
Synthesizing Robust Systems
Roderick Bloem∗, Karin Greimel∗, Thomas A. Henzinger†‡, and Barbara Jobstmann†

∗Graz University of Technology,†EPFL, ‡IST Austria

Abstract—Many specifications include assumptions on the
environment. If the environment satisfies the assumptions then
a correct system reacts as intended. However, when the environ-
ment deviates from its expected behavior, a correct system can
behave arbitrarily. We want to synthesize robust systems that
degrade gracefully, i.e., a small number of environment failures
should induce a small number of system failures. We defineratio
games and show that an optimal robust system corresponds to
the winning strategy of a ratio game, where the system minimizes
the ratio of system errors to environment errors. We show that
ratio games can be solved in pseudopolynomial time.

I. I NTRODUCTION

Suppose that a system is required to accept up to 1000
requests per second and to respond to each request within 0.1
seconds. What should the system do when request number
1001 arrives? There are several options, including terminating
the system, dropping the extra request, or delaying a response.
Clearly, all of these approaches satisfy the specification,but
some are better than others. (Cf. [1].)

The formal functional specifications used in Design Au-
tomation typically only describe the behavior of a system in
absence of environment failures. That is, (parts of) the speci-
fication are of the formA → G, whereA is an environment
assumption andG is a guarantee. This approach leaves the
behavior of the system unspecified whenA is not fulfilled
and neither verification tools nor synthesis tools take such
behavior into account. In practice, however, the environment
may fail, due to incomplete specifications, operator errors,
faulty implementations, transmission errors, and the like. Thus,
a system should not only be correct, it should also berobust,
meaning that it “behaves ‘reasonably,’ even in circumstances
that were not anticipated in the requirements specification
[. . .]” [2].

For instance, consider the following informal specification
of an arbiter. Initially, both inputr (for request) and outputg
(for grant) are low. If the environment raisesr, the system will
eventually raiseg. The environment is not allowed to lower
r before g is raised. Afterg is raised,r must be lowered
eventually, after whichg is lowered. The obvious formalization
of this specification does not have any requirements on the
behavior of the system if the environment lowers a request
too early. In fact, if this ever occurs, the system can act
arbitrarily from that time on. This is clearly unreasonable,
because the system can fulfill all its requirements even in this
case. In general, of course, the system may have to fail in some

This research was supported by the Swiss National Science Foundation
(Indo-Swiss Research Program and NCCR MICS) and the European Union
projects ArtistDesign, COMBEST, and COCONUT.

way if the environment does. However, we prefer graceful
degradation: the system error should increase slowly with the
environment error.

This paper proposes a formal notion of robustness through
graceful degradation for discrete functional safety properties:
A small error by the environment should induce only a small
error by the system, where the error is defined quantitatively as
part of the specification, for instance, as the number of failures.
Given such a specification, we define a system to be robust if
a finite environment error induces only a finite system error.
As a more fine-grained measure of robustness, we define the
notion of k-robustness, meaning that on average, the number
of system failures is at mostk times larger than the number
of environment failures. We show that the synthesis question
for robust systems can be solved in polynomial time as a one-
pair Streett game and that the synthesis question fork-robust
systems can be solved usingratio games. Ratio games are a
novel type of graph games in which edges are labeled with a
cost for each player, and the aim is to minimize the ratio of the
sum of these costs. We show that ratio games are positional,
that the associated decision problem is in NP∩ co-NP, and
that they can be solved in pseudopolynomial time. They can
be solved in polynomial time if the cost of a failure is assumed
to be constant.

Section II fixes the notation used in the paper. In Section III,
we present our framework based on error functions, and define
robustness andk-robustness. In Section IV, we introduce ratio
games and show how to solve them. Section V shows how
to use ratio games to construct correct and robust systems.
We present related work in Section VI and conclude in
Section VII.

II. PRELIMINARIES

For a wordw = w1 . . . , let |w| ∈ N∪{∞} be the length of
the word and letw[..i] = w1 . . . wi be the prefix of lengthi.
We denote the set of all finite (infinite) words over the alphabet
A by A∗ (Aω).

We consider systems with a set of input signalsI and a
set of output signalsO. We defineAP = I ∪ O. We use
the signals as atomic propositions in the specifications defined
below. Our input alphabet is thusΣI = 2I , the output alphabet
is ΣO = 2O, and we defineΣ = 2AP .

Moore machines:We use Moore machines to represent
systems. AMoore machinewith input alphabetΣI and output
alphabetΣO is a tupleM = (Q, q0, δ, λ), whereQ is the
set of states,q0 ∈ Q is the initial state,δ : Q × ΣI → Q

is the transition function, andλ : Q → ΣO is the output
function. In each state, the Moore machine outputs a letter in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268226155?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ΣO, then reads a letters inΣI , and moves to the next state. The
run of M on a sequencex = x0x1 . . . ∈ ΣI

ω is a sequence
ρ0ρ1 . . . ∈ Qω, whereρ0 = q0 and ρi+1 = δ(ρi, xi). The
correspondingword is λ(ρ) = w0w1 . . . ∈ Σω, wherewi =
λ(ρi) ∪ xi. The language ofM , L(M) ⊆ Σω, consists of the
words corresponding to the runs ofM . We defineL∗(M) =
L(M) ∩ Σ∗.

Automata:A complete deterministicautomatonover the
alphabetΣ is a tupleA = (Q, q0, δ), whereQ is a finite set
of states,q0 ∈ Q is the initial state, andδ : Q × Σ → Q is
the transition function. Arun of an automatonA on a word
w = w0w1 . . . ∈ Σ∗ ∪ Σω is the longest sequenceρ(w) =
ρ0ρ1 . . . ∈ Q∗ ∪Qω such thatρ0 = q0, andρi+1 = δ(ρi, wi).
The product automatonA = A1 × A2 of two automata is
defined as usual.

A safety automatonA = (Q, q0, δ, F) is a complete de-
terministic automaton(Q, q0, δ) together with a setF ⊆ Q

of accepting statessuch that there are no edges from non-
accepting to accepting states.An infinite run isacceptingif it
never leavesF . An automaton accepts a word if its run is
accepting. We call the setL(A) of infinite words accepted by
A the language ofA.

