
Distributed Computing
https://doi.org/10.1007/s00446-018-0342-6

Near-optimal self-stabilising counting and firing squads

Christoph Lenzen1 · Joel Rybicki2

Received: 17 January 2017 / Accepted: 7 September 2018
© The Author(s) 2018

Abstract
Consider a fully-connected synchronous distributed system consisting of n nodes, where up to f nodes may be faulty and
every node starts in an arbitrary initial state. In the synchronous C-counting problem, all nodes need to eventually agree on a
counter that is increased by one modulo C in each round for given C > 1. In the self-stabilising firing squad problem, the task
is to eventually guarantee that all non-faulty nodes have simultaneous responses to external inputs: if a subset of the correct
nodes receive an external “go” signal as input, then all correct nodes should agree on a round (in the not-too-distant future) in
which to jointly output a “fire” signal. Moreover, no node should generate a “fire” signal without some correct node having
previously received a “go” signal as input. We present a framework reducing both tasks to binary consensus at very small
cost. For example, we obtain a deterministic algorithm for self-stabilising Byzantine firing squads with optimal resilience
f < n/3, asymptotically optimal stabilisation and response time O(f), and message size O(log f). As our framework does
not restrict the type of consensus routines used, we also obtain efficient randomised solutions.

Keywords Byzantine faults · Self-stabilisation · Clock synchronisation · Synchronous counting · Firing squads

1 Introduction

The design of distributed systems faces several unique
issues related to redundancy and fault-tolerance, timing and
synchrony, and the efficient use of communication as a
resource [28]. In this work, we give near-optimal solutions
to two fundamental distributed synchronisation and coordi-
nation tasks: the synchronous counting and the firing squad
problems. For both tasks, we devise fast self-stabilising algo-
rithms [16] that are not only communication-efficient, but
also tolerate the optimal number of permanently faulty nodes.
That is, our algorithms efficiently recover from transient fail-
ures that may arbitrarily corrupt the state of the distributed
systemand permanently damage a large number of the nodes.

B Joel Rybicki
joel.rybicki@ist.ac.at

Christoph Lenzen
clenzen@mpi-inf.mpg.de

1 Department of Algorithms and Complexity, Max Planck
Institute for Informatics, Saarland Informatics Campus,
Saarbrücken, Germany

2 Institute of Science and Technology Austria (IST Austria),
3400 Klosterneuburg, Austria

1.1 Synchronous counting and firing squads

We assume a synchronous message-passing model of dis-
tributed computation. The distributed system consists of a
fully-connected network of n nodes, where up to f of the
nodes may be faulty and the initial state of the system is arbi-
trary. There exist various ways to model permanent faults,
including e.g.:

– crashes (the faulty node stops sending information),
– omissions (some or all of the messages sent by faulty
nodes can be lost), and

– Byzantine faults (the faulty node exhibits arbitrary mis-
behaviour).

Here we focus on Byzantine faults, as this is the strongest
model of permanently faulty behaviour.

Note that even though the communication proceeds in a
synchronous fashion, the nodes may have different notions
of current time due to the arbitrary initial states. However,
many typical distributed protocols assume that the system
has either been properly initialised or that the nodes should
collectively agree on the rounds in which to perform cer-
tain actions. Thus, we are essentially faced with the task of
having to agree on a common time in a manner that is both

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268225994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-018-0342-6&domain=pdf
http://orcid.org/0000-0002-6432-6646

C. Lenzen, J. Rybicki

stabilisation

Clock

Node 1 1 1 2 1 0 1 2 0 1 2

Node 2 0 1 2 1 0 1 2 0 1 2

Node 3 (faulty) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Node 4 2 0 1 0 0 1 2 0 1 2

counting stabilisation firing squad

Clock

Node 1

Node 2

Node 3 (faulty) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Node 4 fire!

fire!

fire!go

go

go

fire!

fire!

response time
(a) (b)

Fig. 1 a An execution of a synchronous counting protocol. b An execution of a firing squad protocol

self-stabilising and tolerates permanently faulty behaviour
from some of the nodes. To address this issue, we study the
synchronous counting and firing squad problems, which are
among the most fundamental challenges in fault-tolerant dis-
tributed systems.

In the synchronous counting problem, all the nodes receive
well-separated synchronous clock pulses that designate the
start of a new round. The received clock pulses are anony-
mous, and hence, all correct nodes should eventually stabilise
and agree on a round counter that increases consistently by
one modulo C . The problem is also known as digital clock
synchronisation, as all non-faulty nodes essentially have to
agree on a shared logical clock. A stabilising execution of
such a protocol for n = 4, f = 1, and C = 3 is given in
Fig. 1a.

In the self-stabilising firing squad problem, the task is
to have all correct nodes eventually stabilise and respond
to an external input simultaneously. That is, once stabilised,
when a sufficiently large (depending on the type of permanent
faults) subset of the correct nodes receive an external “go”
signal, then all correct nodes should eventually generate a
local “fire” event on the same round. The time taken to react
to the “go” signal is called the response time. Note that before
stabilisation the nodes may generate spurious firing signals,
but after stabilisation no correct node should generate a “fire”
event without some correct node having previously received
a “go” signal as input. An execution of such a protocol with
n = 4, f = 1, and response time R = 5 is illustrated in
Fig. 1b.

A firing squad protocol can be used, for example, to agree
in a self-stabilisingmanner onwhen to initiate a new instance
of a non-self-stabilising distributed protocol, as response to
internal or external “go” inputs.

1.2 Connections to fault-tolerant consensus

Reaching agreement is perhaps the most intrinsic problem
in fault-tolerant distributed computing. It is known that both
the synchronous counting [11] and the self-stabilising firing
squad problem [14] are closely connected to the well-studied
consensus problem [24,30],where eachnode is given an input

bit and the task is to agree on a common output bit such that
if every non-faulty node received the same value as input,
then this value must also be the output value. Indeed, the
connection is obvious on an intuitive level, as in each task
the goal is to agree on a common decision (that is, the output
bit, clock value, or whether to generate a firing event).

However, the key difference between the problems lies
in self-stabilisation. Typically, the consensus problem is
considered in a non-self-stabilising setting with only perma-
nent faults (e.g. f < n/3 nodes with arbitrary behaviour),
whereas synchronous counting copes with both transient and
permanent faults. In fact, it is easy to see that synchronous
counting is trivial in a non-self-stabilising setting: if all nodes
are initialised with the same clock value, then they can sim-
ply locally increment their counters each round without any
communication. Furthermore, in a properly initialised sys-
tem, one can reduce the firing squad problem to repeatedly
calling a consensus routine [5].

Interestingly, imposing the requirement of self-stabili-
sation—convergence to correct system behavior from arbi-
trary initial states—reverses the roles. Solving either the
synchronous counting or firing squad problem in a self-
stabilising manner also yields a solution to binary consensus,
but the converse is not true. In fact, in order to internally
or externally trigger a consistent execution of a consensus
protocol (or any other non-self-stabilising protocol, for that
matter), nodes typically rely on some agreement on time (by
using e.g. a self-stabilising synchronous counting to get a
clock or firing squad algorithm to know when the execution
should start).

In light of this, the self-stabilising variants of both prob-
lems are important generalisations of consensus. While
considerable research has been dedicated to both tasks [2,11–
14,18,27], our understanding is significantly less developed
than for the extensively studied consensus problem. More-
over, it is worth noting that all existing algorithms utilise
consensus subroutines [13,27] or shared coins [2], the lat-
ter of which essentially solves consensus as well. Given that
both tasks are at least as hard as consensus [11], this seems to
be a natural approach. However, it raises the question of how
much of an overheadmust be incurred by such a reduction. In

123

Near-optimal self-stabilising counting and firing squads

this paper, we subsume and improve upon previous results by
providing a generic reduction of synchronous counting and
self-stabilising firing squad to binary consensus that incurs
very small overheads.

1.3 Contributions

We develop a framework for efficiently transforming non-
self-stabilising consensus algorithms into self-stabilising
algorithms for synchronous counting and firing squad prob-
lems. In particular, the resulting self-stabilising algorithms
have the same resilience as the original consensus algorithms,
that is, the resulting algorithms tolerate the same number and
type of permanent faults as the original consensus algorithm
(e.g. crash, omission, or Byzantine faults).

The construction we give incurs a small overhead com-
pared to time and bit complexities of the consensus routines:
the stabilisation time and message size are, up to constant
factors, given as the sum of the cost of the consensus rou-
tine for f faults and recursively applying our scheme to
f ′ < f /2 faults. Finally, our construction can be used in
conjunction with both deterministic and randomised consen-
sus algorithms. Consequently, we also obtain algorithms for
probabilistic variants of the synchronous counting and firing
squad problems.

Our novel framework enables us to address several open
problems related to self-stabilising firing squads and syn-
chronous counting. We now give a brief summary of the
open problems we solve and the new results obtained using
our framework.

1.3.1 Self-stabilising firing squads

In the case of self-stabilising firing squads, Dolev et al. [14]
posed the following two open problems:

1. Are there solutions that tolerate either omission or
Byzantine (i.e., arbitrary) faults?

2. Are there algorithms using o(n)-bit messages only?

We answer both questions in the affirmative by giving
algorithms that achieve both properties simultaneously. Con-
cretely, our framework implies a deterministic solution for
the self-stabilising Byzantine firing squad problem that

– tolerates the optimal number of f < n/3 Byzantine
faulty nodes,

– uses messages of O(log f) bits, and
– is guaranteed to stabilise and respond to inputs in linear-
in- f communication rounds.

Thus, compared to prior state-of-the-art solutions [14], our
algorithm tolerates a much stronger form of faulty behaviour

and uses exponentially smaller messages, yet retains asymp-
totically optimal worst-case stabilisation and response time.

1.3.2 Synchronous counting

We attain novel algorithms for synchronous counting, that
is, self-stabilising Byzantine fault-tolerant digital clock syn-
chronisation [2,18,22].Our newalgorithms resolve questions
left open by our own prior work [27], namely, whether there
exist

1. deterministic linear-time algorithms with optimal
resilience and message size o(log2 f), or

2. randomised sublinear-time algorithms with small bit
complexity.

Again, we answer both questions positively using our frame-
work developed in this paper. For the first question, we give
linear-time deterministic algorithms that have message size
of O(log f) bits. For the second question, we show that our
framework can utilise efficient randomised consensus algo-
rithms to obtain probabilistic variants of the synchronous
counting and firing squad problems. For example, using the
result of King and Saia [23] we get algorithms that sta-
bilise in polylog n expected rounds and use messages of size
polylog n bits, assuming private communication links and
an adaptive Byzantine adversary corrupting f < n/(3 + ε)

nodes for an arbitrarily small constant ε > 0.

1.4 Related work

In this section, we overview prior work on the synchronous
counting andfiring squadproblems.Bynow it has been estab-
lished that both problems [11,14] are closely connected to the
well-studied (non-stabilising) consensus [24,30]. As there
exists a vast body of literature on synchronous consensus,
we refer the interested reader to, e.g., the survey by Ray-
nal [31]. We note that self-stabilising variants of consensus
have been studied [1,8,9,17] but in different models of com-
putation and/or for different types of failures than what we
consider in this work.

1.4.1 Synchronous counting and digital clock
synchronisation

In the past two decades, there has been increased interest in
combining self-stabilisation with Byzantine fault-tolerance.
One reason is that algorithms in this fault model are
very attractive in terms of designing highly-resilient hard-
ware [11]. A substantial amount of work on synchronous
counting has been carried out [2,12,13,18,22,27], compris-
ing both positive and negative results.

123

C. Lenzen, J. Rybicki

In terms of lower bounds, many impossibility results for
consensus [10,15,21,30] also directly apply to synchronous
counting, as synchronous counting solves binary consen-
sus [11,12]. In particular, no algorithm can toleratemore than
f < n/3 Byzantine faulty nodes [30] (unless cryptographic
assumptions are made) and any deterministic algorithm
needs at least f + 1 rounds to stabilise [21].

In a seminal work, Dolev andWelch [18] showed that syn-
chronous counting can be solved in a self-stabilising manner
in the presence of (the optimal number of) f < n/3 Byzan-
tine faults using randomisation; see also [16, Ch. 6]. While
this algorithm can be implemented using only constant-
size messages, the expected stabilisation time is exponential.
Later, Ben-Or et al. [2] showed that it is possible to obtain
optimally-resilient solutions that stabilise in expected con-
stant time. However, their algorithm relies on shared coins,
which are costly to implement and assume private commu-
nication channels.

In addition to the lower bound results, there also exist
deterministic algorithms for the synchronous counting prob-
lem [12,13,22,27]. Many of these algorithms utilise consen-
sus routines [13,22,27], but obtaining fast and communication-
efficient solutions with optimal resilience has been a chal-
lenge. For example, Dolev and Hoch [13] apply a pipelining
technique, where�(f) consensus instances are run in paral-
lel. While this approach attains optimal resilience and linear
stabilisation time in f , the large number of parallel consensus
instances necessitates large messages.

In order to achieve better communication and state com-
plexity, the use of computational algorithm design and
synthesis techniques have also been investigated [4,12].
While this line of research has produced novel optimal and
computer-verified algorithms, so far the techniques have not
scaled beyond f = 1 faulty node due to the inherent combi-
natorial explosion in the search space of potential algorithms.

Recently,wegave recursive constructions for synchronous
counting that achieve linear stabilisation time using only
polylogarithmic message size and state bits per node [27].
However, our previous constructions relied on specific (deter-
ministic) consensus routines and their properties in a rel-
atively ad hoc manner. In contrast, our new framework
presented here lends itself to any (possibly randomised) syn-
chronous consensus routine and improves the best known
upper bound on the message size to O(log f) bits. Currently,
it is unknown whether it is possible to deterministically
achieve message size of o(log f) bits.

