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Fig. 1. Our interactive design system allows users to retarget a given mechanical template (top left) to an input shape (bottom left). Our optimization-in-the-loop

approach generates a functional model (center) that can be 3D printed (right).

We present an interactive design system to create functional mechanical
objects. Our computational approach allows novice users to retarget an
existing mechanical template to a user-specified input shape. Our proposed
representation for a mechanical template encodes a parameterized mecha-
nism, mechanical constraints that ensure a physically valid configuration,
spatial relationships of mechanical parts to the user-provided shape, and
functional constraints that specify an intended functionality. We provide an
intuitive interface and optimization-in-the-loop approach for finding a valid
configuration of the mechanism and the shape to ensure that higher-level
functional goals are met. Our algorithm interactively optimizes the mecha-
nism while the user manipulates the placement of mechanical components
and the shape. Our system allows users to efficiently explore various design
choices and to synthesize customized mechanical objects that can be fab-
ricated with rapid prototyping technologies. We demonstrate the efficacy
of our approach by retargeting various mechanical templates to different
shapes and fabricating the resulting functional mechanical objects.
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1 INTRODUCTION

The increasing accessiblity of rapid manufacturing devices and 3D
printing services has made it possible for more and more users
to fabricate a variety of functional objects. In recent years, many
compelling examples have emerged from the maker community,
including animated characters, mechanical automata, and simple
robots. However, despite steady advances in computer-aided digital
modeling tools, designing such functional objects is still very chal-
lenging and typically reserved for experts. Developing design tools
that facilitate this task and make it accessible to a wider audience
is an open research challenge at the intersection of computational
fabrication and computer graphics.

The goal of our work is to address this problem for functional
objects that are based on simple mechanisms, such as an assembly
of gears and gear trains, cams, or linkages. Functional mechanical
objects can be defined by a few high-level properties: form, which
represents the shape and appearance of the design; mechanical ar-
chitecture, which describes the configuration of mechanical parts;
and finally, the function resulting from the combination of form
and mechanical architecture. A challenge in designing such objects
with conventional tools is that the user must develop the form and
mechanism concurrently. This requires expertise both in shape mod-
eling and mechanical engineering. For example, to design a given
functional object, a typical workflow usually requires modeling an
appropriate mechanism, shaping the form of the object, connecting
mechanism and shape, and eventually adapting both the shape and
the parameters of the mechanism to obtain a final working pro-
totype. We envision a system that does not require modeling all
properties from scratch, but instead enables the reuse of an existing
mechanical architecture by retargeting it to a user-provided shape
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Fig. 2. Given a fully functional mechanical template and a target shape, we present a retargeting system which provides interactive tools to help retarget the
functionality of the template to the target shape. As the user specifies placement options of the mechanism inside the target shape or edits the shape, the
underlying optimization framework automatically computes a valid and functional configuration of the mechanical template that best matches the user
preferences. Once the user is satisfied with the retargeting output, our system computes support structures necessary for 3D fabrication.

such that the resulting object matches the desired aesthetic and
functional properties.

Our system is motivated by the observation that for many func-
tional objects, the mechanical architecture remains the same while
the form varies — e.g., in toy design where the same mechanism
is reused for different versions of a given toy, in industrial design
where the appearance/styling of an object may vary more often than
the underlying mechanisms, and for prototyping, where exploration
of a design space involves creating several variations of a given idea.
In all cases, the different variations may require some modifications
to the design parameters (e.g., due to geometric constraints) but
probably not a completely different mechanical architecture.

In this paper we present an interactive retargeting system that
enables users to adapt a given mechanical architecture to a target 3D
shape in order to produce a functional mechanical object (see Fig-
ure 1). A central design element of our approach is a decomposition
of the features into form, mechanical architecture, and relationships
of form, mechanical architecture, and function. The mechanical ar-
chitecture and their degrees of freedom, as well as rules that specify
relationships, are encoded in a mechanical template. A core con-
tribution of the paper is an interactive computational approach
that, in combination with a tailored user interface, enables users
to modify the placement of mechanical components and the shape
of the object, while an underlying optimization procedure updates
the overall design based on the relationship constraints to preserve
the desired functionality. Our optimization model is based on the
concept of differential manipulation [Gleicher and Witkin 1991],
which supports constrained editing of geometric objects.

We have implemented a prototype design tool and validated our
approach by creating several mechanical objects and showing their
functionality as 3D printed models. Our system was tested by several
users without any background knowledge in mechanical design.
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As shown in the results section, all of them were able to create
compelling functional models using our tools.

2 RELATED WORK

The advent of accessible fabrication methods has led to recent work
on various fabrication-aware modeling approaches both for static
and functional objects.

2.1 Design for Fabrication

3D printing is by far one of the most prevailing fabrication method
accessible to both professionals and novices. Therefore, we have
seen an increasing amount of research effort over the recent years
focusing on optimizing 3D designs for 3D printing. Previous work
has presented methods for decomposing large objects into smaller
parts [Luo et al. 2012; Song et al. 2015a], identifying the parts of the
object that may be exposed to high stress [Stava et al. 2012; Zhou
et al. 2013], generating robust scaffolding [Dumas et al. 2014], and
optimizing objects to reduce weight [2014] and fabrication time
[Beyer et al. 2015].

As the recent advances in digital fabrication have paved the road
to customization and personalization, a variety of approaches have
proposed computational tools for designing objects with custom
features, including desired appearance [Dong et al. 2010] and defor-
mation properties [Bickel et al. 2010; Pérez et al. 2015], the ability to
stand [Prévost et al. 2013], spin [Béacher et al. 2014], fly [Umetani et al.
2014], and swing [Zhao et al. 2016]. Umetani et al. [2012] present
an interactive framework for stable furniture design, Skouras et
al. [2014] focus on design of inflatable structures, and Zimmer et
al. [2014] extend the scope of Zometool modeling to freeform, disk-
topology surfaces. Recently, computational methods for designing
connectors [Koyama et al. 2015], twisty joints and puzzles [Sun
and Zheng 2015], scissor structures [Zhang et al. 2016; Zheng et al.



2016], and multicopters [Du et al. 2016] have been presented. While
these approaches demonstrate compelling results, they all focus on
mainly static objects. Our goal, in contrast, is to ease creation of
mechanical objects with desired functional behavior.

2.2 Mechanism Design

Mechanism design is traditionally divided into two stages. While
the conceptual design stage focuses on identifying the type of me-
chanical parts capable of realizing a desired motion [Chiou and
Sridhar 1999; Han and Lee 2006; Roy et al. 2001], the subsequent
dimensional synthesis stage determines the configuration parame-
ters and the layout of these mechanical parts [Anantha et al. 1996;
Haller et al. 2009]. We have seen increasing efforts in the graphics
community to automate both of these stages to make the mech-
anism design process accessible to novice users. Some of these
approaches have focused on automatically realizing user-specified
motion requirements by utilizing a pre-defined set of mechanism
types [Ceylan et al. 2013; Coros et al. 2013; Megaro et al. 2014; Song
et al. 2015b; Zhu et al. 2012]. Other approaches have presented
interactive systems that enable easy creation of mechanisms by
exploring a template mechanism library [Bharaj et al. 2015; Kim
et al. 2016; Koo et al. 2014] while configuration parameters of the
mechanisms are automatically optimized to ensure physically and
mechanically valid designs. More recently, Ureta et al [2016] present
an interactive system that realizes physically valid joints for an in-
put geometry and user specified kinematic hierarchy. This body of
work focuses on a different fundamental design paradigm than our
method. Given motion or geometry requirements by a user, these
approaches aim at creating a design from scratch by assembling pre-
defined mechanical blocks. On the other hand, we follow a design
by example strategy where our goal is to explore the design space
of mechanisms starting from working examples.

