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Abstract 

The whole life cycle of plants as well as their responses to environmental stimuli is governed 

by a complex network of hormonal regulations. A number of studies have demonstrated an 

essential role of both auxin and cytokinin in the regulation of many aspects of plant growth 

and development including embryogenesis, postembryonic organogenic processes such as 

root, and shoot branching, root and shoot apical meristem activity and phyllotaxis. Over the 

last decades essential knowledge on the key molecular factors and pathways that spatio-

temporally define auxin and cytokinin activities in the plant body has accumulated. However, 

how both hormonal pathways are interconnected by a complex network of interactions and 

feedback circuits that determines the final outcome of the individual hormone actions is still 

largely unknown. Root system architecture establishment and in particular formation of 

lateral organs is prime example of developmental process at whose regulation both auxin and 

cytokinin pathways converge. To dissect convergence points and pathways that tightly 

balance auxin - cytokinin antagonistic activities that determine the root branching pattern 

transcriptome profiling was applied. Genome wide expression analyses of the xylem pole 

pericycle, a tissue giving rise to lateral roots, led to identification of genes  that are highly 

responsive to combinatorial auxin and cytokinin treatments and play an essential  function in 

the auxin-cytokinin regulated root branching. 

SYNERGISTIC AUXIN CYTOKININ 1 (SYAC1) gene, which encodes for a protein of 

unknown function, was detected among the top candidate genes of which expression was 

synergistically up-regulated by simultaneous hormonal treatment. Plants with modulated 

SYAC1 activity exhibit severe defects in the root system establishment and attenuate 

developmental responses to both auxin and cytokinin. To explore the biological function of 

the SYAC1, we employed different strategies including expression pattern analysis, 

subcellular localization and phenotypic analyses of the syac1 loss-of-function and gain-of-

function transgenic lines along with the identification of the SYAC1 interaction partners. 

Detailed functional characterization revealed that SYAC1 acts as a developmentally specific 

regulator of the secretory pathway to control deposition of cell wall components and thereby 

rapidly fine tune elongation growth. 
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1.1 Introduction 
 
The concept of plant hormones as chemical messengers that control plant growth and 

development is not a new one. Already in 1758, Duhamel du Monceau's experiments 

suggested communication between plant organs and showed that sap moving from the leaves 

controls root growth (du Monceau, 1758). More than a century later Julius von Sachs 

proposed that plants produce “organ-forming substances” - molecules moving to different 

parts of the plant where they control initiation and development of specific plant organs (von 

Sachs, 1880). Finally, Charles and Francis Darwin, with their experiments on phototropism of 

coleoptiles (described in "The Power of Movement in Plants" (Darwin, 1880)) that later led to 

the discovery of auxin by Went (1928), fully launched the modern research in plant growth 

substances.  

The first note about cytokinin comes from 1913 when Gottlieb Haberlandt observed 

that compounds from phloem could stimulate cell division in potato parenchyma cells 

(Haberlandt, 1913). In the 1950s, kinetin, an active compound stimulating cell division, was 

isolated from herring sperm (Miller et al., 1956). The first naturally occurring cytokinin in 

plants named zeatin was isolated from immature maize endosperm (Letham, 1973).  

Since these initial discoveries, a great number of studies have demonstrated an 

essential role of both auxin and cytokinin in the regulation of many aspects of plant growth 

and development including embryogenesis (Friml et al., 2003; Müller and Sheen, 2008), 

postembryonic organogenic processes such as  root (Fukaki et al., 2002; Benková et al., 2003; 

De Smet et al., 2007; Laplaze et al., 2007; Bielach et al., 2012), and shoot branching (Leyser, 

2009; Shimizu-Sato et al., 2009; Müller et al., 2015), root (Friml et al., 2002; Blilou et al., 

2005; Dello Ioio et al., 2008; Růžička et al., 2009) and shoot apical meristem activity and 

phyllotaxis (Reinhardt et al., 2003; Zhao et al., 2010; Yoshida et al., 2011; Chickarmane et 

al., 2012) vasculature development (Mähönen et al., 2006a; Hejátko et al., 2009; Bishopp et 
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al., 2011b) as well as tropic responses (Rouse et al., 1998; Müller et al., 1998; Luschning et 

al., 1998). Importantly, a classic series of experiments by Skoog and Miller (1957) 

demonstrated that the ratio of cytokinin to auxin profoundly influences the morphogenesis of 

roots and shoots in plant tissue culture. This was one of the first studies revealing auxin and 

cytokinin interaction in the differentiation of plant organs and pointed at hormonal cross-talk 

as an important aspect of auxin and cytokinin regulatory functions (reviewed in Moubayidin 

et al., 2009; Depuydt and Hardtke 2011; Schaller et al., 2015). 

Nevertheless, it has been primarily the recent boom of modern technologies and 

approaches including analytical chemistry, biochemistry, molecular biology, genetics, cell 

and developmental biology that have enabled rapid progress in deciphering the auxin and 

cytokinin activities at the molecular level. Due to ongoing improvements and development of 

new methods, we are gaining deeper insights into mechanisms that control auxin and 

cytokinin biosynthesis, distribution, perception and signal transduction as well as insights 

into their functions in the regulation of plant growth and development. In this review, we 

shall briefly discuss the major recent progress made in this area, and highlight the importance 

of continuous methodological improvements. 

 

1.2 Discovery of auxin and cytokinin  
 

Discovery of auxin is tightly linked with Darwin’s early studies on coleoptiles. Based 

on the bending of coleoptiles toward unilateral light, the existence of a messenger molecule 

named auxein (from the Greek “auxein” meaning ‘’to grow’’) was predicted, which was 

apparently transported from the site of light perception at the tip of coleoptile towards the site 

of response where bending occurs (Darwin 1880). Later, it was demonstrated that an 

asymmetric accumulation of auxin at the non-illuminated side compared to the illuminated 

side correlated with differential cell growth and organ bending (Boysen-Jensen, 1911). A 

model implementing a role for auxin and its asymmetric distribution in the regulation of plant 

tropic responses was proposed (Cholodny, 1927, 1928; Went, 1928). Although the existence 

of auxin as a molecule controlling plant growth had been predicted already by Darwin in 

1880, its chemical identity remained unknown for a long time. In 1928 Went succeeded in 

capturing this growth substance from coleoptile tips into agar blocks and demonstrated its 

biological activity (Went, 1928). However, due to insufficient analytical methods for 

detecting low amounts of the hormone, the first auxin (indole-3-acetic acid, IAA) was 

purified from human urine and culture filtrates of several fungi, both of which are rich 



 
 

sources of substances with auxin activity when tested in the bioassays (Kögl et al. 1934; 

Thimann and Koepfli 1935). A decade later IAA was eventually discovered in a plant (Zea 

mays) (Haagen-Smit et al. 1946). 

The first experimental indication of the existence of cytokinins was reported by 

Gottlieb Haberlandt (1913), who observed that phloem sap can stimulate division of potato 

parenchyma cells. Further studies showed that compounds which trigger cell division are 

present in various other plant species (van Overbeek, 1941; Jablonski and Skoog, 1954). The 

first molecule with the ability to promote cell division was purified from autoclaved herring 

sperm DNA. The compound 6-(furfurylamino) purine was named kinetin, and although it is 

one of the most biologically active cytokinins, it is formed as a DNA degradation product and 

is not detected in plant tissues (Miller et al., 1955; Hall and de Ropp, 1955). The first 

naturally occurring cytokinin, zeatin, was almost simultaneously isolated from Zea mays by 

Miller (1961) and Letham (1963). Since then, many naturally occurring cytokinins have been 

isolated and found to be ubiquitous to all plant species (Salisbury and Ross, 1992). 

The discovery and identification of auxin and cytokinins triggered the interest of 

researchers, who then diversified to explore pathways that underlie auxin and cytokinin 

biosynthesis and metabolism, their distribution, as well as perception and signal transduction 

of these two plant hormones. The establishment of Arabidopsis thaliana as a model organism 

for plant molecular biology was one of the important milestones in hormone molecular 

biology. The use of Arabidopsis for mutant screens based on sensitivities to auxin and 

cytokinin enabled the identification of genes and pathways controlling their metabolism, 

transport, perception and signaling. These in combination with novel technologies and 

approaches, such as large scale transcriptome profiling, proteomics, chemical genomics, and 

most recently mathematical modelling, resulted in major breakthroughs in our understanding 

of auxin and cytokinin biology.  

 

1.3 Auxin and cytokinin: insights into biosynthesis 
 

Although IAA had been recognized as the main native auxin already in 1935 

(Thimann, and Koepfli), the question as to how auxin is synthesized remained unanswered 

for more than 70 years afterwards. Using genetic and biochemical tools, it has been found 

that IAA is mainly synthesized from L-tryptophan (Trp) via indole-3-pyruvate (IPA) in a 

two-step reaction catalysed by TRYPTOPHAN AMINOTRANSFERASE OF 

ARABIDOPSIS (TAA) and YUCCA (YUC) (Figure 1a). The TAA family of amino 
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transferases which mediate the first step of the pathway was isolated from independent 

genetic screens for mutants affected in shade, ethylene, and responses to the auxin transport 

inhibitor NPA (Stepanova et al., 2008; Tao et al., 2008; Yamada et al., 2009). Severe auxin 

deficient phenotypes (in developmental processes such as embryogenesis, seedling growth, 

flower development, vascular patterning, root branching, tropisms, and shade avoidance) as 

well as reduced endogenous auxin levels were observed in mutants lacking activity of TAA1 

and the homologous TAR1 and TAR2, which indicated their function in auxin homeostasis 

maintenance (Stepanova et al., 2008). The phenotypic defects observed in TAA1/TAR 

deficient mutants were partially rescued by auxin, whereas induction of TAA1 led to the 

accumulation of endogenous IPA. Importantly, the recombinant TAA1 protein has been 

found to catalyse the conversion of Trp into IPA in vitro thus providing evidence for its direct 

involvement in auxin biosynthesis (Stepanova et al., 2008; Tao et al., 2008).  

 



 
 

Similarly to TAA1, YUC genes were originally identified by a genetic screen in 

Arabidopsis. Using an activation-tagged mutant library, a flavin-containing monooxygenase 

YUC1 was isolated. The YUC1 (yuc1D) gain-of-function mutant exhibits increase in 

endogenous IAA and phenotypic alterations mimicking high auxin activity. Disruption of 

several YUC genes in Arabidopsis leads to defects in embryogenesis, seedling growth, flower 

development, and vascular pattern formation (Cheng et al., 2006, 2007). The developmental 

defects of the loss-of-function yuc mutants are rescued by the bacterial auxin biosynthesis 

gene iaaM, supporting YUC genes function in auxin biosynthesis (Cheng et al., 2006). 

Although previously proposed to act in two independent pathways, recent genetic and 

biochemical studies showed that the TAAs and YUCs catalyse two consecutive reactions in 

the same pathway that converts Trp to IAA. Multiple lines of evidence support this model 

including similarities of both taa and yuc mutants phenotypes (Won et al., 2011) and 

enhancement of the auxin related phenotypes when both YUC and TAA are overexpressed in 

the same plants (Mashiguchi et al., 2011). Additionally, the YUC auxin overproduction 

phenotypes are suppressed in the taa mutant backgrounds, indicating that TAA acts upstream 

of YUC-mediated auxin biosynthesis (Won et al., 2011). Direct measurement of IPA levels 

reveals that yuc mutants accumulate IPA whereas taa mutants are partially IPA deficient, 

suggesting that TAAs catalyses synthesis of IPA which is converted by YUCs to IAA 

(Mashiguchi et al., 2011; Won et al., 2011). Finally, in vitro biochemical assays have 

demonstrated that TAA can convert Trp to IPA and that YUCs produce IAA using IPA as a 

substrate (Mashiguchi et al., 2011).  

Early physiological studies on auxin biosynthesis suggested that auxin is primarily 

synthesized in the young developing organs such as leaves, shoot apical meristems, and 

developing fruits and seeds (Bartel, 1997; Ljung et al., 2001). The expression pattern of TAA 

and YUC genes modifies this established view on auxin biosynthesis. Local auxin production 

seems to take place in very distinct cell types, including root and apical embryo meristems, 

the root cap, quiescent centre (QC), root proximal meristem, vasculature of hypocotyls, as 

Figure 1 Biosynthesis pathways of auxin and cytokinin. (a) Auxin is synthesized from tryptophan (Trp), 
which is firstly converted by the TAA transaminase to IPA and then undergoes oxidative decarboxylation 
catalyzed by the YUC flavin monooxygenase. (b) Common cytokinins found in plants include the isoprenoid 
cytokinins trans-zeatin (tz) and isopentenyl-adenine (iP). Benzyladenine (BA) is a commonly used synthetic 
aromatic cytokinin. (c) The cytokinin biosynthesis pathway, highlighting the key enzymes involved. The initial 
step, in which dimethylallyl diphosphate (DMAPP) reacts with adenosine monophosphate (AMP) to form iP 
riboside 5′-monophosphate (iPRMP), is catalysed by the IPT gene family. Subsequently, cytochrome P450 
mono-oxygenase (CYP735A) converts iPRMP into the tz nucleotide tz riboside 5′monophosphate (tzRMP). 
Finally, enzymes encoded by the LOG gene family catalyse the conversion of tzRMP into an active cytokinin 
form, in this case tz. Adapted from Dai et al., (2013) and El-Showk et al., (2013) 
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well as apical hooks, thus hinting at the spatio-temporal control of the IAA biosynthesis 

throughout plant growth and development (Chent et al., 2006, 2007; Stepanova et al., 2008; 

Tao et al., 2008). Several transcription factors which control TAA and YUC genes expression 

have been identified and thus might determine spatio-temporal pattern of the IAA 

biosynthesis. LEAFY COTYLEDON2 (LEC2) (Stone et al., 2008) SHORT INTERNODES/ 

STYLISH (SHI/STY) (Eklund et al., 2010), PHYTOCHROME-INTERACTING FACTORs 

(PIFs) (Franklin et al., 2011; Sun et al., 2012), INDETERMINATE DOMAIN (IDD) (Cui et 

al., 2012) and PLETHORA family members (Pinon et al., 2013) have been reported as 

transcriptional activators of YUC and TAA1 genes. In contrast, the 

SPOROCYTELESS/NOZZLE (SPL/NZZ) transcription factor, has been shown to negatively 

regulate some of YUC genes (Li et al., 2008).  

Chemical biology-based studies provided additional support for the central role of the 

IPA pathway in IAA production. Chemical screens for auxin inhibitors uncovered L-

kynurenine and L-amino-oxyphenylpropionic acid (L-AOPP) as TAA inhibitors and yucasin 

as a YUC inhibitor. Application of these compounds reduces endogenous IAA levels and 

results in phenotype alterations mimicking mutants deficient in auxin biosynthesis (Soeno et 

al., 2010; He et al., 2011; Nishimura et al., 2014).  

Overall, genetic and biochemical analyses support the YUCs/TAAs mediated auxin 

biosynthesis as the major pathway used to produce auxin during plant development, whereas 

other pathways catalysed by CYP79B2/B3, nitrilases, aldehyde oxidases, and pyruvate 

decarboxylases might not be the main pathways in auxin biosynthesis (Zhao, 2012). 

The great progress in elucidation of the cytokinin biosynthesis pathway occurred 

almost 20 years after identification of the chemical nature of cytokinins by Miller (1961) and 

Letham (1963). In 1978 Taya and co-workers reported biosynthesis of free cytokinins in vitro 

and demonstrated that cell-free extracts of the slime mold Dictyostelium discoideum converts 

adenosine monophosphate (AMP) and dimethylallyl pyrophosphate (DMAPP) to the active 

cytokinin iPMP (N6-(D2-isopentenyl)adenosine-5’-monophosphate (Taya et al., 1978). 

Subsequently, the ISOPENTENYLTRANSFERASE (IPT) gene from Agrobacterium 

tumefaciens was shown to encode an enzyme with similar activity (Akiyoshi et al., 1984). 

Later, nine IPT-homologues genes were identified by an in silico search in the A.thaliana 

genome. The expression of IPT genes (except AtIPT2 and AtIPT9) in E. coli resulted in the 

secretion of the cytokinins isopentenyladenine (iP) and zeatin, confirming their function as 

cytokinin biosynthetic enzymes (Takei et al., 2001). IPT genes display distinct, tissue-



 
 

specific patterns of expression, indicative of cytokinin production sites (Miyawaki et al., 

2004; Takei et al., 2004a).  

Free iP-riboside generated via the IPT pathway, as well as the corresponding base, are further 

stereospecifically hydroxylated to trans-zeatin forms. The CYP735A1 and CYP735A2 

encoding cytochrome P450 monooxygenases with cytokinin trans-hydroxylase enzymatic 

activity were identified in A.thaliana by a screen employing an (AtIPT4)/P450 co-expression 

system in Saccharomyces cerevisiae (Takei et al., 2004b).  

The final step in cytokinin biosynthesis, conversion of the cytokinin ribotides to their active, 

free base forms is catalyzed by the cytokinin nucleoside 5´-monophosphate 

phosphoribohydrolase LONELY GUY (LOG). These were first identified in rice by a genetic 

screen for defects in the maintenance of shoot meristems (Kurakawa et al., 2007). In 

A.thaliana, seven homologous genes that encode active LOG enzymes were detected. The 

LOG genes are differentially expressed in various tissues during plant development. (Kuroha 

et al., 2009). In accordance with their predicted function the conditional overexpression of 

LOGs in Arabidopsis reduced the content of iP riboside 5´-phosphates and increased the 

levels of iP and the glucosides (Kuroha et al., 2009) Alternatively, the cytokinin ribotides are 

dephosphorylated to the ribosides and subsequently converted to free-base cytokinins (Chen 

and Kristopeit 1981a, 1981b), however the corresponding genes have not yet been identified 

(Figure 1b and c). 

Levels of active cytokinins in plant cells are tightly controlled. They might be either 

converted to storage forms through conjugation to glucose (Martine et al., 1998; Hou et al., 

2004) or inactivated through irreversible cleavage by cytokinin oxidases (Werner et al., 2001; 

Werner et al., 2003), (Figure 1c). Development of highly sensitive analytical methods were 

instrumental in the detection of numerous cytokinins metabolites and in deciphering complex 

cytokinin metabolism, followed by identification of the corresponding metabolic enzymes 

and genes (Letham and Palni 1983; Mok and Mok 2001; Tarkowski et al., 2009).  

 

1.4 Transport of auxin and cytokinin  
 

By definition, hormones are chemical messengers that are transported to distant 

tissues and organs to regulate their physiology and development. Darwin’s early experiments 

on coleoptiles had already indicated that controlled transport of auxin from the tip of 

coleoptile to the bending region might be an essential part of the mechanism through which 

auxin executes its regulatory function. Later, based on the transport studies, it was proposed 
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that cytokinins and auxin are synthesized only in root tips and shoot apices, respectively, and 

translocated to target tissues. Although the recent detailed investigations of expression 

patterns of auxin and cytokinin biosynthesis genes questions this over-simplified model, the 

tight control of hormone distribution through organs and tissues is considered to be the 

crucial component of their regulatory mechanisms. Nowadays, the broadly accepted concept 

is that both hormones are synthesized and act at various sites in a plant body and that they 

have coordinated functions as long-distance messengers as well as local signals. 

The classical transport assays using radioactively labeled auxins outlined main routes 

of auxin movement in plants (Morris and Thomas, 1978).  To transport auxin, plants use two 

distinct pathways: a non-polar passive distribution through phloem and an active cell-to-cell 

polar auxin transport (PAT). In the first pathway, most of the auxin and auxin derivatives are 

rapidly transported via unregulated flow in the mature phloem over long distances in both 

basipetal and acropetal directions (Nowacki and Bandurski, 1980). The second pathway is 

slower and acts over shorter distances, transporting auxin in a cell-to-cell manner from the 

shoot towards the root. In contrast to phloem transport, PAT is specific for active free auxins, 

occurs in a cell-to-cell manner and is strictly unidirectional. The main PAT stream from the 

apex towards the root occurs in the cambium and the adjacent partially differentiated xylem 

elements (Morris and Thomas, 1978; Lomax et al., 1995). In roots, the auxin stream 

continues acropetally towards the root tip, where part of the auxin is redirected backwards 

and transported through the root epidermis to the elongation zone (Rashotte et al., 2000).  

Based on the chemical nature of auxin and the physiology of PAT, the model of cell-

to-cell auxin of transport has been proposed, known as the chemiosmotic hypothesis (Rubery 

and Sheldrake, 1974; Raven, 1975). As a weak acid, a fraction of IAA exists in the acidic 

environment of the apoplast as the protonated, neutral form (IAAH), which may diffuse 

through the plasma membrane. In the more basic cytosol, auxin becomes deprotonated (IAA-) 

and is unable to pass passively through the plasma membrane. The chemiosmotic hypothesis 

predicted that the exit of auxin anions from the cell is mediated by active efflux carriers and 

that the passive diffusion of auxin can be further facilitated by influx carriers. The polar 

membrane localization of the auxin efflux carriers in a file of adjacent cells would determine 

directionality of the auxin flow (Figure 2a).  

It has been primarily genetic studies that led to discovery of genes required for auxin 

influx and efflux (Bennett et al., 1996; Gälweiler et al., 1998; Luschnig et al., 1998; Geisler et 

al., 2005; Cho et al., 2007). An auxin influx transporter AUXIN RESISTANT1 (AUX1),  



 
 

encoding an amino acid permease-like protein, was found in a screen for auxin resistant 

plants (Pickett et al., 1990). Strong insensitivity to membrane-impermeable auxin (2,4-D) 

suggested that the aux1 mutation interferes with auxin uptake (Bennett et al., 1996), which 

was confined by the transport assays using a Xenopus oocyte expression system (Yang et al., 

2006). The A.thaliana genome encodes four auxin influx transporters:  AUXIN RESISTANT1 

(AUX1) and three Like AUX1 (LAX1, LAX2, LAX3) (Parry et al., 2001; Swarup et al., 2008; 

Péret et al., 2012). Thorough exploration of mutants lacking AUX1/LAX activity revealed 

the essential role of the auxin uptake in the regulation of gravitropism, phototropism, root 

branching, phyllotaxis, and root hair development (Bennett et al., 1996; Bainbridge et 

al.,2008; Stone et al., 2008; Swarup et al., 2008; Jones et al., 2009; Péret et al, 2012).  

 

Figure 2 Model of auxin transport and signaling. The low pH in the apoplast (cell wall) is maintained 
through the activity of plasma membrane H+ATPases. In the relatively acidic environment, a fraction of 
the weak acid, indole-3-acetic acid (IAA), the major form of auxin, becomes protonated. The protonated 
(IAAH) form is more lipophilic and can diffuse freely through the plasma membrane into the cell. Besides 
passive diffusion, auxin is also actively taken up from the apoplast by H+/IAA− symport mediated by 
AUX1/LAX influx carriers. Once inside the neutral cytosol, auxin is deprotonated and becomes trapped 
inside the cell. Auxin can leave the cell by auxin efflux carriers such as PIN-FORMED (PIN) proteins and 
P-glycoproteins (PGP) of the ATP-Binding Cassette family B (ABCB) transporter family. ABCB activity 
can be modulated by 1-naphthylphthalamic acid (NPA) and flavonoids that interfere with the interaction of 
ABCB and a protein that regulates it, TWISTED DWARF 1 (TWD1). The polar subcellular localization of 
PINs determines the direction of auxin flow out of the cell and thus the unidirectional auxin flow within 
tissues. (b) At low auxin concentrations, Aux/IAA transcriptional repressors are more stable and dimerize 
through their domains III and IV with auxin response factor (ARF) transcription factors. Through their 
binding to ARFs, Aux/IAA transcriptional repressors recruit the transcriptional corepressor TOPLESS 
(TPL) to activating ARFs, by which they are rendered transcriptionally inactive. At higher concentrations, 
auxin serves as molecular glue between domain II of Aux/IAA transcriptional repressors and TIR1/AFB F 
box proteins, thereby stimulating Aux/IAA ubiquitination by SCFTIR1/AFB E3 ligase and causing 
subsequent targeting for proteolysis mediated by the 26S proteasome. Degradation of Aux/IAAs 
derepresses the ARF activity on transcription. It is not clear whether ARFs act as monomers, dimers, or 
both. Outside the nucleus, PIN auxin efflux carriers cycle continuously between endosomal compartments 
and the plasma membrane. The exocytotic step requires the activity of GNOM, an ADP-ribosylation factor 
GTPase guanine nucleotide exchange factor (ARF-GEF), whereas endocytosis occurs in a clathrin-
dependent manner. The PIN phosphorylation status, controlled by counterbalancing activities of PINOID 
kinase (PID) and protein phosphatase 2A (PP2A), affects the affinity for the apical or basal targeting 
pathways. Auxin inhibits PIN endocytosis through an unknown mechanism that requires BIG protein, the 
function of which is unclear. Adapted from Vanneste and Friml (2009). 
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Genetic screens were also instrumental in identifying molecular components of auxin 

efflux. In the early nineties, the A.thaliana mutant, pin-formed1 (pin1) with needle-like 

inflorescence was described. The characteristic phenotype similar to wild type plants treated 

with chemical inhibitors of auxin efflux indicated defects in auxin transport. Auxin transport 

assays in pin1 stem segments confirmed severe reduction of the basipetal flow of auxin and 

pointed to a function for PIN1 in auxin efflux (Okada et al., 1991). Indeed, identification of 

the mutant locus revealed that PIN1 encodes a putative transmembrane protein with a 

predicted topology of transporter proteins (Gälweiler et al., 1998). Auxin transport assays in 

Arabidopsis and tobacco cell suspension culture as well as in heterologous non-plant systems 

including  yeast, mammalian HeLa cells and Xenopus oocytes have provided evidence for an 

auxin efflux capacity of PIN proteins (Petrášek et al., 2006; Yang and Murphy, 2009; Barbez 

et al., 2013; Zourelidou et al., 2014). The Arabidopsis PIN gene family consists of eight 

members (Zažímalová et al., 2007; Adamovski and Friml 2015). Based on the localization 

and domain organization, these were divided into two groups. The first group consists of 

PIN1, PIN2, PIN3, PIN4 and PIN7 and is located at the plasma membrane. The second group 

comprising PIN5, PIN6, and PIN8 have a reduced middle hydrophilic loop and are located at 

the endoplasmic reticulum (ER), where they presumably control auxin flow between the 

cytosol and ER lumen, thus possibly affecting subcellular auxin homeostasis (Mravec et al., 

2009; Ding et al., 2012). Similarly, PIN-LIKES proteins (PILS) are located in the ER and 

might play a role in regulation of intracellular auxin homeostasis (Barbez et al., 2012). 

In addition to the PIN family of plant-specific auxin transporters, plant orthologs of 

the mammalian ATP-binding cassette subfamily B (ABCB)-type transporters of the 

multidrug resistance/phosphoglycoprotein (ABCB/MDR/PGP) protein family (Noh et al., 

2001; Verrier et al., 2008) have been implicated in auxin transport. Biochemical evidence for 

the ABCB proteins auxin transport activity has been demonstrated both in plant and non-

plant systems. In contrast to polar localization of PINs, which corresponds with known 

direction of auxin flow, the ABCBs presumably act in nondirectional long-distance auxin 

transport controlling amount of auxin in these streams (Noh et al., 2001; Verrier et al., 2008; 

Peer et al., 2011).  

The chemiosmotic hypothesis predicted that the polar membrane localization of auxin 

transporters determines the directionality of the auxin flow. This concept was supported by 

observations of a polar subcellular localization for PIN proteins (Gälweiler et al., 1998; 

Luschnig et al., 1998) and a tight correlation between PIN polarity and directions of auxin 



 
 

flow (Wisniewska et al., 2006). Phosphorylation of PINs controlled by a set of kinases and 

phosphatases (Benjamins et al., 2001; Friml et al., 2004; Michniewicz et al., 2007; Zhang et 

al., 2010; Huang et al., 2010; Zourelidou et al., 2014), Ca2+ signaling (Zhang et al., 2011), 

cell wall (Feraru et al., 2011) or mechanical signals orienting the plant microtubule network 

(Heisler et al., 2010) were found to determine PIN protein activity and polarity. Cell-

biological studies revealed that PIN auxin efflux transporters may not solely reside at the 

plasma membrane since they undergo constitutive cycles of endocytosis and recycling back 

to the plasma membrane (Geldner et al., 2001; Dhonukshe et al., 2007) (Figure 2b). The 

constitutive endocytosis and recycling of PIN proteins depends on complex subcellular 

trafficking machinery including the coat protein clathrin (Dhonukshe et al., 2007; Kitakura et 

al., 2011; Wang et al., 2013), ADP-ribosylation factor guanine-nucleotide exchange factors 

ARF - GEFs (Geldner et al., 2001, 2003; Kleine-Vehn et al., 2008a,b; Naramoto et al., 2014); 

ARF-GTPase-activating protein VASCULAR NETWORK DEFECTIVE3 (Naramoto et al., 

2010), the related ARF-GEF GNOM-LIKE1 (Teh and Moore, 2007) and small GTPase 

Rab1b (Feraru et al., 2012). Downstream of endocytosis, the early endosomal trafficking of 

PINs is controlled by another ARF-GEF, BFA-visualized endocytic trafficking defective1, 

and the Sec1/Munc18 family protein BEN2 (Tanaka et al., 2009, 2013). The endocytosis and 

constitutive recycling of PIN proteins has been implicated in the maintenance of PIN polar 

localization and as a mechanism for rapid modifications of PIN polarity during various 

developmental processes including embryogenesis (Friml et al., 2003; Robert et al., 2013), 

lateral root organogenesis (Benkova et al., 2003; Dubrovsky et al., 2008) or tropic responses 

(Friml et al., 2002, Kleine Vehn et al., 2010; Ding et al., 2011; Rakusova et al., 2011).  

Like auxin, cytokinins are highly mobile molecules. However, in contrast to the well 

characterized transport machinery of auxin, the nature of cytokinin transport is less clear. 

Long-distance transport of cytokinin is supported by the discovery of cytokinins in xylem and 

phloem sap (Gillissen et al., 2000; Burkle et al., 2003; Bishopp et al., 2011a). In xylem sap, 

the major form of cytokinin is tZ-riboside (tZR) (Beveridge et al. 1997; Takei et al. 2001; 

Hirose et al. 2008), while in phloem sap iP-type cytokinins, such as iP-ribosides and iP-

ribotides are detected (Corbesier et al. 2003; Hirose et al. 2008). Accordingly, grafting 

experiments between wild-type plants and cytokinin biosynthesis mutants showed 

preferential transport of different cytokinins; trans-zeatin tZ-type cytokinins were transported 

from the root to the shoot, while iP-type cytokinins moved from the shoot to the root 

(Matsumoto-Kitano et al., 2008). Thus, plants might use tZ- type as an acropetal messenger 

and iP-type cytokinins as basipetal messengers (Kudo et al., 2010). Recently, transport assays 
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using radiolabeled cytokinins confirmed basipetal movement of cytokinin through the phloem 

and revealed that basipetal transport of cytokinin occurs through symplastic connections in 

the phloem (Bishopp et al. 2011b). Reverse genetics approaches applied to systematically 

characterize the ATP-binding cassette transporter proteins in A. thaliana yielded the 

identification of ABCG14 as a transporter involved in the long-distance acropetal (root to 

shoot) translocation of the root-synthesized cytokinin. Plasma membrane-located ABCG14 is 

expressed primarily in the central cylinder of roots and loss of ABCG14 activity interferes 

with the translocation of tZ-type cytokinins from roots to shoots. In planta feeding of 

radiolabeled tZ suggests that ABCG14 acts as an efflux pump (Zhang et al., 2014).  