1.4.2 Firing squads

In the original formulation of the firing squad synchronisa-
tion problem, the system consists of a path of n finite state
machines (whose number of states is independent of n) and
the goal is to have all machines switch to the same “fire”

state simultaneously after one node receives a “go” signal.
This formulation of the problem has been attributed to John
Myhill and Edward Moore and has subsequently been stud-
ied in various settings; see e.g. [29] for a survey of early work
related to the problem.

In the distributed computing community, the firing squad
problem has been studied in fully-conneted networks in the
presence of faulty nodes. Similarly to synchronous counting,
the firing squad problem is closely connected to Byzantine
agreement and simultaneous consensus [5–7,14,19]. Both
Burns and Lynch [5] and Coan et al. [6] studied the firing
squad problem in the context of Byzantine failures. Burns
and Lynch [5] considered both permissive and strict variants
of the problem (i.e., whether faulty nodes can trigger a fir-
ing event or not) and showed that both can be solved using
Byzantine consensus algorithms with only a relatively small
additional overhead in the number of communication rounds
and total number of bits communicated. On the other hand,
Coan et al. [6] gave authenticated firing squad algorithms for
various Byzantine fault models. Coan and Dwork [7] gave
worst-case time lower bounds of f + 1 rounds for deter-
ministic and randomised algorithms solving the firing squad
problem in the crash fault model.

However, neither the solutions of Burns and Lynch [5]
or Coan et al. [6] are self-stabilising or use small messages.
Almost two decades later, Dolev et al. [14] gave the first
self-stabilising algorithm for the firing squad problem. In
particular, their solution has optimal stabilisation time and
response time depending on the fault pattern. However, their
algorithm tolerates only crash faults and uses messages of
size �(n log n) bits. In this work, we obtain Byzantine fault-
tolerant algorithms that use messages of size O(log n) bits.
However, the time complexity is only (asymptotically) opti-
mal in the worst case.

1.5 Outline of the paper

Thepaper is structured as follows. In thefirst part of the paper,
we consider the deterministic setting under Byzantine faults.
In the second part, we discuss how to extend our results into
the randomised setting, where sublinear time algorithms are
possible.

We start with Sect. 2, where we give formal definitions
related to the model of computation, synchronous counting,
and firing squads in the Byzantine setting. In the sections
following this, we showourmain result in a top-down fashion
as illustrated in Fig. 2.We introduce a series of new problems
and give reductions between them:

– Section 3 shows how to obtain synchronous counting and
firing squad algorithms that rely on binary consensus rou-
tines and strong pulsers,

123

Near-optimal self-stabilising counting and firing squads

Firing squads

+
Counting

Binary consensus

Strong pulser

Weak pulser

Multival. consensus
Silent consensus+

+
Strong pulser Strong pulser

Section 3

Section 4

Section 5

Section 6

Fig. 2 High-level overview of our construction and the structure of the paper. Rounded boxes denote algorithms that are both self-stabilising and
Byzantine fault-tolerant, whereas rectangular boxes denote non-stabilising Byzantine fault-tolerant consensus routines

– Section 4 devises strong pulsers with the help of weak
pulsers and multivalued consensus,

– Section 5 constructs weak pulsers using silent consensus
and less resilient strong pulsers.

Section 6 combines the results of Sects. 4 and 5 to obtain
a recursive construction for strong pulsers used by the algo-
rithms given in Sect. 3. Finally, we extend our results to work
with randomised consensus routines in Sect. 7.

2 Preliminaries

In this section, we first fix some basic notation, then describe
the model of computation, and finally give formal definitions
of the synchronous counting, self-stabilising firing squad,
and consensus problems.

2.1 Notation

We use N = {1, 2, . . .} to denote the set of positive integers
and N0 = {0} ∪ N to denote the set of all non-negative inte-
gers. For any k ∈ N, we write [k] = {0, . . . , k − 1} to be the
set of the first k non-negative integers.

2.2 Model of computation

We consider a fully-connected synchronous network on node
set V consisting of n = |V | processors. We assume there
exists a subset of F ⊆ V faulty nodes that is initially
unknown to the correct nodes, where the upper bound f on
the size |F | ≤ f is known to the nodes. We say that nodes
in V \ F are correct and nodes in F are faulty.

All correct nodes in the system will follow a given algo-
rithm A that is the same for all the nodes in the system. The
execution proceeds in synchronous rounds, where in each
round t ∈ N the nodes take the following actions in lock-
step:

1. perform local computations,
2. send messages to other nodes, and
3. receive messages from other nodes.

We assume that nodes have unique identifiers from {1, . . . , n}
and can identify the sender of incoming messages.

We say that an algorithm A has message size M(A) if no
correct node sends more than M(A) bits to any other node
during a single round.

The local computations of a node v determine which mes-
sages v sends to other nodes and what is the new state of the
node v, where the new state is a function of the node’s previ-
ous local state and receivedmessages. Aswe are interested in
self-stabilising algorithms, the initial state of a node is arbi-
trary; this is equivalent to assuming that transient faults have
arbitrarily corrupted the state of each node, but the transient
faults have ceased by the beginning of the first round.

Asmentioned above, we assume the presence of (possibly
permanent) Byzantine faults. A Byzantine faulty node v ∈ F
may deviate from the algorithm arbitrarily, i.e., send arbitrary
messages in each round. In particular, a Byzantine faulty
node can send different messages to each correct node in the
system, even if the algorithm specifies otherwise. Since we
consider deterministic algorithms, themeaning of “arbitrary”
in this context is that the algorithm must succeed for any
possible choice of behavior of the faulty nodes. We assume
a bound f < n/3 on the number |F | of Byzantine faulty
nodes, as otherwise none of the problems we consider can be
solved due to the impossibility of consensus under f ≥ n/3
Byzantine faults [30].

123

C. Lenzen, J. Rybicki

2.3 Synchronous counting

In the synchronous C-counting problem, the task is to have
each node v ∈ V output a counter value c(v, t) ∈ [C] on
each round t ∈ N in a consistent manner. We say that an
execution of a synchronous counting algorithm stabilises in
round t if and only if all t ≤ t ′ ∈ N and v,w ∈ V \ F satisfy

SC1 Agreement: c(v, t ′) = c(w, t ′) and
SC2 Consistency: c(v, t ′ + 1) = c(v, t ′) + 1 mod C .

We say that A is an f -resilient C-counting algorithm that
stabilises in time t if all executions with at most f faulty
nodes stabilise by round t . The stabilisation time T (A) of A
is the maximum such t over all executions.

2.4 Self-stabilising firing squad

In the self-stabilising Byzantine firing squad problem, in
each round t ∈ N, each node v ∈ V has an input chan-
nel GO(v, t) ∈ {0, 1}. If GO(v, t) = 1, then we say that v

receives a GO input signal in round t . Moreover, the algo-
rithm determines an output FIRE(v, t) ∈ {0, 1} at each node
v ∈ V in each round t ∈ N. We say that an execution of
an algorithm stabilises in round t ∈ N if the following three
properties hold:

FS1 Agreement: FIRE(v, t ′) = FIRE(w, t ′) for all v,w ∈
V \ F and t ≤ t ′ ∈ N.

FS2 Safety: If FIRE(v, tF) = 1 for v ∈ V \ F and t ≤ tF ∈
N, then there is tF ≥ tG ∈ N s.t.

(i) GO(w, tG) = 1 for some w ∈ V \ F and
(ii) FIRE(v, t ′) = 0 for all t ′ ∈ {tG + 1, . . . , tF − 1}.

FS3 Liveness: If GO(v, tG) = 1 for at least f + 1 correct
nodes v ∈ V \F and t ≤ tG ∈ N, then FIRE(v, tF) = 1
for all nodes v ∈ V \ F and some tG < tF ∈ N.

Note that the liveness condition requires f +1 correct nodes
to receive an external GO input, as otherwise it would be
impossible to guarantee that a correct node has received a
GO input when firing; this corresponds to the definition of
a strict Byzantine firing squad [5]. We say that an execution
stabilised by round t has response time of at most R from
round t onwards if the following conditions are satisfied:

(i) if at least f + 1 correct nodes v ∈ V \ F satisfy
GO(v, tG) = 1 in some round tG ≥ t , then all cor-
rect nodes u ∈ V \ F satisfy FIRE(v, tF) = 1 in some
round tG < tF ≤ tG + R, and

(ii) if there is a round tF ≥ t such that FIRE(v, tF) = 1 for
some correct v ∈ V \ F , then there is a round tG with

tF > tG ≥ tF − R and some correct node u ∈ V \ F
with GO(u, tG) = 1.

Finally, we say that an algorithm F is an f -resilient firing
squad algorithm with stabilisation time T (F) and response
time R(F) if in any execution of the system with at most f
faulty nodes there is a round t ≤ T (F)bywhich the algorithm
stabilised and has response time at most R(F) from round t
onwards.

We remark that under Byzantine faults, previous non-
stabilising algorithms [5] have considered the case where
the input signals (from different nodes) do not need to be
received on the same round, but they can be spread out over
several rounds. In the self-stabilising setting, we can easily
cover the case where f + 1 input signals are received within
a time window of � rounds as follows: instead of relying on
the input GO signals as-is, we can use an auxiliary variable
GO′(v, t) as input to our algorithms, where GO′(v, t) = 1 iff
there is a round t ′ ∈ {t − � + 1, . . . , t} with GO(v, t ′) = 1.

2.5 Consensus

Let us conclude this section by definining the multivalued
consensus problem. Unlike the synchronous counting and
self-stabilising firing squad problems, the standard definition
of consensus does not require self-stabilisation: we assume
that all nodes start fromafixed starting state and the algorithm
terminates in finitely many communication rounds.

In the multivalued consensus problem for L > 1 values,
each node v ∈ V receives an input value x(v) ∈ [L] and
the task is to have all correct nodes output the same value
k ∈ [L]. We say that an algorithm C is an f -resilient T (C)-
round consensus algorithm if the following conditions hold
when there are at most f faulty nodes:

C1 Termination: Each v ∈ V \ F decides on an output
y(v) ∈ [L] by the end of round T (C).

C2 Agreement: For all v,w ∈ V \ F , it holds that y(v) =
y(w).

C3 Validity: If there exists k ∈ [L] such that for all v ∈
V \ F it holds that x(v) = k, then each v ∈ V \ F
outputs the value y(v) = k.

We remark that one may ask for stronger validity conditions,
but for our purposes this condition is sufficient. The binary
consensus problem is the special case L = 2 of the above
multivalued consensus problem. In the case of binary con-
sensus, the stated validity condition is equivalent to requiring
that if v ∈ V \ F outputs y(v) = k ∈ {0, 1}, then some
w ∈ V \ F has input value x(w) = k.

Later, we utilise the fact that multivalued consensus can
be reduced to binary consensus with only a small overhead in
time. In [25], it is shown how to do this with 1-bit messages

123

Near-optimal self-stabilising counting and firing squads

and an additive overhead of O(log L) rounds, preserving
resilience.

Theorem 1 ([25]) Let L > 1. Given an f -resilient binary
consensus algorithm C, we can solve L-value consensus in
O(log L) + T (C) rounds using M(C)-bit messages while
tolerating f faults.

3 Synchronous counting and firing squads

In this section, we give a firing squad algorithm with
asymptotically optimal stabilisation and response times. The
algorithm relies on two auxiliary routines: a so-called strong
pulser and a consensus algorithm. We start with a discussion
on strong pulsers.

3.1 Strong pulsers and counting

Our approach to the firing squad problem is to solve it by
repeated consensus, which in turn is controlled by a joint
round counter. To minimise message size, however, we will
not communicate counter values directly. Instead we make
use of what we call a strong pulser.

Definition 1 (Strong pulser) An algorithm P is an f -resilient
strong Ψ -pulser that stabilises in T (P) rounds if it satisfies
the following conditions in the presence of at most f faulty
nodes. Each node v ∈ V produces an output bit p(v, t) ∈
{0, 1} on each round t ∈ N. We say that v generates a pulse
in round t if p(v, t) = 1 holds. We require that there is a
round t0 ≤ T (P) such that:

S1. For any v ∈ V \F and round t = t0+kΨ , where k ∈ N0,
it holds that p(v, t) = 1.

S2. For any v ∈ V \ F and round t ≥ t0 satisfying t �=
t0 + kΨ for k ∈ N0, we have p(v, t) = 0.

Put otherwise, a strong Ψ -pulser consistently generates
pulses at all non-faulty nodes exactly every Ψ rounds. Fig-
ure 3 illustrates an execution of a strong pulser withΨ = 3. It
is straightforward to see that strong pulsers and synchronous
counting are almost equivalent.

Lemma 1 Let C ∈ N and Ψ ∈ N. If C divides Ψ , then a
strong Ψ -pulser that stabilises in T rounds can be used to
implement a synchronous C-counter that stabilises in at most
T rounds. If Ψ divides C, then a synchronous C-counter that
stabilises in T rounds can be used to implement a strong
Ψ -pulser that stabilises in at most T + Ψ − 1 rounds.

Proof For the first claim, set c(v, t) = 0 in any round t for
which p(v, t) = 1 holds and set c(v, t) = c(v, t−1)+1 mod
C in all other rounds. For the second claim, set p(v, t) = 1

stabilisation

Clock

Node 1 1 1 0 1 1 0 0 1 0 0

Node 2 0 1 0 1 1 0 0 1 0 0

Node 3 (faulty) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Node 4 0 0 1 0 1 0 0 1 0 0

strong pulser

Fig. 3 An example execution of a strong 3-pulser on n = 4 nodes with
f = 1 faulty node

in all rounds t in which c(v, t) mod Ψ = 0 and p(v, t) = 0
in all other rounds. 	