2.3 Design by Example

Creating designs based on examples is a paradigm that has been
extensively studied in the graphics community to tackle challeng-
ing content creation problems. Researchers have proposed various
structure-aware editing algorithms to synthesize variations of a
given 3D model while preserving structural properties [Mitra et al.
2013a] and data-driven approaches that focus on deriving generative
models (e.g. procedural grammars) from a set of examplars [Xu et al.
2016a]. In the context of fabrication, Schulz et al. [2014] convert
a set of expert-created designs to parameterized building blocks
that can be used in an interactive system. Xie et al. [2015] present a
shape editing tool that provides feedback based on finite element
structural analysis. Starting from a working linkage-based character
where each link is driven by a motor, Thomaszewski et al. [2014]
leverage user guidance to explore different topologies to reduce
the number of motors. More recently, Xu et al. [2016b] presents an
interactive system to digitize a mechanisms from a set of input im-
ages. More closely related to our approach is the work of Bacher et
al. [2015] and Megaro et al. [2015], which provides tools to edit both
the shape and motion properties of a working mechanical assembly.
While our tool supports similar edits to a working design, a key
distinguishing feature of our method is that it enables retargeting
of a working mechanism to a completely new 3D shape. To this
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end, our system preserves the desired mechanical and functional
properties of the original design and facilitates the creation of many
functional models starting from only a single working design.

3 OVERVIEW

The primary input to our system is a mechanical template Ty that
describes both the mechanical architecture (i.e., the set of mechanical
components and how they are connected) and functional properties
(e.g., a mechanical car driving in a straight line without slipping)
of a fully functional design. Given 7y, the user provides a target
shape S, a closed watertight surface mesh that should be turned
into a working object with the mechanical functionality of 7y1.

Our system provides interactive tools that help the user retar-
get Ty to fit S as well as possible, while preserving the relevant
functional properties of the template. The final output is a working
design that can be fabricated with additive manufacturing tech-
niques.

3.1 Design Considerations

We designed our interactive system to address several specific chal-
lenges related to the task of mechanical retargeting.

3.1.1 Correspondence ambiguity. In general, automatically in-
ferring how a mechanical template 7 should align to the user-
specified target shape S is very difficult, since there are typically no
obvious correspondences between the configuration of mechanical
parts in 7y and the geometry of S. Even if 7y is part of a com-
plete design that has an associated 3D shape, the geometry of that
shape will typically be sufficiently different from S to make corre-
spondences ambiguous. For example, imagine retargeting a driving
mechanism associated with a car shape to a target duck shape (see
Figure 2). Our system sidesteps this issue by providing an interface
that helps users directly establish the alignment between 7y and S.

3.1.2  Non-convexity. Due to the complex interplay between
function (formalized as constraints on the mechanical template pa-
rameters) and form (given by the potentially complex geometry of
the target shape) the space of valid retargeting solutions is highly
non-linear and non-convex making the problem of exploring the
design space extremely challenging. Our system supports several
user interactions that facilitate such design exploration.

3.1.3 No “optimal” result. Not only is the design space hard to
explore, the notion of an optimal retargeting output is also not
well-defined because the desired result is often subject to specific
user preferences that are hard to formalize and quantify. In this
sense, our system defers the final judgment to the user instead of
automatically generating results that are likely to be sub-optimal
from the user’s perspective.

3.2 Our System

In light of these challenges, we propose an interactive system that
balances (i) fully automatic computational methods that ensure
physical validity and preservation of functionality and (ii) intuitive
user interactions to guide the retargeting process. More specifically,
given 7y and S, we allow the user to directly manipulate both the
mechanical components and the target shape geometry (Section 6).
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In response to these edits, the system automatically optimizes the
mechanism as a whole to ensure that it remains fully functional
and physically valid (Section 5). This workflow allows the user
to provide high-level guidance for how the template should be
retargeted, while the automated algorithms make the necessary low-
level adjustments to ensure that the overall design still works. Once
the user is happy with the re-targeted result, the system generates
support structures and component geometry to prepare the model
for fabrication (Section 7).

In addition to interactively guiding the retargeting process, our
system potentially requires the following user input. First, in order
to robustly retarget specific functionalities of a template to certain
parts of a target shape (e.g. a WinD-Up template which moves dif-
ferent limbs of a character), we require the user to segment the
target shape in a pre-processing stage to match the topology of
the template. Second, to ensure validity of the fabricated results,
the user provides a per-component minimum size (e.g. minimum
gear teeth count), a minimum clearance value between different
components, and a shell thickness value based on the specific choice
of the fabrication tool. The shell thickness parameter is used to
convert the target surface mesh into a fabrication-ready solid shell
by offsetting (see Section 7).

We summarize the different components of our system in Figure 2.
We now first describe how we represent a mechanical template
followed by a detailed description of the different components of
our system.

4 MECHANISM DESCRIPTION

In order to simplify the description of a mechanical template, we
exploit several properties that can be found in a large class of me-
chanical assemblies:

Reducibility: We assume that a mechanical template 7y; consists
of N¢ ‘atomic’ components C (e.g., the individual gears,
etc.).

Rigidity: Each of the components is assumed to be an undeform-
able, rigid object.

Pairwise contact: The interactions between the components is
determined by their pairwise influences (e.g., an assembly
of gears can be described by the pairwise contacts among
them).

These assumptions allow us to represent 7y as a graph, whose
vertices are the components C of 7y and whose edges indicate
mechanical relationships between (ordered) pairs of components
(see Figure 3). The actual nature of such a relationship (e.g., two
gears are touching) is described by a connection type Tconn that is
assigned to each edge. This representation is very similar to the
interaction graph defined by Mitra et al. [2013b].

The components are categorized into component types Tcomp (€.g.,
gears, linkages) to allow for a more structured description. Each
component C; is equipped with a set of continuous parameters p;
that will be used to describe its geometric and functional properties.
All components have a position x € R? and orientation d € R® \ 0.
Certain component types have additional geometric parameters;
e.g., disk-shaped components, such as gears and wheels, possess a
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radius r € R, while axles are assigned a length [ € R. We denote the
(closed) 3D shape of a component C; with parameters p; as G, .

Possible connection types between a pair of components include
Fix which enforces a fixed spatial relationship (e.g., a wheel placed
at the end of an axle), SLIDE which allows a component to slide
along the axis of another component (e.g. a gear to be placed along
an axle), and ToucH which ensures the surface of two components
touch each other without colliding (e.g. that the teeth of two gears
touch in a compatible way).

In order to support certain relationships between a mechanical
template and its environment, we represent the environment as an
additional component and define edges to denote these relationships.
A mechanical car template, for example, requires all its wheels
to be in contact with the ground plane, represented as a ToucH
connection type. Certain fixation relations between the components
of the mechanical template and a possible target shape (e.g. an axle
should be fixed to the geometry) are encoded similarly (Section 7
provides a detailed discussion).

Given such a decomposition, the parameters p of a mechanical
template are the aggregation of all parameters p; of its compo-
nents Cj, ie, p = (py,- - ,pNC). Moreover, associated with each
connection type are a set of constraints that need to be satisfied to
ensure a working mechanical template. We now describe the con-
straints supported by our system in detail and refer to the supplemen-
tary material for a complete description of an example mechanical
template along with its parameters and associated constraints.

