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Abstract. We present two algorithmic approaches for synthesiz-
ing linear hybrid automata from experimental data. Unlike previous
approaches, our algorithms work without a template and generate an
automaton with nondeterministic guards and invariants, and with an
arbitrary number and topology of modes. They thus construct a suc-
cinct model from the data and provide formal guarantees. In particular,
(1) the generated automaton can reproduce the data up to a specified
tolerance and (2) the automaton is tight, given the first guarantee. Our
first approach encodes the synthesis problem as a logical formula in the
theory of linear arithmetic, which can then be solved by an smt solver.
This approach minimizes the number of modes in the resulting model but
is only feasible for limited data sets. To address scalability, we propose
a second approach that does not enforce to find a minimal model. The
algorithm constructs an initial automaton and then iteratively extends
the automaton based on processing new data. Therefore the algorithm
is well-suited for online and synthesis-in-the-loop applications. The core
of the algorithm is a membership query that checks whether, within the
specified tolerance, a given data set can result from the execution of a
given automaton. We solve this membership problem for linear hybrid
automata by repeated reachability computations. We demonstrate the
effectiveness of the algorithm on synthetic data sets and on cardiac-cell
measurements.
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1 Introduction

Natural sciences pursue to understand the mechanisms of real systems and to
make this understanding accessible. Achieving these two goals requires observa-
tion, analysis, and modeling of the system. Typically, physical components of a
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system evolve continuously in real time, while the system may switch among a
finite set of discrete states. This applies to cyber-physical systems but also to
purely analog systems; e.g., an animal’s hunger affects its movement. A proper
formalism for modeling such types of systems with mixed discrete-continuous
behavior is a hybrid automaton [11]. Unlike black-box models such as neural
networks, hybrid automata are easy to interpret by humans. However, designing
such models is a time-intensive and error-prone process, usually conducted by
an expert who analyzes the experimental data and makes decisions.

In this paper, we propose two automatic approaches for synthesizing a linear
hybrid automaton [1] from experimental data. The approaches provide two main
properties. The first property is soundness, which ensures that the generated
model has enough executions: these executions approximate the given data up to
a predefined accuracy. The second property is precision, which ensures that
the generated model does not have too many executions. The behavior of a
hybrid automaton is constrained by so-called invariants and guards. Precision
expresses that the boundaries of these invariants and guards are witnessed by
the data, which indicates that the constraints cannot be made tighter. Moreover,
the proposed synthesis algorithm is complete for a general class of linear hybrid
automata, i.e., the algorithm can synthesize any given model from this class.

The first approach reduces the synthesis problem to a satisfiability ques-
tion for a linear-arithmetic formula. The formula allows us to encode a min-
imality constraint (namely in the number of so-called modes) on the resulting
model. This approach is, however, not scalable, which motivates our second app-
roach. Our second approach follows an iterative model-adaptation scheme. Apart
from scalability advantages, this online algorithm is thus also well-suited for
synthesis-in-the-loop applications.

After constructing an initial model, the second approach iteratively improves
and expands the model by considering new experiments. After each iteration, the
model will capture all behaviors exhibited in the previous experiments. Given
an automaton and new experimental data, the algorithm proceeds as follows.
First we ask whether the current automaton already captures the data. We
pose this question as a membership query for a piecewise-linear function in the
set of executions of the automaton. For the membership query, we present an
algorithm based on reachability inside a tube around the function. If the data is
not captured, we need to modify the automaton accordingly by adding behavior.
We first try to relax the above-mentioned invariants and guards, which we reduce
to another membership query. If that query is negative as well, we choose a path
in the automaton that closely resembles the given data and then modify the
automaton along that path by also adding new discrete structure (called modes
and transitions). This modification step is again guided by membership queries
to identify the aspects of the model that require improvement and expansion.

As the main contributions, (1) we present an online algorithm for automatic
synthesis of linear hybrid automata from data that is sound, i.e., guarantees
that the generated model approximates the data up to a user-defined threshold,
precise, i.e., the generated model is tight, and complete for a general class of
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models (2) we solve the membership problem of a piecewise-linear function in a
linear hybrid automaton. This is a critical step in our synthesis algorithm

Related Work. The synthesis of hybrid systems was initially studied in control
theory under the term identification, mainly focused on (discrete-time) switched
autoregressive exogenous (SARX) and piecewise-affine autoregressive exogenous
(PWARX) models [7,18]. SARX models constitute a subclass of linear hybrid
automata with deterministic switching behavior. PWARX models are specific
SARX models where the mode invariants form a state-space partition. Fixing
the number of modes, the identification problem from input-output data can be
solved algebraically by inferring template parameters. However, in contrast to
linear hybrid automata, the lack of nondeterminism and the underlying assump-
tion that there is no hidden state (mode) limits the applicability of these models.
An algorithm by Bemporad et al. constructs a PWARX model that satisfies a
global error bound [5]. Ozay presents an algorithm for SARX models where the
switching is purely time-triggered [17]. There also exist a few online algorithms
for the recursive synthesis of PWARX models based on pattern recognition [19]
or lifting to a high-dimensional identification problem for ARX models [10,22].

Synthesis is also known as process mining, and as learning models from traces;
the latter refers to approaches based on learning finite-state machines [3] or
other machine-learning techniques. More recently, synthesis of hybrid automaton
models has gained attention. All existing approaches that we are aware of have
structural restrictions of some sort, which we describe below. We synthesize,
for the first time, a general class of linear hybrid automata which (1) allows
nondeterminism to capture many behaviors by a concise representation and
(2) provides formal soundness and precision guarantees. The algorithm is also
the first online synthesis approach for linear hybrid automata.

