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Abstract

Tumor growth is caused by the acquisition of driver mutations, which enhance the

net reproductive rate of cells. Driver mutations may increase cell division, reduce

cell death, or allow cells to overcome density-limiting effects. We study the dynam-

ics of tumor growth as one additional driver mutation is acquired. Our models are

based on two-type branching processes that terminate in either tumor disappear-

ance or tumor detection. In our first model, both cell types grow exponentially,

with a faster rate for cells carrying the additional driver. We find that the additional

driver mutation does not affect the survival probability of the lesion, but can sub-

stantially reduce the time to reach the detectable size if the lesion is slow growing.

In our second model, cells lacking the additional driver cannot exceed a fixed car-

rying capacity, due to density limitations. In this case, the time to detection

depends strongly on this carrying capacity. Our model provides a quantitative

framework for studying tumor dynamics during different stages of progression.

We observe that early, small lesions need additional drivers, while late stage metas-

tases are only marginally affected by them. These results help to explain why addi-

tional driver mutations are typically not detected in fast-growing metastases.

Introduction

Disease progression in cancer is driven by somatic evolu-

tion of cells (Nordling 1953; Nowell 1976; Vogelstein and

Kinzler 1993; Hanahan and Weinberg 2000; Vogelstein and

Kinzler 2004; Merlo et al. 2006; Gatenby and Gillies 2008).

Mathematical modeling (Wodarz and Komarova 2005) can

provide quantitative insights into many aspects of this pro-

cess, including the age incidence of cancer (Armitage and

Doll 1954; Knudson 1971, 2001; Luebeck and Moolgavkar

2002; Michor et al. 2006; Meza et al. 2008), the role of

genetic instability in tumor progression (Nowak et al.

2002; Komarova et al. 2002, 2003; Michor et al. 2003; Raj-

agopalan et al. 2003; Michor et al. 2005b; Nowak et al.

2006), the timing of disease progression events (Moolgav-

kar and Knudson 1981; Nowak et al. 2003; Iwasa et al.

2004, 2005; Beerenwinkel et al. 2007; Jones et al. 2008a;

Attolini et al. 2010; Bozic et al. 2010; Durrett and Moseley

2010; Gerstung and Beerenwinkel 2010; Yachida et al.

2010; Durrett and Mayberry 2011; Gerstung et al. 2011;

Martens et al. 2011), the evolution of resistance to chemo-

therapy (Coldman and Goldie 1985, 1986; Goldie and

Coldman 1986, 1998), the dynamics of targeted cancer

therapy (Michor et al. 2005a; Dingli and Michor 2006; Le-

der et al. 2011; Bozic et al. 2012; Diaz et al. 2012), and

genetic heterogeneity within tumors (Durrett et al. 2011;

Iwasa and Michor 2011).

Tumors are initiated by a genetic event that provides a

previously normal cell with an increased reproductive rate

(a fitness advantage) compared with surrounding cells. In

the case of colon cancer, this initiating event (usually inac-

tivation of the APC tumor suppressor gene) starts the

growth of a micro-adenoma (Kinzler and Vogelstein 1996).

Subsequent genetic alterations can further increase the

reproductive potential of tumor cells and lead to the devel-

opment of a large adenoma and carcinoma (Vogelstein
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et al. 1988; Baker et al. 1989; Fearon and Vogelstein 1990).

Metastasis, the dissemination and growth of tumor cells in

distant organs, is thought to occur late in the course of

tumor evolution (Yachida et al. 2010). Few, if any, selective

events are required to transform a highly invasive cancer

cell into one with the capacity to metastasize (Jones et al.

2008a).

Here, we study how one additional driver mutation

affects tumor growth. We model a stochastically growing

lesion and explore the consequence of an additional driver

mutation, which might appear. Driver mutations are

defined as those that increase the fitness of tumor cells and

contribute to the carcinogenic process (Frank and Nowak

2004; Maley et al. 2004; Sjöblom et al. 2006; Greenman

et al. 2007; Wood et al. 2007; Jones et al. 2008b; Parsons

et al. 2008). In cancer biology, the fitness of a cell repre-

sents its reproductive potential. Many different mecha-

nisms can increase the net growth rate of cancerous cells

such as sustaining proliferative signaling, evading growth

suppressors, resisting cell death, or gaining unlimited repli-

cative potential (Hanahan and Weinberg 2011). Driver

mutations constitute only a fraction of the genetic altera-

tions found in tumor cells; the remainder are ‘passengers’,

which do not alter fitness but hitchhike to high frequency

on the basis of driver mutations. Bozic et al. (2010) give a

formula for the predicted relationship between the num-

bers of driver and passenger mutations acquired over time.

