
Supplemental Material for “X-CAD: Optimizing CAD Models with Extended Finite Elements”

X-CAD: Optimizing CAD Models with Extended Finite Elements

CHRISTIAN HAFNER, IST Austria
CHRISTIAN SCHUMACHER, Disney Research
ESPEN KNOOP, Disney Research
THOMAS AUZINGER, IST Austria
BERND BICKEL, IST Austria
MORITZ BÄCHER, Disney Research

For readers less familiar with moment fitting, or the method of Müller et
al. [2017; 2013], we contrast our hierarchical integration with their scheme.
Moreover, we provide a proof of the claim that some terms can be kept
constant when computing quadrature rule derivatives. In a final section, we
will provide a detailed description of the enrichment of vertices and elements
for readers interested in implementing the technique.

ACM Reference Format:
Christian Hafner, Christian Schumacher, Espen Knoop, Thomas Auzinger,
Bernd Bickel, and Moritz Bächer. 2019. X-CAD: Optimizing CAD Models
with Extended Finite Elements. ACM Trans. Graph. 38, 6, Article 1 (Novem-
ber 2019), 6 pages. https://doi.org/10.1145/3355089.3356576

1 NUMERICAL INTEGRATION
Similar to Müller et al. [2013], we build integration schemes in
a hierarchical manner (see Fig. 1): We use edge and curve rules
to integrate over areas and surfaces, and area and surface rules
to integrate over volumetric domains. Hereafter, we will contrast
our method with Müller et al. [2013], illustrating shortcomings of
their technique for our application domain. As in the main text,
we use д : R3 → R to denote an arbitrary function defined on the
volumetric domain enclosed by the boundary representation of a
CAD model.

1.1 Integrating along Edges and Curves
For the generation of integration rules along edges and curves (in
blue and yellow in Fig. 1), we represent these 1D domains with dis-
crete sets of ordered sample points. For a description of integration
along straight, axis-aligned segments E, we point the reader to the
main text.
To numerically integrate along planar curves (yellow in Fig. 1)∫

C
д(X) ds ≈

n∑
j=1

w jд(Xj),

Authors’ addresses: Christian Hafner, IST Austria; Christian Schumacher, Disney Re-
search; Espen Knoop, Disney Research; Thomas Auzinger, IST Austria; Bernd Bickel,
IST Austria; Moritz Bächer, Disney Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2019/11-ART1 $15.00
https://doi.org/10.1145/3355089.3356576

V ∂V

A
S

∂A

E

C

Fig. 1. Nesting of IntegrationRules To construct rules for integration over
volumesV (left), we rely on rules for integration over the volume’s boundary
∂V , decomposed into planar areas A (in light gray) and curved surfaces
S (in dark gray). To generate rules for area and surface integrals, in turn
(middle), we make use of the divergence theorem, expressing integrals along
the boundary ∂A with integrals along straight E and curved C segments
(right).

Müller et al. [2013] propose to express curve integrals with sums
of integrals along edges, then construct quadrature rules using
moment-fitting.

X

Y

CE2

E3

E1

n

∂A = C + E1+

+ E2 + E3

Fig. 2. Integrating along Curves To integrate along planar curves C ,
Müller et al. [2013] propose to construct a divergence-free basis to express
curve integrals with a sum of integrals along straight edges (E1, E2, E3).
Normals n point outward and lie in the same plane as the curve.

They propose to use a basis spanning the space of vector-valued
polynomials Pi : R2 → R2, i = 1, . . . ,m up to a certain degree that
have zero divergence, i.e. ∇ · Pi = 0. For example, to integrate along
a planar curve with constant Z -coordinate (see Fig. 2 left), they
solve a linear system Aw = b for the unknown weights collected
in the n-vector w. To form them × n-system matrix, they take the
dot product between basis functions, evaluated at quadrature points
(X j ,Yj), with the corresponding outward-facing in-plane normal
(Fig. 2 right), resulting in entries Ai j = Pi (X j ,Yj) · n(X j ,Yj). Note

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268225999?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3355089.3356576
https://doi.org/10.1145/3355089.3356576

