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Abstract: We present microscopic derivations of the defocusing two-dimensional cu-
bic nonlinear Schrodinger equation and the Gross—Pitaevskii equation starting from
an interacting N-particle system of bosons. We consider the interaction potential to
be given either by Wg(x) = N~1*2BW (NPx), for any B > 0, or to be given by
Vy(x) = NV (e x), for some spherical symmetric, nonnegative and compactly sup-
ported W,V e L*®(R?, R). In both cases we prove the convergence of the reduced
density corresponding to the exact time evolution to the projector onto the solution of
the corresponding nonlinear Schrodinger equation in trace norm. For the latter potential
Vn we show that it is crucial to take the microscopic structure of the condensate into
account in order to obtain the correct dynamics.
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1. Introduction

We are interested in the time evolution of bosonic quantum systems of N particles in two
dimensions that interact with each other by a two-particle interaction potential. Ata given
time 7, the state of the system is described by a wave function W, € LE(RZN , ©), where
L2(R?N | C) denotes the Hilbert space of all W € L*(R?*M, C) which are symmetric

under permutations of the variables xq, ..., xy € R2. The Hamiltonian of the system is
given by
N N
Hy==> Aj+ Y Ulj—x0)+Y Alx)) (1)
j=1 1<j<k<N j=1

with A.:R? x R — R being a time-dependent external potential and U:R?> — R
modeling the interaction between the particles. The time evolution of the system is
described by the Schrodinger equation

i0,V, = Hy ¥, )

with initial datum Yo € L?(RZN , C). In general, even for small particle numbers N,
it is not possible to solve the Schrodinger equation exactly or numerically. The time
evolution of the system, however, can approximately be determined if one studies special
classes of initial conditions and certain types of interaction potentials. In this paper, we
are concerned with the dynamical evolution of a Bose—Einstein condensate. This state
of matter appears if one cools bosons in an external trapping potential near absolute
zero temperature such that almost all particles occupy the same quantum state (see e.g.
[38] for a comprehensive discussion). After the trapping potential has been changed or
completely switched off, the condensate is no longer in equilibrium and one would like
to study its evolution in space.

Mathematically, the appearance of a Bose—Einstein condensate is described by means

of the one-particle reduced density matrix yé,]) of the state W. yé,l) is a non-negative trace
class operator on L?(R?, C) with an integral kernel given by

yé,])(x, x) = / W(x,x0, ..., xn)V (X, x2, ..., xN)d2x2 . ..dsz.
R2N-2

A state W is said to exhibit complete Bose—Einstein condensation, if there exists a one-
particle wave function ¢ € L2(R2, C) with ||¢|| = 1 such that yé,l) — |@){e] in trace

norm as N — oo.! Initially, we consider a complete condensed state W and then show

1" We like to remark that it is well known that the convergence of yé,l) to |¢) (| in trace norm is equivalent
to the respective convergence in operator norm since |¢)(g| is a rank-1-projection, see Remark 1.4. in [51].
For other indicators of condensation and their relation we refer to [41].
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that yé,lt) — |@s){(p:] as N — oo, where ¢; solves a nonlinear Schrodinger equation.

This statement shows that the condensate is stable during the time evolution. Moreover,
it proves that the time-evolution of the one-particle reduced density matrix which is
given by the many-body Schrodinger equation can approximately be described by a
much simpler nonlinear one-particle equation.

To state the exact form of the one-particle equation, we specify the potentials U we
are interested in.

e For B > 0, we consider the so called nonlinear Schrodinger (NLS) scaling U (x) =
Wgn(x) =N 1428w (NP x), for a compactly supported, spherically symmetric and
nonnegative potential W € L°(R?, R).

In the case of B > 1/2, such a scaling models strong but short range repulsive
interactions. The origin of the scaling can heuristically be motivated by the fact that
for a completely factorized wave function W = ¢®" with ¢ € H?(R?, C) the kinetic
energy per particle? %((\IJ, Z,ivzl(—Ak)\IJ» = —(p, Ap) = O() is of the same
order as the potential energy per particle % (v, 211\; j<k<N Wg(x;—xp)W) = O().

e We also consider exponentially scaled potentials U(x) = Vy(x) = >N V(eMNx)

with V € LCC’O(]RZ, R) being spherically symmetric and nonnegative. This scaling
will be denoted Gross—Pitaevskii scaling in the following.
The motivation to consider an exponential scaling is similar to the Gross Pitaevskii
scaling Vy(x) = N2V (Nx) in three space dimensions. Namely, the kinetic and
interaction energy are of the same order for a gas of fixed volume. This will be shown
below, when discussing the scattering process of two particles, see (4). Furthermore,
the interaction originates from a N -independent potential by rescaling space and time
coordinates [see (7)]. Our results can be generalized to a wider class of N-dependent
interactions covering most of the relevant cases discussed in the literature on two
dimensional Bose gases [39].

For these scalings the condensate wave function ¢, satisfies the cubic nonlinear
Schrodinger equation

000 = (—A+A) @ +bule o = hil 3)

with initial datum ¢g. The precise definition of by will be given in Definition 2.1. At
the moment however if suffices to note that for the potentials from above we have
bwyy = NIWgnl1 = [IWIhifU = Wg y and by, = 4m for U = V. In case that the
coupling constant is given by by,, = 4w Eq. (3) is also referred to as Gross—Pitaevskii
equation.

We are going to explain on a heuristic level why the coupling constants differ in the
NLS and Gross—Pitaevskii scaling. We first consider the exponential scaling and assume
that the energy of the many-body state W; is comparable to the ground state energy of
the system. In this case, the wave function develops a short scale correlation structure
which prevents the particles from being too close to each other [39]. If we neglect for
the moment all but two particle correlations, one may heuristically think of W, to be of
Jastrow-type [38, p. 15 and p. 28],i.e. W; (xy, ..., xy) & ]_[i<j F(xi—xj) ]_[,Ic\]:1 @ (xx).
The function F accounts for pair correlations between the particles at scales of order
O(e™N). These correlations determine the time evolution of the condensate in a crucial

2 Throughout the paper we use the notation (-, -) = (-, -)
product of LZ(RQ, QC).

L2(R2N ) while (-, -) always refers to the scalar
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manner and must therefore explicitly be taken into account. Since Vy is a strong, short

range potential, the interaction between the particles can in first order be described as a

two-body scattering process. That is, the correlation function F should approximately

be given by the zero energy scattering state jy g € C'(R?, R) which is defined by

(=Ax + 32NV (eNx)) jv,r(x) =0, @
Jjn.r(x) =1for|x| =R

for some R € (0, 00) used to normalize jy, g via the second line of (4). Note, that it is
a peculiarity of two dimensional scattering states that limy_, » | jx g (x)| does not exist
for short range potentials and can not be used for normalization. A particle at location x
then experiences the effective interaction

fR YNV (= y)jn @ = Dle P ~ g (0 fR XNV () jn R (),

see e.g. [19] for a nice derivation. It will be shown in Sect. 5 that

47
n(520)

where a denotes the scattering length of the potential V. Since 14—’2 ~ 47” holds for
n ae=N
a > 0, the effective coupling by, will be given by 4. This shows that the scaling we
used gives us a system where the kinetic energy and the interaction energy are of the
same order.

Let us now turn to the NLS scaling and consider for 8 > 0 the scattering equation

of the potential Wy y

N / PxVy () v g(x) = N
RZ

(—Ay + NTW2PW(NPx)) Fy g r(x) = 0, )
Fy.g,r(x) = 1for|x| = R.
With y = Nfx, R = NP R and GN.gR= FN,,g,R(N_ﬁ-), this can be written as
(—Ay +N7'W(y) G pr(y) =0, ®
Gn.g.r(y) = 1for|y| = R.

Due to the factor N~!, the zero energy scattering state is almost constant for large N,
Fy.g.r(x) = 1V |x| < R. It can therefore be concluded that the microscopic structure
has a negligible effect on the effective interaction on each particle which is approximated
by?

/R PYNWg N (= ) Fy g r(x = Ml ()P ~ /R PYNW N (= )le ()
= IWlhle )P

3 Even if the effect of the microscopic structure is negligible in the interaction, one should note that W, is

not close to a full product state ]_[]I(V:1 ¢t (xx) in norm. For certain types of interactions, it has rigorously been
shown that W; can be approximated by a quasifree state satisfying a Bogoliubov-type dynamics. We refer to
[5,12,23-25,31,35,43-46] for the precise statements.
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This yields to the correct coupling in the effective equation (3) in the case of U (x) =
Wg, n(x).

Let us briefly compare the phenomenon of Bose—FEinstein condensation in two and
three dimensions. In three dimension the NLS scaling is defined by N ~'*3# W (Nfx)
only for 0 < 8 < 1 while in the case of 8 = 1 the microscopic structure must be taken
into account. This difference originates from the different form of the scattering state in
two and three dimension, see Appendix C of [38]. In the case that the time evolution of
W, is generated by Hy,, itis interesting to note that the effective evolution equation of ¢,
does not depend on the scattering length a. Also this contrasts the three-dimensional case,
where the correct mean field coupling is given by 8w azp, azp denoting the scattering
length of the potential in three dimensions. The universal coupling 47 in the case of a
two-dimensional setup is known within the physical literature, see e.g. (30) and (A3) in
[18] (note thath = 1, m = % in our choice of coordinates).

Actually, our dynamical result complements a more general theory describing the
ground state properties of dilute, two-dimensional Bose gases. It was shown in [39]
that for a gas with repulsive interaction V > 0, the ground state energy per particle is
to leading order given by either the Gross—Pitaevskii energy functional with coupling
parameter 877/| In(pa?)| or a Thomas—Fermi type functional, depending on the dilute-
ness of the gas, i.e. the mean-particle distance compared to the scattering length of the
interaction. Here, p denotes the mean density of the gas and a is the scattering length
which must decrease exponentially with N in the Gross—Pitaevskii limit [39, p. 20].

It should be pointed out that there has been some debate about the question whether
two-dimensional Bose—FEinstein condensation can be observed experimentally. This
amounts to the question whether condensation takes place for temperatures 7 > 0.
For an ideal, noninteracting gas in a box, the standard grand canonical computation for
the critical temperature T, of a Bose—Einstein condensate shows that there is no conden-
sation for 7 > 0. For trapped, noninteracting bosons in a confining power-law potential,
the findings in [3] however show that in that case T, > 0 holds. Finally, it was proven in
[37] that yé,l) converges to |¢)(¢| in trace norm if W is the ground state of Hy, and ¢ is
the ground state of the Gross—Pitaevskii energy functional, see (8). It was furthermore
proven that one does not observe 100% condensation in the ground state of an interacting
homogenous system. The emergence of 100% Bose—Einstein condensation as a ground
state phenomenon thus highly depends on the particular physical system. Our approach

is the following: Initially, we assume the convergence of yé,lo) to o) (¢ol. We then show
the persistence of condensation for time scales of order one. Our assumption is thus in
agreement with the findings in [37].

The rigorous derivation of effective evolution equations is well known in the liter-
ature, see e.g. [2,5,9-11,19-22,30,43,44,48-51] and references therein. For the two-
dimensional case we consider, it has been proven, for 0 < 8 < 3/4 and W nonnegative,

that yé,t) converges to |¢;){(¢;] as N — oo [27]. For 0 < B < 1/6, it has been estab-
lished in [14] that the reduced density matrices converge, assuming that the potential
W is attractive, i.e. W < 0. This result was later extended to a larger class of scaling
parameters §, under some assumptions on the negative part of the potential W [26,34].
In [45] a norm approximation to the two-dimensional focusing Schrodinger equation in
the NLS scaling with 0 < B < 1 was considered. Here, the evolution of the condensate
is effectively described by the nonlinear Schrédinger equation while the evolution of the
fluctuations around the condensate is governed by a quadratic Hamiltonian, resulting
from Bogoliubov approximation. Another approach which relates more closely to the
experimental setup is to consider a three-dimensional gas of bosons which is strongly
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confined in one spatial dimension. Then, one obtains an effective two-dimensional sys-
tem in the unconfined directions. We remark that in this dimensional reduction two limits
appear, the length scale in the confined direction and the scaling of the interaction in the
unconfined directions. A derivation of the two-dimensional Gross—Pitaevskii equation
from the three-dimensional quantum many-body dynamics of strongly confined bosons
was just recently given in [7]. Further results in this direction can be found in [4,6,8, 15—
17,28,29]. For known results regarding the ground state properties of dilute Bose gases,
we refer to the monograph [38], which also summarizes the papers [37,39,40].

Our proof is based on [49], which covers the derivation of the time dependent Gross—
Pitaevskii equation in three dimensions. In particular, the exponential scaling of the
interaction forces us to adapt crucial ideas and refine many estimates. Additional diffi-
culties arise amongst others from the logarithmic behaviour of the scattering state and
the fact that |e*NV (eV:) |l 1g2.c) ~ 1 while [N"3 V(N[ 1gs.c) ~ N7!in the
three-dimensional Gross—Pitaevskii regime.

We shortly discuss the physical relevance of the Gross—Pitaevskii scaling. It is pos-
sible to rescale space- and time-coordinates in such a way that in the new coordinates
the interaction is not N-dependent. Choosing y = ¢"x and t = ¢?V¢ the Schrodinger
equation reads

N N

. d _

ld_r‘p(w’ =1 - E ij + E V(yj— )+ E A, v (e Nyj) W, on,.
j=1 l<j<k<N j=1

(7

The latter equation thus corresponds to an extremely dilute gas of bosons with density
~ ¢ 2N Tnorderto observe a nontrivial dynamics, this condensate is then monitored over
time scales of order T ~ ¢?V. Since the trapping potential is adjusted according to the
density of the gas in the experiment, the N dependence of A e_m,(e_N -) is reasonable.

2. Main Result

Our main theorem consists of two parts, which consider potentials in the NLS and Gross—
Pitaevskii scaling, respectively. For the proof of the theorem it is useful to enlarge the
class of potentials in the NLS regime because it allows us in the derivation of the Gross—
Pitaevskii equation to refer to various estimates that appear in first part of the proof.

Definition 2.1. (a) For 8 > 0, we define the following space of sequences (W,g, N) NeN:

Wy = {(WB,N)N€N| Ws.n € L2 R),3C > 0 independent of

N and B: Wg y(x) > 0 Vx € R?,
”ij'[\l”] < CN_I’ ”W}‘},N” < CN_H—ﬂ, ”W;‘},N”OO < C]\]—l+2ﬁ7

Wg n(x) =0V|x| > CN~P, Wg, n is spherically symmetric}.

(b) 1;‘(/)r eVﬁry (We.N) yey € W we define the coupling parameter bw, =limy . N||
Bl
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(c) Define the set of potentials Wy by

Wg = {(Wﬁ»N)NeN € ngl 3AC > 0 independent of N and S:

[NIIWpnll = b, | < CN " in(v) |

To ease the notation, we often omit to display the dependence on N and denote both
the sequence (Wp,n) o and the element W y by Wyp.

Remark 2.2. Tt should be noted that N~ *2#W(NPx) € Wy, if W € LP(R% R) is
nonnegative and spherically symmetric. In this case, by, = [[W]];.

For notational convenience, it is in addition helpful to define a class of potentials with
Gross—Pitaevskii scaling.

Definition 2.3. Define the set of sequences of potentials (VN) Nen a8

Yy = {(VN)NENEIV € LSO(RQ, R) not being identically zero: Vy (x) = eZNV(eNx),
V(x) >0Vx e R%, Vis spherically symmetric}.

With a slight abuse of notation we use Vy to denote the sequence (VN) vey and its Nth
element.

For U € {Wg, Vy} and A, € L®(R?, R), define the energy functional &y: H' (R,
C)—->R

Sy (W) = N~I(w, Hyw),

where (-, -) denotes the scalar product on L>(R?V, C). Furthermore, define the Gross—
Pitaevskii energy functional Slgj P-H'R?,C) > R

1 1
&y (@) = (Vo, Vo) + (g, (A + Sbule)e) = (9, (hyy| = Sbulel)e)  (8)

where (-, -) denotes the scalar product on L2(R?, C). Note that both £y (¥) and 5bG P(p)
depend on ¢, due to the time varying external potential A,. For the sake of readaﬁility,
we will not indicate this time dependence explicitly. Our main theorem is the following.

Theorem 2.4. Let Wy € L2(R*N, C)NH?(R?N, C) with | Wy || = 1. Let gy € L*(R?, C)
with ||@o|| = 1. Let the external potential A; satisfy A. € C'(R, L®(R?, R)).

(a) Let B > 0, Wg € Wg and let Y, the unique solution to i, ¥V, = Hy, WV, with initial

datum V. Let ¢; the unique solution to i0;¢; = hfvf;

assume that ¢; € H3(R%, C) Vt € R. Let Ewy (Vo) < C, where C > 0is a constant
independent of N. Then, for any t > 0 there exists a constant 0 < C; < 00, which

@ with initial datum ¢y and
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depends on t but not on N, such that

& (C/Tr\y\%{f ~ g0} (gol|

+\/(6Wﬁ<%> £GP ()| + N WIn(N)> ©

1
= (\/Tr\yq‘,; ~ g0}l

+ |Ew, (Vo) — E0F (o) |+ N 2Vln(N)) (10)

1
Tr|viy — ool < e

[Ew, (W) — &5 (1)

where y = B for0 < B < 1/12andy = 1/20 for g > 1/12.
(b) Let VN € Vy and let V; the unique solution to i0;V; = Hy,, V; with initial datum
V. Let ¢; the unique solution to id;¢; = hfﬂP @ with initial datum @o and assume

that ¢, € H3(R?,C) Vt € R. Let Evy (Vo) < C, where C > 0 is a constant
independent of N. Then, for any t > 0 there exists a constant 0 < C; < 0o, which
depends on t but not on N, such that

<€ <\/Tr’y — lpo)( wol(

+/[Evy (W) — 87 (p0)| + N—WO), (11)

< e <\/Tr)y ~ I¢0)(gol|

+ v (W0 = E57 (o) + N—‘/”’)‘ (12)

1
7r|vg)) = lon)

€0 (W) — £67 (00)

Remarks. (a) If one considers initial many-body states which exhibit condensation and
whose energy per particle converges to the corresponding Gross—Pitaevskii energy,
ie.

. ) _ . GP _
Jim e[y — lgo)(gol| =0 and fim |y (o) — €5 ()| =0
with U € {Wp, V),
it follows from Theorem 2.4 that

=0 foranyr > 0.

=0 and lim ’cfy(\ll;)—glgjp(%)
N—o0

. 1
fim Te [y — lo) o]
N—o0

Our result consequently shows the stability of the condensate during the time evolu-
tion.
(b) It has been shown that in the limit N — oo the energy-difference Ey, (V&%) —
5ETP (¢8°) — 0, where W&* is the ground state of a trapped Bose gas and ¢&° the
ground state of the respective Gross—Pitaevskii energy functional, see [39,40].
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(c) The necessity to require ¢; € H 3(R%, C) stems from the fact that the constant
C; in (9) and (11) depends on ||¢;|| g3, see the discussion before Lemma 4.7. For
regular enough external potentials A, we expect the assumption ¢, € H>(R?, C) to
follow from regularity assumptions on the initial datum ¢g. If gy € £3(R?, C) =
(f € L>(R?, O)| Za+ﬂ<3 ||x°‘3)’?f|| < oo} holds, the bound ||¢; || y3 < oo has been
proven for external potentials which are at most quadratic in space, see [13] and
Lemma 4.7. In particular, for ¢g € »3(R2, C), the bound ||¢; g3 < CwithC >0
uniformly bounded in ¢ holds if the external potential is not present, i.e. A; = 0 [see
[13] above (1.3.)].