Mechanisms of cytokinin uptake into cells have been studied using radiolabeled 

cytokinins in Arabidopsis cell cultures. Experiments predicted the presence of proton-coupled 

high-, medium-, and low affinity cytokinin transport systems (Burkle et al., 2003; Cedzich et 

al., 2008). So far, the equilibrative nucleoside transporter (ENT) family and the purine 

permease (PUP) family have been found to facilitate cytokinin transport (Burkle et al. 2003, 

Li et al., 2003; Hirose et al. 2005). Among Arabidopsis PUP family proteins (Gillissen et al., 

2000), active uptake of free cytokinin bases and several adenine derivatives by PUP1 and 

PUP2 was demonstrated using a yeast system (Burkle et al., 2003). Expression of PUP2 in 

the phloem of Arabidopsis leaves suggested a role for PUP2 in phloem loading and unloading 

for long-distance transport of adenine and possibly cytokinins (Burkle et al., 2003).  Among 

the plant ENT transporters, competitive uptake studies in yeast cells showed that Arabidopsis 

ENT3, ENT6, ENT7 and rice ENT2 can facilitate uptake of iP-riboside and tZ-riboside (Li et 

al., 2003; Hirose et al., 2005). Furthermore, mutants lacking either ENT3 or ENT8 exhibit 

reduced cytokinin uptake efficiency (Sun et al., 2005).  Distinct expression patterns of ENT 

genes detected in root, leaf, and flower vasculature suggest that they may act differently 

during plant growth and development (Li et al., 2003; Sun at al., 2005; Hirose et al., 2008), 

however their function as cytokinin transporters in planta needs to be experimentally 

supported. In summary, in contrast to high substrate specificity of the auxin transport system, 

translocation of cytokinins in planta seems to be mediated through transporters with affinities 

to a broader spectrum of molecules such as purine derivatives and nucleosides. 

 

 

 



 
 

1.5 Perception and signal transduction of auxin and cytokinin 
 

Solving the puzzle of auxin and cytokinin perception mechanism has been 

undoubtedly one of the biggest challenges of the last years. Establishment of the Arabidopsis 

genetic model has provided excellent tools to address this long standing question and it has 

been forward genetic screens in Arabidopsis that have led to the identification of backbone 

elements of both auxin and cytokinin signal transduction cascades. Genetics in combination 

with advanced molecular and biochemical approaches enabled the achievement of a 

comprehensive view on the molecular principles of auxin and cytokinin perception and signal 

transduction.  

Several independent forward genetic screens for mutants insensitive to auxin (Rouse 

et al., 1998; Ruegger et al., 1997, 1998) and expression profiling to isolate auxin inducible 

genes (Abel et al., 1995; Hagen and Guilfoyle 2002; Abel and Theologis 1996; Ulmasov et 

al., 1997) led to identification of all key molecular components required for auxin response 

such as TIR1 (encoding for F-box component of the E3 ubiquitin ligase SCFTIR1/AFBs), the 

auxin early inducible Aux/IAA genes as well as the ARF transcription factors that recognise 

auxin response elements in the promoters of the Aux/IAAs (Gray et al., 1999; Abel and 

Theologis 2010). However, how these genes might constitute the pathway sensing and 

transducing hormonal signal was not obvious.  Using advanced genetic and biochemical 

approaches the auxin signalling circuit has been resolved and TIR1 identified as the auxin 

receptor. It has been shown that auxin mediates interaction between TIR1/AFBs and 

Aux/IAA proteins which stimulates Aux/IAAs ubiquitination by SCFTIR1/AFBs E3-ubiquitin 

ligases for subsequent degradation by the proteasome. This leads to de-repression of ARFs, 

and transcriptional regulation of downstream response genes. At low auxin concentration, 

Aux/IAAs form a complex with ARF transcription factors and the transcriptional corepressor 

TOPLESS (TPL), thus preventing the ARFs from regulating target genes (Gray et al., 2001; 

Dharmasiri et al., 2005a,b; Kepinski and Leyser 2005; Tan et al., 2007; Szemenyei et al., 

2008) (Figue 2b).  

Although the framework which outlines the core molecular mechanism of auxin 

perception and signal transduction has been recognised, the question as to how TIR1/AFB, 

Aux/IAAs and ARF families, each comprising many homologous members, mediate specific 

developmental output remains to be answered. As indicated by recent studies, multiple levels 

of control appear to exist, including spatio-temporal specific expression of individual auxin 

signalling pathway components (Overvoorde et al., 2005; Okushima et al., 2005), as well as 
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differences in affinities of the TIR1/AFB auxin receptors for the Aux/IAA repressors 

(Calderón-Villalobos et al., 2012; Moss et al., 2015), of Aux/IAA repressors for the ARFs 

transcription factors (Vernoux et al., 2011; Lee et al., 2014; Korasick et al., 2014; Nanao et 

al., 2014; Shimizu-Mitao and Kakimoto, 2014), and of ARFs for their binding motifs in 

promoters of the target genes (Boer et al., 2014), which may allow fine-tuning of auxin 

responses. 

After a period of biochemical attempts in the early 1970s to identify the cytokinin 

receptors, the forward genetic screens turned out to be successful strategies. In a screen of the 

activation tagged Arabidopsis mutants for cytokinin independent growth, the sensor histidine 

kinase CKI1 was recovered.  This finding suggested that the multi-step phosphorelay similar 

to bacterial two-component signalling system might underlie the cytokinin signal 

transduction (Kakimoto, 1996). Another screen for cytokinin insensitive mutants led to 

identification of the CRE1 (CYTOKININ RESISTANT 1) encoding a sensor histidine kinase 

related to CKI1 (Inoue et al., 2001).  At about the same time, the WOODEN LEG (WOL) 

mutant allele of the AHK4/CRE1 gene (exhibiting severe defects in the vasculature 

differentiation; Mähönen et al., 2000) was identified, along with the AHK2 and AHK3 

homologues required for cytokinin response (Hwang and Sheen et al., 2001; Ueguchi et al 

2001; Higuchi et al., 2004; Nishimura et al., 2004). Elegant experiments in yeast and bacteria 

provided first evidence that CRE1/AHK4 functions as a cytokinin receptor (Inoue et al., 

2001; Ueguchi et al., 2001, Suzuki et al., 2001); later corroborated by direct binding assays 

with radiolabeled cytokinins (Romanov et al., 2005, 2006; Stolz et al., 2011).  

Subsequent studies focusing on the downstream signaling cascade revealed that genes 

with high similarity to molecular elements of the multi-step phosphorelay pathway including 

sensor histidine kinases (AHKs), histidine phosphotransfer proteins (AHPs) and response 

regulators (ARRs) are present in the Arabidopsis genome (Mizuno, 2005; Schaller et al., 

2008).  Genetic and biochemical characterization of their functions in the cytokinin response 

yielded the current model of the cytokinin signalling pathway. In brief, a cascade of auto- and 

transphosphorylation events triggered by cytokinin leads to activation of AHK receptors and 

transduction of the signal to downstream components. Downstream of the AHK receptors, the 

AHPs continuously translocate between cytosol and nucleus to mediate signalling by 

activating type-B ARABIDOPSIS RESPONSE REGULATORS (ARRs), transcription 

factors which then trigger the transcription of specific genes. A negative feed-back loop is 

provided by type-A ARRs, which inhibit the activity of type-B ARRs by an unknown 



 
 

mechanism (Hwang and Sheen, 2001; Sakai et al., 2001; Mason et al., 2005; Hutchison et al., 

2006; To et al., 2007, Argyros et al., 2008; Kieber and Schaller, 2014). Furthermore, a family 

of F-box proteins, called the KISS ME DEADLY (KMD) family, targets type-B ARR 

proteins for degradation and attenuates cytokinin pathway activity (Kim et al., 2013) (Figure 

3).  The large majority of cytokinin receptors localize to the ER, suggesting a central role of 

this compartment in cytokinin signaling (Caesar et al., 2011; Wulfetange et al., 2011); 

nevertheless, a small part of the cytokinin receptors might perceive a signal from the plasma 

membrane (Wulfetange et al., 2011).  

 
Figure 3 Model of cytokinin signaling pathway. Cytokinin is perceived by the AHK plasma membrane 
receptors. Cytokinin signal is further amplified by phosphorelay events starting from AHKs, which lead to the 
activation and subsequent nuclear translocation of AHP proteins. AHP proteins transfer the phosphoryl group to 
type A or type B ARR proteins. The former act as repressors of cytokinin signaling, whereas the latter act as 
positive transcriptional regulators of cytokinin-induced genes, including those encoding type A ARRs. CRF 
proteins are also activated by cytokinin, and after translocation to the nucleus they act as activators of cytokinin-
regulated genes. Adapted from Santner et al., (2009). 



17 
 
 

Recently, a set of cytokinin-regulated transcription factors named cytokinin response 

factors (CRFs) have been described as a potential branch emerging from the classical multi-

step phosphorelay parallel to that of type-B ARRs (Rashotte et al., 2006). CRFs are members 

of the AP2/EREBP family of transcription factors, containing a single AP2–DNA binding 

domain, distinct from both DREB and AP2 proteins. There are eight members of CRF family 

in Arabidopsis (CRF1-CRF8) with CRF7 and CRF8 being atypical as they lack C-terminal 

extensions (Sakuma et al., 2002; Nakano et al., 2006; Rashotte and Goertzen, 2010). The 

transcript abundance of certain CRFs (CRF2, CRF5 and CRF6) is rapidly upregulated by 

cytokinin (Rashotte et al., 2006). Protein-protein interaction analysis indicated that CRFs are 

able to interact with each other to form homo- and/or heterodimers as well as with 

components of the classical cytokinin signaling pathway. Transcriptome analysis has 

revealed a large overlap in CRFs and type B ARR targets, pointing at a close link between 

both branches of the cytokinin signaling pathway.  

However, how the specificity of cytokinin response is achieved by the signalling cascade, 

where each step is supported by a gene family comprising several members, awaits further 

investigation. Importantly, elucidation of the molecular elements and mechanistic principles 

of auxin and cytokinin transduction pathways has enabled the development of specific 

sensors for monitoring auxin and cytokinin in planta. Nowadays, highly sensitive reporters 

such as DR5 (Ulmasov et al., 1997); DII-VENUS (Band et al., 2012; Brunoud et al., 2012), 

and TCS (Müller and Sheen; 2008) are extensively used for mapping auxin and cytokinin 

activities, respectively, and demonstrate a great potential of these tools for better 

understanding of the roles of auxin and cytokinin in plant development.  

 

1.6 Auxin and cytokinin interaction in regulation of plant development 
 

Since the initial discovery of auxin and cytokinin, the number of reports supporting 

their regulatory role in various aspects of plant development has accumulated. Moreover, 

studies of auxin and cytokinin function in plant cell suspension growth provided the first 

evidence of hormonal interaction and its role in directing plant development. The 

experiments of Skoog and Miller (1957) demonstrated that both auxin and cytokinin are not 

only required to induce and maintain cell division and growth in plant tissue culture, but that 

the auxin:cytokinin ratio determines distinct organogenic pathways. A high ratio of cytokinin 

to auxin stimulated formation of shoots, whereas a low ratio induced root regeneration. Tight 



 
 

communication between auxin and cytokinin is crucial for proper establishment of meristems 

in early embryogenesis (Muller and Sheen, 2008; Su et al., 2011), ovule development 

(Bencivenga et al., 2012), shoot apical meristem activity and phylotaxis ( Reinhardt et al., 

2003; Werner et al., 2003; Leibfried et al., 2005; Zhao et al., 2010), shoot and root branching 

(Domagalska and Leyser, 2011; Laskowski et al., 1995, 2008; Laplaze et al., 2007; Bielach, 

et al., 2012; Marhavý et al., 2011; 2014), root growth and meristem maintenance (Dello Ioio 

et al., 2008). Hence the deciphering of molecular and mechanistic bases of auxin and 

cytokinin interaction became one of the major themes in plant biology. Over the years, 

research on developmental processes in plants has uncovered genes and networks, giving first 

insights into molecular mechanisms of auxin and cytokinin cross-talk in the context of these 

complex developmental programs. Here, a few examples of auxin-cytokinin crosstalk 

mechanisms and their relevance in coordination of specific developmental processes are 

discussed.  

It has been shown that specification of the root pole during the early phases of 

embryogenesis is dependent on the tightly balanced activity of auxin and cytokinin. Auxin 

was found to stimulate expression of the cytokinin signaling repressors ARR7 and ARR15 and 

thus to attenuate the output of the cytokinin pathway. Lack of this auxin-driven negative 

feedback loop resulted in the up-regulation of the cytokinin response and severe patterning 

defects at the embryonic root pole (Müller & Sheen, 2008). Interestingly, recent observations 

hint at another auxin-cytokinin regulatory module acting in the early embryogenesis. Among 

the transcriptional targets of AUXIN RESPONSE FACTOR (ARF5/MP), previously linked 

with embryonic root specification (Hardtke and Berleth, 1998; Hamann et al., 2002), 

TARGET OF MONOPTEROS (TMO3), coding for the CRF2 was identified (Schlereth et al., 

2010). Expression of CRF2 and homologous genes is cytokinin responsive and interference 

with their functions leads to severe embryonic defects (Rashotte et al., 2006). Furthermore, 

two auxin efflux transporters (PIN1 and PIN7), both shown to control distribution of auxin 

during early embryogenesis (Friml et al., 2003), were identified as CRF2 transcriptional 

targets (Šimášková et al., 2015). However, how these two regulatory circuits jointly 

coordinate early embryogenesis requires further investigation.  

Auxin and cytokinin act in an antagonistic manner to define the root apical meristem 

size by promoting cell division and differentiation, respectively (Dello Ioio et al., 2007, 

Růžička et al., 2009). A complex network of auxin and cytokinin interactions has been 

implicated in the root meristem activity control. Cytokinin modulates the auxin pathway by 

affecting the expression of its signaling components. Cytokinin (through the AHK3 receptor 
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and ARR1 and ARR12 response regulators) was shown to directly activate transcription of 

the auxin repressor IAA3/SHORT HYPOCOTYL 2 (SHY2). This leads to the attenuation of 

auxin responses and reduced expression of PIN auxin efflux transporters (Vieten et al., 2005; 

Dello Ioio et al., 2008, Pernisová et al., 2009, Růžička et al., 2009). Consequently, a 

decreased abundance of PINs limits the auxin supply to the root apical meristem, thereby 

restricting its meristematic activity (Dello Ioio et al., 2008; Růžička et al., 2009).  Besides 

this transcription-based regulation of auxin activity and distribution, cytokinin was also found 

to modulate the endocytic trafficking of PIN1 by redirecting this membrane protein for lytic 

degradation in the vacuoles. (Zhang et al., 2011; Marhavý et al., 2011). This alternative mode 

of cytokinin action provides a mechanism for rapid control of auxin fluxes; and as recently 

suggested, the enhanced depletion of PIN1 at specific polar domains by cytokinin might also 

modulate direction of the auxin flow (Marhavý et al., 2014).    

Another mechanism through which auxin and cytokinin balance each other’s activities occurs 

by a crosstalk between their metabolic pathways. High cytokinin levels promote auxin 

biosynthesis (Jones et al., 2010) and auxin, in turn, gives feedback on the cytokinin 

metabolism by inducing CYTOKININ OXIDASE (CKX) thereby decreasing cytokinin levels 

(Eklöf et al., 1997, Nordström et al., 2004; Carabelli et al., 2007). On the other hand, in the 

root apical meristem, auxin enhances (in an IAA3/SHY2 dependent manner) the expression 

of ISOPENTENYL TRANSFERASE5 (IPT5), which encodes a rate limiting enzyme in the 

cytokinin biosynthesis, eventually resulting in the local up-regulation of cytokinin levels 

(Dello Ioio et al., 2008, Miyawaki et al., 2004).  

Both auxin and cytokinin exhibit specific functions in the shoot apical meristem. High 

cytokinin promotes proliferation of undifferentiated cells, whereas auxin coordinates 

organogenesis in the peripheral zone (Schaller et al., 2015). Cytokinin participates in the 

WUSCHEL/WUS-CLAVATA/CLV, the core regulatory loop controlling shoot apical 

meristem activity, by stimulating WUS expression (Gordon et al., 2009). By direct repression 

of the ARR7 and ARR15 cytokinin signaling repressors, WUS further reinforces the 

cytokinin promoting effect on the WUS-mediated pathway (Leibfried et al., 2005). An 

important additional input in this cytokinin-driven regulation is provided by auxin. In mutants 

defective in auxin biosynthesis, transport and signaling, expression of ARR7 and ARR15 was 

found to be enhanced, and the ARF5/MP transcription factor was identified as a direct 

repressor of their transcription (Zhao et al., 2010). This constitutes a regulatory circuit in 



 
 

which auxin enhances cytokinin response by attenuating the expression of the cytokinin 

signaling repressors, and consequently promoting WUS activity in the WUS-CLV loop.  

At the peripheral zone of the shoot apical meristem, new organ formation is triggered by 

auxin (Reinhardt et al., 2003). Studies following pathways regulated by auxin transport and 

response revealed that initiation of the lateral organs is accompanied by modulations in the 

polarity of PIN1 and redirection of the auxin towards incipient primordia (Heisler et al., 

2005). The accumulation of auxin correlates with a decrease in SHOOT MERISTEMLESS 

(STM) expression, which eventually results in lower cytokinin at the peripheral zone (Hamant 

et al., 2002).  How PIN1 polarization throughout the shoot apical meristem is coordinated and 

whether cytokinin contributes to the regulation of polar auxin transport through mechanisms 

analogous to these detected in root is unknown. Nevertheless, a reduced level of PIN1 in the 

maize ARR repressor ortholog mutant abphyl 1 supports such a scenario (Lee et al., 2009).  

Recently, Besnard et al. (2014) provide further evidence for cytokinin function in the 

peripheral zone and coordination of lateral organ initiation. Analysis of AHP6 expression 

patterns along with monitoring of auxin and cytokinin sensitive reporters indicates that 

AHP6, which acts as a repressor of cytokinin signalling (Mähönen et al., 2006), regulates the 

spatiotemporal pattern of cytokinin activity at the shoot apical meristem periphery. The 

cytokinin inhibitory fields generated downstream of auxin by AHP6 might stabilize auxin 

fields, thereby increasing robustness of the phyllotactic patterning (Besnard et al., 2014). 

Studies of auxin-cytokinin cross-talk directing other developmental process (including 

initiation and organogenesis of ovules; vasculature differentiation, shoot and root meristem 

activity and lateral branching (reviewed in Moubayidin et al., 2009; Depuydt and Hardtke 

2011; Schaller et al., 2015) point towards specific as well as common aspects of mechanisms 

mediating mutual communication between these two hormonal pathways.  

With increasing amounts of confirmed molecular interactions and circuits that 

determine hormone activity at the level of metabolism, transport, perception, and signaling, 

the prediction of hormone regulatory network behavior and output becomes unfeasible 

Modelling and mathematical simulations provide a novel means to address these issues and 

help to achieve better understanding of the complexity and dynamics of hormone action (Voß 

et al., 2014).  . 

For example, studies of the transcription factor PHABULOSA (PHB) and cytokinin in 

controlling the root meristem size showed that cytokinin regulates microRNA165/166 and 

that both cytokinin and microRNA165/166 jointly regulate PHB. In return, PHB promotes 

cytokinin biosynthesis by stimulation IPT7 expression (Dello Ioio et al., 2012). One-
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dimensional model and mathematical simulations provided insights into the functioning of 

such a complicated molecular network, showing that this regulatory loop restrains the 

reduction and accelerates the recovery of PHB levels thus providing robustness against 

cytokinin fluctuations (Dello Ioio et al., 2012). 

 A combination of experimental and modelling approaches has also been applied to integrate 

auxin and cytokinin pathways in the specification of vascular patterning. A two-dimensional 

multicellular model of Muraro et al., 2014 incorporated previous findings of a mutually 

inhibitory interaction between auxin and cytokinin, mediated through the auxin inducible 

repressor of the cytokinin signaling AHP6; cytokinin feedback on the PIN auxin efflux 

carriers  and SHORT ROOT (SHR) promoted expression of the mobile microRNA165/166 

which silences PHB to form a gradient of PHB mRNA that controls the specification of 

xylem and inhibits AHP6 expression (Bishopp et al., 2011b; Carlsbecker et al., 2010). 

Mathematical simulations revealed that this gene regulatory network is not sufficient to 

establish proper expression patterns of key marker genes as observed experimentally, and 

predicted additional negative regulators of cytokinin signaling and the mutual degradation of 

both microRNA165/6 and PHB mRNA (Muraro et al., 2014). 

A genetic network tested in the model simulation of De Rybel et al., 2014 integrated two 

incoherent feed-forward loops and evaluated their impact on the patterning of vascular 

tissues. One of the feed-forward loops implements auxin-cytokinin antagonistic regulations 

of PIN mediated auxin efflux (Bishopp et al., 2011b; Mähönen et al., 2006). A second loop is 

based on the experimental identification of interaction between MONOPTEROS/ARF5 and 

TARGET OF MONOPTEROS5 /LONESOME HIGHWAY (TMO5)/LHW) and LONELY 

GUY4 (LOG4) which mediates auxin-dependent control of the cytokinin biosynthesis (De 

Rybel et al., 2013).  The authors show that the individual subnetworks provide specific 

regulatory inputs, one generating a high-auxin domain whereas a second defines sharp 

boundaries between the high auxin domain and the neighboring cytokinin response domain. 

Integration of both regulatory circuits is sufficient to generate distinct hormonal zones and 

establishment of stable patterns within a vascular tissue (De Rybel et al., 2014).   

 

1.7 Conclusion 
 
History of auxin and cytokinin from the initial discoveries by brothers Darwin’s (1880) and 

Gottlieb Haberlandt (1919) is a beautiful demonstration of unceasing continuity of research.  



 
 

Novel findings are integrated into existing hypotheses and models and deepen our 

understanding of biological principles. At the same time new questions are triggered and 

hand to hand with this new methodologies are developed to address these new challenges. 
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2.1 Introduction 
The root as an underground organ is of vital importance for plant life. It anchors the plant 

body in the soil, responds to abiotic and biotic stresses, and is responsible for water and 

nutrients uptake. Exposed to a myriad of external signals, the root system constantly adjusts 

its development by modulation of root meristem activity, root elongation growth as well as 

branching pattern in order to optimize water and nutrient provision to the plant body (Lopez-

Bucio et al., 2003). In particular, formation of lateral roots (LRs) is one of the key 

determinants of root architecture with an eminent impact on the efficiency of soil 

exploitation.  

In Arabidopsis thaliana, LRs initiate from selected pericycle cells that acquire 

attributes of founder cells, subsequently undergo a series of anticlinal divisions, and produce 

a few short initial cells. After initiation, coordinated cell division and differentiation give rise 

to lateral root primordia (LRP) that continue to grow and emerge through the cortex and 

epidermal layers of the primary root; finally, the lateral root apical meristems take over 

growth control (Malamy and Benfey, 1997; Ötvös and Benková E., 2017). 

Auxins and cytokinins are two classes of plant hormones that are key in the regulation of 

lateral root organogenesis. Auxin promotes the earliest events related to lateral root 

organogenesis, including priming, an accumulation of auxin in protoxylem cells (De Smet et 

al., 2007; Moreno Risueno et al., 2010), founder cells specification (Dubrovsky et al., 2008), 

initiation (Benková et al., 2003; Dubrovsky et al., 2008), as well as the later phases of 

primordia formation and emergence (Benková et al., 2003; Swarup et al., 2008). Major 

components of auxin signal transduction including the auxin receptors TIR1/AFBs, an F-box 
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proteins of a ubiquitin ligase complex, which upon auxin perception target the Aux/IAAs 

transcriptional repressors for degradation, thereby de-repressing AUXIN RESPONSE 

FACTORS (ARFs) transcription factors, have been implicated in lateral root organogenesis 

control (Dharmasiri et al., 2005; Kepinski and Leyser, 2005, Casimiro et al., 2001; Benkova 

et al., 2003; Peret et al., 2009). Mutations in genes encoding auxin receptors TIR1/AFBs, 

transcriptional regulators ARF7 and ARF19 as well as inhibition of auxin signaling as result 

of auxin repressors accumulation such as SLR/IAA14, IAA28, SHY2/IAA3, BDL/IAA12, 

MSG2/IAA19 and CRANE/IAA18 cause dramatic defects in LR initiation and development 

(Tian and Reed, 1999; Rogg and Bartel, 2001; Tatematsu et al., 2004; Uehara et al., 2008; De 

Rybel et al., 2010; De Smet et al., 2010). Critical for the auxin activity is the dynamic control 

of its distribution mediated through the polar auxin transport machinery. Families of AUXIN 

RESISTANT1 (AUX1)-like AUX1 (LAX) auxin influx carriers (Marchant et al., 1999), PIN-

FORMED (PIN) auxin efflux carriers (Galweiller et al., 1998; Luschnig et al., 1998), and 

members of the multi-drug-resistant/ P-glycoprotein subfamily of ATP-binding cassette 

proteins are major components of polar auxin transport (Noh et al., 2001) and chemical or 

genetic interference with their activities dramatically compromises normal LR initiation and 

development (Vanneste and Friml, 2009; Casimiro et al., 2001; Benkova et al., 2003; Peret et 

al., 2009).  

Besides auxin, several other plant hormones have been found to regulate LR 

organogenesis, among which cytokinin exhibits one of the strongest inhibitory effects (Li et 

al., 2006; Dello Ioio et al., 2007; Laplaze et al., 2007; Skylar and Wu, 2011). Increase in 

cytokinin activity, either by exogenous manipulation of cytokinin levels or by endogenous 

modulation of the activity of genes involved in cytokinin biosynthesis suppresses LR 

initiation and development (Li et al., 2006; Laplaze et al.,2007;  Bielach et al., 2010). In 

contrast, transgenic plants overexpressing the CYTOKININ OXIDASE/DEHYDROGENASE 

(CKX), a gene coding for the enzyme that degrades cytokinin, exhibit increased LR number 

(Werner et al., 2003; Laplaze et al., 2007). Likewise, suppression of the cytokinin signaling 

pathway either by interfering with the receptor ARABIDOPSIS HISTIDINE KINASE4 

(AHK4)/CYTOKININ RESISTANT1 (CRE1) and its homologues AHK2 and AHK3, or the 

positive components, the B-type ARABIDOPSIS RESPONSE REGULATORs (ARRs), 

typically enhance LR organogenesis (Higuchi et al., 2004; Riefler et al., 2006; Schaller et al., 

2015; Mason et al., 2005).  



 
 

The antagonistic roles of auxin and cytokinin in the control of lateral root 

organogenesis imply that their activities must be mutually tightly controlled and put special 

demands on the mechanisms that mediate their interaction.  After a highly successful period 

of molecular explorations of individual signal transduction pathways (Kakimoto et al., 1996; 

Inoue et al., 2001; Kepinsky et al., 2005; Dharmasiri et al., 2005; To et al., 2007), the 

molecular bases of their interaction are studied intensively. 

Recent works on how the auxin and cytokinin regulatory network is established and 

orchestrated revealed different types of molecular connections. Cytokinin has been found to 

stimulate auxin biosynthesis (Nordström et al., 2004; Jones et al., 2010), whereas auxin 

feedback on cytokinin biosynthesis might be mediated through direct transcriptional control 

of ISOPENTENYL TRANSFERASE (IPT) genes by the auxin response factor ARF19 (Yang et 

al., 2017). Auxin control over the transcription of cytokinin signaling repressors ARR7 and 

ARR15 appears to be critical for an establishment of the embryonic root pole (Müller and 

Sheen, 2008) and both auxin and cytokinin signaling pathways are interconnected via ARF5 

mediated direct transcriptional control of CYTOKININ RESPONSE FACTOR 2 (CRF2) 

(Schlereth et al., 2010). Furthermore, cytokinin fine tunes auxin distribution via modulation 

of the polar auxin transport machinery. In the root apical meristem, the auxin-cytokinin 

circuit was found to be mediated through the AHK3 receptor and the downstream 

transcription factor ARR1 that adjusts the expression of the IAA3/SHORT HYPOCOTYL 2 

(SHY2) auxin signaling repressor and attenuates the expression of several PIN genes as a 

consequence (Dello Ioio et al., 2008). Furthermore, CYTOKININ RESPONSE FACTORs 

(CRFs), transcription factors acting downstream of cytokinin perception, have been identified 

as direct transcriptional regulators of genes that encode PIN auxin transporters, thus revealing 

another molecular link between these two hormonal pathways (Šimášková et al., 2015). In 

addition to the transcriptional control, cytokinin selectively enhances the PIN vacuolar 

trafficking at specific polar domains, thereby directing auxin flow. This cytokinin-mediated 

polarization mechanism has been proposed to operate in developmental processes that depend 

on the rapid redirection of the auxin stream, including LR organogenesis (Marhavý et al., 

2011, 2014).  

Although there are several hints at the molecular nature of the auxin-cytokinin cross-

talk (Chandler and Werr 2015; Schaller et al., 2015), our knowledge on the key players is still 

very limited. Here we used transcriptome profiling to uncover novel convergence points and 

molecular links between auxin and cytokinin that orchestrate establishment of root system 

architecture. Genome-wide monitoring of xylem pole pericycle gene expression patterns in 
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response to auxin, cytokinin and simultaneous auxin and cytokinin treatments led to the 

identification of potential cross-talk factors between these two hormonal pathways. We found 

that specific components of auxin and cytokinin metabolic, signaling and transport pathways 

are under tight control of their hormonal counterpart and thus mutually coordinate proper 

auxin – cytokinin readout at the xylem pole pericycle. Interestingly, despite well-established 

antagonistic functions of auxin and cytokinin in LR organogenesis, our study reveals a set of 

genes of which expression at the xylem pole pericycle is regulated by auxin and cytokinin in 

a synergistic manner and strictly depends on both hormones. Functional analysis confirmed 

the important role of this group of synergistically regulated genes in auxin – cytokinin 

regulated root system establishment.  

 

2.2 Results 

 Cytokinin modulates oscillatory auxin responses at the priming zone  2.2.1

The root system architecture is a result of coordinated growth of the primary root that 

concurrently branches and forms new lateral organs. The pattern of branching (frequency of 

initiations of new lateral roots) is controlled at multiple levels including priming, founder cell 

specification, primordia formation and interaction with adjacent tissues (Ötvös and Benkova 

2017). Among the earliest cues that define positioning of the incipient branching site, the 

regular oscillatory response of auxin in the root priming zone (basal meristem) has been 

recognized (De Smet et al, 2006; Moreno Risueno et al., 2010). In contrast, an increase of 

cytokinin in the basal meristem has been found to suppress frequency of lateral root initiation 

(Bielach et al., 2012). To explore whether and how cytokinin modulates the oscillating auxin 

response in the priming zone we monitored the dynamics of the auxin reporter 

DR5:LUCIFERASE expression in growing roots. Accordingly to previous reports we 

observed a pulses of the DR5:LUCIFERASE response with a period of 6h08 ± 0h35, which 

corresponds to 2.4 ± 0.5 pulses over a 20 hours (Fig. 1A and B, Table S1).  A high exogenous 

cytokinin doses (50 to 100 nM N6-benzyladenine) led to the absence of DR5 pulses 

accompanied  with  a significant reduction of the luciferase signal (68 ± 4.22 and 53.14± 3.12 

ADU 6min-1, respectively) compared to that of controls (122.45 ± 3.02 ADU 6min-1)  (Fig. 

1G and H, Table S1). Similarly, roots overexpressing the cytokinin biosynthetic enzyme 

ISOPENTENYL TRANSFERASE3 (35S::IPT3) displayed a weak luciferase signal (38.63 ± 

1.45 ADU 6min-1, Fig. S1A and B, Table S1) with a dramatically reduced frequency of 



 
 

DR5::LUCIFERASE pulses (0.21 ± 0.14 pulses/20h). To explore impact of reduced 

cytokinins levels on auxin response in the oscillatory zone we overexpressed the cytokinin-

degrading enzyme CK OXIDASE 3 (35S::CKX3) in wild-type plants. We observed a higher 

frequency of the DR5::LUCIFERASE pulses (5.84 ± 0.56 pulses /20h, Fig. S1C and D; Table 

S1) as well as an increased luciferase signal (146.98±3.99) when compared to control. 

Interestingly, treatments with low (0.1 and 1nM) cytokinin doses displayed a higher 

frequency of the DR5::LUCIFERASE pulses (period 1h57±0h22 and 3h±0h27, respectively), 

which corresponds to 6.67 ± 0.9 and 5.62 ± 0.48 pulses/20h, respectively (Fig. 1C and D, 

Table S1). A further increase of exogenous cytokinin levels to 10nM resulted in an overall 

decrease of the DR5::LUCIFERASE signal (75.86 ± 2.21, Table S1), and reduction of pulse 

frequency to 2.13 ± 0.35 pulses over 20-hours (Fig. 1E and F; Table S1).  

These results suggest that cytokinin modulates oscillatory pattern of auxin response in a 

dosage dependent manner. Reduction of endogenous cytokinin levels increases both 

frequency and strength of the auxin response maximum. Low concentrations of cytokinin 

increase frequency of auxin maxima establishment, but reduce their amplitude, whereas high 

cytokinin attenuates both frequency as well strength of auxin maxima (Table S1). 