We model tumor growth using a discrete-time branching

process (also known as the Galton–Watson process) (Ath-

reya and Ney 1972). We consider two types of cells: resi-

dent (type 0) and mutant (type 1) cells. Mutant cells have

one additional driver mutation with respect to resident

cells. Thus, our model could be thought of as a one-bit

description of tumor dynamics, where one bit encodes the

genotype of a cell with respect to the additional driver

mutation. This model is a generalization of the Luria-Del-

brück model used in studying bacterial evolution (Luria

and Delbrück 1943; Zheng 1999; Dewanji et al. 2005). Sim-

ilar two-type stochastic models of cancer evolution were

previously used to study the evolution of resistance to can-

cer therapy (Goldie and Coldman 1979; Coldman and Gol-

die 1983; Komarova and Wodarz 2005; Iwasa et al. 2006;

Foo and Michor 2010; Bozic et al. 2012; Diaz et al. 2012)

and stochastic dynamics in healthy and preneoplastic tissue

(Clayton et al. 2007; Klein et al. 2010; Antal and Krapivsky

2011).

Our model can be applied to different stages of tumor

progression. For example, the additional driver mutation

could be the mutation activating the KRAS/BRAF pathway

in a small colorectal adenoma, associated with the transfor-

mation from small to large adenoma, or the mutation that

transforms benign adenoma into infiltrating carcinoma

(Jones et al. 2008a). Finally, the additional driver mutation

can be a new driver in a metastatic lesion. We are particu-

larly interested in the following question: under which con-

ditions does an additional driver mutation accelerate

tumor progression?

Materials and methods

The model

We model tumor evolution as a discrete-time, two-type

branching process. At each time step, each cell either

divides (yielding two daughter cells) or dies. These events

occur independently for each cell. Each resident cell divides

with probability 1
2 ð1þ s0Þ and dies with probability

1
2 ð1� s0Þ. Here, s0 denotes the growth coefficient (which

we define as division probability minus death probability

per time step) of resident cells, and may be constant or var-

iable depending on the model under consideration (see

below). Similarly, mutant cells divide with probability
1
2 ð1þ s1Þ and die with probability 1

2 ð1� s1Þ. When a resi-

Figure 1 Illustration of the branching process. A tumor is initiated with a single resident cell. At each time step, each cell either divides or dies, lead-

ing to a stochastically growing tumor. Resident cells (blue) have a division probability of 1
2 ð1þ s0Þ, while mutant cells (red) have a division probability

of 1
2 ð1þ s1Þ. Additionally, resident cells may mutate upon division, with probability u.
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dent cell divides, one of the two daughter cells can receive

an additional driver mutation (making it a mutant) with

probability u (Fig. 1). This parameter u reflects both the

point mutation rate in resident cells and the number of

positions in the genome that can give rise to the next driver

mutation. Each time step in our model corresponds to the

time between divisions of a typical tumor cell. We assume

that the time between cell divisions is the same for resident

and mutant cells. Tumor progression is initiated by a single

resident cell. We study the dynamics of tumor progression

by considering two possible endpoints: (i) extinction of the

tumor and (ii) the tumor reaches a certain size, M (which

might correspond to clinical detection).

We study two related models that differ in the growth

dynamics of the resident cells.

In the exponential growth model, the growth coefficients

s0 and s1 are constant, so that both resident and mutant

cells grow exponentially on average. Moreover, mutant cells

have a growth advantage compared with resident cells

(s1 [ s0 [ 0) and can therefore potentially accelerate

tumor progression. This model can be viewed as a special

case of the model used in Bozic et al. 2010, in which multi-

ple driver mutations can occur in sequence.