(d) One can relax the conditions on the initial condition and only require W € L% (RN,
C) using a standard density argument.

3. Organization of the Proof

The method we are applying to prove Theorem 2.4 was originally introduced in [50]
and later generalized to derive various mean-field equations [1,8,30,32,33,42,46-49].
Our proof is primarily based on [49] which covers the three-dimensional counterpart
of our system. The key idea of the method is to show the existence of Bose—Einstein
condensation not in terms of reduced density matrices but to consider an equivalent
measure of condensation. Heuristically speaking, we count for each time ¢ the relative
number of those particles which are not in the state of the condensate wave function ¢;.
It is then possible to show that the rate of the particles which leave the condensate is
small, if initially almost all particles were in the state ¢y. The counting of the particles
will be performed with the help of a functional. In order to define it, we introduce the
following operators.

Definition 3.1. Let ¢ € L2(R?, C) with |¢|| = 1.
(@) For any 1 < j < N the projectors pf:Lz(]RM’, C) — L%*(R*N C) and qf:
L?>(R*N , C) — L*(R?*N, C) are defined as
piw = ga(xj)/go*()fj)\l’(xl, o Ej e xn)d?E) YW oe L2(RPY, ©)

and qf =1- p?. We shall also use, with a slight abuse of notation, the bra-ket

notation p¥ = |p(x;)){p(x;)I.
(b) For any 0 < k < N we define the set

N
Sk =145=(s1,52,...,sn) € {0, 1}V ; ZS-/ =k
j=1
and the orthogonal projector P{: L>(R*N, C) — L*(R*N,C) as
l 1
s onss
p=2 T10)) (@)
se8 j=1

For negative k and k > N we set P/ = 0.
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(c) Forany functionm: Nog — R{ we define the operatorn?: L*(R*N, C) — L*(R*", C)
as

N
I :Zm(j)P;". (13)
j=0

We also need the shifted operators in’: L>(R*, C) — L*(R*V, C) given by

N—d
m' = Z m(j+d)P{ withd € Z.
j=—d

Following a general strategy* we will define a functional a: L>(R*, C) x L?(R?, C)
— R{ such that

(a) a(¥, po) — Oforsuitably chosen initial data (¥, o) € L>(R*N, C)x L*(R?, C).?
(b) If ¥, is a solution of (2) and ¢; a solution of (3), o(V;, ¢;) can be estimated by
o (Yo, ¢o) +fé ds Cy (a(\lfs, ©¥s) +O(1)) for some time dependent constant Cs. Using

a Gronwall type estimate, it then follows that o (¥;, ¢;) < &2 Jodr Ce (a(\l-'(), ©o) +
o(1)).

(c) a(¥y, ¢;) — 0 implies the convergence of the one-particle reduced density matrix
of W, to |¢;) (¢ in trace norm as well as the convergence of the energy per particle
of the many-body system to the energy of the condensate wave function.

In [30,50] the mean field scaling Wp(x) = N ~lW (x) and a condensate wave function
which evolves according to the Hartree equation id;¢; = ( — A+ A,)(pt + (W * |y |2)(p,
were considered in the three-dimensional setting. In these works it was shown that the
persistence of condensation can be proven if one chooses

a(Wp,¢) = <<‘I’t, (;;w:)-/ \Ijt>>,

where n(k) = /k/N, j > 0 and ¥, is a solution of (2) with U = Wj. The choice
j = 2 corresponds to the functional (¥, Z/1<V=0 %P,f "W, ), whose action on W, can be
viewed as "counting the relative number of particles which are not in the state ¢;". Other
values of j or a different choice of m% should be understood as a weighted measure of
counting the number of particles which are not in the condensate state. We will therefore
sometimes call m the weight function of the functional «.

In this work we are interest in interaction potentials which get peaked as N — oo.
As explained in Sect. 6.1, it is then no longer possible to obtain a Gronwall estimate
with the previous choice of the functional and we have to adjust it in accordance with
the scaling of the interaction. The precise definition of the functional and the proof of
Theorem 2.4 are given in Sect. 6. In the preceding chapters we introduce the necessary
preliminaries.

The rest of the paper is organized as follows:

(a) In Sect. 4 we start by fixing the notation. Afterwards, we recall important properties
of the operator 7 and explain the required regularity conditions on the solutions of
the nonlinear Schrédinger equation.

4 For an extensive introduction to the method we refer to [50].
5 1t should be noted that the requirement o (W, ¢g) — 0 defines conditions on the initial states (W, ¢p).
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(b) Incase of the exponential scaling, the interaction is so strong such that the many-body
state develops a short scale correlation structure. This correlation structure affects the
time evolution of the condensate and must therefore also be regarded in the definition
of the functional. In Sect. 5, we explain the correlations structure in greater detail,
provide certain estimates on the zero-energy scattering state and explain how the
effective coupling parameter by,, can be inferred from the microscopic structure.

(c) In Sect. 6 we prove Theorem 2.4. We first consider the potential Wg and define a
counting measure which allows us to establish a Gronwall estimate for all 8 > 0.
We will explain in detail how one arrives at this Gronwall estimate. Afterwards, the
counting measure is adjusted to the case Vy, taking the microscopic structure jy g
of the wave function into account. We then establish a Gronwall estimate and finally
prove the second part of the main theorem.

(d) In order to improve the readability of the paper we only state the estimates which
are needed for the proof of Theorem 2.4 in Sect. 6. Their derivation is provided
afterwards in Sect. 7.

4. Preliminaries
We will first fix the notation we are going to employ during the rest of the paper.

Notation 4.1. (a) Throughout the paper hats ~ will always be used in the sense of
Definition 3.1(c). The label n will always be used for the function n(k) = /k/N.

(b) For better readability, we will often omit the upper index ¢ on p;, ¢, Pj and ™. It
will be placed exclusively in formulas where the ¢-dependence is crucial.

(¢) The operator norm, defined for any linear operator f: L>(R*N, C) — L*(R*N, C),
will be denoted by

If llop = sup [ s
VeL2®2N.C), |W]|=1

(d) We will bound expressions which are uniformly bounded in N and # by some constant
C. Constants appearing in a sequence of estimates will not be distinguished, i.e. in
X < CY < CZ the constants may differ.

(e) We will denote by (¢, A;) a generic polynomial with finite degree in
It lloos 1Y@ lloos IV 1A@: I, 1A lloo. fy ds1lAsllo and || A¢]|oo. Note, in partic-
ular, that for a generic constant C the inequality C < (¢, A;) holds. The exact
form of K(¢;, A;) which appears in the final bounds can be reconstructed, collecting
all contributions from the different estimates.

(f) We will denote for any multiplication operator F' L*(R%,C) — L%(R2,C) the
corresponding operator

196D @ F @ 19NVP: L2RN, C) — L*R*N, ©)

acting on the N-particle Hilbert space by F(xi). In particular, we will use, for any
U, Q e L2(R2N | C) the notation

(2,196 D @ F @ 18V 0wy = (Q, F(x)¥).

In analogy, for any two-particle multiplication operator K: L?(R?, C)®? — L2
(R?, ©)®2, we denote the operator acting on any ¥ € L*(R*V, C) by multiplication
in the variable x; and x; by K (x;, x;). In particular, we denote

(2, K(x;j, x))¥W) = /21\1 K (xi, x )% (xr, ..., xy) W (xg, o xN)dxr L dP .
R
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Next, we prove some properties of the projectors p; and g;, which are defined in
Definition 3.1.

Lemma 4.2. (a) For any weights m,r:Nog — R the commutation relations
mr =mr =7m, mpj = pjn, mqj = q;jn, mP, = Pyin
hold.

(b) Letn:No — R{ be given by n(k) = /k/N. Then, the square of il equals the relative
particle number operator of particles not in the state @, i.e.

N
=N""Y g (14)
j=1
(¢) For any weight m:No — R{ and any function f € L* (R4, (C) and any j, k =
0,1,2
mQ; f(x1,x2) 0 = Q; f(x1, x2)m ;i O,

where Qo = p1p2, Q1 € {P192, q1p2} and Q> = qi1q2. Furthermore, for j, k €
{0, 1} and g € L®(R?%, C) the relations

r’riéjg()q)ék = éjg(xl)ﬁj—kék and ﬁéjvl Ok = éjvlﬁj—kék
hold, where Qo = pi and @1 =q1.

(d) For any weight m : Ng — R{ and any functions f € L*>® (R“, (C), gelL>® (Rz, (C)
the commutation relations

[f(x1,x2), m] = [f(x1, x2), prp2(im — m2) + (p1g2 + q1p2) (M — my)],
[g(x1), m] = qig(x1)(m — my1)p1 — p1(m — m1)g(x1)q

hold.
(e) Let f € L' (R?,C), g € L* (R?, C). Then,
Ipjfxj —x0pillop < 1110l (15)
Ipjg"(xj = x)llop = lg(xj — x)pjllop < llgll l@lloos (16)

e )NVjexp)Ig*(xj — xi)llop = IgCxj — x)V;pjllop < IgIIVPllos.  (17)

Proof. (a) follows immediately from Definition 3.1, using that p; and g are orthogonal
projectors.

(b) Note that U,](VZOS;{ ={0,1}V,s01 = Z,](V:O Py. Using also (qj)2 =gqjandgjp; =0
we get

N N
Z% quzpk Zqu'Pk kak an— 72,
j=1 j=1 k=0

k=0 j=1
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(c) Using the definitions above we have

N
MmQ;f(xi,x2) 0k =y mW)PQ; [ (x1, %) Q.

=0

The number of projectors g; in P;Q; in the coordinates j = 3,..., N is equal
tol — j. The p; and g; with j = 3,..., N commute with Q; f (x1, x2) Qk. Thus
PO f(x1,x2) 0k = Q; f(x1,x2) Ok Pi—j+k and

N
mQ;f(xy,x2)Qk = Zm(l)ij(xl,)Q)QkPlfch
=0
N+k—j _
= Y QifGi,x)m(+j — kPO = Q; f(x1, x2)ij— Ok

T=k—j
Similarly one gets the second and third formula.
(d) First note that
[f (x1, x2), m] = [f (x1, X2), p1p2(im — M) + p1gqa (i — 1) + q1 p2 (i — )]
= [f(x1,x2), q1q2m] + [ f (x1, X2), p1 p2ima + p1gaimy +q1 pamy]. (18)

We will show that the right hand side is zero. Multiplying the right hand side with
p1p2 from the left and using (c) one gets

p1p2f(x1, x2)q192m + p1p2 f(x1, x2) p1paiy — p1pama f(x1, X2)
+ p1p2f(x1, x2) prgamy + p1p2 f(x1, x2)q1 pam
= p1p2iy f(x1, X2)q192 + p1p2aima f (X1, X2) p1 p2 — p1pama f(x1, x2)
+ p1p2niy f(x1, x2) p1g2 + p1p2ma f (X1, X2)q1 p2
=0.

Multiplying (18) with p1g> from the left one gets

P1q2 f(x1, X2)q1g2m + p1ga f (X1, x2) p1 paiia + p1ga f (X1, X2) prgamy
+ p1g2 f (x1, x2)q1 pamy — pigamy f (x1, x2).

Using (c) the latter is zero. Also multiplying with g p yields zero due to symmetry
in interchanging x; with x». Multiplying (18) with g1 g> from the left one gets

q1q2 f (x1, x2)Mq192 — q1q2m f (x1, X2) + q1q2 f (x1, X2) p1 p2iiz
+ q192 f (x1, x2) prgamy + q1q2 f (x1, X2)q1 paii

which is again zero and so is (18).
By means of the identity 1 = pj + g1 one has

[g(x1). m] = pi(gxn)m — mg(x1)) p1 +qi(g(xn)im — mg(x1))q
+ q1(g(xnm — mg(x1))p1 + p1(gx)im — g (x1))qi-

The second relation from part (d) then follows from (a) and (c).
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(e) To show (15), note that
pif ;= xi)p; = pi(f * o) (). (19)
It follows that
Ipjf ;= x)pjllop < I llelZ-
For (16) we write
lgCxj — x)pjlloy = Sup lgCxj — x)p; ¥ |*

= H\ilﬁpl((\ll, pilglx; — Xk)|2Pj‘p>>

IA

IpilgCx; — x)1? pjllop-

With (15) we get (16). For (17) we use

lg(x; —x)Vipjllop = sup (W, p;(1gl* * Vo)) (x) W) < lllgl* * Vol
v

< lel*IVellZ.

The Lemma then follows from the fact that, for bounded operators A, [|Allop =
| A*||op holds, where A* is the adjoint operator of A. O

Within our estimates we will encounter wave functions where some of the symmetry is
broken (at this point the reader should exemplarily think of the wave function Vg (x; —
x2)W¥ which is not symmetric under exchange of the variables x; and x3). This leads to
the following definition

Definition 4.3. For any finite set M C {1,2,..., N}, define the space Hrq C
L2(R2N | C) as the set of functions which are symmetric in all variables in M

\IIGHM(:>\IJ(xl,...,xj,...,xk,...,xN):\IJ(xl,...,xk,...,Xj,...,xN)
forall j, k € M.

Based on the combinatorics of the p; and g, we obtain the following

Lemma 4.4. For any f:No — R§ and any finite set M, C {1,2,..., N} with1 € M,
and any finite set Mp C {1,2,..., N} with 1,2 € M,

—~ N —~
| Fare|” < TP forany W € Hag,. (20)
~ N2 -
||ff]1‘]2‘11”2 =< m”f(n)z‘pnz Jorany W € Hay,. 21
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Proof. Let W € H py, for some finite set 1 € M, C {1,2,..., N}. By Lemma 4.2 (b),

(20) can be estimated as

N
IFAw)? = (¥, (H)* @) Z (¥, (Pax®)

~ M, —~
>N (U (P aw) = | I v, (D2aw)
keM,

IMI

Similarly, we obtain for ¥ € H 4,

IF@* W) = (¥, (@) = N2 > (0, (HPqja®)

J.keM,

Mp|(IMp| — 1 —

= %“‘ Fraig:w) +! N2|<<‘I’ (PP
Mp|(IMp| — 1)  ~

S T

which concludes the Lemma. 0O

Corollary 4.5. Let W € L2(R*N, C). For any weight m: Ng — R}

VomgaW || < 2[|m|lopll Vaga W |l
|Vaiigiga ¥ || < C it opl| Vag2 ¥ .

Proof. Using p; + g> = 1 and triangle inequality,

| VaiigaW|| < || p2VanigaW|| + |lg2Vaiiga W],
Vomqiqa¥ || < | p2Vomqig2¥ || + lg2Vaiigqig2 ¥ .

With Lemma 4.2 (c) we get

W)

(24) = |lm p2 Vo W || + IMga Vg2 W < (11 llop + 172 [lop) | V2g2 W]

(22)
(23)

(24)
(25)

Note that the wave function p;Vago W is symmetric under the exchange of any two

variables but x;. Thus we can use Lemma 4.4 to get
(25) = llgim1 p2Vaq2 W || + llq1 g2 Vg2 ¥ ||

+ [mllop) V22 W1

Since vk < +/k + 1 for k > 0 it follows that the latter is bounded by

Cllma llop + Imllop) | V2g2 W1l

Using that [[F]lop = supy<,<y{r(k)} = [[7ullop for any d € N and any weight r, the

Corollary follows. 0O
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Lemma 4.6. Let Q2, x € Hq for some M, let 1 ¢ M and 2,3 € M. Let O} be an
operator acting on the j'" and k'"* coordinate. Then

(€2, 012001 < 11217 + [(O12x, O13x) |+ IMD ™' O12x11%.
Proof. Using symmetry and Cauchy Schwarz

(2, 012 = IMITTHR Y ool < Ml Y. onxll.
jeM jeM

For the second factor we can write

1Y 0uixIP=¢>_ 01jx. Y Orix)

jeM jeM keM
< DO X OO+ Y (O x. Orax)]
JEM j#keM

< IMII{O1.2x, O12x )+ IMI(M| = DI{O12x, Or3x)I.

Since ab < l/2a2 + 1/2192 and (a + b)2 < 2a? +2b? holds for any real numbers a and
b, the Lemma follows. 0O

In our estimates, we need the regularity conditions

IVerlloo <00, llgilloo <00, Vel <00,  [[Agl < oc0.

Thatis, we need ¢, € H>(R?, C)NW!>°(R2, C). Then, | Al¢: ||, [ Alg¢|? [l and [|@?]],
which also appear in our estimates, can be bounded by

Al = ¢f Agr + @, Mg +2(Ve)) - (Vo)
Al 1< 20 At lloo + 20 Ve I Vel o
Al < 41l Ag|
o7 1l < Nl lloolleer -

Recall the Sobolev embedding Theorem, which implies in particular H*(R?, C) =
WE2(R?, C) c CF2(R%,C). If ¢ € C'(R?, C) N H!(R?, C), then ¢ € W-°(R2, C)
follows since both ¢ and V¢ have to decay at infinity. Thus, ¢, € H>(R?, C) implies
¢ € H*(R?,C) N WH°(R?, C), which suffices for our estimates. Since ¢, obeys a
defocusing nonlinear Schrodinger equation, we expect the regularity of the solution ¢,
to follow from the regularity of the initial datum ¢(. For a certain class of external
potentials A; this has been proven in [13]:

Lemma 4.7. Let ¢y € Z¥(R*, C) = {f € L*(R*, C)| X_p4pi I1x2a? £II < oo}, for
k > 2. Let, for b > 0, ¢; be the unique solution to B

00 = (=A+ A +blo)r.

Let A. € L (R, x R?c, C) real valued and smooth with respect to the space variable:

for (almost) allt € R, the map x +— A;(x) is C*°. Moreover, A, is at most quadratic in
space, uniformly w.r.t. time t:

Va e N?, Ja| > 2, 3%A. € LR, x RY, ).
In addition, t — sup|, < |A;(x)| belongs to L™(R, C). Then
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() ¢, € ZKR?, C), which implies ¢; € H*(R?, C).

®) llgell = ligoll-
(c) Let gy € =3 (R2, C). Assume in addition that A. € C'(R, L®(R?, R)). Then, for
any fixed t > 0, K(gp;, Ay) < oo follows.

Proof. Part (a) is Corollary 1.4. in [13]. We like to remark that |¢;||yx < C holds,
if A, = 0, see Section 1.2. in [13]. The conditions on A; are for example satisfied if
A; € Cgo(Rz, R) forallz € R, A;(x) = O, for all |f] > T. Part (b) can be verified
directly, using the existence of global in time solutions. Part (c) follows from (a) and the
embedding H*(R?,C) ¢ H>(R?,C)Nn WL*°(R2,C). O

5. Microscopic Structure in 2 Dimensions

5.1. The scattering state. In this section we analyze the microscopic structure which is
induced by Vy. In particular, we explain why the dynamical properties of the system
are determined by the low energy scattering regime.