Supplemental Material for “X-CAD: Optimizing CAD Models with Extended Finite Elements”

that, unlike for Newton-Cotes rules, the right-hand side with entries
bi =

∫
∂A Pi (X ,Y) ·n(X ,Y) ds cannot be analytically integrated. This

is because parts of the integration domain are curved.
However, because the boundary ∂A of the domain A can be par-

titioned into the curved domain C and a set of straight edges Ek
(compare with Fig. 2), we can rewrite the integral as∫

C
Pi · n ds =

∫
∂A

Pi · n ds −
∑
k

∫
Ek

Pi · n ds . (1)

The key benefit of using a divergence-free basis becomes apparent
when we apply the divergence theorem to the integral over ∂A∫

∂A
Pi · n ds =

∫
A
∇ · Pi dA = 0. (2)

Hence, we can numerically integrate along coordinate axes to com-
pute the right-hand side entries bi = −

∑
k
∫
Ek

Pi (X ,Y) · n(X ,Y) ds .

0 0.5 1
0

2π

position of circle center

ar
cl
en
gt
h

Müller
ours
ref

10

Fig. 3. Integrating Features While our integration scheme integrates fea-
tures smaller than the grid resolution accurately (green curve in error plot,
middle), Müller et al.’s method [2013] fails to compute the arc length of
a circle C if the length of edge segment E becomes too short (red curve,
analytical arc length in black). To mitigate inaccuracies in Müller et al.’s
scheme, we could introduce cuts (right): note that a single cut (top) is not
sufficient; only if we introduced two cuts integration accuracy is acceptable
(bottom).

Targeting numerical integration over im-
plicitly defined domains, Müller et al.’s
scheme [2013] works well if the straight edge
segments are sufficiently long. However, for
our application domain, their scheme is ill-
suited as we illustrate with the intersection of
a cylindrical feature (see inset on the right) with one of the grid
planes in Fig. 3: the integration error increases with decreasing
length of the edge segment E (in blue) if we compute the arc length
of the circular intersection curve (yellow) with an integral along C
(see error plot, middle). If the cylinder intersects the grid face in the
interior (right), the domain C is closed and the integral

∫
C Pi · n ds

is zero by construction. While we could introduce controlled cuts
(right) to mitigate the problem, it is unclear how we could detect
problematic cases, and where to best introduce cuts. Note that for
our cylinder example, one cut (right, top) is not sufficient (integral
remains zero). Only if we introduced a second cut (right, bottom),
we could integrate along the circle with sufficient accuracy.

A case that arises in our application domain,
and that Müller et al. [2013] cannot handle
with their technique, is the integration along
spatial curves formed by two or more NURBS
patches that intersect within hexahedral ele-
ments (see inset on the left).

To accurately integrate along planar grid-patch or spatial patch-
patch intersections, we parameterize curves r(t) = [X (t),Y (t),Z (t)]T
with t varying between the two end points a and b, and form line
integrals ∫

C
f (X) ds =

∫ b

a
f (r (t)) ∥r′ (t) ∥ dt , (3)

where we assume r(t) to be sufficiently smooth for an analytical
derivative r′ = dr

dt to exist. Analogously to the axis-aligned case, we
use a Gauss-Legendre rule for integration.

For planar curves parallel to one of the coordinate planes, one of
the three coordinates remains fixed, e.g. f (X (t),Y (t),Z) for a planar
curve parallel to the XY -plane. However, an explicit differentiation
between the planar or spatial case is not necessary.

While we can expect intersection curves to be sufficiently smooth,
we cannot, in general, extract analytical parameterizations. Hence,
we represent parameterizations with a set of sample points rj , ap-
proximating its parametric form with a Lagrange interpolating poly-
nomial of degree d

r(t) =
d∑
j=0

©«
d∏

k=0,k,j

t − tk
tj − tk

ª®¬ rj . (4)

Because the integrand д is well-defined in a neighborhood of
C , the accuracy of the Gauss-Legendre scheme is preserved if we
choose d sufficiently large [Atkinson and Venturino 1993]. Hence,
the resulting scheme with approximate r has excellent accuracy.