In the logistic growth model, resident cells are con-

strained by a density limit. They grow exponentially at

first, but eventually reach a steady state around a certain

number of cells (the carrying capacity K). For our sto-

chastic model, this means that the division probability of

the resident cells varies with tumor size. We achieve this

by considering a variable growth coefficient

~s0 ¼ s0 ð1� X=KÞ, where X is the current size of the

tumor. In this case, the constant s0 [ 0 represents only

the initial growth coefficient of resident cells (when

X�K), while the variable ~s0 represents the growth coeffi-

cient at any tumor size X. For tumor sizes X for which

division probability of resident cells would fall below 0

(or for which, equivalently, ~s0 would fall below �1), we

set ~s0 ¼ �1. Mutant cells have no density limit, but

rather have a constant growth coefficient s1 [ 0. This

logistic growth model describes the situation where addi-

tional mutations are needed for the tumor to overcome

current geometric and metabolic constraints (Spratt et al.

1993; Jiang et al. 2005). Density-dependent branching

process models have previously been used by Tan (1986)

to model tumor growth and Bozic et al. (2012) to model

acquired resistance to targeted therapy.

(A) (B)

(C) (D)

Figure 2 Driver mutation effect on tumor progression under various conditions. These plots show typical simulation results for the exponential

growth model (A and B) and the logistic growth model (C and D). A higher growth coefficient of the mutant type (s1 ¼ 0:008 in A vs s1 ¼ 0:016 in

B) increases its survival probability and reduces the time until the mutant type becomes dominant. In C and D, the additional driver mutation is neutral

(s1 ¼ s0). The resident cells decline at the point when the mutant cells (and hence the total number of cells) exceed the carrying capacity of the resi-

dent cells. In C, we have aKu > 1; thus, the mutant type arises while the resident type is still expanding (see “Logistic growth model” subsection of

Results). In D, we have aKu < 1 and hence the resident population remains at carrying capacity for a significant period of time before the mutant type

arises. Parameter values: driver mutation rate u ¼ 10�6, average cell division time is 3 days.
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Simulations

We use computer simulations to understand the evolution-

ary dynamics of our stochastic model of tumor progres-

sion. To ensure an efficient processing of the discrete-time

Galton–Watson branching process, we only store the num-

ber of resident and mutant cells in each time step. By sam-

pling from a multinomial distribution, we obtain the

number of cells of both types in the next generation (Bozic

et al. 2010). Note that in the logistic growth model, the

birth probabilities for the resident cells depend on the size

of the tumor, and therefore, we need to calculate them in

each generation.

In Fig. 2 A and B, we show two realizations of the

exponential growth model, corresponding to tumor evo-

lution in two ‘patients’. Similarly, in Fig. 2 C and D, we

show two examples of tumor evolution in the logistic

growth model.

Parameter selection

The effects of additional driver mutations depend on the

driver mutation rate. This rate is the product of the num-

ber of positions in the genome that would lead to a new

driver mutation if altered and the point mutation rate. The

point mutation rate in normal and cancer tissues has been

reported to be in the range 10�11 to 10�9 (Albertini et al.

1990; Cervantes et al. 2002; Jones et al. 2008a). It was esti-

mated that there are � 30 000 positions in the genome that

could become driver mutations (Bozic et al. 2010). If any

of them could become the next driver in the tumor, then

the driver mutation rate u would be on the order of

� 10�7 to � 10�5, and if only a subset of all driver muta-

tions could become the next driver, the driver mutation

rate would be much smaller. Some types of genetic instabil-

ity could additionally increase the point mutation rate

(Thibodeau et al. 1993; Loeb 1994; Lengauer et al. 1998).

To account for all these possibilities, we will consider driver

mutation rates in the range 10�9 to 10�3. We are assuming

that tumors we are modeling have already evolved chromo-

somal instability (CIN) and therefore that inactivation of a

single copy of a tumor suppressor gene leads to a new dri-

ver mutation, as the other copy will be lost soon thereafter

(Nowak et al. 2002, 2004).

Time between cell divisions has been reported to be on

average 4 days in colorectal cancer (Jones et al. 2008a) and

3 days in glioblastoma multiforme (Hoshino and Wilson

1979). In this paper, we will assume the time between cell

divisions is 3 days.