Specifications:We use safety automata to specify the
desired behavior of a Moore machine. Given a safety au-
tomatonA, we say the Moore machineM satisfiesA, if
L(M) ⊆ L(A). In our examples, we also show LTL formulas
describing the discussed properties. Readers familiar with LTL
[3] will find them useful, while they can be safely ignore by
readers not familiar with LTL.

Single and Double Cost Automata:A single (double) cost
automatonover the alphabetΣ is a tupleC = (Q, q0, δ, c)
consisting of a complete deterministic automaton(Q, q0, δ)
and a cost functionc : Q × Σ → N (c : Q × Σ → N × N,
respectively) that associates to each transition a value in
N (N × N, resp.) calledcost. In a double cost automaton,
we usecs and ce to refer to the cost function of the first
and the second component, respectively. Themaximal cost
is the smallestW ∈ N ∀q ∈ Q, σ ∈ Σ : c(q, σ) ≤ W

(ce(q, σ), cs(q, σ) ≤ W). The cost of a wordw ∈ Σ∗ ∪ Aω,
denoted byC(w), is the sum

∑|W |
i=0 c(ρ(w)i, wi), For double

cost automata, we useCe(w) andCs(w) to refer to the first
and second component, respectively, of the cost of the word
w.

The sum of two cost automataA1 = (Q1, q01, δ1, c1) and
A2 = (Q2, q02, δ2, c2) is the cost automatonA = A1 +
A2 = (Q, q0, δ, c), whereA is the product of the automata
A1 and A2 with costs c = c1 + c2, i.e., c((q1, q2), σ) =
c1(q1, σ)+c2(q2, σ). Theproduct of two single cost automata
A1 = (Q1, q01, δ1, c1) andA2 = (Q2, q02, δ2, c2) is a double
cost automatonA = A1 × A2 = (Q, q0, δ, c), whereA is the
product of the automataA1 andA2 with costsc = (c1, c2),
i.e., c((q1, q2), σ) = (c1(q1, σ), c2(q2, σ)).

Games: A game graphis a finite directed graphG =
(S, s0, E) consisting of a set of statesS, an initial states0 ∈ S,
and a set of edgesE ⊆ S×S such that each state has at least
one outgoing edge. The states are partitioned into a setS1

of Player-1 statesand a setS2 of Player-2 states. When the
initial state is not relevant, we omit it and write(S,E). A play
ρ = s0s1 . . . ∈ Sω is an infinite sequence of states such that
for all i ≥ 0 we have(si, si+1) ∈ E. We denote the set of all
plays byΩ. Given a game graphG = (S,E), a strategyfor
Player 1 is a functionπ1 : S∗S1 → S mapping a sequence of
states ending in a Player-1 state to a successor state such that
for all s0 . . . si ∈ S∗S1, we have that(si, π1(s0 . . . si)) ∈ E.
A Player-2 strategy is defined similarly. We denote byΠ1 and
Π2 the set of all possible Player-1 and Player-2 strategies,
respectively. A strategy ispositional if it depends only on the
current state. We present a positional strategyπp as a function
from Sp to S. Let ρ(π1, π2, s) denote the unique play starting
at s when Player 1 plays the strategyπ1 and Player 2 plays
π2.

The value of a play is given by avalue functionv :
Ω → R ∪ {−∞,∞}. The value of a states under strategy
π1 and π2, denoted byv(π1, π2, s), is the value of the play
ρ(π1, π2, s)We consider complementary objectives for the two
players: Player 1 tries to minimize the value of a state and
Player 2 tries to maximize it. (Note that the converse is more
usual.) The Player-1 value of a states under the strategy
π1 is supπ2∈Π2

(v(π1, π2, s)). A strategyπ1 is optimal for
Player 1 in states if the Player-1 value of the states under
the strategyπ1 is minimal. The Player-2 value and Player-2
optimal strategies are defined correspondingly. The value of
a states denoted byv(s) is the Player-1 value of the play
starting ins, in which both players play optimally.

A game is a game graph together with a value function.
The game graph defines the possible actions of the players.
The value function describes the objectives of the players.
A mean payoff gameis describe as a tuple((S, s0, E), w),
where (S, s0, E) is a game graph andw : E → N is a
payoff function. The value function for a playρ = s0s1 . . .

in a mean payoff game isv(ρ) = lim supn→∞
1
n

∑n

i=0 w(ei)
with ei = (si, si+1). A one-pair Streett gameis a tuple
((S, s0, E), F1, F2) consisting of a game graph(S, s0, E) and
two setsF1, F2 ⊆ S, wherev(ρ) = 0 iff (∀i ≥ 0 ∃j ≥ i :
sj ∈ F1) → (∀i ≥ 0 ∃j ≥ i : sj ∈ F2). We say a Streett
game iswinning for Player 1if the value of the initial state
s0 is 0.

An automatonA = (Q, q0, δ) over the alphabetΣ can be
translated into a game graph(S, s0, E) as follows. We define
the set of Player-1 states asS1 = {s(q,σi) | q ∈ Q andσi ∈
ΣI}∪ {s0}. The Player-2 statesS2 are given by the setS2 =
{s(q,σo) | q ∈ Q andσo ∈ ΣO}. The set of game states is
the setS = S1 ∪ S2. Every state of the game (except for the
initial state) represents a state of the automaton and an input
or output label. Note that this corresponds to moving from
a transition-labeled to a state-labeled system. Every outgoing
transition of a stateq in A is translated into two steps of the
game: first, Player 1 chooses a letterσo from ΣO by moving
to the statess(q,σo), then Player 2 chooses a letterσi from
ΣI and moves according to the transition relation to a new
states(q′,σi) such thatδ(q, σo ∪ σi) = q′. Formally, we have
that E1 = {(s(q,σi), s(q,σo)) | q ∈ Q, σo ∈ ΣO, andσI ∈

ΣI} ∪ {(s0, sqo,σo
) | σo ∈ ΣO}, E2 = {(s(q,σo), s(q′,σI)) |

q, q′ ∈ Q, σo ∈ ΣO, σI ∈ ΣI , andδ(q, σo ∪ σi) = q′}, and
E = E1 ∪ E2.