1.2 Integrating over Areas and Surfaces
For a discussion of area integrals, we point the reader to the main
text, focusing below description on differences between the two
techniques for integrals over curved 2D domains.

v

u

η

0
ξ

1

1

AĀ

(
ξ j , ηj

) (
u(ξ j), v(ηj)

)
σ̂ (u(ξ j), v(ηj))

Fig. 4. Integrating over Surfaces To integrate over curved domains S
(right), we first compute an axis-aligned bounding box in the parameter
domain (middle), then transform the integral to the isoparametric domain
(left). In the domain Ā, we use the same quadrature points (ξ j , ηj) as for area
integrals, transforming them back to spatial coordinates σ̂ (u(ξ j), v(ηj))
after rule construction.

Supplemental Material for “X-CAD: Optimizing CAD Models with Extended Finite Elements”

Surface Integrals. For surface integrals∫
S
f (X) dS ≈

n∑
j=1

w jд(Xj), (5)

we utilize the parametric form of NURBS patches to determine the
weights w j and quadrature points Xj , while Müller et al. [2013]
propose to use a divergence-free basis. To contrast our technique,
we first summarize Müller et al.’s approach.

Analogously to curve integrals, Müller et al. [2013] propose to
replace them monomials with an associated divergence-free 3m-
basis spanned by functions Pi : R3 → R3 that are multiplied with
the outward-facing surface normal when evaluating entries Ai j =
Pi (Xj) · n(Xj) and bi =

∫
S Pi (X) · n(X) dS . With the help of the

divergence theorem and the partitioning of the boundary ∂V of
volume V into planar areas Ak and curved surface S (compare with
Fig. 1 middle), they solve the system for the right-hand side bi =
−
∑
k
∫
Ak

Pi (X)·n(X) dA instead. However, the resulting rules suffer
from similar issues as their one-dimensional counterparts: if the
areas Ak become to small in size, the error increases uncontrollably.

As described in the main text, we instead make use of the parame-
terization σ̂ of NURBS patches, expressing surface integrals as area
integrals in parameter space∫

S
f (X) dS =

∫
A
д(σ̂ (u,v)) ∥σ̂u (u,v) × σ̂v (u,v)∥ dA. (6)

We then proceed analogously to area integrals, transforming the
integral with mappingsu(ξ) andv(η) to the isoparametric domain to
make the axis-aligned bounding box of the transformed A coincide
with the unit square (see Fig. 2), followed by moment-fitting.

1.3 Integrating over Volumes
To integrate over volumes∫

V
f (X) dV ≈

n∑
j=1

f (Xj), (7)

we proceed analogous to area integration (compare with Fig. 5).

Transformation. We first transform the domain V to make its
bounding box [a,b] × [c,d] × [e, f] coincide with the unit cube,
applying the non-uniform scaling

©«
X (ξ)
Y (η)
Z (ζ)

ª®¬︸ ︷︷ ︸
X(ξ)

=
©«
b − a

d − c
f − e

ª®¬︸ ︷︷ ︸
S

©«
ξ
η
ζ

ª®¬︸︷︷︸
ξ

+
©«
a
c
e

ª®¬︸︷︷︸
t

. (8)

The transformed integral∫
V̄
f (X(ξ)) det

(
∂X(ξ)
∂ξ

)
dV̄ (9)

is then multiplied with the constant determinant of the Jacobian of
the mapping det (S) = (b − a)(d − c)(f − e).

Moment-Fitting. Choosing a m-basis with three variables, we
form the system Ai j = pi (ξ j) and bi =

∫
V̄ pi (ξ) dV̄ . ξ j are Gauss-

Legendre quadrature points in the unit cube [Müller et al. 2013].
Note that A is again the same for all our volume integrals, reducing
the time complexity of our hierarchical scheme significantly.

To evaluate the right-hand side, we form the antiderivative

Pi (ξ) =
1
3
©«

∫
pi (ξ ,η, ζ) dξ∫
pi (ξ ,η, ζ) dη∫
pi (ξ ,η, ζ) dζ

ª®¬ (10)

and apply the divergence theorem∫
V̄
pi (ξ)dV̄ =

∫
∂V̄

n(ξ) · Pi (ξ) dS̄ . (11)

Because the boundary ∂V̄ of the volume V̄ is partitioned into
area Ā and surface integrals S̄ , we can reuse rules developed in the
previous section, establishing a second and final layer of nesting.