Growth rates of tumors can be estimated from the

reports of the tumor volume doubling time. Average

reported volume doubling times of breast cancer range

between 105 and 270 days (Kusama et al. 1972; Amerlöv

et al. 1992) and between 61 and 269 days for adenocarci-

noma of the lung (Schwartz 1961; Spratt et al. 1963; Weiss

1974). It follows that the average growth coefficient of these

advanced tumors can vary from 0.008 to 0.035, assuming

3 days between cell divisions. Early lesions have smaller

growth rates, and some metastases can grow even faster

(Friberg and Mattson 1997). For this reason, in our paper

we consider growth coefficients of resident cells from 0.002

to 0.04.

At some size during tumor growth, the tumor needs to

develop blood vessels to provide enough oxygen and nutri-

ents required for survival and further growth to the tumor

cells. It has been estimated that the maximum size of a

tumor without blood vessels is 1-2 mm in diameter (Kerbel

2000). This maximum size acts as a carrying capacity in

tumor progression. Based on the prior estimation, this car-

rying capacity is on the order of millions of cells in our

logistic growth model. In our simulations, we will consider

carrying capacities of 104 to 108 cells.

Results

Our first result applies to either version of the model. We

find that, for reasonably small mutation rate u (and reason-

ably large density limit K in the logistic model), the addi-

tional driver mutation has no effect on the overall survival

probability of the tumor. This is because the mutation gen-

erally occurs when the number of cells in the tumor is

� 1/u (or K, in the logistic model when K < 1/u) and there

is no longer a chance for extinction.

Following Bozic et al. (2010), we obtain that for either

version, the tumor survival probability is given by

p ¼ 2s0=ð1þ s0Þ. This is the probability that a lineage aris-
ing from a single cell will not become extinct. When the

growth coefficient of resident cells is small (s0 � 1), this

survival probability can be approximated as 2s0.

Exponential growth model

We now focus on the basic model of exponential tumor

growth, assuming small growth coefficients of resident and

mutant cells and a small driver mutation rate (s0 � 1,

s1 � 1, and u � s0). Following Bozic et al. (2010), we cal-

culate the expected number of resident cells at time t (mea-

sured in units of cell division time) as

x0ðtÞ ¼ 1

2s0
ð1þ s0Þt : ð1Þ

We note that this average is conditioned on the survival

of the tumor. The expected time until the appearance of

the first mutant cell with a surviving lineage is

© 2012 The Authors. Evolutionary Applications published by Blackwell Publishing Ltd 6 (2013) 34–45 37
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s ¼ 1

s0
log

2s0
2

s1u

� �
; ð2Þ

assuming a small growth coefficient of resident and mutant

cells and small mutation rate (s0 � 1, s1 � 1, and u � s0).

The expected number of mutant cells t′ time steps after the

appearance of the first mutant cell with a surviving lineage is

x1ðtÞ ¼ 1

2s1
ð1þ s1Þt

0
: ð3Þ

Although there is stochasticity in the timing of the

appearance of the first mutant cell with a surviving lineage,

we can achieve a good approximation to the number of

mutant cells at time t by setting t′ = t�τ in eqn (3).

Using the eqn (1) for the average number of resident

cells, we can approximate the time until there are M resi-

dent cells in the tumor as

t0M ¼ logð2s0MÞ
s0

: ð4Þ

Respectively, the time t1M until there are M mutant cells

in the tumor is:

t1M ¼ sþ logð2s1MÞ
s1

: ð5Þ

We note that in eqns (1), (4), and (5), time is measured

in numbers of cell divisions and needs to be multiplied by

average time between cell divisions to represent real time.

Since resident and mutant cells grow exponentially with

different growth rates, we expect that tumors will most

often be dominated by one cell type: for short times,

tumors will consist mostly of resident cells; for long

times, they will consist mostly of mutant cells (Fig. 3).

Thus, we approximate the expected detection time of the

tumor as

tM ¼ minðt0M ; t1MÞ: ð6Þ
Figure 4A shows the agreement between formula (6)

and computer simulations.