Another way of interpreting this relation is to view a strong
Ψ -pulser as a different encoding of the output of aΨ -counter:
since the system is synchronous, it suffices to communicate
when the counter overflows to value 0 and otherwise count
locally. This saves bandwidth when communicating the state
of the counter.

3.2 Firing squads via pulsers and consensus

We now show how an f -resilient strong pulser and f -
resilient binary consensus algorithm can be used to devise
an f -resilient firing squad algorithm. As a strong pulser can
be used to control repeated execution of a non-self-stabilising
algorithm, it enables us to run consensus on whether a fir-
ing event should be triggered or not repeatedly. As the firing
squad problem is at least as hard as consensus, this maintains
asymptotically optimal round complexity.

Recall that for the Byzantine firing squad problem, we are
interested in a liveness condition inwhich a firing event needs
to be generated if at least f + 1 non-faulty nodes v ∈ V \ F
recently saw GO(v, t) = 1 in some round t . To this end, we
have each node continuously inform all other nodes about its
GO values (i.e. their received input signals). Whenever node
v ∈ V sees f + 1 nodes w ∈ V claim GO(w, t) = 1, it will
memorise this and use input x(v) = 1 for the next consensus
instance. Otherwise, it will use the input value x(v) = 0; this
ensures that at least one non-faulty nodew hadGO(w, t) = 1
recently in case v uses input x(v) = 1. The validity condi-
tion of the (arbitrary) T (C)-round consensus routine C thus
ensures both liveness and safety for the resulting firing squad
algorithm. Apart from C, the algorithm concurrently runs a
strong Ψ -pulser P for some Ψ > T (C).

3.2.1 The firing squad algorithm

Given a strong Ψ -pulser algorithm P and a binary consensus
algorithm C, each node v stores the following variables on
every round t :

123

C. Lenzen, J. Rybicki

– p(v, t) ∈ {0, 1}, the output variable of P,
– x(v, t) ∈ {0, 1} and y(v, t) ∈ {0, 1}, the input and output

variables of C, and
– m(v, t) ∈ {0, 1}, an auxiliary variable used to memorise
whether sufficiently many GO signals were received to
warrant a firing event.

In the following algorithm, on each round t ∈ N any (correct)
node v ∈ V will broadcast the value GO(v, t) and receive the
values GO(v,w, t − 1) sent by every w ∈ V in the previous
round. The algorithm consists of each node v executing the
following operations1 in each round t ∈ N:

1. Broadcast GO(v, t).
2. If v received GO(v,w, t − 1) = 1 from at least f + 1

nodes w ∈ V , then set x(v, t) = 1 and m(v, t) = 1.
Otherwise, set x(v, t) = x(v, t − 1) and m(v, t) =
m(v, t − 1).

3. If p(v, t) = 1, start executing a new instance of C using
the value x(v, t) as input and set m(v, t) = 0 while
aborting any previously running instance. More specif-
ically, this entails the following:

– Maintain a local round counter r , which is initialised
to 1 on round t and increased by 1 after each round.

– Maintain the local state variables related to the con-
sensus routine C.

– On each round, execute round r of algorithm C; if the
state variables indicate that C terminated at v, then
do nothing.

– On the roundwhen r would attain the value T (C)+1,
stop the simulation (indicating this, e.g., by setting
r(v) = ⊥) and locally output the value of y(v) com-
puted by the simulation of C.

4. If C outputs y(v, t) = 1 on round t , then output
FIRE(v, t) = 1 and set x(v, t) = 0.
Otherwise, set FIRE(v, t) = 0.

5. If C outputs y(v, t) = 0 on round t and m(v, t) = 0,
then set x(v, t) = 0.

We now show that the above algorithm satisfies the prop-
erties required from a self-stabilising firing squad.

Theorem 2 Suppose that there exists an f -resilient strong
Ψ -pulser P and a consensus algorithm C, where Ψ > T (C).
Then there exists an f -resilient firing squad algorithm F
that

1 For better readability, we allow for statements about what a node
communicates appearing anywhere in the description. Note, however,
that sending operations happen after local computation, i.e., only infor-
mation sent in the previous rounds is available for computations.

– stabilises in time T (F) ≤ T (P) + Ψ ,
– has response time R(F) ≤ Ψ + T (C), and
– uses messages of size M(F) ≤ M(P) + M(C) + 1 bits.

Proof Let F be the algorithm described above. We now
argue that the algorithm satisfies the three properties given in
Sect. 2.4: (FS1) agreement, (FS2) safety, and (FS3) liveness.
Wewill show that the algorithm has a response time bounded
by R = T (C) + Ψ .

(FS1) Denote by t0 ≤ T (P) the round in which the execu-
tion of the strong Ψ -pulser P has stabilised and generated a
pulse. That is, for rounds t ≥ t0 we have that p(v, t) = 1 is
equivalent to t = t0+kΨ for some k ∈ N0. This implies that
the algorithm will correctly simulate instances of the con-
sensus routine C and locally output its decision on rounds
rk = t0 + T (C) + kΨ < tk+1 for k ∈ N0. The agree-
ment property of the firing squad thus follows from the
agreement property of consensus for all rounds t ≥ t0, as
FIRE(v, t) = 1 if and only if t = rk and the simulation of C
output the value y(v, t) = 1 in Step 4.

(FS2) Concerning safety, suppose v ∈ V \ F outputs
FIRE(v, tF) = 1 in round tF ≥ t1+ T (C). By the above dis-
cussion and the validity property of consensus, this implies
that there was some node w ∈ V \ F that started a (suc-
cessfully and completely simulated) instance of C with input
x(w, tk) = 1 in round tk = tF − T (C) = t0 + kΨ and that
tF = rk for some k ∈ N. Assume for contradiction that there
are no u ∈ V \ F and tG ∈ {tk−1, . . . , tk − 1} satisfying
GO(u, tG) = 1. Then, w does not set x(w, t ′) or m(w, t ′) to
1 in rounds t ′ ∈ {tk−1 + 1, . . . , tk} in Step 2. However, in
round tk−1 = tF − T (C) − Ψ = t0 + (k − 1)Ψ node w set
m(w, tk−1) = 0 (by Step 3) and thus w sets x(w, rk−1) = 0
later in round rk−1 (by Steps 4 and 5), the round in which the
previous instance of C locally output some value. This con-
tradicts the fact that x(w, tk) = 1 is set in round tk . Hence,
there must be u ∈ V \ F and tG ∈ {tk−1, . . . , tk − 1} such
that GO(u, tG) = 1.

Recall that the above claimed existence of u ∈ V \ F
and tG such that GO(u, tG) = 1 is necessary for the safety
condition to hold, but not sufficient. It is also required that
FIRE(v, t ′) = 0 for all t ′ ∈ {tG + 1, . . . , tF − 1}. To show
this, observe that the time tG shown to exist by the above
reasoning does not satisfy this additional constraint if and
only if some instance of C locally outputs y(v, t ′) = 1 at
node v in such a round t ′. The only possible such round t ′
is rk−1, as t ′ ≥ tG + 1 > tk−1 > rk−2. However, in this
case, each w ∈ V \ F sets x(w, rk−1) = 0 in round rk−1

regardless of m(w, rk−1) in Step 4, and we can conclude that
some w ∈ V \ F must set x(w, t ′′) = 1 in some round
t ′′ ∈ {rk−1 + 1, . . . , tk}. As above, it follows that there is a
round tG ∈ {tk−1, . . . , tk − 1} and a node u ∈ V \ F such
that GO(u, tG) = 1. Overall, we see that the safety condition
for a firing squad algorithm with response time

123

Near-optimal self-stabilising counting and firing squads

tF − tG ≤ rk − tk−1= tk + T (C) − tk−1 = Ψ + T (C) = R

is satisfied in rounds tF ≥ r1 = t1 + T (C).
(FS3) It remains to argue that the algorithm satisfies the

liveness property with response time bounded by R. Suppose
that at least f + 1 nodes v ∈ V \ F satisfy GO(v, tG) = 1
in some round tG ≥ t0 − 1. Then, in round tG + 1 ≥ t0
all nodes v ∈ V \ F set x(v, tG + 1) = 1 and m(v, tG +
1) = 1 according to Step 2. Assume for contradiction that
FIRE(v, t) = 0 for all t ∈ {tG + 1, . . . , tG + R}. Denote by
tG +1 ≤ tk ≤ tG +Ψ the unique round such that tk = t0+kΨ

for some k ∈ N0. The instance of C started in this round
will satisfy that all correct nodes v ∈ V \ F have input
x(v, tk) = 1: by our assumption towards contradiction, no
node can locally output y(v, t ′) = 1 during rounds t ′ ∈
{tG +1, . . . , tG +R}; thus, no node can set x(v, ·) to 0without
setting m(v, ·) to 0 first (by Step 3 and Step 5), which in
turn entails that at time tk an instance of C with value of
x(v, tk) = 1 is started before this happens. By the properties
ofC, it follows that each v ∈ V \ F locally outputs 1 in round
rk = tk + T (C) ≤ tG + Ψ + T (C) ≤ tG + R, contradicting
our previous assumption. We conclude that our algorithm
satisfies the liveness property with response time R = Ψ +
T (C) for rounds tG ≥ t0 − 1.

As t0 ≤ T (P), it follows that the algorithm satisfies (FS1)
agreement after round t0, (FS2) safety after round t1, and
(FS3) liveness after round t0 − 1. Since t1 = t0 + Ψ ≤
T (P) + Ψ , it follows that the algorithm is a firing squad
with response time at most R = Ψ + T (C) that stabilises
in max{T (P), T (P) + Ψ , T (P) − 1} = T (P) + Ψ rounds.
The bound on the message size follows from the fact that the
algorithm F only broadcasts 1 bit in Step 1 in addition to the
messages related to P and C. 	

4 Fromweak pulsers to strong pulsers

In Sect. 3, we established that it suffices to construct suit-
able strong pulsers to solve the synchronous counting and
firing squad problems. We will now reduce the construction
of strong pulsers to constructing weak pulsers.

4.1 Weak pulsers

A weak Φ-pulser is similar to a strong pulser, but does not
guarantee a fixed frequency of pulses. However, it guarantees
to eventually generate a pulse followed by Φ − 1 rounds of
silence. Formally, we define weak pulsers as follows.

Definition 2 (Weak pulsers)An algorithmW is an f -resilient
weakΦ-pulser that stabilises in T (W) rounds if the following
holds. In each round t ∈ N, each node v ∈ V produces an

Clock

Node 1 0 1 1 0 1 0 0 0 0 1

Node 2 0 1 1 0 1 0 0 0 0 1

Node 3 (faulty) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Node 4 0 0 1 0 1 0 0 0 0 1

good pulse

stabilisation

Fig. 4 An example execution of a weak 4-pulser on n = 4 nodes with
f = 1 faulty node. Eventually, a good pulse is generated (highlighted
column). A good pulse is followed by at least three rounds in which no
correct node generates a pulse. In contrast, the pulse two rounds earlier
is not good, as it is followed by only one round of silence. Unlike strong
pulsers,weak pulsers allow for behaviourwhere the correct nodes do not
generate any pulses for some time after a good pulse (last two columns)

output a(v, t). Moreover, there exists a round t0 ≤ T (W)

such that

W1 for all v,w ∈ V \ F and all rounds t ≥ t0, a(v, t) =
a(w, t),

W2 a(v, t0) = 1 for all v ∈ V \ F , and
W3 a(v, t) = 0 for all v ∈ V \ F and t ∈ {t0 + 1, . . . , t0 +

Φ − 1}.

We say that on round t0 a good pulse is generated by W.

Figure 4 illustrates a weak 3-pulser. Note that while the def-
inition formally only asks for one good pulse, the fact that
the algorithm guarantees this property for any starting state
implies that there is a good pulse at least once every T (W)

rounds.

4.2 Constructing strong pulsers fromweak pulsers

Recall that a strong pulser can be obtained by having nodes
locally count down the rounds until the next pulse, provided
we have a way of ensuring that the local counters eventu-
ally agree. This can be achieved by using a weak pulser to
control a suitable consensus routine, where again we always
have only a single instance running at any time. While some
instances will be aborted before they can complete, this will
not affect the counters, as we only adjust them when the con-
sensus routine completes. On the other hand, the weak pulser
guarantees thatwithin T (W) rounds, therewill be a pulse fol-
lowed by Φ − 1 rounds of silence, enabling to complete a
run of any consensus routine C satisfying T (C) ≤ Φ. Thus,
for constructing a strong Ψ -pulser, we assume that we have
the following f -resilient algorithms available:

– a T (C)-round Ψ -value consensus algorithm C and
– a weak Φ-pulser W for Φ ≥ T (C).

123

C. Lenzen, J. Rybicki

Given the above two algorithms,we showhow to construct
an f -resilient strongΨ -pulser for anyΨ > 1. The pulserwill
stabilise in time T (W) + T (C) + Ψ and the message size of
the strong pulser will be bounded by M(W) + M(C).

As mentioned earlier, the idea is to have nodes simply
count locally between pulses and use the weak pulser to
execute a single instance of the consensus algorithmC. Even-
tually, a good pulse will trigger an instance consistently and
establish agreement among the local counters. Leveraging
validity,we can ensure that the counterswill never be affected
by the consensus routine running in the background again.