To correlate observed cytokinin driven changes of the auxin oscillatory pattern with an 

impact on the root branching we scored LRP density in roots with varying cytokinin levels. 

We found that a higher frequency of oscillations caused either by reduced levels of 

endogenous cytokinin in 35S::CKX3 roots or by exogenous supply of low cytokinin dosage 

(1nM and 10nM) correlated with increased LRP density (Table S1).  In contrast higher 

cytokinin concentrations, which suppressed both frequency and amplitude of auxin 

oscillations, correlated with a reduced LRP density, in accordance with the known role of 

cytokinin as an inhibitor of LRP initiation (Laplaze et al., 2007; Bielach et al., 2012). 

Noteworthy, despite dramatically reduced DR5::LUC signal in roots either exposed to 50 nM 

cytokinin or overexpressing IPT3, LRP could be detected, suggesting that very low levels of 

auxin might still be sufficient for LRP initiation.  

These results point out that cytokinin might exhibit dual effects on LRP initiation, whereas at 

high levels cytokinin represses root branching, at low concentration it might promote LR 

initiation.    
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 Identification of auxin and cytokinin regulated genes at the root 2.2.2

pericycle 

To uncover genes implied in the auxin-cytokinin cross-talk coordinating root 

branching, genome-wide transcriptome profiling was applied. We aimed to identify genes at 

whose transcriptional regulation auxin and cytokinin pathways converge during early lateral 

root organogenesis. For these purposes, we used conditions under which auxin (1µM 1-

naphthaleneacetic acid; NAA) alone stimulated lateral root initiation, and when applied 

simultaneously with cytokinin (10µM), this stimulatory effect of auxin would be fully 

inhibited (Fig. 2A and S2A). To determine the most suitable duration of hormone treatment, 

quantitative (q)RT-PCR expression analyses on early auxin and cytokinin response genes of 

the type-A ARR and AUX/IAA families, respectively, were performed. Within 3 hours of 

treatment cytokinin significantly increased expression of ARR3, ARR4 and ARR5 cytokinin 

markers and this stimulatory effect was counteracted by simultaneous auxin application. 

Likewise, auxin stimulated transcription of IAA3, IAA14 and IAA19 was attenuated by 

cytokinin provision (Fig. 2B).   In order to restrict the expression profiling to the xylem pole 

pericycle tissue, where LRP initiation takes place, we performed fluorescence activated cell 

sorting (FACS) using the xylem pole pericycle specific Gal4-GFP enhancer trap line J0121 

(Laplaze et al., 2005, Fig. S2A).  The labeled RNA was hybridized to the Arabidopsis Tiling 

1.0R array (Affymetrix), which offers whole-genome coverage.  We found that hormonal 

treatment affected 5313 genes representing approximately 19% of the genes present on the 

array. Precisely, 3173, 1454 and 3340 were significantly differentially regulated (Fold 

Change, FC>1.5 or <-1.5 and P<0.01) by auxin, cytokinin and both treatments, respectively 

(Fig. 2C). Furthermore, none of them could be rejected based on the calculated q-values 

(q≤0.05; http://genomics.princeton.edu/storeylab/qvalue/; Storey and Tibshirani, 2003). To 

get more information on the involvement of these gene pools, we used the ChipEnrich 

software which could identify statistically significant enriched Gene Ontology (GO) 

categories and biological processes from microarray analysis 

(http://www.arexdb.org/software.jsp; Orlando et al., 2008). The set of auxin-regulated genes 

displayed a strong enrichment in auxin signaling (P=7.86E-10), in root morphogenesis 

(P=3.95E-06), in lateral root formation (P=2.48E-47) with a stronger enrichment in lateral root 

initiation process (P=1.58E-71, Fig. 2G). The genes affected by cytokinin are also indicated to 

be involved in LR initiation (P=2.88E-07), root morphogenesis (P=2.36E-06) and in cytokinin 

signaling (P=8.31E-06, Fig. 2G). When auxin and cytokinin are applied simultaneously, the 

http://genomics.princeton.edu/storeylab/qvalue/
http://www.arexdb.org/software.jsp


 
 

previous processes such as auxin signaling (P=6.38E-05), cytokinin signaling (P=4.85E-06) 

and LR initiation (P=6.18E-26, Fig. 2G) are enriched but at a lower level. In contrast the 

double treatment affects more genes involved in root morphogenesis (P=3.46E-12).  

To validate the accuracy of the transcriptomic profiling obtained, we compared our 

list of auxin-regulated genes in pericycle cells to existing LR related microarray datasets 

using the VisuaLRTC spreadsheet (Parizot et al., 2010, Table S2, S3). Although the original 

set ups were different, we observed an overlap of 700 genes and 697 genes between our list 

and respectively the genes induced by auxin in the root segment (Vanneste et al., 2005) and 

those specifically involved in asymmetric cell division process which is crucial for proper LR 

organogenesis (De Smet et al., 2008). Interestingly, 391 genes overlapped between the three 

datasets with 98.21% of similar transcriptionally change (Fig. 2D, Table S2). In addition, the 

tilling array provided 649 genes affected by auxin (including 170 unknown proteins) as 

potentially new LRI components which are absent in the ATH1 microarray (Fig. 2D). 

Recently a list of 226 cytokinin-responsive genes was generated in a microarray meta-

analysis performed through 13 ATH1 Affymetrix array experiments on several varieties of 

cytokinin-treated samples (Bhargava et al., 2013) and 573 cytokinin-regulated genes was 

identified by RNA-seq experiment (Bhargava et al., 2013). We compared these lists of 

cytokinin-regulated genes with our list of genes affected by cytokinin in the pericycle. We 

identify 63 and 119 genes overlapped, respectively, with the cytokinin-regulated genes 

identified by Arabidopsis Tiling 1.0R array. From them 49 genes were overlapped between 

the three datasets (Fig. 1E). As auxin and cytokinin co-treatment are usually used in callus 

induction of the shoot regeneration process which shares a common genetic control with LR 

initiation (Sugimoto et al., 2010; Duclercq et al., 2011), we compared our list of genes 

affected during the double treatment with genes affected during the early step of callus 

induction (Che et al., 2006; Xu et al., 2012). Interestingly, almost 50% of affected genes by 

double treatment (1760 genes) are also affected during callus induction (Fig. 1F). In addition 

due to the use of the Arabidopsis Tiling 1.0R array we identified 623 genes not present in the 

ATH1 platform and regulated when auxin and cytokinin were add simultaneously. 
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 Auxin and cytokinin mutually modulate their activities in the 2.2.3

pericycle. 

Auxin and cytokinin metabolic, transport and signaling pathways are interconnected 

at multiple levels (Schaller et al., 2015). To identify convergence points of the complex auxin 

– cytokinin network that are specific to the xylem pole pericycle a genome wide profiling 

dataset was thoroughly inspected. The large scale comparison of expression patterns revealed 

that many genes implicated in auxin activity control are highly sensitive to cytokinin 

application and vice versa auxin significantly altered cytokinin regulatory genes when 

compared to untreated control (Figure S2B and S2C).  

 

 AHK2 and AHK3 mediated signaling regulates production of 2.2.4

biologically active auxin.  

To explore sensitivity of pathways that determine production of auxin and cytokinin 

hormonal fluctuations, expression profiles of genes acting in the major metabolic pathways 

were thoroughly scanned (Table S4, Ljung 2013; Kasahara 2016). Expression of genes 

involved in the biosynthesis of L-Tryptophan (L-Trp), a major precursor of auxin 

biosynthesis in plants, was largely unchanged by auxin and cytokinin (Fig. 3A). Several 

components of the indole-3-pyruvic acid (IPyA) pathway such as TAR2 and YUC5, YUC6, 

YUC8 and YUC9 were strongly attenuated by auxin, indicating negative feedback triggered 

by excess of auxin, whereas upregulation of YUC7 expression by cytokinin might contribute 

to increase of auxin production (Fig. 3A, Table S4).   

When compared to the IPyA pathway expression of genes involved in the indole-3-

acetaldoxime (IAOx) pathway, which mediates conversion of IAOx to auxin were more 

sensitive to hormonal perturbations.  Expression of the cytochrome P450 monooxygenases 

CYP79B2 and CYP79B3, which catalyze conversion of L-Trp to the indole-3-acetaldoxime 

(IAOx), the common precursor for camalexin (CAM), indole glucosinolates (IGs) and IAA 

were significantly enhanced by cytokinin, but attenuated by auxin (Fig. 3A; S3A; Table S4). 

Expression of downstream components involved in IAOx conversion to either IGs or indole-

3-acetonitrile (IAN) and further to CAM and IAA was also differentially regulated by auxin 

and cytokinin (Fig. 3A, Table S4). Unlike auxin, cytokinin promoted expression of genes 

involved in IAOx to IGs, and IAN to IAA conversion, but attenuated those involved in 

conversion of IAN to CAM (Fig. 3A, Table S4).   



 
 

Essential negative regulatory feedback of auxin on its own activity is linked with 

pathways controlling auxin inactivation via conjugation with amino acids. Expression of 

several GH3 genes, which encode IAA–amino synthase catalyzing conversion of free IAA to 

IAA-amino acid conjugates, was strongly upregulated by auxin (e.g. GH3.3 induced with a 

fold change of 9.06), whereas specific IAA-amino acid conjugate hydrolases which release 

free, active IAA were repressed by auxin (e.g. ILL6 decreased with a fold change of -2.70; 

Fig. 3A, Table S4). In contrast, cytokinin attenuated expression of several genes involved in 

auxin deactivation either via methyl-esterification or conjugation of IAA with amino acids 

(Fig. 3A, Table S4).  

Altogether this thorough analysis of auxin metabolic pathways and their sensitivity to 

hormonal treatments strongly suggests that cytokinin contributes to the maintenance of 

biologically active auxin levels in the root. On one side cytokinin upregulates several genes 

of IPyA and IAAox pathways, two major branches of auxin biosynthesis, and on the other it 

significantly attenuates expression of genes acting in auxin conjugation pathways. 

To assess the impact of cytokinin on auxin metabolism, levels of free IAA and two 

major auxin conjugates IAA-glu and IAA-asp were measured in roots of cytokinin receptor 

mutants  including ahk2, ahk3, cre1 and higher order ahk2ahk3, ahk2cre1, ahk3cre1 mutants. 

Lack of the AHK3 receptor activity in ahk3 single as well as ahk2ahk3 and ahk3cre1 

multiple mutants correlated with significant reduction of auxin levels in roots supporting a 

positive role of cytokinin in auxin biosynthesis (Fig. 3B).  On the other hand lack of the 

AHK2 activity in single ahk2 single as well as ahk2ahk3 and ahk2cre1 multiple mutants led 

to significant increases of IAA-asp and IAA-glu conjugates (Fig. 3C, D). Unlike AHK2 and 

AHK3, loss of the CRE1/AHK4 activity did not significantly affect levels of either free auxin 

or its conjugates. Moreover, no recovery of auxin could be detected in ahk3cre1 and 

ahk2cre1, when compared to ahk3 and ahk2, respectively,  suggesting that AHK4/CRE1 

might not act as an antagonist of either AHK2 or AHK3 in the regulation of auxin 

metabolism by cytokinin (Fig. 3B-D). Altogether these results strongly support a role of 

cytokinins in auxin metabolism control and suggest that specific branches of the signaling 

might fine tune particular auxin metabolic pathways. The AHK3 mediated branch of 

cytokinin signaling contributes to the regulation of auxin biosynthesis and maintaining 

overall levels of auxin, whereas AHK2 dependent signaling seems to balance the ratio 

between free and conjugated IAA derivatives. 
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 Auxin targets cytokinin biosynthesis and deactivation pathways to 2.2.5

fine tune cytokinin levels in the pericycle. 

In Arabidopsis, cytokinin is biosynthesized through the activity of adenosine 

phosphate-isopentenyl transferase (IPT) (Sakakibara, 2006). Several IPT genes, such as IPT1, 

IPT5 and IPT7 were downregulated either by cytokinin or auxin, in accordance with previous 

observations (Miyawaki et al., 2004) (Fig. S3C, Table S5). In contrast, auxin and cytokinin 

differentially regulate expression of CYP735A1 and CYP735A2, which encode enzymes 

converting iP-nucleotide to tZ-nucleotide (Sakakibara, 2006). Whereas cytokinin enhances, 

auxin suppresses expression of these genes (Fig. S3C, Table S5). Previously, this antagonistic 

regulation has been observed in roots (Takei et al., 2004) and indicates that also in pericycle 

auxin and cytokinin activities converge on fine tuning levels of specific cytokinin derivatives.  

Expression of two homologues of LONELY GUY (LOG) family, LOG1 and LOG9, encoding 

cytokinin-activating enzymes (Kuroha et al., 2009) was significantly reduced by auxin (Fig. 

S3C, Table S5).  CYTOKININ OXIDASE (CKX)-mediated degradation is essential catabolic 

pathway for irreversible inactivation of cytokinins (Werner et al., 2003). Our transcriptome 

profiling data reveal that both auxin and cytokinin modulate expression of these genes in the 

pericycle. Whereas cytokinin enhances expression of CKX3 and CKX5, thereby strengthening 

negative regulatory feedback on its own production (Fig. S3B, S3C, Table S5), CKX4, 

another family member, is downregulated by both auxin and cytokinin (Fig. 3B, Table S5).  

Furthermore, in the pericycle both hormones might adjust the level of active cytokinin via 

control of ADENINE PHOSPHORIBOSYL TRANSFERASE (APT2, APT4, APT5) gene 

expression, encoding for enzymes deactivating cytokinins by their conversion from free bases 

to nucleotide (Zhang et al., 2013, Fig. S3C, Table S5).  

Detailed analysis of the transcriptome shows that in the xylem pole pericycle auxin 

and cytokinin metabolic pathways rapidly react to hormonal fluctuations. As expected, under 

excess of either auxin or cytokinins homeostatic mechanisms including suppression of their 

own biosynthesis and upregulation of pathways that deactivate hormone activity via 

degradation and conjugation are triggered (Nordström et al., 2004; Jones et al, 2010). Besides 

activation of mechanisms that maintain levels of respective hormones at physiological levels, 

both auxin and cytokinin metabolic pathways are tightly interconnected and rapidly sense 

availability of their hormonal counterpart. Cytokinin via enhanced expression of biosynthetic 

genes and suppression of these controlling auxin conjugations might effectively modulate 

levels of biologically active auxin in the pericycle. Measurements of auxin metabolites in 



 
 

roots of three AHK receptor mutants support this positive role of cytokinin in auxin 

metabolism and suggest that specific branches of cytokinin signaling might fine tune distinct 

auxin metabolic pathways. In contrast, auxin via attenuation of several IPTs and LOG genes 

can reduce production of active cytokinin derivatives, although the stimulatory effect on 

genes involved in cytokinin conjugation/deactivation provides support also for its feedback 

on pathways that control balance between biologically active and non-active cytokinin 

metabolites.  

 

 Expression of negative feedback-loop components of auxin and 2.2.6

cytokinin signaling is sensitive to hormonal perturbations.  

To dissect components of auxin and cytokinin signaling that might mediate interaction 

between the two pathways in the xylem pole pericycle, expression of the core signaling 

cascade genes in response to hormonal treatments was evaluated. Expression of auxin 

(TIR1/AFBs) and cytokinin (AHKs) receptors was largely insensitive to any hormonal 

perturbations (Table S4, S5).  Likewise, transcription of ARFs and type-B ARRs transcription 

factors, which mediate signaling downstream of the respective receptors were mostly 

unresponsive to treatments with their hormonal counterparts (Table S4, S5).  

In contrast, genes that provide negative feedback on signal transduction cascades such as 

Aux/IAAs for auxin and type-A ARR and AHP6 for cytokinin pathway, sensitively responded 

to the hormones. In accordance with previous reports, auxin and cytokinin enhanced 

expression of number of Aux/IAAs and type-A ARR genes, respectively (Abel et al, 1996; 

Kieber and Schaller 2014). In the pericycle, IAA6, IAA29, IAA5, IAA30, IAA20 and IAA1 

were among the most responsive to auxin treatment, whereas ARR16, ARR7, ARR15 and 

ARR17 exhibited the highest responsiveness to cytokinin (Table S4, S5). Interestingly, 

several Aux/IAAs and type-A ARR genes showed also significant sensitivity to the treatment 

with their hormonal counterparts. Cytokinin enhanced expression of IAA5, IAA31, IAA3, 

whereas that of IAA14 was attenuated (Table S4). Transcriptome profile of auxin treated 

pericycle confirmed previous finding on the  auxin sensitive expression of AHP6 (Mähönen 

et al., 2006) and revealed that several type-A response regulators including ARR6, ARR17, 

ARR5 were down- whereas ARR7 was  up-regulated by auxin (Table S5). To validate these 

transcriptome based expression profiles GUS reporters for selected Aux/IAA and ARR genes 

were employed.   Expression of IAA14::GUS, IAA19::GUS, IAA28::GUS, ARR7::GUS, 

ARR5::GUS, ARR16::GUS, ARR15::GUS and ARR12::GUS in response to hormonal 
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treatments largely confirmed patterns detected by transcriptome profiling (Fig. 4A, Fig. S4A, 

Table S4 and S5).  

Altogether these results suggest that in the xylem pole pericycle, auxin and cytokinin 

signaling pathways might mutually modulate their activities via rapid transcriptional 

regulation of components that provide negative feedback on the respective signal 

transduction cascades.   

 

 Interplay of auxin and cytokinin signaling components in the 2.2.7

pericycle determines root branching pattern. 

To assess contribution of the auxin and cytokinin signaling components to the lateral root 

organogenesis, in particular of these whose expressions in the pericycle is under control of 

their hormonal counterparts, we analyzed the respective mutant lines. In the selected 

Aux/IAAs (iaa5, iaa30, iaa6, iaa29, iaa12, iaa14, iaa17, and iaa19) and type-A ARR loss of 

function mutants (arr3, arr4, arr5, arr6, arr7, arr9, arr15, arr16) neither LRP density nor 

root growth were  significantly affected, presumably due to their functional redundancies 

(Fig. 4B, S4B). Higher order type-A arr3,4,5,6,8,9 mutant exhibited reduced LRP density, 

which is an expected output of an enhanced cytokinin signaling due to attenuated activity of 

multiple type-A ARR repressors (Fig.  4B and Fig. S4B).   

To examine function of the cytokinin and auxin regulated AUX/IAAs and ARRs in the 

cytokinin regulated root branching, respective mutants were grown on media supplemented 

with cytokinin. Whereas the LRP density in most of tested type-A ARR mutants was not 

significantly altered (Fig. 4C), a higher order arr3,4,5,6,8,9 and arr5 mutants exhibited 

enhanced sensitivity to cytokinin inhibition in line with their function of cytokinin signaling 

repressors (Fig. 4C, S4C). In contrast, iaa5, iaa30, iaa14, iaa29 and iaa6, iaa19 loss of 

function mutants initiated more LRP at inhibitory concentrations of cytokinin compared to 

the wild type control, suggesting that attenuation of the negative feedback on auxin signaling 

is able to counterbalance cytokinin effect on the LRP initiation (Fig. 4C, S4C).  

As expected, interference with some type-B ARR transcriptional regulators, namely 

ARR12 and ARR14, reduced sensitivity of LRP initiation to cytokinin, in line with their 

positive role in the signal transfer (Fig. 4C, S4C). Surprisingly,  lack of the ARR1, ARR10 

and ARR11 function resulted in  oversensitivity of the LRP initiation to cytokinin (Fig. 4C 

and S4C), suggesting that downstream components of the cytokinin signaling cascade might 



 
 

have distinct functions in the regulation of the LR initiation. To explore whether observed 

cytokinin sensitivity differences between two subgroups of type-B arr mutants (type-B1 

including ARR1, ARR10 and ARR11 and type-B2 - ARR2, ARR12, ARR14) might result 

from perturbed interaction with auxin signaling we analyzed expression of AUX/IAAs in 

respective mutants. QRT-PCR analysis revealed that in the cytokinin oversensitive type-B1 

arr1, and arr10 mutants an expression of multiple AUX/IAA genes was reduced in roots 

exposed to cytokinin when compared to wild type control (Fig. 5A, 5B). On the other hand 

expression of tested Aux/IAAs was either not changed or enhanced in subgroup of type-B2 arr 

(arr12 and arr14) mutants that exhibit reduced cytokinin sensitivity (Fig. 5A, 5B). To 

confirm observed AUX/IAAs expression differences between two mutant subgroups we 

examined expression of IAA14, a potent repressor of the LRP initiation (Fukaki et al., 2002 ) 

using IAA14::GUS reporter introduced into arr10 and arr12 (Fig.  S5A).  In accordance with 

transcriptome profiling data, cytokinin reduced expression of IAA14::GUS in the central 

cylinder of wild-type roots, and at the root tip a modest increase of GUS signal was detected 

(Table S4, Fig. 4A and S5A, S5B).  Loss of the ARR10 function interfered with cytokinin 

induced expression of IAA14::GUS, whereas in the arr12 overall increase of the IAA14 

reporter signal was observed irrespective of the cytokinin provision (Fig. S5A, S5B). Hence, 

expression analysis of the IAA14 reporter supports our findings that individual type-B ARRs 

might differ in interaction with auxin pathway.  

Typically accumulation of Aux/IAAs including IAA14 leads to strong suppression of 

the LRP initiation (Fukaki et al., 2002; Vanneste at al., 2005; De Smet et al., 2010).  

However, oversensitivity of LRP initiation to cytokinin in the subgroup of type-B1 arr 

mutants correlates with reduced expression Aux/IAAs (Fig. 5A, 5B; S5A-C). To examine 

developmental relevance of the crosstalk between ARR10/ARR12 and IAA14, multiple 

iaa14arr10; iaa14arr1arr10 and iaa14arr12 mutants were analyzed. Lack of the IAA14 

auxin repressor in arr10, arr1arr10 as well as arr12 reduced sensitivity of LRP initiation to 

cytokinin (Fig. 4C). 

Although both type-B1 and -B2 ARR subgroups differ in levels of Aux/IAAs 

expression, attenuation of the auxin negative feedback loop e.g. by limiting IAA14 

expression, can reduce sensitivity to cytokinin in both these subgroups. Hence, 

oversensitivity of the LRP initiation to cytokinin in the type-B1 arr mutants does not seem to 

be a consequence of the accumulation of specific AUX/IAAs, but might be result of the 

overall drop in auxin activity, for example via reduction of auxin production, which is 

manifested by low expression of  AUX/IAAs.   
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 Transcriptome profiling supports a role of cytokinin in the regulation 2.2.8

of polar auxin transport.  

Biologically important aspect of auxin and cytokinin cross-talk involves cytokinin 

regulation of the polar auxin transport (Adamovski and Friml, 2015).  In the pericycle, 

exogenous auxin application enhanced expression of some auxin efflux carriers such as PIN1 

(FC=2.63) and PIN7 (FC=1.43) whereas expression of ABCBs/PGPs, PILS or auxin influx 

carriers such as AUX1 or LAX3 were not dramatically affected (Table S4). In response to 

cytokinin no significant changes in the expression of auxin transport related genes could be 

detected. However, unlike modest impact of auxin and cytokinin on transcription of auxin 

transporters, both hormones altered significantly expression of factors controlling subcellular 

trafficking and membrane localization of PIN auxin transporters such as PINOID (PID1), 

WAG1 (Friml et al., 2004), NPY1, NPY4, NPY5 (Chen et al., 2007, 2008), PBP1 (Benjamins 

et al., 2003) (Table S4). This is largely in accordance with recent findings demonstrating that 

important part of auxin and cytokinin feedback on polar auxin transport might involve 

regulation of the PIN subcellular trafficking (Paciorek et al., 2005; Marhavy et al., 2011; 

2014).  

 

 Transcriptome profiling reveals common targets of auxin and 2.2.9

cytokinin in the pericycle.   

Besides genes related to the auxin and cytokinin pathways thorough analysis of the 

transcriptome profile led to identification of unknown potential targets of both hormonal 

pathways. Among 5313 genes perturbed by at least one of the hormonal applications (fold 

change (FC) >1.5 or <-1.5 and P<0.01) we found 1205, 347 and 896 genes responsive 

specifically to auxin, cytokinin or combinatorial treatment, respectively. Expression of 1,868 

genes was altered by both auxin and combinatorial hormonal treatment, and 1005 genes 

changed their expression after cytokinin as well as the double treatment (Fig. 2C). 

Comparison of the gene expression profiles in response to individual (either auxin or 

cytokinin) versus combinatorial treatment by both hormones led to identification of two main 

gene clusters – genes regulated in an additive and a non-additive manner. As an additive we 

considered genes whose transcriptional change by simultaneous hormonal treatment is equal 

to the sum of changes caused by individual hormones. Non-additive regulation is considered 

when the change in gene expression by combined application of hormones differs 



 
 

significantly from additive (sum) effects of the individual hormonal treatments. Our 

transcriptome profiling revealed 1199 genes, which were regulated by auxin and cytokinin in 

a non-additive manner (ratio between expected and observed additive values >1.5 or <0.5), 

thus being strong candidates for molecular components of the auxin and cytokinin interaction 

(Table S6). To examine a developmental relevance of genes at whose transcriptional 

regulation both hormonal pathways might converge, we selected candidate genes for detailed 

functional analyses. We focused on two specific subgroups of non - additively controlled 

genes exhibiting either synergistic positive or synergistic negative expression pattern in 

response to simultaneous auxin and cytokinin treatment. In these groups the genes are 

significantly up-/down-regulated by simultaneous hormonal treatment when compared to the 

expected additive effect of both hormones separately (Fig. 6A, Fig. S6A). The expression 

pattern of selected candidates was validated using qRT-PCR (Fig. 6A and S6A). Expression 

of two highly synergistically regulated genes (At1G15590 and At1G15600) was evaluated 

using transcriptional reporter constructs. In roots of both At1G15600p::GUS well as well as 

AtG15590p::GUS transgenic seedlings strong staining of GUS reporter was detected after 

simultaneous hormonal treatment when compared to control, auxin or  cytokinin treatments 

(Fig. 6B, 6C). Importantly, the expression analysis of candidate genes in planta confirmed 

that activity of both hormones auxin and cytokinin is strictly required to trigger transcription 

in the same tissues and synergism is not output of hormonal effects in the distinct cell types. 

To gain more insights into the function of these genes in the auxin-cytokinin crosstalk and in 

regulation of the root system architecture, we assessed a root growth and branching in the 

respective mutants. Whereas in most of the mutants primary roots growth on media with and 

without hormonal supply was largely unaffected (Fig. 6D, S6B) root branching particularly in 

roots exposed to hormones were significantly altered in large proportion of tested mutants 

when compared to wild type seedlings (Fig. 6E, S6C). Mutations in several genes 

synergistically up-regulated by auxin and cytokinin led to reduced sensitivity of LR initiation 

to cytokinin inhibition (AT1G15600; AT1g02389; AT4G32300; AT2G19410; AT3G13080) 

and mutations in genes including AT1G49560, At1G18870, AT1G17430, ATG243140 altered 

sensitivity of LR initiation to combinatorial auxin and cytokinin supply (Fig. 6E, S6C). 

Altogether these results indicate that auxin cytokinin regulated root system architecture at 

molecular levels might not necessarily be outcome of mutual antagonisms of these two 

hormonal pathways. Striking alterations of root system architecture caused by loss of 

functions in genes controlled by both hormones, in particular when exposed to hormonal 
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perturbations, indicate that these genes might balance inputs from both auxin and cytokinin to 

ensure their proper developmental readout. 

 

2.3 Discussion 
Iterative formation of lateral root organs from the primary root is under the tight control of 

auxin and cytokinin pathways which are wired via multiple levels of interactions 

(Vanstraelen and Benkova, 2012). Although their mutual antagonism in control of lateral root 

organogenesis is well established, the molecular mechanisms underlying auxin – cytokinin 

interactions are scarcely understood so far. To uncover genes implied in the auxin – cytokinin 

cross-talk, which determine the architecture of the root system, a transcriptome profiling 

approach was applied. Genome wide expression profiling revealed a number of xylem pole 

pericycle genes responsive to auxin and cytokinin perturbations. Among genes regulated by 

auxin and cytokinin core components of pathways that determine their own outputs at the 

level of metabolism, transport and signaling, as well as genes that might be important 

integrators of hormonal signals from both pathways were recognized.   

 Our transcriptome profiling confirmed that some previously recognized general regulatory 

mechanisms activated by auxin and cytokinin might also act at the pericycle. In agreement 

with other studies, excess of auxin as well as that of cytokinins was found to trigger a 

negative feedback to suppress their own production (Nordström et al., 2004; Jones et al, 

2010). Accordingly, auxin and cytokinin impact on components, which control 

posttranslational modifications and polarity establishment of PIN auxin efflux transporters 

such as PID1 and WAG, in line with recent findings on the role of both hormones in fine 

tuning polar auxin transport (Fiml et al., 2004; Paciorek et al., 2005; Marhavy et al, 2011).  In 

addition, detailed analysis of core components of auxin and cytokinin pathways and their 

sensitivities to their respective hormonal counterparts hint at several specific convergence 

points that balance auxin – cytokinin readouts at the pericycle.  Our data indicate that 

cytokinin is involved in maintaining levels of auxin via distinct steps of its metabolism. 

Cytokinin promotes expression of YUCCA7 acting in the indole-3-pyruvic acid (IPyA) 

pathway, a major tryptophan-dependent IAA biosynthesis pathway (Ljung et al., 2013) and in 

agreement with previous report (Jones et al., 2010) genes of IAOx pathway cytochrome P450 

monooxygenases (CYP79B2 and CYP79B3), which catalyze the conversion of L-Trp to 

indole 3-acetaldoxime (IAOx) as well as several NITRILASE (NIT) gene family members, 



 
 

which downstream of IAOx convert indole-3-acetonitrile (IAN) to auxin are enhanced by 

cytokinin. Furthermore, downregulation of several GH3 family members points out that 

cytokinin might also manage a pool of active auxin by attenuating its conjugation with amino 

acids. Reduced levels of free auxin and accumulation of auxin conjugates in cytokinin 

receptor mutants strongly corroborate the role of cytokinin in auxin production via fine 

tuning activities of both auxin biosynthesis as well as auxin-conjugation pathways. 

Noteworthy, reduced levels of free auxin and accumulation of auxin conjugates, which 

correlates with lack of the AHK3 and AHK2 cytokinin receptor activities, respectively, 

suggest that distinct branches of cytokinin signaling might target specific pathways of auxin 

metabolism. In addition, analysis of the type-B ARRs, which transduce cytokinin signal 

downstream of the receptors, supports regulation of auxin activity by distinct branches of 

cytokinin signaling. Two subgroups - type-B1 and -B2 ARRs were recognized based on their 

inputs into the cytokinin regulated lateral root initiation. Whereas lack of the type-B1 ARRs 

(including ARR1, ARR10 and ARR11) correlated with increased sensitivity of root 

branching to cytokinin inhibition, mutations in type-B2 ARRs (including ARR12 and 

ARR14) attenuated this cytokinin inhibitory effect. Unexpectedly, cytokinin oversensitive 

type-B1 arr mutants are characterized by overall reduction of Aux/IAAs expression, unlike 

type-B2 ARR mutants in which higher levels of Aux/IAAs transcripts were detected. As 

typically accumulation of Aux/IAA auxin repressors correlates with inhibition of lateral root 

initiation (Fukaki et al., 2002; Vanneste et al., 2005), we hypothesize that low Aux/IAAs 

expression detected in type-B1 arrs mutants might be related to the feedback on the auxin 

activity that presumably involves regulation of auxin metabolism.  In such a scenario type-B1 

ARRs, together with AHK2 and AHK3, would be involved in maintaining auxin levels, and 

lack of their activity is manifested by overall reduction of the Aux/IAAs expression due to 

reduced auxin production. On the other hand previous studies have shown that AHK4/CRE1 

along with ARR2 and ARR12 are involved in cytokinin triggered lytic degradation of PIN1 

auxin efflux carrier, and that in ahk4/cre, arr2 and arr12 mutants PIN1 is largely insensitive 

to this cytokinin effect (Marhavy et al., 2011). In contrast, cytokinin promoted PIN1 lytic 

degradation is unaffected in ahk2, ahk3 as well as type-B1 mutants (Marhavy et al., 2011). 

Altogether our and previously published data suggest that distinct branches of cytokinin 

signaling might regulate specific auxin pathways. We propose that AHK2 and AHK3 along 

with type-B1 ARRs fine tune levels of the biologically active auxin via modulation of auxin 

biosynthesis and its conjugation, whereas the AHK4 mediated branch of cytokinin signaling 
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together with type-B2 ARRs determines the capacity of polar auxin transport  and thereby 

auxin distribution.  