4.1 Constraints

The functionality of a mechanical template is determined by the
interactions among the individual components as well as the inter-
actions between the components and the target shape. We identify
three kinds of constraints to formalize these interactions: (i) low-
level mechanical constraints ensure the validity of the mechanism;
(ii) high-level functional constraints specify the intended functional-
ity of the whole mechanism; and (iii) spatial constraints define the
relationship between the mechanical components and the target
shape. While all these constraints are represented as part of the me-
chanical template, spatial constraints can also be augmented during
the interactive retargeting process with user-specified placement

Toucu

<5

SLIDE

graph representation

mechanical template 7y

Fig. 3. We demonstrate a simple mechanical template 7y (composed of
two ,one bevel gear, and an ) and the corresponding graph
representation which shows the pairwise connection types between the
components.



preferences for certain components. We now provide a discussion
of each type of constraint.

4.1.1  Mechanical Constraints. These constraints ensure a phys-
ically valid mechanical template. We distinguish between unary
per-component and binary pairwise constraints which are either
equality or inequality constraints:

Cmech(Pi,Tcomp(Ci)) >0 VG ecC
cmech(Pi’PjaTconn(Ci,Cj)) 20 VCi,CjeC.

The former comprises validity constraints on component param-
eters and depend on the component type comp(C;); e.g., the radii r
for gears and wheels should be positive (r > 0), and gears should
have a sufficient number of teeth (n > 4).

The interactions between different components are mediated by
pairwise constraints, which depend on 7conn(Ci, Cj), the connection
type for components C; and C;. The most common among these
are positional constraints that determine the spatial arrangement of
parts. We also support orientation and co-planarity constraints (see
Figure 4).

To ensure a fully working mechanism, it is furthermore necessary
to prohibit unintended influences between components. Since we
assume mechanical assemblies, this requirement can be fulfilled by
precluding physical contact between parts that should not affect
each other. Thus, we enforce that pairs of components that are not
assigned a connection type are kept collision free. In this sense, we
have the COLLISION constraint act as a default.

1

4.1.2  Functional Constraints. While mechanical constraints en-
sure the validity of the mechanical assembly, our system also sup-
ports functional constraints that encode the intended functionality
of the mechanism. Unlike recent works on functionality analysis
from 3D geometry which mostly focus on static interactions [Hu
et al. 2016], we define functionality based on dynamic interactions
between different mechanical parts or between a mechanism and
its environment. Such desired functionality can be formulated as
pairwise geometric relationships between parts, which are then
enforced during optimization. Pairwise functional constraints can
be combined to produce more global requirements. An example is
that each wheel in a 4WD mechanism has the same linear velocity
to avoid slipping (see Figure 5).

Toucu

q¥r llco = x1]|? = (ro + r1)?

jj‘ g .\/\ llx1 = x2l1? = (r1 +12)°
2‘ COLLISION
g Y

llxo = x2l|% > (ro + r2)?
VALIDITY
ri>0

Toucu Toucu

Fig. 4. Given a simple mechanical template 7y composed of three gears, we
provide examples of unary and binary mechanical constraints that ensure
the validity of 7.
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Fig. 5. For a mechanical car model, the functional constraints ensure, for
example, that the wheels are parallel and have the same linear velocity. Thus,
gear sizes are optimized by our system to provide suitable transmission
ratios for differently sized wheels.

The formal description of functional constraints is similar to the
mechanical constraints in Equation 1:

Cfunc (Pi’ Tcomp(ci)) 20 VG eC
Cfunc (Pi,Pj, Tconn(ci’ C])) Z 0 VG, Cj eC.
Functionality also depends on the correct interaction between the
mechanism and its environment. Such constraints are integrated
into our system by describing these interactions with geometric

proxies that represent the environment. All mechanical and func-
tional constraints are part of the mechanical template 7y1.

@)

4.1.3 Spatial Constraints. These constraints ensure the functi-
onality of the mechanism. To ensure the geometric validity of the
mechanism with respect to the user-supplied target shape S, we
provide two different types of spatial constraints: (i) spatial align-
ment preferences; and (ii) the containment of interior parts by the
target shape S. While the former are supplied by the user through
interaction (e.g., specifying the desired position of a wheel with
respect to the target shape), the latter is encoded in the mechanical
template; e.g., apart from the wheels of a car (and their axles), all
other components should be inside the target shape (see Figure 6).

Formally, user preferences for the spatial alignment of a part
Ci are given by user-specified values p, ., ; for a subset p; of its

- 7

’

containment

user placement

Fig. 6. Spatial constraints are defined either interactively by the user - to
specify certain placement preferences for individual components (e.g. the
user can specify a prefered location for the blue wheel with respect to the
duck shape) - or are part of the mechanical template to ensure certain
components (the green components in the car template) stay inside the
target geometry.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 81. Publication date: July 2017.



81:6 + Ran Zhang, Thomas Auzinger, Duygu Ceylan, Wilmot Li, and Bernd Bickel

parameters p;. The corresponding constraint is given by

|Ei _Puser,i” =0. (3)

The containment constraints demand that the distance d between
the 3D shape of a component G¢, and the surface of the target
shape S is greater than the sum of the shell thickness dp and the
minimal gap size dgap. Since dgap depends on the specific fabrication
method used, it is provided by the user. In particular, since we use
signed distances that are negative in the interior of S, we require

d(Gc,»S) < ~do — dgap (4)

for all components that are specified to lie inside the final shape.

5 OPTIMIZATION

At each stage of our interactive re-targeting process, our system en-
sures the mechanical template stays physically valid and functional
by maintaining all mechanical and functional constraints while
enforcing spatial constraints where possible. This is achieved by
solving a corresponding optimization problem, which we frame as
an energy minimization task (see Section 5.1). As a solution strategy,
we propose a form of Differential Manipulation [Gleicher and Witkin
1991], which has been successfully employed for constraint-based
vector graphics editing [Bernstein and Li 2015] (see Section 5.2).

5.1 Energy Formulation

Our optimization problem is formulated based on the various con-
straints that we aim to enforce. As listed in Section 4.1, these are
the unary and binary mechanical and functional constraints (see
Equations 1 and 2) as well as the spatial constraints for component
containment (see Equation 4) and user preferences (see Equation 3)
for various component placement options. We aggregate all the
mechanical and functional constraints into a set of vector-valued
equality and inequality constraints

Ceq(p) =0

Cineq(ﬂ) 2 0. ©)

We enforce the remaining constraints by minimizing the following
energy function:

E(p,S.pyser) = Z ”Ez _Puser,i“2

i ¢ Pyser,; defined

+1 Z [d(pi,S,Tcomp(Ci))+d0+dgap]2+’ ©)

i: C; inside

where p .., encodes all the user preferences about the alignment
between the mechanical template and the target shape. The first
term encourages each component included in p ., to satisfy the
corresponding requirements as close as possible. The second term
encourages components that are required to be contained inside
the target geometry to remain inside S. [ - ]+ denotes the func-
tion max(0, -) and A is the relative weighting between the terms.
The re-targeted variation V of the mechanical template 7y is
obtained by optimizing for the parameter set p*, which minimizes
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Equation 6 and satisfies the hard constraints:

p* = argmin E@,S,puser)
14

_ (7)
such that {Ceq(p) =0
cineq(P) 20

5.2 Differential Manipulation

In order to solve the energy minimization problem given by Equa-
tion 7, we adapt the Differential Manipulation method [Gleicher
and Witkin 1991]. Originally developed for editing vector graphics,
this method is especially suitable for interactive exploration of a
constrained design space. In general, differential manipulation en-
ables incremental changes to the state of an N-dimensional feature
point under a set of differential constraints, assuming that the initial
state satisfies the constraints. In other words, the technique enables
manipulation of the feature point along the constraint manifold. In
the domain of vector drawings, constraints are defined as geometric
relationships in a drawing that the user wants to preserve (e.g.,
continuity constraints, parallelism, etc.). In our setting, the state
vector represents the set of parameters p that define the current
variation V of the mechanical template 7y. Since this initial state
by definition satisfies all of the relevant mechanical and functional
constraints, differential manipulation enables users to interactively
modify that state to retarget the mechanism.