4.2.1 Variables

Besides the variables of the weak pulser W and (a single
copy of) C, our construction of a strong Ψ -pulser uses the
following local variables:

– a(v, t) ∈ {0, 1} is the output variable of the weak Φ-
pulser W,

– b(v, t) ∈ {0, 1} is the output variable of the strong Ψ -
pulser we are constructing,

– c(v, t) ∈ [Ψ] is the local counter keeping track of when
the next pulse occurs, and

– d(v, t) ∈ {1, . . . , T (C)} ∪ {⊥} keeps track of how many
rounds an instance of C has been executed since the last
pulse from the weak pulser W. The value ⊥ denotes that
the consensus routine has stopped.

4.2.2 Strong pulser algorithm

The algorithm is as follows. Each node v executes the weak
Φ-pulser algorithm W in addition to the following instruc-
tions on each round t ∈ N:

1. If c(v, t) = 0, then set b(v, t) = 1 and otherwise
b(v, t) = 0.

2. Set c′(v, t) = c(v, t).
3. If d(v, t) �= ⊥, then

(a) Execute the instructions of C for round d(v, t).
(b) If d(v, t) �= T (C), set d(v, t + 1) = d(v, t) + 1.
(c) If d(v, t) = T (C), then

i Set c′(v, t) = y(v, t) + T (C) mod Ψ , where
y(v, t) is the output value of C.

ii Set d(v, t + 1) = ⊥.

4. Update c(v, t + 1) = c′(v, t) + 1 mod Ψ .
5. If a(v, t) = 1, then

(a) Start a new instance of C using c′(v, t) as input
(resetting all state variables of C).

(b) Set d(v, t + 1) = 1.

In the above algorithm, the first step simply translates the
counter value to the output of the strong pulser. We then use
a temporary variable c′(v, t) to hold the counter value, which
is overwritten by the output ofC (increased by T (C) mod Ψ)
if it completes a run in this round. In either case, the counter
value needs to be increased by 1 mod Ψ for the next round.
The remaining code does the bookkeeping for an ongoing
run of C and starting a new run if the weak pulser generates
a pulse.

Observe that in the above algorithm, each node only sends
messages related to the weak pulser W and the consensus
algorithmC. Thus, there is no additional overhead in commu-
nication and the message size is bounded by M(W)+ M(C).
Hence, it remains to show that the local counters c(v, t)
implement a strong Ψ -counter.

Theorem 3 The variables c(v, t) in the above algorithm
implement a synchronousΨ -counter that stabilises in T (W)+
T (C)+1 rounds and uses messages of at most M(W)+M(C)

bits.

Proof Suppose that round t0 ≤ T (W) is as in Defini-
tion 2, that is, a(v, t) = a(w, t) for all t ≥ t0, and a
good pulse is generated in round t0. Thus, all correct nodes
participate in simulating an instance of C during rounds
t0 + 1, . . . , t0 + T (C), since no pulse is generated during
rounds t0 + 1, . . . , t0 + T (C) − 1, and thus, also no new
instance is started in the last step of the code during these
rounds.

By the agreement property of the consensus routine, it
follows that c′(v, t0 + T (C)) = c′(w, t0 + T (C)) for all
v,w ∈ V \ F after Step 3ci. By Steps 2 and 4, the same will
hold for both c(·, t ′) and c′(·, t ′), t ′ > t0 + T (C), provided
that we can show that in rounds t ′ > t , Step 3ci never sets
c′(v, t) to a value different than c(v, t) for any v ∈ V \ F ;
as this also implies that c(v, t ′ + 1) = c(v, t ′) + 1 mod Ψ

for all v ∈ V \ F and t ′ > t0 + T (C), this will complete the
proof.

Accordingly, consider any execution of Step 3ci in a round
t ′ > t0 + T (C). The instance of C terminating in this round
was started in round t ′ − T (C) > t0. However, in this round
the weak pulser must have generated a pulse, yielding that,
in fact, t ′ − T (C) ≥ t0 + T (C). Assuming for contradiction
that t ′ is the earliest round in which the claim is violated,
we thus have that c′(v, t ′ − T (C)) = c′(w, t ′ − T (C)) for
all v,w ∈ V \ F , i.e., all correct nodes used the same
input value c for the instance. By the validity property of
C, this implies that v ∈ V \ F outputs y(v, t ′) = c in
round t ′ and sets c′(v, t ′) = c + T (C) mod Ψ . However,
since t ′ is the earliest round of violation, we already have
that c′(v, t ′) = c(v, t ′) = c + T (C) mod Ψ after the sec-
ond step, contradicting the assumption and showing that the
execution stabilised in round t0 + T (C) + 1 ≤ T (W) +
T (C) + 1. 	

123

Near-optimal self-stabilising counting and firing squads

Together with Lemma 1, we get the following corollary.

Corollary 1 Let Ψ > 1. Suppose that there exists an f -
resilient Ψ -value consensus routine C and a weak Φ-pulser
W, where Φ ≥ T (C). Then there exists an f -resilient strong
Ψ -pulser P that

– stabilises in time T (P) ≤ T (C) + T (W) + Ψ , and
– uses messages of size at most M(P) ≤ M(C) + M(W)

bits.

5 Constructing weak pulsers from less
resilient strong pulsers

Having seen that we can construct strong pulsers from weak
pulsers using a consensus algorithm, the only piece missing
in our framework is the existence of efficient weak pulsers.
Indeed, having a pair of an f -resilient weak pulser and a
consensus routine, we immediately obtain a corresponding
firing squad algorithm.

In this section, we devise a recursive construction of a
weak pulser from strong pulsers of smaller resilience. Given
that a 0-resilient pulser is trivial and that we can obtain strong
pulsers from weak ones without losing resilience, this is suf-
ficient for constructing strong pulsers of optimal resilience
from consensus algorithms of optimal resilience.

Our approach bears similarity to our constructions from
earlier work [27], but attains better bit complexity and can
be used with an arbitrary consensus routine. At a high level,
we take the following approach as also illustrated in Fig. 5:

1. Partition the network into two parts, each running a
strong pulser (with small resilience). Our construction
guarantees that at least one of the strong pulsers sta-
bilises.

2. Filtering of pulses generated by the strong pulsers:

(a) Nodes consider the observed pulses generated by the
strong pulsers as potential pulses.

(b) Since one of the strong pulsers may not stabilise,
it may generate spurious pulses, that is, pulses that
only a subset of the correct nodes observe.

(c) We limit the frequency of the spurious pulses using
a filtering mechanism based on threshold voting.

3. We force any spurious pulse to be observed by all cor-
rect nodes by employing a silent consensus routine. In
silent consensus, no message is sent (by correct nodes)
if all correct nodes have input 0. Thus, if all nodes
actually participating in an instance have input 0, non-
participating nodes behave as if they participated with
input 0. This avoids the chicken-and-egg problem of
having to solve consensus on participation in the con-

sensus routine. Wemake sure that if any node uses input
1, i.e., the consensus routine may output 1, all nodes
participate. Thus, when a pulse is generated, all correct
nodes agree on this.

4. If a potential pulse generated by one of the pulsers both
passes the filtering step and the consensus instance out-
puts “1”, then a weak pulse is generated.

5.1 The filtering construction

Our goal is to construct a weak Φ-pulser (for sufficiently
largeΦ)with resilience f .We partition the set of n nodes into
twodisjoint setsV0 andV1 withn0 andn1 nodes, respectively.
Thus, we have n = n0 + n1. For i ∈ {0, 1}, let Pi be an fi -
resilient strong Ψi -pulser. That is, Pi generates a pulse every
Ψi rounds once stabilised, granted that Vi contains at most
fi faulty nodes. Nodes in block i execute the algorithm Pi .
Our construction tolerates f = f0 + f1 + 1 faulty nodes.
Sincewe consider Byzantine faults, we require the additional
constraint that f < n/3.

Let ai (v, t) ∈ {0, 1} indicate the output bit of Pi for a
node v ∈ Vi . Note that we might have a block i ∈ {0, 1}
that contains more than fi faulty nodes. Thus, it is possible
that the algorithm Pi never stabilises. In particular, we might
have the situation that some of the nodes in block i produce
a pulse, but others do not. We say that a pulse generated by
such a Pi is spurious. We proceed by showing how to filter
out such spurious pulses if they occur too often.

5.1.1 Filtering rules

We define five variables with the following semantics:

– mi (v, t + 1) indicates whether at least ni − fi nodes
u ∈ Vi sent ai (u, t) = 1,

– Mi (v, t +1) indicates whether at least n− f nodes u ∈ V
sent mi (u, t) = 1,

– �i (v, t) indicates whenwas the last time block i triggered
a (possibly spurious) pulse,

– wi (v, t) is a cooldown counter that indicates how many
rounds any firing events coming from block i are ignored,
and

– bi (v, t) indicates whether node v accepts a firing event
from block i .

The first two of the above variables are set according to the
following rules:

– mi (v, t + 1) = 1 if and only if |{u ∈ Vi : ai (v, u, t) =
1|} ≥ ni − fi ,

– Mi (v, t + 1) = 1 if and only if |{u ∈ V : mi (v, u, t) =
1} ≥ n − f ,

123

C. Lenzen, J. Rybicki

Filtering 0

Strong pulser P0 Strong pulser P1

Filtering 1

Silent consensus 0

Silent consensus 1

Weak pulser

 n/2 nodes n/2 nodes

2. All n

3. Use consensus to agree whether the block generated
 a pulse recently.

1. The network is divided into two blocks.
 Each block runs a strong pulser instance, where
 the pulsers have coprime frequencies.

4. A pulse is generated if one of the consensus instances

Fig. 5 Overview of the weak pulser construction. Light and dark grey
boxes correspond to steps of block 0 and 1, respectively. The small
rounded boxes denote the pulser algorithms Pi that are run (in parallel)

on two disjoint sets of roughly n/2 nodes, whereas the wide rectangu-
lar boxes denote to the filtering steps in which all of the n nodes are
employed. The arrows indicate the flow of information for each block

where ai (v, u, t) and mi (v, u, t) denote the values for a(·)
andm(·) node v received from u at the end of round t , respec-
tively. Furthermore, we update the �(·, ·) variables using the
rule

�i (v, t + 1) =
{
0 if |{u ∈ V : mi (u, t) = 1}| ≥ f + 1,

y otherwise,

where y = min{Ψi , �i (v, t) + 1}. In words, the counter is
reset on round t+1 if v has proof that at least one correct node
u had mi (u, t) = 1, that is, some u observed Pi generating a
(possibly spurious) pulse.

We reset the cooldown counter wi whenever suspicious
activity occurs. The idea is that it is reset to its maximum
value C by node v in the following two cases:

– some other correct node u �= v observed block i gener-
ating a pulse, but the node v did not

– block i generated a pulse, but this happened either too
soon or too late.

To capture this behaviour, the cooldown counter is set with
the rule

wi (v, t + 1) =

⎧⎪⎨
⎪⎩

C if Mi (v, t + 1) = 0 and �i (v, t + 1) = 0,

C if Mi (v, t + 1) = 1 and �i (v, t) �= Ψi − 1,

y otherwise,

where y = max{wi (v, t) − 1, 0} and C = max{Ψ0, Ψ1} +
Φ+2. Finally, a node v accepts a pulse generated by block i if
the node’s cooldown counter is zero and it saw at least n − f
nodes supporting the pulse. The variable bi (v, t) indicates
whether node v accepted a pulse from block i on round t .

The variable is set using the rule

bi (v, t) =
{
1 if wi (v, t) = 0 and Mi (v, t) = 1,

0 otherwise.

5.2 Analysis of the filtering construction

We now analyse when the nodes accept firing events gen-
erated by the blocks. We say that a block i is correct if it
contains at most fi faulty nodes. Note that since there are
at most f = f0 + f1 + 1 faulty nodes, at least one block
i ∈ {0, 1} will be correct. Thus, eventually the algorithm Pi

run by a correct block i will stabilise. This yields the follow-
ing lemma.

Lemma 2 For some i ∈ {0, 1}, the strong pulser algorithm
Pi stabilises by round T (Pi).

We proceed by establishing some bounds on when (pos-
sibly spurious) pulses generated by block i are accepted. We
start with the case of having a correct block i .

Lemma 3 If block i is correct, then there exists a round r0 ≤
T (Pi) + 2 such that for each v ∈ V \ F, Mi (v, t) = 1 if and
only if t = r0 + kΨi for k ∈ N0.

Proof If block i is correct, then the algorithm Pi stabilises
by round T (Pi). Hence, there is some t0 ≤ T (P) so that the
output variable ai (·) of Pi satisfies

ai (v, t) = 1 if and only if t = t0 + kΨi for k ∈ N0

holds for all t ≥ t0. We will now argue that r0 = t0 + 2
satisfies the claim of the lemma.

If Pi generates a pulse on round t ≥ t0, then at least ni − fi

correct nodes u ∈ Vi \ F have ai (u, t) = 1. Therefore, for

123

Near-optimal self-stabilising counting and firing squads

all v ∈ V \ F we have mi (v, t + 1) = 1, and consequently,
Mi (v, t + 2) = 1. Since block i is correct, there are at most
fi faulty nodes in the set Vi . Observe that by Lemma 1 strong
pulsers solve synchronous counting, which in turn is as hard
as consensus [11]. This implies that wemust have fi < ni/3,
as Pi is a strong fi -resilient pulser for ni nodes. Therefore,
if Pi does not generate a pulse on round t ≥ t0, then at most
fi < ni − fi faulty nodes u may claim ai (u, t) = 1. This
yields thatmi (v, t +1) = Mi (v, t +2) = 0 for all v ∈ V \ F .
	

We can now establish that a correct node accepts a pulse
generated by a correct block i exactly every Ψi rounds.