Definition 5.1. Let Viy € Vy. For any R > diam(supp(Vx)), we define the zero energy
scattering state jy g € C'(R%, R) by

Jn.r(x) = 1for |x| = R.
Next, we want to recall some important properties of the scattering state jy g, see

also Appendix C of [38].

Lemma 5.2. Let Vi € V. Define I = f]R2 d*xVy (x)jn r(x). For the scattering state
defined previously the following relations hold:

(a) There exists a nonnegative number a, called scattering length of the potential V, such
that

4
NR
In (eT)
(in the case a = 0 we have Ig = 0). The scattering length a does not depend on R
and fulfills a < diam(supp(V)). Furthermore, Ir > 0 holds.

(b) jn.Rr is a nonnegative function which is spherically symmetric in |x|. For |x| >
diam(supp(VN)), jn.r is given by

) =1+ —— i (X
JN,R(X) = 1n(eN_R>n R .
a

N

Ig =

Proof. (a)+(b) Rescaling x — e¢™x = y, we obtain, setting R =¢VR and sp(y) =
Jo.eN g(Y), the unscaled scattering equation
(=8 +3V() 5z =0, @n
sp(y) = 1for|y| = R.
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Since we assume V to be nonnegative, one can define the scattering state sz by a
variational principle. Theorem C.1 in [38] then implies that s 5 is a nonnegative, spher-
ically symmetric function in | y|. It is then easy to verify that for diam (supp(V)) < |y|
there exists a number A € R such that

sp(y) = 1+iln (m> (28)
R 4 R/

Next, we show that A = fRZ dzyV(y)sR(y). This can be seen by noting that, for
r > diam (supp(V)),

fdzyvo)s,é(y):z/ dzyAsR<y)=2/ Vsp(y) - ds
R? B (0) 9B, (0)

A
Vin(ly|) -ds = —/ —rde
2 0

- 2 3B, (0) r

= A.

By Theorem C.1 in [38], there exists a number a > 0, not depending on R, such that
for all |y| > diam (supp(V))

ety = /@
R In(R/a)
Comparing this with (28), we obtain
4
f V0sgdy? = ——=.
R? In (g)

Since s is nonnegative, it furthermore follows that @ < diam (supp(V)). This di-
rectly implies A > 0. By scaling, we obtain

) 5 2 4
IR:f Vv jn.r(y)dy :/ V(Msg(ndy” = ———-.
R2 R2 In (euR)
o

Assuming that the energy per particle £y, (W) is of order one, the wave function ¥ will
have a microscopic structure near the interactions Vy, given by jy r. The interaction

among two particles is then determined by aad & %’T. Keeping in mind that each

N+in(2)
particle interacts with all other N — 1 particles, we obtain the effective Gross—Pitaevskii
equation, for ¢; € H*(R?, C)

100, (x) = (=A + A, + 470 ()P @1 (x).

Thus, choosing Vy (x) = e2N V(M x) leads in our setting to an effective one-particle
equation which is determined by the low energy scattering behavior of the particles. We
remark that, for any s > 0, the potential e2V*V (eN*x) yields to the coupling 47 /s.
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5.2. Properties of the scattering state. Note that the potential Vi is strongly peaked
within an exponentially small region. In order to control the short scale structure of W,
we define a potential M, with softer scaling behaviour in such a way that the potential
Vn — M|, has scattering length zero. This allows us to “replace” Vy by M,,, which has
better scaling behavior and is easier to control. In particular, |M,| < CN I+ can be
controlled for p sufficiently small.

Definition 5.3. Let Vi € Vy.Forany 1 > Oand any R, > N~ # we define the potential
M, via

4r N~ if NTH < |x| < Ry,

M, (x) = {0 (29)

else .

Furthermore, we define the zero energy scattering state f,, € C I(R2, R) of the potential

1(Vy — M), that is

1 —

(_Ax+§ (VN(x) _Mu(x))) Su(x) =0, (30)
fu(x) =1for |x| = R,.

Note that M, and f, depend on R,,.

Remark 5.4. In the following, we choose R, to be the smallest value such that the
scattering length of the potential (Vy — M,,) is zero which is equivalent to the condition
fR d*x(Vy(x) — M, (x)) fu(x) = 0. The existence of such R, < oo will be proven in
Lemma 5.5.

Note, that choosing R, to be the minimal value such that (Vy — M,,) has scattering
length zero excludes the possibility for bound states for the potential. This will be shown
in Lemma 7.10 (a). Heuristically speaking, the absence of bound states can be seen in
the following way: The attractive part of the potential, i.e. —M, is chosen to be as
small as possible, i.e. just to compensates the repulsive part. Then, there is not enough
attractiveness left to form a bound state.

Lemma 5.5. For the scattering state f,, defined by (30), the following relations hold:
(a) There exists aminimal value R;, < oo such that fR2 d?x(Vy(x) —M,(x)) fux)=0.
For the rest of the paper we assume that R, is the minimum we get in (a).

(b) There exists K, € R, K, > 0 such that K, f,,(x) = jn.g, (x) Vx| < N7*.
(c) For N sufficiently large the supports of Vi and M, do not overlap.
(d) fu is a positive, monotone nondecreasing function in |x|.

(e)
Jux) =1 for|x| = Ry. (€2Y)
®
1 N‘“)
1>K,>1+ In . (32)
" N+in (%) ( Ry

(2) R, < CN~-.
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For any fixed 0 < p, N sufficiently large such that Viy and M,, do not overlap, we obtain
(h)

In(N)
N

INIVN fulli —4m| = INIIMy fullh —4x| = C
(i) Define

gu(x) =1- fu(x)-
Then,
lgulh < CNT' 2 In(N), gl < CNT'FIn(N),  llgulloo < 1.
()
INIM, Iy — 4x] < ¢ 2D
— 4 —_—.
wlll = N
(9]
My, eWu, M, f. € Wy.

Proof. (a) In the following, we will sometimes denote, with a slight abuse of notation,
fu(x) = fu(r)and jy r(x) = jn r(r) for r = |x| (for this, recall that f,, and jy g
are radially symmetric). We further denote by f;i () the derivative of f, with respect
tor.

We first show by contradiction that there exists a xo € RZ, |xo] < N™*, such
that f,,(xo) # 0. For this, assume that f,(x) = 0 for all |x] < N7#. Since f, is

continuous, there exists a maximal value ro > N ~* such that the scattering equation
(30) is equivalent to

(—Ax = 3Mu () fulx) =0,
Su(x) = 1for |x| = Ry, (33)
Su(x) =0for x| < rg.

Using (30) and Gauss’-theorem, we further obtain

, 1
Ju) = — 50 d*x(Vy (x) = My (x)) fu (x). (34)

(33) and (34) then imply for r > rg

1 ) 27‘[N7]+2M r
|fhn] = - /B,«»d XMy (x) fu(x)| = —r fm dr'r' f,(r')
2nN—1+2u r
L TN T f dr'r' (' = ro) sup If,i(s)l‘-
r ro ro<s<r

Taking the supreme over the interval [rg, r], the inequality above then implies that
there exists a constant C(r, ro) # 0, lim,_, , C(r, r9) = 0 such that

sup [ f5,()| < C(r.r) N~ sup | f,,(s)]-

Fro<s=<r Fro=<s=<r
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Thus, for r close enough to rp, the inequality above can only hold if f;i (s) = 0 for
s € [rg, r], yielding a contradiction to the choice of ry.

Consequently, there exists a xo € RZ, |xo] < N™H, such that f,,(xo) # 0. We can
thus define

JN,R(X0)

fu( 0)

on the compact set By,(0). One easily sees that h(x) = jy r(x) on 9By, (0) and
satisfies the zero energy scattering equation (26) for x € By-«(0). Note that the
scattering equations (26) and (30) have a unique solution on any compact set. It
then follows that 1(x) = jn r(x) Vx € By-1(0). Since jy p(N™H) # 0, we then
obtain f,,(N™*) # 0. Applying Theorem C.1 in [38] once more, it then follows that
either f,, or — f,, is a nonnegative, monotone nondecrasing function in |x| for all
x| < N7H.

Recall that M,, and hence f,(x) depend on RM € [N, oo[. For conceptual
clarity, we denote M( “)(x) = M, (x) and f(R“ = fu(x) for the rest of the
proof of part (a). For u fixed, consider the function

h(x) = fu(x)——-

s:[N7H, 00o[— R

(Ru) (R[L)

Ry > d’x(Vy(x) —
B, (0)

() fu

We show by contradiction that the function s has at least one zero. Assume s # 0
were to hold. We can assume w.l.o.g. s > 0. It then follows from Gauss’-theorem

that f/(R“)(R,L) > 0 for all R, > N~". By uniqueness of the solution of the
scattering equation (30), for I? < Ry, there exists a constant K RuRy # 0, such

(Ry)

that for all |x| < R we have f( “)(x) =K; ,ER“)(x) Since f, * and s are

Ry, Ry,
continuous, we can further conclude K RuR, >‘ 0./ From s # 0, it then follows that,
for all ¥ € [N~*, co[ and for all R, € [N*, oal, “R“)( ) # 0. Thus, for all
r € [N"#, ool and for all R,, € [N™H!, o[, the function fﬂ Ru) (r) doesn’t change
sign. From Lemma 5.2, the assumption s(N~#) > 0 and K RuRy 0, we obtain,
for all r € [0, N"#] and for all R, € [N™H, oo, that f,ER”)(r) > 0 holds. This,
however, implies limg,, .0 s (R,) = —00 yielding to a contradiction. By continuity
of s, there exists thus a minimal value R;, > N™# such that s(R,) = 0.

Remark 5.6. As mentioned, we will from now on fix R, € [N™#, oo[ as the minimal
value such that s(R,,) = 0. Furthermore, we may assume a > 0 and R, > N~# in the
following. For a = 0, we can choose R, = N™#, such that f,,(x) = jn g(x).Itis then
easy to verify that the Lemma stated is valid.

(b) From (a), we can conclude that
JNR, (NTH)
Su(N—H)

Next, we show that the constant K, is positive. Since jy, Ry, (N~H) is positive, it
follows from Eq. (35) that K, and f,,(N ~*) have equal sign. By (a), the sign of f},

Ky = (35)
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is constant for |x| < R,,. Since jy r ’ and Vy are nonnegative functions, we obtain
by Gauss-theorem and the scattering equation (30)

0
sgn (%h:]\/—u) = sgn(K,). (36)

Recall that R, is the smallest value such that % = 0. If it were now that

’r—R
K, is negative, we could conclude from (35) and (36) that af S5 lr=n-1 < 0 and

fu

fu(N7#) < 0. Since Ry, is by definition the smallest value where = 0, we

were able to conclude from the continuity of the derivative that % < 0 for all

r < R, and hence f(R,) < 0. However, this were in contradiction to the boundary
condition of the zero energy scattering state [see (30)] and thus K,, > 0O follows.
This directly follows from e™ < CN~H for N sufficiently large.

From the proof of property (b), we see that f,, and its derivative is positive at N ~*.
From (34), we obtain f/i (r) = Oforall r > R,,. Further (34) gives that R, is the
smallest value such that f/ (R,) = 0. This and continuity imply that f/,(r) > 0
for all r < R,. Since f, is continuous, positive at N/, and its derivative is
a nonnegative function, it follows that f}, is a positive, monotone nondecreasing
function in |x|. ~

By definition of R, it follows that / = fRZ d*x(Vy(x) — M, (x)) fu(x) = 0.
Therefore, for all [x| > R, f,, solves —Af, (x) = 0, which has the solution

fu(x) = 1+4_IH<L?M|> =1

Since f}, is a positive monotone nondecreasing function in |x|, we obtain

N~H
1> fu(N"") = jnr,(NTH)/Kp=| 1+ (RM)1H< ) /K-

‘We obtain the lower bound

For the upper bound we first prove that f),(x) > jn g, (x) holds for all [x| < R,,.
Using the scatting equations (26) and (30) we obtain

1 1
A (fu) = jN. R, (X)) = 2V () (fux) = JN.R, (X)) = 5 M (X) fu ()

as well as f,(Ry) — jn.g,(Ry) = 0. Since M, (x) f,(x) > 0, we obtain that
Ay (fu(x) = jN,r,(x)) = Ofor N™# < |x| < R,. Thatis, fi,(x) — jn,r, (%) is
superharmonic for N™* < |x| < R,. Using the minimum principle, we obtain,
using that f;, — jn,r, is spherically symmetric

min  (fy — jyg,) = min  (fu — jNR,)- (37)
N™H=|X|=R, [x|€{N=H Ry}
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(&

If it were now that min|x|€{N—uyRu}(fM — JN.R,) = fu(NTH) — jN g, (NT/) <
Su(Ry) — jn g, (Ry) = 0, we could conclude that f,(x) — jy g, (x) < O for all
N™" < |x| < Ry. Since f,,(x) — jn g, (x) then obeys

—A(fu () = jn.r, (%)) + VN ) (fu(x) = jn.g, (X)) =0 for [x| < N7H,
Ju@) — jn g, (x) =0 for [x| = N7H,

we could then conclude that f,,(x) — jy g, (x) < Oforall [x| < R,. From this, we
obtain that A(f,(x) — jn g, (x)) < Ofor |x| < R,. Thatis, f,(x) — jn g, (x)is
superharmonic for all [x| < R,,. Using the minimum principle once again, we then
obtain

min (fu — jN.R,) = fu(Ry) — jN.R,(Ry) =0

Bg,, 0)

which contradicts f, (x) — jy, R, (x) < 0for x| < R,,. Therefore, we can conclude
in (37) that miny —u <y <gr,, (fu = JN.R,) = fu(Rp) — jn,R, (Ry) = O holds. Then,
itfollows that f,, (x)— jy g, (x) > Oforall N™# < |x| < R,,. Using the zero energy
scattering equation —A(fy, (x) — jn g, (x)) + %VN(x)(fu(x) —JN.R,(x)) =0 for
|x| < N™H, we can, together with f,,(N™") — jy g,(N7") > 0, conclude that
fux) = jn.g, (x) > 0 forall [x] < Ry,.

. . j N7H
As a consequence, we obtain the desired bound K, = jl\;;R("T(_M))
I

Since f}, is a nonnegative, monotone nondecreasing function in |x| with f,(x) = 1
Y|x| > Ry, it follows that

CHN) = fu(NH) f PrVy () = / PV () £ ()
R2 RZ
Z[ dzxM#(x)fM(x)zfﬂ(N_“)f d*x M, (x).
RZ RZ

Therefore, [p2 d*x M), (x) < C holds, which implies that R, < CN'/>7H.
From
1 4 1

o 2xV . =/ PV
Kp N +1n (%> X, /Rz xVN (&) jn,Rr, (x) - xVy (x) fu(x)

Ry
:/ deMM(x)fM(x)z&TzN_Hz”/ drrfu(r)
R2 N—H&

we conclude that

Ry N1-21
Jrvmn = (vem (%))

Since f), is a nonegative, monotone nondecreasing function in |x|,

Ry,

i —u
JNR,(NTF) 1 drrfa(r)

K. = 2 Re NN 5/
m

1
E(Ri — N7
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which implies

N
RiNZM < +1.

T (N +In (%)) JN.R,(NTH)

Using R, < CN'/2=1 it then follows

j (N"Hy=1+ : ln(NM> >1 <
JN,R = i
' N +In (%) L N
which implies R, < CN™H.
(h) Using
_ . _ 47
1My fullt = IV fulli = KNV N g, = K ——
N+n (%)
we obtain
_ N
INIVN fulli —4r| = INIMy fullh — 4| = 4 KMI—R -1
N +1n (7">
R
_ 477 N—NKM+KMIH(TM> <Cln(N)
Ky N +1In (%) - N

Ry W
a

(i) Using for |x| < Ry, the inequalities jy g, (x) > 1+ ﬁ In (%) as well as

N+ln(—
1> fu(x) = jn.gr, (x), it follows for x| < R,

. 1 x|
0= gu(¥) =1 fu(¥) <1 —jn. M(x)f——ln(—)
" 8 WE N+ln<%) Ry
<CN“YIn(N|x]) .

Since g, (x) = 0 for x| > R, we conclude with R, < CN™# that

C (Bu
lgulll < Nfo drr|ln(Nr)| < CN~'72*In N,

as well as
C [
lgull? < > / drr (In (Nr))?
123 N2 0
NR

- CN_4[r2(2(ln(r))2 —2In(r) + 1)]0 "

< CN272% (In(N))?.
lgulloo = Il = fulloo < 1, since f, is a nonnegative, monotone nondecreasing

function with f,(x) < 1.
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(j) Using (h) and (i), we obtain with ||M||; < CN-!
INIMplli — 4| < INIIMy fulli — 4|+ NIIM gl

In(N)
<C N + L =n-r&ulloo ) -

Since g, (x) is a nonnegative, monotone nonincreasing function, it follows with
K, <1

JN.R, (NTH)

||]1|"ZN7“8M||OO = gu,(NilL) =1—- fM(N*H) =1— -
w

| N~H
<l-|1+ = In
N+1n<7"> Ry

and (j) follows.

(k) M, € W, follows directly from R, < CN~/*. From part (j) we then get by, = 47
and M, € W,. By means of part (d) we conclude 0 < M, (x)f,(x) < M, (x)
which together with part (h) implies M, f,, € VA\}IL, bm,f, = 4w and My, f, € W,.

O

6. Proof of the Theorem

In this section, we present the proof of Theorem 2.4. We start with the NLS regime and
then pursue with the exponential scaling. In both cases we follow the same strategy:
After giving the precise definition of the functional we explain its connection to the
notion of Bose—Einstein condensation in terms of reduced density matrices. Thereupon,
we differentiate the functional with respect to its time variable, perform a Gronwall
estimate and finally prove the respective part of the theorem.

6.1. Proof for the NLS scaling Wg with B > 0.

6.1.1. Definition of the functional The goal of this section is to define a functional
a: L2(R?N,C) x L*(R?,C) — R§ which is adapted to potentials with NLS scaling and
which meets all the requirements stated in Sect. 3. In short, we demand the functional to
converge to zero for properly chosen initial states and its time derivative to be controllable
by means of a Gronwall estimate. Additionally, the functional should allow to prove both
Bose-Einstein condensation and the convergence of the energy per particle of the many-
body system to the effective energy functional.

While interactions in the mean-field scaling (Wg with 8 = 0) become weak for large
particle numbers, potentials Wg with 8 > 1/2 are getting peaked as N — oo. This fact
needs to be taken into account when defining a suitable counting functional. For small
B and a large class of different choices of the weight m* with ¢, being a solution of (3),
it is possible to show that

t
(W, mP W) < (W, m* o) +/ ds
0

(Kt A (00 W) + (1) + (W, T W) + |y () = E5F (90)

)
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This enables us to perform an integral type Gronwall estimate if we choose

a(Wr, ) = (Wi, 17 W) + | Ewy (V) — (‘Pt)

Here, the smallness of the distance between the energies is used to control the kinetic
energy per particle of the many-body system (Lemma 7.6). This prevents the wave
function from being strongly localized in the support of the potential and in this way
softens the effect of the interaction. Moreover, it allows us to bound the kinetic energy
of the particles which are not in the condensate state ¢; by o (¢, ¢;), see Lemma 7.9.