We formulate our differential manipulation problem as follows.
Given the current state p of the template, which is both valid and
functional (i.e. fulfills the constraints of Equation 7) and a proposed
user edit, defined by the user-specified values p,,, for a subset p
of p, we first set p = p o, This modified state generally does not
satisfy the constraints, so we project back to the constraint manifold
via the following two steps. First, we account for the containment
constraints by taking a fixed step size A along the gradient of the
second term of Equation 6 resulting in the intermediate parameter
set p*. While this step moves the state closer towards satisfying
the containment constraints, the resulting state generally does not
satisfy the mechanical and functional constraints (Equation 7). Thus,
in a second step, we project the intermediate parameter set p° onto
the constraint manifold. This projection is performed by solving the
following unconstrained optimization problem:

p! = argmin (eea(p)] + lleinea(®)] ) ®)

using BFGS [Nocedal and Wright 2006], which performs a variant
of gradient descent starting from the intermediate parameter set p°.
The resulting parameter set p! represents a fully functional variation
of the mechanical template.

Depending on the user specified set of parameters p, ..., the en-
ergy E(p', S, p,er) May or may not evaluate to zero. In the first case
(ie. E(p1, S, pyser) = 0), all spatial constraints are fully satisfied: all
components that should lie inside the target shape are located as
such and all components are placed according to the user prefer-
ence. In case E(pl,S, Puser) # 0, however, the optimization process
fails to find such a configuration that satisfies all the constraints
including the user specified ones. In this case, we repeat the afore-
mentioned two-step optimization process while iteratively halving



the step size A until E(p, S, pyee;) i zero or the step size is below a
predefined threshold. This helps to avoid configurations where the
parameter values oscillate between violating different constraints
due to a large step size.

Both steps of the optimization process described above utilize the

ac(p)

derivatives of the constraint functions, i.e., 5 for a constraint

function ¢ defined over the parameters p of the mechanical template.
For most of the constraints, these derivatives are analytically defined
and have closed-form functions, with only two exceptions: the con-
tainment constraint (see Equation 4) and the collision constraints.
We now describe how we handle these.

5.2.1 Containment Constraints. For interactive performance,
the exact evaluation of pairwise mesh distances between the compo-
nent geometries G¢ and the target shape S is prohibitively expen-
sive. Instead, we equip each component C; with a set £; of represen-
tative sample locations on the surface of its geometry. The distance
term d(p;, S, Tcomp(C,-)) between C; and S (see Equation 4) is then
realized as

d(Pi,S, Tcomp(ci)) ~ ?éafx d(1,S),

with d(I, S) denoting the signed point-mesh distance. This com-
putation can be efficiently performed using axis-aligned bounding
box hierarchies, i.e. AABB trees. As corresponding gradient direc-
tion, we use the vector between the nearest sample location and its
closest point on the target shape S. Note that the hierarchy has to
be regenerated each time S is edited, which takes in the order of
seconds.

5.2.2  Collision Constraints. Real-time collision detection suffers
from the same high computing requirements as the containment
detection. Thus, we use geometric proxies (e.g., spheres, boxes, etc.)
instead of the actual component geometry. Collisions between such
proxies can be efficiently detected and we use the worst overlap
direction as the gradient direction to push the components apart.

6 USER INTERACTION

Our system enables the user to guide the retargeting process by
supporting both direct manipulation of mechanical components
and simple geometric edits to the target shape.

6.1  Mechanism Editing

To change the position of a mechanical component C;, the user
simply drags it to the desired position. As the user drags, the system
continuously updates the state of the entire mechanism, by solving
the optimization problem stated in Equation 7. More specifically, at
each time step, we update the energy function (Equation 6) with a
spatial constraint ||p; — P ;|| = 0, where the spatial coordinates
of Pyyser, ; @re set to the current mouse position x;. We then optimize
to find the new position of all mechanical components. Once a user
has manipulated a component, we keep the corresponding spatial
constraint in the energy function so that, during subsequent editing
operations, previously edited components tend to stay in their user-
specified positions. We visualize these “active” spatial constraints
by highlighting the relevant components in blue. Users can also
deactivate a spatial constraint at any point.
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While the user interaction constitutes a continuous dragging
operation, it is possible that at some point, a larger non-continuous
modification of the mechanism is required. A purely differential
approach would not allow such a behavior and the system could get
‘stuck’. Thus, we strictly enforce the user placement during dragging,
i.e., we fix the spatial coordinates of the selected component C;
to match the specified location x; and solve the minimization for
the remaining parameters. At the end of the dragging operation -
marked by the release of the mouse button - the spatial coordinates
are unfixed and the full minimization problem solved. Note that
the aforementioned spatial constraint is still maintained in order
to realize the desired component placement; the constraint can be
removed by a right click on the component.

6.2 Shape Editing

In some cases, editing the mechanism alone may not be sufficient
to acheive the desired re-targeting result. This may be due to funda-
mental incompatibilities between the template 7y; and target shape
8. For example, S may simply be too small to contain all the compo-
nents that should lie in its interior under the specified mechanical
and functional constraints. In such scenarios, it is necessary to adapt
the geometry of S itself. To support such edits, our system simply
re-runs the mechanism optimization as the user modifies S. As the
geometry changes, we update the spatial containment constraints
that define the relationship between the mechanism and S. These
updates can produce different optimization results (e.g., as the inte-
rior of § grows, components can make use of the extra space). Since
updating the signed distance constraint gradients requires more
computation than updating the per-component spatial constraints
required for mechanism editing, we run the optimization only after
the user mouses up after a given geometric edit, rather than during
dragging.

6.3 Visualization

The system visualizes the current state of the target shape S and
mechanical variation V by rendering a semi-transparent view of

Fig. 7. Graphical user interface of our system. Simulated component trajec-
tories are shown in green. Components are initially colored white and turn
to blue if they are assigned preferred user placements. During dragging, the
corresponding component is marked in red.
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S on top of the mechanical component geometry (see Figure 7).
Hovering the mouse cursor over a component highlights it in red to
help users discover the individual, editable elements of the mecha-
nism. As mentioned above, after a component has been manipulated,
it turns blue to denote an active spatial constraint on its position.
Finally, we visualize the effect of different mechanism variations
by rendering component motions with green trajectories. We com-
pute the trajectories using a forward simulation of the mechanism
given a predefined range of input states for the driving components.
This visualization allows the user to better see and evaluate the
functional impact of different re-targeting candidates.

7 POST-PROCESSING AND FABRICATION

Once the user is satisfied with the re-targeting result, we perform
several post-processing steps to ensure the final result is fabricat-
able. The post-processing step takes the re-targeted mechanism V
and the (potentially edited) target shape S as input. As output, a
fabrication-ready set of 3D surfaces of the final model is provided.
This includes - in addition to the component geometry of the mech-
anism - a description of the outer shell of the model, cutaways of
this shell to avoid collisions with the mechanism, and fixations of
the components. We note that a typical workflow of our system does
not require iterating between interactive retargeting and fabrication
steps since fabrication-related parameters, e.g. the minimum gap
parameter in Equation 4, are already considered in the formulation
of the optimization problem solved during interactive retargeting.

7.1 Outer Shell

We convert the target shape S to a shell O of thickness dg by
interior offsetting. Since d has a direct influence on factors such
as material consumption and appearance, we defer its choice to
the user. However, the recent work of Musialski et al [2016] on
structural stability of offset surfaces can be exploited for assistance.
A solid model can be achieved by setting dp = co.