III. D EFINING ROBUSTNESS

In this section we introduce our notion of robustness based
on error specifications. We show how error specifications relate
to classical specifications and the notion of realizability. We
conclude with an example.

Definition 1. An error functionis a functiond : Σ∗ ∪ Σω →
N∪{∞}. The function is monotonically increasing in the sense
that if w′ is a prefix ofw thend(w′) ≤ d(w).

An error specificationis a pair of error functions(de, ds).

The error functions define a distance between allowed and
observed behavior, for instance, by measuring the number of
failures in some appropriate sense. Thus,d(w) = 0 indicates
thatw fulfills the specification, and a higher value indicates a
more serious violation of the specification. Error specifications
provide a measure of “badness” for both the environment
behavior (usingde) and the system behavior (usingds) and
form the specifications we use in the sequel. We assume that
these specifications are provided by the user.

Definition 2. A Moore machineM realizesan error specifi-
cation(de, ds) if ∀w ∈ L(M) : de(w) = 0 impliesds(w) = 0.

Thus, an error specification induces a classical specification
A → G, whereA = {w ∈ Σω | de(w) = 0} andG = {w ∈
Σω | ds(w) = 0} are sets of infinite words.

The following notion is an alternative to realizability, for-
bidding the system to make mistakes before the environment
does.

Definition 3. A Moore machineM strictly realizesan error
specification(de, ds) if ∀w ∈ L∗(M) : de(w[..|w| − 1]) = 0
impliesds(w) = 0. An error specification isstrictly realizable
if there exists a Moore machine that strictly realizes it.

Example 4. An example of a specification that is realizable
but not strictly realizable isA1 ∧ A2 → G1 ∧ G2, wherex
is an input,y is an output,A1 requires thatx is always true
(Gx), A2 says thatx is initially equal to y (x ↔ y), G1

states thaty is always true(G y), andG2 states thatx in the
first step andy in the second step are different(x 6↔ (X y)).
All Moore machines that realize the specification start with
settingy to false, which violates the guarantees but forces the
environment to do the same1.

Definition 5. A Moore machineM is robustwith respect to
an error specification(de, ds) if ∀w ∈ L(M) : de(w) 6= ∞
impliesds(w) 6= ∞.

This means that a robust system can recover from a finite
environment error. Note that a system can be robust with
respect to a specification that it does not realize if it contains a
word with a finite system error but no environment error. Error

1This specification is based on an example by Marco Roveri.

specifications can forbid words by assigning infinite system
costs. (In particular, this is possible when such specifications
are given by double cost automata, as below.)

In order to calculate the quality of a robust system we want
to calculate the largest system error for every environment
error.

Definition 6. A Moore machineM is k-robust with respect
to an error specification(de, ds) if ∃d ∈ N : ∀w ∈ L∗(M) :
ds(w) ≤ k · de(w) + d.

Obviously, everyk-robust system is robust, regardless ofk.
Also, every robust system isk-robust for some finitek,
see Theorem 15, i.e., for every finite Moore machine, the
growth of the system error is either linear with respect to the
environment error or unbounded. This motivates our choice of
the robustness measure as a linear function. The definition of
k-robustness allows us to rank Moore machines with respect
to error specifications: A smallerk is better, it means that
the system error increases slowly with the environment error.
The constantd allows the system finitely many system failures
independent of the environment error. In this paper, we focus
on the infinite behavior of a machine, and note thatd can
be bounded by the product of the size of the Moore machine
and the maximal weight. We leave minimization ofd to future
work.

Definition 7. A Moore machine(k-)robustly (and strictly)
realizesan error specification if it (strictly) realizes the spec-
ification and it is (k-)robust with respect to the specification.

In the remainder, we use double cost automata to define
error specifications. The environment (system) error function
associated withC maps eachw ∈ Σ∗ ∪Σω to its costCe(w)
(Cs(w), respectively). Note that a double cost automaton
can be seen as the product of two single cost automata.
We can construct an error specification from a set of cost
automataCAi

for the system andCGi
for the environment. The

error specification (a double cost automaton) is the productof
the sum of allCAi

and the sum of allCGi
.

Example 8. Consider a system with two request signalsr1
and r2 as inputs and two grant signalsg1 and g2 as out-
puts. We want the system to respond to each request with a
grant in the next step. Formally, we require that the system
satisfiesGi = G(ri → X gi) for i ∈ {1, 2}. The system
should also guarantee that grants are mutually exclusive, i.e.,
G3 = G¬(g1 ∧ g2). To avoid a contradicting specification,
we assume that requests are also mutually exclusive, i.e.,
A = G¬(r1 ∧ r2). Figure 1 shows two safety automata, one
for A and one forG1 andG2. Note that we summarize labels
on edges with Boolean expressions overri and gi, where a
horizontal alignment of two variables represents a conjunction
and two vertically aligned variables are disjoint. We use a bar
to denote negation and⊤ to denote true. States depicted with
two cycles are accepting states. Note that the automaton for
G3 is exactly the same as forA, wherer1 andr2 are renamed
to g1 and g2, respectively.

s0 s1

r̄1

r̄2

r1r2

⊤

p0 p1 p2

ri

r̄igi

ḡi

r̄i rigi ⊤

Fig. 1. Automata forA = G(¬(r1 ∧ r2)) andGi = G(ri → X gi).

s0

r̄1(0)
r̄2(0)

r1r2(1)

(a) CA

p0 p1

ri(0)

r̄igi(0)
ḡi(1)

r̄i(0) rigi(0)

(b) CGi

p0 p1

ri(0)

r̄igi(0)
r̄iḡi(1)

rigi(0)
riḡi(1)r̄i(0)

(c) C′

Gi

Fig. 2. Cost automata counting violations ofA andGi, respectively.

Starting from the specificationA → (G1 ∧ G2 ∧ G3), we
can define what it means for the system and the environment
to fail. In particular, the environment violates assumption A

if it raises r1 and r2 at the same time. This corresponds to
taking the edge froms0 to s1. In Figure 2(a), we show a cost
automaton that counts every violation of the environment. Note
that once the environment “pays” for taking the edger1r2,
we go back to the initial state, resetting the specification.
Similarly, if the system violates GuaranteeGi by choosing to
go fromp1 to p2, it also incurs cost1 as shown in Figure 2(b).