If t0M \ t1M , we expect that the tumor will consist mostly

of resident cells (Fig. 3). Consequently, the additional dri-

ver mutation does not have a significant effect on detection

time. This observation suggests the following approximate

rule: the additional driver mutation has an effect if

a logðMuÞ þ ða� 1Þ log a[ logð2Ms0Þ: ð7Þ
Here, a denotes the ratio s1=s0. From the above inequal-

ity, we see that larger a and u increase the likelihood of a

mutant-dominated tumor (at the time of detection), while

larger s0 increases the chance of a resident-dominated

tumor.

In many clinical contexts, it is reasonable to assume that

Mu ≫ 1 (see Discussion). In this case, the above rule can be

simplified further by rewriting the left-hand side of

inequality (7) and observing that a log (aMu) ≫ log a.
This leads to the following simplification of inequality (7):

a logðaMuÞ[ logð2Ms0Þ: ð8Þ
We show the agreement between the rule (8) and simula-

tions in Fig. 5. Using eqn (8) we find that, if the driver

mutation rate is u ¼ 10�7, the detection size is M ¼ 109,

and the growth coefficient of resident cells is s0 ¼ 0:004,

then mutant cells need a three times higher growth coeffi-

cient than resident cells to affect tumor detection time. For

(A) (B) (C)

Figure 3 Dominating cell types in the tumor at detection time. Cumulative probability distribution of the tumor detection time (i.e., PðXðtÞ�MÞ),
as calculated from 107 simulation runs. The blue shaded regions correspond to tumors dominated by resident cells (more than 50% of the tumor cells

at detection time are resident), while the red shaded regions correspond to tumors dominated by mutant cells at detection time (more than 50% of

the tumor cells at detection time are mutants). The tumor composition at detection time can be estimated by the ratio t0M=t
1
M. Parameter values: driver

mutation rate u ¼ 10�7, detection sizeM ¼ 109 cells, average cell division time is 3 days.
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u ¼ 10�5 and the other parameter values are the same as

before, mutant cells need a 1.6 times higher growth coeffi-

cient than resident cells to affect detection time.

Logistic growth model

We now consider the situation where the growth of resident

cells is density limited. To analyze the expected appearance

time τ of the first mutant cell with surviving lineage, we

need to distinguish between two cases: (i) the first surviving

mutant is generated before the resident cells reach their car-

rying capacity and (ii) the first surviving mutant is gener-

ated when the resident cells are at their carrying capacity.

In Appendix A, we show that the first case is expected to

occur for Ku [ s0=s1 (or, equivalently, aKu > 1) and the

second case for Ku\ s0=s1 (aKu < 1). We note that for

s0 ¼ s1, these two cases are divided by Ku = 1.

The expected appearance time τ of the first mutant cell

with a surviving lineage is calculated in Appendix A as

s �
1
s0
log 2s0

au

� �
if aKu [ 1

1
s0

logð2s0KÞ þ 1
aKu � 1

� �
otherwise:

(

ð9Þ
If the detection size M is smaller than the carrying capac-

ity of resident cells, K, then the model behaves similarly to

the exponential growth model. Thus, we restrict our atten-

tion to the case K < M. In that case, the expected detection

time of the tumor is

tM ¼ sþ logð2s1 MÞ
s1

; ð10Þ

where τ is given by eqn (9). We show the excellent agree-

ment between eqn (10) and simulation results in Fig. 4B.

Using formula (10), we find that, for carrying capacity

K ¼ 106, driver mutation rate u ¼ 10�5, growth coeffi-

cients of resident and mutant cells s0 ¼ s1 ¼ 0:004, and

detection size M ¼ 109 cells, the average tumor detection

(A) (B)

Figure 4 Comparison of analytical and simulation results for the expected time of tumor detection. Markers (circle, triangle, square) indicate simula-

tion results while curves represent analytic predictions. In the exponential model (A), we observe that, for typical mutation rates, the additional driver

needs to have a three times higher growth coefficient in order for the mutant type to accelerate tumor progression prior to detection. In the logistic

growth model (B), the additional driver mutation is neutral (s1 ¼ s0). We see that small carrying capacities (with aKu < 1) significantly slow tumor

progression, while large carrying capacities (aKu > 1) have little effect. Simulation results are averages over 107 runs. Parameter values: detection size

M ¼ 109 cells, driver mutation rate u ¼ 10�7, average cell division time is 3 days.