The general synthesis problem for hybrid automata is hard: for deterministic
timed automata (a subclass of linear hybrid automata with globally identical
continuous dynamics), one may already require data of exponential length [21].
The approach by Niggemann et al. constructs an automaton with acyclic dis-
crete structure [16], while the approach by Grosu et al., intended to model purely
periodic behavior, constructs a cyclic-linear hybrid automaton whose discrete
structure consists of a loop [8]. Ly and Lipson use symbolic regression to infer a
non-linear hybrid automaton [14]. However, their model neither contains state
variables (i.e., the model is purely input-driven, comparable to the SARX model)
nor invariants, and the number of modes needs to be fixed in advance. Medhat
et al. describe an abstract framework, based on heuristics, to learn linear hybrid
automata from input/output traces [15]. They first employ Angluin’s algorithm
for learning a finite-state machine [3], which serves as the discrete structure of the
hybrid automaton, before they decorate the automaton with continuous dynam-
ics. This strict separation inherently makes their approach offline. The work by
Summerville et al. based on least-squares regression requires an exhaustive con-
struction of all possible models for later optimizing a cost function over all of
them [20]. Lamrani et al. learn a completely deterministic model with urgent
transitions using ideas from information theory [12].
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2 Preliminaries

Sets. Let R, R�0, and N denote the set of real numbers, non-negative real num-
bers, and natural numbers, respectively. We write x for points (x1, . . . , xn) in R

n.
Let cpoly(n) be the set of compact and convex polyhedral sets over R

n. A set
X ∈ cpoly(n) is characterized by its set of vertices vert(X). For a set of points
Y , chull(Y ) ∈ cpoly(n) denotes the convex hull. Given a set X ∈ cpoly(n)
and ε ∈ R�0, we define the ε-bloating of X as �X�ε := {x ∈ R

n | ∃x0 ∈ X :
‖x − x0‖ � ε} ∈ cpoly(n), where ‖ · ‖ is the infinity norm. Given an interval
I = [l, u] ∈ cpoly(1), lb(I) = l and ub(I) = u denote its lower and upper bound.

Functions and Sequences. Given a function f , let dom(f) resp. img(f) denote its
domain resp. image. Let f�A denote the restriction of f to domain A ⊆ dom(f).
We define a distance between functions f and g with the same domain and
codomain by d(f, g) := maxt∈dom(f) ‖f(t) − g(t)‖. A sequence of length m is a
function s : D → A over an ordered finite domain D = {i1, . . . , im} ⊆ N and
a set A, and we write len(s) to denote the length of s. A sequence s is also
represented by enumerating its elements, as in s(i1), . . . , s(im).

Affine and Piecewise-Linear Functions. An affine piece is a function p : I → R
n

over an interval I = [t0, t1] ⊆ R defined as p(t) = at +b where a,b ∈ R
n. Given

an affine piece p, init(p) denotes the start point p(t0), end(p) denotes the end
point p(t1), and slope(p) denotes the slope a. We call two affine pieces p and
p′ adjacent if end(p) = init(p′) and ub(dom(p)) = lb(dom(p′)). For m ∈ N, an
m-piecewise-linear (m-pwl) function f : I → R

n over interval I = [0,T] ⊆ R

consists of m affine pieces p1, . . . , pm, such that I = ∪1�j�mdom(pj), f(t) = pj(t)
for t ∈ dom(pj), and for every 1 < j � m we have end(pj−1) = init(pj). We
show a 3-pwl function in Fig. 1 on the left. Let pieces(f) denote the set of affine
pieces of f . We refer to f and the sequence p1, . . . , pm interchangeably and write
“pwl function” if m is clear from the context. A kink of a pwl function is the
point between two adjacent pieces. Given a pwl function f : I → R

n and a
value ε ∈ R�0, the ε-tube of f is the function tubef,ε : I → cpoly(n) such that
tubef,ε(t) = �f(t)�ε.

Graphs. A graph is a pair (V,E) of a finite set V and a relation E ⊆ V × V .
A path π in (V,E) is a sequence v1, . . . , vm with (vj−1, vj) ∈ E for 1 < j � m.

Hybrid Automata. We consider a particular class of hybrid automata [1,11].

Definition 1. A n-dimensional linear hybrid automaton (lha) is a tuple H =
(Q,E,X,Flow, Inv,Grd), where (1) Q is a finite set of modes, (2) E ⊆ Q×Q is a
transition relation, (3) X = R

n is the continuous state-space, (4) Flow : Q → R
n

is the flow function, (5) Inv : Q → cpoly(n) is the invariant function, and (6)
Grd : E → cpoly(n) is the guard function

We sometimes annotate the elements of lha H by a subscript, as in QH for
the set of modes. We refer to (QH,EH) as the graph of lha H.

An lha evolves continuously according to the flow function in each mode.
The behavior starts in some mode q ∈ Q and some continuous state x ∈ Inv(q).
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For every mode q ∈ Q, the continuous evolution follows the differential equation
ẋ = Flow(q) while satisfying the invariant Inv(q). The behavior can switch from
one mode q1 to another mode q2 if there is a transition (q1, q2) ∈ E and the guard
Grd((q1, q2)) is satisfied. During a switch, the continuous state does not change.
This type of system is sometimes called a switched linear hybrid system [13].