For large f, the interaction is harder to control and several estimates break down,
if one defines « as above. It is therefore necessary to redefine the functional o (¥, ¢;)
and to carefully choose a new weight function m. Let us explain why this is necessary.
To obtain an integral type Gronwall estimate, we will calculate the time derivative of
((\IJ,, m?® W, ). This time derivative will contain contributions of the form m — m and
m — my. To obtain sufficient error estimates for large B, it is necessary to choose a
weight function m such that ||m — m;|lop wWith i = 1,2 can be controlled sufficiently
well (one can infer from the proof below that |77 — 7; [lop = ON~12)y withi =1,21s
not decaying sufficiently in N, see part (b) of Lemma 7.7). For the Gronwall estimate,
we require in addition || — 71]lop — 0,as N — oo.

In total, this suggests the following form of the functional

Definition 6.1. For 0 < & < 1 define
/k/N, for k > N'7%;
m(k) = D1 -
1/2(N k+N7%), else.
and

@ (W, ) = (W, W) + [, () = E57 ().

Remark 6.2. Tt should be noted, that @ = depends on the parameter £ which will be chosen
later. For better readability, we disregard the & dependence in the notation.

The counting measure can be related to the trace norm distance of the one-particle
reduced density matrix.

Lemma 6.3. Let 0 < & < 1/3, W € L2(R?N,C), ¢ € L*(R?,C) and a=<(¥, ¢) be
defined as in Definition 6.1. Then,

Tr[v = lo) ol < VBa= (¥, ), (38)

1
o (W) <\ [T | = o)l + |Ew, (0) = 30 @) + N TE (39)

Proof. We would like to mention, that this Lemma has been proven in [6, Lemma 3.3].
For sake of completeness, we briefly recall the argument. From [30, Lemma2.3] and
[50, eq. (6)] one concludes

(w. @) W) = e g — totel| < /8 (w. @) w) (40)
If one then uses that n(k)2 < n(k) < m(k) and m(k) < n(k)+%N —¢ imply the relations
(v. () w) < (v w) and (@ @0w) < (W, @02 W)+ %Nfs,

the Lemma follows. O
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6.1.2. Preliminaries for the Gronwall estimate Subsequently, we will perform a Gron-
wall estimate for « = and prove part (a) of Theorem 2.4. For this, we define

Definition 6.4. Let 0 < £ < 1/3 and Wg € Wg. Define

||W/S||1
N —

||W/S||1

Zy(xj, x) = Wplxj — xi) — N

ol (xj) — ————lpl (). (@41)

Note, for Wg(x) = N~*26W (NPx), we have N||Wg|l; = ||W]|;. With
m k) =mk) —mk + 1), mb(k) =m(k) —m(k+2)

and

o~

7 =m?pips+ W (prga + q1 p2),

we define for / € {a, b, ¢} the functionals y;=: L>(R*N, C) x L*(R?, C) — R{ by

Va (W.9) = (V. A W) — (9. Arg) (42)
7 (W.g) = NN = D3 (9, Z§(x1, 22)7W) ) 43)
= 2NN = D3 ((¥, praaii® Z§(x1, 22)p1 p2¥) )
— NV = DI (. @12ty Wy (x1 = x2) p1 p20) )
— 2NV = DY (W, 12/ ZE (1, x2)pra2¥) ) (44)
75 (W, 9) = INWVIWg i = by (9, (@ilg Gl pr - pﬁ“|¢(x1>|2q1>w>>(.45)

The value of the functional o= (¥;, ¢;) at time ¢ is then bounded by

Lemma 6.5. Let Wg € Wjy. Let Y, the unique solution to i0,¥; = Hyy, W, with initial

datum Wy € L2(R?N,C) N H>R?*N,C), |[Woll = 1. Let ¢, the unique solution to

idpr = hg @ with ¢, € H>®R?,C), lgoll = 1. Let a=(V1, 1) be defined as in
B

Definition 6.1. Then

t
o= (W, ) sa<<wo,<po>+/0 ds (|y; (s, 0)| + |75 (Wss 09| + |7 (W, 09)])
(46)

Proof. For the proof of the Lemma we restore the upper index ¢; in order to pay respect
to the time dependence of /%" The time derivative of ¢, is given by (3),1.e. i9;¢;(x;) =

hg{ P (x;). Here, hff j denotes the operator hff acting on the j" coordinate x -
B’ B’ B
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‘We then obtain
d

E«‘I’z, m¥ W) = i(Hw, V;, m* W) —i(W;, m* Hy,¥;)

N
— (v, [thwi,,-,rﬁ*”f 1)

i(Wr, [Hw, — Zhbw P 1)

= i, [(zN(N — DWp(1 = x2) = Nbw,lgienl?) i | W)

= iN(N[Wgll1 — bwy) (Wr. Llg: (x1) 7, i 19;)

NN —-1)

+i—
2

where we used the symmetry of W,;. Using Lemma 4.2 (d), it follows that (dropping the
explicit dependence on ¢; from now on)

(Wi, [Z5 (x1, x2), m*" 19y)),

d ~ . -~
E((‘Pum‘p’%» = iN(N[Wgll — bwy) (Wr, (q11g: (x1) P pi

— 1l (x)Pg) V)

NN -1 o PO
+ i (Wi [Zg (1. x2), prpa(in — in2) W)
NN -1 o PO
+ i (V. [Z5 (X1, x2). (p1g2 + qip2) (M — )11

Since Z;gf’ and py pa(m — my) as well as pygo(m — m) are selfadjoint, we obtain
d -~ <
E«q}t,m%\yt» =y (Y, )= NN —-1)
x 3 (((\l/f, (PLP2+ Pra2 +q1p2 +q1g2) 2 (x1, x2) (A pi pa + % (piga + qlpz))‘lfz))> .

Note that in view of Lemma 4.2 (¢) 7Q Zg’ (x1,x)Qj = Q; Z? (x1, x2) Q7 for any
j €10, 1,2} and any weight r. Therefore,

S (W1, p1 2z, xi” prp2¥i) ) =0

S (W1, (prgz + q1p2)Zf (51, ) (102 + 4192 W) ) = 0.

Using Symmetry and Lemma 4.2 (c), we obtain the first line (43). Furthermore,

d ~ ~ 1
WL W) = Y W @) = 2NN = DS (W, 18 p1aaZ (i x)pipai))

dt
= NV = D3 (%, 1014225 (11, x2)p1p2¥e) )
— 2NN = D (W1, p1p2Zff (x1, x)ii prga¥i) )

= 2NN = D3 (%1 1110225 (11, 22 P12 )
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Since p1 p2l@?l(xq192 = p1pag2lefl(x1)g1 = 0 = p1pal}|(x2)q192, we can re-
place Zg’ (x1, x2) in the second line by Wg(x1 — x3).
The third line equals 2N (N — D3 («wl, A praa ZY (k1. x2) pi pz‘l—’t))). Since
mk—1)—mck+1)— (mk) —mkk+1)) =mck — 1) —m(k)

it follows that r’ﬁb_l —m* =m*, — (m(0) —m(1)) Py and we get

d ~0 < ~ ~a Pt
T ) = 7 (W) = 2NN = DR (W1, praa 2] (a1, x2)pr pa i) )
— NN = D3 (%1 q1g2”, Ws (x1 = x2)p1 p2 i) )

= NN = D3 (%1, 142, Z5 (1, ) pr1a 91))
=¥ (W00 + v (W, ¢0).

For the second summand of a= (¥, ¢;) we have

d . .
= (Ewp (00 = 57 (00) = (Wi, A W) = (1. Av)
. bw,
— ifon [0 (457 - 22102) ] o)
bw, (d
- <‘Pt, Tﬂ (E|(pt|2) <Pz>

= (¥, A,(xl)\lll)) — {¢r, At%)

. bw,
+ l<<.0t, [hfvg, Tﬂ|<.0t|2:| (Pt>

bw,
- i<‘/7t’ [hfvf;, Tﬂ|¢t|2i| §0t>
=¥, (W, ¢p). 47)
By explicit estimates, one can show that the functions yj< W,p) : R - Rt

yj< (¥,, @) with j € {a, b, ¢} are continuous if A. € C!(R, L®(R?, R)). The Lemma

then follows using that | f(x)| < |f(0)| + f(f dy|f'(y)| holds for any f € Cl(R,R).
O

6.1.3. The Gronwall estimate In order to establish a Gronwall estimate for o<, we have
to find a suitable bound for the right hand side of (46).

Lemma 6.6. Let Wg € Wy. Let Y, the unique solution to i0,¥; = Hyy, W, with initial
datum Wy € LZ(R?*N C) N H>(R?>N,C), |Wol = 1. Let ¢, the unique solution to
i = h,?wf; @ with ¢; € H3(R?, ©), [lgol| = 1. Let Ew, (Vo) < C.

(a) Let B < 1/12. Moreover, let a™(Yy, @1), v, (Wr, ¢;) and v~ (Yy, ¢;) be defined as
in Definitions 6.1 and 6.4 with & = 1/6. Then

V" (W10 @0) + 757 (W 90 + 75 (Wr, 0| = K, A (@ (W, 90+ N2 In(v) ).
(48)
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(b) Let B > 1/12. Moreover, let o=V, @), v, (Yr, @) and y,~ (W, @) be defined as
in Definitions 6.1 and 6.4 with § = 1/10. Then

|Va<(‘1’t» @)+ V}f(‘*pn @)+ V:(‘I’t, o) < Kler, A,)(a<(lI/,, @) + N71/10>~
(49)

The proof of Lemma 6.6 is given in Sect. 7.3.

At this point, we only consider the most relevant term y,~(W;, ¢;) and explain on a
heuristic level why it is small. The principle argument follows the ideas and estimates
of [49]. The first line in (44) is the most important one. This expression is only small if
the correct coupling parameter by, ~ N||Wg||; is used in the mean-field equation (3).
Then,

Np{"Wg(x1 — x2) p{" = Np{" Wg * o> (x2) p¥" — p{'lol* )W 1 py"

converges against the mean-field potential, and hence the first expression of (44) is small.
In order to estimate the second and third line of (44), one tries to bound N2 (¥, qip’

q5'm” yWg (x1 —x2) pf' p§' Wi} and N> (W1, ¢{' g3 m® | Z§; (x1 —x2) p{' ¢3" Wy) in terms
of (W;, n? W) + O(N~") for some > 0. By means of

(W0, 79 W) — (W, ¥ W)| < (% — i [lop = N5

this can then be bounded by o= (¥;, ¢;) + O(N ") for some n > 0.
With the help of Lemma 6.5, Lemma 6.6 and Gronwall’s Lemma, we obtain

Lemma 6.7. Let Wg € Wjg. Let WV, the unique solution to i0;W; = HW/3 U, with initial
datum ¥, € L?(RZN, C) N H?>R*N, C), |Wol = 1. Let ¢; the unique solution to
i = hiy g with ¢ € H(R?, C), llgoll = 1.

(a) Let B < 1/12 and a= (Y, ¢;) be defined as in Definition 6.1 with & = 1/6. Then,
@< (W, @) < elodsKigs. A0 (= (W0, 90) + NP In(N)). (50)
(b) Let B > 1/12 and o= (Vy, ¢;) be defined as in Definition 6.1 with & = 1/10. Then,
a= (W, ¢p) < el WKW (0= (W, @) + N71/10). (51)
Proof. From Lemmas 6.5 and 6.6, we have

t
a= (¥, ) < a= (Yo, go) + fo ds K(gs, Ay) (o= (¥, ¢5) + NP In(N))

in the case of B < 1/12. Thus if we apply Gronwall’s Lemma, we get

t

o= (s, 05) < &= (W, 9o) + fo ds K(gy, AN~ In(N)
4 1
# [ ds k(g a9l 4T (i, o)
0

+ fs du K (g, Ay)N~2E 1n(N)).
0

With the help of the relation |x| < ¢! this can be further simplified and one obtains
(50). Part (b) of the Lemma is shown in complete analogy. O
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Proof of Theorem 2.4: Part (a). Note that under the assumptions ¢; € H 3(R%, C) and
A e CL(R, LOO(RZ, R)) there exists a constant C; < oo, depending on 7, g9 and A,,
such that fot dsK(ps, Ag) < Cy, see Sect. 4. Let 8 < 1/12 and & = 1/6. We now
combine Lemmas 6.3 and 6.7 to estimate

< Ca<(¥;, @) < eC\/a=(Wy, go) + N~-28 In(N)

1
Tr|vg)) — ool

< (/ Te gy — loo) (ol + \/ |Ew, (W) = £57 (g0)
+N*JmNO.

Here, we have used N~1/¢ < N=28 In(N) and /[a[ + [b] < +/]a] + +/]P] to obtain the
last line. In a similar way, one shows

Ewy (W) = EGF (90| < &~ (W1, 1)

< eCr (\/Tr ‘yé,t) — |§00><‘P0|‘ + ‘SW/} (Wo) — gbGW[; (¢0)
+ N72F ln(N)>~

In total, this shows part (a) of Theorem 2.4 for 8 < 1/12. The estimates for § > 1/12
are shown in exactly the same manner. 0O

6.2. Proof for the exponential scaling Vy.

6.2.1. Definition of the functional In case of the exponential scaling, the interaction
is so strong such that the many-body wave function develops a non-negligible short
scale correlation structure which prevents the particles from being localized too close
to each other. These correlations determine the statical and dynamical properties of the
condensate in a crucial manner and need to be taken into account explicitly. It is therefore
reasonable to expect that the counting measure needs to be modified, too.

In order to motivate how the correlation structure will appear in the definition of
the functional we think for the moment of the most simple counting measure, namely
(¥, q7" W) = 1— (¥, p¥" ¥, ). This functional counts the relative number of particles
which are not in the state ¢; and consequently measures if the many-body state is
approximately given by the product state (pl®N , in the sense of reduced density matrices.
However, in the face of the exponential scaling, one should picture the many-body state
not as the product of one-particle states but rather as a wave function of Jastrow-type,
ie.

N
Wi, oxn) [ vrGi =) [Teo

I<i<j<N k=1

N N
=[Tivrei =@ TT vt —xp [Tento)
=2 k=1

2<i<j<N
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with jy r being the zero energy scattering state as defined in (26).

In the following, we will consider the correlation structure to be induced by f;, (see
Definition 5.3) rather than by jx g. This replacement does not change the heuristic
discussion above, since f,(x) ~ JN.R, (x) ¥]x| < N~H for N large (see Lemma 5.5),
but will allow us to smoothen the singular interaction, as we will explain in the following.

Instead of projecting onto the state ¢;, the previous discussion suggests to replace p‘f’

by | ]—[,1{\7:2 fulxr — xk)go,(xl))(]_[f\;z fu(x1 — x)¢:(x1)|. The counting measure would
then be given by

N N
1— <<w T £ = 20 GO | fuler = xz)cpt(x1>|wt>>

k=2 =2
=1- <<\I/,, l_[ Suler — xk)p H Sulxr — xl)‘l’t>>
k=2 =2

This expression can be further simplified, if we use g, = 1 — f;, and only keep the
terms which are at most linear in g,

N
(73 ( Zgu()ﬂ —Xk)) (1 - Zgu(m —m))‘lft))

~ 1= (Y, Pl"I’r)) +2(N — DR, gu(xl —x2)p{ W)

= (Wi, qf" Vi) +2(N = DREYy, g (x1 — x2) pf ). (52)

With the help of the symmetry of the many-body wave function and the identity q‘f‘ =
1 — p{", we compute

d

(W qf W) = 23 (W (V= DV G = x2) = 4l ) P) pf w)).

Defining h P(xl) =(—=A1+A;(x1)) +4n|<p,(x1)|2, we further compute

d
2N = D ((Wr g (01 = x2)p{ W)
= =2V = DI((Wr, [Hyys g1 = 2] pf' 1))
= 2N = D3 ((Wr. g1 — x| (Hyy = h§F ).t ]w)).

Using (30) and neglecting the mixed derivatives we get that [Hy,, g,(x1 — x2)] ~
(VN — M) (x1 —x2) fu(x1 —x7). Further one can show that the leading order of g, (x1 —

xg)[(HvN hF (x1)), p ] is given by g,, (x1 — x2) Viy (x1 — x2) p{". This is due to the
smallness of the support of g and Vy which significantly overlap only for this term.
Hence the leading order of % (52) is given by

23(((N = DMy 1 = 22) ful = x2) = 4l D) p{ W) ). (53)

Summarizing we can say that due to this adjustment and by means of the scattering
equation (30), the interaction Vyy got replaced by the less singular potential M, f,, in in
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the first line of the equation above. It is this less singular potential that can be controlled
using the results from the previous chapter. M, f,, has the properties of the Wg considered
above [see Lemma 5.5 (k)], making (53) controllable. This explains why we chose to
use f, in the definition of the modified counting functional instead of jy g. In return
we obtain additional error terms, which, however, can be estimated sufficiently well, see
Lemma 6.13.

Making use of Lemma 4.2 (c) and (d) this idea can also be used for weight functions
different from % Note that due to symmetry the correction term in (52) can be written
as

2(N — DR(Wy, gu(x1 — x2) py W)
= =NV = DRy, g1 —x2) (~N7") (b +af pE) i)
— NN = DRy, gu(x1 — x2) (—ZN‘I) pYpy¥).

Moreover, N1 can be viewed as the discrete time derivative of the weight %, in other
words

k k+1

Nl = NN =n?(k) —n’(k+1) and
ko k+2

—2NT = - % = n2(k) — n2(k +2).

We will use this insight to modify the functional o= (¥;, ¢;) from Definition 6.1. We
first compute the time derivative of (¥,, m* W, ) and then add an additional term to the
counting measure in a way such that the interaction Vy gets replaced by the potential
My fu.

Pursuing this approach results in the following definition.
Definition 6.8. Let 0 < & < %, u > 0 and m(k) be defined as in Definition 6.1.
Moreover, let

m k) =mk) —mk +1), 54)
mP (k) = m(k) —m(k +2) and (55)
7 =m’pi1p2+ M (p1g2 + q1p2). (56)

Then, o: L2(R*N, C) x L*(R2,C) — R} is defined by

a(W, ¢) = (W, ) + Evy (W) — ELL (@) = NN — DR ((W, g (x1 — x2)7P)) .
(57)
Remark 6.9. It should be noted that 7 depends on & and the functional « depends on &

and . Both parameters are later chosen in a way such that we can establish an integral
type Gronwall estimate.

