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ABSTRACT
The chemical master equation is a differential equation
describing the time evolution of the probability distribu-
tion over the possible “states” of a biochemical system.
The solution of this equation is of interest within the sys-
tems biology field ever since the importance of the molec-
ular noise has been acknowledged. Unfortunately, most of
the systems do not have analytical solutions, and numeri-
cal solutions suffer from the course of dimensionality and
therefore need to be approximated. Here, we introduce
the concept of tail approximation, which retrieves an ap-
proximation of the probabilities in the tail of a distribution
from the total probability of the tail and its conditional ex-
pectation. This approximation method can then be used
to numerically compute the solution of the chemical mas-
ter equation on a subset of the state space, thus fighting
the explosion of the state space, for which this problem is
renowned.

1. INTRODUCTION

Models of biochemical reaction networks have tradition-
ally been studied by solving a differential equation called
the reaction rate equation. The reaction rate equation ap-
proximates the mean behaviour of the network under study
and is usually easy to solve through numerical integration.
However, in the past decade, it has repeatedly been shown
that stochasticity is playing an important role in biological
systems, and thus, that the mean behaviour of a system is
not providing enough information to understand biolog-
ical mechanisms [1, 2]. As a consequence, the interest
has moved towards the chemical master equation (CME)
whose solution gives the probability for a biochemical re-
action network to be in a certain state at a certain time.
Unfortunately, for most networks of interest, this equation
is very hard to solve, due to the large number of states with
a strictly positive probability. An important aspect is that
stochastic effects appear especially when some molecular
species are present in low copy numbers, with significant
probability, while for species that are always present in a
large copy number their expectation is providing enough
information about the system. An approximation method
may take advantage of this fact by solving the chemical
master equation only for the subspace of the system that
corresponds to species in low copy numbers, while using
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the reaction rate equation for the rest of the space to com-
pute conditional expectations. Connecting the two equa-
tions in an accurate manner would be technically difficult
because the CME needs more information about the states
with large copy numbers than the reaction rate equation is
providing. The tail approximation is addressing this issue
by approximating the probabilities of the states governed
by the reaction rate equation, that are at the boundary with
the region governed by the CME. This approximation pro-
ceeds stepwise. A first approximation assumes that the tail
of the probability distribution has the shape of a geomet-
ric distribution, and then several correction steps are ap-
plied iteratively. These correction steps take into account
the probabilities of the states governed by the CME. Af-
ter presenting the tail approximation method, we prove its
accuracy by distorting via aggregation and then restoring
via tail approximation the actual solutions of the CME of
two different biological models.

Related work The algorithm that we suggest and that
motivates the need for tail approximation as defined here,
is a refined version of the hybrid method [3]. In the con-
text of the chemical master equation, interpolation has
been already used either in the form of regular polyno-
mial interpolation [4] or using Poisson probabilities [5].
Here, we use an approximation by the geometric distribu-
tion, and the resemblance with interpolation comes from
the correction step where we use the values of the proba-
bilities in the neighbouring states.

2. CHEMICAL MASTER EQUATION

Consider a biochemical reaction network with n compo-
nents. This system has as state space S = Nn≥0, where
each state in S is of the form s = (s1, . . . , sn) and gives
the number of copies of each component i, denoted by si,
with i ∈ {1, . . . , n}.

Furthermore, consider that there are m reactions pos-
sible in this system and that each reaction Rj , with j =
1, . . . ,m, is described by the propensity function αj :
S → R≥0 and the change vector vj ∈ Zn.

For such a system we define the Markovian stochastic
process {X(t), t ≥ 0}, for which:

Pr(X(t+ dt) = s+ vj | X(t) = s) = αj(s) · dt,

for an infinitesimal dt.
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Let y ∈ S be the initial state of our model. Then, we
define the probability to be in state s at time t as:

p(t)(s) = Pr(X(t) = s | X(0) = y).

The chemical master equation (CME) is a differential
equation describing the time evolution of p(t)(s) [6]:

dp(t)

dt
(s′) =

∑
Rj ,s+vj=s′

p(t)(s)αj(s)−
∑
Rj

p(t)(s′)αj(s
′),

where the first term handles the probabilities that enter s′

from various predecessors s, through reaction Rj , and the
second one, which is negative, handles the probabilities
that exit s′ towards various successors.

2.1. Aggregated Solution

As already discussed, stochasticity has an important effect
when some of the species are present in low copy num-
bers. In consistence with this observation and in order to
develop fast algorithms, we propose the concept of an ag-
gregated solution of the CME.

For a boundary b ∈ N let Ŝ = {0, . . . , b − 1,>}n,
where the value > represents the set {x ∈ N|x ≥ b}.
Given a vector A ∈ Ŝ we define SA to be a subset of S:

SA = {s ∈ S | si = Ai or (si ≥ b and Ai = >)}.