Definition 2. Given an n-dimensional lha H = (Q,E,X,Flow, Inv,Grd), an
execution σ is a triple σ = (I, γ, δ), where I is a sequence of consecutive intervals
[t0, t1], [t1, t2], . . . , [tm−1, tm] with [[I]] = ∪0�j<m[tj , tj+1], and γ : [[I]] → R

n and
δ : {1, . . . , m} → Q are functions with the following restrictions:

– for all 1 � j < m, γ(t) ∈ Inv(δ(j)) for t ∈ I(j) and γ̇(t′) = Flow(δ(j)) for
all t′ in the interior of I(j), i.e., γ�I(j) is an affine function satisfying the
invariant and following the flow, and

– for all 1 � j < m, (δ(j), δ(j + 1)) ∈ E and γ(t) ∈ Grd((δ(j), δ(j + 1))) where
t = ub(I(j)), i.e., if a transition is taken, then the guard is satisfied.

We denote the set of all executions of H by exec(H). Given an lha H, we
say that an execution σ follows a path π in H, that is, in the graph (QH,EH),
denoted as σ

H� π, if len(I) = len(π) and δ(j) = π(j) for every 0 � j < len(I).

From Time-series Data to pwl Functions. Experimental data typically comes
as time series, i.e., data is only available at sampled points in time. A time series
is a sampling s : D → R

n over a finite time domain D ⊆ [0,T]. Since the lha
model features piecewise-linear executions, we focus on piecewise-linear approx-
imation of the data. pwl functions can approximate any continuous behavior
with arbitrary precision. There are different yet valid choices for approximating
data. For a single time series, linear interpolation gives a perfect fit, but contains
many kinks; other algorithms minimize the number of kinks for a given error
bound [6,9]. One can preprocess multiple time series into a single pwl function
using, e.g., linear regression. In this paper, we leave the choice of abstraction
open and assume that the input is given as pwl functions.

3 Synthesis of Linear Hybrid Automata

In this section, we specify the synthesis problem, consider two different speci-
fications, synchronous and asynchronous, and present the automated approach
for solving the synchronous problem. The overall goal is to synthesize a linear
hybrid automaton from a set of pwl functions such that the automaton captures
the behavior described by each of the pwl functions up to a bound ε.

Definition 3 (Soundness). Given a pwl function f and a value ε ∈ R�0,
we say that an lha H ε-captures f if there exists an execution σ = (I, γ, δ) in
exec(H) with d(f, γ) � ε.

The value ε quantifies the acceptable deviation of an execution’s continuous
function γ from the pwl function f . For ε = 0, γ must precisely follow f . A
straightforward formulation of the problem we want to solve is the following.
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Problem 1 (Synthesis). Given a finite set of pwl functions F and ε ∈ R�0,
construct an lha H that ε-captures every function f ∈ F .

Observe that this problem is not well-posed, as it can be satisfied by an
automaton that exhibits an excessive amount of behavior. Hence our second
goal for the synthesis algorithm is to ensure constraints on the automaton’s size.
We start with the synthesis of an lha with minimal number of modes.

3.1 Synchronous Switching Specification

For now, we require that the executions in the lha switch synchronously with the
given pwl functions. Under this assumption, we tackle a refinement of Problem 1:

Problem 2 (Synchronous synthesis). Given a finite set of pwl functions F and
a value ε ∈ R�0, construct an lha H that ε-captures every function f ∈ F syn-
chronously, and furthermore require that H has the minimal number of modes.

In the following, we present an algorithm to solve Problem 2. The idea is,
given a pwl function f , to synthesize an execution σ that is ε-close to f . Recall
that the continuous function γ of an execution is essentially just another pwl
function. Any lha that contains the execution σ has to comprise a mode for
each different slope in γ. Thus a minimal number of modes can be achieved by
minimizing the number of different slopes in γ. By fixing a number of different
slopes, we encode the existence of γ as a logical formula φf,ε, which will be
satisfiable if and only if there exists a suitable function γ.

Let m be the number of affine pieces p1, . . . , pm in f with dom(pj) = [tj−1, tj ]
for 1 � j � m. We refer to the time instants tj as the switching times of f ,
and to xj = f(tj) as the switching points of f . Fixing a number � ∈ N, we
want to construct a pwl function γ�, consisting of m affine pieces p′

1, . . . , p
′
m

with � different slopes, with the same switching times as in f , with switching
points y0, . . . ,ym ε-close to those in f (which is necessary and sufficient for
d(f, γ�) � ε), and with unknown slopes b1 = slope(p′

1), . . . ,bm = slope(p′
m).

We define the logical formula

φf,ε(�) :=
m∧

j=1

yj = yj−1 + bj(tj − tj−1) ∧
m∧

j=0

yj ∈ �xj�ε ∧
m∧

j=1

�∨

k=1

bj = ck,

which is satisfiable if and only if there exists a suitable pwl function γ�. For
lifting to a set of functions F , we define the formula φF,ε(�) :=

∧
f∈F φf,ε(�).

These formulae fall into the theory of linear arithmetic and can be effectively
solved by an smt solver. Now, we can state the following results.