V

σ̂u × σ̂v

V̄

det(S) S−T (σ̂u × σ̂v)

X(ξ)

X

Z

Y

Fig. 5. Integrating over Volumes To integrate over a volumetric domain
V , we non-uniformly scale (and translate) the axis-aligned bounding box of
the volume to the unit cube V̄ . For consistency, normals σ̂u × σ̂v on curved
surfaces need to be transformed before we can apply surface area rules. We
use the linear transformation rule for cross products to do so.

An important detail is that the area and surface domains need to
be transformed to account for the non-uniform scaling ξ 7→ Sξ +t to
the unit cube. While the determinant of the Jacobian of the mapping
is taken into account in Eq. 9 already, positions and vectors have
to be transformed accordingly. This means that for our area and
surface integrals, we compose the affine mapping (scaling) with the
parameterization (u,v) 7→ σ̂ (u,v). Our surface integrals require
taking special care: while we apply the full transformation to points
x = Sσ̂ (u,v) + t, only the scaling S matters when transforming
vectors σ̂u and σ̂v (see Fig. 5). We use the rule for linear transfor-
mations of cross products to account for this scaling in our surface
integrals∫

A
f (X)∥Sσ̂u × Sσ̂v ∥ dA =

∫
A
f (X)det(S)∥S−T σ̂u × σ̂v ∥ dA. (12)

1.4 Technical Details
Polynomial Bases. As suggested by Müller et al. [2013], we use

an orthonormalized basis, running a Gram-Schmidt algorithm with
inner product

(p1,p2) =
∫
[0,1]dim

p1p2 dξ (13)

Supplemental Material for “X-CAD: Optimizing CAD Models with Extended Finite Elements”

on pairs of basis functions. As observed by Müller et al. [2013], the
use of an orthonormalized basis significantly increases numerical
stability (rows of matrices A are sufficiently independent, even for
higher-order polynomials).

2 QUADRATURE RULE DERIVATIVES
Quadrature rules for integrating over areas, surfaces, and volumes
rely on placing quadrature points within an approximate bounding
box of the respective domain. Bounding boxes are updated after
every shape parameter change in order to keep a good approxima-
tion at all times. As a consequence, quadrature point locations stay
within, or at least close to, the integration domain, which stabilizes
the quadrature procedure. Thus, not only quadrature weights, but
also quadrature point locations, depend on shape parameters. Ini-
tially, this seems like an adverse effect, because the dependence
causes an additional term to appear in the expression for shape
derivatives of the simulation result. Here, we prove the claim made
in Sec. 6.3 of the main article, namely, that this terms exactly cancels
another term, and thus simplifies computation instead of complicat-
ing it.
First, we give a concrete example to demonstrate the scope of

extra computation that location dependence usually introduces: the
shape derivatives of the equilibrium state in a hyperelastic sim-
ulation. Let the total potential energy E(u, p) be given as a func-
tion of displacements u and shape parameters p. The equilibrium
state u∗ for a given shape parameter value p∗ is characterized by
∂uE(u∗, p∗) = 0. The implicit function theorem shows that there
exists a function u(p) in a neighborhood of p∗ such that u(p∗) = u∗

and ∂uE(u(p), p) = 0 in that neighborhood. The derivative of that
function at p∗ is given by

∂u,uE(u∗, p∗) dpu(p∗) = ∂u,pE(u∗, p∗). (14)
Note that code for computing the energy Hessian, ∂u,uE, is part of
any finite-element package, and thus readily available. The right-
hand side, ∂u,pE, is the shape derivative of the global force vector
and is given by a sum of contributions from all quadrature points
in all elements. We focus our attention to the contribution from
a single element, and its set of quadrature points with locations
Xj ∈ R

3 and weights w j ∈ R. Writing g for the force density, and
fe = ∂uEe for the element force vector, integrated over an element
domain Ω, we have

dpfe = dp
∫
Ω
g(X) dX = dp

∑
j
w j (p∗)g(Xj (p∗)) (15)

=
∑
j

(
dpw j (p∗) g(Xj) +w j (p∗) ∂Xg(Xj) ∂pXj (p∗)

)
. (16)