7.2 Cutaways

During interactive editing, we prohibit unintended collisions be-
tween the individual components of the mechanism.
However, components can possi-
bly collide with the target shape.
In order to resolve such colli-
sions, we introduce cutaways of
the outer shell of the target ge-
ometry without modifying the re-
targeting result. For static compo-
nents, it is sufficient to assign an
exclusion region to each of them,
depending on the minimal gap size dgap of the fabrication method.
As illustrated on the right, this can be realized by computing outer
offset surfaces or use geometric primitives (e.g., cylinders for axles
and gears). For moving components, this process has to be repeated
for each timestep. Thus, we perform a dense sampling of the state
of the mechanism during its time evolution and compute the union
of all exclusion regions for each component. Finally, we obtain a
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Fig. 8. Fixations of a DRIVETRAIN mechanism re-targeted to the Pick-Up
shape. The fixations are shown before (left) and after (right) intersection
with the cutaways and the outer shell.

set of cutaway geometries Geut — one for each component — that is
subtracted from the outer shell via boolean mesh operations.

7.3 Fixations

So far, the mechanical template 7~ and its variations V were es-
sentially free-floating. For fabrication, various fixations have to be
added to maintain the correct placement of each static component.
However, only a subset of the components needs to be fixated as
the mechanical constraints propagate the fixations’ effect to the
remaining parts of the mechanism (e.g., a fixated axle also fixates
the gear connected to it).

As illustrated in Figure 8, fixations are solid geometric primitives,
such as boxes. Their location is determined by (i) certain connection
types (e.g., at one or both sides of a gear which is fixed to an axle);
or (ii) by components themselves (e.g., to fix a motor holder to the
outer shell). In both cases, the fixation are connected to a suitable
location on the outer shell with an emphasis on keeping the size of
the fixation as small as possible.

7.4 Final Model

Given the outer shell O as well as the geometries for cutaways Geut,
fixations Gy, and mechanism components G¢, the geometry of the
final model G is given as

G =6cU((0UGh) \ Geu)

where U and \ denote the boolean union and boolean difference of
all geometries, in the sense of constructive solid geometry (CSG).

For the fabrication of the final model, two additional steps may
be necessary (see Figure 9).

7.5 Support Removal

For various additive manufacturing techniques, temporary support
structures are required during the fabrication process. This is the
case for photopolymerization of a liquid resin — which we primarily
employ —; accordingly, we manually insert cutaways to facilitate
the cleanup of the manufactured model.

7.6 Component Insertion

If non-printable parts are required for the functionality of the mech-
anism, sufficient accessibility of the mechanism needs to be available
in the manufactured model. For results with the DRIVETRAIN mech-
anism, we manually create openings in the model for insertion of
the motors.



Fig. 9. Fabrication-ready version of the Pick-UP result. Manually added
openings for support removal and component insertion are shown in red.
The final model consist of several parts (shown in orange and black) that
are separated by the minimal gap size dga;, specified by the user.

8 EVALUATION

We evaluate our system on several retargeting scenarios consisting
of mechanical templates of various complexity. We fabricate several
of these examples using a Stratasys® J750 3D printer. We further
conduct a small user study to better evaluate the effectiveness of
our system. We now discuss our main findings in detail.

8.1 Implementation

The implementation of our system utilizes libigl [Jacobson et al.
2017] to compute the spatial hierarchy for the containment con-
straints and to generate the cutaways. We use libQGLViewer [De-
bunne 2017] for visualizations and CppOptimizationLibrary [Wi-
eschollek 2017] for the numerical optimization routines. Various
components were generated using OpenSCAD [Kintel et al. 2017].
Manual post-processing of the model geometry was performed
with Autodesk Netfabb®.

8.2 Results

We used our system to retarget four different mechanical templates
(W1inD-Up, DRIVETRAIN, TAPPING, and ROTORS) to various target
shapes, which are either obtained from online resources or gener-
ated by the participants of our user study. We note that a user of our
system may initiate the retargeting process by selecting or creating
either a target shape or a mechanical template first. We provide
details of the shapes and templates used in our evaluations in Fig-
ure 10 and Figure 11, respectively. Figure 12 shows the retargeting
results for pairs of templates and target shapes. Figure 13 shows the
3D printed models, and the supplemental video depicts the dynamic
behavior.

Our mechanical templates contain between 18 (DRIVETRAIN) and
48 (TarpING) components. Our design system makes it easy for
novice users to retarget these mechanisms to their desired shapes.
For example, retargeting the TAPPING mechanism with existing tools
requires accurately placing the mechanism inside a hand, which
is a very confined space for all components to fit inside. With our
optimization-in-the-loop approach, edits are propagated at interac-
tive rates and important geometrical relationships in the mechanism
are preserved while the user identifies an aesthetically pleasing
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Fig. 10. Target shapes used for retargeting including labeling of the source
(O: online model databases as denoted in the acknowledgments, P1-P3:
participants of the user study) and the number of triangles.

result. Every participant of our user study, all of whom have a back-
ground in 3D modeling but not in mechanical engineering, stated
that they would not be able to perform this task with a conventional
modeling tool. We also evaluated the performance of our system.
Each iteration of our optimization procedure takes between 20ms
to 150ms, depending on the complexity of the template. For our
most complex example (TAPPING), which contains a total of 459
variables and 64 hard constraints, our optimization was typically
able to enforce all constraints in about 150ms.

The WinD-Up and DRIVETRAIN templates were each retargeted
to four target shapes. Starting from the Winp-Up mechanism, users
were able to create several compelling functional characters. Al-
though we do not run a full simulation of the resulting motion
including all geometric parts during interactive editing, our inter-
face displays the trajectories of the end effectors to intuitively vi-
sualize the motion. In all the examples, the configuration of the
mechanism had to be significantly adapted to the input shapes. For
example, for the P1ck-Up and TRACTOR, the motor placement shows
important differences. While in the P1ck-Up both motors are aligned
horizontally, in the TRACTOR the driving motor had to be aligned
vertically such that it fits inside the shape. Furthermore, the P1ck-
Up model required a shape change (slightly increased length of the
driver’s cabin and increased height of the rack body) such that the

ACM Transactions on Graphics, Vol. 36, No. 4, Article 81. Publication date: July 2017.



81:10

Mechanical template DRIVETRAIN

Py

RoTORS
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Winp-Up

™
. é )/'\
f

TAPPING

Component count 18 26 46 48
Mechanical constraints 16 22 67 64
Functional constraints 6 7 0 0
Containment constraints 16 15 36 46
Components , 4 gears, 4 , 11 gears, 4 , 2 driving disks, R s
wheels, , 2 wheels, , 1 , 8 pins, 10 rods, 3 bevel gears, 5 elliptic
motors, 1 ground plane ground plane 14 handles, 1 split board ~ gears, , 13 rods, 14
handles

Fig. 11. Mechanical templates used for our results with functionalities ranging from a motorized steering-capable DRIVETRAIN, over wheel-driven RoTors and a
WinD-Up mechanism for waving arms and legs, to an elliptic-gear-based mechanism that realized periodic TAPPING motions.

whole mechanism fits. Our system supports such edits by efficient
iterations between shape and mechanism editing.

For all our results, the fixations of the mechanism to the shape
were generated automatically. Segmentations of the input geometry
into rigid subparts, for example into body, arms, and legs for the
TEDDY and MONSTER shape, were performed by the user. As can be
seen in all examples, our system subtracts cutaways of the moving
parts from the remaining model. Although this might lead to small
visual artifacts in the object shape, as can be seen for example at
the wheel arch of the TRACTOR model, we enforce this operation to
ensure proper movement of the mechanism.