Example 1. For a two dimensional system, with b = 3,
the set Ŝ is partitioning N2

≥0 as shown in Figure 1. The
aggregated state (1,>) represents the subset {(1, s) ∈ S |
s ≥ 3}.

Definition 1. The aggregated solution of a CME with so-
lution p(t), with respect to the boundary b, is a tuple 〈p̂(t) :
Ŝ → [0, 1], µ(t) : Ŝ → Rn〉, such that

p̂(t)(A) =
∑
s∈SA

p(t)(s),

and
µ(t)(A) =

∑
s∈SA

p(t)(s) · s.

We also define the boundary set Sb of an aggregation
with boundary b to be:

Sb = {s ∈ S | ∃i s.t. si = b}.

In order to obtain an aggregated solution that is exact
we must first compute the probabilities p(t)(s) and then
aggregate them. However, if we are only interested in an
approximation of the aggregated solution, a direct method
might be possible, and that would guarantee a large saving
in the computation time due to the state space reduction.

Such a direct method would need to estimate:

1. the probabilities of the states in the boundary set Sb,
in order to know how much probability to pass from
one macro-state to another one via reactions Rj ,

0,0 0,1 0,2 0,3 0,4 0,5 · · ·

1,0 1,1 1,2 1,3 1,4 1,5 · · ·

2,0 2,1 2,2 2,3 2,4 2,5 · · ·

3,0 3,1 3,2 3,3 3,4 3,5 · · ·

4,0 4,1 4,2 4,3 4,4 4,5 · · ·

5,0 5,1 5,2 5,3 5,4 5,5 · · ·

...
...

...
...

...
...

...

Figure 1. Partitioning of the state space used for an aggre-
gated solution.

2. the conditional expectations:

E[X(t)|X(t) ∈ SA],

in order to compute the function µ of the aggregated
solution.

In this paper, we continue by solving the first of these
two points. The second point, computing the conditional
expectations, is left as future work and can most likely be
solved using a hybrid method [3].

3. TAIL APPROXIMATION

The key observation behind the tail approximation is that
almost all probability distributions that describe the stochas-
tic behaviour of real life have a certain “continuity” prop-
erty and that their tail matches the shape of a geometric
distribution. We do not formalize these properties here,
but we refer to such real life distributions as “well-behaved”,
in order to distinguish them from other, possibly random,
distributions.

Problem 1 (Tail approximation). For an aggregated so-
lution 〈p̂, µ〉 with boundary b ∈ N, of an unknown proba-
bility distribution p, approximate the probabilities p(s) of
the states s that belong to the boundary set Sb.

We first solve the tail approximation problem for sys-
tems of dimension one, S = N≥0

The tail approximation is done in two stages. First, we
make a coarse approximation using a shifted geometric
distribution and then we iteratively correct this value with
respect to the probability values p̂(x) with x < b.

Recall that the geometric distribution with mean M is
a discrete probability distribution defined as:

gM (x) = p · (1− p)x, where p =
1

M + 1
.

For the first stage of our approximation, we define the
shifted geometric distribution ḡM,b : N≥b → [0, 1] to be:
ḡM,b(x) = gM−b(x− b). This function is used to roughly
approximate p(b) by p̃(b) = p̂(>)·ḡµ(>),b(b), where p̂(>)
is the probability for x > b, and gµ(>),b estimates the
probability of being in state b conditioned on x ≥ b, from
the aggregated expectation µ(>).

The correction stage of our approximation is based on
the observation that for a well-behaved probability distri-
bution the relative errors of our approximation at points b



and b− 1 are almost equal:

p̃(b)

p(b)
≈ p̃(b− 1)

p(b− 1)
.

Therefore, from the above approximation and because
p̂(b− 1) = p(b− 1), we obtain the first corrected approx-
imation p̃c1 :

p(b) ≈ p̃c1(b) = p̃(b) · p̂(b− 1)

p̃(b− 1)
.

This new value of the approximation can be updated
in a second correction step in which the value p̂(b − 2) is
taken into account. In Section 4 we present results for up
to three correction steps.

Let us extend the vector p̂ with p̂(−1) = 0, and let
z be the largest state for which z < b and p(z) = 0.
The correction stage of our approximation can have up to
b− z − 1 steps.

3.1. Multiple dimensions

Here we are interested in the approximation of the value
p(s) with s ∈ Nn≥0. First, we define the one dimensional
projection p|i,s : N≥0 → [0, 1] to be a sub-stochastic
probability distribution such that p|i,s(x) is the probabil-
ity for the i-th component to have value x and all the other
components i′ 6= i to have the values si′ . Formally, let
s|i,x denote the vector s in which the i-th component has
been set to x. Then, the probability projection is defined
as p|i,s(x) = p(s|i,x).