The problematic term in this last sum is ∂Xg, the spatial deriva-
tives of the finite-element force density. This quantity is not required
for standard finite-element computations, and is not part of most
commercial FE packages. Thus, custom code needs to be generated
for every material model and choice of element. Especially for non-
linear material models, the complexity of this code considerably
adds to the runtime of computing shape derivatives.
We show that the sum over the second term in Eq. 16 exactly

cancels a subexpression of the sum over the first term. To this end,
we split dpw j into the direct contribution from changing the shape

parameters, and thus the integration domain, and the contribution
from changing the bounding box in which the quadrature points
are placed. The parameters of the bounding box are represented by
t(p), and the total derivative ofw j (p, t(p)) wrt p is given by

dpw j = ∂pw j + ∂tw j ∂pt. (17)

For the quadrature point locations, we have ∂pXj = ∂tXj ∂pt, be-
cause Xj depends on p only through t.

Let t∗ denote the bounding box parameters for the current shape
parameter values p∗. To show the claim, we define modified weights
w̃ j (p) := w j (p, t∗) that retain constant bounding box parameters
regardless of p. It follows from the definition that w̃ j (p∗) equals
w j (p∗, t(p∗)). However, their shape derivatives are generally not
the same at p∗ because w̃ j lacks the dependence on t. Similarly, we
define X̃j := Xj (p∗). The crucial point is that (X̃j , w̃ j (p)) define a
valid quadrature rule not only at p∗, but also in a neighborhood
around p∗. This is because the correctness of a quadrature rule does
not depend on a specific choice of t, and thus keeping t = t∗ constant
while p varies is valid.

This argument lets us replace the quadrature rule based on w j
and Xj in Eq. 15 with the modified rule. This leads to

dpfe = dp
∫
Ω
g(X) dX = dp

∑
j
w̃ j (p∗)g(X̃j)

=
∑
j
∂pw j (p∗) g(Xj (p∗)). (18)

Comparing Eq. 18 to Eq. 16, we see that changing dpw j to ∂pw j lets
us effectively drop the second term containing the spatial derivatives
of g.
The consequence is that, even though we adapt the quadrature

point locations to the integration domain after every parameter
change, we may compute shape derivatives as though we kept
them constant, without introducing error. This argument applies to
any quantity that is integrated over the domain of an element, or
over any area or surface for which quadrature rules have been con-
structed. It is thus not necessary to ever compute spatial derivatives
of these quantities in order to find their shape derivatives.

3 VERTEX & ELEMENT ENRICHMENT
This section serves as a guide to implementing the extended finite-
element method as outlined in Sec. 5.2 of the main article. First, we
define the inputs to the enrichment procedure and some terminology.
The simulation grid is a regular 3-dimensional grid which consists
of vertices, edges, faces, and cells. Every cell is incident to eight
vertices. The CAD model, which serves as the simulation domain,
is embedded in the simulation grid. If the intersection between the
model and a cell is non-empty, we refer to the connected components
of this intersection as subvolumes.

A vertex which is incident to a cell intersecting the model is called
a node. Every node has one or more sets of degrees of freedom (dof).
A set of dof refers to the primary variable in the PDE that will be
solved, e.g., a coordinate triple of displacements for an elastostatic
problem. Every subvolume defines an element, which is associated
with eight sets of dof. These sets of dof need to be appropriately

Supplemental Material for “X-CAD: Optimizing CAD Models with Extended Finite Elements”

chosen from the eight nodes incident to the cell containing that
subvolume.

The output of the enrichment stage is a list of dof, each associated
with a node location, and a list of elements, each associated with
eight sets of dof. This is exactly the structure of a finite-element
mesh with linear hexahedral elements, and any finite-element code
for meshes of this type will work with our enriched mesh. Here, the
word “enrichment” is a slight abuse of language, since we effectively
duplicate nodes instead of enriching them, and distribute distinct
node copies to elements that are topologically separated. The details
of this procedure are illustrated in pseudocode below.

Node Definition. Algorithm 1 shows how a list of (un-enriched)
nodes is generated from the simulation mesh and subvolumes. It
is assumed that index conversions are available, e.g., that an array
svToCell gives the index of the cell in which a subvolume is con-
tained, and that cellToVertices gives the indices of all vertices
incident to a cell.