If one recalls Definition 6.3, one sees that « is obtained from o= by adding an
additional correction term. It is important to note that (see proof of Lemma 6.10)

N(N = D% ((¥, gu(x1 — x2)7¥)) | < CllglooN "+ In(N). (58)

For w chosen large enough this allows us to show that the convergence of « to zero can
be related to the notion of complete Bose—Einstein condensation in terms of reduced
density matrices.
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Lemma 6.10. Let0 < £ < 1/3, u > 0, W € L2(R?N,C), ¢ € L*(R?, C)NL>®(R?, C)
and a (¥, @) be defined as in Definition 6.1. Then, there exists a constant C € (0, 00)
such that

Tr[v) = 10) 01| = VBa(@. 9) + CllgllaN 200 In),  (59)
(W, ¢) = [T |7 = 19)l] + €0y () = €67 )]
1
+ SN+ CligllooN ™" In(N). (60)

Proof. Using ||1’1'i“||0p+||ﬁ”||OlD < CN~¥§ see (76), together with Eq. (16) and Lemma 5.5
(i), we obtain

lgu(x1 — x2)7llop < llgu(x1 — x2) p1 (02 pa + W q2) llop + llgu (X1 — x2) p2q17®lop
< lellsollgullClm®|lop + IIﬁbIIop)
< llgllooN 727 In(N).

Therefore, we bound N(N — )| ((¥, g, (x1 — x2)7¥)) | < [[¢lloc N 7#*¢ In(N). By
means of Lemma 6.3 the Lemma follows. O

6.2.2. Preliminaries for the Gronwall estimate

Definition 6.11. Let 0 < £ < 1/3, u > 0 and 7 be defined as in Definition 6.8. Then,
y: L2 (R*N  C) x L?>(R?, C) — R is defined by

Y, 0) = [va(W, @) + v (¥, @] + [ve (¥, @) + [va (¥, @) + [y (Y, @) + lyr (¥, ),

(61)
where the different summands are:
(a) The change in the energy-difference
Va(W.9) = (¥, A, (xD)¥) — (g, Arp).
(b) The new interaction term
VW, 9) = —N(N — D3 ((W, Z¥ (x1, x2)7 )
— NN = DI ((W, gux1 — x2)7 Z(x1, x2) W),
where, using M, from Definition 5.3,
7 (1 x) = (M,Axl —x) —4n |(p|2(x;\)7 i'f'z(m) fulxt —x2)
29(x1,x2) = Vv (x1 —x2) — %Wm) - %W(xz). (62)

(c) The mixed derivative term

Ye(W, @) = —4N(N — D(W, (Vigu(x1 —x2))Vir\).
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(d) Three particle interactions
Ya(W, @) =2N(N — 1)(N — 2)J ((W, gu(x1 — x2) [Vn (x1 — x3), 71 V)
— N(N — DN -2)3 (((\If, gu(x1 — x2) [4n|¢|2(x3),?] \IJ>)) .

(e) Interaction terms of the correction

1 PR
ve(W.9) = NN — DN — (N =3I ((W, gulx1 — x2) [V (x3 — x4), 7] W) .

(f) Correction terms of the mean field

7r(¥, @) = 2N (N =2)3 (. gu(ni = x2) [4mlg (). 7| )

The value of « (¥, ¢;) at time ¢ is then bounded by

Lemma 6.12. Let Viy € Vy and let V; the unique solution to id;V; = Hy, W; with
initial datum ¥ € L?(RzN, C)N H>(R*N , ©), |Wo|l = 1. Let ¢; the unique solution
1 idypr = hGl ¢ with ¢, € H>R?, C), llgoll = 1. Let a(¥y, ¢1) and y (¥r, ¢r) be
defined as in (57) and (61). Then

t
(W1, ¢1) sa<w0,¢o>+/0 dsy(Wy, ¢,).

Proof. We first calculate

d

I ((W, m¥) = N(N = DR ((¥, gu(x1 — x2)7W)))

= NN — DS ((¥r, 2% (x1, x2)7¥,))

_N(N—m( (Wy, g1 — x2) |:HVN thnpzf] )

— NN — DR (i (W, [Hyy, gu(x1 — x2)]79,)) .

Using symmetry and 9i(iz) = —J(z), we obtain

d
o ((v, m¥) — N(N — DR ((¥, gu(x1 — x2)7)))
= —N(N — DI ((¥r, 2% (x1, 27, )
+ N(N — DX ((Wr, gu(x1 — x2) [2% (x1, x2), 7] 1))
+ 2N(N — D)(N = 2)3 ((¥, gu(x1 — x2) [V (x1 — x3), 71 ¥, )

= NV = DV =23 (W1, gulx1 — x2) [4 1P (22).7] W)
1
+ SNV = DN =2V =33 (%1, g x1 = x2) [V (3 = x0). 7 1))
+ NN = DS (W, [Hyy, g1 = 22| 70))
— 2NN = D% (W1, gulxi = x2) 4l P ), 7| i) )
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The third and fourth lines equal yy (recall that W is symmetric), the fifth line equals y,
and the seventh line equals y . Using that (1 — g, (x; —x2))Z9(x1, x2) = z¢ (X1, x2) +
(Vn(x1 = x2) — My (x1 — x2)) fu(x1 — x2) we get
d A
g (W) — NN = D3R ((W, g (x1 = x2)7P)))
< va(Vr, @) +ve(Vr, o) + v (Yr, ¢1)

— N(N = DY (W, Z% (x1, x2)7W,))

— NN = DI ((W, (VN (x1 — x2) — My (x1 — x2)) fu(x1 — x2)70,))

— N(N = DI (W, gu(x1 — x2)TZ% (x1, x2)¥,)

+ N(N = DS (W, [Hyy, gu(x1 — x2) | 7)) . (63)

The first, second and the fourth line give y;, + y4 + e + yr. Using Definition (5.3) the
commutator in the fifth line equals

[Hyy, gu(x1 — x2)] = —=[Hy,, fulx1 —x2)]
= [A1 + Az, frulx) —x2)]
= (A1 + A2) fu(x1 — x2)
+ 2V fu(xr —x2) Vi + CVa fiu(xr — x2))Va
= (Vy(x1 — x2) — My (x1 — x2)) fru(x1 — x2)
— (2Vigu(x1 —x2)) Vi — (2Vagu(x1 — x2)) Va.

Using symmetry the third and fifth line in (63) give
—4N(N — D{Wr, (Vigu(xi —x2)Vir¥,) = ye(Vr, ¢1).

By means of

d GP
E <5MM(\III) - gNllMulll (‘Pt)) = va (¥, 1)

and the fundamental theorem of calculus the result follows. O

6.2.3. The Gronwall estimate Again, we will bound the time derivative of a(\V,, ¢;)
such that we can employ a Gronwall estimate.

Lemma 6.13. Let Vy € Vy. Let Y, the unique solution to i9;V; = Hy, W; with initial
datum Vg € L?(RzN, C) N H2(R*N | C) and ||yl = 1. Let ¢, the unique solution to
idrp, = h$P g with o, € H3(R?, C) and ||goll = 1. Let Evy (Vo) < C. Let a (¥, ¢y),
vi(We, @), i €{a,b,c,d, e, f}bedefined as in Definitions 6.8 and 6.11 with& = 1/10
and pu = 10. Then,

> W ool < Kigr, Ao (@i g + NTH10). (64)
iefa,b,c.d,e, f}

The proof of the Lemma can be found in Sect. 7.4. By means of Lemma 5.5 (h) and
(i), the terms y, and yj can be estimated in the same way as y,~ and y,"~. The estimates
for ye, va, ve and y are based on the smallness of the L”-norms of g,,, see Lemma 5.5
().

Thus, combining Lemmas 6.12 and 6.13, we obtain the following estimate for
o (¥, @) by means of Gronwall’s Lemma
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Lemma 6.14. Let Viy € Vy. Let V; the unique solution to i0;V; = Hy,, V; with initial
datum Yy € L?(RzN, C) N H>(R*N, C) and ||Wo|| = 1. Let ¢, the unique solution to
idrpr = h$F oy with o, € H3(R?, C). Let Evy (Vo) < C. Let a(Vy, ¢;) be defined as in
Definition 6.8 with & = 1/10 and u = 10. Then,

(W, g) < eh BREA) (@ (wg, go) + NT110), (65)
Proof. This is proven in the same way as Lemma 6.7. 0O

Proof of Theorem 2.4: Part (b). Again, we note that under the assumptions ¢, € H>(R?,
C) and A. € C1(R, L®(R?, R)) there exists a constant C; < 0o, depending on ¢, ¢
and A,, such that fot dsK(ps, Ay) < Cy, see Sect. 4.

Let & = 1/10 and i = 10. If we then combine Lemmas 6.10 and 6.14 to estimate

Tyl = lon)rl| = V(Wi g0 + CllgrllooN ™" < e (Var(Wo, g0) + N7)

< G (C/Tr‘yé,t) _ Iwo)(wol‘ + \/|5VN(‘1’0) — £5P (g0)| +N*1/20>.

Moreover, one obtains

Evy (W) — EZP (00| < a (W, 01) + CllgrlloaN 7!

= <\/Tr [v8e = o) ool +|Evy (¥o) = £57 (o) + N7V ‘°>.

Finally, this shows part (b) of Theorem 2.4. O

7. Rigorous Estimates

7.1. Smearing out the potential Wg. To control the potential Wy for 8 large, we use
a technique which allows us to replace the potential Wg by some potential Ug, g €
We,, B1 < B with |[Wg|l1 = ||Ug, gll1. For this, define hg, g by Ahg, g = Wg—Ug, g.
The function &g, g can be thought as an electrostatic potential which is caused by the
charge Wg — Ug, g. It is then possible to rewrite

{x, Welx1 — x2)R2) = (x, Up,,p(x1 — x2)$2)
— (Vix, (Vihg, p)(x1 — x2) Q) — {x, (V1ihp, p)(x1 — x2) V1),

for x, w € L2(R*N, C). We will verify that the L”-norms of hg, g and Vhg, g are better
to control than the respective L”-norm of Wg. With additional control of V{2 and V x,
it is therefore possible to obtain a sufficient bound for {x, Wg(x; — x2)2)) for large 8.

Definition 7.1. For any 0 < 81 < 8 and any Wg € Wg we define

4 281 —Bi
_ Wgll1 N for |x| < 1/2N—F1,
Up.p(¥) = {6 else.

and

1
) = 5 [l = 51OW50) = Up s ). (66)
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Lemma7.2.Let 0 < B; < B, Wg € Wg and N € N large enough such that
supp(Wg) C supp(Ug, g). Then,

(a)

Up,.p € We,,
Ahg, g = Wp — Ug, p.

(b) Pointwise estimates

hg, p(x) = 0for |x| = 1/2N7P1 |hg s(x)] < CN"'In(N),  (67)
1
2

IVhp, p(x)] < CN™! <|x|2 +N—2ﬂ) . (68)

(c) Norm estimates
gy plloc < CN™" In(N),
I, gl < CN~'=2P In(N) for 1 < i < oo,
IVhg, gl < CNTHE=2P for 1 <2 < oo,
Furthermore, for .. = 2, we obtain the improved bounds

lhogll < CN71, (69)
IVhg, gl < CN~(In(N))'/2. (70)

Proof. (a) Ug, g € Wﬁl follows directly from the definition of Ug, g. Since Wy €
Wg one has |N|IU,31,f5||1 — bwﬂ| < CN~'In(N) and consequently Ug,.p € Wg,.

Furthermore, hg, g is a solution of Poisson’s equation because —% In|x — y| is
the radially symmetric Green’s function of the Laplacian in two dimensions [36,
Theorem 6.21].

(b) The first statement is a well known result from standard electrodynamics. It follows
from Newton’s theorem [36, Theorem 9.7] and ||Ug, gll1 = |Wgll1. Heuristically
speaking, Wz can be understood as a charge density and —Ug, g as a smeared out
charge density of opposite sign such that the "total charge" is zero. Moreover if we
use that Wg(x) = Up, g(x) = 0 forall |x| > 1/2N"31, we obtain the pointwise
estimate

1
|hg, p(xX)] < E/B d*y |In|x — y|Wg(»)|

128 P1(0)

1
+— d*y|ln|x — y|U .
271/3 y|Inlx — y|Ug, p()]

1/2N~P1(0)

Subsequently, we estimate each term separately. Therefore, it is useful to recall that
there exists an R € (0, 00) such that Wg(x) = 0 for all x| > RN P This allows
us to bound the first summand by

J

d2y|1n|x—y||wﬂ(y>sf 2yl 1nJx — yl|Ws().

128 ~P1(0) Bpn—8(0)
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For 2RN~# < |x| < 1/2N~P1 one has |x — y| < N~P1 < 1 in the integral above.

This implies |In |x — y|| = —In |x — y| and leads to
/ d*y|In|x — y[|Wg(y) < —Wglli In(lx| — RNy < —[[Wgl|; In(RN#)
Bl/zN*‘gl ()

< ClIWglliInN? < CN~'In (V)

forall 2RN# < |x| < 1/2N~F1,
Let next x| < 2RN~F. We again have [x — y| < 1 forall y € By on-81(0) and
obtain

/ |1n|x—y||W,s<y)d2yscnwﬁnw/ “lnfx — yld?y
Bl/zN—f‘l (0) Brn—80)
< CN~1+26 / —In|yld®y
BRN*ﬁ(x)
< N1 f —tn|yld?y
B4RN—ﬁ(0)

4RN P
N[~ yPemnly - D)
< CN~'In(NP)

for all |x| < 2RN~#. If we repeat the same estimate for x| < 1/2N~#' and Ug, g
with [|Ug, gllec < CN™1*2P1 we get

|In|x — yl|Up, s(0d*y < CllUg, gl —1In|x — yld?y
Bl/zN*ﬂl () Bl/zN*ﬁ ()
<CN"'In(NP1),

which proves the first statement.
For the gradient, we estimate the two terms on the r.h.s. of

1 1
Va1 = 5 [ e Waidy e o [ U0y

separately. Let first 2RN ~# < |x|. Similarly as in the previous argument, one finds

1 Wglh
Wg(y)d*y S/ Wp(y)d?y < ——F——
—y By s Xy " x| —RN~F

|x
for RN~ F < |x|, which implies that
ClIWglli CN™!

<

Wﬂ(y)d2 < 1
lx =y (x2+N-26)3 ~ (|x]2+ N-26)3

for all 2RN P < |x|. For |x| < 2RN P, we make use of

NP < ;12
(1x|? + N—28)"
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and estimate

1 1
/ Ws(d2y < [Wloc / iy

lx =yl Bey—p ) X~V

RN—P
< czvzﬂ”/ dlyl = CN~1*F <
0

CN!
(e + =28

Equivalently, we obtain

1 1
/ Ug, p(0)d*y < ”U/S],/fi”oo/ d’y
lx =yl Byp g XY

CN—! - CN!
(Ix2+N=26)"2 7 (x2 4 N-28)2

=CN A <

for |x| < N=P1. Since Vhg, g(x) =0 for [x] > NP1 the second statement of (b)
follows.
The first part of (¢) follows from (b) and the fact that the supportof g1 g and Vhg, g

has radius < CN—#1. The bounds on the L2-norm can be improved by

B
CN~F1 r

5 C CN—P1
drr|Vhﬁl,/3(r)| < m/o di"m

IVhg 513 < cf
0

C N~ 4 N728 c

By means of [36, Theorem 9.7] we obtain
1 _
ho,5)] = o) / (Uo s () + W) d®y < CN~'|In()|
and
1
o113 < CN’Z/ drrin’(r) < CN2,
0

where we have used that hg g(x) = 0 for all |x| > 1. O

Estimates on the cutoff. In order to smear out singular potentials as explained in

the previous section and to obtain sufficient bounds, it seems at first necessary to show
that || V1q1 W, || decays in N. However, this term will in fact not be small for the dynamic
generated by Vy. There, we rather expect that | Vig1¥;|| = O(1) holds. It has been
shown in [18,37] that the interaction energy is purely kinetic in the Gross—Pitaevskii
regime, which implies that a relevant part of the kinetic energy is concentrated around
the scattering centers. We must thus cutoff the part which is used to form the microscopic

. —(d . . .
structure. For this, we define the set A; ) which includes all configurations where the

distance between particle x; and particle x;, j # i is smaller than N ~d 1t is then

possible to prove that the kinetic energy concentrated on the complement of 7l(~d ), ie.
[T 4@ Vigi W[, is small, see Lemma 7.9.
1
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Definition 7.3. Forany j,k =1,..., N andd > O let

ag) = G oxw) € BV — ] < N7 g RV
d —(d d d
AV =Jd® A =—rMZ" B = | a)  BY=rMB.
k#j kL

(1)
Lemma 7.4.(a) Forall j # k with1 < j,k <N,
I pjllop < Cll@lloN">77,
J
1/2—d

4@ Vipjllop = ClIV@lloN
J

12,0 Pilop < CligllooN ™.
Js

(b) Let W € H'(R?N, C). Forany 1 < p < oo, there exists a positive constant C p» Such
that

1-24) =1 ap-t 2
M- wW|? < C,N" D% v w* 7 | ?,

—(d
AP

(c) Let W € L2(R?N,C) N H'(R?N, C), |W||y1 < C. For any € > 0, there exists a
positive constant C such that

Iz W < CeN'=4*e,
J

(d) Forany k # j
—d
”[]IZ;")’ pilllop = ”[]laﬁ»f’k)’ pilllop = II[]lA;rn, Pilllop = Cll@lloa N7

(d )

Proof. (a) First note that the volume of the sets a; introduced in Definition 7.3 are

la\ =N~

/
”]lA(d)pJ”Op = ”]lA(d)pl”op = ”pl]lA(d)pl”op < <||</>||oo||]1A(d>||1 oo)

where we defined

1fllpoo = sup </ x| f(xy. ..., xN)V’) !

X2,....xyER2

. N
o < _ =
Using :U.Agd) <> ]].afdlz as well as (]}.Aid)) =1_ 20 we obtain

p
1 1-2d4) L
Mz lpoo = sup (/dX1 Z%ﬁ) < (Nlaial)? < N5,
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This implies
110 jlop = CligllooN =~
The second statement of (a) can be proven similarly. Analogously, we obtain
11,0 Pjllop = lglloolai?y]!/? = CllglloN ™,

Without loss of generality, we can set j = 1. Recall the two-dimensional Sobolev
inequality, for 0 € H'(R?, C) and for any 2 < m < oo, there exists a positive

constant C,, such that ||o||,, < C,||Voll e lell G holds. Using Holder and Sobolev
for the xi-integration, we get, for p > 1

110 WP = (W, 0 W)

:/d2x2...d2xN/d2xl|\IJ(xl,...,xN)|2]lZ(ld)(xl,...,xN)

1/p
< ||nj§d)||%,oofd2x2...d2x,v (/ d2x1|\IJ(x1,...,xN)|2”>

p—1

—1 v
< NI /d2x2...d2xN </ d2x1|V1\IJ(x1,...,xN)|2) !