8.3 User Evaluation

To better understand the overall usability and effectiveness of our
re-targeting system, we conducted a small, exploratory user study.
We recruited three participants with professional 3D modeling
background. After an initial training phase, in which they accus-
tomed themselves with the controls of our system, they were individ-
ually guided through a simple re-targeting task to get an overview
of the possible interactions. Afterwards, they were given three re-
targeting tasks, which they performed on their own:
Task 1: Retarget a WIND-UP mechanism to a bi-pedal shape.
Task 2: Retarget a DRIVETRAIN mechanism to a car shape.
Task 3: Retarget each of the previous mechanism to a new shape
created by themselves.

All three tasks were performed on a conventional workstation pro-
vided by us. For modeling new shapes, each user used tools of their
preference (Autodesk Maya [Autodesk 2017], MODO [Modo 2017],
and ZBrush [Pixologic 2017]). During the user study, we performed
screen capturing and sound recording. We measured the completion
time of each task and also asked questions with freeform responses.

8.3.1 Findings. All participants were able to produce functional
models for all the tasks using our system. In particular, we were
pleased that users were able to create functional versions of their
own models. The users required between 2 to 8 min to complete
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each task, with 4.8 min on average and a standard deviation of 2.1
min. Typically, in each interactive session the users manipulated 4-5
components, while all the remaining parameters were optimized
automatically by our system. Our demo video shows an example
editing session. The qualitative feedback was largely positive. All
participants agreed that our system was conceptually easy to use
and fast to learn. They found the system predictable and felt they
had control over the retargeting process. All participants appreci-
ated that our system helped automate the time consuming process of
designing funcational objects. Users also suggested several straight-
forward improvements to our system, such as allowing a ranking
of user constraints to enforce certain constraints more strictly and
the option to deactivate the optimization temporarily when making
several edits at once. Figure 10 shows a subset of shapes created
by the users. In all cases, the users were able to turn them into
functional models, two of which we fabricated: TURTLE (Figure 1)
and Ocrorus (Figure 13).

8.4 Limitations and Future Work

While our system enables users to create a wide set of retargeting ex-
amples of varying complexity, the main limitation is the possibility
of deadlock configurations that arise due to conflicting constraints.
In our user study, we encountered in total two deadlock cases due
to users fixing too many component positions resulting in over-
constrained systems. The current workaround is to remove some
constraints manually. In the future, we would like explore several
options, as suggested by Gleicher et al. [1994] (e.g. actively detect-
ing and visualizing conflicting constraints, temporarily disabling
a constraint to enable further editing which may possibly recover
from the deadlock configuration), to avoid and recover from such
configurations.

Our optimization strategy is based on differential manipulation
which walks along a constraint manifold in the gradient direction.
While this makes it intuitive for the user to interactively observe
the optimization performed by the system, the optimization can
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Fig. 12. Retargeting results for different mechanical templates and target shapes. In each column, a mechanical template (see Figure 11) is retargeted to two
different target shapes. Below each target shape(given as a surface mesh), the corresponding retargeting result is given. Selective transparency is applied to

fixations and parts of the outer shell to reveal the mechanical components.

get trapped in local minima (as is the case with any continuous
gradient-based approach). While we depend on user guidance to
recover from such configurations, an interesting research direction
is to exploit user intuition during optimization in a more principled
way, e.g. via a sketch-based interface.

Our approach relies on the availability of a mechanical template
that often must be generated by an expert. This template also needs
to correctly reflect fabrication constraints, such as required toler-
ances by the 3D printer. In the future, it would be interesting to find
more automated ways to generate templates, perhaps by building on
related work that can infer from a geometric model of a mechanical
assembly how the individual parts move and interact with each
other [Mitra et al. 2013b] or recent approaches on scanning and
reconstructing mechanism models from images [Xu et al. 2016b].

As a usage scenario, we envision that creating a template will be a
one-time effort for a specific mechanism. Such templates may also
be shared to benefit the broader maker community.

While our system supports a wide range of mechanical and func-
tional constraints and takes into account several important rules to
obtain a valid design, there are additional aspects that can provide
further improvement. Supporting symmetry constraints and dy-
namic mechanical components that follow a collision free trajectory
are some examples. Analyzing emerging forces and torques in the
system as well as structural stability during the design would also
be very interesting.
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Fig. 13. From left to right: Retargeted (top) and fabricated (middle and bottom) results for the WinD-Up, TAPPING, and DRIVETRAIN template to the OcTopus,

HaND, CLAw, Pick-Up, and TRACTOR shapes.

9 CONCLUSION

In this paper, we have proposed a new workflow for users to ef-
ficiently create functional mechanical objects by re-targeting an
existing mechanical template to a given input shape. Based on the
observation that for many functional objects the mechanical archi-
tecture remains similar while the form varies, we proposed a novel
representation of the mechanism and functional features encoded
in a mechanical template. The mechanical template represents a
parametrized mechanism, spatial relationships of mechanical parts
to the user-provided shape, and functional constraints that spec-
ify an intended functionality. Users can efficiently explore various
design choices and instances of the mechanical template by interac-
tively manipulating components in a user interface. We proposed
an optimization-in-the-loop approach that supports finding a valid
configuration such that low-level mechanical constraints, spatial
relationships between form and mechanism, and higher-level func-
tional goals are met. We demonstrated the efficacy of our system
by re-targeting several mechanical templates to various shapes and
fabricating the resulting customized functional objects.

ACKNOWLEDGMENTS

We would like to thank everyone who contributed to this paper,
especially the artists Abbas Saleh, Daniel Bosze, and David Ronnes
for participating in our user study and allowing us to use their
models created during the user study; furthermore we thank the
authors of the remaining models for sharing them on Thingiverse as
Rubber Duck (by Willie, CCO 1.0), Monster Mama (by mcallaghan95,
CC BY-NC 3.0), Devilman Hand (by Renato T., CC BY-SA 3.0), B-17
Bomber (by Ethan F. at the Mastics-Moriches-Shirley Community
Library’s Teen 3D Print Club, CC BY-SA 3.0), Snap Together Farm
Tractor (by Jon Stephenson, CC BY-NC 3.0), chinnook helicopter

ACM Transactions on Graphics, Vol. 36, No. 4, Article 81. Publication date: July 2017.

(by Paul Johnson, CC BY-NC-SA 3.0), and Pickup Truck (by Kalvin
Daniels, CC BY-NC-SA 3.0), as well as on the McGill 3D Shape
Benchmark [Siddigqi et al. 2008] as teddy10. We also want to express
our gratitude to all proof-readers and anonymous reviewers.

REFERENCES

Ram Anantha, Glenn A Kramer, and Richard H Crawford. 1996. Assembly modelling
by geometric constraint satisfaction. Computer-Aided Design 28, 9 (1996), 707 — 722.

Autodesk. 2017. Maya, Computer Animation and Modeling Software. http://www.
autodesk.com/products/maya/overview. (2017).

Moritz Bacher, Stelian Coros, and Bernhard Thomaszewski. 2015. LinkEdit: Interactive
Linkage Editing Using Symbolic Kinematics. ACM Trans. Graph. 34, 4, Article 99
(July 2015), 8 pages.

Moritz Béacher, Emily Whiting, Bernd Bickel, and Olga Sorkine-Hornung. 2014. Spin-it:
Optimizing Moment of Inertia for Spinnable Objects. ACM Trans. Graph. 33, 4,
Article 96 (July 2014), 10 pages.

Gilbert Louis Bernstein and Wilmot Li. 2015. Lillicon: Using Transient Widgets to
Create Scale Variations of Icons. ACM Trans. Graph. 34, 4, Article 144 (July 2015),
11 pages.

Dustin Beyer, Serafima Gurevich, Stefanie Mueller, Hsiang-Ting Chen, and Patrick
Baudisch. 2015. Platener: Low-Fidelity Fabrication of 3D Objects by Substituting
3D Print with Laser-Cut Plates. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems (CHI ’15). ACM, New York, NY, USA,
1799-1806.