Note that it is up to the user to define the cost of a violation
and the state in which to continue after the specification is
violated. A reset or a skip are two natural alternatives. A
reset corresponds to an edge to the initial state. For a skip,we
simply add a self-loop. In Figure 2(c) we show an alternative
cost automaton forGi with i ∈ {1, 2}, which uses a mixture
of reset and skip. For the cost automatonCGi

, the word
(r1, ḡ1)(r1, ḡ1)(r̄1, ḡ1)

ω has cost1 whereas it has cost2 for
the cost automatonC′

Gi
. For the second automaton, the cost

corresponds to the number of unanswered requests.
The costs on the edges are given by the user. For instance,

the user might consider a violation of the mutual-exclusion
propertiesG3 more severe and associate with it a higher cost
than a violation of the response propertiesG1 or G2.

Given cost automataCG1
, CG2

, and CG3
that describe

the cost and the behavior associated with a violation of the
corresponding property (cf. Fig. 2), we can construct a cost
automatonCG = CG1

+CG1
+ CG1

for G = G1 ∧G2 ∧G3.
The automatonCG defines the error function of the system.
The cost automaton for the environmentCA (cf. Fig. 2(a))
specifies the error function of the environment. The product
C = CA × CG is the error specification.

Figure 3(a) shows a systemM (synthesized withLily [4])
for the specificationA→ G. It is easy to see thatM satisfies
A→ G. As long as the environment satisfiesA, which means
that it does not provider1 and r2 simultaneously, the system
responds to eachri with the correspondinggi in the next
step. However,M is not robust with respect toC: The input
sequencei = (r1r2)(r̄1r2)

ω has cost one, but the output of

g1ḡ2

ḡ1g2

g1ḡ2

r1r2

r1r2

r1r̄2r̄1

⊤

r̄1

r1r̄2

(a) Non-robust

ḡ1ḡ2

ḡ1g2

g1ḡ2

r1r2

r̄1

r1r2

r1r̄2

r1r̄2r̄1

r1r2

r̄1

r1r̄2

(b) 2-robust

g1ḡ2

ḡ1g2

r̄1r2

r1

r̄2

r1

r̄2

r̄1r2

(c) 1-robust

Fig. 3. A non-robust,2-robust, and a1-robust system.

the system has cost∞.
Figure 3(b) and 3(c) show two systems that are robust

with respect to the error specification, for any word with
finitely many environment errors the systems produce finitely
many system errors. The system in Figure 3(b) is2-robust
with respect to the error specification whereas the system in
Figure 3(c) is 1-robust. For the input(r1r2)ω the output of
the first Moore machine is(ḡ1g2)(ḡ1ḡ2)ω and for the second
it is (g1ḡ2)

ω .
Note that out of the three systems in Figure 3 (which all

satisfyA → G) the system in Figure 3(c) is the most robust
one. In our opinion, it is also the one most likely to please the
designer.

In Section V we show how to synthesize (strictly) realizing
robust andk-robust systems from an error specification. We
also show how these notions can be verified. The next section
introduces Ratio games, which are crucial to our synthesis
algorithms.

IV. RATIO GAMES

In this section we introduce ratio games, which we need to
synthesizek-robust systems. Intuitively, a system isk-robust
if the ratio of the system error to the environment error is
smaller than or equal tok for every word of the system. An
optimal strategy for Player 1 in a ratio game minimizes this
ratio.

Definition 9. A ratio game2 G is a tuple((S, s0, E), w1, w2)
consisting of a game graph(S, s0, E) and two weight func-
tionsw1, w2 : E → N mapping edges to non-negative integer
values. The value function for a playρ = s0s1 . . . ∈ Sω is

v(ρ) = lim
m→∞

lim sup
l→∞

∑l
i=m w1(si, si+1)

1 +
∑l

i=m w2(si, si+1)
(1)

Ratio games are a generalization of mean payoff games. If
w2(e) = 1 for all e ∈ E, thenG is a mean payoff game. Note
that the sequence of quotients forl → ∞ might diverge, which
requires the use oflim sup or lim inf. We follow the definition
of mean payoff games and take thelim sup. The outer-most
limit ensures that only the infinite behavior is relevant as in
the definition ofk-robustness, i.e., if

∑∞
i=0 w1(ei) is finite,

then v(ρ) = 0. The addition of1 in the denominator avoids

2Our graph-based ratio games should not be confused with those of [5],
which represent games in a normal form, enumerating all strategies. We cannot
use that representation to obtain a polynomial algorithm.

division by zero. It does not influence the value ofv(ρ) if∑∞
i=0 w2(ei) is infinite.
Themaximal weightW in a ratio game((S, s0, E), w1, w2)

is defined byW = max{wi(e) | e ∈ E, i ∈ {1, 2}}. Note that
the valuev(ρ) of a playρ, where both players play positional
strategies, is in the setV = {0, 1

|S|·W , . . . ,
|S|·W

1 ,∞}. Lemma
10 shows that ratio games have optimal positional strategies,
which implies that it suffices to consider positional strategies
and that the value of every state is inV .

Lemma 10. Ratio games have optimal positional strategies.

Proof: It suffices to show that the two one-player games
(S2 = ∅, respectivelyS1 = ∅) have optimal positional
strategies [6]. Consider a game graphG with S2 = ∅. Take
in G a simple cycle with the minimum ratior of all simple
cycles.We show that the positional strategyπ1 that goes to
this simple cycle and stays within it forever is optimal. Note
that the valuev(ρ) of the playρ induced by the strategyπ1

is r, since the outer-most limit in Eq. 1 allows us to ignore
a finite prefix of ρ. If r = 0, the claim trivially holds. If
r = ∞, then in any simple cycle the sum of the weights
w2 is 0 and the sum of the weightsw1 is strictly greater
than 0. This implies that all edgese on cycles have weight
w2(e) = 0 and in every cycle there is at least one edgee

with w1(e) > 0, and so any infinite play has ratio∞. For
0 < r <∞, let r be a

b
for some integersa, b > 0 and letρ′ be

an arbitrary play in the single player game. We decomposeρ′

into a sequence of ratiosa1

b1
, a2

b2
. . . by the following procedure

(cf. [7]): we put the states ofρ′ on a stack in the order of their
appearance, once we encounter a stateq that is already on the
stack, we remove the sequence from the first to the second
appearance ofq and compute its ratioai