1
- - P
x (/d2x1|w<x1,...,xm|2> ,

where C), denotes a positive constant, depending on p.
Using Holder for the x, ... xy-integration with the conjugate pair r = % and

s = p, we then obtain

v\N

1-2d
1o I < C,N' 205 v w2

—(d d
We use that B; ) C U,ICV:I Ak . Hence one can find pairwise disjoint sets Cy C A,(( ),

k=1,..., N such that E;d) C Uk: 1 Ck. Since the sets Cy are pairwise disjoint, the
1¢, W are pairwise orthogonal and we get

N
2 _ 2 2
||11§3_d)\y|| _k§1||]1ck\p|| fgl”ﬂzﬁ)‘l’”'

”[1z(ld)’ PZ]”op = ”[]1a|v27 p2]”op =< ”]1111,2[72”0;) + ”pZ]lal,z”op

1 _
<2ll¢llcclaral? < CllgllN ™.
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7.3. Proof of Lemma 6.6. The goal of this section is to prove Lemma 6.6. To this end, we
bound each of the functionals y;~, y,~ and y,~ separately and then collect the estimates.
In view of the conditions required in Lemma 6.6, the following is assumed in the rest of
this section:

Let B > 0, Wg € Wg, ¢ € H*(R%,C) with |l¢|l = 1 and ¥ € L2R?*N,C) N
H*R*N, C) with | V|| = 1 such that Ew, (V) < C.
Control of y -

Lemma 7.5. For any function B € L™(R2,R), any ¢ € L*(R2, C) with |l¢|| = 1 and
any W e LZ(R?N  C) with |¥| = 1 we have

(%, BO)W) — (9, Bo)| = ClIBlloo((%,79W) + N77).
Proof. Using 1 = p1 +q,

(W, B(x)W) — (¢, By)
= (W, p1B(x) p1W) +20(W, g1 B(x) p1W) + (W, 1 B(x1)q1 V) — (¢, By)

< (. Bo)(Ip W17 — 1)+ 290w, 7 2q B priy 2 W) + (W, q1 BG))q1 W),
where we used Lemma 4.2 (c). Since || p1¥||?> — 1 = —||q1¥||? it follows that
(W, B(x)¥} — (¢, Be)| < C||Blls (((‘I’,ﬁz‘l’» + (W, m W) + ((‘V,W))>
< C|Blloo({W¥ >)+N7) (72)
O
Using Lemma 7.5, [ — mi|lop < CN~¢ and setting B = A;, we get
v, (W, 9)| < CllA oo ((W, AW +N_7) < CllAslloo(@~(W, @) + N75).  (73)

Control of y,~ To control y,~ we will first prove that || V1 W, || is uniformly bounded in
N, if initially the energy per particle £y (Vo) is of order one.

Lemma 7.6. Let Wy € L2(R*N,C) N H*(R?N, C) with | Wyl = 1. For any U €
L*(R%,R), U(x) > 0, let W, the unique solution to id,V; = Hy W, with initial datum
Wy. Let Ey (Vo) < C. Then

Vil < K(gr, Ar).

Proof. Usmg TEu (W) < | Al 0o, We obtain Ey (W;) < K(¢;, Ay). This yields

N
IV, < K(gr, A z)——llx/_(m—xz)‘llzll +11Arlloo = K1, Ar).
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Next, we control 7% and m” which were defined in Definition 6.4. The difference
m(k) —m(k +1) and m(k) — m(k + 2) is of leading order given by the derivative of the
function m(k)—*k understood as real variable—with respect to k. The k-derivative of
m (k) equals

ity = [V, ok 2
It is then easy to show that, for any j € Z, there exists a C; < oo such that
< C;N~'a ! for x € {a, b} (75)
725 lop < C;N~" for x € {a, b} (76)
[ lop < C;N~" for x € {a, b} (77)
Fllop < 1% lop + 17" llop < CN ™. (78)

Now, we prove some general bounds, which will allow us to estimate the different
terms of y,~ in (44). In order to facilitate the notation, let w € {Nm“ |, N m’ »}. Then

w(k) < Cn(k)~! and Wi llop < C||Wllop < CN* follows.

Lemma 7.7. Let B > 0 and Wg € Wg. Let ¥ € L?(RZN, C) N HXR | C) with
W) = 1and let |V ¥]| < K(p, Ay). Let w(k) < n(k)~" and |W1llop < CllWllop <
CN¥ for some 0 < &€ < 1/3. Then,

@
N [(@. p1p2Z 1, )@ 2@ < K, A0 (N7 + N7 1))
(®)

N |(¥, p1paWg(x1 — x2)q192¥)| < K(p, Ar)(((‘l’,ﬁ\l’»

inf inf (N”_zﬁll N2 + [@llop N~ 14281 4 )2 N—’?) :
+ min{ﬂ,ll/nZ}>ﬁ] _o Il n(N)” + [wllop + lwlly,
In addition, we have the slightly improved bound
NIGW, p1p2Wp (1 = x2)@19:09)]| = Klp, A) ((8,79) + [ D], N1+ )
(79
forall B < 1/2.
(©)

NI§W, p1g2Z§(x1, x2)Bq1q2¥)] < K(o, A:)(«\v, aw) + N~ In(N)

’

+ inf { \5VN (W) — EGF (¢)

Ewy (W) — 57 (q))’ + N2 ln(N)} )

Proof. Since the left hand sides of all these statements are bounded, it follows that all
these estimates hold uniformly in N being in any finite subset of N. Hence it suffices to
prove the validity of (a), (b) and (c) for sufficiently large N € N.
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(a) In view of Lemma 4.4, we obtain

N (¥, p1paZf(x1, x2)q1 p20W) | < Nl p1p2Z(x1, x2)q1 p2llop DV ||
< CNIIp1p2Z§(x1, x2)q1 p2llop-

||p1p22;§ (x1, x2)q1 p2llop can be estimated using p1g; = 0 and (19):

N{Wglh NWgll
N HPIPZ (Wﬁ(xl —x2) — N—_’l|€0(x1)|2 - N—i|¢(xz)|2 qi1p2

< Ip1p2(NWg(x1 — x2) — NI Wgll1lex) 1) p2llop + Cllgll2 N
< lI@llos IN(Wg % |9]*) — INWgll11gl?]l + Cllgll2 N 7"

op

Let i be given by

1 1
h(x)=—=— | d*yln|x — YINWg(y) + = [INWgl|; In|x],
() === [[,d*¥Inlx = yINW, () + - INWp 1 n

which implies
Ah(x) = NWg(x) — [NWgl[18(x).

As above (see Lemma 7.2), we obtain h(x) = O for x ¢ Bpy-5(0), where RN~ Pis
the radius of the support of Wg. Thus,

1
il = 5 [ @ [ @it =311, 0 @NW0)

1 _
& NIl [ @i 1, 0 < OV ). (80

Integration by parts and Young’s inequality give that

IN(Wg * [@]*) — INWg 11?1l = [I[(AR) * |g]?|
< |kl lIAl@P ]2 < K@, AN~ In(N).

Thus, we obtain the bound
N (W, pip2Z§(x1, 2)q1p20W) | < K, A) (N7 + N In) ) (81

which then proves (a).
(b) We will first consider 8 < 1/2.
Using Lemmas 4.2 (c)and 4.6 with 01 2 = g2 Wg(x1—x2) p2, @ = N~ 12 (@) 1/2q, ¥
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and x = N2 p; () '/*W we get
(W, p1p2Wp(x1 — x2)q1q20 V)|
= (W, (@)"2q1q2Wp (x1 — x2) p1 p2 (W) W))|

2
<N! H (@)1/291“’” + N |[(q2(@2)'? W, p1y/Wp(x1 — x2) p3y/Wp(x1 — x3)
VW (x1 = x2) pay/ W (x1 — x3) p1g3(@2) /2 W) |
+ NN — D)7 gaWg(x1 — x2) pap1 () 20|
2
< N7 @) P | 4 NIy Wy = 32 pilld, g2 w2
+ 2NN — D)7 Y piga@n) 2 We(x1 — x2) pap1 ¥
+ 2NN = D7 q1g2(@) 2 Wg(x1 — x2) pap1 9|12
With Lemma 4.2 (e) we get the bound

< N @2 2w )2 + Nllgllt IWs I3 17 (@) /% w2
+ 2NN = D7 WalP el (11 llop + @ lop) -

Note, that |Wgll; < CN~!, [|Wg|?> < CN~**?£_ Furthermore, using W, < (7)~!,
we have under the conditions on W

7)) 2w < [R@) V2w = |2y = (W, 7).
In total, we obtain
NI(W. p1paWp(x1 — x2)q1020W)| < K(g, Ar) (<<w,m>> + ||@||opN*‘+2ﬂ)

and we get (b) for the case 8 < 1/2.
We prove part (b) for general 8 > 0. We use Ug, g from Definition 7.1 for some
0 < B1 < min{g, 1/2}. We then obtain

NV, p1p2Wg(x1 — x2)Wq192W)
= NV, p1p2Ug, p(x1 — x2)Wq1q2¥) (82)
+ N(W, p1p2 (Wg(x1 — x2) — Ug, p(x1 — x2)) Wq142V). (83)

Term (82) has been controlled above. So we are left to control (83).
Let Ahg, g = Wg — Up, . Integrating by parts and using that
Vihg, p(x1 — x2) = —Vahg, g(x1 — x2) gives

N [(¥, p1pa (Wg(x1 — x2) — Ug, p(x1 — x2)) Wq1q2 V)|
< N|(Vip1W, p2Vahg, p(x1 — x2)0q142 V)| (84)
+ N (W, p1p2Vahp, g(x1 — x2)Vidg1go W) . (85)
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Lett; € {p1, Vip1}andlet T € {wq; V¥, Viwg; V).
For both (84) and (85), we use Lemma 4.6 with 01, = N'*"/2¢;,Vohg, g(x; —
x2)p2, x =11V and Q = N~/2T. This yields

(84)+(85) <2 sup (N_”IIFII2 (86)
ne{p1,Vip1}, T efwg ¥,V g ¥}
2+n
+ e Vahe g0 — 3 pa V) (87)
+ N2¥ |(W, 11 p2g3Vahp, g(x1 — x2)Vahp, glx) — X3)I1Q2P3‘I‘))!).
(83)

The first term can be bounded using Corollary 4.5 by
N7ViDg ¥ |1* < 4N D)2, 1 Vigi v
N7"dg¥|* < CN7".

Thus (86) < K(¢p, Az)N*"Ilﬁllgp using that |[Vig1 W] < K(p, A). By 1 ¥]* <
K(gp, A;), we obtain

2+n 5 N2+n
V2, 01 = x2)palldy <Klp, AD T

< K(g, AN 'n(N),

(87) < K(g. A) le 3 Vhp, g1

where we used Lemma 7.2 in the last step.
Next, we estimate

(88) < N*¥|| p2Vahg, p(x1 — x2)t192 ¥ |1
< 2N pahp, p(x1 — x2)11 Vaga ¥ |1*
+ 2N o)) (Ve (x2) g, p(x1 — x2)t1 g2 ¥ 2
< 2N pahg, p(x1 — x2)llop 111 V2g2 W |1?
+ 2N [1p(x2)) (Vo (x2) g, p(x1 — x2)llg, llt1g2 W12
< K(p, ADN*|lhg, gl?
< K(p, A)N" 21 In(N)>.
Thus, for all n € R
N, pip2 (Wg(x1 — x2) — Ug, p(x1 — x2)) Wq1q2¥)
< K(p, Ay) (||w||§pN"7 + N7 Hn(N) + NT7201 1n(N)2) :

Combining the estimates and using N7~ ! In(N) < N"-2B11n(N)2, we obtain
NV, p1p2Wp(x1 — x2)wq192¥) < K(g, Af)(((W,W)>

+ inf inf (Nﬂ—2/311 N2 + 51 N2 1 15112 N_") .
min{B, 1211 =0 =0 n(N)”+ [[wllop lwliop
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(c) We note that g1 p2|¢|>(x1)g1g> = 0 and estimate

N Wglh
N (W, —_—
(¥ qip2——

lo*(x2)Wq1g2%) | < CllglI2 1D Rllopllgr W1

Hence, it is left to estimate N | (W, q1p2Wp(x1 — x)Wq1q2V) | Let Up, g be given

as in Definition 7.1. Moreover, let Agd) and ./_élﬁd) be defined as in Definition 7.3 with
d > max{7, 3 + f}. We use Lemma 4.2 (c) and integrating by parts to get

N [(W, g1 p2Wp(x1 — x2)Wq192V)|
< N [{¥, g1 p2Up p(x1 — x2)q1g20 V)|
+ N [(¥, g1p2(Atho p(x1 — x2))q1920V) |
< U0 gl Nlg1¥ll [[Wg1g2¥ |l
+ N [(Vigip2V, (Vihop(x1 — x2))Wq192V)|
+ N [(¥, Wig1 p2(Vihop(x1 — x2))Vig1g2 V)|

< NUopllcligr¥ll 1wg1q2W || (89)
+ N «]lAﬁ‘” Vig1 V¥, p2(Viho g(x1 — xz))@%@‘lf))) (90)
+ N [{(Viq1 V¥, ]IXEJ)PZ(VlhO,/S(xl - xz))qw]z@‘l’») On
+ N [(V, w1q1 p2(Viho,g(x1 — X2))¢]2]lj§d>vlch‘y>)‘ (92)
+ N |(W, wi1q1 p2(Viho g(x1 — xz))Q21A§d>V1Q1‘I’))‘ . (93)

In the following, we will estimate each term separately.

Estimate of (89):
Lemma 4.4 and Definition 7.1 yields the bound

(89) = C(W,n¥).

Estimate of (90):
For (90) we use that Vyho g(x1 — x2) = —Vihg,g(x1 — x2), Cauchy Schwarz and
ab < a® +b* and get

(90) = |11y Vig1WII* + N p2(Vaho p(x1 — x2))i0q192% 1> 94)

||]lA<d) Vig1v ||2 can be bounded using Lemma 7.9.
1

Integration by parts and Lemma 4.2 (c) as well as (a + b)> < 2a” + 2b? gives for the
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second summand
N2||P1(V1h0,ﬂ(xl - xz))qlqzﬁlllﬂz
< 2N%||piho s(x1 — x2) Vi1V |?
+ 2N?[llp(x)) (Vig(x) lho g (x1 — x2)q1 gDV |2

< CN?||piho,p(x1 — x2)q2(p101 +611ft7)]1A<1d)V141‘1’||2 (95)
+ CNlIprhop(x1 = x2)g2 101 0 Vig1 W1° (96)
+ CNlIprho p(x1 = )21 D1 Vig1 | o)
+ 2N o)) (Vig(x) o p(x1 — x2)q1q2 0¥ 1%, (98)

For (95) we use Lemma 4.4, Lemma 4.2 (e) with Lemma 7.2 (¢) and then Lemma 7.9.
(95) < CN2[[prho p(x1 = x2) g 11y Vign W I
< K(p, An((w.79) + N0 1)

+ inf { €y (@) - W)~ 50 )|+ N W)} ).

Lets; € {p1,qi} and letd € (i, W;}. Note that ||d||op = || ]|op. Then, (96) and (97)
can be estimated with help of Lemma 7.4, part (b)

(96). O7) < CN* Vi1 ¥ [Ty dsigaho p (x1 = x2) prho p(x1 = 325110 Vi1 V|

241

1-2d p—1 ~ ~ p=1
< CpN™T 2 7 IViq1 ¥ ([IVidsig2ho,g(x1 — x2) prho, g (x1 —xz)CI2S1d]1Z§d)V1Q1‘IJ|| r

-~ —~ l
x |ds1gz2ho, ﬂ(xl —x2)prhopg(x1 — x2)q251d]lj§d)vlth\l’” z

=G N ||V141‘Ifllllwllopllplho;;(m X2)||op||1lj<ld>V1q1‘If||

1 1
X [|Vidsig2ho g(x1 — x2)p1||opp llds1g2ho,p(x1 — x2) p1lldp
p—1

141=2d p=1
< CpK(p,A)N "2 o ||w||op||V1S1h0ﬁ(x1 —x2)pillop IIho p(x1 —xz)Plllop

1
< CpK(p, AN i IIWIIOP(IIprIIIIhOﬁIH||V1h0ﬁ||) o llho,gll?

p—1 1-2d p—1
< CpK(p, A3, (1 +In(N)) 2 N 2 .
Here, we used, for s; € {p1, 1 — p1},
IVistho,g(x1 — x2) pillop < IVip1ho,g(x1 — x2)pillop + [ Viho,g(x1 — x2) p1llop
< ll¢llss (IVe@llllhogll + IVhop1)

and then applied Lemma 4.2 (e). With ||w|lop < N 173 we obtain

p=l 2 1-2d p—1
96) + (97) < Cp/C((p, A)In(N)2» N3N 2 »

244 gL
r d 2p

< CyK(p. A)In(N)* N
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For p = 2 and d > max{7, 3 + B}, we obtain
(96) + (97) < C2K(p, AYN~" < K(p. ADN ™"
Line (98) can be bounded by
(98) < CN?llho,p(x1 = x2)Vip1llg, llg19209 )
< CN?|lho g |I* IVl 2, IR W13, g1 ¥ 12
< ClIVol|5, (¥aw).

Estimate of (91) and (92):
For (91) and (92) we use Cauchy—Schwarz and then Sobolev inequality as in Lemma 7.4
implies that for any p > 1, there exists a constant C), such that

O +92) = N Vi1 W1 [ Lgo pa(Viho p(x1 = x)) 120
+ N [[Vig V| H]lz(lqu(vlho,ﬂ(m —m))mpzﬁﬂl'”

1-2d p-1 el
S CpN[IVIgqiVII N 2 7 [V p2(Vihog(x1 — x2)q1qaw V| »
< [|p2(Viho,p(x1 — x2))q1g20W || /7
1-2d p-1 =t
+ CpNIIVigtY | N 2 7 |Vig2(Viho g(x1 — x2))q1 p2w V|| »
x lga(Viho g(x1 — x2))q1 p2o W 1/7.
Using Lemma 4.2, Lemma 4.4, Corollary 4.5 and Lemma 7.2, we obtain

IVip2(Viho g(x1 — x2))q1q2w ¥ ||
< lp2(Arho,g(x1 — x2)q1g2WW¥ || + | p2(Viho, g (x1 — x2))Vigig2w ¥ |
< C (llp2(Wg — Ug,p)(x1 — x2)llop + I P2(V1ho,p(x1 — x2))llop)

= Cllgllo (N + N~ an (V) '2),
and similarly
Vig2(Viho g(x1 — x2))q1 p2w V||
< llg2(A1ho,g(x1 — x2))q1 p2wW1 V|| + [lg2(V1ho p(x1 — x2))Vig1 p2w1 V||
< C(Ilp2(Wg — Uo,g)(x1 — x2)llop + IID1 llop | p2(V1ho,p(x1 — X2)) llop)
= Cligloe (N7 + [llop N~ An(V))'/2)
Moreover, we estimate

Ip2(Viho g(x1 — x2)q1020% || < CllglloollVito gl < CllgllooN " (In(N))!/?
g2 (Viho g(x1 — x2))q1 p201 ¥l < CllglloclVihogll2 < ClliglloaN ™" (In(N))'/2.
Thus if we choose p = 2 and recall that £ < 1/3 and d > max{7, 3 + B8}, we obtain

1
O1) +92) < CallgllooN™* 5 (N1 & Jllop = an(¥))2)? (N~ () 12) "

1
lig_ 1yl 2 —
< Callglloo (NP4 an )12 + N3*27n(W))* = CllpllooN ™.
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Estimate of (93):
For (93) we use Lemma 4.6 with Q = ﬂA(d) ViqiV¥, O12 = Nq2(Vahg g(x1 — x2)) p2
1

and x = w1q1 V.