Gaurav Bharaj, Stelian Coros, Bernhard Thomaszewski, James Tompkin, Bernd Bickel,
and Hanspeter Pfister. 2015. Computational Design of Walking Automata. In ACM
SCA (SCA ’15). ACM, New York, NY, USA, 93-100.

Bernd Bickel, Moritz Bicher, Miguel A. Otaduy, Hyunho Richard Lee, Hanspeter Pfister,
Markus Gross, and Wojciech Matusik. 2010. Design and Fabrication of Materials
with Desired Deformation Behavior. ACM Trans. Graph. 29, 4, Article 63 (July 2010),
10 pages.

Duygu Ceylan, Wilmot Li, Niloy J. Mitra, Maneesh Agrawala, and Mark Pauly. 2013.
Designing and Fabricating Mechanical Automata from Mocap Sequences. ACM
Trans. Graph. 32, 6, Article 186 (Nov. 2013), 11 pages.

Shean-Juinn Chiou and Kota Sridhar. 1999. Automated conceptual design of mechanisms.
Mechanism and machine theory 34, 3 (1999), 467-495.

Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira For-
berg, Robert W. Sumner, Wojciech Matusik, and Bernd Bickel. 2013. Computational
Design of Mechanical Characters. ACM Trans. Graph. 32, 4, Article 83 (July 2013),
12 pages.


https://www.thingiverse.com/
http://www.thingiverse.com/thing:139894
http://www.thingiverse.com/willie
https://creativecommons.org/publicdomain/zero/1.0/
http://www.thingiverse.com/thing:544327
http://www.thingiverse.com/mcallaghan95
https://creativecommons.org/licenses/by-nc/3.0/
http://www.thingiverse.com/thing:744549
http://www.thingiverse.com/RenatoT
https://creativecommons.org/licenses/by-sa/3.0/
http://www.thingiverse.com/thing:822488
http://www.thingiverse.com/thing:822488
http://www.thingiverse.com/CommunityLibrary
http://www.thingiverse.com/CommunityLibrary
https://creativecommons.org/licenses/by-sa/3.0/
http://www.thingiverse.com/thing:962058
http://www.thingiverse.com/thing:962058
http://www.thingiverse.com/PROFDM1
https://creativecommons.org/licenses/by-nc/3.0/
http://www.thingiverse.com/thing:1615026
http://www.thingiverse.com/iluvlabs
https://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.thingiverse.com/thing:1840348
http://www.thingiverse.com/amberkalvin
http://www.thingiverse.com/amberkalvin
https://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cim.mcgill.ca/~shape/benchMark/index.html
http://www.cim.mcgill.ca/~shape/benchMark/index.html
http://www.cim.mcgill.ca/~shape/benchMark/teddys.html
http://www.autodesk.com/products/maya/overview
http://www.autodesk.com/products/maya/overview

Functionality-aware Retargeting of Mechanisms to 3D Shapes « 81:13

Gilles Debunne. 2017.
libQGLViewer/. (2017).

Yue Dong, Jiaping Wang, Fabio Pellacini, Xin Tong, and Baining Guo. 2010. Fabricating
Spatially-varying Subsurface Scattering. ACM Trans. Graph. 29, 4, Article 62 (July
2010), 10 pages.

Tao Du, Adriana Schulz, Bo Zhu, Bernd Bickel, and Wojciech Matusik. 2016. Com-
putational Multicopter Design. ACM Trans. Graph. 35, 6, Article 227 (Nov. 2016),
10 pages.

Jérémie Dumas, Jean Hergel, and Sylvain Lefebvre. 2014. Bridging the Gap: Automated
Steady Scaffoldings for 3D Printing. ACM Trans. Graph. 33, 4, Article 98 (July 2014),
10 pages.

M. Gleicher and A. Witkin. 1991. Differential Manipulation. In Proceedings of Graphics
Interface *91 (GI *91). 61-67.

M. Gleicher and A. Witkin. 1994. Drawing with Constraints. The Visual Computer 11, 1
(1994), 39-51.

Kirk Haller, Audrey Lee-St. John, Meera Sitharam, Ileana Streinu, and Neil White.
2009. Body-and-cad Geometric Constraint Systems. In Proceedings of the 2009 ACM
Symposium on Applied Computing (SAC "09). ACM, New York, NY, USA, 1127-1131.

Young-Hyun Han and Kunwoo Lee. 2006. A Case-based Framework for Reuse of
Previous Design Concepts in Conceptual Synthesis of Mechanisms. Comput. Ind.
57, 4 (May 2006), 305-318.

Ruizhen Hu, Oliver van Kaick, Bojian Wu, Hui Huang, Ariel Shamir, and Hao Zhang.
2016. Learning How Objects Function via Co-analysis of Interactions. ACM Trans.
Graph. 35, 4, Article 47 (July 2016), 13 pages.

Alec Jacobson, Daniele Panozzo, and others. 2017. libigl: A simple C++ geometry
processing library. (2017). https://libigl.github.io/libigl/.

Han-Jong Kim, Yunwoo Jeong, Ju-Whan Kim, and Tek-Jin Nam. 2016. M.Sketch: Proto-
typing Tool for Linkage-Based Mechanism Design. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology (UIST ’16 Adjunct). ACM, New
York, NY, USA, 75-77.

Marius Kintel, Clifford Wolf, and others. 2017. OpenSCAD. https://github.com/
openscad/openscad/. (2017).

Bongjin Koo, Wilmot Li, JiaXian Yao, Maneesh Agrawala, and Niloy ]J. Mitra. 2014.
Creating Works-like Prototypes of Mechanical Objects. ACM Trans. Graph. 33, 6,
Article 217 (Nov. 2014), 9 pages.

Yuki Koyama, Shinjiro Sueda, Emma Steinhardt, Takeo Igarashi, Ariel Shamir, and
Wojciech Matusik. 2015. AutoConnect: Computational Design of 3D-printable
Connectors. ACM Trans. Graph. 34, 6, Article 231 (Oct. 2015), 11 pages.

Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan, Xuelin Chen, Yann Savoye,
Changhe Tu, Daniel Cohen-Or, and Baoquan Chen. 2014. Build-to-last: Strength to
Weight 3D Printed Objects. ACM Trans. Graph. 33, 4, Article 97 (July 2014), 10 pages.

Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusik. 2012. Chopper:
Partitioning Models into 3D-printable Parts. ACM Trans. Graph. 31, 6, Article 129
(Nov. 2012), 9 pages.

Vittorio Megaro, Bernhard Thomaszewski, Damien Gauge, Eitan Grinspun, Stelian
Coros, and Markus Gross. 2014. ChaCra: An Interactive Design System for Rapid
Character Crafting. In ACM SCA (SCA ’14). Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 123-130.

Vittorio Megaro, Bernhard Thomaszewski, Maurizio Nitti, Otmar Hilliges, Markus
Gross, and Stelian Coros. 2015. Interactive Design of 3D-printable Robotic Creatures.
ACM Trans. Graph. 34, 6, Article 216 (Oct. 2015), 9 pages.

Niloy J. Mitra, Michael Wand, Hao Zhang, Daniel Cohen-Or, and Martin Bokeloh. 2013a.
Structure-Aware Shape Processing. In EUROGRAPHICS State-of-the-art Report.
Niloy J. Mitra, Yong-Liang Yang, Dong-Ming Yan, Wilmot Li, and Maneesh Agrawala.
2013b. Illustrating How Mechanical Assemblies Work. Commun. ACM 56, 1 (Jan.

2013), 106-114.

Modo. 2017. MODO Creative Modeling Software. https://www.thefoundry.co.uk/
products/modo/. (2017).