For a state swith only one component i for which si =
>we apply the 1-dimension tail approximation method on
the projection 〈p̂|i,s, µi〉.1

Finally, if we have more than one dimensions for which
si = >, we make an independence assumption in order to
reduce the problem to one dimension. For 2-dimensions,
this assumption is:

p(t)(b, b) ≈ p̂(t)(b,>) · p̂(t)(>, b).

4. CASE STUDIES

In this section we give statistical evidence that empirically
proves the level of accuracy of our approximation. For
this, we start with the actual solution of the CME of two
different biochemical reaction networks, from which we
compute the aggregated solution with respect to a bound-
ary b (step in which we loose information). After that, we
use the tail approximation in order to restore the probabil-
ities of the boundary states Sb from the aggregated solu-
tion. Finally, we compare the restored probabilities with
those in the probability distribution we have started with.

We consider two systems: the predator-prey [7] and
the exclusive switch [8]. First, we compute the solution
of the CME associated to each of these two systems (at
time points t = 1, 2, . . . , 5 for predator-prey, and t =

1The tail approximation can be applied on sub-stochastic vectors as
well.

Figure 2. For all boundaries b ∈ {1, . . . , 64}, we show the
comparison between the actual probability vector p(b), the
first approximation p̃(b) and the corrected approximation
p̃c1(b). The probability vector p is taken from the solution
at time t = 3 of a predator-prey system and it gives the
probabilities over the number of preys for a fixed number
of 46 predators.

10, 20, . . . , 100 for the exclusive switch) using our previ-
ous algorithm [9] and tool [10]. For each of the obtained
probability distributions p(t), for each of the boundaries
b ∈ {10, 50, 100}, and for all states s in the boundary set
Sb, we consider all projections p|i,s of the solution p(t). It
is these projections that we first aggregate and then restore
using tail approximation.

For three correction steps k = 1, 2, 3, the column
max. abs. err. of Table 1 gives the maximal absolute
error computed as

max
s∈Sb

(
| pck(s)− p(s) |

)
.

The column rel. err. gives the relative error for the state
with maximal absolute error. The relative error is com-
puted as:

1−min
( p̃ck(s)

p(s)
,
p(s)

p̃ck(s)

)
.

Finally, Table 1 also reports the percentage of projections
for which the absolute error, as defined above, is greater
than 10−7. In some cases this percentage is high because
the chosen boundary is too small.

In Figure 2 we show how the tail approximation per-
forms at all possible boundaries b of a predator-prey model
for the projection p|prey,predator=46. For this figure, the
original probability distribution has been aggregated with
respect to all possible boundaries b for the number of preys.
For small boundaries, the region of the probability distri-
bution at the right of the boundary does not have a geo-
metric shape and thus the errors are larger. Even more,
for very small boundaries, the correction step can not be
applied because the value of p is 0, and the approximation
is completely unacceptable. This is one of the major prob-
lems that an algorithm using this approximation needs to



Table 1. Results.

Model b
Max abs. err. rel. err. abs. err.> 1×10−7

1st corr. 2nd corr. 3rd corr. 1st corr. 2nd corr. 3rd corr. 1st corr. 2nd corr. 3rd corr.
pred. prey 10 2×10−3 1×10−3 5×10−4 8×10−2 3×10−2 1×10−2 46% 46% 43%

50 2×10−4 2×10−5 1×10−6 2×10−1 2×10−2 9×10−4 4% 4% 3%

100 4×10−8 1×10−9 6×10−11 1×10−3 6×10−5 2×10−6 0% 0% 0%

ex. switch 10 7×10−3 1×10−2 1×10−3 4×10−1 4×10−1 1×10−1 92% 95% 94%

50 1×10−3 1×10−4 2×10−5 1×10−1 1×10−2 1×10−3 46% 46% 12%

100 3×10−4 3×10−5 3×10−6 4×10−2 4×10−3 4×10−4 33% 33% 14%

Figure 3. Approximation of state probabilities in the ex-
clusive switch model. With each correction step the ap-
proximation is closer to the real probabilities.

solve. However, for larger boundaries, the approximation
is very accurate and the correction step is performing well.

Figure 3 illustrates the case in which more than one
correction steps are needed in order to obtain an accurate
result. As future work, we hope to design a fix-point al-
gorithm that would detect how many correction steps are
necessary for a given tolerance.

5. CONCLUSION

We have presented a way to approximate probabilities of
a biochemical reaction network at the boundary between
low and large copy numbers. The proposed approxima-
tion is simple but we have proved that the correction step
of the approximation is powerful in obtaining an accurate
value. Future work will include developing an algorithm
that uses the tail approximation in order to reduce the state
space of the CME, proving the convergence of the correc-
tion steps and ensuring an error bound of the tail approxi-
mation.
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