93) < 11 40 Vig1 ¥ (99)
+ 2N |lg2(Vaho g(x1 — x2))B1q1 p2 ¥ || (100)

+ N2|((‘I’, q19301 (Vaho,g(x1 — x2)) p2p3(Vaho g(x1 — x3)W1q192 W) |.
(101)

Line (100) is bounded by

(100) < CN[[(Vaho,p(x1 — x2)) pallay 1172113,
< Cllgl3 NI V2ho s (x1 — x2) 1> < Cllgl 3N ™" In(N).
(99)+(101) is bounded by
||]1A§d>V1611‘1'||2 + N[ p2(Vaho p(x1 — x2))D1q192¥ 1>
Both terms can be controlled analogously to (94).
Complete estimate:
In total, we obtain

NI, p1a2Zf (1, x2)Bq1929)] = K@, A) (W, 7) + N7/ In()

+ inf HSVN(\D) — 87 (p)

)

Ewy (W) — EGF (w)\ + N2 ln(N)} ).
O

To estimate y,~ we recall that w € {Nm® |, Nn’i’iz} with w(k) < n(k)~" and ||, llop <
Cllwllop < CN%. Lemma 7.7, || — nllop < CN~% and & < 1/3 imply

7 (W 9) = K, A0 (™ (W, ) + N1

+  inf inf (N”_zﬂl (N2 + N—1++261 st—n) )
min(B,1/2)>p1>0 >0

In addition, we have the improved bound
Vi (W) < Kig, A (@ (W, 9) + N7+ N2 (V104 N2 Inw) )

foral B < 1/2.
Control of y,~ With Definition 2.1 and (76) we estimate

[y (2, )| < N|NIWgllt — b, | [(W, (q11lp ) 1*m% pr — prim®lp(x)*q) W)
< N|N[Wglly = bw, | loll3 17 lopllgr ¥ |
< K(p, ADN~"* In(N).

Collecting all the estimates for y,~, y,~ and y~ then proves Lemma 6.6.
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Proof of Lemma 6.6. Let the assumptions of Lemma 6.6 be satisfied. By the previous
we have

D (W e0l < Kigr, Ao (W) + N7+ (V716 N7 Inv)
kef{a,b,c}

# i (N (V)R NI N2 )
min{B,1/2}>pB1>0 n>0

and the slightly stronger estimate

D e (W el < Kigr, A (a<(w,, @)+ N5 4 NTIHEe26
kefa,b,c}

+ (N’1/6 + N’2ﬂ> 1n(N))

if B < 1/2. Inequality (49) follows for 1/3 < g from the first bound (with §; = 3/10
and n = 3/10) and for 1/12 < B < 1/3 from the second relation. Moreover, if we
choose B < 1/12 and & = 1/6 we obtain (48). O

7.4. Proof of Lemma 6.13. Next, we prove Lemma 6.13. We will proceed in a similar
way as in the previous section and consecutively estimate the functionals y; with i €
{a, b, c,d, e, f}.In the rest of this section we assume that Vy € Vy, ¢ € H3(R2, ©)
with [l¢|| = 1 and that ¥ e LZ2(R*N,C) N H*(R*, C) with |¥| = 1 such that
Evy (V) < C.

For the most involved scaling which is induced by Vi, we need to control || p1 Viy (x1 —
x)W].

Lemma7.8. Let Vy € Vy, W € LYRY,C) N H'®R™,C), ¢ € H>(R?, C) with
lgll = 1 and €y, (¥) < C. Then

1

[p1VN(x1 —x) V| = K(p, AN 2. (102)
Proof. We estimate

lp1VN(x1 — x2)Wl = (| p1Lsupp(vy) (x1 — X2) Vv (x1 — x2) W ||
< ”pl]lsupp(VN)(xl - x2)||0p||VN(xl —x2)V¥|.

With Lemma 4.2 (e) we get

121 Lsuppevy (k1 = x5, < 1912 1 Lsuppviy 1 < Cllpllzge ™.
Using
2, (IN=1D) 2
C = &y (W) = VU + ——— IV (1 — ) W + (W, A (x) W)

as well as
IV (x1 — x) W% = IV VN (x1 — x2)v/ Vv (x1 — x2) W
< IV VNIIZ IV Vi (x1 — x2) ¥ 12

< CceN gVN (\IJ); 1A oo

2N
=C+ ”At”oo)W,
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we obtain

1
lp1VNn(x1 — )W < K(p, AYN™Z.

Control of y,
In total analogy to (73) we get

. 1 . o~ _
12 (¥, 9)| < CllA;lloo((W, AW) + N72) < C||A,lloo({W, MW) + N75).
With Definition 6.8 and (58) we have
1Va (W, @) < K(@, A)(@(W, ) + N5 + N 7" In(N)).

Control of y,
Recall that

oW, 9) = =N(N — DS ((W, Z§ (x1, x2)7 W)
— N(N = DY (¥, gu(x1 — x2)F 29 (x1, x2) W) .

Estimate (102) yields to the bound | p1 2% (x1, x2)¥| < K(¢, A;)N~/2. Thus, if we
use Lemma 5.5 and ||| op +| |m?| lop < CN~ ¢ [see (76)] the second line is controlled
by

N2 (17 lop + 172 lop) 1 (¥1 — x2) P1llopll P1 29 (x1, x2) W ||
< K(p, ADNY**¢ g, || < K(@, AN ~V/2=HIn(N).
The first line of y;, can be bounded with (62) and f, = 1 — g, by
NN = DIS ((¥, Z8(x1, x)7 W) |
< NS ((W, (M, (x1 — x2) fuu(x1 — x2)

N
— 1Ml (le G + |<p<xz>|2))?w>>) | (103)
2
O (INMy il = ) (oGP + o) ) P9 (104)
e Mg an (1o + 190 ) guni = x2)7W))| (105)
N _1 ) @x px2 8u X1 2 .

Since My, fi, € Wy, (103) is of the same form as y;,~ (¥, ¢). By means of Lemma 7.7,
[ — illyp < CN~5 and (58), we obtain

(103)] = K(p, A (W, ¢)+ N5+ (NTV0 4 N7 ) In()

+ inf inf (N’?*Zﬂl In(N)% + N~1#281%6 N2€*n) )
min{B,1/2}>p1>0 n>0

Using Lemma 5.5 (h), the second term is controlled by

(104) < Cll@ll2N [NIMy fulli — 47| IFlop < Cligl2 N~ In(N).
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The last term is controlled by
(105) < CNlglI2lg.(x1 — x2) P1llop (172 lop + 173 llop) < Cll@ 2N~ 7 In(N)

which implies the bound
oW, @) < K, A (W, )+ N7+ (N7 4 N0 L N7 ) In)

+nf o nf (NTPUR(N)? NI G 2 ),
min{f.1/2}>f1>0 n>0

Control of y,
Recall that

Ye(W,9) = —4N(N — D(W, (Vigu(x1 —x2))ViFV).

Using 7 = (p2 + q2)7 = par + p1gam® and Vg, (x1 — x2) = —Vagu(x1 — x2),
integration by parts yields to

|ye(W, @)| < AN?[(W, g, (x1 — x2) V1 Va(paF + p1gain®) W))| (106)
+ AN?[(VaW, g, (x1 — x2) Vi pa7 )| 107)
+ ANZ[(V2W, g, (x1 — x2) V1 p1gain® W)|. (108)
We begin with

(106) < CN?|lgullIVelico (IVIFE ] + | Vagam® W)
< CN'""*In(N) ||V lloo (IVITW | + [ V2g2it W) .

Let sy, 1 € {p1, q1}- Inserting the identity 1 = p; + g1, we obtain fora € {—1, 0, 1},

IVIPW| < C sup [[FasiVir W] < Csup [[Fullopl Vit W] < CN7'.
a

s1,1,a t,
In analogy [|V2g2m“W|| < C||m“|op < CN~1*5. This yields the bound
(106) < K(¢, A))N"**& In(N).
Furthermore, (107) is bounded by
(107) < 4N?|| V2| gl lelloollVITW] < Cllglloo N In(N). (109)
Similarly, we obtain
(108) < 4N?|| V¥ Igull 1Vellsollgom®W || < ClIV@llog N¥™#In(N).

It follows that |y, (¥, @)| < K(p, A)NS~*In(N).
Control of y;
To control y; and y, we will use the notation

m (k) = m*(k) —m(k+1)  m?k) = ma (k) — m®(k +2)

mék) =mP k) —mPk+1) m/ k) =mb k) — mb(k +2). (110)
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Since the second k-derivative of m is given by (see (74) for the first derivative)

—1/(4Vk3N), fork > N1~%;
0, else.

m(k)” — {
it is easy to verify that
7% llop < CN™2* for x € {c. d. e, f}. (111)
Recall that
Ya(W, @) =2N(N — D(N = 2)S ((W, gu(x1 — x2) [Vn (x1 — x3), 71 W)

= NV = DV =23 (¥, 8 (n1 = x2) [4lplP(x3). 7] W)
Since pj +¢q; = 1, we can rewrite 7" as

F=mlpipa+m(p1ga +q1p2) = (M° — 2% p1 pa + M (p1 + pa).

Thus,

Ya(¥, 9)] = ON* (W, g (31 = x2) [Viv(n = x2), G = 2% p1 p2
+m (p1+ p2)] W)
+ N3 |(W, g (1 — x) [4 10l (x3), 7] W)
< CN? [(W, g (x1 — x2) pa [Viv (x1 — x3), ] @) | (112)
+ OV (W, g1 — ) Vi (1 — X)) = 20 pipa®)| - (113)

+ N (W, g (et —x) @ = 2% pipa Vv (n = x)W) | (114)

+ OV [(W, g1 — 320 pr Vi (xt = x) W) (115)
+ ON* (W, gl — x) Vv (1 = x3)in pr )| (116)
+ OV, gu(n = x2) [47l92(x3), 7] W) am

Using Lemma 4.2 (d), we obtain the following estimate:
(112) = CN* (%, g (1 = x2)p2 [Vt = x3), pupain® + prgain® + qupsin | W)
< CN?|(W, Viy (x1 — x3) 8, (x1 — x2) p2 Lgupp(vy) (X1 — X3)
(P1P3n7d + p1g3m* + Q1p3"7€) )|
+ CN* (W, guCxt = x2)pa (prpsin? + pigsin® +qupai ) Vi (xi = x3)W))|.
Both lines are bounded by
CN? ||V (x1 = x3) W || (18 (x1 — x2) p2lop

X (2l appcviy (1 = X301 lop + [ Tsupptv) (1 = 23) 3 llop) (178 lop + 171 lop) -
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Inview of Lemmas4.2 (e) and 5.5 (i), [l g (x1 —x2) P2llop < l@lloollgpull < CliglleN~17H
In(N). Using (111), together with || Lsupp(vy) (X1 =x3) P1llop | VN (x1 —x3) ¥ || < K(@, Ar)
N~1/2 we obtain, using & < 1/2,

(112) < K(p, ADN~Y#3 -1 In(N) < K(p, A)N/>*¥ 7 In(N).
‘We continue with
(113) + (114) + (115) < CN3 ||V (x1 — x3)W [l g (x1 — x2) P2 lop
X [ Lsupp(vy) x1 = %3) P1llop 1 — 27%) [ op
+ CN?llgu(x1 — x2) p2lloplli® — 2% |opll p1 Vv (x1 — x3) W |
+ CN?llgu(x1 — x2) pillop 1 llop Il 1 Viv (x1 — x3) ¥ ||
< K(g, A)N>*=~In(N).

Next, we estimate (116). The support of the function g, (x; —x2) Vi (x1 — x3) is such
that |x; — x| < CN™#, as well as |x; — x3] < Ce™". Therefore, g, (x| — x2) Viy (x1 —
x3) # 0 implies [x» — x3| < CN~*. We estimate

(116) = CN* |(W, g, (x1 — x2) Vi (x1 — x3) p1ll g, 0 (x2 — x3)in“ W))|
< CN3|Ip1 Vi (x1 — x3)gu(x1 — x2) V|| 1B, 0) (x2 — x3)m“ W ||
< CN*[1p1 Lsupp(viy) (X1 — x3) lopll g (x1 — x2) Vv (x1 — x3) |

X LBy -y 0) (X2 — x3)m“ W ||

5/2 3 ~a i S magy

< CpN*Plgulloo ey 012, VA" |7 [ 7

2
< CN 2| gullcoN 2| Vim® W ||/ | w | /2
S CN3/2+§7[L/2.

In the fourth line, we applied Sobolev inequality as in the proof of Lemma 7.4, then

setting p = 2. Furthermore, we used ||V m®W | /?|mW|/? < CN~!*¢ as well as
llgulloo < C, see Lemma 5.5.

Using Lemma 4.2 (d), (117) can be bounded by
CN* (W, g (1 = x2) [4lg P(x3), pLpa@ = T2) + (P12 + a1 p) F =7 ] W)
< CN?|l9113, (IF = P2 llop + IIF = Fillop) 18 (x1 — x2) P2 llop-

Note that [[7 = Tallop + IF = Tillop < X jeede. ) 17 lop < CN72*% holds. With

llg,(x1 — x2)pallop < CN~!'#In(N), it then follows that
|(117)] < CllgllZ, N In(N).
In total, we obtain
Va(W, @) < K, Ap) (NYZHER2 4 NI (N) )

Control of y,
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Recall that
1
Ve(W, 9) = =3 NN = DIN =2)(N = 3)3 ((W, g (x1 = x2) [Vi (x3 = x4), 1 ¥)) .
Using symmetry, Lemma 4.2 (d) and notation (110), y, is bounded by

Ve(W, ) < N* (W, g, (x1 — x2)[ Vv (x3 — x4), € p1 p2 p3 pa + 20 p1 p2 p3ga
+ 270 p1g2 p3pa + 47 p1gop3qa] V)|
< ANV (x3 — X)Wl Lsupp(va) (X3 — X4) P3llopll g (x1 — x2) pillop
x (I lop + 1 lop + 172 lop + 177 llop).-
We get with (111), Lemma 5.5 and Lemma 4.2 that
lye(W, 9)| < K(p, A)N'/>E 1 In(N).

Control of yy
Recall that

N-2_ o
yr(W.) = 2NV = D=3 ((%. gulx — ) [l P (). 7] W)

‘We obtain the estimate
lyr (W, @) < K(p, A)N?||g,.|l Illop < K(g, A)NE#In(N).

Proof of Lemma 6.13. Let the assumptions of Lemma 6.13 be satisfied. With the previ-
ous estimates and £ < 1/3 we get

D ool < Kigr Ao (@i o) + N7+ (N2 4 N7V )
ke{a,b,c,d,e, [}

+ inf inf (N"—Zﬂl In(N)? + N~1¥281%6 NZS—n> )
min(B,1/2}>$1>0 n>0

Choosing & = 1/10, u = 10, n = 3/10 and B; = 3/10, we obtain (64). 0O

7.5. Energy estimates. In this section we show that |1 4D V1g1¥||? can be controlled
1

sufficiently well in terms of the counting functionals & < and «. If ¥, is evolving according
to Wpg, one could actually show that || Vg1 ¥, |? is small already without cutoff. While
such a proof would be less involved, we chose a unified presentation which both covers
the Gross—Pitaevskii scaling and the NLS scaling.

Lemma 7.9. Let Wg € Wg, Vy € Vy and A, € L¥(R%,R). Let ¥ € L2(R*N,C) N
H' RN, ©), |¥| = 1 with |V1¥]|| < C. Let g € H*(R?,C), ||| = 1. Ford > 3,
define the sets .A(d), Egd) as in Definition 7.3. Then, for N large enough and d > 3,

11 40 Vig1 91 < K(p. A (0.7 W) + N/ In(N)

+ inf { levy ) - 87 @), ’5%(% =&y @

+ N2 ln(N)} )
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Proof. We start with expanding Ew, (V) — Eﬁlf Wsll (¢). This yields

N —1
Ewy (¥) = EF iy, @) = IVIVIP + —— Iy Wp (1 = x2) ¥

— Vel - %anﬂnlnwzuz + (W, A ()W) — (@, Arg)
= 114 Vigr¥|* + M(¥, ) + Qp(¥, ),
where we have defined
M) =29 ((Vig1 ¥, 1y Vip1¥)) (118)

+ 11 @ Vip1¥? — Vol (119)

Al
(WA GDY) — (0, Arg),
0¥, 9) = [l V1 ¥’

N-—-1
+ (W, (A = p1p2)Wg(x1 — x2)(1 = p1p2) W)
N-1 1 -
t 3 (¥, p1p2Wg(x1 — x2) p1p2 V) — ENHW;B”IH@ Il
+ (N — DR, (1 — p1p2)Wp(x1 — x2) p1p2 V). (120)

Notice that the first two terms in Qg (W, ¢) are nonnegative. This yields to the bound

Sp(W. @) = (N = DI(W, (1 = p1p2) Wy (x1 — x2)p1p2W)| (121)
N-1 1 -
+ | T3 W pr 2 Wy Cn = x2)p1p2W) — SN IWlle?]
> —Qp(V, ). (122)
We therefore obtain
110 Vi W1 < [Ew, (W) = EGfhy,, )|+ MO, @) + IS5 (W, @), (123)

Thus if we use that Definition 2.1 implies the estimate
1 _
Epy, (@) = é‘ﬁfwﬁnl(m\ = 5lbws = NIWglh| 19%17 < K(, AON~" In(V),
we get the bound:
140 Vi WI < €, (¥) = E57 ()] + K(@, AN In()
+ MW, )| +[Sp(¥, ¢)|.
Next, we split up the energy difference Ey, (¥) — EZF (¢),
N

—1
5 IV Vi —)¥|? — | Vg

— 27| Q%17 + (W, A (x )W) — (@, Ar@).

Evy (W) — EEP (@) = IV ¥ +
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In order to better estimate the terms corresponding to the two-particle interactions, we
introduce, for v > d, the potential M, (x), defined in Definition 5.3. Note, that v > d

assures that that part of the interaction M,, which lies within the set Agd) will be negligible.
We continue with

Evy (W) = E57 (@) = 11y VIV |2 + 110 V10|

N -1
+ =5 Mg VVy @ = x) v
1
(WD e (V= My) (61 = )W)
J#1
1
+ 540D Lo My — W) — Vel — 2719
J#1

+ (W, A (x) W) — (@, Arg).