Lemma 1. Let F be a finite set of pwl functions and ε ∈ R�0. If φF,ε(�) is
satisfiable for some integer value �, then there exists a set of pwl functions F ′

such that |F ′| = |F|, each function in F is ε-close to some function in F ′, and
the number of distinct slopes in F ′ does not exceed �.
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The set F ′ can be extracted from a satisfying assignment. We define a hybrid
automaton with minimal number of locations 0-capturing a given pwl function.

Definition 4 (Canonical automaton). Let f be an n-pwl function. The
canonical automaton of f is Hf := (Q,E,Rn,Flow, Inv,Grd) with

– Q = {qa | ∃p ∈ pieces(f) : slope(p) = a},
– E = {(qa, qa′) | ∃p, p′ ∈ pieces(f)adjacent : slope(p) = a, slope(p′) = a′},
– Flow(qa) = a,
– Inv(qa) = chull({img(p) | p ∈ pieces(f) : slope(p) = a}), and
– Grd((qa, qa′)) = chull({end(p) | ∃p, p′ ∈ pieces(f) adjacent : slope(p) = a,

slope(p′) = a′}).

Lemma 2. Given a pwl function f , the canonical automaton Hf 0-captures f ,
and every lha that 0-captures f has at least as many modes as Hf .

Definition 5 (Merging). Given two hybrid automata Hi = (Qi,Ei,X,Flowi,
Invi,Grdi), i = 1, 2 with Q1 ∩ Q2 = ∅, let Qa = QH1

a ∪ QH2
a be the locations

with flow equal to a. We define the merging of H1and H2 as H1  H2 :=
(Q,E,X,Flow, Inv,Grd) with Q = {qa | a ∈ R

n, Qa �= ∅}, E = {(qa, qa′) |
∃(q, q′) ∈ E1 ∪ E2, q ∈ Qa, q ∈ Q′

a}, Flow(qa) = a, Inv(qa) = chull({Invi(q) |
q ∈ Qa, i = 1, 2}), and Grd((qa, qa′)) = chull({Grdi((q, q′)) | (q, q′) ∈ Ei,
q ∈ Qa, q

′ ∈ Qa′ , i = 1, 2}).

Theorem 1. Given a finite set of pwl functions F and a value ε ∈ R�0, let
� be the smallest integer such that φF,ε(�) is satisfiable and let F ′ be a set of
pwl functions corresponding to a satisfying assignment. Then, the merging of
canonical automata f∈F ′Hf solves Problem 2.

The above synthesis algorithm works well with short and low-dimensional
pwl functions but does not scale to realistic problem sizes due to the heavy use
of disjunctions. We next address scalability with a new online algorithm.

3.2 Asynchronous Switching Specification

We now change the requirement from the previous subsection (minimality in the
models’ discrete structure) to tightness in the model’s state-space constraints.
Intuitively, for every vertex v of an invariant or guard in H there should be some
witness data f ∈ F that is close to v (at some point in time).

Definition 6 (Precision). Given an lha H = (Q,E,X,Flow, Inv,Grd), let
vert(H) denote the union of the vertices of the invariants and guards:

vert(H) =
⋃

q∈Q

vert(Inv(q)) ∪
⋃

e∈E

vert(Grd(e))

Given a set of pwl functions F and a value ε ∈ R�0, we say that H is ε -precise
(with respect to F) if the following holds:

∀v ∈ vert(H) ∃f ∈ F ∃t ∈ dom(f) : ‖v − f(t)‖ � ε.
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The restriction to the vertices is reasonable because all sets are compact
convex polyhedra. Note that ε-capturing compares functions to the automaton’s
executions, while ε-precision compares functions to the automaton’s state-space.

We also relax the limitation to synchronously switching executions. Instead,
we allow asynchronous switching, characterized as follows: for every function f
ε-captured by H, there exists an execution σ ∈ exec(H) with the same number
of switches as there are kinks in f , i.e., len(I) = |pieces(f)|, and where the
j-th switch in the execution should take place during the time period between
the kinks j − 1 and j + 1. We close this section with the new problem statement
(a refinement of Problem 1), and present a solution in the next section.

Problem 3 (Asynchronous synthesis). Given a finite set of pwl functions F and
a value ε ∈ R�0, construct an ε-precise lha H that ε-captures every function
f ∈ F asynchronously.

4 Membership-based Synthesis Approach

In this section, we present an algorithm for solving Problem 3. The core of
the algorithm is a reachability computation for providing the polyhedral regions
where executions of an lha that are ε-close to a given pwl function f are allowed
to switch. More precisely, given a path π and the ε-tube of f , the algorithm
iteratively constructs the set inside the ε-tube where an execution following π
can switch, without escaping from the tube. These reachable set are, in general,
computed with respect to a starting compact convex polyhedron P , a pair of
adjacent affine pieces p and p′, and a pair of modes q and q′ along π.

Definition 7. Given an lha H = (Q,E,X,Flow, Inv,Grd) and a value ε ∈ R�0,
a reachable switching set switchH(P, p, p′, q, q′) from a set P with respect to two
adjacent affine pieces p, p′ and a path π := q, q′ in H is defined as

{x ∈ Grd((q, q′)) | ∃σ = (I, γ, δ) ∈ exec(H) : σ
H� π, dom(γ) = dom(p) ∪ dom(p′),

γ(0) ∈ P, γ(t) ∈ tubep,ε(t) ∪ tubep′,ε(t), and x = γ(ub(I(0)))}.