bi
. Note that the sum

of the weightsw1 andw2 in this cycle can beci-times larger
thanai andbi, respectively, whereci is some integer constant
between1 andW · |S|. Note that the height of the stack is at
most |S|. Due to the outer-most limit, we can ignore the part
of ρ′ that is always left on the stack in the computation of the

valuev(ρ′). Then,v(ρ′) = lim supl→∞

∑
l

i=1
ci·ai

1+
∑

l

i=1
ci·bi

for some

constants0 < ci ≤ W · |S|. Since the minimum simple-cycle
ratio is a

b
, we know thatai

bi
≥ a

b
for all i > 0 and together

with the fact thatci’s are positive integer constants, we know

that v(ρ′) ≥ lim supl→∞

∑
l

i=1
a

1+
∑

l

i=1
b

and thereforev(ρ′) ≥ a
b
.

The proof for Player-2 games is analogous.
The decision problem of a ratio (mean payoff) game is,

given a ratior (mean payoffv) decide if the value of the game
is at leastr (v). The decision problem for mean payoff games
is in NP∩ co-NP [7]. We show how the decision problem for
ratio games can be reduced to the decision problem of mean
payoff games. The reduction shows that the decision problem
for ratio games is in NP∩ co-NP. We also use this reduction to
calculate the values of the states in a ratio game. The reduction
is similar to that used by Lawler [8] for the reduction of ratio
graphs to the minimal mean cycle problem.

Lemma 11. Let GR = ((S, s0, E), w1, w2) be a ratio game

with maximal weightW . Given a ratioa
b

with 0 ≤ a ≤ |S|·W
and0 < b ≤ |S| ·W , we can decide whether a state has value
v = a

b
, v < a

b
, or v > a

b
in O(|S|3 ·W 2 · |E|) time.

Proof: We reduce the decision for the ratio game to a
decision for the mean payoff gameGMP = ((S, s0, E), w)
with payoff functionw(e) = b · w1(e) − a · w2(e). In the
following, let vR (vR(ρ)) be the value (of runρ) in GR and
similarly for vMP.

We show thatvR ≤ a
b

impliesvMP ≤ 0 andvR ≥ a
b

implies
vMP ≥ 0. The decision whethervMP < 0, vMP = 0, or vMP > 0
can be made inO(|S|2 · W ′ · |E|) time, whereW ′ is the
maximal weight in the mean-payoff game [7]. We haveW ′ ≤
b ·W ≤ |S| ·W 2, thus the decision for the ratio game can be
made inO(|S|3 ·W 2 · |E|) time.

SupposevR ≤ a
b
. We show that Player 1 can achieve

a run of value at most0 in GMP and thus vMP ≤
0. Let π1 be a positional optimal Player-1 strategy for
GR and let π2 be a positional optimal strategy for
Player 2 in GMP. Because both strategies are positional,
ρ(s0, π1, π2) consists of a stem and a simple cycle, say
ρ = (e′1, . . . , e

′
m) · (e1, . . . , en)ω . Note that vR(ρ) =∑

n

i=0
w1(ei)∑

n

i=0
w2(ei)

and vMP(ρ) =
b
∑

n

i=0
w1(ei)−a

∑
n

i=0
w2(ei)

n
. Sup-

pose
∑n

i=0 w1(ei) > 0, then, sincevR ≤ a
b

and is thus finite,

we have
∑n

i=0 w2(ei) > 0. It follows that
∑

n

i=0
w1(ei)∑

n

i=0
w2(ei)

≤ a
b

implies
b
∑

n

i=0
w1(ei)−a

∑
n

i=0
w2(ei)

n
≤ 0. If

∑n
i=0 w1(ei) = 0,

then
b
∑

n

i=0
w1(ei)−a

∑
n

i=0
w2(ei)

n
=

−(a
∑

n

i=0
w2(ei))

n
≤ 0.

The proof thatvR ≥ a
b

implies thatvMP ≥ 0 is similar,
using an optimal strategy for Player 2 inGR.

Theorem 12. Given a ratio game((S,E), w1, w2) with max-
imal weightW , the value for everys ∈ S can be computed
in O(|S|3 ·W 2 · |E| · log(|S| ·W)).

Proof: We use the decision procedure from Lemma 11 to
perform a binary search on the list of possible valuesV \{∞}.
If the ratio is greater than|S| · W , it is infinite. There are
less than(|S| · W)2 different ratios, thus we need at most
2 · log(|S| ·W) calls to the decision procedure.

Given an algorithm to find the values of the game we can
use the “group testing” technique from [7] to find optimal
positional strategies.

Theorem 13. Given a ratio game((S,E), w1, w2) with max-
imal weightW , positional optimal strategies for both players
can be found inO(|S|4 · log(|E|

|S|) · |E| · log(|S| ·W) ·W 2).

All our ratio game algorithms are polynomial in the size of
the game graph but pseudopolynomial in the weights. They
are polynomial ifW = 1.

V. V ERIFYING AND SYNTHESIZING ROBUST SYSTEMS

This section describes the verification and synthesis algo-
rithms for robust systems. First, we establish the correlation
between the ratio in Definition 9 andk-robustness.

Any error specificationC with cost functions ce and
cs can be translated into a ratio gameG. The weight
functions w1 and w2 are given by the cost functionscs
and ce respectively. Formally,w1(2)((s(q,σi), s(q,σo))) = 0
and w1(2)((s(q,σo), s(q′,σi))) = cs(e)(q, σo ∪ σi), where
(s(q,σi), s(q,σo)) ∈ E1 and (s(q,σo), s(q′,σi)) ∈ E2 (see
Section II). Every playρG = s0, s(q0,σo), s(q′,σi), s(q′,σ′

o) . . .

of G corresponds to a runρC = q0q
′ . . . of C on w =

(σo, σi)(σ
′
o, σ

′
i).

