec-
tives for positive and almost winning. Our contribution of upper and lower bounds are
indicated as “up” and “lo” respectively in parenthesis.

5 Optimal Memory Bounds for Strategies

In this section we present optimal bounds on the memory required by pure and
randomized strategies for positive and almost winning for reachability, safety,
Büchi and coBüchi objectives.

5.1 Bounds for safety objectives

In this subsection we present optimal memory bounds for strategies for positive
and almost winning with safety objectives in POMDPs. It follows from the cor-
rectness argument of Theorem 2 (the proof of Lemma 3) the pure strategies with
exponential memory is sufficient for positive winning with safety objectives in
POMDPs, and the exponential upper bound on memory of pure strategies for
almost winning with safety objectives in POMDPs follows from the reduction
to games. We now present a matching exponential lower bound for randomized
strategies.

Lemma 4. There exists a family (Pn)n∈N of POMDPs of size O(p(n)) for a
polynomial p with a safety objective such that the following assertions hold:
(a) Player 1 has an almost (and therefore also positive) winning strategy in each
of these POMDPs; and (b) there exists a polynomial q such that every finite-
memory randomized strategy for Player 1 that is positive (or almost) winning in
Pn has at least 2q(n) states.
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Preliminary. Let p1, p2, . . . be the list of prime numbers in increasing order. For
n ≥ 1, let Σn = {1, . . . , n}. The set of actions of the POMDP Pn is Σn∪{#}. The
POMDP is composed of an initial state q0 and n sub-MDPs Ai, each consisting
of a loop over pi states q1, . . . , qpi

. From each state qj (1 ≤ j < pi), every action
in Σn leads to the next state qj+1 with probability 1

2 , and to the initial state
q0 with probability 1

2 . The action # is not allowed. From qpi
, the action i is

not allowed while the other actions in Σn lead back the first state qi
1 and to the

initial state q0 both with probability 1
2 . Moreover, the action # leads back to

the initial state (with probability 1). The disallowed actions lead to a bad state.
We assume that the state spaces Li of the Ai’s are disjoint.

Game family (Pn)n∈N. The state space of Pn is the disjoint union of Q1, . . . , Qn

and {q0, Bad}. The initial state is q0, the final state is Bad. The probabilistic
transition function is as follows:

– for all 1 ≤ i ≤ n and σ ∈ Σn, we have δ(q0, σ, )(qi
1) = 1

n
;

– for all 1 ≤ i ≤ n, 1 ≤ j < pi, and σ ∈ Σn, σ′ ∈ Σn \ {i}, we have
δ(qi

j , σ)(qi
j+1) = δ(qi

j , σ)(q0) = δ(qi
pi

, σ′)(qi
1) = δ(qi

pi
, σ′)(qi

1) = 1
2 ; and

– for all 1 ≤ i ≤ n and 1 ≤ j < pi, we have δ(q0, #)(Bad) = δ(qi
j , #)(Bad) =

δ(qi
pi

, #)(q0) = 1.

The initial state is q0, there are two observations, the state {q0} is labelled by
observation o1, and the other states in Q1∪· · ·∪Qn that we refer to as the initial
state and the loops respectively are labelled by observation o2. Fig. 1 shows the
game P2.

Proof of Lemma 4. After the first transition from the initial state, player 1 has
the following positive winning strategy. Let p∗n =

∏n
i=1 pi. While the POMDP is

in the loops (assume that we have seen j times observation o2 consecutively), if
1 ≤ j < p∗n, then play any action i such that j mod pi 6= 0 (this is well defined



since p∗n is the lcm of p1, . . . , pn), and otherwise play #. It is easy to show that
this strategy is winning for the safety condition, with probability 1.

For the second part of the result, assume towards contradiction that there
exists a finite-memory randomized strategy α̂ that is positive winning for Player 1
and has less than p∗n states (since p∗n is exponential in s∗n =

∑n
i=1 pi, the result

will follow). Let η be the least positive transition probability described by the
finite-state strategy α̂. Consider any history of a play ρ that ends with o1. We
claim that the following properties hold: (a) with probability 1 either observation
o1 is visited again from ρ or the state Bad is reached; and (b) the state Bad is
reached with a positive probability. The first property (property (a)) follows from
the fact that for all actions the loops are left (the state q0 or Bad is reached)
with probability at least 1

2 . We now prove the second property by showing that
the state Bad is reached with probability at least ∆n = 1

n
· 1

(2·η)p∗n
. To see this,

consider the sequence of actions played by strategy α̂ after ρ when only o2 is
observed. Either # is never played, and then the action played by α̂ after a
sequence of p∗n states leads to Bad (the current state being then qi

pi
for some

1 ≤ i ≤ n). This occurs with probability at least ∆n; or # is eventually played,
but since α̂ has less than p∗n states, it has to be played after less than p∗n steps,
which also leads to Bad with probability at least ∆n. The above two properties
that (a) o1∪{Bad} is reached with probability 1 from o1, and (b) within p∗n steps
after a visit to o1, the state Bad is reached with fixed positive probability, ensures
that Bad is reached with probability 1. Hence α̂ is not positive winning. It follows
that randomized strategies that are almost or positive winning in POMDPs with
safety objective requires exponential memory.

5.2 Bounds for reachability objectives

We first present the bound for positive winning, and then for almost winning
with reachability objectives in POMDPs.

Memory bounds. We now argue the memory bounds for pure and randomized
strategies for positive winning with reachability objectives.