Inductive Reachable Switching Computation. Given an lha H, an m-pwl
function f = p1, . . . , pm, a value ε ∈ R�0 and a path π = q1, . . . , qm in the graph
(QH,EH), we compute the reachable switching set Pπ

j for every 0 � j � m:

– Pπ
0 := InvH(q1) ∩ tubef,ε(0),

– Pπ
j := switchH(Pπ

j−1, pj−1, pj , qj−1, qj) for 1 < j < m, and

– Pπ
m := {x ∈ Inv(qm) | ∃σ = (I, γ, δ) ∈ exec(H) : σ

H� qm, γ(0) ∈ Pπ
m−1,

dom(γ) = dom(pm), γ(t) ∈ tubepm,ε(t) and x = γ(ub(I(m)))}.

We denote the set of all reachable switching sets Pπ
j by Pπ. We are now ready

to present the complete synthesis algorithm.
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Algorithm 1. Synthesis
Input: A set of pwl functions F = {f0, . . . , fN} and a value ε ∈ R�0

Output: A linear hybrid automaton H that solves Problem 3
1: H := InitLha(f0, ε) � construct initial model for ε-capturing f0
2: for f ∈ F \ {f0} do
3: (ans, π) := Membership(f, H, ε)
4: if not ans then
5: H := RelaxAll(H, f, ε) � relax model constraints entirely
6: (ans, π) := Membership(f, H, ε)
7: if ans then
8: H := RelaxPath(H, f, ε, π) � relax model constraints for ε-capturing f
9: else

10: H := Adapt(H, f, ε, π) � adapt model for ε-capturing f
11: return H

4.1 Membership-based Synthesis Algorithm

The synthesis algorithm outlined in Algorithm 1 computes an lha H solving
Problem 3 for a given finite set of pwl functions F and a value ε ∈ R�0. The
algorithm initially infers an lha H that ε-captures the first function f0 of F in
an ε-precise manner in line 1. The remaining pwl functions are handled in an
iterative loop. For each pwl function f , the algorithm performs a membership
query, where it checks if f is ε-captured by the lha H in line 3. If the query
results in a positive answer (ans = True), nothing needs to be done. Otherwise,
the query returns a path π and the lha H needs to be modified. The modi-
fication of the automaton H is performed in two attempts. The first attempt,
in line 5, temporarily increases invariants and guards of H. If such a modifi-
cation is sufficient to let the membership query succeed, the modifications are
made permanent in line 8. Otherwise, in the second attempt the algorithm adds
new modes and/or transitions to H along the path π. Below we describe every
procedure of Algorithm 1 in detail.

Initialization. The procedure InitLha(f, ε) constructs an initial lha H that
ε-captures an m-pwl function f . Observe that by Lemma 2 the canonical
automaton Hf 0-captures (and hence ε-captures) the function f . In order to
allow similar dynamical behaviors in a given lha H, the procedure InitLha(f, ε)
ε-bloats both invariant and guards polyhedra. The procedure InitLha(f, ε) out-
puts the ε-bloated canonical automaton Hε

f and is illustrated in Fig. 1.

Definition 8. Given an lha H = (Q,E,X,Flow, Inv,Grd), we define the
ε -bloated lha of H as Hε = (Q,E,X,Flow, Inv ε,Grd ε) where Inv ε(q) =
�Inv(q)�ε for every q ∈ Q and Grd ε(e) = �Grd(e)�ε for every e ∈ E.

Lemma 3. Given a pwl function f and ε ∈ R�0, Hε
f ε-captures f .
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t
0 1 2 3

x

1

2

3 f0

p0

p1

p2
q0: ẋ = 1

x ∈ �[1, 3]�ε

q1: ẋ = 0

x ∈ �[2, 2]�ε

x ∈ �[2, 2]�ε

x ∈ �[2, 2]�ε

Fig. 1. Example describing the procedure InitLha(f, ε) for a 3-pwl function f = f0
(depicted on the left). The function f0 consists of three pieces p0, p1, p2 with slopes
1, 0, 1, respectively. The lha on the right is constructed as follows. Mode q0 corresponds
to pieces p0 and p2; the invariant is the ε-bloating of interval [1, 3] (which is the convex
hull of every start and end point in both pieces). Likewise, mode q1 corresponds to
piece p1. Transitions and their guards correspond to the kinks of f0 at t = 1 and t = 2.

Membership. The procedure Membership(f,H, ε) checks whether there
exists an asynchronous execution σ = (I, γ, δ) in H such that d(f, γ) � ε holds.
Let us introduce the required notions to formalize the membership problem.

Definition 9. An execution σ = (I, γ, δ) of an lha H is consistent with an
m-pwl function f , described by the affine pieces p1, . . . , pm, if len(I) = m,
[[I]] = dom(f), and ub(I(j)) ∈ dom(pj) ∪ dom(pj+1) for every 1 � j < m.

Problem 4 (Membership). Given an m-pwl function f , an lha H, and a value
ε ∈ R�0, decide if there exists an execution σ = (I, γ, δ) in exec(H) that is
consistent with f and such that d(f, γ) � ε holds.

The procedure Membership(f,H, ε) solves Problem 4 by computing the
reachable switching sets for every path π of length m in H until finding a path π
where every reachable switching set Pπ

j for 0 � j � m is nonempty. Upon finding
a path π satisfying the previous constraints, Membership(f,H, ε) returns True
as answer, together with the path π. If there does not exist such a path π, it
returns False as answer. We show an example in Fig. 2(a). We remark that, for a
fixed path, Problem 4 is a timestamp-generation problem [2] with the restriction
to time intervals for switching and the ε-tube as solution corridor.