We hypothesize that the concerted action of these distinct cytokinin transduction 

pathways might contribute to the dosage dependent effects of cytokinin on the auxin 

oscillatory pattern and consequently on the LR initiation pattern. At low cytokinin 

concentrations AHK2 and AHK3 dependent pathways might be activated and promote auxin 

biosynthesis thereby enhancing LR initiation.  With increasing cytokinin levels AHK4 and 

type-B2 ARRs mediated signaling attenuates auxin transport and consequently LR initiation 

is reduced.  

Aside from genes of auxin and cytokinin pathways which might mutually balance 

each other’s readouts, our transcriptome profiling revealed novel potential components of 

auxin and cytokinin cross-talk.  Subgroups of genes whose expression either requires input 

from both  auxin and cytokinin pathways, or  in response to auxin plus cytokinin supply their 

expression excesses additive effects of individual hormonal treatments might represent 

important convergence points acting downstream of auxin and cytokinin signaling.  

Importantly, as confirmed by expression analysis in tissues using GUS reporters, the non-

additive response is a result of auxin and cytokinin activity interplay in the same tissue and 

not an output of spatially distinct events. Among genes non-additively regulated by auxin and 

cytokinin, synergistically up- and down-regulated gene clusters have been identified. Several 

candidates from each cluster encompassing genes of unknown function (AT1G15600, 

AT1G15590, AT1G02380, AT4G32300, AT1G17430), transcriptional regulators and 

chromatin modifiers (AT1G49560, AT2G43140, AT2G35270, AT2G28200), kinases 

(AT1G64080, AT2G19410), genes involved in cell wall modifications (AT1G02460, 

AT4G14130, AT5G23210), transport (AT4G25640, AT3G13080), plant metabolism or other 

functions (AT1G18870, AT3G47470) have been selected for the functional analyses. Detailed 

phenotype analysis of candidates revealed that mutations interfering with their function 

significantly affect establishment of the root system architecture under hormonal 

perturbations. Interestingly, some of the synergistically regulated genes tested by auxin and 

cytokinin have been recently linked with function in root adaptive responses to nutrient 

availability (AT1G49560; Nagarajan et al., 2016; Medici et al., 2015), environmental stresses 

caused by heavy metals including cadmium (AT3G13080, Brunetti et al., 2015), aluminum 

(AT4G1413, Zhu et al., 2013) and other environmental stresses (AT4G25640, Zhang et al., 

2017), as well as in the regulation of hormonal pathways involved in stress responses such as 



 
 

salicylic acid (AT1G18870, Garcion et al., 2008) or abscisic acid (AT2G43140, Tian et al., 

2015). Hence we hypothesize, that auxin and cytokinin pathways converging at the common 

downstream targets might represent important regulatory modules for rapid integration of 

environmental signals and flexible adaption of the root system architecture.   

 

2.4 Material and methods  
 

Plant material and growth conditions 

The transgenic Arabidopsis thaliana (L.) Heynh. lines have been described elsewhere: 

pIAA14::GUS (Vanneste et al.,2005), IAA19::GUS (Tatematsu et al., 2004), IAA28::GUS (De 

Rybel et al., 2010), DR5:LUCIFERASE (Moreno-Risueno et al., 2010), CYC1;1B::GUS 

(Ferreira et al., 1994) arr1-2, arr1-4, arr2-4, arr10-1, arr11-1, arr11-2, arr12-1 (Mason et 

al., 2005), arr2-1 (Marhavy et al., 2011), arr3-1, arr4-1, arr5-1, arr6-1, arr9-1, 

arr3,4,5,6,8,9 (To et al., 2004), axr2-1/iaa7 (Nagpal et al., 2000), cre1-12; ahk2-2; ahk3-3; 

cre1-12ahk2-2; cre1-12ahk3-3; ahk2-2,ahk3-3 (Higuchi et al., 2004);  axr3-1/iaa17 (Leyeser 

et al., 1996), axr5-1/iaa1 (Yang et al., 2004), bdl-1 (De Smet et al., 2010), slr- 1(Fukaki et 

al., 2002), msg2-1 (Tatematsu et al., 2004), iaa4-1, iaa5-1, iaa6-1(Overvoorde et al., 2005), 

iaa28-1(De Rybel et al., 2010) and arr7 (N858131), arr10-5 (N39989), arr13-1 (N655053), 

arr14-1 (N875481), arr15-1 (N411750), arr16-1 (N873779), iaa12-1 (N25213), iaa14-1 

(N25214), iaa17-1 (SALK_065697C), iaa19-1 (N655206), iaa20-1 (SALK_017453), iaa28-

2 (N669043), iaa29-1 (SALK_152235), AT1G02380 (Salk_129654), AT1G02460 

(Salk_093618), AT1G15600 (Salk_151420), AT1G17430 (Salk_042510), AT1G18870 

(Salk_073287), AT1G49560 (Salk_095775), AT1G64080 (Salk_070770), AT2G19410 

(Salk_140776), AT2G28200 (Salk_137213), AT2G35270 (Salk_094394), AT2G43140 

(Salk_123812), AT3G13080 (Salk_044022), AT3G47470 (Salk_138555), AT4G14130 

(Salk_039464), AT4G25640 (Salk_057798), AT4G32300 (Salk_105027), AT5G23210 

(Salk_053542) ARR7::GUS, ARR16::GUS, ARR5::GUS, ARR12::GUS were obtained from 

the European Arabidopsis Stock Centre (NASC). Primers used for the genotyping and to 

quantify gene expression levels are listed in Table S8 – S9. Knock out lines of arr mutants 

were confirmed by RT-PCR (Table S10). Seeds were sterilized with chloral gas, sown in 

Petri dishes on 0.8 per cent agar with 1 per cent sucrose-containing 0.5 Murashige and Skoog 

(MS) medium, stored for 2 days at 4°C, and grown on vertically oriented plates in growth 

chambers under a 16-h-light/8-h-dark photoperiod at 18°C. Seven days after germination, 
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seedlings were harvested and processed. All cloning procedure was conducted by using 

Gateway™ (Invitrogen) technology; with the sequences of all used vectors available online 

(https://gateway.psb.ugent.be/). 

For promoter analyses of At1G15600 and AT1G15590, an upstream sequence of 2522bp and 

876bp, respectively, were amplified by PCR and introduced into the pDONRP4-P1R entry 

vector.  

 

Luciferase activity imaging and data processing 

7 days old seedlings were sprayed with a 5mM potassium luciferine (Sigma, CAS Number: 

50227, D-Luciferin potassium salt) and then imaged using the Lumazone platform from 

Photometrics (Dark Box Type 4). Images of seedlings were taken with a CCD camera 

(PIXIS: 1024B Digital Charge-Coupled-Device (CCD) Camera System) from Princeton 

Instruments plus imaging lens of 50 mm, which we complemented with 1 close-up lens. 

Luciferase expression movies were made by acquiring consecutive chemiluminescence 

images (6 minute exposure) for 20 hours and then combining the frames into a movie using 

WinView software. Luciferase was measured by selecting the region of interest and 

quantifying the analog-digital units (ADU) per pixel using the IMAGEJ software 

(http://rsbweb.nih.gov/ij/). 

 

Analyses of LRP initiation cytokinin sensitivity 

Mutants and control seedlings were grown on 0.5 MS medium without or supplemented with 

cytokinin - 0.1 nM to 0.1 mM 6-Benzyladenine, and auxin - 1µM 1-naphthaleneacetic acid 

(NAA). Seven days after germination, the plant material was cleared as described (Malamy 

and Benfey et al., 1999) and total number of lateral root primordia per cm of root length 

evaluated. Root lengths were measured with the IMAGEJ software 

(http://rsbweb.nih.gov/ij/). Lateral root primordia were counted with a differential 

interference contrast microscope BX51 (Olympus). At least 20 seedlings were analysed and 

the experiments were repeated twice independently. For the statistical evaluation, the t-test 

was done with the EXCEL statistical package. 

 

Plant Protoplast Fluorescence Activated Cell Sorting 

Plant protoplast fluorescence activated cell sorting protocol adapted from Birnbaum et al. 

2005. Approximately 5,000 seeds (per replicate) of each GFP line used in the experiments 

http://rsbweb.nih.gov/ij/


 
 

were sterilized and plated on high growth rate media (0.087% Murashige and Skoog medium, 

4.5% sucrose) in 16 hrs of light. To allow rapid harvesting, seeds were arranged in rows on 

square plates at a density of approximately 500 seeds per row on top of nylon mesh (Nitex 03 

100/47, Sefar America, Bricarcliff Manor, New York). Six days after plants were placed into 

a growth chamber (approximately 4 to 5 days after germination) roots were cut off about 1 

cm from their tip. Dissected roots were placed in protoplasting solution B inside 70 μm cell 

strainers placed in small Petri dishes and incubated for one hour at room temperature with 

agitation. Protoplasted cells were collected from Petri dishes and concentrated by spinning 

down (at approximately 800 RCF). The supernatant was aspirated and the cell pellet was 

resuspended in 1.5 ml of Solution A. The cell suspension was then filtered through a 40 μm 

cell strainer. GFP expressing cells were isolated on a fluorescence activated cell sorter (either 

a Cytomation MoFlo or a Becton Dickinson FACSVantage) fit with a 100 μm nozzle at a rate 

of 2,000 to 5,000 events per second. We mainly used a fluid pressure of 30 psi. Protoplasts 

from non-GFP expressing Columbia wild-type plants were used as a negative control for 

establishing sorting criteria based on the following cell properties: A) a cluster of live 

protoplasts with intact membranes was selected based on a high forward to side scatter ratio. 

B) GFP positive cells were selected by their emission intensity in the green channel (~530 

nm) above negative controls. Cells were sorted directly into lysis buffer (Qiagen RLT buffer), 

mixed and immediately frozen at -80° C for later RNA extraction. An autofluorescence filter 

was established by eliminating cells that fluoresced at equal intensity in the green and orange 

(~575 nm) channels. Standard Affymetrix protocols were then used for amplifying, labeling 

and hybridizing RNA samples. Birnbaum et al. 2005 

 

Transcriptome profiling  

RNA was extracted from pericycle cell sorted using the RNeasy Plant Mini Kit (Qiagen). A 

DNase treatment with the RNase-free DNase Set (Qiagen) was carried out for 15 min at 

25°C. Total RNA concentration was determined using a Nanodrop ND-1000 

spectrophotometer. All RNA samples were rejected if they did not reach a minimum 

concentration of 100 ng μl−1, a 260 nm/280 nm ratio between 1.8 and 2.0 and a RNA integrity 

number superior to 7.5, measured with an Agilent 2100 Bioanalyzer (Agilent, USA). 

Arabidopsis Tiling 1.0R arrays (Affymetrix) were hybridized at the VIB Nucleomics Core 

(www.nucleomics.be) according to the manufacturer’s instructions. Data were normalized 

from CEL files using the robust multiarray average (RMA) algorithm (Irizarry et al., 2003). 

The probe annotation was obtained from athtiling1.0rcdf (Naouar et al., 2009). Differential 
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expression analysis was determined using the eBayes function from the limma package in R 

(Smyth, 2004). P values were calculated and then transformed into false-discovery rates 

(FDR), or Q values according to the method described by Storey and Tibshirani (2003), as 

implemented in the R package qvalue. The ChipEnrich software was used for the gene 

ontology (GO) enrichment analysis (Orlando et al., 2009). Visualization and hierarchical 

clustering of the microarray data were performed in the Multiexperiment Viewer MeV 4.9.0 

(http://www.tm4.org; Saeed et al., 2003) using the Pearson correlation coefficient. Venn 

diagram were generated with BioVenn (Hulsen et al., 2008). 

 

Analysis of gene expression 

GUS activity was detected as described15. For quantitative RT-PCR RNA was extracted with 

the RNeasy kit (QIAGEN) from 7-day old roots of Arabidopsis (without root tip). Expression 

levels were normalized to UBQ10. A DNase treatment with the RNase-free DNase Set 

(Qiagen) was carried out for 15 min at 25°C. Poly(dT) cDNA was prepared from 1 μg total 

RNA with iScript™cDNA Synthesis Kit (Bio-Rad) and quantified with a LightCycler 480 

(Roche) and SYBR GREEN I Master (Roche) according to the manufacturer’s instructions. 

PCR was carried out in 384-well optical reaction plates heated for 10 min to 95°C to activate 

hot start Taq DNA polymerase, followed by 40 cycles of denaturation for 60 sec at 95°C and 

annealing/extension for 60 s at 58°C. Targets were quantified with specific primer pairs 

designed with the Beacon Designer 4.0 (Premier Biosoft International). All RT-PCR 

experiments were done at least in triplicate.  

 

Auxin Measurements 

Approximately 30 mg (fresh weight) of 7 days old whole root material frozen in liquid 

nitrogen was ground with pestle and mortar and extracted for 5 min with 1 ml of cold 

phosphate buffer (50 mM; pH 7.0) containing 0.02% sodium diethyldithiocarbamate and the 

following 15N- and/or 2H5-labeled internal standards: [2H5]IAA, [15N,2H5]IAAsp, 

[15N,2H5]IAGlu. The samples were put into a freezer (−20°C) and centrifuged at 36,000 × g 

after 24 h. Supernatants were transferred into glass tubes, evaporated to dryness, and 

methylated with ethereal diazomethanol (Pencik et al., 2009). Further processing by 

immunopurification was performed as described (Pencik et al., 2009) and final analysis was 

done with a UHPLC coupled to a Waters Xevo TQ MS detector. 

  

http://www.tm4.org/


 
 

2.5 Figures and tables 

Figure 1 

 
Figure 1. Cytokinins modulate oscillation of the auxin response in a dose-dependent manner.  
(A, C, E, G) Real time monitoring of DR5:LUCIFERASE expression and (B, D, F, H) quantification of the 
luminescence signal in the basal meristem and the elongation zone of the main root observed in 7-day-old plants 
growing on medium supplemented with cytokinin (CK) - 0 (A,B), 1 (C, D), 10 (E, F) or 50 (G, H) nM 6-
Benzyladenine. (A, C, E, G) Time series of the DR5::LUCIFERASE signal in the root monitored for 12 hours. 
Red arrows indicate consecutive pulses of DR5::LUCIFERASE.  
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Figure 2 

 
Figure 2. Identification of auxin and cytokinin regulated genes at the root pericycle using transcriptome  
profiling.  
(A) Auxin (1µM 1-naphthaleneacetic acid; NAA) stimulates lateral root initiation when compared to untreated 
roots on Murashige Skoog (MS) medium, and simultaneous application of cytokinin (10µM 6-Benzyladenine) 
counteracts this auxin effect. Hormones applied on 5 days old Arabidopsis seedlings, lateral root primordia 
initiation scored 3 and 6 hour after treatments. CYC1;1B::GUS reporter used to visualize lateral root initiation 
events. (B) Quantitative (q)RT-PCR expression analyses of early auxin and cytokinin response genes of the 
type-A ARR and AUX/IAA families, respectively. Within 3 hours of treatment cytokinin significantly increased 
expression of ARR3, ARR4 and ARR5 cytokinin markers observed and this stimulatory effect was counteracted 
by simultaneous auxin application. Likewise, auxin stimulated transcription of IAA3/SHY2, IAA14/SLR and 
IAA19/MSG was attenuated by cytokinin provision. Auxin (1µM 1-naphthaleneacetic acid; NAA) red, cytokinin 
(10µM 6-Benzyladenine), green and auxin together with cytokinin yellow applied on 5 days old Arabidopsis 
seedlings. C. Xylem pole specific genes responsive to auxin, cytokinin and simultaneous treatments with both 
hormones. (D – F) Venn diagrams of the overlap between  hormone regulated genes identified in this study 
when compared to other microarray datasets including  auxin regulated genes in root (Vanneste et al., 2005) and 
xylem pole pericycle (De Smet et al., 2008) (D),  genes regulated by cytokinin (Bhargava et al., 2013) ( E) and 
genes regulated by callus induction medium CIM (Che et al., 2006 and Xu et al., 2012) (F). (G) Gene Ontology 
(GO) categories and biological processes significantly enriched in the transcriptome profiling dataset by auxin 
and cytokinins. 



 
 

Figure 3 

 
Figure 3. Auxin biosynthesis pathways in Arabidopsis regulated by cytokinin and auxin. 
(A) Major auxin biosynthesis pathways in Arabidopsis, with genes shown to be differentially regulated by auxin 
(red) and cytokinin (blue) in the microarray dataset. L-tryptophan biosynthesis pathway – green, IPyA pathway 
– blue, IAAox pathway – orange, auxin deactivation pathway – purple (B - D). Levels of free IAA (B), auxin 
amid conjugates IAA-Asp (C) and IAA-Glu (D) in cytokinin receptor mutants. Error bars mark standard errors 
(n=3). 
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Figure 4 

 

IAA28::GUS                 IAA14::GUS                   ARR7::GUS                    ARR16::GUS      

 MS       aux      CK  aux/CK     MS     aux      CK    aux/CK     MS     aux     CK  aux/CK    MS       aux     CK    aux/CK 

A 

B 

C 

* 

* * 

* 
* 

* * * * * 

* * * 

* 

* 

* 

* * 

* 

* 

1,09 -1,66 -1,37-1,48 1,11 -1,07 2,29 16,45 27,09 -1,23 32,35 17,04TP 



 
 

Figure 4. Perturbations in cytokinin and auxin signaling affect cytokinin sensitivity of LR initiation. 
(A) Expression of auxin and cytokinin signaling components IAA28, IAA14, ARR7 and ARR16 monitored using 
transcriptional fusion with GUS reporter confirms transcriptome profiling results. Auxin (1µM 1-
naphthaleneacetic acid; NAA), cytokinin (10µM 6-Benzyladenine), and auxin together with cytokinin applied 
on 5 days old Arabidopsis seedlings for 5 hours. TP indicates  transcriptome profiling expression profile. 
 (B, C) LRP initiation  in type-A and -B arr and aux/iaa mutants growing on control medium (B) or on medium 
supplemented with cytokinin (C). Error bars represent SE (n = 20). *, statistically significant differences for 
values compared with wild-type as determined by Student’s t-test (P <0.05). MS - Murashige and Skoog 
medium, cytokinin – 100 nM cytokinin derivate N6-benzyladenine, LRP/cm – total number of initiated LR 
primordia and LR per cm of root length in 7 days old seedlings. 
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Figure 5 

 
Figure 5. Type-B response regulators ARR1, ARR10 and ARR12 differentially control expression of 
Aux/IAAs. 
(A, B) Relative Aux/IAA expression levels in type-B arr mutants compared to their respective wild-type after 
growing 7 days on MS (A) or cytokinin containing medium (B). MS - Murashige and Skoog medium, cytokinin 
– 100 nM cytokinin derivate N6-benzyladenine, 
  

A 

B 



 
 

Figure 6.  

 
Figure 6. Genes synergistically up-regulated by auxin and cytokinin impact on the root system 
establishment. 
(A) Relative expression levels of genes synergistically up-regulated by auxin and cytokinin analysed by 
qRTPCR when compared to transcriptome profiling data (TP). Auxin (1µM 1-naphthaleneacetic acid; NAA), 
cytokinin (10µM 6-Benzyladenine), and auxin together with cytokinin applied on 5 days old Arabidopsis 
seedlings for 3 hours. (B, C) Synergism of auxin and cytokinin in control of AT1G15590 and At1G15600 
monitored using transcriptional fusion with GUS reporter confirms transcriptome profiling results. (D, E) Root 
growth and LRI initiation density in mutants of auxin and cytokinin synergistically regulated genes. Error bars 
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represent SE (n = 20). (*) statistically significant differences for values compared with wild-type as determined 
by Student’s t-test (P <0.05). MS - Murashige and Skoog medium, cytokinin – 100 nM cytokinin derivate N6-
benzyladenine, Auxin (1µM 1-naphthaleneacetic acid; NAA), LRP/cm – total number of initiated LR primordia 
and LR per cm of root length in 7 days old seedlings.  
  



 
 

Supplementary Figure 1 

 
Supplementary Figure 1. Manipulations of endogenous cytokinin levels induce a change in the oscillatory 
behavior of DR5::LUCIFERASE. (A, C) Profile of DR5 expression and (B, D) quantification of the 
luminescence signal in the basal meristem and the elongation zone of the roots displaying a low (35S::CKX3) 
(A, B) or high (35S::IPT3) (C, D) content of cytokinin. Time series of the DR5::LUCIFERASE signal in 
35S::CKX3 (b) or 35S::IPT3 (c) roots monitored for 12 hours. Red arrowheads indicate the peak of the DR5 
pulse. 
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Supplementary Figure 2A 

 
Supplementary Figure 2A. Genes of auxin and cytokinin regulatory pathways are sensitive to hormonal 
perturbations. 
(A) Scheme of the transcriptome profiling experimental set up.  5 days old Arabidopsis seedlings were treated 
with auxin, cytokinin or auxin and cytokinin for three hours. Roots without root tips collected for fluorescence 
activation cell sorting (FACS) and transcriptome profiling. 
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Supplementary Figure 2B, C 

 
Supplementary Figure 2B, C. Genes of auxin and cytokinin regulatory pathways are sensitive to 
hormonal perturbations. 
(B, C) Heat map of expression profiles of auxin and cytokinin regulatory genes acting in metabolism, transport 
and signaling and their sensitivity to auxin, cytokinin and combinatorial treatments.  
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Supplementary Figure 3 

 
Supplementary Figure 3: Cytokinin biosynthesis pathways in Arabidopsis regulated by cytokinin and 
auxin. 
(A, B) Expression of CYP79B3::GUS and CKX5::GUS reporters in response to auxin, cytokinin and 
combinatorial auxin and cytokinin treatments confirms transcriptome profiling. Auxin (1µM 1-
naphthaleneacetic acid; NAA), cytokinin (10µM 6-Benzyladenine), and auxin together with cytokinin applied 
on 5 days old Arabidopsis seedlings for 5 hours. 
(C) Major cytokinin biosynthesis pathways in Arabidopsis, with genes shown to be differentially regulated by 
auxin (red) and cytokinin (blue) in the microarray dataset. 
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Supplementary Figure 4 

 
Supplementary Figure 4: Perturbations in cytokinin and auxin signaling affect root length cytokinin 
sensitivity. 
(A) Expression of auxin and cytokinin signaling components IAA19, ARR5, ARR15 and ARR12 monitored using 
transcriptional fusion with GUS reporter confirms transcriptome profiling results. Auxin (1µM 1-
naphthaleneacetic acid; NAA), cytokinin (10µM 6-Benzyladenine), and auxin together with cytokinin applied 
on 5 days old Arabidopsis seedlings for 5 hours. TP indicates transcriptome profiling expression profile. 
 (B, C) Root growth in type-A and -B arr and aux/iaa mutants growing on control medium (B) or on medium 
supplemented with cytokinin (C). Error bars represent SE (n = 20). (*, statistically significant differences for 
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values compared with wild-type as determined by Student’s t-test (P <0.05). MS - Murashige and Skoog 
medium, cytokinin – 100 nM cytokinin derivate N6-benzyladenine, RL - root length in 7 days old seedlings. 
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Supplementary Figure 5: Type-B response regulators ARR10 and ARR12 differentially control 
expression of IAA14. 
(A) IAA14::GUS expression levels in type-B arr10 and arr12 mutants compared to their respective wild-type 
after growing 7 days on MS (A) or cytokinin containing medium (B). 
(C) LRP initiation in type-B arr10 and arr12 mutants growing on control medium or on medium supplemented 
with cytokinin. (*) statistically significant differences for values compared with wild-type as determined by 
Student’s t-test (P <0.05,). MS - Murashige and Skoog medium, cytokinin – 100 nM cytokinin derivate N6-
benzyladenine. 
  



 
 

Supplementary Figure 6 

 
Supplementary Figure 6: Genes synergistically down-regulated by auxin and cytokinin impact on the root 
system establishment. 
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(A) Relative expression levels of genes synergistically down-regulated by auxin and cytokinin analysed by 
qRTPCR when compared to transcriptome profiling data (TP). Auxin (1µM 1-naphthaleneacetic acid; NAA), 
cytokinin (10µM 6-Benzyladenine), and auxin together with cytokinin applied on 5 days old Arabidopsis 
seedlings for 3 hours.  (B,C) Root growth and LRI initiation in mutants of auxin and cytokinin synergistically 
regulated genes. Error bars represent SE (n = 20).( *) statistically significant differences for values compared 
with wild-type as determined by Student’s t-test (P <0.05). MS - Murashige and Skoog medium, cytokinin – 100 
nM cytokinin derivate N6-benzyladenine, Auxin (0.1µM 1-naphthaleneacetic acid; NAA), LRP/cm – total 
number of initiated LR primordia and LR per cm of root length in 7 days old seedlings.   
  



 
 

Table S1 

 
Table S1: Cytokinins change oscillatory behavior of the auxin response in a dose-dependent manner. 
Exogenous applications or changes in endogenous cytokinin content affect DR5::LUCIFERASE oscillations 
(number of pulses over 20h, wavelength, duration and amplitude of oscillations) and LRP density. 
  
 
Table S2 (Supplementary Excel File) VisuaLRTC 

 

Table S3 (Supplementary Excel File) Expression profiles of genes in response to treatments 
with auxin, cytokinin (CK) and simultaneous treatments  
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Table S4 

 

Table S4 Expression profile of genes involved in regulation of auxin activity

ID Tair10 2011 auxin Pvalu
e

CK Pvalue aux/CK Pvalue Pvalue 
aux/CK 

Pvalue 
aux/CK 

Auxin metabolism
 Tryptophan pathway
AT5G05730 WEI2/ASA1 (ANTHRANILATE SYNTHASE ALPHA SUBUNIT 1) -1,37 0 1,53 2E-04 1,07 0,24 0 2E-04
AT2G29690 ATHANSYNAB__ASA2 (ANTHRANILATE SYNTHASE 2); anthranilate synthase 1,14 0,12 1,08 0,376 1,07 0,41 0,1 0,597
AT1G25220 WEI7/ASB1 (ANTHRANILATE SYNTHASE BETA SUBUNIT 1) -1,41 0,01 1,26 0,018 1,07 0,3 0,01 0,037
AT5G17990 TRP1 (tryptophan biosynthesis 1) -1,34 0 1,35 0,003 1,09 0,16 0 0,009
AT5G05590 PAI2 (PHOSPHORIBOSYLANTHRANILATE ISOMERASE 2) 1,97 0 1,21 0,223 2,15 0 0,39 0,002
AT1G29410 PAI3 (phosphoribosylanthranilate isomerase 3); phosphoribosylanthranilate isomerase 1,42 0 1,13 0,067 1,53 0 0,52 0,002
AT3G54640 TRP3__TSA1 (TRYPTOPHAN SYNTHASE ALPHA CHAIN); tryptophan synthase -1,13 0,07 1,17 0,029 -1,01 0,87 0,06 0,024
AT5G54810 ATTSB1_TRP2_TRPB__TSB1 (TRYPTOPHAN SYNTHASE BETA-SUBUNIT 1); tryptophan synthase -1,17 0,05 1,24 0,011 1,15 0,03 0 0,237
AT4G27070 TSB2 (TRYPTOPHAN SYNTHASE BETA-SUBUNIT 2); tryptophan synthase -1,11 0,15 1,22 0,015 1,01 0,84 0,04 0,015
Indole-3-pyruvic acid (IPyA)  pathway
AT1G70560 WEI8/TAA1 (TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1) 1,76 0 -1,03 0,747 1,21 0,02 0,01 0,01
AT1G23320 TAR1 (TRYPTOPHAN AMINOTRANSFERASE RELATED 1); L-tryptophan:2-oxoglutarate aminotransferase/ L-tryptophan:pyruvate amino   1,12 0,2 1,09 0,375 -1,08 0,42 0,06 0,017
AT4G24670 TAR2 (TRYPTOPHAN AMINOTRANSFERASE RELATED 2) -5,64 0 -1,41 1E-03 -4,10 0 0,08 4E-05
AT5G11320 YUCCA4 1,11 0,39 -1,03 0,705 1,03 0,6 0,86 0,886
AT4G32540 YUCCA1 1,04 0,6 1,15 0,09 1,13 0,1 0,13 0,632
AT1G21430 YUCCA11 1,03 0,78 1,13 0,156 -1,10 0,16 0,56 0,029
AT1G48910 YUCCA10 -1,01 0,95 1,17 0,12 1,07 0,59 0,77 0,414
AT2G33230 YUCCA 7 -1,11 0,38 2,29 0,008 1,97 0,01 0 0,552
AT4G13260 YUCCA2 -1,23 0,09 1,16 0,205 -1,15 0,08 0,58 0,011
AT1G04610 YUCCA3 -1,32 0,05 -1,33 0,277 -1,09 0,48 0,33 0,503
AT1G04180 YUCCA 9 -1,61 0 1,03 0,703 -1,94 0 0,15 0,001
AT5G43890 YUCCA5/SUPER1 -2,26 0 -1,08 0,292 -2,27 0 0,77 3E-04
AT4G28720 YUCCA8 -3,85 0 -1,01 0,868 -3,46 0 0,53 2E-04
AT5G25620 YUCCA6 -4,07 0 1,09 0,525 -1,85 0 0 0,002
AT5G20960 AAO1 (ARABIDOPSIS ALDEHYDE OXIDASE 1) -1,25 0,06 -1,14 0,147 -1,40 0 0,16 0,039
AT1G08980 AMI1 (AMIDASE 1) -1,30 0,02 1,28 0,033 1,14 0,06 0 0,273
IAAox pathway  (IAOx to IAA conversion)
AT4G39950 CYP79B2 -2,01 0 4,32 1E-05 2,06 0 0 0,001
AT2G22330 CYP79B3 -1,84 0,02 3,41 0,002 1,92 0,02 0 0,009
IAOx to IAN conversion
AT2G30770 CYP71A13 1,12 0,1 1,01 0,877 1,31 0,12 0,2 0,03
IAN to auxin conversion 
AT5G22300 NIT4 (NITRILASE 4) 2,42 0 1,63 4E-04 3,76 0 0,01 4E-05
AT3G44300 NIT2 (nitri lase 2) 1,46 0,01 1,21 0,014 1,68 0 0,25 9E-04
AT3G44320 NIT3 (NITRILASE 3) -1,02 0,81 1,69 8E-05 1,43 0 0 0,014
IAAox to IG
AT4G31500 ATR4/RED1/RNT1/SUR2/CYP83B1 (CYTOCHROME P450 MONOOXYGENASE 83B1) -1,80 0 1,80 9E-05 1,02 0,71 0 3E-05
AT4G13770 CYP83A1 -1,18 0,38 -1,05 0,874 1,55 0,22 0,05 0,133
AT2G20610 ALF1/SUR1 (SUPERROOT 1) -1,52 0 1,62 2E-04 1,05 0,4 0 4E-04
AT1G24100 UGT74B1 (UDP-glucosyl transferase 74B1) -2,15 0 1,25 0,006 -1,45 0 0 4E-05
IG to IAN conversion
AT5G26000 BGLU38__TGG1 (THIOGLUCOSIDE GLUCOHYDROLASE 1); hydrolase, hydrolyzing O-glycosyl compounds / thioglucosidase 1,05 0,7 1,16 0,183 1,42 0,12 0,17 0,517
AT5G25980 TGG2 (GLUCOSIDE GLUCOHYDROLASE 2) 1,14 0,14 1,08 0,336 -1,06 0,41 0,13 0,458
AT3G14210 ESM1 (epithiospecifier modifier 1) -1,25 0,02 -1,07 0,351 -1,15 0,05 0,56 0,121
IAN to camalexin
AT3G26830 CYP71B15/PAD3 (PHYTOALEXIN DEFICIENT 3) -1,25 0,41 -2,73 0,026 -1,04 0,87 0,14 0,007
Auxin deactivation 
GH3 family IAA conjugation
AT2G23170 GH3.3 9,06 0 1,07 0,728 8,41 0 0,19 2E-05
AT2G14960 GH3.1 7,68 0 -1,55 0,002 3,40 0 0 1E-07
AT5G54510 GH3.6/DFL1 (DWARF IN LIGHT 1) 3,90 0 1,24 0,174 4,66 0 0,01 6E-05
AT4G37390 GH3.2 3,58 0 1,16 0,513 4,11 0 0,33 9E-04
AT4G27260 GH3.5/WES1 2,79 0 -1,72 0,013 2,18 0 0 1E-04
AT5G13370 auxin-responsive GH3 family protein 2,41 0 1,72 0,002 4,41 0 0 1E-05
AT1G59500 GH3.4 2,08 0 1,17 0,322 2,58 0 0,22 6E-04
AT5G13360 auxin-responsive GH3 family protein 1,52 0,12 1,65 0,08 2,51 0 0,08 0,144
AT1G28130 GH3.17 1,51 0,1 -1,54 0,097 -1,15 0,49 0 0,091
AT5G49160 DDM2/MET1 (METHYLTRANSFERASE 1) 1,29 0,01 -1,06 0,532 1,41 0 0,45 0,004
AT5G55250 IAMT1 (IAA CARBOXYLMETHYLTRANSFERASE 1) 1,25 0,56 -4,11 0,006 -3,06 0,01 0 0,039
AT5G13350 auxin-responsive GH3 family protein 1,22 0,04 1,23 0,041 1,30 0,01 0,03 0,036
AT4G03400 GH3-10/DFL2 (DWARF IN LIGHT 2) 1,17 0,18 -1,07 0,492 1,09 0,28 0,32 0,015
AT2G47750 GH3.9 1,07 0,44 -1,01 0,962 1,17 0,07 0,07 0,277
AT1G48670 auxin-responsive GH3 family protein 1,05 0,83 -1,63 0,015 -2,07 0 0,02 0,254
AT5G13320 GH3.12 1,00 0,97 1,09 0,185 -1,09 0,3 0,82 0,035
AT1G48660 auxin-responsive GH3 family protein -1,12 0,26 -1,18 0,033 -1,29 0,01 0,23 0,008
AT5G13380 auxin-responsive GH3 family protein -1,12 0,17 1,05 0,501 1,06 0,62 0 0,071
AT1G19890 ATMGH3__MGH3 (MALE-GAMETE-SPECIFIC HISTONE H3); DNA binding -1,22 0,13 -1,14 0,314 -1,16 0,24 0,63 0,73
AT1G78670 ATGGH3 (gamma-glutamyl hydrolase 3) -1,23 0,23 1,01 0,881 1,05 0,59 0,14 0,609
AT1G48690 auxin-responsive GH3 family protein -1,94 0 -1,58 0,037 -2,25 0 0,23 0,058
AT5G51470 auxin-responsive GH3 family protein -2,22 0,1 1,27 0,564 -1,13 0,73 0,04 0,129
AT1G23160 auxin-responsive GH3 family protein -2,38 0,04 1,74 0,11 1,14 0,66 0 0,027