After reordering, the identity g; = 1 — pj, together with the symmetry of ¥ €
L2(R?N, C) gives

_ eGP\ _ 2 2
Evy (W) =& () = T o Vigi¥ 1" + [T g0 170 Vi Y]l

N-—1
+ =5 g Vi =) v
N-—1
+ (W, gy (1 = prp2)My(x1 — x2)(1 = p1p2)l g W)

2 1 1
ol o VI 4+~ (w D g (Vv = My) (x1 — x)W)
B L@V ;2 dgo (Vi v) (X1 — X
J#l

+ 5 (W dga prpaMy(xn = x2) prpal g W) — 27l

+ 20 (Vi1 W, 1y Vip1 )
+ (N = DWW, Ly (1 = prp)My(x1 = x2) p1p2lgo V)
1o Vipr¥I? = Vo)

(W, AGD)Y) — (9. Arg)
= L0 Vi1 WI> + M (¥, 9) + 0, (¥, ).

with
0u(¥, 9) = Mg 1 V1 ¥
N -1
+ —— (V. 1z (1 = p1p2) My (x1 — x2)(1 = p1p2)1 gy V)
2 1 1
N -1

+ gy VG — ) v

1
+ g I VI + (0, ;135@ (Vn = M) (x1 — x,)¥)
J
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+ (N = DWW, Lyo (1 = prp) My (1 = x2) p1p2lgo V)

N —1
+ — (W g pipaMy (i — x2) pipal go V) — 2|17, (124)

The first three terms in QU(\II, @) are nonnegative. For v > d and N large enough,
Lemma 7.10 implies that (124) is also nonnegative. Thus, for v > d, we obtain the
bound

Suw,9) = (N = D|(w, Ly (1= prp2) My (xi = xz)mpzn,g(ld)w\ (125)
+ |5 (W dgw pipaMy (1 = x2) pip2ll g W) = 2 lle7|
1 1
= —0.,(¥, ). (126)
In total, we obtain
110 Vi W1 < MW, )]+ 5, (8, 9) + |, () = E57 (0. (127)

It is therefore left to estimate M (W, @), Sg(¥, ¢) and S, (W, 0).

Estimate of S5(V, ¢) and S, (¥, ¢).
The contributions (121) and (125) are estimated in Lemma 7.11.

(121), (125) < K(p, A)((¥, 2¥) + N~/ In(N)).

We are thus left to estimate (122) and (126). We begin with the estimate for (126). As
in (80), we can write

(W, L prp2My(x1 — x2) prp2ll gy W) = (o, My * [0 @) (W, 1 p1 pall g W)
1 1 1 1

With Lemma 7.3 (c) with € = 1/2, we get |1z V| < CN3/2=4_ Together with
1
lp1paV 12 = 1+2]p1g2¥]12 + lg1g2¥ ||?, we therefore obtain

- _ 1
(126) < 31g1WI2+ C (N2~ + N3720) 2N (g, M, x [oP0) = NIIM I 07 )

Law — Nym 224 Lo m 2
+ ST = NIM L@l + S (0. My * ¢l ).

Note that, using Young’s inequality and (80)

(o, NM, * |o*0) — N|IM, |l [l9*]1%]

= ‘ fR dxle (N My = [ ) = NIM, e
< @l IN(M, * 19|*) — INMyll1lel? ]l

< Cloll% 1Al 1IN "2V In(N)

< K(g, A))N™2" In(N).
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Since [N | M, ||i —4r| < C™V (see Lemma5.5) and (¢, M, *|¢l?9) < llold Myl <
Cllell*, N~1, it follows that

1(126)] < K(g, Ap) ({0, 79W) + N2~ 4 N2 4 N2 10 (V) + N7 () )
< Klp. 40 ((w.7299) + N7 (). (128)

where v > d > 3 was used in the last inequality.
Using the same estimates, we obtain

(122) < K(p, Ay) (((\y, W)+ NP In(N) + N~! 1n(N)) )
In total, we obtain, for any v > d > 1, the bound
Sp(W, ) < K(p, Ar) (((\11, AU) + N2 In(N) + N1/ ln(N)>
Su.9) = Kig, A) ((w.20) + N~/ ().
Estimate of M (W, ¢). We need to estimate (118), (119) and (120). We start with
[(118)] < 2[{Viq1 Y, ]lz(«hvlpl"y)” +2[{Viq1 ¥, Vip1 )|
< 20Vig1 ¥l 1o Vipillop + 21210, A1 iy 2 W)

By Lemma 7.4, we obtain ||ILX([1)V1p1 llop < C|IVellooN/?4,
1

Furthermore, we use ||V1q1\Il|| < [IViV|+||Vip1 VY| < K(p, A;) (seealsoLemma 7.6)
and |(712q,W, Ay pii, P W) < Ko, An Iy > W72 < Ko, A)((¥, AW +
1). Hence, for d > 3,

(118)] < K(p, AD((W, 7)) + N'™1 + N1 < K(p, A)((¥, 7W) + N 7).
With | Vi p1¥ (% = [|Ve|?| p1W|? line (119) is estimated by
(119) = 11y Vipr¥|1* = [ Vll®

< IVip1¥)? = IVel?| + I 1w Vi p1¥|?

Ay’
= C (IVoIP (¥, 1) + [V 2N =)
< Kig. A ((@.7w) +N7").

For line (120), we use Lemma 7.5 to obtain

(120) < CllAlloo ((W.7W) + N71/2).

In total, we obtain

MW, ¢) < Kig, A ((w.70) + N71/2).
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Lemma 7.10. (a) Let Vy € Vy and let R, and M, be defined as in Definition 5.3. Then,
forany W € L2(R*N ,C) N D(V))

1
Iy — o)<k, VI W[ + S0, (Vi = My)(x1 = x2)¥) > 0. (129)

(b) Let Vy € Vy and let M, be defined as in Definition 5.3. Let ¥ € L2(R*N,C) N
HY (RN | C). Then, for sufficiently large N and for v > d,

1
2
I g 1z VIW]" + 59, Zﬂg@ (VN — M) (x1 —xpW) = 0. (130)
J#l
Proof. (a) We first show nonnegativity of the one-particle operator H%» : H>(R?, C) —
L%(R?, C) given by

1
H? = =D+ 5 3 (VNG =2 = My( = 20)

ZkE€Zn

for any n € N and any n-elemental subset Z, C R? which is such that the supports
of the potentials M), (- — zi) are pairwise disjoint for any two z; € Z,.

Since f,(- — zx) is the the zero energy scattering state of the potential 1/2Vy (- —
zx) — 1/2M,, (- — z1), it follows that

F‘)an l_[ S —2zp).

%k €Zn

fulfills H%n F,,Z " = 0 for any such Z,,. By construction f, is a nonnegative function,
sois FZ". Since % szezn(VN(' — %) — M, (- — zx)) € L®(R?, C), this potential
is a infinitesimal perturbation of —A, thus oegs(H Zn) = [0, 00). Assume now that
H%n is not nonnegative. Then, there exists a ground state Vg € H 2(R2,C) of H%
of negative energy E < 0. The phase of the ground state can be chosen such that the
ground state is real and positive a.e. (see e.g. [52], Theorem 10.12.). Since f, (- — zx)
is positive outside supp(Vy ), the following inequality is valid®

(FZn, H?" W) = (FZ, EWg) < 0. (131)
On the other hand we have since FVZ " is the zero energy scattering state
(F/r, Ho1WG) = (H™ F", W) = 0.

This contradicts (131) and the nonnegativity of H%" follows.
Now, assume that there exists a ¥ € H 2(R%, C) such that the quadratic form

1
QW) = [[14<r, V¥ I + 5 (Vv () = My())¥) < 0.

Since Vy and M, are spherically symmetric we can assume that v is spherically
symmetric. Substituting ¥ — ayr, a € R, we can furthermore assume that, for all

6 Note that a one particle ground state of negative energy decays exponentially, that is Vg (x) <
C1e=C2I%1 ¢y, €5 > 0. Hence, (131) is well defined, although FZ" ¢ L2(R2, C).
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x] = Ry, ¥ (x) =1 —¢€fore > 0.

Define v such that ¥ (x) = ¥ (x) for |x| < R, and ¥ (x) = 1 for |x| > R, + € and
€ > 0. Furthermore, ¥ can be constructed such that || 1}. >z, V¢ 12 < C(e +€2).
Then Q(¥) = Q(¥) < 0 holds, because the operator associated with the quadratic
form is supported inside the ball By(R)).

Using 1}, we can construct a set of points Z, and a x € H 2(R2, C) such that
(x, H?*"x) < 0, contradicting to nonnegativity of H?".

For R > 1 let

_ R2/x2, for |x| > R;
§r(x) = { 1, else.

Let now Z, be a subset Z,, C R? with |Z,| = n which is such that the supports of the
potentials M, (- — zx) lie within the Ball around zero with radius R and are pairwise
disjoint for any two zx € Z,. Since we are in two dimensions we can choose a n
which is of order R2. 3

Letnow xgr(x) = &g(x) szeZn ¥ (x —zx). By construction, there existsa D = O(1)

such that xg(x) = tﬁ(x — zx) for |x — zx| < D. From this, we obtain
1
(xrs H*" xg) = |V xrlI* +n§<1/f, (VNG = My()Y)

=nQW)+ Y L=k, Vrl?

Zkezn
<nQ) +Cn(e +€*) + | VEg|?
=nQ(W)+Cn(e+€>) +C.

Choosing R and hence n large enough and € small, we can find a Z, such that
(xr, H?" xR) is negative, contradicting nonnegativity of H%".
Now, we can prove that

1
1112y —aa 1<, VI 1% + 5((‘1’, (VN = M) (x1 —x2)W) = 0. (132)

holds for any W € H 2(RZN ). Using the coordinate transformation x; = x| —
X2, X = x; Yi > 2, we have V,;, = V;,. Thus (132) is equivalent to Q(lI!) =
1My 1<k, VIWIZ + 3 (W, (Vi — My)(x) W) = 0 VW € HX(R?Y, C).

If it were now that O (W) is not nonnegative, then thereexistsal’ € H 2(R2N, C) such

that O(I") < 0. By the Schmidt decomposition theorem, there exist two orthonormal
bases {®xJreny € H>(R?*M 2, C), {¢1}ien € H*(R?, C) and nonnegative numbers
{Ar}ren such that

= Z)»kfﬂk ® O.
keN
By this
O =Y Il Q) > 0,

keN
which in turn yields to a contradictions. Therefore, Q (V) > Oforall ¥ € H 2(R%, C).

By astandard density argument, we can conclude that Q(¥) > OVW € L2*(R*N  ©)n
D(Vy).
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(b) Definecy = {(x1,...,xn) € R*N||x;—x¢| < Ry}andCy = UY_,cx.For (x1, ..., xy)
S Bid) it holds that |x; — x;| > N~ for2 < i,j < N.Letv > d. Assume that
N4> 2R,, which hold for N sufficiently large, since R, < CN~". Then, it follows

that, fori # j, (Ci N Bgd)) N (c i N Bgd)) = (). Under the same conditions, we also
have ]lju) > 1¢,. Therefore
1

Izolgw 2l lgo =1 go =1 Vo (eanB®) T Z]lc g = Lg@ Z Loy

Note that 1 B@ depends only on x», ..., xy. By this
1

N
1o Lo ViU 2 3 I Vil g W12 = (N = DIyl <ry Vil o W1
k=2

This yields
1
(130) > (N = 1) (l'ﬂlxlfxz\fRuvl]lBid)“II||2 + 5(( B<d>‘l’ (VN — M) (x1 — xz)]lB(d) )))
> 0.

where the last inequality follows from (a), using 1 ;)W € L2R3N C)ND(V)).
1
o

Lemma 7.11. Let Wg € Wg. Let W e L2([R?N,C) N H'(R?N,C) and ||V, V| be
bounded uniformly in N. Let d in Definition 7.3 of 1 B@ sufficiently large. Let I €
1

(v, 1 Bgd)\y}. Then, for all B > 0,
()
N (T, q1p2 Wy (x1 = x)p1p2D)| < Cllgl (%, W) + N7,
N (T, pra2Wg(x1 — x2) p1p2T)| < Cllgll3, (((‘1’, Av) + N_1> .
(b)

NIT, p1paWp(xi — 21920 < Kig, A ((0,20) + N/ m())
©
NIE, (1 = prpa) Wy ri = x2)pipaD)| < K, A ((0,20) + N/ ().

Proof. (a) We will only consider the first inequality of (a). The second inequality of (a)
can be proven analogously. Let first ' = 1 PONE Then,
1

N ‘((]lsgd) Y, g1 p2Wg(x1 — x2)P1P2]lB§d)‘~IJ>>‘
< N (Lo W, qip2 Wy = x2)pi palgo W) (133)

+ N |(%, g p2Wpet = 32 p1pal g W) (134)
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Using Lemma 7.4 (c) with € = 1, together with || po Wg (x1 — x2) p2llop < ||<p||§o Wsll1,
the first line can be bounded by

(133) < K(p, ADN 15 W1 Wglli < K(g, ADN*~. (135)

The second term is bounded by

! A%
(134)=N ‘«,/ W (1 — x2)q1 p2(A) "2 W, [ Wp (x1 — Xz)Plpznlz113<d>l‘1’>>‘
| N
< CN|JWg(x1 —x2)p2l2, (uq](n) 2w + ||n12113@1w||2)
1 1
< NIl Ws (i — x2)p2ll5, («w, AWY + 1A W) + ||ﬁf]13<ld>wn2>

< CNIWslillgl ((w.Aw) + 150 w1?)
= Cliglk (¢w. aw) + N2 < Cllgl, ((w. vy + N7,

This yields (a) in the case I' = 1 4@ W. The inequality (a) can be proven analogously
1
forI' = W.
(b) LetI' =1 B(d)\ll. We first consider (b) for potentials with B < 1/4. We have to
1
estimate
Ni{Lgao W, prp2Wp(x1 = x2)q1921 ga) W)
= NI{¥, pip2Wg(x1 — x2)q192W)|
+ NI((]lggd)‘I’, P1p2Wp(x1 — x2)q1q2W )|

+ NIV, p1p2Wg(x1 — x2)q1921—5V)|

B
+ NI((]lggzn‘I’, p1p2Wg(xy — X2)6]1612]1W‘1’))|
1
< N|{W, p1p2Wg(x1 — x2)q1q2 W) | (136)
+ CN”]IB(ld)‘I'””Wﬂ”oo (137)

The last term is bounded using Lemma 7.4 (c) with e = 1
(137) < CNNY*IN—1#26 < N—1/2,

where the last inequality holds choosing d > 3.
Using Lemmas 4.2 (c) and 4.6 with O 2 = g2 Wg(x1 —x2) p2, 2 = N~ 1/2g, ¥ and
x = N'2p ¥ we get
(136) < llg1W |1 + N?[{q2 W, p1y/Wg(x1 — x2) p3y/Wg(x1 — x3)
VWp(x1 — x2) pay/Wp(x1 — x3) p1g3 V)|
+ N*(N — D)7 MlgaWp(x1 — x2) pap1 V|
< llq1W[? + Ny Wg(x1 — x2)pillg, llg2 W12
+ CN|[[Wp(x1 — x2) pal3,.-
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With Lemma 4.2 (e) we get the bound
(136) < lg1W)* + N2l @2 IWs 113 g1 W11 + CNIWa 12 9112
Note, that |[Wg|l; < CN~!, |Wg|?> < CN~**?#. Hence
(136) = C ((W, q19) + K, AN ).

Note that, for 8 < 1/4, N—1+28 < N6 In(N). Using the same bounds forI' = W,
we obtain (b) for the case 8 < 1/4.
b) for 1/4 < B:
We use Ug, g from Definition 7.1 for some 0 < 81 < 1/4.
By the estimate above,it is left to control

N ‘((113501) W, pip2 (Wg(x1 — x2) — Up, g (x1 — x2)) 611112118511)‘1’))‘ .

Let Ahg, g = Wg — Up, g. Integrating by parts and using that
Vihg, p(x1 — x2) = —Vahg, g(x1 — x2) gives

N ‘((]15@‘11, pip2 (Wa(x1 — x2) — Ug, p(x1 — x2)) Q142]18§d)‘11))‘

=N ’((V]p]ﬂBgd)‘IJ, p2Vahg, g(x1 — xz)chqz]lBid)\I’))’ (138)
+ N (g W, prp2Vahp p (1 = D Vigiaalga W) (139)
Let (a1, b1) = (q1, Vp1)or(ay, b1) = (Vq1, p1)- Then, both terms can be estimated

as follows:
We use Lemma 4.6 with Q = N‘”/zalllBid)\Il, O = N1+’7/2q2V2hﬂl,ﬂ()€1 -

xy)p2 and x = b1]lB<d)\Il. We choose 1 < 28;.
1

N ‘((]135@ W, a1 paVohg, p(x1 — xz)bIQZ]lBid)‘l"»

< N7lar 1 g W1 (140)
1
2+n )
* N1 lg2Vahg, g(x1 — X2)b1P213§d>‘PII (141)
12
+ N2 ((]lBYz)‘IJ, b1p2q3Vahg, p(x1 —x2)V3hg, g(x1 — X3)b1q2p311354>‘1’))
(142)

We obtain (note that 1 B@ does not depend on x1)
1

(140) < N7"la 1 g W|* = N1 gwyar W < K(g, AN
1

B
since both ||Vg; V|| and ||g1 V|| are bounded uniformly in N. Since g3 is a projector
it follows that

2+n
2 2
(141) < N1 Vahg, g(x1 — xz)p2||op||b1]18(ld)\y”
N2+n
< O 012V g, 111 g W1

< K@, ADN" " In(V) |l %,
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where we used Lemma 7.2 in the last step.
Next, we estimate

(142) < N**| paVahg, g(x1 — xz)blqzﬂ35d>\y||2
< 2N paVahg, p(x1 = x2)b1ga T W (143)
+ 2N paVahg, p(x1 — x2)b1g2 9|1, (144)
The first term can be estimated as

(143) < CN*"||Vahg, g(x1 — x2)b1 |5y 150 ¥ 1*

B
= ON*IVahp g1l + IV lZ) T g0 2
< K(p, ADN*"N =2 In(N)N*~2

< K(p, ADN~*In(N),

for any d > 3. In the last line we used Lemma 7.4 (c) with ¢ = 1. The last term can
be estimated as

(144) < 2N pahg, p(x1 — x2)b1 Vag2 ¥ |1*
+ 2Nl (x2)) (Vo (x2) hp, p(x1 — x2)b1g2 ¥ |2
< CN*"||pahp, p(x1 = x2) 13, 151 Vaga W2
+ CN*[|p(x2)) (Vo (x2)|hp, p(x1 — x2) 12, 1b1g2% |17
= OV (1991 + lleli% ) g 120 + IV )
< K(g, A)N" 21 In(N)2.

Combining both estimates we obtain, for any g > 1/4,

N ‘((]lBgzn‘l’, p1p2Wp(xi —XZ)CIIQZ]lB(d)I‘I’»‘

. . —1+2p —n
<inf nf (K. 40 ((w. 7wy + N +N

N n(N) + N2 () ) )
< Kig. A ((9.7w) + N~/ In() ).

where the last inequality comes from choosing = 1/3 and 81 = 1/4. ForI"' = U,
(b) can be estimated the same way, yielding the same bound.
(c) This follows from (a) and (b), using that 1 — p1p2 = q192 + p192 + q1 P2 |
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