Lemma 14. Given a Moore machineM and an error specifi-
cationC with cost functionce andcs, M is k-robust iff for all
wordsw ∈ L(M), the runρ(w) = q0 . . . of C onw = w0 . . .

satisfies

v(w) = lim
m→∞

lim sup
l→∞

∑l

i=m cs(qi, wi)

1 +
∑l

i=m ce(qi, wi)
≤ k. (2)

Proof: If there exists a d ∈ N such that for
all finite prefixes w′ = w0 . . . wn of w we have∑n

i=0 cs(qi, wi) ≤ k ·
∑n

i=0 ce(qi, wi) + d, then∑
n

i=0
cs(qi,wi)

1+
∑

n

i=0
ce(qi,wi)

≤ k + d−k

1+
∑

n

i=0
ce(qi,wi)

holds as well. This

implies that limm→∞ lim supl→∞

∑
l

i=m
cs(qi,wi)

1+
∑

l

i=m
ce(qi,wi)

≤ k

becauselim supl→∞

∑l

i=0 ce(qi, wi) is either some finite
valued′ or infinite. In the first case,

∑n

i=0 cs(qi, wi) ≤ k·d′+d

for anyn ≥ 0. Therefore,lim supl→∞

∑l

i=0 cs(qi, wi) is also

finite. Then,limm→∞ lim supl→∞

∑
l

i=m
cs(qi,wi)

1+
∑

n

i=m
ce(qi,wi)

= 0 ≤ k.

In the second case,limm→∞ lim supl→∞
d−k

1+
∑

l

i=m
ce(qi,wi)

converges to0.
For the other direction, consider the productCM of

C and M . Then, for all w ∈ L∗(M), Ce(w) =

CMe(w) =
∑|w|−1

i=0 ce(qi, wi) and Cs(w) = CMs(w) =
∑|w|−1

i=0 cs(qi, wi), whereρCM (w) = q0 . . . q|w| is the run of
CM on w. Consider an arbitrary finite wordw ∈ L∗(M), if
|w| ≤ |C| · |M |, thenCMs(w) ≤ |C| · |M | ·W andCs(w) ≤
k · Ce(w) + d holds for anyk ≥ 0 and d = |C| · |M | ·W .
Otherwise, if |w| ≥ |C| · |M |, we can decompose the run
ρCM (w) into simple cyclesc1, . . . , cm and a simple pathp
consisting of the remaining nodes. (See proof of Lemma 10.)
Now consider the infinite wordsu1, . . . , um that correspond
to the runs leading to the cyclesc1, . . . , cm, respectively, and
looping there forever. We know thatu1, . . . , um are inL(M)
and, due to Eq. 2, thatv(uj) ≤ k for all 1 ≤ j ≤ m.
Therefore, for every cycle, the sums of the weightsce and
cs in the cycle, are either both0 or their ratio is smaller or
equal tok. Let k = a

b
and let a1

b1
, . . . , am

bm
be the ratios of

the cycles whose ratio is nonzero, then
∑|w−1|

i=0 cs(qi, wi) =

d′ +
∑m

j=1 dj · aj and
∑|w−1|

i=0 ce(qi, wi) = d′′ +
∑m

j=1 dj · bj
for some0 ≤ d′, d′′ ≤ |C|·|M |·W and1 ≤ dj ≤ |C|·|M |·W .
Using the fact that, if for all1 ≤ j ≤ m, aj

bj
≤ a

b

holds then
∑m

j=1 dj · aj ≤ a
b

∑m

j=1 dj · bj holds, we obtain
∑|w−1|

i=0 cs(qi, wi) ≤ a
b

∑|w−1|
i=0 ce(qi, wi) + d′, which proves

thatM is k-robust.

A. Verification

We show that any robust system isk-robust.

Theorem 15. If a Moore machineM with nM states is robust
with respect to an error specificationC with nC states and
maximal system costW , thenM is (nC · nM ·W)-robust.

Proof: Let CM be the product ofC andM . Lemma 14
shows thatM is k robust if the ratio of all runs inCM
is smaller or equal tok. Since one-player ratio games are
positional (Lemma 10), the largest ratio corresponds to the
largest ratio of a simple cycle inCM , which cannot be larger
thannC · nM ·W becauseM is robust.

Next, we show how to verify if a given Moore machine is
robust ork-robust.

Theorem 16. Given a Moore machineM with nM states,
and an error specificationC over the alphabetΣ, with nC

states and maximal costW , we can decide ifM is robust in
O(nC ·nM ·Σ) time. Given ak, we can check ifM is k-robust
in O(n3

C · n3
M · Σ) time.

Proof: Let CM be the product ofC andM . M is not
robust iff CM contains a cycle that contains an edge with
nonzero system cost and no edge with nonzero environment
cost. This can be checked in time linear in the number of edges
in CM , which isnC · nM ·Σ. We have thatM is k-robust if
the maximum simple cycle ratio inCM is smaller or equal to
k. The maximum simple cycle ratio in a graph withn states
andm transitions can be found inO(n2 · m) time [9], thus
we can find the maximum ratio inO(n3

C · n3
M · Σ) time.

B. Synthesis

Next we show how to use Streett games to synthesize
(strictly) realizing and robust systems and how to use ratio
games to synthesize (strictly) realizingk-robust systems with
optimal k.

Lemma 17. Given an error specificationC with n states and
alphabetΣ, we can decide if a robust system exists inO(n2 ·Σ)
time. If a robust system exists, it can be synthesized inO(n2·Σ)
time.

Proof: We translate the specification into a one-pair
Streett game,F1 is the set of states with incoming transitions
with system costs andF2 is the set of states with incoming
transitions with environment costs. One-pair Streett games can
be solved inO(n ·m), wheren is the number of states and
m is the number of transitions [10].

Theorem 18. Given an error specificationC with n states and
alphabetΣ, we can decide if a robust and (strictly) realizing
system exists inO(n2 ·Σ) time. The system can be synthesized
in O(n2 · Σ) time.

Proof: In order to decide if a robust and realizing
system exists, build the product automatonCA1 = (Q ×
{q1, q2, q3}, q0, δ, c) of the error specificationC and the au-
tomatonA1 shown in Figure 4(a). LetCA′

1 be CA1, where
the system costs of all transitions corresponding to the loop

q1 q2

q3

cs = 0
ce = 0

cs 6= 0
ce = 0

ce 6= 0

ce = 0

ce 6= 0

true

(a) AutomatonA1.

q1

q3

q2

cs = 0
ce = 0

ce 6= 0

true

cs 6= 0
ce = 0

true

(b) AutomatonA2.