AT2G23260 UGT84B1 (UDP-glucosyl transferase 84B1); UDP-glycosyltransferase/ abscisic acid glucosyltransferase/ indole-3-acetate beta-glu       -1,00 0,96 1,05 0,598 -1,17 0,12 0,45 0,16
AT1G51760 JR3__IAR3 (IAA-ALANINE RESISTANT 3); IAA-Ala conjugate hydrolase/ metallopeptidase -1,20 0,07 1,20 0,144 1,05 0,57 0,02 0,25

AT5G54140 ILL3 (IAA-amino acid conjugate hydrolase) 1,36 0,02 -1,01 0,953 1,22 0,03 0,43 0,088
AT3G02875 ILR1 (IAA-LEUCINE RESISTANT 1) -1,37 0,02 1,38 0,01 1,12 0,2 0,01 0,055
AT1G51780 ILL5 (IAA-amino acid conjugate hydrolase/ metallopeptidase) -1,21 0,13 1,19 0,178 1,02 0,85 0,06 0,156
AT1G44350 ILL6 (IAA-amino acid conjugate hydrolase) -2,70 0,01 1,40 0,069 -1,27 0,2 0,03 0,017



 
 

AUXIN TRANSPORT
auxin influx
AT2G38120 AUX1 (AUXIN RESISTANT 1) -1,02 0,77 -1,20 0,012 -1,16 0,02 0,02 0,669
AT1G77690 LAX3 (LIKE AUX1 3) -1,18 0,03 -1,24 0,013 -1,56 0 0,01 0,014

auxin efflux
AT1G73590 PIN1 2,63 0 -1,33 0,066 2,13 0 0 4E-05
AT2G34570 MEE21 (maternal effect embryo arrest 21) 1,79 0 -1,05 0,633 1,53 0,01 0,04 1E-04
AT5G57090 PIN2 1,76 0,05 -1,31 0,346 1,27 0,23 0,14 0,058
AT2G01420 PIN4 1,43 0,01 1,14 0,106 1,39 0,01 0,89 0,044
AT1G23080 PIN7 1,43 0 -1,15 0,05 1,11 0,11 0 0,002
AT1G70940 PIN3 1,16 0,09 -1,10 0,314 -1,03 0,73 0,03 0,365
AT5G16530 PIN5 1,07 0,61 -1,00 0,976 -1,07 0,59 0,71 0,354
AT1G77110 PIN6 1,01 0,9 1,05 0,65 -1,03 0,77 0,29 0,34
AT1G77110 PIN6 1,01 0,9 1,05 0,65 -1,03 0,77 0,29 0,34
AT5G15100 PIN8 -1,05 0,57 1,09 0,258 -1,01 0,88 0,89 0,745
AT1G26530 PIN domain-like family protein 1,69 0,03 -1,03 0,845 1,77 0 0,8 0,021
AT2G46230 PIN domain-like family protein 1,38 0,01 1,08 0,469 1,31 0,02 0,86 0,001
Regulators of auxin transport
AT2G34650 PID (PINOID) 2,92 0 1,67 2E-04 2,67 0 0,27 4E-05
AT5G54490 PBP1 (PINOID-BINDING PROTEIN 1) 2,67 0 2,11 8E-04 3,23 0 0,01 5E-04
AT2G26700 PID2 (PINOID2) 2,18 0 -1,23 0,186 1,77 0 0,09 0,002
AT1G53700 WAG1 (WAG 1) -1,10 0,46 -1,53 0,005 -1,90 0 0 0,032
AT2G23050 NPY4 (NAKED PINS IN YUC MUTANTS 4) 2,04 0,03 1,21 0,548 2,84 0,01 0,05 0,004
AT4G37590 NPY5 (NAKED PINS IN YUC MUTANTS 5) 1,89 0 -1,16 0,033 1,60 0 0,02 7E-06
AT5G67440 NPY3 (NAKED PINS IN YUC MUTANTS 3) -1,07 0,42 -1,18 0,075 -1,09 0,16 0,77 0,164
AT4G31820 NPY1/ENP (ENHANCER OF PINOID) -1,85 0 -1,19 0,163 -1,72 0 0,41 0,022
AT3G14370 WAG2 (kinase/ protein serine/threonine kinase) 1,29 0,06 -1,16 0,21 1,59 0 0,1 8E-04
AT1G25490 EER1/RCN1 (ROOTS CURL IN NPA) 1,01 0,84 -1,05 0,439 -1,11 0,09 0,04 0,29
AT5G55910 D6PK (D6 PROTEIN KINASE) 1,19 0,02 -1,18 0,018 -1,01 0,8 0,01 0,014
AT2G18040 PIN1AT (PEPTIDYLPROLYL CIS/TRANS ISOMERASE, NIMA-INTERACTING 1); peptidyl-prolyl cis-trans isomerase 1,09 0,15 1,01 0,918 1,08 0,15 0,94 0,172
AT1G18350 BUD1/MKK7 (MAP kinase kinase/ kinase) -1,15 0,15 1,36 0,011 -1,04 0,56 0,08 7E-05
AT2G43790 MAPK6_MPK6__ATMPK6 (ARABIDOPSIS THALIANA MAP KINASE 6); MAP kinase/ kinase 1,01 0,78 1,02 0,759 -1,02 0,61 0,51 0,389
AT1G13980 GN (GNOM) 1,18 0,03 -1,11 0,108 1,01 0,82 0,04 0,017
PGPs
AT3G28860 PGP19/ABCB19 1,23 0,01 -1,36 0,001 1,14 0,05 0,22 3E-04
AT3G55030 PGPS2 (phosphatidylglycerolphosphate synthase 2); CDP-alcohol phosphatidyltransferase/ CDP-diacylglycerol-glycerol-3-phosph  1,22 0,01 -1,05 0,464 1,11 0,15 0,07 0,01
AT3G28380 PGP17 (P-GLYCOPROTEIN 17) 1,04 0,49 -1,09 0,209 -1,02 0,78 0,33 0,336
AT1G27940 PGP13 (P-GLYCOPROTEIN 13) 1,03 0,54 1,04 0,536 -1,04 0,39 0,19 0,138
AT3G28360 PGP16 (P-GLYCOPROTEIN 16) 1,03 0,7 -1,00 0,952 -1,05 0,41 0,69 0,323
AT4G25960 PGP2 (P-GLYCOPROTEIN 2) 1,01 0,83 1,02 0,785 1,03 0,56 0,67 0,968
AT1G02530 PGP12 (P-GLYCOPROTEIN 12) -1,01 0,86 -1,11 0,202 1,00 0,96 0,35 0,142
AT4G01830 PGP5 (P-GLYCOPROTEIN 5) -1,01 0,88 1,05 0,646 1,18 0,12 0,05 0,305
AT1G28010 PGP14 (P-GLYCOPROTEIN 14) -1,02 0,75 1,06 0,323 1,01 0,89 0,96 0,185
AT3G28390 PGP18 (P-GLYCOPROTEIN 18) -1,03 0,62 -1,06 0,344 -1,11 0,13 0,23 0,207
AT2G36910 PGP1/ABCB1 (ATP BINDING CASSETTE SUBFAMILY B1) -1,08 0,29 -1,12 0,104 -1,32 0 0,01 0,017
AT5G46540 PGP7 (P-GLYCOPROTEIN 7) -1,08 0,34 1,04 0,558 1,01 0,91 0,47 0,28
AT1G02520 PGP11 (P-GLYCOPROTEIN 11) -1,10 0,25 -1,25 0,024 -1,11 0,12 0,72 0,116
AT4G01820 MDR3__PGP3 (P-GLYCOPROTEIN 3); ATPase, coupled to transmembrane movement of substances -1,10 0,11 -1,00 0,935 -1,05 0,54 0,69 0,833
AT1G10680 PGP10 (P-GLYCOPROTEIN 10) -1,12 0,13 1,09 0,222 -1,07 0,31 0,8 0,028
AT3G55320 PGP20 (P-GLYCOPROTEIN 20) -1,21 0,01 -1,18 0,032 -1,47 0 0,01 0,01
AT2G47000 PGP4/ABCB4 (ATP BINDING CASSETTE SUBFAMILY B4) -1,26 0,01 -1,18 0,034 1,01 0,9 0 0,02
AT3G62150 PGP21 (P-GLYCOPROTEIN 21) -1,31 0 1,02 0,837 -1,20 0,03 0,29 0,026
AT4G18050 PGP9 (P-GLYCOPROTEIN 9) -1,54 0,02 1,12 0,493 -1,08 0,54 0 0,251
AT2G39480 PGP6 (P-GLYCOPROTEIN 6) -1,64 0 -1,32 0,002 -1,86 0 0,1 8E-04

 

Auxin signaling

AT3G62980 TIR1 (TRANSPORT INHIBITOR RESPONSE 1) 1,11 0,19 -1,03 0,658 1,03 0,63 0,25 0,301
AT4G03190 AFB1 (AUXIN SIGNALING F-BOX 1) 1,13 0,27 -1,25 0,103 -1,16 0,07 0,01 0,452
AT3G26810 AFB2 (AUXIN SIGNALING F-BOX 2) -1,05 0,42 -1,09 0,16 -1,10 0,11 0,25 0,679
AT1G12820 AFB3 (AUXIN SIGNALING F-BOX 3) 1,04 0,56 -1,07 0,296 -1,16 0,03 0,01 0,147

AT4G02570 CUL1 (CULLIN 1) 1,07 0,21 -1,02 0,722 1,05 0,32 0,57 0,241
AT2G02560 CAND1 (CULLIN-ASSOCIATED AND NEDDYLATION DISSOCIATED) 1,20 0,02 -1,00 0,943 1,05 0,4 0,06 0,228
AT3G28970 Domain of unknown function (DUF298) 1,00 0,95 1,02 0,813 1,03 0,49 0,9 0,653
AT5G20570 RBX1 (RING-BOX 1) 1,08 0,24 -1,01 0,824 -1,04 0,49 0,21 0,715
AT4G36800 RCE1 (RUB1 CONJUGATING ENZYME 1) -1,24 0,02 1,02 0,715 -1,14 0,07 0,18 0,029

AT5G60450 ARF4 1,84 0 1,27 0,014 2,62 0 0 9E-05
AT4G30080 ARF16 1,65 0,15 -1,26 0,434 1,20 0,49 0,12 0,069
AT1G19220 ARF19 1,59 0 1,17 0,19 1,45 0 0,49 0,066
AT1G30330 ARF6 1,56 0 -1,12 0,342 1,23 0,05 0,01 0,002
AT5G62000 ARF2 1,36 0 1,19 0,044 1,43 0 0,74 0,019
AT5G37020 ARF8 1,35 0 -1,05 0,542 1,07 0,43 0,02 0,247
AT2G28350 ARF10 1,33 0,04 -1,27 0,067 -1,18 0,15 0 0,554
AT2G33860 ARF3 1,30 0,04 -1,03 0,78 1,20 0,05 0,29 0,069
AT1G19850 ARF5/MP (MONOPTEROS) 1,23 0,05 1,22 0,056 1,47 0 0,05 0,047
AT1G43950 ARF23 1,22 0,15 1,35 0,147 1,17 0,44 0,69 0,673
AT1G35240 ARF20 1,20 0,13 -1,15 0,27 -1,02 0,76 0,07 0,453
AT1G34410 ARF21 1,13 0,44 -1,15 0,447 -1,21 0,31 0,55 0,93
AT1G35520 ARF15 1,12 0,56 1,11 0,378 -1,04 0,81 0,89 0,549
AT4G23980 ARF9 1,10 0,14 1,06 0,571 1,28 0 0,03 0,066
AT1G59750 ARF1 1,08 0,31 1,62 1E-03 1,63 0 0 0,877
AT3G17185 TAS3/TASIR-ARF (TRANS-ACTING SIRNA3); other RNA 1,00 0,98 -1,39 0,005 -1,75 0 0 0,036
AT5G20730 ARF7/NPH4 (NON-PHOTOTROPHIC HYPOCOTYL) -1,01 0,89 -1,09 0,24 -1,12 0,08 0,1 0,819
AT1G34170 ARF13 -1,03 0,66 -1,06 0,443 -1,05 0,51 0,45 0,594
AT1G77850 ARF17 -1,06 0,35 1,03 0,614 -1,10 0,09 0,31 0,074
AT1G34390 ARF22 -1,09 0,22 -1,14 0,048 -1,07 0,3 0,75 0,044
AT1G34310 ARF12 -1,11 0,43 -1,05 0,722 -1,25 0,12 0,33 0,15
AT1G35540 ARF14 -1,11 0,26 -1,14 0,079 -1,17 0,29 0,32 0,311
AT3G61830 ARF18 -1,17 0,26 1,31 0,047 1,16 0,03 0,05 0,379
AT5G57735 tasiR-ARF; other RNA -1,18 0,02 -1,17 0,088 -1,25 0,26 0,72 0,449
AT2G46530 ARF11 -1,85 0 -1,07 0,322 -1,27 0,01 0 0,007
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AT4G32280 IAA29 5,71 0 -1,06 0,624 3,79 0 0 2E-06
AT1G15580 IAA5/AUX2-27 3,42 0 4,34 3E-05 6,95 0 0 0,008
AT3G62100 IAA30 3,35 0 1,95 0,013 5,84 0 0 0,001
AT2G46990 IAA20 3,13 0 1,22 0,029 1,49 0 0 0,007
AT4G14560 IAA1/AXR5 2,65 0 1,21 0,321 2,74 0 0,48 8E-05
AT4G28640 IAA11 2,16 0 -1,23 0,149 1,47 0 0 0,002
AT5G43700 IAA4 1,99 0 -1,04 0,644 1,68 0 0,03 1E-04
AT3G17600 IAA31 1,94 0 1,83 0,003 2,46 0 0,09 0,042
AT3G16500 IAA26/PAP1 (PHYTOCHROME-ASSOCIATED PROTEIN 1) 1,44 0,02 1,27 0,042 1,61 0 0,35 0,024
AT3G23050 IAA7 1,28 0,01 -1,09 0,215 1,15 0,03 0,13 0,007
AT2G33310 IAA13 1,26 0,01 1,04 0,573 1,29 0 0,67 0,017
AT3G15540 IAA19 1,22 0,01 1,16 0,097 1,40 0 0,32 0,012
AT1G04550 IAA12 1,17 0,13 1,05 0,539 1,17 0,05 0,62 0,093
AT4G29080 IAA27/PAP2 (PHYTOCHROME-ASSOCIATED PROTEIN 2) 1,15 0,5 -1,14 0,372 -1,25 0,02 0,11 0,541
AT2G22670 IAA8 1,15 0,03 1,13 0,086 1,15 0,02 0,99 0,522
AT1G80390 IAA15 1,12 0,48 1,25 0,226 1,37 0,07 0,04 0,089
AT1G04240 IAA3/SHY2 1,10 0,19 2,18 1E-04 2,13 0 0 0,927
AT4G14550 IAA14 1,09 0,41 -1,66 0,003 -1,37 0 0,01 0,062
AT5G57420 IAA33 1,09 0,76 -1,35 0,279 -1,51 0,11 0,01 0,603
AT5G65670 IAA9 1,06 0,27 -1,03 0,546 1,06 0,24 0,94 0,074
AT3G04730 IAA16 1,03 0,64 1,08 0,322 1,06 0,32 0,32 0,729
AT3G23030 IAA2 -1,01 0,86 -1,00 0,952 -1,03 0,62 0,28 0,345
AT1G04250 IAA17 -1,02 0,71 1,19 0,022 1,18 0,02 0,01 0,724
AT1G04100 IAA10 -1,12 0,4 1,10 0,499 -1,05 0,55 0,24 0,286
AT1G15050 IAA34 -1,21 0,03 1,10 0,222 -1,12 0,25 0,31 0,036
AT1G51950 IAA18 -1,25 0,07 1,05 0,513 -1,24 0,06 0,97 0,025
AT5G25890 IAA28 -1,48 0 1,11 0,107 -1,07 0,3 0 0,008

AT1G29500 SAUR-like auxin-responsive protein family 8,66 0 1,85 0,123 7,03 0 0,05 2E-04
AT1G29490 SAUR-like auxin-responsive protein family 8,25 0 1,07 0,303 3,63 0 0,01 6E-05
AT4G13790 auxin-responsive protein, putative 6,24 0 -1,06 0,54 -1,23 0,1 0 0,524
AT1G29510 SAUR68 6,15 0 2,63 0,011 6,79 0 0,55 5E-05
AT1G29450 SAUR-like auxin-responsive protein family 6,11 0 1,02 0,937 2,37 0 0,01 3E-05
AT3G03820 SAUR-like auxin-responsive protein family 5,35 0 1,34 0,263 6,33 0 0,64 4E-04
AT1G29460 SAUR-like auxin-responsive protein family 5,15 0 1,12 0,378 2,34 0 0,04 3E-05
AT1G29440 SAUR-like auxin-responsive protein family 4,19 0 1,13 0,48 2,71 0 0,1 0,002
AT5G18080 SAUR-like auxin-responsive protein family 3,92 0 -1,28 0,114 2,57 0 0,02 1E-04
AT1G29430 SAUR-like auxin-responsive protein family 3,77 0 -1,09 0,818 1,74 0 0,03 0,059
AT5G18030 SAUR-like auxin-responsive protein family 3,49 0 1,42 0,026 2,17 0 0,06 0,002
AT4G12410 SAUR-like auxin-responsive protein family 3,14 0 1,63 0,003 3,49 0 0,33 2E-04
AT3G03850 SAUR-like auxin-responsive protein family 3,08 0 1,06 0,567 1,66 0 0,02 9E-04
AT3G03830 SAUR-like auxin-responsive protein family 2,80 0 1,04 0,796 1,72 0,01 0 0,01
AT5G18020 SAUR-like auxin-responsive protein family 2,76 0 -1,17 0,456 1,47 0,07 0,01 0,029
AT5G18060 SAUR-like auxin-responsive protein family 2,57 0 -1,05 0,804 1,86 0,01 0,04 0,011
AT5G27780 SAUR-like auxin-responsive protein family 2,52 0,05 1,14 0,536 1,33 0,18 0,03 0,409
AT5G20820 SAUR-like auxin-responsive protein family 2,42 0 1,43 0,02 2,20 0 0,03 0,059
AT4G36110 SAUR-like auxin-responsive protein family 2,37 0 2,78 0,002 3,45 0 0,01 0,224
AT3G03840 SAUR-like auxin-responsive protein family 2,11 0 1,06 0,58 1,55 0,02 0,02 0,018
AT2G45210 SAUR-like auxin-responsive protein family 1,97 0 1,81 0,015 2,54 0 0,15 0,101
AT4G38840 SAUR-like auxin-responsive protein family 1,93 0,07 1,14 0,639 1,90 0,07 0,71 0,006
AT5G50760 SAUR-like auxin-responsive protein family 1,91 0,03 -1,85 0,032 -1,59 0,06 0 0,207
AT5G20810 SAUR B 1,85 0 1,26 0,06 2,26 0 0,1 0,002
AT5G18050 SAUR-like auxin-responsive protein family 1,79 0,02 1,30 0,204 1,30 0,19 0,02 0,289
AT1G29420 SAUR-like auxin-responsive protein family 1,63 0,01 -1,03 0,805 1,50 0 0,42 0,015
AT3G12955 auxin-responsive protein-related 1,59 0,05 -1,09 0,717 2,14 0 0,2 0,01
AT4G38850 SAUR15 1,39 0,09 -1,25 0,149 1,71 0,01 0,26 1E-04
AT2G18010 auxin-responsive family protein 1,32 0,14 1,30 0,024 1,35 0,21 0,57 0,384
AT4G34760 auxin-responsive family protein 1,31 0,11 1,07 0,728 1,51 0,01 0,27 0,101
AT3G03847 auxin-responsive family protein 1,29 0,14 1,26 0,158 1,28 0,18 0,85 0,368
AT2G24400 SAUR D 1,26 0,26 -2,31 0,008 -1,34 0,02 0,04 0,055
AT4G38860 auxin-responsive protein, putative 1,25 0,31 -2,08 0,002 -1,45 0 0,01 0,002
AT3G51200 auxin-responsive family protein 1,18 0,11 1,15 0,148 1,16 0,09 0,56 0,555
AT3G20220 auxin-responsive protein, putative 1,14 0,06 -1,02 0,879 -1,45 0,12 0,3 0,101
AT5G10990 auxin-responsive family protein 1,13 0,27 1,90 2E-04 2,27 0 0 0,049
AT4G34770 auxin-responsive family protein 1,11 0,58 1,45 0,101 1,31 0,11 0,29 0,856
AT4G09530 auxin-responsive family protein 1,07 0,54 1,12 0,155 1,03 0,83 0,33 0,03
AT2G21200 auxin-responsive protein, putative 1,07 0,51 1,21 0,033 -1,13 0,64 0,43 0,707
AT3G60690 auxin-responsive family protein 1,06 0,29 1,51 2E-04 1,34 0 0,01 0,097
AT3G53250 auxin-responsive family protein 1,04 0,85 1,36 0,111 1,45 0,03 0,26 0,944
AT2G28085 auxin-responsive family protein 1,03 0,84 1,15 0,306 1,01 0,95 0,91 0,162
AT1G19830 auxin-responsive protein, putative 1,02 0,76 1,06 0,404 1,13 0,23 0,67 0,435
AT2G21210 auxin-responsive protein, putative -1,01 0,91 1,18 0,16 1,12 0,16 0,12 0,949
AT4G34780 auxin-responsive family protein -1,05 0,71 -1,03 0,85 -1,04 0,79 0,35 0,019
AT2G37030 auxin-responsive family protein -1,07 0,65 -1,35 0,041 1,05 0,8 0,54 0,12
AT5G66260 auxin-responsive protein, putative -1,08 0,7 1,04 0,83 -1,32 0,23 0,47 0,018
AT3G61900 auxin-responsive family protein -1,12 0,21 -1,26 0,03 -1,39 0 0,02 0,206
AT1G79130 auxin-responsive protein -1,12 0,4 1,24 0,033 -1,09 0,36 0,36 0,019
AT2G21220 auxin-responsive protein, putative -1,13 0,36 1,18 0,389 -1,07 0,72 0,05 0,402
AT1G16510 auxin-responsive family protein -1,14 0,56 1,12 0,412 1,09 0,46 0,32 0,779
AT1G56150 auxin-responsive family protein -1,19 0,24 1,18 0,029 -1,06 0,53 0,21 0,02
AT3G43120 SAUR protein -1,20 0,14 -1,02 0,706 -1,30 0,02 0,96 0,05
AT4G34750 SAUR E -1,29 0,01 -1,17 0,18 -1,12 0,09 0,04 0,971
AT1G72430 auxin-responsive protein-related -1,32 0 -1,20 0,015 -1,72 0 0 6E-04
AT4G22620 auxin-responsive family protein -1,33 0,05 1,76 0,006 1,40 0,02 0 0,026
AT2G46690 auxin-responsive family protein -1,33 0,29 -1,53 0,024 -1,42 0,02 0,8 0,445
AT1G20470 auxin-responsive family protein -1,38 0,02 1,11 0,323 -1,11 0,25 0,05 0,048
AT5G42410 auxin-responsive family protein -1,42 0,06 -1,22 0,207 -1,34 0,09 0,89 0,298
AT3G09870 auxin-responsive family protein -1,44 0 1,15 0,054 1,13 0,17 0 0,499
AT1G19840 auxin-responsive protein -1,45 0,01 -1,11 0,297 -2,11 0 0,02 2E-04
AT1G75580 auxin-responsive protein, putative -1,47 0 1,98 1E-04 1,41 0 0 0,004
AT1G75590 auxin-responsive family protein -1,51 0 -1,32 0,012 -2,76 0 0 4E-04
AT2G16580 auxin-responsive protein, putative -1,53 0,04 -1,22 0,093 -2,06 0 0,19 0,004
AT4G34790 auxin-responsive family protein -1,55 0,06 -1,17 0,202 -1,70 0 0,88 0,041
AT3G12830 auxin-responsive family protein -1,62 0 -1,52 0,002 -3,11 0 0 1E-04
AT4G31320 SAUR C -1,76 0 -2,34 3E-04 -3,67 0 0 0,008
AT5G53590 auxin-responsive family protein -1,79 0 1,03 0,725 -1,26 0,02 0,02 0,025
AT5G03310 auxin-responsive family protein -1,83 0 1,14 0,163 1,24 0,1 0 0,011
AT1G76190 auxin-responsive family protein -1,92 0,01 -1,56 0,001 -2,37 0 0,35 0,014
AT1G43040 auxin-responsive protein, putative -1,97 0,01 -1,10 0,654 -1,59 0,03 0,31 0,017
AT2G36210 auxin-responsive family protein -2,39 0 -1,73 0,007 -1,11 0,54 0 0,058
AT1G17345 auxin-responsive family protein -2,43 0 2,78 3E-04 1,14 0,24 0 0,001
AT4G34810 auxin-responsive protein -2,44 0 -1,20 0,28 -3,14 0 0,25 3E-04
AT4G00880 auxin-responsive family protein -2,60 0 -2,04 0,002 -2,50 0 0,08 0,516
AT4G34800 auxin-responsive family protein -2,77 0 1,03 0,853 -2,36 0 0,53 0,002
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Table S5. Expression profile of genes involved in regulation of cytokinin activity

ID
Tair10 2011 auxin Pvalue CK Pvalue Aux/CK Pvalue

Pvalue 
aux/CK vs 

aux

Pvalue 
aux/CK vs 

CK

Cytokinin biosynthesis
IPT pathway
AT5G20040 ATIPT9 1,49 0,0098 1,12 0,2776 1,34 0,0215 0,1597 0,0319
AT2G27760 ATIPT2 1,03 0,6007 -1,10 0,2217 -1,01 0,8767 0,1059 0,5808
AT4G24650 ATIPT4 1,01 0,8988 1,11 0,2389 -1,05 0,5269 0,1705 0,1519
AT3G19160 ATIPT8/PGA22 -1,00 0,9449 1,04 0,5464 -1,09 0,1742 0,3619 0,3468
AT1G25410 ATIPT6 1,08 0,4994 1,07 0,4468 -1,13 0,2182 0,1569 0,1825
AT3G63110 ATIPT3 -1,77 0,0097 1,10 0,5763 -1,69 0,0067 0,8875 0,0025
AT1G68460 ATIPT1 -1,25 0,0203 -1,82 9E-05 -2,21 0,0001 0,0007 0,0182
AT5G19040 ATIPT5 -1,13 0,1823 -2,92 8E-06 -2,92 2E-06 3E-06 0,9113
AT3G23630 ATIPT7 -2,65 0,0005 -8,33 2E-06 -14,25 3E-08 4E-05 0,0051
iPT to tZ conversion
AT1G67110 CYP735A2 -6,19 1E-07 4,27 2E-06 2,42 2E-05 1E-07 0,0015
AT5G38450 CYP735A1 -6,58 8E-07 1,91 0,0025 -3,43 5E-05 0,0056 3E-05

LOG pathway
AT2G35990 LOG2 1,25 0,1144 1,12 0,4193 2,33 0,0007 0,0069 0,0034
AT5G11950 LOG8 1,32 0,0039 1,24 0,0085 1,51 5E-05 0,1085 0,0062
AT5G06300 LOG7 1,18 0,073 -1,01 0,899 1,42 0,0007 0,0813 0,0004
AT4G35190 LOG5 -1,01 0,9563 1,12 0,3051 1,40 0,0227 0,0765 0,1576
AT5G26140 LOG9 -2,49 0,0009 1,01 0,9306 -1,28 0,2175 0,0375 0,0218
AT2G28305 LOG1 -2,24 0,0674 -1,39 0,2077 -1,70 0,0135 0,4316 0,3711
AT3G53450 LOG4 -1,36 0,0697 -1,50 0,0033 -1,86 0,0008 0,0999 0,1866

glucosylation
AT5G05870 UGT76C1 (UDP-glucosyl transferase 76C1); UDP-glycosyltransferase/ cis-zeatin O-beta-D-glucosy          1,74 0,0037 1,10 0,5033 1,62 0,004 0,4244 0,004
AT5G05860 UGT76C2; UDP-glycosyltransferase/ cis-zeatin O-beta-D-glucosyltransferase/ cytokinin 7-beta-gl         -1,57 0,0189 -1,06 0,6035 1,28 0,0288 0,0009 0,0027
degradation
AT5G56970 CKX3 -1,12 0,4679 2,39 0,0006 3,67 2E-05 1E-05 0,0047
AT1G75450 CKX5 -1,08 0,6372 2,79 9E-05 3,12 5E-06 0,0004 0,5491
AT2G41510 CKX1 (cytokinin oxidase/dehydrogenase 1) 1,45 0,0011 1,15 0,0755 3,10 4E-06 5E-05 1E-05
AT5G21482 CKX7 -1,13 0,7339 1,60 0,0431 1,07 0,5829 0,6043 0,0561
AT2G19500 CKX2 1,09 0,1272 1,16 0,0663 1,02 0,6195 0,0969 0,0311
AT4G29740 CKX4 -1,66 0,0021 -1,56 0,0015 -1,95 0,0001 0,0184 0,0745

Cytokinin deactivation
AT5G11160 APT5 (adenine phosphoribosyl transferase 5) -1,27 0,048 7,86 5E-07 2,59 6E-06 4E-05 1E-05
AT4G12440 APT4 (adenine phosphoribosyl transferase 4) -4,43 1E-05 1,55 0,0559 -1,04 0,7729 7E-06 0,0422
AT1G80050 APT2 (adenine phosphoribosyl transferase 2) -2,26 0,001 -1,73 0,002 -4,69 4E-06 0,0026 8E-05
AT2G46790 APRR9 (ARABIDOPSIS PSEUDO-RESPONSE REGULATOR 9) -1,07 0,6238 -1,60 0,0077 -1,10 0,179 0,7373 0,0072
AT3G09820 ADK1 (adenosine kinase 1) 1,00 0,9472 1,05 0,442 1,04 0,4521 0,4576 0,9082
AT5G03300 ADK2 (ADENOSINE KINASE 2) -1,09 0,1525 1,04 0,4781 -1,02 0,6995 0,1479 0,4201