ALGORITHM 1: Node Definition
Data: svToCell, cellToVertices, numSV
Output :a list of all vertices that are nodes
nodes← ∅
for i ← 1 to numSV do

cell← svToCell[i]
foreach j ∈ cellToVertices[cell] do

nodes← nodes ∪{j }
end

end

return nodes

Vertex Enrichment. The goal of this stage is twofold: first, to de-
termine the number of sets of dof at a node, and second, to group
subvolumes in the neighborhood of the node if they belong to the
same set of dof. Algorithm 2 takes a node as input and analyzes the
subvolumes within the cells incident to this node. These subvolumes
are separated into connected components, where two subvolumes
are said to be connected if they are path-connected within the cells
incident to the node. The number of connected components gives the
number of sets of dof at the node. The algorithm uses nodeToCells,
which gives all cells incident to a node, cellToSv, which gives all
subvolumes contained in a cell, and adjacentSv, which gives all
subvolumes adjacent to a given subvolume.

Element Enrichment. At this stage, we generate one element for
every subvolume, and assign dof indices to it. This is again done in
a node-centric way, using the connected-component information
generated in the previous step. We assume that the sets of dof for a
node i are indexed contiguously through k,k + 1, . . . ,k +m. Every
element has eight nodes associated with it, namely, the eight nodes
incident to the cell that contains the element. The local index of a
node within an element, i.e., an integer between 0 and 7, is assumed
to be known via the function localIndexOfNodeInElement.
Algorithm 3 assigns the sets of dof of one particular node to

all elements in its neighborhood. Once this algorithm has been
executed for all node indices, every element will have received all

ALGORITHM 2: Vertex Enrichment
Data: nodeToCells, cellToSv, adjacentSv
Input : the index of a node i
Output : the connected components of subvolumes in the

neighborhood of node i
cells← nodeToCells[i]
sv← ∅
foreach c ∈ cells do

sv← sv ∪ cellToSv[c]
end
components← ∅
compIndex← 0
while sv , ∅ do

c← sv.anyElement()
sv← sv \ {c}
stack← {c}
comp← ∅
while stack , ∅ do

s← stack.top()
stack.pop()
comp← comp ∪ {s}
foreach n ∈ adjacentSv[s] do

if n ∈ sv then
sv← sv \ {n }
stack.push(n)

end
end

end
components[compIndex] ← comp
compIndex← compIndex + 1

end

return components

eight of its dof indices. The result is a two-dimensional n-by-8 array
elementDof, which contains in the i-th row the dof indices of the i-
th element. Together with a list of all node locations, with duplicates
indicating multiple sets of dof per node, this is the standard format
of a linear hexahedral finite element mesh, and can be used as such.
The only modification to a standard finite-element code is that
quadrature rules need to be generated for every element instead of
using tabulated rules.

ALGORITHM 3: Element Enrichment
Data: elementDof, components
Input : the index of a node i , the index k of the first set of dof

belonging to node i
for j ← 0 to components[i].size() − 1 do

comp← components[i]
foreach el ∈ comp do

v← localIndexOfNodeInElement (el,i)
elementDof[el][v] ← k + j

end
end

Supplemental Material for “X-CAD: Optimizing CAD Models with Extended Finite Elements”

REFERENCES
K Atkinson and Ezio Venturino. 1993. Numerical evaluation of line integrals. SIAM

journal on numerical analysis 30, 3 (1993), 882–888.
B. Müller, S. Krämer-Eis, F. Kummer, andM. Oberlack. 2017. A high-order discontinuous

Galerkin method for compressible flows with immersed boundaries. Internat. J.
Numer. Methods Engrg. 110, 1 (2017), 3–30.

B Müller, F Kummer, and M Oberlack. 2013. Highly accurate surface and volume
integration on implicit domains by means of moment-fitting. Internat. J. Numer.
Methods Engrg. 96, 8 (2013), 512–528.

	Abstract
	1 Numerical Integration
	1.1 Integrating along Edges and Curves
	1.2 Integrating over Areas and Surfaces
	1.3 Integrating over Volumes
	1.4 Technical Details

	2 Quadrature Rule Derivatives
	3 Vertex & Element Enrichment
	References