Lemma 4. Let H be an lha and f be an m-pwl function. Then there exists
a path π of length m in H such that the final reachable switching set Pπ

m is not
empty if and only if there exists an execution σ in exec(H) solving Problem 4.

Relaxation. If Membership(f,H, ε) returns False, RelaxAll(H, f, ε) con-
structs an automaton H that is equivalent to H except that its invariants and
guards are enlarged to allow additional executions inside the tubef,ε. Then, the
algorithm computes Membership(f,H, ε). If the answer is False again, the algo-
rithm proceeds to the adaptation procedure in line 10. Otherwise (if the answer
is True), we obtain a path π in H. Then the algorithm executes the procedure
RelaxPath(H, f, ε, π), which extends the constraints of invariants and guards
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Fig. 2. (a) Example describing the procedure Membership(f, H, ε). On the left we
depict a 3-pwl function f1 and its ε-tube. On the right we show a possible execution
in the lha from Fig. 1. (b) Given an affine piece p, we say that another piece has a
similar slope if it does not leave the tube. In the figure, we show the minimal and the
maximal allowed slopes by dashed segments.

in H for the modes in π by taking the convex hull with the corresponding reach-
able switching sets Pπ

j ∈ Pπ. The relaxation procedure applied on the running
example is shown in Fig. 3.

Adaptation. If both the membership query and the relaxation procedure fail,
the procedure Adapt(H, f, ε, π) modifies the lha H for ε-capturing f . Con-
ceptually, we construct a new path π′, based on some path π, and modify H
accordingly such that the graph of H contains π′. Recalling Lemma 4, we need
to ensure that every reachable switching set in Pπ′

is nonempty. We construct π′

by trying to preserve the modes in path π. If this is not possible, we try to replace
them by existing modes in the lha H whenever possible, potentially adding new
transitions. The last option is to create new modes. Finally, we extend the lha
H by adding the new transitions and/or modes determined by the new path π′.

In more detail, given an lha H, an m-pwl function f and a path π =
q1, . . . , qm in H, we start with path π′ = π. Then, the adaptation procedure
checks whether there is an empty reachable switching set in Pπ′

. Every time we
detect emptiness of the set Pπ′

j for some 0 � j � m, a mode in the path π′ is
replaced in order to make Pπ′

j nonempty. We first try to replace the mode qj+1

if it exists. If Pπ′
j is still empty or qj+1 does not exist, we repeat the replacement

for qj , qi−1, and so on, until Pπ′
j finally becomes nonempty.

For the replacement of the j-th mode q in the path π′ we follow two strategies.
The first strategy is to replace the mode q by an existing mode q′ �= q in H such
that FlowH(q′) is similar to slope(pj). Formally, let T be the duration of piece
pj . FlowH(q′) is similar to slope(pj) if ‖init(pj)+T·FlowH(q′)−end(pj)‖ � 2ε.
See Fig. 2(b) for an example. If the first strategy fails, the second strategy is to
create a new mode q∗ with flow newflow(q∗) = slope(pj) for replacement in π′.
We denote the set of existing modes similar to some mode q in π by sim(π′),
and the set of new modes q∗ by new(π′). Once the path π′ is constructed, the
adaptation of the lha H is performed with respect to π′. Figure 4 exemplifies
the adaptation of the lha in Fig. 1.
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Fig. 3. Example describing the procedure RelaxPath(H, f, ε, π) for H given in Fig. 1,
f = f2 (depicted on the left), and path π = q1, q0, q1. The algorithm increases the
invariant of mode q1 by computing the convex hull of the old invariant �[2, 2]�ε and
the set �[1, 1]�ε. Analogously, the guard of the transition (q1, q0) is increased.

Definition 10. The adaptation of the lha H = (Q,E,X,Flow, Inv,Grd) with
respect to an m-pwl function f with affine pieces p1, . . . , pm and a path π =
q1, . . . , qm is the lha H′ = (Q ′,E ′,X,Flow ′, Inv ′,Grd ′) defined as:

– Q ′ := Q ∪ new(π′),
– E ′ := E ∪ {(qj , qj+1) | 1 � j < m},

– Flow ′(q) :=

{
newflow(q) if q ∈ new(π′),

Flow(q) otherwise,

– Inv ′(q) :=

⎧
⎪⎪⎨

⎪⎪⎩

chull(
⋃

q=qj ,q �=q1
Pπ′

j−1 ∪ ⋃
q=qj

Pπ′
j ) if q ∈ new(π′),

chull(Inv(q) ∪ ⋃
q=qj ,q �=q1

Pπ′
j−1 ∪ ⋃

q=qj
Pπ′

j ) if q ∈ sim(π′),

Inv(q) otherwise,

– Grd ′((q, q′)) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

chull(
⋃

q=qj ,q′=qj+1
Pπ′

j ) if q ∈ new(π′)
or q′ ∈ new(π′),

chull(Grd((q, q′)) ∪ ⋃
q=qj ,q′=qj+1

Pπ′
j ) if q ∈ sim(π′)

or q′ ∈ sim(π′),

Grd((q, q′)) otherwise.

If there is no path of length m in the graph of H, we choose a shorter path π
in H of length m′ for the adaptation procedure. Then, for every position j � m′,
we define the reachable switching set Pπ

j as an empty set and proceed as usual.