1. It follows from correctness argument of Theorem 1 that randomized mem-
oryless strategies suffice for positive winning with reachability objectives in
POMDPs.

2. We now argue that for pure strategies memory linear in the number of states
is sufficient and necessary. The upper bound follows from the reduction to
graph reachability. Given a POMDP G, consider the graph G constructed
from G as in the correctness argument for Theorem 1. Given the starting
state ℓ, if there is path in G to the target set T , then there is a path π of
length at most |L|. The pure strategy for Player 1 in G can play the sequence
of actions of the path π to ensure that the target observations T are reached
with positive probability in G. The family of examples to show that pure
strategies require linear memory can be constructed as follows: we construct
a POMDP with deterministic transition function such that there is a unique
path (sequence of actions) of length O(|L|) to the target, and any deviation



leads to an absorbing state, and other than the target state every other state
has the same observation. In this POMDP any pure strategy must remember
the exact sequence of actions to be played and hence requires O(|L|) memory.

It follows from the results of [1] that for almost winning with reachability objec-
tives in POMDPs pure strategies with exponential memory suffices, and we now
prove an exponential lower bound for randomized strategies.

Lemma 5. There exists a family (Pn)n∈N of POMDPs of size O(p(n)) for a
polynomial p with a reachability objective such that the following assertions hold:
(a) Player 1 has an almost winning strategy in each of these POMDPs; and
(b) there exists a polynomial q such that every finite-memory randomized strategy
for Player 1 that is almost winning in Pn has at least 2q(n) states.

Fix the action set as Σ = {#, tick}. The POMDP P ′
n is composed of an initial

state q0 and n sub-MDPs Hi, each consisting of a loop over pi states q1, . . . , qpi
.

From each state in the loops, the action tick can be played and leads to the next
state in the loop (with probability 1). The action # can be played in the last
state of each loop and leads to the Goal state. The objective is to reach Goal

with probability 1. Actions that are not allowed lead to a sink state from which
it is impossible to reach Goal. There is a unique observation that consists of the
whole state space. Fig. 2 shows P ′

2.

Proof of Lemma 5. First we show that Player 1 has an almost winning strat-
egy in P ′

k (from q0). As there is only one observation, a strategy for Player
1 corresponds to a function α : N → Σ. Consider the strategy α∗ as follows:
α∗(j) = tick for all 0 ≤ j < p∗k and α∗(j) = # for all j ≥ p∗k. It is easy to check
that α∗ ensures winning with certainty and hence almost winning.

For the second part of the result assume, towards a contradiction, that there
exists a finite-memory randomized strategy α̂ that is almost winning and has
less than p∗k states. Clearly, α̂ cannot play # before the (p∗k + 1)-th round since
in one of the subMDPs Hi would not be in qi

pi
and therefore Player 1 would

loose with probability at least 1
n
. Note that the state reached by the strategy

automaton defining α̂ after p∗k rounds has necessarily been visited in a previous
round. Since β has to play # eventually to reach Goal, this means that # must
have been played in some round j < p∗k, when at least one of the subgames
subgames Hi was not in location qi

pi
, so that Player 1 would have already lost

with probability at least 1
n
· η, where η is the least positive probability specified

by α̂. This is in contradiction with our assumption that α̂ is an almost winning
strategy.

Bounds for Büchi and coBüchi objectives. An exponential upper bound
for memory of pure strategies for almost winning of Büchi objectives follows
from the results of [1], and the matching lower bound for randomized strategies
follows from our result for reachability objectives. Since positive winning is un-
decidable for Büchi objectives there is no bound on memory for pure or random-
ized strategies for positive winning. An exponential upper bound for memory



of pure strategies for positive winning of coBüchi objectives follows from the
correctness proof of Theorem 3 that iteratively combines the positive winning
strategies for safety and reachability to obtain a positive winning strategy for
coBüchi objective. The matching lower bound for randomized strategies follows
from our result for safety objectives. Since almost winning is undecidable for
coBüchi objectives there is no bound on memory for pure or randomized strate-
gies for positive winning. This gives us the following theorem (also summarized
in Table 2), which is in contrast to the results for MDPs with perfect observation
where pure memoryless strategies suffices for almost and positive winning for all
parity objectives.

Theorem 6. The optimal memory bounds for strategies in POMDPs is as fol-
lows.

1. Reachability objectives: for positive winning randomized memoryless strate-
gies exist, and linear memory is necessary and sufficient for pure strategies;
and for almost winning exponential memory is necessary and sufficient for
both pure and randomized strategies.

2. Safety objectives: for positive winning and almost winning exponential mem-
ory is necessary and sufficient for both pure and randomized strategies.

3. Büchi objectives: for almost winning exponential memory is necessary and
sufficient for both pure and randomized strategies; and there is no bound on
memory for pure and randomized strategies for positive winning.

4. coBüchi objectives: for positive winning exponential memory is necessary and
sufficient for both pure and randomized strategies; and there is no bound on
memory for pure and randomized strategies for almost winning.

Pure Positive Randomized Positive Pure Almost Randomized Almost

Reachability Linear Memoryless Exponential Exponential

Safety Exponential Exponential Exponential Exponential

Büchi No Bound No Bound Exponential Exponential

coBüchi Exponential Exponential No Bound No Bound

Parity No Bound No Bound No Bound No Bound

Table 2. Optimal memory bounds for pure and randomized strategies for positive and
almost winning.
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