Cytokinin transport
AT1G19770 ATPUP14 -1,39 0,0564 1,08 0,3815 -1,16 0,0966 0,2698 0,0444
AT1G57990 ATPUP18 -1,30 0,097 -1,15 0,1793 -1,25 0,0591 0,824 0,2576
AT1G28220 ATPUP3 1,18 0,1085 1,03 0,5767 1,25 0,0757 0,6265 0,4241
AT1G44750 ATPUP11 1,19 0,0158 1,14 0,0556 1,19 0,019 0,9507 0,3992
AT4G18197 Member of a family of proteins related to PUP1 1,23 0,0258 -1,17 0,1926 1,11 0,3836 0,0927 0,0684
AT5G41160 ATPUP12 1,29 0,0336 1,01 0,9206 1,09 0,4795 0,0499 0,347
AT4G18195 Member of a family of proteins related to PUP1 1,07 0,3986 1,10 0,3335 1,09 0,2501 0,4382 0,9018
AT4G18190 Member of a family of proteins related to PUP1 -1,05 0,6055 1,11 0,2326 1,01 0,9361 0,4748 0,1696
AT1G75470 ATPUP15 1,01 0,8875 1,14 0,1662 -1,02 0,8834 0,1599 0,0857
AT2G24220 ATPUP5 -1,21 0,051 1,11 0,1991 -1,06 0,352 0,1754 0,0168
AT4G18210 ATPUP10 1,06 0,6633 -1,04 0,6973 -1,07 0,2945 0,3252 0,5718
AT1G19770 ATPUP14 -1,39 0,0564 1,08 0,3815 -1,16 0,0966 0,2698 0,0444
AT1G57943 ATPUP17 -1,23 0,1754 1,01 0,9305 -1,24 0,1016 0,3188 0,1406
AT1G28230 ATPUP1 -1,03 0,6644 1,14 0,2073 -1,25 0,0251 0,1506 0,005
AT1G57990 ATPUP18 -1,30 0,097 -1,15 0,1793 -1,25 0,0591 0,824 0,2576
AT2G33750 Member of a family of proteins related to PUP1 -1,25 0,0352 1,11 0,4124 -1,26 0,0502 0,1941 0,1105
AT1G09860 Member of a family of proteins related to PUP1 -1,27 0,0534 -1,21 0,0239 -1,42 0,0094 0,0249 0,102
AT1G47603 Member of a family of proteins related to PUP1 -2,56 0,0005 1,14 0,3242 -1,74 0,0041 0,0016 0,0007
AT1G30840 ATPUP4 -2,57 0,0028 1,49 0,0247 -1,89 0,0028 0,2048 3E-06

AT1G02630 ENT8 (Equilibrative Nucleoside Transporter) -1,10 0,3424 -1,22 0,0266 -1,08 0,4248 0,7419 0,2164
AT1G61630 equilibrative nucleoside transporter 7 -1,00 0,9595 1,07 0,4567 -1,15 0,1615 0,1622 0,0737
AT4G05130 equilibrative nucleoside transporter 4 -1,37 0,0643 -1,10 0,403 -1,27 0,0806 0,9172 0,0344
AT4G05140 equilibrative nucleoside transporter family protein -1,16 0,0977 -1,05 0,6667 -1,28 0,0207 0,237 0,2472
AT3G09990 Nucleoside transporter family protein -1,13 0,1379 -1,02 0,806 -1,31 0,0021 0,1383 0,1108
AT4G05110 equilibrative nucleoside transporter 6 -1,96 2E-05 -1,12 0,4432 -2,05 3E-05 0,9351 0,0031
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Table S6 (Supplementary Excel File): Expression profile of genes regulated by auxin and 
cytokinin in a non-additive manner 

 

  

Cytokinin signalling
AT2G01830 AHK4/CRE1/WOL1 -1,01 0,9075 1,13 0,0428 1,24 0,0055 0,0166 0,0842
AT5G35750 AHK2 -1,65 0,0003 -1,23 0,0178 -1,59 4E-05 0,9573 0,0019
AT1G27320 AHK3 -1,09 0,235 -1,08 0,5126 -1,14 0,0869 0,5118 0,3866
AT2G47430 CKI1 (CYTOKININ-INDEPENDENT 1) 1,04 0,4794 1,15 0,1271 1,08 0,2731 0,14 0,7574

AT3G21510 AHP1 -1,26 0,0234 4,63 2E-06 2,84 1E-05 1E-06 0,0007
AT5G19710 FUNCTIONS IN: unknown molecular functions unknown; INVOLVED IN: biological_process unkno                       1,07 0,6459 1,60 0,0029 1,22 0,2957 0,2866 0,0264
AT1G03430 AHP5 1,16 0,1219 1,32 0,0103 1,46 0,0022 0,0121 0,1317
AT5G39340 AHP3 -1,21 0,0314 1,20 0,0607 -1,23 0,0204 0,4381 0,0028
AT3G29350 AHP2 -1,11 0,127 1,10 0,1437 -1,03 0,6905 0,3985 0,0189
AT3G16360 AHP4 -3,93 0,0003 -1,11 0,4453 -1,40 0,1894 0,0074 0,1369
AT1G80100 AHP6 3,79 0,0002 -1,24 0,1172 -1,02 0,8759 0,0011 0,7372

AT2G40670 ARR16 -1,23 0,0406 32,35 8E-09 17,04 3E-08 2E-07 9E-05
AT1G19050 ARR7 2,29 0,02 16,45 1E-05 27,09 3E-06 1E-06 0,008
AT1G74890 ARR15 -1,40 0,0868 8,07 1E-05 11,63 3E-06 1E-08 0,0009
AT3G56380 ARR17 -1,76 0,0332 7,00 0,0001 2,19 0,033 0,0028 0,0021
AT5G62920 ARR6 -3,33 3E-05 2,38 0,0004 1,93 0,0004 2E-07 0,0753
AT1G59940 ARR3 -1,35 0,0302 2,22 5E-05 2,31 2E-05 2E-05 0,7265
AT3G48100 ARR5 -1,89 0,001 2,17 0,0003 2,04 0,0003 2E-06 0,2782
AT1G10470 ARR4 1,05 0,5544 1,91 3E-05 2,22 2E-06 6E-06 0,0165
AT2G41310 ARR8 1,02 0,7685 1,40 0,0024 1,54 0,0001 0,0002 0,03
AT5G62120 ARR23 1,05 0,5569 1,26 0,0112 1,11 0,1969 0,8592 0,0031
AT3G57040 ARR9 -1,21 0,045 1,07 0,0427 1,34 0,0036 6E-05 0,0093
AT3G04280 ARR22 1,15 0,326 -1,04 0,7729 -1,23 0,1895 0,0031 0,3259

AT2G01760 ARR14 1,04 0,7332 -1,12 0,4524 1,26 0,158 0,0997 0,0089
AT2G25180 ARR12 -1,30 0,0031 1,11 0,0969 -1,05 0,2872 0,0048 0,0095
AT5G49240 APRR4 (PSEUDO-RESPONSE REGULATOR 4) -1,03 0,7157 1,09 0,3476 -1,02 0,7571 0,3535 0,8657
AT2G27070 ARR13 -1,08 0,2726 1,04 0,6328 -1,13 0,211 0,1272 0,1481
AT3G62670 ARR20 1,07 0,4849 1,03 0,7755 -1,15 0,213 0,0555 0,2684
AT5G07210 ARR21 -1,10 0,1622 1,01 0,9083 -1,03 0,7364 0,9264 0,6936
AT1G49190 ARR19 -1,03 0,6369 -1,02 0,7215 -1,01 0,8768 0,8853 0,7379
AT4G00760 APRR8 (PSEUDO-RESPONSE REGULATOR 8) -1,17 0,1897 -1,03 0,7636 -1,16 0,1846 0,469 0,0879
AT5G58080 ARR18 -1,08 0,3714 -1,06 0,5017 -1,11 0,1756 0,3546 0,4502
AT2G01760 ARR14 1,04 0,7332 -1,12 0,4524 1,26 0,158 0,0997 0,0089
AT4G16110 ARR2 -1,32 0,0217 -1,29 0,009 -1,51 0,0003 0,1253 0,0065
AT3G16857 ARR1 1,01 0,893 -1,35 0,0016 -1,31 0,0008 0,0009 0,5929
AT4G31920 ARR10 -1,06 0,3469 -2,13 3E-05 -1,49 0,0004 0,0002 0,0006
AT1G67710 ARR11 -1,44 0,0194 -2,14 0,0002 -2,78 7E-06 0,0034 0,0717
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Name Primer 

G
enotyping

 

arr1-2_LP GAGCAGCAGAGTGTTACCGAC 

arr1-2_RP TTGCTTTGATTTCACGTTGTG 

arr2-1_LP TTATTAAATGCCAGTGGCAGC 

arr2-1_RP CGACAAGAACTCGAAGATTCG 

arr3-1_LP ACATGGTCATGGTTTAGCGAC 

arr3-1_RP TTTTTGATTCCGATTTTGGTG 

arr4-1_LP TTTATGTGCGACACGTTGATGACTACTTT 

arr4-1_RP GGAGGCGCGAGAGATTAAAGGGACATCTAT 

arr5-1_LP TCTCTCTGTGGTACATTTCTTGAAAAATGGG 

arr5-1_RP CTTGGGGAAATTTCTAAGAAAAGCCATGTA 

arr6-1_LP AAATCTTGCATCCCATTCCA 

arr6-1_RP TCCTGAAGCACAAATCACGA 

arr7-1_LP TCATATCCTGAAAGTCCTGGC 

arr7-1_RP TAATTGAGCAATAACCACCGG 

arr9-1_LP GGATCCCAGACTCTTTATTTCTCTTCCTC 

arr9-1_RP CCCACATACAACATCATCATCATATTCC 

arr10-1_LP TATCGGCATTAGCCATTATTGGTCGTTAC 

arr10-1_RP ATGCGGTCTGTGCCTGATTCGTTGTTGTA 

arr11-1_LP GCTAAATTATTGGAAGAATATGGG 

arr11-1_RP TTCACCACCTCCAAGAAAATG 

arr12-1_LP CGGTACAATATGCGGATTTTGATTCGGTAT 

arr12-1_RP TAATAGCTTGCTGATTAGCCACACCACTGA 

arr13-1_LP TGTGATGATCAAGGATGGAAC 

arr13-1_RP TCAATCAAACTATCGTTTCAATGTC 

arr14-1_LP CACAAGCTCCATGGTTGATTC 

arr14-1_RP TATCTCCAACATCGCCATTTC 
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arr15-1_TP ATATTGACCATCATACTCATTGC 

arr15-1_LP AAACCAAACAAAAGAAAAGCAGAA 

arr15-1_RP TGTGAACTTTCAATTGATTCACC 

arr16-1_LP AGACCTTTCTTGCTGCACAAG 

arr16-1_RP ATTGGAGTATTTGGGTTTGGG 

iaa12-1_TP GGCAATCAGCTGTTGCCCGTCTCACTGGTG 

iaa12-1_LP cagTCAAGTGGTAGGATGGCCACCAATT 

iaa12-1_RP CTTCTGAGGTTCCCATGATCCGAAGCCT 

iaa14-1_TP GGCAATCAGCTGTTGCCCGTCTCACTGGTG 

iaa14-1_LP CTTAAAGACCCTTCTAAGCCTCCTG 

iaa14-1_RP GCATGACTCGACAAACATCCTG 

Iaa17-1_LP CGATTTTCCTCAAGTACGGTG 

Iaa17-1_RP TTTCCTTCACTTGTGCTTTCG 

iaa19-1_LP ATACCCCCAAGGTACATCACC 

iaa19-1_RP AGATGAATATGACGTCGTCGG 

Iaa20-1_LP TGGAACTCCTTCCATGTTCAC 

Iaa20-1_RP CCGTTTTAGACCGATTATGGC 

iaa28-2_LP TTTGTCTCATGAGTCACGGTG 

iaa28-2_RP CACCACTGGAGCTACCTCAAC 

Iaa29-1_LP GTAGCCAGTCACCCTCTTTCC 

Iaa29-1_RP CGAACACAACCTTTTCCAAAG 

LBb1 GCGTGGACCGCTTGCTGCAACT 

LBa1 TGGTTCACGTAGTGGGCCATCG 

LBb1_3 ATTTTGCCGATTTCGGAAC 

R
T-PCR 

qARR1_for TTGAAGAAACCGCGTGTCGTCT 

qARR1_rev CCTTCTCAACGCCGAGCTGATTAA 

qARR2_for GGAATGATGTTGCCAGTAGC 



 
 

qARR2_rev GTTATTGAAGACCGAGTGAGTAG 

qARR3_for CCGTTGATGACAGCCTAGTTGA 

qARR3_rev CGTGACTTTGCAGGATGTGATT 

qARR4_for CTGTATGCCTGGAATGACT 

qARR4_rev AATAAGAAATCTTGAGCACCT 

qARR5_for ACACTTCTTCATTAGCATCACCG 

qARR5_rev CTCCTTCTTCAAGACATCTATCGA 

qARR6_for GTCTACCCTGTTCACTCG 

qARR6_rev AGAATCATCAGTGTAGGCT 

qARR7_for GCATTCAGAGAAGTACCAGTAGTG 

qARR7_rev GCTAAGGTCTTGGCCTCTATAC 

qARR9_for TTCCTGCAAGAATCAGCAGATGTT 

qARR9_rev AGTTGTCTCAATCTCCTCCAGCTT 

qARR10_for TCAGAAATTCCGCGTTGCTCTGAA 

qARR10_rev TGTGAGTCAATAGCCGCCCTGTTA 

qARR11_for TAATGATGTCGGTGGACGGCGAAA 

qARR11_rev AAGCTCCGTGTTGCACTCCCTTCA 

qARR12_for GGCCAGTCATCTTCAGAAATTCCG 

qARR12_rev TGATTAGCCACACCACTGATCCTC 

qARR13-LP CCCTAATCAGAATCAGGGACAAGC 

qARR13-RP ACTTGAACCCGAAATACCCGATCC 

qARR14-LP TCCTGGAAACTCGAAGAAGTCACG 

qARR14-RP AGAATCCGCTTTGGTACAGCTTTG 

qARR15_for CTTCAGCACTCAGAGAAATCC 

qARR15_rev GTCTCTAGATTAACCCCTAGACTCT 

qARR16_for ATCACCGATTACTGTATGCC 

qARR16_rev GCTTCTGCAGTTCATGAGAT 

qIAA1_for TTGGGATTACCCGGAGCACAAG 
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qIAA1_rev GCGCTTGTTGTTGCTTCTGACG 

qIAA4_for GTTGGTGATGTTCCTTGGGAGATG 

qIAA4_rev GGTTTGTTAAAGACCACCACAACC 

qIAA5_for TCCGCTCTGCAAATTCTGTTCG 

qIAA5_rev ACGATCCAAGGAACATTTCCCAAG 

qIAA6_for TGCCAAGGTACATCTCCGACGA 

qIAA6_rev CATAGGAGTGGCGAAGGAGGGTAA 

qIAA7_for TCTGCTGTTCCCAAGGAGAAGACT 

qIAA7_rev GCCATCCCACCACTTGTGCTTTAG 

qIAA12_for TGGGTCTAAACGCTCTGCTGAATC 

qIAA12_rev ACCACTTGACTTGAACGAGGAGGA 

qIAA14_for ACGAGGACAAAGATGGTGACTGGA 

qIAA14_rev ATGACTCGACAAACATCGGCCAGG 

qIAA17_for GCCAAGGCACAAGTTGTGGGAT 

qIAA17_rev TTTGGCAGGAAACCATCACGTTCT 

qIAA19_for TCGGTGTGGCCTTGAAAGATGG 

qIAA19_rev TGCATGACTCTAGAAACATCCCCC 

qIAA20_for TGTTCAACGCATCCATTCTCTGG 

qIAA20_rev GCACGTGACTCTTCTCATTGCAC 

qIAA28_for GCTCCTCCTTGTCACCAATTCACT 

qIAA28_rev ACTGGAGCTACCTCAACCCTGTTA 

qIAA29_for GCGACGTTTGGGTTAGGGAATG 

qIAA29_rev GCCATTCAAGGCAAACAAACGC 

qUBQ10_for CACACTCCACTTGGTCTTGCGT 

qUBQ10_rev TGGTCTTTCCGGTGAGAGTCTTCA 

Table S7: Primers used for the genotyping and quantification of gene expression levels. 

  



 
 

Table S8  

 

Table S8: Primers used for qRTPCR analysis of auxin and cytokinin synergistically regulated gene 
expression levels. 

  

Gene Forward Reverse
AT1G02380 AGACGTCACCATCATCTCCATGC ACTGCCTGTGGAGAATCCTTGG
AT1G02460 ACCGATTCAGTGTTGCTTGTTCC TGTTACAATGGTCCCATCCACTTG
AT1G15600 ACTTCTGGTTATGTTTGGCTCTCC ACACATATGACCACAGGCGTAAG
AT1G17430 CATGCTTATCGGCTGCAAAGGC TGTTAACAGCGTGTCCTGTTTCC
AT1G18870 GCCTAGAGGTGATTCAAAGGTTCG ACTCAAGATCGTCTTTGGGACTGG
AT1G49560 CCAAAGGTGGAAACTGGTTTAGGC AGCCACATGAGGCAACAATCCC
AT1G64080 AACAGCGACTACACCGTCGTCTAC AGTCGTCGCGTCTTCTTGACTC
AT2G19410 TGGATCCATTAATCAACCGAGAGC AGGATCGGGTAACGTTGGAGAC
AT2G28200 TGACGCAACCCAAGTCTAGTGC TAGGGCTGAGCCGGAAACTTTG
AT2G35270 TTCTCGCTACGTCCACAACGTC ACCGTCATCTTCGTGGTGGTTG
AT2G43140 GAGGATAAGCGGGAAGCTGAAG ATCTGCGTAGCTCGTTTGCTTG
AT3G13080 ATGGTTCTGCTTCTAAGCAATGGG TTGAGGTGTACTCAGCCACAAGC
AT3G47470 CCGCTTAACTTTGCTCCTACGC AACATCGCCAACCTCCCGTTTG
AT4G14130 GGCACCGTCACTGCTTACTACTTG TGTTGCTCTCTGTCTCCTTTCCC
AT4G25640 CTCCGCCGTCTCTATCTCTCTTTC AGAGCACTTCCCATACCAAGCAAG
AT4G32300 ATCTGCACTTGGTGCGGCTAAG ACTCGTATGCGAGCAGCCTATG
AT5G23210 CCCGTCTCATCTCTCACAATGAAG CATTAGCGTGAAGTGCCTCCTG
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Table S9 

 

Table S9: Primers used for genotyping of auxin and cytokinin synergistically regulated gene expression 
levels. 

 

  

AGI code salk line LP RP
AT1G02380 Salk_129654 TCATGTTCTAGGAAGTTGCGAG ATTCGCTTCCTCGTGTATCTG
AT1G02460 Salk_093618 TTTGAGACACATGCTCGTGAG ACAAAAGTGGTGGGATCTTCC
AT1G15600 Salk_151420 GTGTTCTCCTTGCTGTGGAAG ACATAAAGCCCTCTCCGATTC
AT1G17430 Salk_042510 TTCCCAATTCATCGCTGTAAG CTTTGATGACTCAGCAGTTGATG
AT1G18870 Salk_073287 ACAATCCCAGTTCGATCTTCC TCGGATTGATCTCCAGTCATC
AT1G49560 Salk_095775 TGGTCCAACATTAAATGCAATAG AAACTTTCAGCAACCCAAATG
AT1G64080 Salk_070770 GGAGGAGCCAAGTTTTGTTTC ACATCAACATTCCAGCTGGTC
AT2G19410 Salk_140776 TGGATCCATTAATCAACCGAG TCATTCTTCAAACGTTCGACC
AT2G28200 Salk_137213 AATCCTATAAACACCGGCCAC ACTCCCAACCTCATCTTGACC
AT2G35270 Salk_094394 TCACCAACTACGTTACCTCCG AATCCCATTTTAGTCCGTGTTG
AT2G43140 Salk_123812 TTTTGTCATGGTCTGCCTTTC AACGAAAAAGTTACCGTTGGG
AT3G13080 Salk_044022 AGGGAGCCTTTTTATGCTCAC AAGTCAGCAATTGCTTTGGAG
AT3G47470 Salk_138555 GTTCTTCCGGTAGGTTGAACC AATAGTGTTGTGCCATGGGTC
AT4G14130 Salk_039464 GGCCTGATCATGAGAATAAAGG TCCTCATGGGTTGACTCTTTG
AT4G25640 Salk_057798 CTCAAGCCCATCAGCTACATC TGGCTTGAGACAGTGATCATG
AT4G32300 Salk_105027 TCCATCTTTGAATTCCACCTG TCAAAGATGATGAAATTCCGG
AT5G23210 Salk_053542 ATTTACCACACACGCTTTTGG CCCCAGTACAAGTCACACGAC



 
 

Table S10 

 

Table S10: Relative expression level of ARR genes to confirm loss of their expression in mutant alleles. 

 

  

Gene Line
Relative 

expressio
stdev Gene Line

Relative 
expressio

stdev

Ws 1 0.0098 Col 1 0.0683
arr1-2 0.018 0.0016 arr3-1 0.015 0.0068

Col 1 0.0490 Col 1 0.0687
arr2-1 0.101 0.0207 arr4-1 0.080 0.0084

Ws 1 0.0060 Col 1 0.0330
arr10-1 0.059 0.0003 arr5-1 0.025 5.96E-18

Ws 1 0.0533 Col 1 0.1214
arr11-1 0.009 3.67E-05 arr6-1 0.058 0.0056

Col 1 0.0490 Col 1 0.0112
arr12-1 0.003 0.0001 arr7-1 0.067 1.21E-17

Col 1 0.0717 Col 1 0.0303
arr13-1 0.078 0.0057 arr15-1 0.004 0.0004

Col 1 0.0930 Col 1 0.0446
arr14-1 0.097 0.0120 arr16-1 0.102 1.85E-07

ARR14

ARR3

ARR4

ARR5

ARR6

ARR7

ARR15

ARR16

ARR1

ARR2

ARR10

ARR11

ARR12

ARR13
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3.1 Introduction 
 

Every stage of the life cycle of plants is governed by small signaling molecules called 

hormones. Auxin and cytokinin are among the principal hormonal regulators of plant growth 

and development including embryogenesis (Friml et al., 2003; Müller and Sheen, 2008), root 

(Dello Ioio et al., 2008; Růžička et al., 2009) and shoot  apical meristem activity (Zhao et al., 

2010), root (Benková et al., 2003; Bielach et al., 2012; Laplaze et al., 2007) and shoot 

branching (Leyser, 2009), vascular tissue development (Bishopp et al., 2011) and phyllotaxis 

(Reinhardt et al., 2003). Although the main pathways that manage their metabolism, 

transport, perception and signaling have been identified (Dharmasiri et al., 2005; Hwang and 

Sheen, 2001; Inoue et al., 2001; Kepinski and Leyser, 2005), how both hormonal pathways 

are interconnected to form a complex regulatory network enabling rapid adjustment of  plant 

growth and development to the ever changing environmental conditions is largely unknown. 

Tightly balanced activities of auxin and cytokinin are essential for root system establishment. 

Developmental processes shaping root organ architecture including specification of stem cell 

niche during early embryogenesis,  root meristem maintenance requiring  fine coordination 

between  cell division and differentiation, rapid cell elongation growth as well as root 

branching are all dependent on the perfect interplay of auxin and cytokinin pathways (Dello 

Ioio et al., 2008; Müller and Sheen, 2008; Ruzicka et al., 2007). Recent studies have provided 

the first insights into the molecular mechanisms underlying their cross-talk. It has been 

shown that auxin mediated attenuation of cytokinin signalling output by upregulation type-A 

ARR7 and ARR15 repressors is critical for specifying the root stem-cell niche (Müller and 

Sheen, 2008). The maintenance of root apical meristem size requires tight communication 
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between cytokinin and auxin signaling pathways. The cytokinin signal, perceived by AHK3 

and downstream acting ARR1 and ARR12 response regulators, was found to directly control 

expression of the auxin repressor IAA3/SHY2-2. This leads to the attenuation of auxin 

responses and reduced expression of PIN auxin efflux transporters. Consequently, a 

decreased abundance of PINs limits the auxin supply to the root apical meristem, thereby 

restricting its meristematic activity and promoting cell differentiation and elongation (Dello 

Ioio et al., 2007; 2008; Pernisová et al., 2009; Růžička et al., 2009). 

In addition, rapid elongation of the differentiated cells at the periphery of the root apical 

meristem, one of the important determinants of root growth, is under extensive hormonal 

control from auxin, cytokinin and ethylene. Whereas an increase in auxin severely limits root 

elongation growth, mutants in auxin perception and signal transduction such as tir1, 

axr2/iaa7, axr3/iaa17, (Ruegger et al. 1998, Leyser et al. 1996, Wilson et al. 1990) are 

largely resistant to this auxin inhibitory effect.  Inhibition of root growth by cytokinin and 

ethylene is closely linked with auxin activity control in cells undergoing rapid expansion. 

Ethylene has been shown to stimulate auxin biosynthesis and basipetal auxin transport toward 

the elongation zone, where it activates a local auxin response leading to inhibition of cell 

elongation. Consistently, in mutants affected in auxin perception or basipetal auxin transport, 

ethylene cannot activate the auxin response nor repress root growth (Lewis et al., 2011; 

Ruzicka et al., 2007; Stepanova et al., 2007; Swarup et al., 2007). An essential part of the  

cytokinin repressing effects on cell expansion result from its interaction with the ethylene 

pathway (Beemster and Baskin, 2000). Cytokinin has been found to stabilize the ACS5 and 

ACS9 rate-limiting enzymes in ethylene biosynthesis, thereby contributing to the ethylene-

auxin regulatory circuit that controls root cell elongation (Chae et al., 2003; Street et al., 

2016). 

Although the role of hormones in the regulation of root elongation growth is well established, 

the molecular pathways and mechanisms downstream of hormonal signals that control 

expansion of cells are largely unknown. Rapid cell elongation is tightly linked with 

simultaneous modulation of cell wall properties as well as synthesis and secretion of new 

building/remodeling materials. The plant cell wall consists of a complex structure of 

carbohydrates and proteins, and it confers mechanical strength to the plant during 

development and stress resistance. The major structural and functional components of the 

primary walls are hemicelluloses, cellulose and pectin (reviewed in Wolf and Greiner, 2012). 

While cellulose microfibrils are synthesized by plasma membrane (PM)–localized cellulose 



 
 

synthase complexes, pectin and hemicelluloses are synthesized at the Golgi apparatus and 

delivered through the secretory pathway to the cell exterior (reviewed in Driouich et al., 

2012). 

The plant secretory pathway consists of numerous functionally interlinked organelles. The 

first organelle of the secretory pathway is the endoplasmic reticulum (ER) in which proteins 

are synthesized and assembled for export to the Golgi apparatus. It is conventionally accepted 

that the Golgi apparatus, which in plants is made up of numerous, motile and polarized stacks 

of membranous compartments called cisternae, collects membranes and lumenal content from 

the ER for further processing and sorting via endosomes to distal compartments which 

include the trans-Golgi network (TGN), vacuoles and the plasma membrane (Foresti and 

Denecke, 2008). The plant plasma membrane interfaces the cell content with the external 

environment, which is largely occupied by a cell wall. Our knowledge of TGN-mediated 

secretion has been recently extended mainly through the identification of ECHIDNA and YIP 

(for YPT/RAB GTPase Interacting Protein) proteins as a TGN localized complex, necessary 

for the secretion of cell wall polysaccharides and cell elongation (Gendre et al., 2013). 

Nevertheless, how the secretion of cell wall components during plant cell elongation is 

controlled and whether hormones to regulate cell expansion target secretory pathway remains 

poorly understood. 

Here we identified unknown regulatory component of the secretory pathway that in response 

to auxin and cytokinin rapidly controls elongation growth. SYNERGISTIC AUXIN 

CYTOKININ 1 (SYAC1) gene was recovered by genome wide transcriptome profiling as a 

common target of auxin and cytokinin, whose expression in roots is strictly dependent on 

both auxin and cytokinin. Detailed functional characterization revealed that SYAC1 acts as a 

developmentally specific regulator of the secretory pathway to control deposition of cell wall 

components and thereby rapidly fine tune elongation growth.   
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3.2 Results 
 

 The SYAC1 expression is synergistically upregulated by auxin and 3.2.1

cytokinin. 

To identify novel molecular components and mechanisms of auxin-cytokinin interaction, the 

genome wide transcriptome profiling of roots exposed to auxin, cytokinin and both hormones 

simultaneously was performed (Duclerque et al., in preparation). SYNERGISTIC AUXIN 

CYTOKININ 1 (SYAC1) gene, which encodes for a protein of unknown function, was 

detected among the top candidate genes of which expression was synergistically up-regulated 

by simultaneous hormonal treatment when compared to the expected additive effect of both 

hormones applied separately. Whereas treatment with either auxin or cytokinin increased 

SYAC1 expression 2.27 ± 0.00081 and 1.60 ± 0.004, respectively, application of both 

hormones simultaneously resulted in 14.53 ± 6.12503E-07 higher expression when compared 

to untreated control.  The SYAC1 expression profile in roots was further validated by 

quantitative real-time PCR (Fig. 1A). To examine SYAC1 expression pattern with tissue 

resolution transgenic lines expressing pSYAC1:GUS and pSYAC1:nlsGFP reporter constructs 

were generated. No pSYAC1:GUS signal could be detected in roots grown on the control 

medium.  Exposure to cytokinin for 6 hours triggered pSYAC1::GUS expression in the 

quiescent center (QC) and columella initials (CI) (Fig. 1B), and in response to auxin 

additional patchy staining in the cells of the apical root meristem could be detected (Fig. 1B). 

Importantly, simultaneous application of both hormones dramatically enhanced expression of 

the pSYAC1:GUS and pSYAC1::nlsGFP in the stem cell niche, cells of the apical root 

meristem and in the root elongation zone (Fig. 1B, C and S1C), thus corroborating results of 

transcriptome profiling. To evaluate impact of long term exposure to hormones pSYAC1:GUS 

lines were grown on media supplemented with low concentration of auxin and cytokinins. 

Similarly to short-term hormonal treatments, in roots grown on medium supplemented with 

both hormones enhanced pSYAC1:GUS expression was detected when compared to non-

treated or treated with cytokinin or auxin only roots (Fig. S1A and S1B). Interestingly, 

pattern of SYAC1 expression in roots grown on auxin and cytokinin differs from that 

observed after short term hormonal application, suggesting that plants might activate 

effective homeostatic mechanism that balance endogenous levels of plant hormones.  As 

application of cytokinin and auxin might lead to deregulation of other hormonal pathways in 

particularly that of ethylene, we examined sensitivity of SYAC1 expression to this hormone. 



 
 

To exclude the effect of ethylene on transcriptional regulation of SYAC1, pSYAC1:GUS line 

was treated for 6 hours with 1-aminocyclopropane-1-carboxylic acid (ACC, a precursor of 

ethylene biosynthesis) alone or in combination with auxin and cytokinin. No enhancement of 

the pSYAC1:GUS expression was detected in plants treated with either ACC only or when 

applied with either cytokinin or auxin. Similarly, ACC did not interfere with auxin – 

cytokinin synergistic effect on pSYAC1:GUS expression, suggesting that ethylene alone 

cannot trigger SYAC1 transcription, and neither it can substitute auxin or cytokinin to 

synergistically activate SYAC1 expression (Fig. S1D).  Taken together, expression analysis 

confirms SYAC1 as a novel common target of auxin and cytokinin pathways acting in roots. 

 SYAC1 expression in planta.  3.2.2

To further explore in which developmental processes SYAC1 might be involved we 

monitored its expression pattern throughout the whole lifespan of Arabidopsis thaliana. 

Strong SYAC1 expression was detected in the whole mature embryo except the embryonic 

root (Fig. 1D). In 2-days-old seedlings high expression of SYAC1 in the cotyledons and upper 

part of hypocotyl was observed (Fig. 1E) and this gradually decreased in older seedlings (Fig. 

1F,G).  In the etiolated seedlings expression of SYAC1 at the base of hypocotyl and in the 

concave side of apical hook was found (Fig. 1H). These observations suggest that SYAC1 

function might not be restricted to plant roots, but act also in other plant development 

processes. 