Lemma 4 If block i is correct, then there exists a round t0 ≤
T (Pi) + 2C such that for each v ∈ V \ F, bi (v, t) = 1 for
any t ≥ t0 if and only if t = t0 + kΨi for k ∈ N0.

Proof Lemma 3 implies that there exists r0 ≤ T (Pi) + 2
such that both Mi (v, t) = 1 and �i (v, t) = 0 hold for t ≥ r0
if and only if t = r0 + kΨi for k ∈ N0. It follows that
wi (v, t + 1) = max{wi (v, t)− 1, 0} for all such t and hence
wi (v, t ′) = 0 for all t ′ ≥ r0 + C + 2. The claim now follows
from the definition of bi (v, t ′), the choice of r0, and the fact
that Ψi ≤ C − 2. 	

It remains to deal with the faulty block. If we have Byzan-
tine nodes, then a block i with more than fi faulty nodes
may attempt to generate spurious pulses. However, the filter-
ing mechanism prevents the spurious pulses from occuring
too frequently.

Lemma 5 Let v, v′ ∈ V \ F and t > 2. Suppose that
bi (v, t) = 1 and t ′ > t is minimal such that bi (v

′, t ′) = 1.
Then t ′ = t + Ψi or t ′ > t + C.

Proof Suppose that bi (v, t) = 1 for some correct node v ∈ V
and t > 2. Since bi (v, t) = 1, wi (v, t) = 0 and Mi (v, t) =
1. Because Mi (v, t) = 1, there must be at least n − 2 f > f
correct nodes u such thatmi (u, t −1) = 1. Hence, �i (u, t) =
0 for every node u ∈ V \ F .

Recall that t ′ > t is minimal so that bi (v
′, t ′) = 1.

Again, wi (v
′, t ′) = 0 and Mi (v

′, t ′) = 1. Moreover, since
�i (v

′, t) = 0, wemust have �i (v
′, r) < Ψi −1 for all t ≤ r <

t + Ψi − 1. This implies that t ′ ≥ t + Ψi , as wi (v
′, t ′) = 0

and Mi (v
′, t ′) = 1 necessitate that �i (v

′, t ′ −1) = Ψi −1. In
the event that t ′ �= t + Ψi , the cooldown counter must have
been reset at least once, i.e., wi (v

′, r) = C holds for some
t < r ≤ t ′ − C , implying that t ′ > t + C . 	

5.3 Introducing silent consensus

The above filteringmechanismprevents spurious pulses from
occurring too often: if some node accepts a pulse from block
i , then no node accepts a pulse from this block for at least Ψi

rounds. We now strengthen the construction to enforce that
any (possibly spurious) pulse generated by block i will be
accepted by either all or no correct nodes. In order to achieve
this, we employ silent consensus.

Definition 3 (Silent consensus)We call a consensus protocol
silent, if in each execution in which all correct nodes have
input 0, correct nodes send no messages.

The idea is that this enables to have consistent executions
even if not all correct nodes actually take part in an execu-
tion, provided we can ensure that in this case all participating
correct nodes use input 0: the non-participating nodes send
no messages either, which is the exact same behavior partic-
ipating nodes would exhibit. We show that silent consensus
protocols can be obtained fromnon-silent ones using a simple
transformation.

Theorem 4 Any consensus protocol C can be transformed
into a silent binary consensus protocol C′ with T (C′) =
T (C) + 2 and the same resilience and message size.

Proof The new protocolC′ can be seen as a “wrapper” proto-
col that manipulates the inputs and then lets each node decide
whether it participates in an instance of the original proto-
col. The output of the original protocol, C, will be taken into
account only by correct nodes that participate throughout the
protocol, as specified below.

In thefirst roundof the newprotocol,C′, eachparticipating
nodebroadcasts its input if it is 1 andotherwise sends nothing.
If a node receives fewer than n− f times the value 1, it sets its
input to 0. In the second round, the same pattern is applied.

Subsequently, C is executed by all nodes that received at
least f +1messages in the first round. If during the execution
of C a node

(i) cannot process the messages received in a given round
in accordance with C (this may happen e.g. when not all
of the correct nodes participate in the instance, which is
not covered by the model assumptions of C),

(ii) would have to send more bits than it would have accord-
ing to the known bound M(C), or

(iii) would violate the running time bound of C,

then the node (locally) aborts the execution of C. Finally, a
node outputs 0 in the new protocol if it did not participate in
the execution of C, aborted it, or received f or fewer mes-
sages in the second round, and it outputs the result according
to the run of C otherwise.

Wefirst show that the new protocol,C′, is a consensus pro-
tocolwith the same resilience asC and the claimed bounds on
communication complexity and running time.Wedistinguish
two cases. First, suppose that all correct nodes participate in
the execution of C at the beginning of the third round. As all
nodes participate, the bounds on resilience, communication

123

C. Lenzen, J. Rybicki

complexity, and running time that apply toC hold in this exe-
cution, and no node will quit executing the protocol before
termination. To establish agreement and validity, again we
distinguish two cases. If all nodes output the outcome of
the execution of C, these properties follow right away since
C satisfies them; here we use that although the initial two
rounds might affect the inputs of nodes, a node will change
its input to 0 only if there is at least one correct node with
input 0. On the other hand, if some node outputs 0 because it
received f or fewer messages in the second round of C′, no
node received more than 2 f < n− f messages in the second
round. Consequently, all nodes executed C with input 0 and
computed output 0 by the agreement property of C, implying
agreement and validity of the new protocol.

The second case is that some correct node does not par-
ticipate in the execution of C. Thus, it received at most f
messages in the first round of C′, implying that no node
received more than 2 f < n − f messages in this round.
Consequently, correct nodes set their input to 0 and will not
transmit in the second round.While some nodes may execute
C, all correct nodes will output 0 no matter how C behaves.
Since nodes abort the execution of C if the bounds on com-
munication or time complexity are about to be violated, the
claimed bounds for the new protocol hold.

It remains to show that the new protocol is silent. Clearly,
if all correct nodes have input 0, they will not transmit in
the first two rounds. In particular, they will not receive more
than f messages in the first round and not participate in the
execution of C. Hence correct nodes do not send messages
at all, as claimed. 	

For example, plugging in the phase king protocol [3], we
get the following corollary.

Corollary 2 For any f < n/3, there exists a deterministic
f -resilient silent binary consensus protocol C with T (C) ∈
�(f) and M(C) ∈ O(1).

5.4 Using silent consensus to prune spurious pulses

As the filtering construction bounds the frequency at which
spurious pulsesmay occur from above, we canmake sure that
at each time, only one consensus instance can be executed
for each block. However, we need to further preprocess the
inputs, in order to make sure that (i) all correct nodes partic-
ipate in an instance or (ii) no participating correct node has
input 1; here, output 1 means agreement on a pulse being
triggered, while output 0 results in no action.

Recall that bi (v, t) ∈ {0, 1} indicates whether v observed
a (filtered) pulse of the strong pulser Pi in round t . More-
over, assume that C is a silent consensus protocol running
in T (C) rounds. We use two copies Ci , where i ∈ {0, 1},
of the consensus routine C. We require that Ψi ≥ T (C),
which guarantees by Lemma 5 that (after stabilisation) every

instance of C has sufficient time to complete. Adding one
more level of voting to clean up the inputs, we arrive at the
following routine.

5.4.1 The pruning algorithm

Besides the local variables of Ci , the algorithm will use the
following variables for each v ∈ V and round t ∈ N:

– yi (v, t) ∈ {0, 1} denotes the output value of consensus
routine Ci ,

– ri (v, t) ∈ {1, . . . , T (C)}∪ {⊥} is a (local) round counter
for controlling Ci , and

– Bi (v, t) ∈ {0, 1} is the output of block i .

Now each node v executes the following on round t :

1. Broadcast the value bi (v, t).
2. If bi (v,w, t − 1) = 1 for at least n − 2 f nodes w ∈ V ,

then reset ri (v, t) = 1.
3. If ri (v, t) = 1, then

(a) start a new instance of Ci , that is, re-initialise the
variables of Ci correctly,

(b) use input 1 if bi (v,w, t − 1) = 1 for at least n − f
nodes w ∈ V and 0 otherwise.

4. If ri (v, t) = T (C), then

(a) execute round T (C) of Ci ,
(b) set ri (v, t + 1) = ⊥,
(c) set Bi (v, t + 1) = yi (v, t), where yi (v, t) ∈ {0, 1}

is the output variable of Ci .

Otherwise, set Bi (v, t + 1) = 0.
5. If ri (v, t) /∈ {T (C),⊥}, then

(a) execute round ri (v, t) of Ci , and
(b) set ri (v, t + 1) = ri (v, t) + 1.

5.4.2 Analysis

Besides the communication used for computing the values
bi (·), the above algorithm uses messages of size M(C) + 1,
as M(C) bits are used when executing Ci and one bit is used
to communicate the value of bi (v, t).

We say that v ∈ V \ F executes the round r ∈
{1, . . . , T (C)} ofCi in round t iff ri (v, t) = r . By Lemma 5,
in rounds t > T (C)+2, there is always at most one instance
of Ci being executed, and if so, consistently.

Corollary 3 Suppose that v ∈ V \ F executes round 1 of Ci in
some round t > T (C)+2. Then there is a subset U ⊆ V \ F
such that each u ∈ U executes round r ∈ {1, . . . , T (C)} of
Ci in round t + r − 1 and no u ∈ V \ (F ∪ U) executes any
round of Ci in round t + r − 1.

123

Near-optimal self-stabilising counting and firing squads

Exploiting silence of Ci and the choice of inputs, we can
ensure that the case U �= V \ F causes no trouble.

Lemma 6 Let t > T (C)+2 and U be as in Corollary 3. Then
U = V \ F or each u ∈ U has input 0 for the respective
instance of Ci .

Proof Suppose that u ∈ U starts an instance with input 1 in
round t ′ ∈ {t − T (C) − 1, . . . , t}. Then bi (w, t ′ − 1) = 1
for at least n − 2 f nodes w ∈ V \ F , since u received
bi (u, w, t ′ − 1) = 1 from n − f nodes w ∈ V . Thus, each
v ∈ V \ F received bi (v,w, t ′ −1) = 1 from at least n −2 f
nodes w and sets ri (v, t ′) = 1, i.e., U = V \ F . The lemma
now follows from Corollary 3. 	

Recall that if all nodes executing Ci have input 0, non-
participating correct nodes behave exactly as if they executed
Ci as well, i.e., they send no messages. Hence, ifU �= V \ F ,
all nodes executing the algorithm will compute output 0.
Therefore, Corollary 3, Lemma 5, and Lemma 6 imply the
following corollary.

Corollary 4 In rounds t > T (C) + 2 it holds that Bi (v, t) =
Bi (w, t) for all v,w ∈ V \ F and i ∈ {0, 1}. Furthermore,
if Bi (v, t) = 1 for v ∈ V \ F and t > T (C) + 2, then the
minimal t ′ > t so that Bi (v, t ′) = 1 (if it exists) satisfies
either t ′ = t +Ψi or t ′ > t +C = t +max{Ψ0, Ψ1}+Φ +2.

Finally, we observe that our approach does not filter out
pulses from correct blocks.

Lemma 7 If block i is correct, there is a round t0 ≤ T (Pi)+
2C + T (C) + 1 so that for any t ≥ t0, Bi (v, t) = 1 if and
only if t = t0 + kΨi for some k ∈ N0.

Proof Lemma 4 states the same for the variables bi (v, t) and
a round t ′0 ≤ T (Pi)+2C . If bi (v, t) = 1 for all v ∈ V \F and
some round t , all correct nodes start executing an instance of
Ci with input 1 in round t+1.As, byCorollary 3, this instance
executes correctly and, by validity of Ci , outputs 1 in round
t + T (C), all correct nodes satisfy Bi (v, t + T (C)+ 1) = 1.
Similarly, Bi (v, t + T (C)+1) = 0 for such v and any t ≥ t ′0
with bi (v, t) = 0. 	

5.5 Obtaining the weak pulser

Finally, we define the output variable of our weak pulser as

B(v, t) = max{B0(v, t), B1(v, t)}.

As we have eliminated the possibility that Bi (v, t) �=
Bi (w, t) for v,w ∈ V \ F and t > T (C) + 2, Property W1
holds. Since there is at least one correct block i by Lemma 2,
Lemma 7 shows that there will be good pulses (satisfying
Properties W2 and W3) regularly, unless block 1 − i inter-
feres by generating pulses violating Property W3 (i.e., in too

short order after a pulse generated by block i). Here the fil-
tering mechanism comes to the rescue: as we made sure that
pulses are either generated at the chosen frequency Ψi or a
long period of C rounds of generating no pulse is enforced
(Corollary 4), it is sufficient to choose Ψ0 and Ψ1 as coprime
multiples of Φ.

Accordingly, we pickΨ0 = 2Φ andΨ1 = 3Φ and observe
that this results in a good pulse within O(Φ) rounds after the
Bi stabilised.

Lemma 8 In the construction described in the previous two
subsections, choose Ψ0 = 2Φ and Ψ1 = 3Φ for any Φ ≥
T (C). Then B(v, t) is the output variable of a weak Φ-pulser
with stabilisation time max{T (P0), T (P1)} + O(Φ).