(A) (B)

Figure 5 Effect of the additional driver mutation on tumor detection time. The markers represent simulation results for the exponential growth

model, with mutant growth coefficient equal to (green crosses), twice (blue circles), and four times (red triangles) the resident growth coefficient.

The dashed lines correspond to the threshold (8) indicating when the additional driver mutation accelerates tumor progression. Simulation results are

averages over 107 runs. Parameter values: detection size M ¼ 109 cells, average cell division time is 3 days.

© 2012 The Authors. Evolutionary Applications published by Blackwell Publishing Ltd 6 (2013) 34–45 39
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time is � 46 years. For driver mutation rate u ¼ 10�7 and

all other parameters are the same as before, the average

tumor detection time is � 70 years. In any one patient,

multiple such lesions could be seeded, but only a small

fraction of them would reach detectable size in the lifetime

of the patient (see Table 3). Additional results are provided

in Appendix S.1.

Discussion

Our results describe how additional driver mutations affect

the dynamics of tumor growth in different stages of disease

progression. Early lesions often have a limited growth

potential due to spatial or metabolic constraints and need

additional driver mutations to reach a detectable size. In

Table 1. Probability of tumor detection over time in the exponential growth model.

s0 s1

Probability of detection after

5 years 10 years 20 years 30 years 40 years 50 years

0.002 0.002 0.0 0.0 0.0 0.0 0.0 0.0

0.004 0.0 0.0 0.0 0.0 0.0 0.003

0.008 0.0 0.0 0.0 0.002 0.024 0.226

0.004 0.004 0.0 0.0 0.0 0.026 0.973 1.0

0.008 0.0 0.0 0.001 0.436 0.974 1.0

0.016 0.0 0.0 0.01 0.598 0.995 1.0

0.01 0.01 0.0 0.0 0.999 1.0 1.0 1.0

0.02 0.0 0.002 1.0 1.0 1.0 1.0

0.04 0.0 0.032 1.0 1.0 1.0 1.0

0.02 0.02 0.0 0.999 1.0 1.0 1.0 1.0

0.04 0.0 0.999 1.0 1.0 1.0 1.0

0.08 0.012 1.0 1.0 1.0 1.0 1.0

0.04 0.04 0.997 1.0 1.0 1.0 1.0 1.0

0.08 0.997 1.0 1.0 1.0 1.0 1.0

0.16 0.999 1.0 1.0 1.0 1.0 1.0

The birth probability of the resident and mutant cells is given by 1
2 ð1þ s0Þ and 1

2 ð1þ s1Þ, respectively. A higher growth coefficient of the mutant, s1,

can accelerate tumor progression. When s0 ¼ s1, the detection time is independent of the mutation rate. The simulation results are averages over

107 runs. Parameter values: detection size M ¼ 109 cells, driver mutation rate u ¼ 10�7, average cell division time is 3 days. (The value 0.0 corre-

sponds to a probability below 10�3.)

Table 2. Probability of tumor detection over time in the logistic growth model.

s0 K

Probability of detection after

10 years 20 years 30 years 40 years 50 years 60 years

0.002 104 0.0 0.0 0.0 0.0 0.0 0.0

106 0.0 0.0 0.0 0.0 0.0 0.0

108 0.0 0.0 0.0 0.0 0.0 0.0

0.004 104 0.0 0.0 0.0 0.030 0.27 0.538

106 0.0 0.0 0.0 0.062 0.944 1.0

108 0.0 0.0 0.0 0.123 0.98 1.0

0.01 104 0.0 0.152 0.729 0.918 0.975 0.992

106 0.0 0.706 1.0 1.0 1.0 1.0

108 0.0 0.877 1.0 1.0 1.0 1.0

0.02 104 0.076 0.904 0.991 0.999 1.0 1.0

106 0.301 1.0 1.0 1.0 1.0 1.0

108 0.566 1.0 1.0 1.0 1.0 1.0

0.04 104 0.883 0.999 1.0 1.0 1.0 1.0

106 1.0 1.0 1.0 1.0 1.0 1.0

108 1.0 1.0 1.0 1.0 1.0 1.0

The resident cells have a birth probability of 1
2 ð1þ s0ð1� X=KÞÞ, which depends on the current tumor size X. The birth probability of the mutant cells

is constant 1
2 ð1þ s1Þ. If the carrying capacity K is low but the mutation rate u is high (more precisely, if Ku [ s0=s1), tumor progression is not

decelerated. The simulation results are averages over 107 runs. Parameter values: growth coefficient s1 ¼ s0, driver mutation rate u ¼ 10�5 (see