Przemyslaw Musialski, Christian Hafner, Florian Rist, Michael Birsak, Michael Wimmer,
and Leif Kobbelt. 2016. Non-linear Shape Optimization Using Local Subspace
Projections. ACM Trans. Graph. 35, 4, Article 87 (July 2016), 13 pages.

Jorge Nocedal and Stephen J. Wright. 2006. Numerical optimization (2. ed.). Springer,
New York, NY.

Jests Pérez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, José A. Canabal,
Robert Sumner, and Miguel A. Otaduy. 2015. Design and Fabrication of Flexible Rod
Meshes. ACM Trans. Graph. 34, 4, Article 138 (July 2015), 12 pages.

Pixologic. 2017. Pixologic: Home of ZBrush. http://pixologic.com/. (2017).

Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga Sorkine-Hornung. 2013.
Make It Stand: Balancing Shapes for 3D Fabrication. ACM Trans. Graph. 32, 4, Article
81 (July 2013), 10 pages.

U. Roy, N. Pramanik, R. Sudarsan, R.D. Sriram, and KW. Lyons. 2001. Function-to-form
mapping: model, representation and applications in design synthesis. Computer-
Aided Design 33, 10 (2001), 699 - 719.

Adriana Schulz, Ariel Shamir, David I. W. Levin, Pitchaya Sitthi-amorn, and Wojciech
Matusik. 2014. Design and Fabrication by Example. ACM Trans. Graph. 33, 4, Article
62 (July 2014), 11 pages.

libQGLViewer. https://github.com/GillesDebunne/

Kaleem Siddiqi, Juan Zhang, Diego Macrini, Ali Shokoufandeh, Sylvain Bouix, and Sven
Dickinson. 2008. Retrieving Articulated 3-D Models Using Medial Surfaces. Mach.
Vision Appl. 19, 4 (May 2008), 261-275.

Meélina Skouras, Bernhard Thomaszewski, Peter Kaufmann, Akash Garg, Bernd Bickel,
Eitan Grinspun, and Markus Gross. 2014. Designing Inflatable Structures. ACM
Trans. Graph. 33, 4, Article 63 (July 2014), 10 pages.

Peng Song, Zhongqi Fu, Ligang Liu, and Chi-Wing Fu. 2015a. Printing 3D objects
with interlocking parts. Computer Aided Geometric Design 35-36 (2015), 137 — 148.
Geometric Modeling and Processing 2015.

S. Song, J. Kim, and K. Yamane. 2015b. Development of a bipedal robot that walks like
an animation character. In IEEE ICRA. 3596-3602.

Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and Radomir Méch. 2012. Stress
Relief: Improving Structural Strength of 3D Printable Objects. ACM Trans. Graph.
31, 4, Article 48 (July 2012), 11 pages.

Timothy Sun and Changxi Zheng. 2015. Computational Design of Twisty Joints and
Puzzles. ACM Trans. Graph. 34, 4, Article 101 (July 2015), 11 pages.

Bernhard Thomaszewski, Stelian Coros, Damien Gauge, Vittorio Megaro, Eitan Grin-
spun, and Markus Gross. 2014. Computational Design of Linkage-based Characters.
ACM Trans. Graph. 33, 4, Article 64 (July 2014), 9 pages.

Nobuyuki Umetani, Takeo Igarashi, and Niloy J. Mitra. 2012. Guided Exploration of
Physically Valid Shapes for Furniture Design. ACM Trans. Graph. 31, 4, Article 86
(July 2012), 11 pages.

Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and Takeo Igarashi. 2014. Pteromys:
Interactive Design and Optimization of Free-formed Free-flight Model Airplanes.
ACM Trans. Graph. 33, 4, Article 65 (July 2014), 10 pages.

Francisca Gil Ureta, Chelsea Tymms, and Denis Zorin. 2016. Interactive Modeling of
Mechanical Objects. Computer Graphics Forum (2016).

Patrick Wieschollek. 2017. CppOptimizationLibrary. https://github.com/PatWie/
CppNumericalSolvers/. (2017).

Yue Xie, Weiwei Xu, Yin Yang, Xiaohu Guo, and Kun Zhou. 2015. Agile structural
analysis for fabrication-aware shape editing. Computer Aided Geometric Design
35-36 (2015), 163-179. Geometric Modeling and Processing 2015.

Kai Xu, Vladimir G. Kim, Qixing Huang, Niloy Mitra, and Evangelos Kalogerakis. 2016a.
Data-driven Shape Analysis and Processing. In SSGGRAPH ASIA 2016 Courses (SA
’16). ACM, New York, NY, USA, Article 4, 38 pages.

Mingliang Xu, Mingyuan Li, Weiwei Xu, Zhigang Deng, Yin Yang, and Kun Zhou. 2016b.
Interactive Mechanism Modeling from Multi-view Images. ACM Trans. Graph. 35, 6,
Article 236 (Nov. 2016), 13 pages.

Ran Zhang, Shiwei Wang, Xuejin Chen, Chao Ding, Luo Jiang, Jie Zhou, and Ligang Liu.
2016. Designing Planar Deployable Objects via Scissor Structures. IEEE Transactions
on Visualization and Computer Graphics 22, 2 (Feb. 2016), 1051-1062. http://dx.doi.
0rg/10.1109/TVCG.2015.2430322

Haiming Zhao, Chengkuan Hong, Juncong Lin, Xiaogang Jin, and Weiwei Xu. 2016.
Make It Swing. Comput. Aided Geom. Des. 43, C (March 2016), 226-236.

Changxi Zheng, Timothy Sun, and Xiang Chen. 2016. Deployable 3D Linkages with
Collision Avoidance. In Proceedings of the ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation (SCA ’16). Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 179-188.

Qingnan Zhou, Julian Panetta, and Denis Zorin. 2013. Worst-case Structural Analysis.
ACM Trans. Graph. 32, 4, Article 137 (July 2013), 12 pages.

Lifeng Zhu, Weiwei Xu, John Snyder, Yang Liu, Guoping Wang, and Baining Guo. 2012.
Motion-guided Mechanical Toy Modeling. ACM Trans. Graph. 31, 6, Article 127
(Nov. 2012), 10 pages.

H. Zimmer and L. Kobbelt. 2014. Zometool Rationalization of Freeform Surfaces. IEEE
Transactions on Visualization and Computer Graphics 20, 10 (Oct 2014), 1461-1473.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 81. Publication date: July 2017.


https://github.com/GillesDebunne/libQGLViewer/
https://github.com/GillesDebunne/libQGLViewer/
https://github.com/openscad/openscad/
https://github.com/openscad/openscad/
https://www.thefoundry.co.uk/products/modo/
https://www.thefoundry.co.uk/products/modo/
http://pixologic.com/
https://github.com/PatWie/CppNumericalSolvers/
https://github.com/PatWie/CppNumericalSolvers/
http://dx.doi.org/10.1109/TVCG.2015.2430322
http://dx.doi.org/10.1109/TVCG.2015.2430322

	Abstract
	1 Introduction
	2 Related work
	2.1 Design for Fabrication
	2.2 Mechanism Design
	2.3 Design by Example

	3 Overview
	3.1 Design Considerations
	3.2 Our System

	4 Mechanism Description
	4.1 Constraints

	5 Optimization
	5.1 Energy Formulation
	5.2 Differential Manipulation

	6 User Interaction
	6.1 Mechanism Editing
	6.2 Shape Editing
	6.3 Visualization

	7 Post-Processing and Fabrication
	7.1 Outer Shell
	7.2 Cutaways
	7.3 Fixations
	7.4 Final Model
	7.5 Support Removal
	7.6 Component Insertion

	8 Evaluation
	8.1 Implementation
	8.2 Results
	8.3 User Evaluation
	8.4 Limitations and Future Work

	9 Conclusion
	Acknowledgments
	References