 SYAC1 balances auxin and cytokinin inputs to coordinate lateral root 3.2.3

organogenesis. 

To gain more insights into the SYAC1 developmental function detailed phenotype analysis of 

plants with modulated SYAC1 activity was performed.  Characterization of the available 

mutant lines revealed that the T-DNA is inserted either in the middle of the 3’ untranslated 

region (UTR) (syac1-1, syac1-2, syac1-3) or in the middle of second intron (syac1-4) (Fig. 

S2A), and thus it is not fully suppressing SYAC1 expression (Fig. S2B). To obtain a syac1 

knock-out line, we used the CRISPR/Cas9 approach. In the syac1-5 mutant allele the 

CRISPR/Cas9 cassette introduces an extra thymine at 90 bps after the ATG, which results in 

a STOP codon after 33 amino acids in SYAC1 coding sequence (Fig. S2A). To investigate 

impact of increased SYAC1 activity on plant development, transgenic lines carrying SYAC1 

fused to either GFP reporter or -HA tag  under control of  35S (SYAC1-GFPox, GFP-

SYAC1ox, SYAC1-HAox) were generated. Whereas no significant LR initiation defects could 
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be observed in syac1-3, syac1-5 (Fig. 2A and S2C), both syac1-3 as well as syac1-5 mutant 

alleles exhibited significant resistance to cytokinin inhibitory and modest, but statistically 

significant oversensitivity to auxin  promoting effects on LR  initiation (Fig. 2A and 

S2C).Although no difference in LR density was observed in plants grown on MS media, the 

root system of both syac1-3 and syac1-5 alleles clearly showed a delay in LR development 

manifested by accumulation of LR primordia at stage I and decreased proportion of later 

developmental stages (Fig. 2B and S2D; classification according to Malamy and Benfey, 

1997). To confirm the role of SYAC1 in LR organogenesis, we re-introduced SYAC1 

genomic DNA under its own promotor (pSYAC1:gSYAC1-GFP) into the syac1-3 mutant 

background, which fully recovered sensitivity of LR initiation to cytokinin and LR 

development (Fig. 2B and 2C). Interestingly, overexpression of SYAC1 caused a significant 

decrease in LR density (Fig. S2E) and severe defects in LR primordia development (Fig. 

S2F).These results demonstrate that interference with SYAC1 function causes severe defects 

in the root system establishment and attenuates developmental responses to both auxin and 

cytokinin. 

 Modulation of SYAC1 activity interferes with elongation growth. 3.2.4

Enrichment of SYAC1expression in tissues and organs with restricted cell expansion 

including  hypocotyl and cotyledons in mature embryo, QC, CI, inner side of the apical hook, 

root elongation zone (Fig. 1D-H) motivated us to closely investigate root and hypocotyl 

elongation in plants with modulated SYAC1 activity. Whereas no significant alterations in 

root length of 5-day-old syac1-3 and syac1-5 seedlings compared to the Columbia control 

were observed, overexpression of SYAC1 severely inhibited root growth (Fig. 2D, S2G). To 

test whether accumulation of SYAC1 might have a rapid effect on elongation growth  a live 

tracking  of roots with conditional expression of SYAC1 induced by β-estradiol 

(pEST:SYAC1-GFP) was performed.  After only 4 hours induction we observed a 35% 

reduction in root growth rate relative to Columbia control (Fig. 2E), indicating that alterations 

in SYAC1 activity might rapidly modulate root growth kinetics. Hypocotyls of 3-day-old 

dark-grown etiolated seedlings were significantly longer in both syac1-3 and syac1-5 alleles 

when compared to Columbia control. Contrary to the phenotypes observed in syac1 mutants, 

SYAC1overexpression correlated with severe reduction of hypocotyl length (Fig. 2F). Since 

hypocotyl growth in darkness is largely driven by cell elongation rather than cell proliferation 



 
 

(Gendreau et al., 1997), the hypocotyl growth defects observed in syac1 mutant and SYAC1ox 

strongly suggest SYAC1 function in regulation of cell elongation. 

 SYAC1 is required for proper development of apical hook. 3.2.5

Specific expression of SYAC1 in the concave side of the apical hook, prompted us to 

investigate its importance for this developmental process. In Columbia plants, shortly after 

germination (about 15-20h), the hypocotyl progressively bends to establish an apical hook 

with an angle around 180° (formation phase). This angle is stabilized during the maintenance 

phase. Subsequently, about 60 h after germination a progressive opening of the hook occurs 

to reach a hook value around 20° (opening phase) (Raz and Ecker, 1999; Žádníková et al., 

2010). In syac1-3 and syac1-5, the formation phase occurred at a similar rate to Columbia 

control, but the maintenance phase was shortened and the opening of the hook started already 

35 hours after the germination (Fig. 2G). Introduction of pSYAC1:gSYAC1-GFP into the 

syac1-3 background recovered this defect and prolonged the maintenance phase till 60 h after 

germination as normally observed in Columbia. The apical hook development is a result of 

tightly orchestrated differential growth along the apical-basal axis of the hypocotyl. During 

formation of the hook curvature the elongation rate of cells on the outer side exceeds that of 

those on the inner side of the hypocotyl. Once they have passed through the apex of the hook, 

the growth rate of cells on the inner side exceeds that of cells on the outer side of the hook, 

the hypocotyl straightens (Raz and Koornneef, 2001). Inability to form apical hook due to 

SYAC1 overexpression and its premature opening caused by lack of the SYAC1 activity 

indicate that SYAC1 is required for coordination of differential growth and support its 

specific role in fine tuning cell elongation.  

 SYAC1 localizes to the Golgi/TGN/Endosomal/PVC compartments. 3.2.6

To better understand the function of SYAC1 protein, we next investigated its subcellular 

localization in Arabidopsis root cells by colocalization with cellular compartment specific 

reporters. In estradiol inducible line 5 hours after induction of SYAC1-GFP signal is 

restricted to the small compartments in the cell interior.  Measurement of Pearson correlation 

coefficient revealed a high SYAC1 colocalization pattern with Golgi compartments labeled 

by the anti-SEC21 (0,57 ± 0,01) and with TGN labeled by anti-ECH (0,51 ± 0,02) antibody. 

This subcellular localization was further confirmed by anti-ARF1 (0,45 ± 0,02) and anti-

SYP61 (0,49 ± 0,02) antibodies, which label both Golgi and TGN. A strong colocalization 

pattern was also observed with the prevacuolar/endosomal compartments (PVC) labeled with 
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a mixture of anti-ARA7 and anti-RHA1 (0,52 ± 0,02) antibodies. In contrast, almost no 

colocalization was observed between SYAC1 and anti-BIP2 (0,04 ± 0,04) and anti-PIN2 

(0,03 ± 0,04) antibodies, which label ER and plasma membrane, respectively (Fig. 3A, B). 

Accordingly, SYAC1-GFP in SYAC1-GFPox  line (Fig. S3A, B) exhibited strong 

colocalisation with markers for Golgi (anti-SEC21; 0,55 ± 0,02), TGN (anti-ECH 0,60 ± 

0,02), for both of them together (anti-ARF1; 0,55 ± 0,02 and anti-SYP61; 0,40 ± 0,02) and 

PVC (anti-ARA7/anti-RHA1; 0,44 ± 0,02) but almost no colocalization with markers for ER 

(anti-BIP2; 0,01 ± 0,03) and PM (anti-PIN2; 0,02 ± 0,02). To further validate the 

immunocolocalization results, we crossed GFP-SYAC1ox line with the multicolor ‘Wave’ 

marker set (Geldner et al., 2009) for analysis of plant cell membrane compartments. We 

observed strong colocalization of SYAC1 signal with marker lines for Golgi (wave 18R; 0,53 

± 0,03 and wave 127R; 0,42 ± 0,02), markers for Golgi and endosomes (wave 25R; 0,69 ± 

0,03 and wave 29R; 0,35 ± 0,03), for Golgi and TGN (SYP61:SYP61-CFP; 0,45 ± 0,02), for 

TGN and early endosomes (wave 13R; 0,27 ± 0,06) and for endosomes/recycling endosomes 

(wave 34R; 0,31 ± 0,05 and wave 129R; 0,33 ± 0,02). In agreement with 

immunocolocalization experiments, SYAC1 signal displayed only minor colocalization with 

marker for ER/PM (wave 6R; 0,06 ± 0,02), markers for PM (wave 131R; 0,02 ± 0,02 and 

wave 138R; 0,02 ± 0,03). Marker for vacuoles (wave 9R; 0,03 ± 0,02) showed also only a 

minimal colocalization pattern (Fig. S3C, D). These results strongly support that SYAC1 

largely resides at Golgi/TGN/Endosomal/PVC compartments. 

 SYAC1 interacts with YIP5b, YIP4a, YIP4b and ECH. 3.2.7

To further assess the molecular function of SYAC1 we identified its molecular interactors 

using a tandem affinity purification assay with SYAC1 as bait. Several proteins including β-

ketocyl reductase 1 (KCR1), an ubiquitin receptor protein (DSK2), Prohibitin 4 (PHB4) and 

Integral membrane YIP1 family protein (YIP5b) were recovered as potential interactors of 

SYAC1. As YIP5b is a member of the YIP (for YPT/RAB GTPase Interacting Protein) 

family in Arabidopsis thaliana that form a TGN-localized complex with YIP4a and YIP4b 

homologues and  Echidna (ECH) integral membrane protein (Drakakaki et al., 2012; Gendre 

et al., 2013), we decided to include them in detailed interaction studies. In Yeast two-hybrid 

assay (Y2H), a strong interaction between SYAC1 and all three YIP family members has 

been recovered. SYAC1 interacted with ECH and KCR1, although this was weaker in 

comparison with YIPs and no interaction with DSK2 and PHB4 protein was observed (Fig. 



 
 

4A). Y2H results were further validated in planta using Bimolecular fluorescence 

complementation (BiFC) assay. SYAC1 tagged with the C-terminus of EYFP, and YIP5b, 

YIP4a, YIP4b, ECH, KCR1, DSK2 and PHB4 tagged with the N-terminus of EYFP, were 

transiently expressed in Arabidopsis root suspension culture. Yellow fluorescence was 

detected in protoplasts overexpressing SYAC1 in combination with YIP5b, YIP4a, YIP4b 

and ECH, indicating the direct interaction of these proteins in vivo. No EYFP signal was 

detected in cells overexpressing SYAC1 with KCR1, DSK and PHB4 (Fig. 4B) in agreement 

with result of Y2H assay.  Finally, the interaction between SYAC1 and YIP4a and between 

SYAC1 and ECH was also confirmed by coimmunoprecipitation (Co-IP) assay (Fig. 4C). 

Results from tandem affinity purification, BiFC and Co-IP assays revealed SYAC1 

interaction with YIP5b, YIP4a, YIP4b and ECH protein, and indicate its function in protein 

complex involved in maintaining functionality of the secretory pathway (Gendre et al., 2013).  

 SYAC1 regulates secretory pathway 3.2.8

SYAC1 localization in Golgi/TGN/Endosomal/PVC compartments and identification of the 

interaction partners pointed at its potential function in the secretory pathway. The secretory 

pathway is of vital importance for all eukaryotic cells, since it manufactures, stores and 

distributes macromolecules, lipids and proteins as cargo to intracellular and extracellular 

locations (reviewed in Bassham et al., 2008). To assess the involvement of SYAC1 in the 

regulation of secretion, we performed a transient expression assays in Arabidopsis mesophyll 

protoplasts and evaluated impact of  SYAC1-HAox or HA-SYAC1ox on the secretory index 

of the α-Amylase (Amy) reporter - a protein that is transported without any intrinsic sorting 

signal and can be detected by its endogenous enzymatic activity. As a control plasmid 

encoding only mCherry tag was used. The secretion index was determined by quantifying 

ratio of the α-Amylase activity in the medium and in the cells. Overexpression of the SYAC1 

protein decreased the secretion index from 0,7 ± 0,04 in control sample to 0,55 ± 0,02 

(SYAC1-HAox) and 0,45 ± 0,01 (HA-SYAC1ox), which hints at function of SYAC1 as a 

negative regulator of the anterograde secretory route to the cell surface. Because of SYAC1 

colocalization with markers for PVC compartments, we decided to explore SYAC1 

involvement in transport to the vacuoles. For that, an α-Amylase with a vacuolar sorting 

signal (Amy-Spo) was co-transfected with either SYAC1-HA or HA-SYAC1 encoding 

plasmids. Secretion index was increased from 0,07 ± 0,007 in control sample to 0,29 ± 0,01 

(SYAC1-HAox) and 0,28 ± 0,03 (HA-SYAC1ox), which suggests that transport to vacuoles 

is impaired and more α-Amylase might be secreted out of the cells. Furthermore, SYAC1 
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effect on α-Amylase containing an ER retention signal (Amy-HDEL), which redirects the 

protein back to ER was tested. Co-transfection of SYAC1 significantly decreased the 

secretion index in protoplasts with leaky retention of α-Amylase from 0,34 ± 0,01 in control 

sample to 0,24 ± 0,004 (SYAC1-HAox) and 0,26 ± 0,04 (HA-SYAC1ox) (Fig. 5A). 

Altogether these results indicate that SYAC1 might modulate activity of secretory pathway, 

and coordinate trafficking of cargos towards extracellular space and vacuoles.  

 SYAC1 regulates secretion of soluble cell wall polysaccharides.  3.2.9

In plants, new cell wall components such as pectins and hemicellulose are proposed to be 

delivered to the cell exterior via the secretory pathway (reviewed in Wolf and Greiner, 2012).  

SYAC1 reduction of α-Amylase secretion, along with its Golgi/TGN/Endosomal localization 

and interaction with YIPs and Echidna proteins, prompted us to explore role of SYAC1 in 

control of soluble cell wall polysaccharides (pectin and hemicellulose) secretion. 

Investigating the seed coat epidermis, in which the TGN is highly specialized for pectic 

mucilage secretion (Young et al., 2008) using ruthenium red staining assay revealed that 

mucilage release from mature seeds was greatly reduced in SYAC1-GFPox seeds, relative to 

Columbia (Fig. S4A), which is in line with anticipated function of SYAC1 as a regulator of 

polysaccharide secretion. Hemicellulose components of cell wall, monitored using LM15 an 

anti-xyloglucan antibody, were enriched around QC in Columbia control and the syac1-5 

roots. In the SYAC1-GFPox line, enhanced staining of root epidermal, cortex and endodermal 

was detected, resembling defects in xyloglucan distribution in roots of ech and yip4a yip4b 

mutants (Fig. 5B). Taken together, these data support SYAC1 function in modulation of the 

cell wall matrix polysaccharides delivery, including both hemicelluloses and pectins. The 

defects in the secretion of cell wall components might lead to alterations in the cell wall 

structure and its physical properties. To assess whether SYAC1 triggered changes in delivery 

of cell wall components affect composition and physical properties of cell walls, hypocotyls 

of etiolated seedlings were inspected using Fourier transform-infrared (FT-IR) 

microspectroscopy (Mouille et al., 2003) and atomic force microscopy (AFM) (Peaucelle et 

al., 2015). FT-IR analysis revealed that enhanced SYAC1 activity in plant cells substantially 

alters composition of the cell walls, which is manifested by significantly reduced proportion 

of carbohydrates (Fig. 5C). Accordingly, increase in SYAC1 activity has a direct impact on 

the physical properties of cell walls and reduces their stiffness (Fig. S4B). Thus, these results 

indicate that SYAC1 is an essential regulator of the TGN-mediated secretion of cell wall 



 
 

components such as pectins and xyloglucan and ultimately affects composition and physical 

properties of cell walls. Importantly, SYAC1 might regulate specific pathways of secretion 

machinery as localization of plasma membrane proteins such as PIN1 and PIN2 were not 

affected by SYAC1 (Fig. S4C). 

 Reduction of syac1 activity partially recovers cell elongation defects in 3.2.10

yip4a yip4b mutant. 

It has been found that defects in YIP/ECH protein complex activity leads to ineffective pectin 

and hemicellulose secretion, which correlates with reduced root and etiolated hypocotyl 

growth (Gendre et al., 2013). Strong physical interaction observed between SYAC1 and 

YIP4a/YIP4b components of the YIP/ECH protein complex, as well as their functional 

overlap in control of secretory trafficking and elongation growth prompted us to examine 

closely their genetic interaction. To assess contributions of SYAC1 and YIP components of 

YIP/ECH complex to regulation of elongation growth a homozygote yip4a-2 yip4b-1 syac1-3 

triple mutant line was generated. Detailed analysis of root and hypocotyls growth kinetics 

revealed that defects in elongation growth caused by lack of yip4a and yip4b activity can be 

partially recovered when SYAC1 activity is simultaneously attenuated (Fig. 6A,B). These 

results indicate that SYAC1 and YIPs/ECH functions converge at the regulation of elongation 

growth. However, whereas YIPs together with ECH act as a positive factors required for 

secretion of cell wall components to control elongation growth, SYAC1 might act as 

developmentally specific regulator, which can through fine tuning activity of secretory 

pathway coordinates growth kinetics.  
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3.3 Discussion 

 
The current accepted view is that auxin acts antagonistically with cytokinin to control root 

development (Dello Ioio et al., 2008; Müller and Sheen, 2008). This antagonism is based on 

the competition between auxin as a promotor of cell division, and cytokinin as a promotor of 

cell differentiation in regulation of root meristem size (Dello Ioio et al., 2007; Růžička et al., 

2009). Indeed, to specify the root stem-cell niche during embryogenesis, auxin represses 

cytokinin action by activating expression of ARR7 and ARR15, which encode type-A ARR 

proteins that repress CK responses (Müller and Sheen, 2008). However, this antagonist 

interaction between auxin and cytokinin does not occur in all developmental contexts: for 

instance in the control of shoot apical meristems, auxin acts synergistically with CK through 

direct transcriptional repression of ARR7 and ARR15 (Zhao et al., 2010). Hence, as 

discussed in (Schaller et al., 2015), the concept of yin-yang is probably more accurate, as 

auxin and cytokinin act together dynamically, with roles that can be paradoxically 

antagonistic and supportive, to provide robustness to developmental processes. Here, we 

show that auxin and cytokinin can converge in a positive synergistic manner upon 

transcriptional regulation of SYNERGISTIC AUXIN CYTOKININ 1 (SYAC1) gene. Separate 

treatment with auxin or cytokinin is not sufficient to trigger high expression of SYAC1, which 

suggest that interaction between auxin and cytokinin transcription pathways is needed. 

Ethylene stimulated auxin biosynthesis, PIN gene expression and auxin transport, along with  

the ability of cytokinin to stimulate ethylene suggests close regulatory circuits between these 

three hormones (Chae et al., 2003; Ruzicka et al., 2007; Swarup et al., 2007). Since no 

transcriptional upregulation of SYAC1 by treatment with ethylene alone, or in combination 

with auxin and cytokinin was observed, direct and indirect effects of ethylene on auxin-

cytokinin synergism in SYAC1 expression regulation can be excluded.  

SYAC1 encodes for a protein of unknown function, therefore, various strategies including 

subcellular localization, expression pattern analysis, phenotypic analyses of the syac1 loss-of-

function and gain-of-function transgenic lines along with the identification of the SYAC1 

interaction partners by tandem affinity purification were employed in order to elucidate its 

role in Arabidopsis thaliana. SYAC1 strong co-localization with Golgi markers (SEC21, 

Got1 and MEMB12), TGN marker (ECH), Golgi and TGN markers (ARF1, SYP61, VTI12, 

Rab D1 and Rab D2a), endosomal markers (Rab A1e and Rab A1g) and with PVC markers 

(ARA7 and RHA1) suggested SYAC1 potential function in the secretory pathway but also 



 
 

possible involvement in transport to the vacuoles. No colocalization with ER markers (BIP2 

and NIP1;1), vacuole marker (VAMP711) and PM markers (NPSN12 and PIP1;4) indicates 

that SYAC1 does  not play a role in the early steps of the secretory pathway (transport from 

ER to Golgi) and that SYAC1 might be released prior vesicles fused with PM and vacuoles.  

The secretory pathway plays an essential function in transport and distribution of proteins and 

other cargos between different compartments, which is achieved by shuttling small 

membrane-enclosed vesicles. This vesicle-mediated transport involves several key steps: 

formation of transport vesicles at the donor compartment; sorting of cargo protein into 

nascent transport vesicles; delivery of transport vesicles to the acceptor compartment; 

tethering followed by fusion of the vesicles with the acceptor compartment (Guo et al., 2017). 

Attempts to reveal in which of these steps SYAC1 could be involved and what its biological 

function is led us to focus on its interactors, identified by tandem affinity purification 

approach and confirmed by complementary assays including Y2H, CoIP and BIFC. The YIP 

protein family members were found among strongest interactors of SYAC1. Proteins of this 

family are found in all eukaryotic organisms, but have been studied most extensively in yeast 

and, more recently, in mammals (Soonthornsit et al., 2017). Their ability to bind RAB 

GTPases is making them attractive candidates for the recruitment of RABs onto target 

membranes (Chen et al., 2004; Heidtman et al., 2003; Kano et al., 2009; Tanimoto et al., 

2011; Yang et al., 1998; Yoshida et al., 2008). Indeed, it has been shown that human Yip3 

protein possesses GDF (GDI-displacement factors) activity and can release Rab proteins from 

GDI (GDP-dissociation inhibitor) at the late-Golgi and endosomal membranes (Sivars et al., 

2003). Arabidopsis YIP4a and YIP4b proteins display the YIP domain topology (Shakoori et 

al., 2003) and are similar to yeast YIP4p which may function later in the secretory pathway 

(Inadome et al., 2007). Thus strong interaction observed between SYAC1 and YIP4a/b 

supports its function in vesicle trafficking. In which step of vesicular trafficking SYAC1 is 

involved and what its molecular function is in relation to the YIP/RAB complex is still 

unclear, but SYAC1 localization at Golgi/TGN/Endosomal/PVC compartments suggests its 

involvement rather in later stages of trafficking. It would be relevant to find out if SYAC1 is 

able to interfere with the ability of YIPs to interact with RABs and in this way regulate 

processes in the secretory pathway. 

Important support for the role of SYAC1 in regulation of the secretory pathway provided α-

amylase secretory assay. α-Amylase, an enzyme that catalyzes the hydrolysis of long chain 

polysaccharides, is substrate of secretory pathway released to extracellular matrix.  
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Significant decrease of the α-amylase secretion index (ratio between a-amylase activity in 

medium versus intracellular) indicated SYAC1 function as a negative regulator of the 

secretory pathway.  However, modulation of secretory index of α-amylase fused to sporamin 

vacuolar targeting signal points out that SYAC1 might also interfere with transport of cargos 

to the vacuoles. In planta observations further supported role of SYAC1 as regulator of 

secretory pathways.  Perturbation in pectic mucilage secretion from the seed coat in the 

SYAC1 overexpressor line is in line with its proposed role as a negative regulator of secretion.  

On the other hand, increased levels of xyloglucans, a hemicellulose component of cell wall, 

in root cells of the SYAC1ox and no changes in accumulation of plasma membrane proteins 

point to SYAC1 function in fine tuning secretion of specific cargos such as pectins and 

hemicelluloses. Impact of SYAC1 on secretion of specific cell wall components was further 

confirmed by FT-IR analysis, which revealed aberrant cell wall composition in SYAC1ox, in 

particular reduced proportion of carbohydrates when compared to proteins and other cell wall 

components.  

Secreted polysaccharides such as pectin and xyloglucan are important for cell elongation and 

play a key role in determining the mechanical properties of the cell walls (Hayashi and Kaida, 

2011; Wolf and Greiner, 2012), and thus changes in their proportion could be associated with 

changes in plant stiffness. Accordingly, as observed with atomic force microscopy the 

increase of SYAC1-GFP activity significantly reduced stiffness of cell walls.  

In line with SYAC1 function as a regulator of cell wall components delivery, its interacting 

partners including the YIP protein family has also been connected with the secretion of cell 

wall polysaccharides (Gendre et al., 2013). YIP4 proteins have been found to interact with 

ECHIDNA (ECH) and form a complex at TGN to mediate the secretion of the cell wall 

components. According to our CoIP experiment, both ECH and YIP4a proteins bind SYAC1, 

but Y2H experiments showed that the interaction between SYAC1 and YIPs is stronger as 

interaction between SYAC1 and ECH. This could indeed suggest a competition between 

SYAC1 and ECH in interaction with YIPs, which could lead to changes in secretion. In 

contrast to ECH and YIP proteins, which are ubiquitously expressed and needed for proper 

secretion of cell wall components  in plant cells (Gendre et al., 2013), SYAC1 expression is 

developmentally specific and by changing the availability of different cell wall components 

might  directly impact on  LR organogenesis,  specific phases of the apical hook development 

as well as in rapidly  fine tune an elongation growth of hypocotyls and roots.  The rapid effect 

of SYAC1 activity on root growth was also proven by use of the pEST:SYAC1-GFP inducible 



 
 

line, in which 4 hours after the induction of SYAC1 expression 35% reduction in root growth 

rate relative to Columbia was observed. In contrast to the overexpression lines, syac1 mutant 

plants showed developmentally specific phenotypes in accordance to SYAC1 expression 

pattern. The increased length of etiolated hypocotyls and shortened maintenance phase during 

apical hook development in syac1 mutants could be caused by increased secretion of cell wall 

components in comparison to Columbia, which would lead to cell elongation. Although we 

were not able to detect SYAC1 expression in roots of pSYAC1:GUS line without external 

hormone application, some basal  expression cannot be excluded and in that case, delay in LR 

development in syac1 mutant or reduction of number of LRs in overexpressor lines could be 

explained by aberrant cell wall composition in cells of LRP or surrounding cells. Taken 

together, SYAC1 is a fast and effective player in regulation of the plant growth. Therefore, 

identification of the role of the SYAC1 in Golgi/TGN/Endosomal/PVC-mediated secretion of 

pectin and hemicellulose provides a foundation for dissecting the molecular mechanisms that 

underpin developmentally specific polysaccharide secretion to the plant cell wall. As 

measurements of α-Amylase suggest, secretion of cell wall modifying enzymes could be also 

mediated by SYAC1. 

Noteworthy, the SYAC1 activity in root is largely dependent on synergistic interaction of 

auxin and cytokinin pathways. This hormone dependent expression of SYAC1 prompted us to 

search environmental cues that would increase the levels of auxin and cytokinin or increase 

their signaling in the root. Indeed, a synergistic effect of auxin and cytokinin in regulation of 

root growth has been shown during environmental stresses cues such as pathogen infection 

and aluminum (Al) stress. Al stress has been shown to rewire the auxin–cytokinin cross talk, 

where auxin acts with cytokinin in a synergistic way in the root transition zone to regulate 

root growth (Yang et al., 2017). The fungal pathogen Plasmodiophora brassicae, the causal 

agent of the Brassicaceae clubroot disease, has been shown to downregulate the cytokinin 

degradation pathway and upregulate auxin signaling genes, which lead to cell elongation and 

consequent club growth (Siemens et al., 2006). Exact molecular mechanism of auxin and 

cytokinin synergistic interaction upon SYAC1 transcription is still unknown but it would be 

an important component in our understanding of plant development through hormonal cross 

talk. Thus, identification of SYAC1 in mediating the secretion of cell wall polysaccharides 

provides an additional control point for the regulation of cell elongation by hormonal and 

developmental signals. 
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3.4 Material and Methods 

Plant material and growth conditions.  

The syac1-1 (salk_151420C, Col-0, KANR) and syac1-2 (salk_151662B, Col-0, KANR) T-

DNA insertion lines were obtained from the Salk Institute. The syac1-3 (GABI-KAT 760F05, 

Col-0, SULR) and syac1-4 (GABI-KAT 961C03, Col-0, SULR) T-DNA insertion lines were 

obtained from the GABI KAT seed collection. Genotyping primers are listed in 

Supplementary Table 1. The syac1-5 CRISPR line was prepared in collaboration with the 

VBCF Protein Technologies Facility (www.vbcf.ac.at) (see below). The transgenic 

fluorescent-protein marker lines in Col-0 background have been described elsewhere: 

mCherry tagged wave line 6, 9, 13, 18, 25, 29, 34, 127, 129, 131, 138 (Geldner et al., 2009) 

SYP61::SYP61-CFP (Drakakaki et al., 2012). The echidna mutant has been described in 

(Gendre et al., 2011)and yip4a-2 yip4b-1 in (Gendre et al., 2013)).  

Seeds of Arabidopsis were plated and grown on square plates with solid half strength 

Murashige and Skoog (MS) medium (Duchefa) supplemented with 0.5 g L-1 MES, 10 g L-1 

Suc, 1% agar and pH adjusted to 5.9. The plates were incubated at 4 °C for 48 h to 

synchronize seed germination and then vertically grown under a 16:8 h day/night cycle 

photoperiod at 21 °C. Cytokinin and auxin treatments were performed with the N6-

benzyladenine cytokinin derivative (Sigma) and Naphthaleneacetic acid (Sigma), 

respectively. Short treatments (6 hours) were performed with 10 µM cytokinin and 1 µM 

auxin and long treatments (5-7days) with 100 nM cytokinin and 100 nM auxin when treated 

separately and 50 nM when added together. Estradiol treatment was performed with 5uM β-

Estradiol (Sigma).  

Cloning and generation of transgenic lines.  

All cloning procedure was conducted by using Gateway™ (Invitrogen) technology; with the 

sequences of all used vectors available online (https://gateway.psb.ugent.be/). For promoter 

analysis of SYAC1, an upstream sequence of 2522bp was amplified by PCR and introduced 

into the pDONRP4-P1R entry vector. Then transcriptional lines (pSYAC1:GUS, 

pSYAC1:nlsGFP) were created: for pSYAC1:GUS, an LR reaction with SYAC1 promoter in 

pDONORP4-P1R, pEN-L1-S-L2,0 and pK7m24GW,0 vectors was performed. For 

pSYAC1:nlsGFP line, an LR reaction with SYAC1 promoter in pDONORP4-P1R, pEN-L1-

NF-L2,0 and pB7m24GW,0 was performed. To generate the overexpressor, inducible and 

translational lines (SYAC1-GFPox, SYAC1-HAox, HA-SYAC1ox, pEST:SYAC1-GFP, 

http://www.vbcf.ac.at/
https://gateway.psb.ugent.be/


 
 

pSYAC1:SYAC1-GFP), SYAC1 ORF sequence with or without STOP codon was amplified 

and fused through a linker (4 Glycines and 1 Alanine) to GFP or HA tag. The fragments were 

first introduced into pDONR221 and then into pB2GW7,0 (overexpressor lines), p2GW7,0 

(protoplast expression assays), pMDC7 (estradiol inducible line), or in combination with 

SYAC1 promotor in pDONRP4-P1R into pB7m24GW,3 (translational line). For GFP-

SYAC1ox transgenic line SYAC1 ORF was amplified, introduced to pDONR221 and to the 

pB7FWG2.0 destination vector. To generate translational fusion line pSYAC1:gSYAC1-

GFP, SYAC1 promoter was amplified together with the genomic fragment of the SYAC1 

gene, cloned into pDONRP4-P1R and together with pEN-L1-F-L2,0 introduced into 

pB7m24GW,3. Cloning primers are listed in Supplementary Table 1. All transgenic plants 

were generated by the floral dip method (Clough and Bent, 1998), and transformants were 

selected on plates with appropriate antibiotic. 

Generation of CRISPR/Cas9 line. 

Design of the gRNA for SYAC1 gene, molecular cloning and plant transformation was done 

in collaboration with VBCF Protein Technologies Facility (www.vbcf.ac.at). Design, 

specificity and activity of gRNA: GATGGTCAGCAACCACACGA was performed using 

online available tools: http://cbi.hzau.edu.cn/cgi-bin/CRISPR and 

http://www.broadinstitute.org/rnai/public/analysis-tools/sgrna-design. gRNA was cloned into 

pGGZ003 CRISPR/Cas9 destination vector. Transformants were selected, genomic sequence 

of SYAC1 amplified and sequenced. Individual mutant lines with single base pair insertion in 

coding sequence (90 bps after the ATG -at the place of gRNA binding) were selected. Plants 

were propagated to obtain homozygote lines and CRISPR/Cas9 cassette was outcrossed. 

Quantitative RT–PCR. 