Table 3 for u ¼ 10�7), detection size M ¼ 109 cells, average cell division time is 3 days. (The value 0.0 corresponds to a probability below 10�3.)
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contrast, many metastases exhibit fast exponential growth,

which does not leave enough time for a new driver muta-

tion to appear and reach significant abundance to affect

detection time. In addition, metastases often have shorter

doubling times (and thus larger s0) compared with early

lesions (Welin et al. 1963; Tanaka et al. 2004). Thus, addi-

tional drivers can more significantly increase the growth

rate (leading to a higher s1=s0 ratio) of an early lesion com-

pared to a metastasis. An additional driver would have to

increase an already large growth rate of a metastasis drasti-

cally to have an effect on detection time (Table 1). These

results explain why metastases may not contain additional

driver mutations compared to primary tumors (Jones et al.

2008a).

In the case that resident tumor cells are subject to a den-

sity limitation, the effect of this density limitation on tumor

dynamics depends strongly on the product of the carrying

capacity K and the driver mutation rate u. (More specifi-

cally, the dynamics depend on the product aKu, but

a ¼ s1=s0 can be expected to be in the range 1–10, whereas
K and umay be much more variable across different clinical

contexts.) If Ku [ s0=s1, the first surviving mutant appears

before the tumor growth is decelerated by the carrying

capacity for the resident cells (see eqn (9) and Table 2); thus,

the density constraint has little or no effect on the dynamics.

However, if Ku\ s0=s1, the first surviving mutant appears

only after the tumor has reached the carrying capacity. In

this case, the carrying capacity can tremendously decelerate

tumor progression (Table 3). For example, if

s0 ¼ s1 ¼ 0:01 and u ¼ 10�7, then for K ¼ 107 the

expected detection time, t109 , is 23.9 years but for K ¼ 105,

t109 ¼ 101:5 years. From these two examples, we see that in

many cases, carrying capacities are either overcome almost

as soon as they are reached (if Ku [ s0=s1) or delay tumors

to such an extent that they never reach detectable size (if

Ku � s0=s1). Only in the intermediate case that Ku has the

same order of magnitude as s0=s1 (which itself is likely in the

range 0.1–1), would the delay in cancer progression due to

carrying capacity be observable.

The product Ku—and more generally, products of the

form (number of cells) 9 (mutation rate)—also plays an

important role in quantifying the likelihood of treatment

failure due to acquired resistance (Goldie and Coldman

1979; Coldman and Goldie 1983, 1986; Komarova and Wo-

darz 2005; Iwasa et al. 2006; Durrett and Moseley 2010;

Foo and Michor 2010; Leder et al. 2011; Read et al. 2011;

Bozic et al. 2012). Intuitively, this product represents the

number of mutations generated per cell division time in a

population of cells. If this product is much greater than

one, then mutations of interest (e.g., driver mutations,

resistance mutations) are ubiquitous; if the product is

much less than one, then they are rare. This product can

therefore be used as a rule of thumb to determine the dan-

ger posed by a certain variety of mutation. We caution,

however, that other parameters, such as division rates,

death rates, and time spent at a certain population size (Bo-

zic et al. 2012), also play important roles in determining

the likelihood of clinically relevant mutations.