4.2 Discussion

The construction of the initial lha (line 1 in Algorithm 1) can be modified
to clustering pieces with similar slopes. This can help reducing the number of
modes in the initial automaton, but does not guarantee that the first pwl func-
tion f0 is ε-captured. To fix this, f0 can be included in the loop of Algorithm 1.

Algorithm 1 follows a local repair strategy, based on a single pwl function.
Thanks to this, the algorithm can be used in an online setting where new data
arrives after the algorithm has started. However, the resulting model is influenced
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q1: ẋ = 0

x ∈ �[0.5, 2]�ε

q∗: ẋ = −1
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Fig. 4. Example describing the procedure Adapt(H, f, π, ε) for the lha H in Fig. 1
with respect to the 3-pwl function f = f3 and the path π = q1, q0, q1 and ε = 0.25. The
initial reachable switching set P π

0 is the projection of the set P on state x. Considering
the flows in q1 and q0, the next reachable switching set P π

1 is the projection of the set
Q on state x. Observe that from Q, using the flow of q1, the reachable switching set
P π
2 is empty. We thus add a new mode q∗ and obtain the new path π′ = q1, q

∗, q1.

by the order in which the algorithm processes the functions f ∈ F . In the
simple case that F only contains affine functions with the same slope, all models
resulting from different processing orders will consist of a single mode with the
same flow, and the invariant bounds differ by at most ε. Furthermore, for a
precision value ε = 0, the result is always order-independent.

We now discuss the restrictions of the models we obtain from Algorithm 1.
We did not include a set of initial states in our presentation, but the gener-
alization is straightforward. Our transitions do not include assignments, which
would make executions discontinuous. The usual assumption in many applica-
tion domains, e.g., life sciences, is that the underlying system is continuous, so
having assignments would not be desirable. In the setting where the input is
given as time-series data, discrete events would typically be approximated by
steep slopes in the pwl function. In the setting where the input is given as dis-
continuous pwl functions f , in order to ε-capture f , one would generally require
that the automaton switches synchronously with f (cf. Sect. 3.1), instead of asyn-
chronous switching as in our algorithm. Under this additional assumption, we
can pose the procedures Membership and RelaxPath as a single linear pro-
gram (similar to formula φf,ε). This linear program can also be used to identify
assignments.

The continuous dynamics of our models are defined by constant differential
equations. As mentioned before, this class generally suffices to approximate an
arbitrary continuous function (by increasing the number of modes). An exten-
sion of our approach to use polyhedral differential inclusions (also called linear
envelopes) is by merging modes of “similar” dynamics. This may, however, lead
to the dilemma that several modes are equally similar.

4.3 Theoretical Properties of the Membership-based Synthesis

The following theorem asserts that Algorithm 1 solves Problem 3.
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Theorem 2 (Soundness and precision). Given a finite set of pwl functions
F and a value ε ∈ R�0, let H be an automaton resulting from Synthesis(F , ε).
Then H both ε-captures all functions in F and is ε-precise with respect to F .

Algorithm 1 satisfies a completeness property in the following sense. For every
model H from a certain class we can find a set F of pwl functions and a value
ε such that Synthesis(F , ε) results in H. Before we can characterize the class
of models, we first need to introduce some terminology.

Definition 11. Let q ∈ Q be a mode with invariant X = Inv(q) and flow
Flow(q). We call a continuous state x2 ∈ X forward reachable in q if there
is a continuous state x1 ∈ X such that x2 is reachable from x1 by just letting
time pass, i.e., ∃t > 0 : x2 = x1 + Flow(q) · t. Analogously, we call state x2 ∈ X
backward reachable in q if there is a state x1 ∈ X such that x2 is reachable
from x1. A continuous state is dead in q if it is neither forward reachable nor
backward reachable in q.

We characterize the class of automata H = (Q,E,X,Flow, Inv,Grd) for which
the algorithm is complete by considering the following assumptions: (1) no invari-
ant contains a dead continuous state. Furthermore, if e = (q1, q2) is a transition,
then all continuous states in the guard Grd(e) are forward reachable in q1 and
backward reachable in q2, and (2) no two modes have the same slope �

Roughly speaking, Assumption (1) asserts that, after every switch, an exe-
cution can stay in the new mode for a positive amount of time.

Theorem 3 (Completeness). Given an lha H satisfying Assumptions (1)
and (2), there exist pwl functions F such that Synthesis(F , 0) results in H.

5 Experimental Results

In this section, we present the experiments used to evaluate our algorithm. The
algorithm was implemented in Python and relies on the standard scientific com-
putation packages. For the computations involving polyhedra we used the pplpy
wrapper to the Parma Polyhedra Library [4].

Case Study: Online Synthesis. We evaluate the precision of our algorithm by
collecting data from the executions of existing linear hybrid automata. For each
given automaton, we randomly sample ten executions and pass them to our algo-
rithm, which then constructs a new model. After that, we run our algorithm with
another 90 executions, but we reuse the intermediate model, thus demonstrating
the online feature of the algorithm. We show the different models for two hand-
crafted examples in Table 1. We tried both sampling from random states and
from a fixed state. The examples show the latter case, which makes sampling
the complete state-space and thus learning a precise model harder.