Fig. 4. Automata for calculating realizability and strict realizability

on stateq2 in Figure 4(a) are set to1. Formally, the cost
function ofCA′

1 is c′((q, x), σ) = (1, ce((q, x), σ)) if x = q2
and δ((q, x), σ) = q2, and c′((q, x), σ) = c((q, x), σ) in all
other cases. Next, translateCA′

1 into a Streett game as above
(proof of Lemma 17). A robust and realizing system exists iff
the game is winning, and the winning strategy corresponds to
a robust and realizing system.

First, assume there exists a winning strategy. No play
in which Player 1 plays optimally visits aq2-state in-
finitely often, because such a play has an infinite sys-
tem error and zero environment error. Consequently, all
words w = (σo, σi)(σ

′
o, σ

′
i) . . . associated with a playρ =

s0, s(q0,σo), s(q′,σi), s(q′,σ′

o) . . . where Player 1 plays optimally
satisfy Ce(w) = 0 implies Cs(w) = 0. Thus, the Moore
machine corresponding to the winning strategy realizes the
error specification. Second, assume there exists no winning
strategy. A play where Player 2 plays optimally, has a finite
environment cost and an infinite system cost. Either there
exists no robust system or the play visits aq2-state infinitely
often. In the second case no system realizes the specification.

Similarly, to check for a robust and strictly realizing sys-
tem, we build a Streett game from the product automaton
CA′

2 of C and the automatonA2 of Figure 4(b), where the
system costs of all transitions corresponding to the loop on
state q2 are replaced by1 and their environment costs are
set to 0. Then, again any Player-1 optimal play avoidsq2-
states. Consequently, for all words associated with a play
where Player 1 plays optimally, all finite prefixesw′ satisfy
Ce(w

′[..|w′| − 1]) = 0 impliesCs(w
′) = 0. Thus, the Moore

machine corresponding to a winning strategy strictly realizes
the error specification.

Lemma 19. Given an error specificationC with n states,
input alphabetΣI , output alphabetΣO, and maximal costW ,
if a robust system exists, ak-robust system with minimalk can
be synthesized inO(n5 · (|ΣI | + |ΣO|)4 · log((|ΣO|+n·|ΣI |)

|ΣI |+|ΣO|) ·

(|ΣO| + n · |ΣI |) · log(n · (|ΣI | + |ΣO|) ·W) ·W 2).

Proof: We synthesizek-robust systems with ratio games.
The game graph is constructed from the double cost automaton
C (see Section II). Lemma 14 shows that a positional strategy
with value k corresponds to ak-robust Moore machine. An
optimal positional strategy corresponds to ak-robust system
with smallest possiblek andd ≤ |C| ·W .

The number of states in the game graph isn · |ΣI |+n · |ΣO|,
the number of edges is|E1| + |E2|, where |E1| = n · |ΣO|
and |E2| = n · n · |ΣI |. A winning strategy for Player 1 can
be found inO(n4 · (|ΣI | + |ΣO|)4 · log(n·(|ΣO|+n·|ΣI |)

n·(|ΣI |+|ΣO|)) · n ·

(|ΣO| + n · |ΣI |) · log(n · (|ΣI | + |ΣO|) ·W) ·W 2).

Theorem 20. Given an error specificationC with n states,
input alphabetΣI , output alphabetΣO, and maximal costW ,
if a robust and (strictly) realizing system exists, ak-robust
system with minimalk that (strictly) realizes the specification
can be synthesized inO(n5 ·(|ΣI |+|ΣO|)4 ·log((|ΣO|+n·|ΣI |)

|ΣI |+|ΣO|)·

(|ΣO| + n · |ΣI |) · log(n · (|ΣI | + |ΣO|) ·W) ·W 2).

Proof: For realizability translateCA′
1 from the proof of

Theorem 18 into a ratio game. The system cost1 for q2-states
guarantees that for any wordw with Cs(w) 6= 0 andCe(w) =
0 the ratio of the corresponding run has value∞ in the ratio
game. The ratios of other plays are not changed. If a play visits
a q2-state finitely often, the ratio is not influenced because we
only look at the ratio in the limit.

For strict realizability translateCA′
2 from the proof of

Theorem 18 into a ratio game. Sinceq2-states have system
cost1 and environment cost0, any run with a system failure
before an environment failure has value∞ in the ratio game.

A Moore machine corresponding to an optimal strategy of
Player 1 is robust and (strictly) realizes the error specification.
If k is the value of the initial state thenM is k-robust.

C. Synthesizing from Reset Error Specifications

As shown in Example 8reset error specificationsare an
intuitive kind of error specification. We show here that every
realizable reset error specification can be realized by a 1-robust
Moore machine.

Definition 21. A reset error specificationis a double cost
automaton with maximal cost1, such that for all transitions
(q, σ) with ce(q, σ) = 1 or cs(q, σ) = 1 the next state is
δ(q, σ) = q0.

Theorem 22. Given a realizable reset error specificationC,
a 1-robust system can be synthesized in linear time.

Proof: TranslateC into a ratio game with a linear blowup,
as in Lemma 19. We show that for an optimal strategy the
ratio is not greater than1. Let π1 be a strategy such that for
all resulting playsρ = q0q1 . . .,

∑∞
i=0 ce(qi, qi+1) = 0 implies∑∞

i=0 cs(qi, qi+1) = 0. Thus, the system will not incur a cost
from any state reachable usingπ1 without environment cost.
The only time a system cost may be incurred is when the
environment incurs a cost of 1, in which case the system may
also incur cost 1 and the system returns to the initial state.

VI. RELATED WORK

We have defined a system to be robust if a small environ-
ment error leads to a small system error. Other approaches
are possible. In the continuous domain, it is natural to require
systems to be continuous, which guarantees robustness in the
sense that a small output error can be guaranteed by an appro-
priately small input error [11]. This notion is not appropriate

in the discrete setting, as discrete functions are in general not
continuous. Consider, for example, a specification that requires
that the value of the outputg is always true (false) if the initial
input r is true (false, respectively):(r → G g)∧(¬r → G¬g).
Here, a minimal difference in the input, namely a change of
the initial input, causes a maximal difference in the output.