Proof We have that C = max{Ψ0, Ψ1}+Φ +2 ∈ O(Φ). By
the above observations, there is a round

t ∈ max{T (P0), T (P1)} + T (C) + O(Φ)

⊆ max{T (P0), T (P1)} + O(Φ)

satisfying the following four properties. For either block i ∈
{0, 1}, we have by Corollary 4 that

1. Bi (v, t ′) = Bi (w, t ′) and B(v, t ′) = B(w, t ′) for any
v,w ∈ V \ F and t ′ ≥ t .

Moreover, for a correct block i and for all v ∈ V \ F we have
from Lemma 7 that

2. Bi (v, t) = Bi (v, t + Ψi) = 1,
3. Bi (v, t ′) = 0 for all t ′ ∈ {t + 1, . . . , t + Φ − 1} ∪ {t +

Ψi + 1, . . . , t + Ψi + Φ − 1},

and for a (possibly faulty) block 1 − i we have from Corol-
lary 4 that

4. if B1−i (v, t ′) = 1 for some v ∈ V \ F and t ′ ∈ {t +
1, . . . , t + Ψi + Φ − 1}, then B1−i (u, t ′′) = 0 for all
u ∈ V \ F and t ′′ ∈ {t ′ + 1, . . . , t ′ + C} that do not
satisfy t ′′ = t ′ + kΨ1−i for some k ∈ N0.

Now it remains to argue that a good pulse is generated.
Suppose that i is a correct block given by Lemma 2. By the
first property, it suffices to show that a good pulse occurs in
round t or in round t +Ψi . From the second property, we get
for all v ∈ V \F that B(v, t) = 1 and B(v, t +Ψi) = 1. If the
pulse in round t is good, the claim holds. Hence, assume that
there is a round t ′ ∈ {t +1, . . . , t +Ψi −1} in which another
pulse occurs, that is, B(v, t ′) = 1 for some v ∈ V \ F . This
entails that B1−i (v, t ′) = 1 by the third property. We claim
that in this case the pulse in round t + Ψi is good. To show
this, we exploit the fourth property. Recall that C > Ψi +Φ,
i.e., t ′ + C > t + Ψi + Φ. We distinguish two cases:

123

C. Lenzen, J. Rybicki

– In the case i = 0, we have that t ′ + Ψ1−i = t ′ + 3Φ =
t ′ + Ψ0 + Ψ > t + Ψ0 + Φ, that is, the pulse in round
t + Ψ0 = t + Ψi is good.

– In the case i = 1, we have that t ′ + Ψ1−i = t ′ + 2Φ <

t+3Φ = t+Ψ1 and t ′+2Ψ1−i = t ′+4Φ = t ′+Ψ1+Φ >

t + Ψ1 + Φ, that is, the pulse in round t + Ψ1 = t + Ψi

is good.

In either case, a good pulse occurs by round

t + max{Ψ0, Ψ1} ∈ max{T (P0), T (P1)} + O(Φ).

	

From the above lemma and the constructions discussed in

this section, we get the following theorem.

Theorem 5 Let n = n0+n1 and f = f0+ f1+1, where n >

3 f . Suppose that C is an f -resilient consensus algorithm on
n nodes and let Φ ≥ T (C) + 2. If there exist fi -resilient
strong Ψi -pulser algorithms on ni nodes, where Ψ0 = 2Φ
and Ψ1 = 3Φ, then there exists an f -resilient weak Φ-pulser
W on n nodes that satisfies

– T (W) ∈ max{T (P0), T (P1)} + O(Φ),
– M(W) ∈ max{M(P0), M(P1)} + O(M(C)).

Proof By Theorem 4, we can transform C into a silent
consensus protocolC′, at the cost of increasing its round com-
plexity by 2. Using C′ in the construction, Lemma 8 shows
that we obtain a weak Φ-pulser with the stated stabilisation
time, which by construction tolerates f faults. Concerning
the message size, note that we run P0 and P1 on disjoint node
sets. Apart from sendingmax{M(P0), M(P1)} bits per round
for its respective strong pulser, each node may send M(C)

bits each to each other node for the two copies Ci of C it runs
in parallel, plus a constant number of additional bits for the
filtering construction including its outputs bi (·, ·). 	

6 Main results

Finally, in this section we put the developed machinery to
use. As ourmain result, we showhow to recursively construct
strong pulsers out of consensus algorithms.

Theorem 6 Suppose that we are given a family of f -resilient
deterministic consensus algorithms C(f) running on any
number n > 3 f of nodes in T (C(f)) rounds using
M(C(f))-bit messages, where both T (C(f)) and M(C(f))

are non-decreasing in f . Then, for any Ψ ∈ N, f ∈ N0, and
n > 3 f , there exists a strong Ψ -pulser P on n nodes that
stabilises in time

T (P) ∈ (1 + o(1))Ψ + O

⎛
⎝�log f
∑

j=0

T
(

C
(
2 j

))⎞
⎠

and uses messages of size at most

M(P) ∈ O

⎛
⎝1 +

�log f
∑
j=0

M
(

C
(
2 j

))⎞
⎠

bits, where the sums are empty for f = 0.

Proof We show by induction on k that f -resilient strong Ψ -
pulsersP(f , Ψ) on n > 3 f nodes with the stated complexity
exist for any f < 2k , with the addition that the (bounds on)
stabilisation time and message size of our pulsers are non-
decreasing in f . We anchor the induction at k = 0, i.e.,
f = 0, for which, trivially, a 0-resilient strong Ψ -pulser
with n ∈ N nodes is given by one node generating pulses
locally and informing the other nodes when to do so. This
requires 1-bit messages and stabilises in Ψ + 1 rounds.

Now assume that 2k ≤ f < 2k+1 for k ∈ N0 and the claim
holds for all 0 ≤ f ′ < 2k . Since 2 · (2k −1)+1 = 2k+1 −1,
there are f0, f1 < 2k such that f = f0 + f1 + 1. Moreover,
as n > 3 f > 3 f0 + 3 f1, we can pick ni > 3 fi for both
i ∈ {0, 1} satisfying n = n0 + n1. Let P(f ′, Ψ ′) denote a
strong Ψ ′-pulser that exists by the induction hypothesis for
f ′ < 2k .
Choose Φ ∈ O(logΨ) + T (C(f)) in accordance with

Theorem 1 for L = Ψ ; without loss of generality we may
assume that the O(logΨ) term is at least 2, that is, Φ ≥ 2+
T (C(f)). We apply Theorem 5 to C(f) and Pi = P(fi , Ψi),
where Ψ0 = 2Φ and Ψ1 = 3Φ, to obtain a weak Φ-pulser
W with resilience f on n nodes and stabilisation time of

T (W) ∈ max{T (P0), T (P1)} + O(Φ),

and message size of

M(W) ∈ max{M(P0), M(P1)} + O(M(C(f))).

Next, we apply Theorem 1 to C(f) to obtain an f -resilient
Ψ -value consensus protocol C′ that uses messages of size
M(C(f)) bits and runs in T (C′) ≤ Φ rounds. We feed the
weak pulser W and the multivalued consensus protocol C′
into Corollary 1 to obtain an f -resilient strong Ψ -pulser P
that stabilises in

T (P) ≤ T (C′) + T (W) + Ψ ≤ T (W) + Ψ + Φ

∈ max{T (P0), T (P1)} + Ψ + O(Φ)

rounds and has message size bounded by

M(P) ≤ M(W) + M(C(f))

123

Near-optimal self-stabilising counting and firing squads

∈ max{M(P0), M(P1)} + O(M(C(f))).

Applying the bounds given by the induction hypothesis to
P0 and P1, the definitions of Φ, Ψ0 and Ψ1, and the fact that
both T (C(f)) and M(C(f)) are non-decreasing in f , we get
that the stabilisation time satisfies

T (P) ∈ max{T (P (f0, Ψ0)) , T (P (f1, Ψ1))} + Ψ + O(Φ)

⊆ (1 + o(1)) · 3Φ + O

⎛
⎝�log 2k
∑

j=0

T
(

C
(
2 j

))⎞
⎠

+ Ψ + O(Φ)

⊆ Ψ + O(logΨ) + O

⎛
⎝�log 2k
∑

j=0

T
(

C
(
2 j

))⎞
⎠

+ O(T (C(f)))

⊆ (1 + o(1))Ψ + O

⎛
⎝�log f
∑

j=0

T
(

C
(
2 j

))⎞
⎠ ,

and message size is bounded by

M(P) ∈ max{M(P(f0, Ψ0)), M(P(f1, Ψ1))}
+ O(M(C(f)))

⊆ O

⎛
⎝1 +

�log 2k
∑
j=0

M
(

C
(
2 j

))⎞
⎠ + O(M(C(f)))

⊆ O

⎛
⎝1 +

�log f
∑
j=0

M
(

C
(
2 j

))⎞
⎠ .

Because we bounded complexities using maxi {T (Pi)},
max{M(Pi)}, T (C(f)) and M(C(f)), all of which are non-
decreasing in f by assumption, we also maintain that the
new bounds on stabilisation time and message size are non-
decreasing in f . Thus, the induction step succeeds and the
proof is complete. 	

Plugging in the phase king protocol [3], which has optimal
resilience, running time O(f), and constant message size,
we can extract a strong pulser that is optimally resilient, has
asymptotically optimal stabilisation time, and message size
O(log f).

Corollary 5 For any Ψ , f ∈ N and n > 3 f , an f -
resilient strong Ψ -pulser on n nodes with stabilisation time
(1 + o(1))Ψ + O(f) and message size O(log f) exists.

We obtain efficient solutions to the firing squad and syn-
chronous counting problems.

Corollary 6 For any f ∈ N and n > 3 f , an f -resilient firing
squad on n nodes with stabilisation and response times of
O(f) and message size O(log f) exists.

Proof We use Corollary 5 withΨ ∈ O(f) being the running
time of the phase king protocol [3], followed by applying
Theorem2 to the obtained pulser and the phase king protocol.

	

Corollary 7 For any C, f ∈ N and n > 3 f , an f -resilient
C-counter on n nodes with stabilisation time O(f + logC)

and message size O(log f) exists.

Proof In the last step of the construction of Theorem 6, we
do not use Corollary 1 to extract a strong pulser, but directly
obtain a counter using Theorem 3. This avoids the overhead
ofΨ due towaiting for the next pulse. Recalling that the o(Ψ)

term in the complexity comes from the O(logΨ) additive
overhead in time of the multi-value consensus routine, the
claim follows. 	

We remark that one can strengthen the bound on the sta-
bilisation time to O(f + (logΨ)/B) using messages of size
B, by using larger messages in the reduction given by Theo-
rem 1 [25]. However, this affects the asymptotic stabilisation
time only if Ψ is super-exponential in f .

7 Randomised sublinear-time algorithms

So far, we have confined our discussion to the deterministic
setting. However, it is possible to adapt our framework to also
utilise randomised consensus routines, which can break the
linear-in- f time bound for consensus [20] and attain better
bit complexities than deterministic algorithms [23]. Indeed,
Ben-Or et al. [2] have shownhow toobtain randomised count-
ing algorithms that stabilise in O(1) expected time given a
shared coin. However, implementations of shared coins are
expensive in terms of communication.

As an example, we use our framework to obtain communi-
cation-efficient randomised pulsers that stabilise in poly-
logarithmic time with polylogarithmic message size. Here,
the stabilisation time has probabilistic guarantees, but once
stabilisation is successful, then the correct behaviour deter-
ministically persists.

7.1 Randomised consensus algorithms

Randomised consensus algorithms can give probabilistic
guarantees on any of the termination, agreement, or validity
conditions. Las Vegas algorithms have randomised running
time (i.e. probabilistic guarantee on the termination condi-
tion) while having always (deterministically) correct output.
In contrast, Monte Carlo algorithms have probabilistic guar-
antees on the correctness (i.e. validity and/or agreement)with
a deterministic running time.

For our constructions, we need Monte Carlo algorithms
that have a deterministic guarantee on the running time and

123

C. Lenzen, J. Rybicki

the validity constraint,while having only a probabilistic guar-
antee on reaching agreement.

Definition 4 (Probabilistic consensus) Let L > 1 and p ∈
(0, 1). Suppose that each node v ∈ V receives an input value
x(v) ∈ [L]. We say that an algorithm C is an f -resilient
probabilistic consensus algorithm with agreement probabil-
ity p ∈ [0, 1] if the following conditions hold when there are
at most f faulty nodes:

PC1 Termination: Each v ∈ V \ F decides on an output
y(v) ∈ [L] by the end of round T (C).

PC2 Agreement: For any given input x(·), it holds that
y(v) = y(w) for all v,w ∈ V \ F with probability
at least p.

PC3 Validity: If there exists x ∈ [L] such that for all v ∈
V \ F it holds that x(v) = x , then each v ∈ V \ F
outputs the value y(v) = x .

Note that the validity condition PC3 ensures that agree-
ment is deterministic if the inputs of correct nodes already
agree.

For the sake of completeness, we show how to obtain
a probabilistic consensus algorithm that satisfies determin-
istically conditions PC1 and PC3 from an algorithm that
deterministically only satisfies PC1. This is done by devising
a wrapper forC, which is essentially a variant of a phase king
algorithm [3], where the consensus algorithm C is used as a
tie breaker instead of relying on a node that acts as a“king”.

Lemma 9 Let f < n/3 and C be an f -resilient con-
sensus algorithm that deterministically terminates in T (C)

rounds while satisfying validity and agreement conditions
with probability at least p. Then there is a probabilistic
consensus algorithm C′ that deterministically terminates in
T (C)+ O(1) rounds, deterministically satisfies validity, and
satisfies agreement with probability at least p. Moreover,
M(C′) ∈ O(1) + M(C).

Proof Let x(v) ∈ [L] be the input value of node v. Node v

runs the following simulation wrapper for C:

1. Broadcast the input value x(v) to all nodes.
2. If x(v,w) = x(v) for at least n − f nodes w ∈ V , then

set z(v) = x(v). Otherwise, set z(v) = ∞. Broadcast
the value of z(v) to all nodes.