RNA was extracted (RNeasy kit (Qiagen)) from roots of 6-day-old plants under all conditions 

(untreated, 1 μM auxin, 10 μM cytokinin and both together for 6 h). A DNase treatment with 

the RNase-free DNase Set (Qiagen) was carried out for 15 min at 25 °C. Poly(dT) cDNA was 

prepared from 1 μg of total RNA with the iScript cDNA Synthesis Kit (Biorad) and analyzed 

on a LightCycler 480 (Roche Diagnostics) with the SYBR Green I Master kit (Roche 

Diagnostics) according to the manufacturer’s instructions. SYAC1 expression was quantified 

with specific primer pair Fw: ACTTCTGGTTATGTTTGGCTCTCC and Rv: 

ACACATATGACCACAGGCGTAAG. All PCRs were performed in triplicate. Expression 

levels were first normalized to CDKA1 expression levels and then to the respective 

expression levels in untreated plants.  

http://www.vbcf.ac.at/
http://cbi.hzau.edu.cn/cgi-bin/CRISPR
http://www.broadinstitute.org/rnai/public/analysis-tools/sgrna-design


119 
 
 

Phenotypic analysis. 

For root length analysis, seedlings were photographed and root lengths were measured with 

ImageJ software (https://imagej.nih.gov/ij/). About 20–30 seedlings were processed and 3 

independent experiments were performed. To score LRP density, 5 to 7-day-old seedlings 

(n=10-15) were first processed by clearing (Malamy and Benfey, 1997). In brief, seedlings 

were incubated in a solution containing 4% HCl and 20% methanol for 10 min at 65 °C, 

followed by 10 min incubation in 7% NaOH/60% ethanol at room temperature. Next, 

seedlings were rehydrated by successive incubations in 60, 40, 20 and 10% ethanol for 15 

min, followed by incubation (15 min up to 2 h) in a solution containing 25% glycerol and 5% 

ethanol. Finally, seedlings were mounted in 50% glycerol and root lengths were measured on 

scanned slides with ImageJ. LRP scoring was performed by using a DIC Olympus BX53 

microscope. 

Real-time analysis and statistics of the apical hook development. 

Development of seedlings was recorded at 1-h intervals for 5 days at 21°C with an infrared 

light source (880 nm LED; Velleman, Belgium) by a spectrum-enhanced camera (EOS035 

Canon Rebel Xti; 400DH) with built-in clear wideband-multicoated filter and standard 

accessories (Canon) and operated by EOS utility software. Angles between hypocotyl axis 

and cotyledons were measured by ImageJ software. At least 10 seedlings with synchronized 

germination were processed. For more details see (Zhu et al., 2017)). 

Histochemical and histological analysis. 

To detect β-Glucuronidase (GUS) activity, mature embryos and 2 to 5-day-old seedlings were 

incubated in reaction buffer containing 0.1M sodium phosphate buffer (pH 7), 1mM 

ferricyanide, 1mM ferrocyanide, 0.1% Triton X-100 and 1mg ml-1 X-Gluc for 24 h in dark at 

37°C. Afterwards, chlorophyll was removed by destaining in 70% ethanol and seedlings were 

cleared as described above. GUS expression was monitored by differential interference 

contrast microscopy (Olympus BX53). 

Immunolabeling in roots (4 to 5-day-old seedlings) was performed using an automated 

system (Intavis in situ pro) according to published protocol (Sauer et al., 2006). Roots were 

fixed in 4% paraformaldehyde for 1 h in vacuum at room temperature. Afterwards, seedlings 

were incubated for 30–45 min in PBS (2.7mM KCl, 137mM NaCl, 4.3mM Na2HPO4 2H2O 

and 1.47mM KH2PO4, pH 7.4) containing 2% driselase (Sigma), and then in PBS 

supplemented with 3% NP40 and 20% DMSO. After blocking with 3% BSA in PBS, samples 

https://imagej.nih.gov/ij/


 
 

were incubated with primary antibody for 2 hours. Antibody dilutions were rabbit anti-BIP2 

(1:200) (Agrisera AS09481), rabbit anti-SEC21 (1:800) (Agrisera AS08327), rabbit anti-

ARF1 (1:600) (Agrisera AS08325), rabbit anti-SYP61 (1:200) (Sanderfoot et al., 2001), 

rabbit anti-ECH (1:600) (kindly provided by R.P.Bhalerao, Umea Plant Science Centre), 

rabbit anti-ARA7+RHA1 1:1 (1:100) (Haas et al., 2007), rabbit anti-PIN1 (1:1000) (Paciorek 

et al., 2005), rabbit anti-PIN2 (1:1000) (provided by C. Luschnig, University of Natural 

Resources and Life Sciences, Vienna), mouse anti-GFP (1:600) (Sigma G6539), and rat anti-

LM15 (1:100) (http://plantprobes.net). Secondary antibody incubation was carried on for 2 h. 

Anti-mouse-Alexa 488 (Life Technologies, 1252783), Cy3-conjugated anti-rabbit antibody 

(Sigma, C2306) and Anti-rat-Alexa 633 (Thermo Fisher Scientific, A-21094) were diluted 

1:600 in blocking solution. Samples were mounted in solution containing 25 mg mL-1 

DABCO (Sigma) in 90% glycerol, 10% PBS, pH 8.5. Signal was monitored using a confocal 

laser scanning microscope (LSM 700, Zeiss). Images were analyzed by using ImageJ 

software. 

Co-localization analysis. 

Pearson’s correlation coefficient (R) was used for co-localization analyses: the analysis is 

based on the pixel intensity correlation over space and was performed using Image J 

software. After splitting the two channels, region of interest (ROI) was identified. For our 

analysis, 1 cell was considered as 1 ROI; in every root approximately 5 cells (5 ROIs) were 

measured and a minimum of 10 roots were used. Co-localization plug-in using an automatic 

threshold was used to obtain Rcoloc value, which represent Pearson’s correlation coefficient. 

Confocal imaging and image analysis. 

Zeiss LSM 700 confocal scanning microscope using either 20x or 40x (water immersion) 

objectives were employed to monitor expression of fluorescent reporters. GFP (YFP) and 

Cy3 signals were detected either at 488 nm excitation/507 nm emission or 550 nm 

excitation/570 nm emission wavelength, respectively. Quantification of immunodetected 

PIN1 and PIN2 expression in root meristems was performed by measurement of membrane 

signal in cortex and epidermal cells, respectively. Signal in approximately 10 cells in a 

minimum of 10 roots was measured using ImageJ software. Statistical significance was 

evaluated by Student’s t-test. 

 

 

http://plantprobes.net/


121 
 
 

Live tracking of vertically grown roots. 

Arabidopsis seedling root growth was observed according to (von Wangenheim et al., 2017). 

Briefly, Columbia and the transgenic reporter line pEST:SYAC1-GFP were grown for 4 days 

in plant MS medium plates at 22°C. Arabidopsis seedlings were carefully transferred on a 

block of solid agar gel, supplemented with or without 5µM Estradiol, avoiding any air draft, 

and inserted in a split imaging chamber (ThermoFisher) with a spatula. The imaging chamber 

was mounted on an inverted vertical confocal microscope (Zeiss Axio Observer with LSM 

700 scanhead) with custom illumination system. Root growth was monitored using a 10x 

objective and the TipTracker software over a period of 20 h with an imaging interval of 30 

min. Root growth for eight plants (4 Columbia and 4 pEST:SYAC1-GFP) was followed in 

control agar medium and for another eight plants in Estradiol containing medium. A script for 

the open-source software Fiji (Schindelin et al., 2012) was used to convert multi-position 

time series image files into multiple hyperstacks, each containing a single root position. 

TipTracker output file with the coordinates of single root positions along the time series was 

used to measure the growth rate of the individual roots (µm/h). 

Transient expression in root suspension culture protoplasts. 

The transient expression assays were performed on 4-days-old Arabidopsis root suspension 

culture by PEG mediated transformation. Protoplasts were isolated in enzyme solution (1% 

cellulose (Serva), 0.2% Macerozyme (Yakult), in B5 - 0.34M glucose-mannitol solution (2.2 

g MS with vitamins, 15.25 g glucose, 15.25 g mannitol, pH to 5.5 with KOH) with slight 

shaking for 3–4 h, and afterwards centrifuged at 800g for 5 min. The pellet was washed and 

resuspended in B5 glucose-mannitol solution to a final concentration of 4x106 protoplasts 

/mL. DNAs were gently mixed together with 50 µL of protoplast suspension and 60 µL of 

PEG solution (0.1M Ca(NO3)2, 0.45M Mannitol, 25% PEG 6000) and incubated in the dark 

for 30 min. Then 140 µL of 0.275M Ca(NO3)2 solution was added to wash off PEG, wait for 

sedimentation of protoplasts and remove 240 µL of supernatant. The protoplast pellet was 

resuspended in 200 µL of B5 glucose-mannitol solution and incubated for 16 h in the dark at 

room temperature. Transfected protoplasts were mounted on the slides and viewed with Zeiss 

LSM 700 confocal scanning microscope. 

Transient expression in Arabidopsis mesophyll protoplasts.  

Mesophyll protoplasts were isolated from rosette leaves of 4-week-old Arabidopsis plants 

grown in soil under controlled environmental conditions in a 16:8 h light/dark cycle at 21 C. 



 
 

Protoplasts were isolated and transient expression assays were carried out as described (Wu 

et al., 2009). 

Coimmunoprecipitation (Co-IP) assays. 

For the Co-IP assays, proteins were expressed in root suspension culture protoplasts (see 

above) and extracted from the cell pellet as described previously (Cruz-Ramírez et al., 2012); 

vectors containing ECH-HA and YIP4a-Myc were kindly provided by R.P. Bhalerao, Umea 

Plant Science Centre. 100 μg total protein extract was incubated in a total volume of 100 μL 

extraction buffer containing 150 mM NaCl and 1 μg anti-GFP (JL-8, Clontech) or 1.5 μg 

anti-cMyc (clone 9E10, Covance). After 2 h, 15 μL ProteinG-Magnetic Beads (BIO-RAD), 

which were previously equilibrated in TBS buffer we added and this mixture was further 

incubated for another 2 h on a rotating wheel at 4°C. The beads were then washed in 3x500 

μL washing buffer (1xTBS, 5% glycerol, 0,1% Igepal CA-630) and eluted by boiling in 25 

μL 1.5x Laemmli sample buffer. Proteins were then resolved with SDS-PAGE and blotted to 

PVDF transfer membrane (Millipore). The presence of the proteins of interest was tested by 

immunodetection using rat anti-HA-peroxidase (3F10, Roche).  

Bimolecular fluorescence complementation (BiFC) assay. 

To generate constructs for BiFC assay, the ORFs for SYAC1, YIP4a, YIP4b, YIP5b, ECH, 

KCR1 and PHB4 proteins were cloned into the pDONRZeo vector. Next, the ORFs were 

transferred from their respective entry clones to the gateway vector pSAT4-DEST-

n(174)EYFP-C1 (ABRC stock number CD3-1089) or pSAT5-DEST-c(175-end)EYFP-C1 

(ABRC stock number CD3-1097), which contained the N-terminal 174 amino acids of 

enhanced yellow fluorescent protein (EYFPN) or the C-terminal 64 amino acids of EYFP 

(EYFPC), respectively. The fusion constructs encoding cEYFP-SYAC1 and nEYFP-YIP4a, 

nEYFP-YIP4b, nEYFP-YIP5b, nEYFP-ECH, nEYFP-KCR1 or nEYFP-PHB4 proteins were 

mixed at a 1:1 ratio and transfection of root suspension culture protoplasts (see above) was 

performed. SYAC1 in P2YGW7 was used as a positive control.  

Yeast two-hybrid assays. 

Yeast two-hybrid assay was performed using the GAL4-based two-hybrid system (Clontech). 

Full-length SYAC1 and YIP4a, YIP4b, YIP5b, ECH, KCR1, DSK2, PHB4 ORFs were 

cloned into pGADT7 and pGBKT7 (Clontech) to generate the constructs AD-SYAC1 and 

BD-YIP4a (YIP4b, YIP5b, ECH, KCR1, DSK2, PHB4). The constructs were transformed 

into the yeast strain PJ69-4A with the lithium acetate method. The yeast cells were grown on 
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minimal medium (–Leu/–Trp), and transformants were plated (minimal medium, –Leu/–

Trp/–His without or with increasing concentration of 3-Amino-1,2,4-trizol) to test the protein 

interactions. 

α-Amylase enzymatic assay. 

α-Amylase assays and calculations of the secretion index were performed as described 

(Früholz and Pimpl, 2017); α-Amylase expression constructs were kindly provided by P. 

Pimpl and transfections were performed in Arabidopsis mesophyll protoplasts (see above). α-

Amylase activity was measured with a kit Ceralpha (Megazyme). The reaction was 

performed in a microtiter plate at 37 °C with 30 μL of extract and 30 μL of substrate. The 

reaction was stopped by the addition of 150 mL of stop buffer. The absorbance was measured 

at a wavelength of 405 nm. Experiment was performed three times with four replicates. 

AFM measurements and Apparent Young’s Modulus calculations. 

The AFM data were collected and analyzed as described elsewhere with minor changes 

(Peaucelle et al., 2015). To examine extracellular matrix properties the turgor pressure was 

suppressed by seedlings immersion in a hypertonic solution (0.55 M mannitol). 4 days-old 

seedlings grown in darkness were placed on petri dishes filled with 1% Agarose and 10% 

Mannitol and immobilized by low melting agarose (0.7% with 10% Mannitol). The focus was 

set on the anticlinal (perpendicular to the organ surface) cell walls and its extracellular 

matrix. To ensure proper indentations (especially in the bottom of the doom shape between 

two adjacent cells regions), cantilevers with long pyramidal tip (14-16 μm of pyramidal 

height, AppNano  ACST-10), with a spring constant of 7.8 N/m were used. The instrument 

used was a JPK Nano-Wizard 3.0 and indentations were kept to <10% of cell height. Three 

scan-maps per sample were taken over an intermediate region of the hypocotyls, using a 

square area of 25 x 25 μm, with 16 x 16 measurements, resulting in 1792 force-indentation 

experiments per sample. The lateral deflection of the cantilever was monitored and in case of 

any abnormal increase the entire data set was discarded. The apparent Young's modulus (EA) 

for each force-indentation experiment was calculated using the approach curve (to avoid any 

adhesion interference) with the JPK Data Processing software (JPK Instruments AG, 

Germany). To calculate the average EA for each anticlinal wall, the total length of the 

extracellular region was measured using masks with Gwyddion 2.45 software (at least 20 

points were taken in account). The pixels corresponding to the extracellular matrix were 

chosen based on the topography map. For topographical reconstructions, the height of each 



 
 

point was determined by the point-of-contact from the force-indentation curve. A total of 12-

14 samples were analyzed. A standard t-test was applied to test for differences between 

genotypes. 

Ruthenium red staining. 

Mature seeds were incubated in 0.01% (w/v) aqueous solution of Ruthenium red. Seeds were 

mounted in water and viewed using a DIC Olympus BX53 microscope. 

Tandem affinity purification. 

Tandem affinity purification assay was performed in Arabidopsis cell suspension culture as 

described (Van Leene et al., 2014). 

Fourier Transform Infrared Spectroscopy (FT-IR). 

Spectra were recorded from the 4 days old dark grow hypocotyls sections in transmission 

mode on a Bruker Tensor 27 spectrometer equipped with a Hyperion 3000 microscopy 

accessory and a liquid N2 cooled 64x64 mercury cadmium telluride (MCT) focal plane array 

(FPA) detector. 4 hypocotyls for each line were used and 5 spectra from each of 3 different 

regions were measured. The entire setup was placed on a vibration-proof table. Spectra were 

recorded in the region 900 – 3900 cm-1, with 4 cm-1 spectral resolution and 32 scans co-added 

in double sided, forward-backward mode. FPA frame rate was 3773 Hz and integration time 

0.104 ms, with offset and gain optimized for each sample between 180-230 and 0-1, 

respectively. A low pass filter and an aperture of 6mm were used. Background was recorded 

on a clean, empty spot on the CaF2 carrier (Crystran Ltd, UK) and automatically subtracted. 

Fourier transformation was carried out using a zero filling factor of two, and Blackman-

Harris 3-term apodization function. Phase correction was set to the built-in Power mode with 

no peak search and a phase resolution of 32. White light images were recorded with a Sony 

ExwaveHAD color digital video camera mounted on the top of the microscope and exported 

as jpg files. Spectra were recorded using OPUS (version 6.5 and 7, Bruker Optics GmbH, 

Ettlingen, Germany), cut to the fingerprint region of 900-1800 cm-1 and exported as .mat files 

for subsequent processing and analysis. The exported spectra were pre-processed by an open-

source software developed at the Vibrational Spectroscopy Core Facility in Umeå 

(http://www.kbc.umu.se/english/visp/download-visp/), written in MATLAB (version 2014a, 

Mathworks, USA), using asymmetric least squares baseline correction (Eilers, 2004); 

(lambda: 100,000 and p=0.001), Savitzky-Golay smoothing (Savitzky and Golay, 1964); 

using a 1st order polynomial, with a frame number of 5; and total area normalization. 

http://www.kbc.umu.se/english/visp/download-visp/
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Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS) analysis was 

performed on the spectra using 5 components based on singular value decomposition of the 

initial dataset. A maximum of 50 iterations and a convergence limit 0f 0.1 were used, with 

initial estimates in the spectrum direction and noise level of 10% given in the script. Only 

non-negativity constraints were used, both in the spectrum and concentration dimensions. For 

classification, k-means clustering was performed within the open-source software, using the 

resolved spectral profiles for each sample. 

Accession numbers. 

Sequence data from this article can be found in GenBank/EMBL data libraries under the 

following accession numbers: SYAC1, At1g15600; YIP5b, At3g05280; YIP4a, At2g18840; 

YIP4b At4g30260; ECH, At1g09330; KCR1, At1g67730; DSK2, At2g17200; PHB4, 

At3g27280. 

  



 
 

3.5 Figures and Tables 
Figure 1 
 

 
 
Figure 1. Developmentally specific expression of SYAC1 and in response to hormonal treatment   
(A-C) Expression of SYAC1 in 5 days old roots is synergistically upregulated after 6 hours treatment with 1 µM 
auxin and 10 µM cytokinin. SYAC1 expression in Columbia roots monitored by qRT–PCR(A), expression of 
GUS. (B) Expression of nlsGFP (C). (D-H) Expression pattern of SYAC1in mature embryo and seedlings. 
Mature embryo (D), 3, 4 and 5 days old seedling, respectively (E-G). (H) Hypocotyl and apical hook of 3 days 
old etiolated seedling. Error bars represent standard error. Scale bar 50 µm (B) 20 µm (C), 200 µm (D), 50 µm 
(E-G), 100 µm (H). 
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Figure 2 

 
Figure 2. SYAC1 regultes plant growth by modification of cell elongation and by fine tuning  LRP 
response to auxin and cytokinin inputs. (A,C) The inhibitory effect of cytokinin on LRP is reduced in syac1 
mutant, pSYAC1:gSYAC1-GFP complements syac1 defect. (B) syac1 exhibits delay in LR development, and 
this phenotype  defect is recovered by pSYAC1:gSYAC1-GFP. (D,F) syac1 exhibits longer etiolated hypocotyls, 
whereas overexpression of SYAC1-GFPox  causes a strong reduction in root and etiolated hypocotyl growth. (E) 
Significant  reduction of root growth was observed within 4 hours after induction of SYAC1 expression by 



 
 

estradiol.  (G) Apical hook in syac1 opens 20 hours earlier  when  compared to Columbia and pSYAC1:gSYAC1-
GFP, syac1 complementation line. SYAC1-GFPox  overexpressor  fails to form  apical hook. For each 
experiment n = 15, average ± SE. Significant differences are indicated as *P < 0.05, **P < 0.01, and ***P < 
0.001 (t test). Each graph shows one experiment, representative 2 additional repeats. 
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Figure 3 

 
Figure 3. SYAC1 colocalizes with markers for Golgi/TGN/Endosomal/PVC compartments. (A) 
Quantitative measurement of colocalization of SYAC1 with various markers and their localization by evaluation 
of Pearson correlation . (B) Colocalization between SYAC1 and various markers for  intracellular compartments 
detected by immunolocalisation.  pEST:SYAC1-GFP line was grown 5 days on MS media then transferred for 6 
hours on plates with 5 µM estradiol. (n = 10 roots with 5 cells each; average ± SE).  Scale bars = 5 µm. 
 
  



 
 

Figure 4 

 
 
Figure 4. SYAC1 interacts with YIP4a, YIP4b, YIP5b and ECH protein. (A) Y2H assay confirms  SYAC1 
interaction with YIP4a, YIP4b YIP5b, ECH, KCR1. Weak or no interaction recovered for DSK2 and PHB4 
protein. Yeast cells were grown on SD-LWH minimal media without histidin (H), leucin (L) and tryptophan 
(W), supplemented with 3-amino-1,2,4-triazole (3AT). Empty vectors were used as a negative control. (B) BiFC 
assay between SYAC1 with YIP4a, YIP4b YIP5b, ECH, KCR1, DSK2 and PHB4 protein performed in 
Arabidopsis  root cell culture protoplasts. SYAC1:GFP and SYAC1:CYFP(C-terminal part of YFP) were used as 
a positive and negative control, respectively. Scale bar 5 μm. (C) Co-immunoprecipitation  (CoIP) assay of  
SYAC1-GFP with ECH-HA and SYAC1-HA with YIP4a-MYC transiently expressed in Arabidopsis  root cell 
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culture protoplasts.  Plots show the  GFP or MYC immunoprecipitation (IP), and the protein gel blot was 
performed using an anti-HA antibody.  
 
  



 
 

Figure 5 
 

 
 
Figure 5. SYAC1 regulates secretion of cell wall components. (A) SYAC1 affects α-amylase secretion index.  
Transient  co-expression of  SYAC1 with α-amylase (Amy) and its derivatives carrying different C-terminal 
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sorting motifs, including ER retention (Amy-HDEL) and vacuolar sorting motif (Amy-spo). Error bars  indicate 
standard error calculated from 4 independent measurements. Significant differences are indicated as **P < 0.01, 
and ***P < 0.001 (t test). (B) Immunolacalization of  xyloglucan with LM 15 antibody shows increase and 
change in xyloglucan localization in SYAC1 overexpressor line, yip4a yip4b and ech mutant.. Scale bar 10 μm. 
(C) FT-IR measurements in 4 days old etiolated hypocotyls show alternations in cell wall composition in 
SYAC1-HAox lines. 
 
  



 
 

Figure 6 
 

 
 
Figure 6. syac1 partially rescues the yip4a yip4b elongation deficit. (A) Root growth kinetics of the yip4a 
yip4b double and yip4a yip4b syac1 triple mutant (n = 30, average ± SE). (B) Etiolated hypocotyl growth 
kinetics of the yip4a yip4b double and yip4a yip4b syac1 triple mutant (n = 15, average ± SE). Significant 
differences calculated for double and triple mutant are indicated as ***P < 0.001 (t test). Each graph shows one 
experiment, representative 2 additional repeats. (C) Representative images of 7-day-old syac1, yip4a yip4b and 
yip4a yip4b syac1 seedlings grown in vitro. (D) Representative images of 2-months-old, yip4a yip4b and yip4a 
yip4b syac1 plants.  
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Supplementary figure 1 

 
 
Supplementary Figure 1. Expression pattern of SYAC1 in response to hormonal treatments in root. (A-B) 
Expression of SYAC1 in roots of 5 days old plants grown on media supplemented 100 nM cytokinin and 100 nM 
auxin when treated separately and 50 nM when auxin and cytokinin added together is synergistically 
upregulated. Scale bar 50 µm. (C) Expression of SYAC1:nlsGFP in  quiescent centre and collumela initials  of  5 
days old seedlings  treated with auxin and cytokinin for 6 hours. Scale bar 10 µm. (D) Treatment for 6 hours 
with ACC (ethylene precursor) or ACC in combination with either cytokinin or auxin  does not trigger 
SYAC1:GUS transcription. No ACC interference with auxin and cytokinin triggered SYAC1:GUS expression 
observed as well.  
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Supplementary figure 2 
 

 
 
Supplementary figure 2. SYAC1 regulates LR organogenesis.(A) Exon/intron maps of the SYAC1 genes 
(from TAIR) and T-DNA and CRISPR insertion positions. F1 and F2 arrows indicate the position of primers 
used for qRT-PCR. (B) SYAC1 expression in Columbia, syac1-1 and syac1-3 monitored by qRT–PCR. Error 
bars represent standard error. (C) syac1 mutant is resistant to cytokinin inhibitory effect on LR organogenesis. 
(D) syac1 shows a delay in lateral root development. (E,F) Overexpression of SYAC1 is causing a significant 
decrease in LRT density and interfere with LRP development. (n = 10, average ± SE). (G) Representative 
images of 5 days old Columbia and  SYAC1-GFPox lines. Significant differences are indicated as *P < 0.05 and 
***P < 0.001 (t test). Each graph shows one experiment, representative 2 additional repeats. 
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Supplementary figure 3 A,B 

 
 
Supplementary figure 3A,B. SYAC1 colocalizes with markers for Golgi/TGN/Endosomal/PVC 
compartments. (A,C) Quantitative measurement of colocalization of SYAC1 with various markers and their 
localization using Pearson correlation coefficient  (n = 10 roots with 5 cells each; average ± SE).  Scale bars 10 
µm. 
  



 
 

Supplementary figure 3C,D 
 

 
 
Supplementary figure 3C,D. SYAC1 colocalizes with markers for Golgi/TGN/Endosomal/PVC 
compartments. Colocalization between SYAC1 and various markers for intracellular compartments detected by 
immunolocalisation (B), by monitoring SYAC1:GFP and RFP fused  to respective subcellular marker (D).  (n  
10 roots with 5 cells each; average ± SE).  Scale bars 5 µm. 
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Supplementary figure 4 

 
Supplementary figure 4. SYAC1 overexpression inhibits seed coat mucilage secretion, reduces stiffnes of 
the cell wall but doesn’t interfere with plasma membrane protein accumulation. (A) Ruthenium red–
stained seed coat mucilage after imbibition of Columbia, SYAC1-GFPox, ech-1 and yip4a yip4b seeds. Scale bar 
200 μm. (B) The apparent Young modules measured by AFM in  4 day-old etiolated hypocotyls. (n = 10-14, 
average ± SE). Significant differences are indicated as *P < 0.05 (t test). (C) PIN1 and PIN3 intensity at the 
plasma membrane of Columbia and SYAC1-GFPox. Scale bar 10 μm. Average of intensity measured in 10 roots 
(10 cells for each) ± SE. No significant difference (t-test).   
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Supplementary Table 1: Sequences of primers   

Gene and purpose Name Sequence (5’-3’) 

Genotyping syac1-1 

SALK_151420C 

Syac1-1_LP GTGTTCTCCTTG CTGTGGAAG 

Syac1-1_RP ACATAAAGCCCTCTCCGATTC 

Genotyping syac1-2 

SALK_151662B 

Syac1-2_LP TGCGTATCAAAC GAAATTTCC 

Syac1-2_RP ACATAAAGCCCTCTCCGATTC 

Genotyping syac1-3 

GABI-KAT 760F05 

Syac1-3_LP TGACCTTTCTTA TACTCATGCCTT 

Syac1-3_RP TTCCACTTGTAAATGGACAACTCC 

Genotyping syac1-4 

GABI-KAT 961C03 

Syac1-4_LP GGGTGATCCAT ACACAAATGAAAG 

Syac1-4_RP CCAATTATTAGTCAATTGTAGCCCG 

Genotyping ech-1 SAIL 

163E09 

Ech-1_LP AAACGGAAAGGGAAACACAAC 

Ech-1_RP AGAGAAGAGTTATCGGGCTCG 

Genotyping yip4a-2 

SALK_021897 

Yip4a-2_LP GTTCTTGTGGCATTGCTTCTC 

Yip4a-2_RP TGATCTGGTTTCCACATTTCC 

Genotyping yip4b-1 

SALK_129888 

Yip4b-1_LP TGTTACTTCCGC ATAAGTCGG 

Yip4b-1_RP GCGGCTGGAGAATTCTCTATC 

Genotyping T-DNA 

SALK 

LBb1.3 ATTTTGCCGATTTCGGAAC 

Genotyping T-DNA 

SAIL 

LB3 TAGCATCTGAATTTCATAACCAATCTCGATACAC 

Genotyping T-DNA 

GABI-KAT 

RBGK.08474 ATAATAACGCTGCGGACATCTACATTTT 

SYAC1 promoter cloning pSYAC1_attB

4 

GGGGACAACTTTGTATAGAAAAGTTGGGGAAGA

CCTAGCCGTAGTT 

pSYAC1_attB

1r 

GGGGACTGCTTTTTTGTACAAACTTGTGATCACT

TTTGGTTTTTCC 

SYAC1 ORF cloning SYAC1_attB1 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCAT

GGAGGGCCCTTTGTTGAG 

SYAC1_attB2 GGGGACCACTTTGTACAAGAAAGCTGGGTGTCA

GCAGATGCATGATACAA 

SYAC1 ORF fusion with 

GFP tag cloning 

SYAC1_attB1

_Fw 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCCAT

GGAGGGCCCTTTGTTGA 
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GFP_attB2_Rv GGGGACCACTTTGTACAAGAAAGCTGGGTGTTA

CTTGTACAGCTCGTCCA 

SYAC1linGFP

_Fw 

ATTGTATCATGCATCTGCGGAGGTGGAGGTGGA

GCTATGGTGAGCAAGGGCGAG 

GFPlinSYAC1

_Rv 

CTCGCCCTTGCTCACCATAGCTCCACCTCCACCT

CCGCAGATGCATGATACAAT 

SYAC1 ORF fusion with 

3xHA tag cloning 

SYAC1_attB1

_Fw 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCCAT

GGAGGGCCCTTTGTTGA 

3xHAattB2_R

v 

GGGGACCACTTTGTACAAGAAAGCTGGGTGTTAT

GCATAGTCCGGGACG 

SYAC1linHA_

Fw 

ATTGTATCATGCATCTGCGGAGGTGGAGGTGGA

GCTTTCCCATATGACGTTCCA 

HAlinSYAC1_

Rv 

TGGAACGTCATATGGGAAAGCTCCACCTCCACCT

CCGCAGATGCATGATACAAT 

3xHA tag fusion with 

SYAC1 ORF cloning 

3xHA_attB1_F

w 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCCAT

GTTCCCATATGACGTT 

SYAC1_attB2

_Rv 

GGGGACCACTTTGTACAAGAAAGCTGGGTGTCA

GCAGATGCATGATAC 

HAlinSYAC1_

Fw 

GACGTCCCGGACTATGCAGGAGGTGGAGGTGGA

GCTATGGAGGGCCCTTTGTTG 

SYAC1linHA_

Rv 

CAACAAAGGGCCCTCCATAGCTCCACCTCCACCT

CCTGCATAGTCCGGGACGTC 

YIP4a ORF cloning 

YIP4a_attB1 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCAT

GTCACAAGGCGATACAGT 

YIP4a_attB2 GGGGACCACTTTGTACAAGAAAGCTGGGTGTCA

ATTGATGGCTATGATGA 

YIP4b ORF cloning 

YIP4b_attB1 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCAT

GTCGCACAACGATACGAT 

YIP4b_attB2 GGGGACCACTTTGTACAAGAAAGCTGGGTGTCA

ATTAATGGCAATGATTA 

YIP5b ORF cloning 

YIP5b_attB1 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCAT

GATGTCCGGCGGGAACTA 

YIP5b_attB2 GGGGACCACTTTGTACAAGAAAGCTGGGTGTCA



 
 

TACTTTGACATTGAAGA 

ECH ORF cloning 

ECH_attB1 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCAT

GGACCCTAATAATCAGAT 

ECH_attB2 GGGGACCACTTTGTACAAGAAAGCTGGGTGTCA

GACAAGGGTGAAGGCAG 

KCR1 ORF cloning 

KCR1_attB1 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCAT

GGAGATCTGCACTTACTT 

KCR1_attB2 GGGGACCACTTTGTACAAGAAAGCTGGGTGTCA

TTCTTTCTTCATGGAGT 

DSK2 ORF cloning 

DSK2_attB1 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCAT

GGGTGGAGAGGGAGATTC 

DSK2_attB2 GGGGACCACTTTGTACAAGAAAGCTGGGTGCTA

CTGTCCGATACTCCCCA 

PHB4 ORF cloning 

PHB4_attB1 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCAT

GGGAAGTCAACAAGTAGC 

PHB4_attB2 GGGGACCACTTTGTACAAGAAAGCTGGGTGTCA

ACGACCAGGGTTCAGAT 
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