The importance of robustness is widely recognized. Rinard,
for instance, advocates acceptability-oriented computing, stat-
ing that “complex computer systems should have a natural
resilience to errors” [12].

Attie et. al [13] argue that fault-intolerant programs are
often unrealistic. They introduce a framework to specify
fault-tolerant concurrent programs with CTL formulas and
differnent levels of tolerance, and show how to synthesize
such programs. Contrary to our work, this work considers
closed systems and requires the developer to specify possible
faults explicitly. Cury and Krogh consider synthesis of robust
controllers for discrete event systems, where a controlleris
optimal if it produces the correct behavior for a maximal setof
plants including the original. This approach can beneficially be
combined with ours to yield systems that fulfill the guarantees
in a maximal set of cases and gracefully degrade otherwise.

Faella [14] considers the question of the appropriate be-
havior when a game is lost. He considers two notions, one
based on dominating strategies and one based on a probability
distribution over the input. In the former setting, he maximizes
the set of inputs for which the game is won, and in the latter
setting, the probability that the game is won. A similar problem
is considered in [15], where an unrealizable specificationG,
which corresponds to a lost synthesis game, is generalized to
a specificationA → G for a maximally weak environment
assumptionA. None of these papers considers appropriate
behavior in the cases where a system failure is inevitable,
which is central to our notion of graceful degradation.

D’Souza and Gopinathan [16] consider a specification that
is built from a ranked set of requirements, which may be con-
tradictory. The requirements are “conflict tolerant”, i.e., when
overruled, they continue giving “advice.” This is achieved
through means closely related to our weighted edges. D’Souza
and Gopinath describe how to synthesize controllers in which
advice from a requirement is alternately followed and ignored.
The question they answer is how to synthesize a system that
always follows the highest ranked advice. The approach differs
from ours in the focus on contradictory specifications rather
than environment failures, and in the fact that the proper action
is chosen greedily, whereas we solve a global optimization
problem to find the appropriate behavior.

Alur, Kanade, and Weiss [17], consider prioritized require-
ments and present an efficient way to synthesize the highest
priority requirement. This is related in the sense that the ideal
specification may be left unfulfilled if necessary. What is
missing, from our perspective, is a way to “return” to a higher-
priority requirement.

Eisner considers properties in CTL of the formψ = AGφ

(φ always holds) and calls a system robust ifψ holds in
all states, not just in the reachable states. This implies that

the system behaves well in the presence of environment
failures (assuming that any invariants used as antecedentsare
weak), but Eisner states that control-intensive applications are
typically not robust [18].

VII. C ONCLUSIONS

We have introduced a notion of robustness for functional
specifications based on graceful degradation. We have shown
how to solve the verification problem and the synthesis
problem for robust systems. The synthesis problem is solved
through a novel type of games.

We consider the worst case only: when a specification
only allows for k-robust systems, we do not distinguish
between systems in which every trace is strictlyk-robust
and those in which some traces have fewer system faults.
However, Chatterjee [personal communication] has shown that
admissible (undominated) strategies do not always exist for
mean-payoff games, and this result easily generalizes to ratio
games, foiling the hope for a fully general solution. Another
venue for improvement would be to minimize the constant
d in the inequality between system and environment errors.
Furthermore, it is an open question how to extend our approach
to liveness.

It would be interesting to evaluate to which extent our notion
of robustness matches the intuitive notions designers use.

REFERENCES

[1] A. M. Davis, Software Requirements — Analysis and Specification.
Prentice Hall, 1990.

[2] C. Ghezzi, M. Jazayeri, and D. Mandrioli,Fundamentals of software
engineering. Prentice-Hall, Inc., 1991.

[3] A. Pnueli, “The temporal logic of programs,” inIEEE Symposium on
Foundations of Computer Science, Providence, RI, 1977, pp. 46–57.

[4] B. Jobstmann and R. Bloem, “Optimizations for LTL synthesis,” in
FMCAD, 2006, pp. 117–124.

[5] R. G. Schroeder, “Linear programming solutions to ratiogames,”Oper-
ations Research, 1970.

[6] H. Gimbert and W. Zielonka, “Games where you can play optimally
without any memory,” inCONCUR, 2005, pp. 428–442.

[7] U. Zwick and M. Paterson, “The complexity of mean payoff games on
graphs,”Theoretical Computer Science, vol. 158, pp. 343–359, 1996.

[8] E. Lawler, Combinatorial Optimization: Networks and Matroids.
Courier Dover Publications, 1976.

[9] A. Dasdan, S. S. Irani, and R. K. Gupta, “Efficient algorithms for
optimum cycle mean and optimum cost to time ratio problems,”in DAC,
1999, pp. 37–42.

[10] N. Piterman and A. Pnueli, “Faster solutions of Rabin and Streett
games,” inLICS, 2006, pp. 275–284.

[11] T. Henzinger, “Two challenges in embedded systems design: predictabil-
ity and robustness,”Philosophical Trans. of the Royal Society, 2008.

[12] M. C. Rinard, “Acceptability-oriented computing,” inOOPSLA Com-
panion, 2003, pp. 221–239.

[13] P. Attie, A. Arora, and E. A. Emerson, “Synthesis of fault-tolerant
concurrent programs,”ACM Trans. Program. Lang. Syst., vol. 26, pp.
125–185, 2004.

[14] M. Faella, “Games you cannot win,” inWorkshop on Games and
Automata for Synthesis and Validation, 2007.

[15] K. Chatterjee, T. Henzinger, and B. Jobstmann, “Environment assump-
tions for synthesis,” inCONCUR, 2008, pp. 147–161.

[16] D. D’Souza and M. Gopinathan, “Conflict-tolerant features,” in CAV,
2008, pp. 227–239.

[17] R. Alur, A. Kanade, and G. Weiss, “Ranking automata and games for
prioritized requirements,” inCAV, 2008, pp. 240–253.

[18] C. Eisner, “Using symbolic model checking to verify therailway stations
of Hoorn-Kersenboogerd and Heerhugowaard,” inCHARME, 1999, pp.
97–109.