3. Define Za(v) = {w ∈ V : z(v,w) = a}. Let z′(v) =
min{a : |Za(v)| ≥ f + 1} ∪ {∞}. If z′(v) = z(v) �= ∞
and |Zz(v)(v)| ≥ n − f , set b(v) = 1. Otherwise, set
b(v) = 0.

4. Simulate C for T (C) rounds using the input value

x ′(v) =
{

z′(v) if z′(v) �= ∞,

0 otherwise.

5. Once C terminates with output y′(v), node v decides on
the value

y(v) =
{

z′(v) if b(v) = 1,

y′(v) otherwise.

Steps 1–3 take 2 communication rounds and Step 4 takes
T (C) communication rounds. The bound on themessage size
follows from the fact that the first three steps use constant-
size messages and the simulation of C uses messages of size
at most M(C).

Condition PC1 is trivially satisfied, as the algorithm ter-
minates in T (C) + 2 rounds. For validity (Condition PC3),
observe that if x(v) = x(w) holds for all correct nodes
v,w ∈ V \ F , then z(v) = z′(v) = x(v) holds. Thus, in Step
5 each correct v ignores the output ofC and sets y(v) = x(v).
This implies that validity is deterministically satisfied.

It remains to show that agreement is satisfied with prob-
ability p. There are two cases. First, if b(v) = 0 for all
v ∈ V \ F , then in Step 5 each v uses the output of the simu-
lated algorithm C, which by assumption reaches agreement
with probability at least p. For the second case, suppose that
for some correct v ∈ V \ F we have b(v) = 1. This means
that v will still participate in the simulation of C, but will
instead use the value y(v) = z′(v) �= ∞ as output in Step 5.

Note that if b(v) = 1 for some correct node v ∈ V \ F ,
we have z′(v) = z′(w) for all v,w ∈ V \ F . To see why,
let a = z′(v) and without loss of generality assume that
n = 3 f + 1 and there are exactly f faulty nodes. Since
b(v) = 1,wehave that at leastn−2 f correct nodesw ∈ V \F
sent the value z′(v) = z(w) = a to v. In particular, these
nodes must have received the value from n −2 f > f correct
nodes during Step 2. Now suppose that some node u ∈ V \ F
has z′(u) = a′ �= a. Then there must have been n − 2 f > f
correct nodes that sent the value a′ to u in Step 2. Thus, there
are at least n − 2 f correct nodes with z(·) = a and at least
n − 2 f correct nodes with z(·) = a′. This implies that there
are in total 2(n − 2 f) + f > 3 f + 2 nodes, which is a
contradiction.

Since all correct nodes w ∈ V \ F have z′(w) = a, every
node uses the same input forC and the execution ofC satisfies
agreement and validity with probability at least p. Thus, in
either case condition PC2 is satisfied. 	

7.2 Using probabilistic consensus

Wenowextend the deterministic framework described earlier
to work with probabilistic consensus routines.We say that an
execution of probabilistic consensus routine C is successful
if the output variables of all correct nodes agree.

Remark 1 Suppose that C is a probabilistic consensus rou-
tine with agreement probability p. Let X(C) be the random

123

Near-optimal self-stabilising counting and firing squads

variable denoting the number of trials until a sequence of
T (C)-round executions of C yield a successful execution.
Then X(C) is upper bounded by a geometric distribution,
i.e., it holds that the expectated value of X(C) satisfies
E[X(C)] ≤ 1/p, regardless of the choice of inputs in each
trial.

First, we show the randomised variant of Theorem 3. We
can use the same strong pulser algorithm as in Sect. 4.2
with a slightly modified analysis. From now on, for weak
and strong pulsers, respectively, denote by E(W) and E(P)

(upper bounds on) the expected stabilisation time that hold
in any execution. Note that T (C) is not a random variable,
as the consensus algorithms we consider have deterministic
running time.

Theorem 7 (Probabilistic variant of Theorem 3) Given a
probabilistic consensus routine with agreement probabil-
ity p and a weak pulser W that stabilises in expected
R(W) rounds, the strong pulser algorithm of Sect. 4.2 imple-
ments a synchronous Ψ -counter that stabilises in at most
E(W)/p + T (C) + 1 rounds in expectation and uses mes-
sages of at most M(W) + M(C) bits.

Proof Weneed to adapt the analysis of Theorem3 to take into
account the probabilistic guarantee on stabilisation. Let the
random variable ti be the round on which the i th good pulse
of W is generated. As before, all correct nodes simulate C
during the rounds ti +1, . . . , ti +T (C)+1. If the simulation
of C is successful, then the original analysis in Theorem 3
holds as is. However, since C is a probabilistic consensus
routine, the simulation of C starting in round ti + 1 may fail
to satisfy agreement with probability at most 1 − p.

By Remark 1, we get that the expected number of attempts
until a successful execution of C is bounded by 1/p; count-
ing only attempts where C is simulated correctly, this bound
holds independently of the inputs to C. Note that once a sim-
ulation attempt of C results in a successful execution, then
all subsequent attempts will also be successful, as validity
will be trivially satisfied.

Accordingly the strong pulser algorithm stabilises by
round tX + T (C) + 1, where X = X(C) is the random
variable counting the number of good pulses of the weak
pulser and tX denotes the round when the respective good
pulse occurs, which is also a random variable. By the above
considerations, we can bound the expected stabilisation time
of the strong pulser by

E[tX + T (C) + 1] = T (C) + 1 + E[tX]

= T (C) + 1 +
∞∑

x=1

Pr[X = x] ·
∞∑

t=1

Pr[tx = t | X = x] · tx

≤ T (C) + 1 +
∞∑

x=1

Pr[X = x] · x · E(W)

= T (C) + 1 + E[X] · E(W)

≤ E(W)/p + T (C) + 1 ,

where in the first and third step we used linearity of expec-
tation. As before, the message size is bounded by M(W) +
M(C). 	

Now Lemma 1 together with Theorem 7 implies the ran-
domised variant of Corollary 1.

Corollary 8 Let Ψ > 1. Suppose that there exists an f -
resilient Ψ -value probabilistic consensus routine C with
agreement probability p and a weak (possibly randomised)
Φ-pulser W, where Φ ≥ T (C). Then there exists a ran-
domised f -resilient strong Ψ -pulser P that

– stabilises in expected E(P) ≤ T (C) + E(W)/p + Ψ

rounds, and
– uses messages of size at most M(P) ≤ M(C) + M(W)

bits.

Next we need to analyse the construction of weak pulsers
when utilising probabilistic consensus routines. Note that
both weak and strong pulsers behave deterministically after
stabilisation and only the stabilisation time is a random vari-
able. Thus, Theorem 5 is straightforward to adapt to the
probabilistic setting. The key changes are in the analysis
involving the use of the consensus routines in Sects. 5.4 and
5.5.

Theorem 8 (Probabilistic variant of Theorem 5) Let n =
n0+n1 and f = f0+ f1+1, where n > 3 f . Suppose that C is
an f -resilient probablistic consensus algorithm with agree-
ment probability p ≥ 1/2 on n nodes and let Φ ≥ T (C)+2.
If there exist fi -resilient strong Ψi -pulser algorithms on ni

nodes, where Ψ0 = 2Φ and Ψ1 = 3Φ, then there exists an
f -resilient weak Φ-pulser W on n nodes that satisfies

– E(W) ∈ max{E(P0), E(P1)} + O(Φ),
– M(W) ∈ max{M(P0), M(P1)} + O(M(C)).

Proof First, note that we can also transform a probabilistic
consensus protocol C into a silent probabilistic consensus
protocol as before using Theorem 4. Since the strong pulsers
Pi behave deterministically after stabilisation, Lemma 8
can be applied as is with the difference that the E(Pi) for
i ∈ {0, 1} denote the (upper bounds on the) expected sta-
bilisation times under the assumption that block i is correct.
Moreover, the bound on the message size follows from the
same arguments as in Theorem 5. 	

It remains to check that the recursive construction of The-
orem 6 also works in the probabilistic setting: once lower
levels stabilise, they behave deterministically, and thus, we

123

C. Lenzen, J. Rybicki

can simply repeat the analysis as before (using Theorem 8
instead of Theorem 5) and apply linearity of expectation in
the inductive step.

Theorem 9 Suppose that we are given a family of f -resilient
probabilistic consensus algorithms C(f) with agreement
probability p ≥ 1/2 that run on any number n > 3 f of nodes
in T (C(f)) rounds using M(C(f))-bit messages, where both
T (C(f)) and M(C(f)) are non-decreasing in f . Then, for
any Ψ ∈ N, f ∈ N0, and n > 3 f , there exists a strong
Ψ -pulser P on n nodes that stabilises in expected time

E(P) ∈ (1 + o(1))Ψ + O

⎛
⎝�log f
∑

j=0

T
(

C
(
2 j

))⎞
⎠

and uses messages of size at most

M(P) ∈ O

⎛
⎝1 +

�log f
∑
j=0

M
(

C
(
2 j

))⎞
⎠

bits, where the sums are empty for f = 0.

Proof We proceed by induction as in the original proof of
Theorem 6. That is, we show that f -resilient randomised
strong Ψ -pulsers P(f , Ψ) on n > 3 f nodes exist for any
f < 2k by induction on k. As the analysis on the message
size is the same as in Theorem 6, we refrain from repeating
it here and focus on the stabilisation time.

For the base case k = 0, we can recall that 0-resilient
strong pulsers trivially exist. For the inductive step, we
assume that 2k ≤ f < 2k+1 for k ∈ N0 and the claim
holds for all 0 ≤ f ′ < 2k . As before, we can pick fi < 2k

and ni > 3 fi to satisfy n = n0 + n1 and n > 3 f . Let
P(f ′, Ψ ′) denote a strong randomised Ψ ′-pulser that exists
by the induction hypothesis for f ′ < 2k .

Choose Φ ∈ O(logΨ) + T (C(f)) in accordance with
Theorem 1 for L = Ψ and apply Theorem 8 to C(f) and
Pi = P(fi , Ψi), where Ψ0 = 2Φ and Ψ1 = 3Φ. This yields
a randomised weakΦ-pulserW with resilience f on n nodes
and an expected stabilisation time bounded by

E(W) ∈ max{E(P0), E(P1)} + O(Φ).

Applying Theorem 1 to C(f) gives an f -resilient Ψ -value
consensus protocol C′ that uses messages of size M(C(f))

bits and runs deterministically in T (C′) ≤ Φ rounds (but
may fail with probability p). Together with the randomised
weak pulser W and the multivalued consensus protocol C′,
Corollary 8 gives a randomised f -resilient strong Ψ -pulser
P that stabilises in

E(P) ≤ T (C′) + E(W)/p + Ψ

≤ E(W)/p + Ψ + Φ

∈ (max{E(P0), E(P1)} + O(Φ))/p + Ψ + Φ

⊆ 2 (E(P0) + E(P1)) + Ψ + O(Φ)

expected rounds, where the last step uses that p ≥ 1/2.
Applying the bounds given by the induction hypothesis to

P0 and P1, the definitions of Φ, Ψ0 and Ψ1, and the fact that
T (C(f)) is non-decreasing in f , we get that

E(P) ∈ (E(P0) + E(P1)) /p + Ψ + O(Φ)

⊆ (1 + o(1)) · 6Φ + O

⎛
⎝�log 2k
∑

j=0

T
(

C
(
2 j

))⎞
⎠

+ Ψ + O(Φ)

⊆ Ψ + O(logΨ) + O

⎛
⎝�log 2k
∑

j=0

T
(

C
(
2 j

))⎞
⎠

+ O(T (C(f)))

⊆ (1 + o(1))Ψ + O

⎛
⎝�log f
∑

j=0

T
(

C
(
2 j

))⎞
⎠ ,

which completes the inductive step. 	

7.3 Randomised pulsers, counting, and firing squads

As a concrete example, we illustrate our framework with the
randomised consensus algorithm by King and Saia [23]. The
algorithm assumes that (1) the number of faults is restricted
to f < n/(3 + ε) (for arbitrarily small constant ε > 0) and
(2) communication is via private channels, i.e., the behaviour
of faulty nodes in round t is a function of all communication
from correct nodes to faulty nodes in rounds t ′ ≤ t .

Theorem 10 ([23])Let f ∈ N, ε > 0 and c > 1be constants,
and n > (3 + ε) f . Suppose that communication is via pri-
vate channels. There exists a protocol C that with probability
p = 1− 1/ f c solves consensus (i.e. satisfies agreement and
validity), runs in polylog f rounds, and uses messages of size
at most polylog f .

We remark that the consensus algorithm from [23] actu-
ally limits the total number of bits sent by each node to
O(

√
n polylog n), but in our recursive framework each node

broadcasts �(log f) bits per round. By Lemma 9 we can
convert the above algorithm into a probabilistic consensus
algorithm that can be used in our framework yielding the
following corollary of Theorem 9.

Corollary 9 Let n > (3+ε) f , f ∈ N and ε > 0 be a constant
and suppose communication is via private channels. Then for

123

Near-optimal self-stabilising counting and firing squads

any Ψ ∈ N there exists a randomised f -resilient strong Ψ -
pulser that stabilises in (1 + o(1))Ψ + polylog f expected
rounds and uses messages of size at most polylog f bits.

As a corollary, we can obtain a randomised firing squad
algorithm that with high probability works correctly.

Corollary 10 Let n > (3 + ε) f , f ∈ N and ε > 0 be a
constant and suppose communication is via private channels.
Then for a randomised f -resilient firing that stabilises in
polylog f expected rounds and, satisfies FS1–FS3 with high
probability, has response time of polylog f rounds, and uses
messages of size at most polylog f bits.