Table 3. Probability of tumor detection over time in the logistic growth model.

s0 K

Probability of detection after

10 years 20 years 30 years 40 years 50 years 60 years

0.002 104 0.0 0.0 0.0 0.0 0.0 0.0

106 0.0 0.0 0.0 0.0 0.0 0.0

108 0.0 0.0 0.0 0.0 0.0 0.0

0.004 104 0.0 0.0 0.0 0.0 0.003 0.008

106 0.0 0.0 0.0 0.0 0.036 0.286

108 0.0 0.0 0.0 0.0 0.087 0.957

0.01 104 0.0 0.002 0.013 0.025 0.036 0.048

106 0.0 0.008 0.575 0.873 0.962 0.989

108 0.0 0.01 1.0 1.0 1.0 1.0

0.02 104 0.001 0.023 0.046 0.069 0.091 0.112

106 0.002 0.849 0.986 0.999 1.0 1.0

108 0.002 1.0 1.0 1.0 1.0 1.0

0.04 104 0.021 0.065 0.108 0.149 0.188 0.225

106 0.817 0.998 1.0 1.0 1.0 1.0

108 1.0 1.0 1.0 1.0 1.0 1.0

The resident cells have a birth probability of 1
2 ð1þ s0ð1� X=KÞÞ, which depends on the current tumor size X. The birth probability of the mutant cells

is constant 1
2 ð1þ s1Þ. If the carrying capacity K and/or mutation rate u is small (more precisely, if Ku\ s0=s1), the tumor progression is significantly

slowed by the density limitation. The simulation results are averages over 107 runs. Parameter values: growth coefficient s1 ¼ s0, driver mutation rate

u ¼ 10�7 (see Table 2 for u ¼ 10�5), detection size M ¼ 109 cells, average cell division time is 3 days. (The value 0.0 corresponds to a probability

below 10�3.)
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In this work, we derived conditions that help determine

whether the additional driver mutation will significantly

accelerate tumor progression. In reality, most solid tumors

need several driver mutations to reach advanced carcinoma

and metastatic stage that are most detrimental to the

patient. When comparing our results to previous modeling

work on the accumulation of multiple driver mutations in

tumors (Beerenwinkel et al. 2007; Beckman 2009; Bozic

et al. 2010), one should keep in mind that the times to

detection of a lesion might be shorter than reported here if

the cells could quickly receive several drivers.
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Appendix A – Mutant appearance time

To analyze the expected appearance time τ of the first

surviving mutant cell, we use the fact that until very close

to their carrying capacity, resident cells will on average

grow exponentially. Thus, we can approximate their

growth by two phases: exponential and steady state. In

this approximation, the average time to reach steady state

is given by

tK ¼ logð2s0KÞ
s0

: ðA:1Þ

If the first surviving mutant is generated during the

exponential phase, then its average time of appearance τ is
given by equation (2), and we must have s\ tK . Compar-

ing (2) and (A.1), we see that s\ tK is equivalent to

Ku [ s0=s1. We conclude that (i) if Ku [ s0=s1 the first

surviving mutant is generated before resident cells reach

the carrying capacity and (ii) if Ku\ s0=s1 the first surviv-

ing mutant is generated after resident cells have reached the

carrying capacity.

In the second case, we approximate the time until the

appearance of the first surviving mutant, τ, by the time

when the total expected number of surviving mutants pro-

duced reaches 1. This leads to the equation

1 ¼
XtK
t¼1

x0ðtÞ 1
2
ð1þ s0Þu2s1 þ

Xs

t¼tK

K
1

2
u2s1: ðA:2Þ

Using the formula for a geometric series, we obtain

XtK
t¼1

x0ðtÞ ¼
XtK
t¼1

ð1þ s0Þt ¼ ðK � 1Þð1þ s0Þ
s0

:

Substituting this in (A.2) and solving for τ yields

s ¼ 1

s0
logð2s0KÞ þ 1

Kus1=s0
� ð1þ s0Þ2 K � 1

K
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Figure A.1 Mutant appearance time in the logistic growth model.

Comparison of analytical and simulation results for the expected

appearance time of the first surviving mutant in the logistic growth

model. Circles, triangles, squares, and diamonds correspond to the

average results of the simulation, and lines correspond to the analytical

result, eqn (9). Simulation results are averages over 107 runs. Parameter

values: detection size M ¼ 109 cells, driver mutation rate u ¼ 10�7,

average cell division time is 3 days.
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Using s0 � 1 and K≫1, we can approximate

s � 1

s0
logð2s0KÞ þ 1

Kus1=s0
� 1

� �

¼ tK þ 1

s0

1

Kus1=s0
� 1

� �
:

Supporting Information

Additional Supporting Information may be found in the online version

of this article:

Appendix S1. Supplementary results.
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