The first example contains a sink with two incoming transitions, which
requires at least two simulations to observe both transitions. Consequently, the
algorithm had to make use of the adaptation step at least once to add one of the
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Table 1. Synthesis results for two automaton models. The original model is shown in
blue. The synthesis result after 10 iterations is shown in bright red, and after another 90
iterations in dark red. On the bottom left we show three sample executions starting from
the same point (top: original model, bottom: synthesized model after 100 iterations).
We used ε = 0.2 in all cases. Numbers are rounded to two places.

ẋ = 1
x ∈ [0, 10]

ẋ = −1

x ∈ [0, 10]

ẋ = 0
x ∈ [5, 7]

x ∈ [5, 10]

x ∈ [6, 7]

x ∈ [0, 5]

x ∈ [5, 6]

ẋ = 1
x ∈ [1.58, 9.02]

ẋ = −1

x ∈ [1.45, 9.02]

ẋ = 0
x ∈ [5.17, 7.13]

x ∈ [5.55, 9.02]

x ∈ [6.31, 7.13]

x ∈ [1.58, 5.06]

x ∈ [5.17, 5.58]

ẋ = 1
x ∈ [0.58, 9.80]

ẋ = −1

x ∈ [0.48, 9.80]

ẋ = 0
x ∈ [4.97, 7.13]

x ∈ [5.11, 9.80]

x ∈ [5.86, 7.13]

x ∈ [0.58, 5.06]

x ∈ [4.97, 6.02]

ẋ = 2
x ∈ [0, 10]

ẋ = −1

x ∈ [0, 10]

ẋ = 1
x ∈ [0, 10]

ẋ = −2

x ∈ [0, 10]

x ∈ [5, 10]
x ∈ [0, 2]

x ∈ [3, 7] x ∈ [3, 7]

x ∈ [8, 10]
x ∈ [0, 5]

ẋ = 2
x ∈ [0.43, 9.87]

ẋ = −1

x ∈ [0.43, 9.87]

ẋ = 1
x ∈ [−0.09, 9.32]

ẋ = −2

x ∈ [−0.09, 9.81]

x ∈ [4.85, 9.87]
x ∈ [0.43, 1.31]

x ∈ [4.02, 6.03] x ∈ [5.04, 6.18]

x ∈ [7.85, 9.81]
x ∈ [−0.09, 1.83]

ẋ = 2
x ∈ [−0.10, 9.87]

ẋ = −1

x ∈ [−0.10, 9.87]

ẋ = 1
x ∈ [−0.09, 10.14]

ẋ = −2

x ∈ [−0.09, 10.14]

x ∈ [4.85, 10.18]
x ∈ [−0.10, 2.12]

x ∈ [3.14, 7.00] x ∈ [2.82, 6.79]

x ∈ [7.85, 10.14]
x ∈ [−0.09, 4.32]

transitions. In the second example, some parts of the state-space are explored
less frequently by the sampled executions. Hence the first model obtained after
ten iterations does not represent all behavior of the original model yet. After
the additional 90 iterations, the remaining parts of the state space have been
visited, which is reflected in the precise bounds of the resulting model. In the
table, we also show three sample executions from both the original and the final
synthesized automaton to illustrate the similarity in the dynamical behavior.
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ẋ = 0.00
x ∈ [−76.04, −73.92]

ẋ = 130.02
x ∈ [−76.04, 46.02]
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x ∈ [−76.04, −4.00]

ẋ = −0.76

x ∈ [−6.05, 36.02]

ẋ = −1.52

x ∈ [33.79, 46.02]

x ∈ [−76.04, −73.92]
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x ∈ [33.79, 36.02]

x ∈ [−6.05, −4.00]

x ∈ [−76.04, −73.92]

Fig. 5. Results for the cell model. Top: synthesized model using our algorithm. Bottom:
three input traces (left) and random simulations of the synthesized model (right).

Case Study: Cell Model. For our case study we synthesize a hybrid automaton
from voltage traces of excitable cells. Excitable cells are an important class of
cells comprising neurons, cardiac cells, and other muscle cells. The main property
of excitable cells is that they exhibit electrical activity which in the case of
neurons enables signal transmission and in the case of muscle cells allows them
to contract. The excitation signal usually follows distinct dynamics called action
potential. Grosu et al. construct a cyclic-linear hybrid automaton from action-
potential traces of cardiac cells [8]. In their model they identify six modes, two
of which exhibit the same dynamics and are just used to model an input signal.

Our algorithm successfully synthesizes a model, depicted in Fig. 5, consisting
of five modes that roughly match the normal phases of an action potential. We
evaluate the quality of the synthesized model by simulating random executions
and visually comparing to the original data (see the bottom of Fig. 5).

6 Conclusion

In this paper we have presented two fully automatic approaches to synthesize a
linear hybrid automaton from data. As key features, the synthesized automaton
captures the data up to a user-defined bound and is tight. Moreover, the online
feature of the membership-based approach allows to combine the approach with
alternative synthesis techniques, e.g., for constructing initial models.

A future line of work is to design a methodology for identification of weak
generalizations in the model, and use them for driving the experiments and, in
consequence, adjusting the model. We would first synthesize a model as before,
but then identify the aspects of the model that are least substantiated by the
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data (e.g., areas in the state space or specific sequences in the executions). Then
we would query the system for data about those aspects, and repair the model
accordingly. As another line of work, we plan to extend the approach to go
from dynamics defined by piecewise-constant differential equations toward linear
envelopes. Our approach can be seen as a generalization, to lha, of Angluin’s
algorithm for constructing a finite-state machine from finite traces [3], and we
plan to pursue this connection further.
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