Proof We use Corollary 9 withΨ ∈ polylog f being the run-
ning time of the probabilistic consensus algorithmC given by
Theorem 10. This yields obtain a probabilistic strong pulser
P. Then we can use Theorem 2 with P and C to obtain a
firing squad algorithm that satisfies agreement, safety, and
liveness if an execution of C is successful, which happens
with probability at least p = 1 − 1/ f c for any sufficiently
large constant c. 	

Finally, as before, we can obtain synchronous counting
algorithms from strong pulsers.

Corollary 11 Let n > (3 + ε) f , f ∈ N and ε > 0 be a
constant and suppose communication is via private channels.
For any C ∈ N, there exists a randomised f -resilient C-
counter on n nodes with stabilisation time O(polylog f +
logC) and message size polylog f bits.

Proof The proof is similar to the deterministic version. In
the last step of the construction of Theorem 9, we do not
use Corollary 8 to extract a strong pulser, but directly obtain
a counter using Theorem 7. This avoids the overhead of Ψ

due to waiting for the next pulse. Recalling that the o(Ψ)

term in the complexity comes from the O(logΨ) additive
overhead in time of the multi-value consensus routine, the
claim follows. 	

8 Discussion

In thisworkwehavegiven a framework for transformingnon-
self-stabilising consensus algorithms into self-stabilising
synchronous counting and firing squad algorithms. In par-
ticular, our work shows that the ability to tolerate transient
faults in addition to permanent faults does not induce a large
hit on the complexity of fault-tolerant distributed coordina-
tion.

Our framework is modular in the sense that one can easily
use any consensus algorithm—even randomised ones—with
the framework. Moreover, one of the key features of our

construction is that the resilience of the underlying con-
sensus routine essentially dictates what kind of—and how
many—permanent faults our self-stabilising counting andfir-
ing squad algorithms tolerate.

Here, we have restricted our attention to Byzantine faults,
which is the most extreme form of faulty behavior, but the
same ideas can be used to deal with other types of (more
benign) permanently faulty behavior. For example, in the case
of consensus, it is possible to tolerate any number of f < n
crash faults or f < n/2 omission faults. Our approach can
also be applied to this setting with relatively minor modifi-
cations [26].

We conclude by highlighting a few open problems that
still remain:

– The complexities of our algorithms depend on the max-
imum bound f on the number of permanent faults. Is it
possible to obtain Byzantine-tolerant algorithms, where
the stabilisation time depends on the actual number
t ≤ f of faulty nodes?

– Can either synchronous counting or self-stabilising fir-
ing squads be deterministically solved using o(log f)-bit
messages under Byzantine faults or by communicating
o(f 2 log f) bits overall?

Acknowledgements Open access funding provided by Institute of Sci-
ence and Technology (IST Austria). We are grateful to Danny Dolev
for inspiring discussions and valuable comments, especially concerning
silent consensus.We thank the anonymous reviewers for their comments
and helpful suggestions. Part of this work was done when JR was affil-
iated with the University of Helsinki and Aalto University.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Angluin, D., Fischer, M.J., Jiang, H.: Stabilizing consensus in
mobile networks. In: Proceedings of 2nd IEEE international confer-
ence on distributed computing in sensor systems, vol. 4026 LNCS,
pp. 37–50 (2006). https://doi.org/10.1007/11776178_3

2. Ben-Or, M., Dolev, D., Hoch, E.N.: Fast self-stabilizing Byzan-
tine tolerant digital clock synchronization. In: Proceedings of 27th
annual ACM symposium on principles of distributed computing
(PODC 2008), pp. 385–394. ACM Press (2008). https://doi.org/
10.1145/1400751.1400802

3. Berman, P., Garay, J.A., Perry, K.J.: Towards optimal distributed
consensus. In: Proceedings of 30th annual symposium on founda-
tions of computer science (FOCS1989), pp. 410–415. IEEE (1989).
https://doi.org/10.1109/SFCS.1989.63511

4. Bloem, R., Braud-Santoni, N., Jacobs, S.: Synthesis of self-
stabilising and Byzantine-resilient distributed systems. In: Pro-
ceedings of 28th international conference on computer aided

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/11776178_3
https://doi.org/10.1145/1400751.1400802
https://doi.org/10.1145/1400751.1400802
https://doi.org/10.1109/SFCS.1989.63511

C. Lenzen, J. Rybicki

verification (CAV 2016), Part I, pp. 157–176 (2016). https://doi.
org/10.1007/978-3-319-41528-4_9

5. Burns, J.E., Lynch,N.A.: TheByzantine firing squad problem.Adv.
Comput. Res. 4, 147–161 (1987)

6. Coan, B., Dolev, D., Dwork, C., Stockmeyer, L.: The distributed
firing squad problem. SIAM J. Comput. 18(5), 990–1012 (1989).
https://doi.org/10.1137/0218068

7. Coan, B.A., Dwork, C.: Simultaneity is harder than agreement. Inf.
Comput. 91(2), 205–231 (1991). https://doi.org/10.1016/0890-
5401(91)90067-C

8. Daliot, A., Dolev, D.: Self-stabilizing Byzantine agreement. In:
Proceedings of 25th annual ACM symposium on principles of
distributed computing (PODC 2006), pp. 143–152. ACM (2006).
https://doi.org/10.1145/1146381.1146405

9. Doerr, B., Goldberg, L.A., Minder, L., Sauerwald, T., Scheideler,
C.: Stabilizing consensus with the power of two choices. In: Pro-
ceedings of 23rdACMsymposiumonparallelism in algorithms and
architectures (SPAA 2011), pp. 149–158. ACM (2011). https://doi.
org/10.1007/978-3-642-15763-9_50

10. Dolev, D.: The Byzantine generals strike again. J. Algorithms 3(1),
14–30 (1982)

11. Dolev, D., Függer, M., Lenzen, C., Schmid, U., Steininger, A.:
Fault-tolerant distributed systems in hardware. Bull. EATCS (116)
(2015). http://bulletin.eatcs.org/index.php/beatcs/issue/view/18

12. Dolev, D., Heljanko, K., Järvisalo, M., Korhonen, J.H., Lenzen,
C., Rybicki, J., Suomela, J., Wieringa, S.: Synchronous counting
and computational algorithm design. J. Comput. Syst. Sci. 82(2),
310–332 (2016). https://doi.org/10.1016/j.jcss.2015.09.002

13. Dolev, D., Hoch, E.N.: On self-stabilizing synchronous actions
despite Byzantine attacks. In: Proceedings of 21st international
symposium on distributed computing (DISC 2007). Lecture Notes
in Computer Science, vol. 4731, pp. 193–207. Springer (2007).
https://doi.org/10.1007/978-3-540-75142-7_17

14. Dolev, D., Hoch, E.N.,Moses, Y.: An optimal self-stabilizing firing
squad. SIAM J. Comput. 41(2), 415–435 (2012). https://doi.org/
10.1137/090776512

15. Dolev, D., Reischuk, R.: Bounds on information exchange for
Byzantine agreement. J. ACM 32(1), 191–204 (1985). https://doi.
org/10.1145/2455.214112

16. Dolev, S.: Self-Stabilization. The MIT Press, Cambridge (2000)
17. Dolev, S., Kat, R.I., Schiller, E.M.: When consensus meets self-

stabilization. J. Comput. Syst. Sci. 76(8), 884–900 (2010). https://
doi.org/10.1016/j.jcss.2010.05.005

18. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in
the presence of Byzantine faults. J. ACM 51(5), 780–799 (2004).
https://doi.org/10.1145/1017460.1017463

19. Dwork, C., Moses, Y.: Knowledge and common knowledge in a
Byzantine environment: crash failures. Inf. Comput. 88(2), 156–
186 (1990). https://doi.org/10.1016/0890-5401(90)90014-9

20. Feldman, P., Micali, S.: An optimal probabilistic algorithm for
synchronous Byzantine agreement. In: Proceedings of 16th inter-
national colloquium on automata, languages and programming
(ICALP 1989). Lecture Notes in Computer Science, vol. 372, pp.
341–378. Springer (1989). https://doi.org/10.1007/BFb0035770

21. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure
interactive consistency. Inf. Process. Lett. 14(4), 183–186 (1982).
https://doi.org/10.1016/0020-0190(82)90033-3

22. Hoch, E.N., Dolev, D., Daliot, A.: Self-stabilizing Byzantine dig-
ital clock synchronization. In: Proceedings of 8th international
symposium on stabilization, safety, and security of distributed sys-
tems (SSS 2006). Lecture Notes in Computer Science, vol. 4280,
pp. 350–362. Springer (2006). https://doi.org/10.1007/978-3-540-
49823-0_25

23. King, V., Saia, J.: Breaking the O(n2) bit barrier. J. ACM 58(4),
1–24 (2011). https://doi.org/10.1145/1989727.1989732

24. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals prob-
lem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982).
https://doi.org/10.1145/357172.357176

25. Lenzen, C., Függer, M., Hofstätter, M., Schmid, U.: Efficient
construction of global time in SoCs despite arbitrary faults. In: Pro-
ceedings of 16th euromicro conference on digital system design
(DSD 2013), pp. 142–151 (2013). https://doi.org/10.1109/DSD.
2013.97

26. Lenzen, C., Rybicki, J.: Near-optimal self-stabilising counting and
firing squads (2017). arXiv:1508.02535

27. Lenzen, C., Rybicki, J., Suomela, J.: Efficient counting with opti-
mal resilience. SIAM J. Comput. 64(4), 1473–1500 (2017). https://
doi.org/10.1137/16M107877X

28. Lynch, N.A.: Distrib. Algorithms. Morgan Kaufmann Publishers,
San Francisco (1996)

29. Nishitani, Y., Honda, N.: The firing squad synchronization problem
for graphs. Theor. Comput. Sci. 14(1), 39–61 (1981). https://doi.
org/10.1016/0304-3975(81)90004-9

30. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in
the presence of faults. J. ACM 27(2), 228–234 (1980). https://doi.
org/10.1145/322186.322188

31. Raynal, M.: Fault-Tolerant Agreement in Synchronous Message-
Passing Systems. Morgan & Claypool, San Rafael (2010). https://
doi.org/10.2200/S00294ED1V01Y201009DCT003

123

https://doi.org/10.1007/978-3-319-41528-4_9
https://doi.org/10.1007/978-3-319-41528-4_9
https://doi.org/10.1137/0218068
https://doi.org/10.1016/0890-5401(91)90067-C
https://doi.org/10.1016/0890-5401(91)90067-C
https://doi.org/10.1145/1146381.1146405
https://doi.org/10.1007/978-3-642-15763-9_50
https://doi.org/10.1007/978-3-642-15763-9_50
http://bulletin.eatcs.org/index.php/beatcs/issue/view/18
https://doi.org/10.1016/j.jcss.2015.09.002
https://doi.org/10.1007/978-3-540-75142-7_17
https://doi.org/10.1137/090776512
https://doi.org/10.1137/090776512
https://doi.org/10.1145/2455.214112
https://doi.org/10.1145/2455.214112
https://doi.org/10.1016/j.jcss.2010.05.005
https://doi.org/10.1016/j.jcss.2010.05.005
https://doi.org/10.1145/1017460.1017463
https://doi.org/10.1016/0890-5401(90)90014-9
https://doi.org/10.1007/BFb0035770
https://doi.org/10.1016/0020-0190(82)90033-3
https://doi.org/10.1007/978-3-540-49823-0_25
https://doi.org/10.1007/978-3-540-49823-0_25
https://doi.org/10.1145/1989727.1989732
https://doi.org/10.1145/357172.357176
https://doi.org/10.1109/DSD.2013.97
https://doi.org/10.1109/DSD.2013.97
http://arxiv.org/abs/1508.02535
https://doi.org/10.1137/16M107877X
https://doi.org/10.1137/16M107877X
https://doi.org/10.1016/0304-3975(81)90004-9
https://doi.org/10.1016/0304-3975(81)90004-9
https://doi.org/10.1145/322186.322188
https://doi.org/10.1145/322186.322188
https://doi.org/10.2200/S00294ED1V01Y201009DCT003
https://doi.org/10.2200/S00294ED1V01Y201009DCT003

	Near-optimal self-stabilising counting and firing squads
	Abstract
	1 Introduction
	1.1 Synchronous counting and firing squads
	1.2 Connections to fault-tolerant consensus
	1.3 Contributions
	1.3.1 Self-stabilising firing squads
	1.3.2 Synchronous counting

	1.4 Related work
	1.4.1 Synchronous counting and digital clock synchronisation
	1.4.2 Firing squads

	1.5 Outline of the paper

	2 Preliminaries
	2.1 Notation
	2.2 Model of computation
	2.3 Synchronous counting
	2.4 Self-stabilising firing squad
	2.5 Consensus

	3 Synchronous counting and firing squads
	3.1 Strong pulsers and counting
	3.2 Firing squads via pulsers and consensus
	3.2.1 The firing squad algorithm

	4 From weak pulsers to strong pulsers
	4.1 Weak pulsers
	4.2 Constructing strong pulsers from weak pulsers
	4.2.1 Variables
	4.2.2 Strong pulser algorithm

	5 Constructing weak pulsers from less resilient strong pulsers
	5.1 The filtering construction
	5.1.1 Filtering rules

	5.2 Analysis of the filtering construction
	5.3 Introducing silent consensus
	5.4 Using silent consensus to prune spurious pulses
	5.4.1 The pruning algorithm
	5.4.2 Analysis

	5.5 Obtaining the weak pulser

	6 Main results
	7 Randomised sublinear-time algorithms
	7.1 Randomised consensus algorithms
	7.2 Using probabilistic consensus
	7.3 Randomised pulsers, counting, and firing squads

	8 Discussion
	Acknowledgements
	References

