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Parvalbumin+ interneurons obey unique
connectivity rules and establish a powerful lateral-
inhibition microcircuit in dentate gyrus
Claudia Espinoza 1, Segundo Jose Guzman 2, Xiaomin Zhang1 & Peter Jonas 1

Parvalbumin-positive (PV+) GABAergic interneurons in hippocampal microcircuits are

thought to play a key role in several higher network functions, such as feedforward and

feedback inhibition, network oscillations, and pattern separation. Fast lateral inhibition

mediated by GABAergic interneurons may implement a winner-takes-all mechanism in the

hippocampal input layer. However, it is not clear whether the functional connectivity rules of

granule cells (GCs) and interneurons in the dentate gyrus are consistent with such a

mechanism. Using simultaneous patch-clamp recordings from up to seven GCs and up to four

PV+ interneurons in the dentate gyrus, we find that connectivity is structured in space,

synapse-specific, and enriched in specific disynaptic motifs. In contrast to the neocortex,

lateral inhibition in the dentate gyrus (in which a GC inhibits neighboring GCs via a PV+

interneuron) is ~ 10-times more abundant than recurrent inhibition (in which a GC inhibits

itself). Thus, unique connectivity rules may enable the dentate gyrus to perform specific

higher-order computations.

DOI: 10.1038/s41467-018-06899-3 OPEN

1 IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria. 2Present address: Institute for Molecular
Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Wien, Austria. Correspondence and requests for materials should be addressed to
P.J. (email: peter.jonas@ist.ac.at)

NATURE COMMUNICATIONS |          (2018) 9:4605 | DOI: 10.1038/s41467-018-06899-3 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-4710-2082
http://orcid.org/0000-0003-4710-2082
http://orcid.org/0000-0003-4710-2082
http://orcid.org/0000-0003-4710-2082
http://orcid.org/0000-0003-4710-2082
http://orcid.org/0000-0003-2209-5242
http://orcid.org/0000-0003-2209-5242
http://orcid.org/0000-0003-2209-5242
http://orcid.org/0000-0003-2209-5242
http://orcid.org/0000-0003-2209-5242
http://orcid.org/0000-0001-5001-4804
http://orcid.org/0000-0001-5001-4804
http://orcid.org/0000-0001-5001-4804
http://orcid.org/0000-0001-5001-4804
http://orcid.org/0000-0001-5001-4804
mailto:peter.jonas@ist.ac.at
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Throughout the brain, fast-spiking, parvalbumin-expressing
(PV+) GABAergic interneurons play a key role in several
higher functions, such as feedforward and feedback inhi-

bition, high-frequency network oscillations, and pattern separa-
tion1. Understanding how PV+ interneurons contribute to these
complex computations requires a detailed and quantitative ana-
lysis of their synaptic connectivity. While early studies suggested
that connectivity of PV+ interneurons is random2, more recent
work highlighted several specific connectivity rules3–7 (Supple-
mentary Table 1). Analysis of principal neuron (PN)–interneuron
(IN) connectivity in the neocortex revealed that reciprocally
connected pairs occurred much more frequently than expected in
a random network3–7. Moreover, synaptic strength appeared to
be higher in these reciprocally connected motifs4,6. Whether these
connectivity rules also apply in other microcircuits, such as the
hippocampus, has not been determined yet.

Pattern separation is a fundamental network computation in
which PV+ interneurons are likely to be involved. Pattern
separation is thought to be particularly important in the dentate
gyrus, where conversion of overlapping synaptic input patterns
into non-overlapping action potential (AP) output patterns8–12

may facilitate reliable storage of information in the downstream
CA3 network9,13,14. Previous studies suggested a model of pattern
separation based on a winner-takes-all mechanism mediated by
feedback inhibition15–19. Such a model has received experimental
support in the olfactory system20–22. While some studies sug-
gested that similar mechanisms may operate in the dentate
gyrus23,24, it is not clear whether the rules of PN–IN connectivity
are adequate to support such a model. Specifically, two forms of
feedback inhibition need to be distinguished: recurrent inhibition,
in which an active PN inhibits itself via reciprocal PN–IN con-
nections, and lateral inhibition, in which an active PN inhibits
neighboring PNs but not itself25,26. A winner-takes-all mechan-
ism likely requires lateral inhibition; recurrent inhibition may be
counter-productive, because it could suppress potential
winners17,26,27. However, in both neocortex and brain areas
directly connected to the hippocampus, recurrent inhibition and
lateral inhibition are equally abundant3–7 (Supplementary
Table 1). Such a circuit design would seem incompatible with
efficient pattern separation.

To resolve this apparent contradiction, we examined the
functional connectivity rules in PN–IN networks in the dentate
gyrus, using simultaneous recordings from up to seven granule
cells (GCs) and up to four GABAergic interneurons. Our
experiments reveal a uniquely high abundance of lateral inhibi-
tion mediated by PV+ interneurons.

Results
Octuple recordings from neurons in the dentate gyrus. To
determine the functional connectivity rules between PNs and INs
in the dentate gyrus, we performed simultaneous whole-cell
recordings from up to eight neurons (up to seven GCs and up to
four INs) in vitro (Fig. 1a, b). PV+ interneurons, somatostatin-
positive (SST+), and cholecystokinin-positive (CCK+) inter-
neurons were identified in genetically modified mice, obtained by
crossing Cre or Flp recombinase-expressing lines with tdTomato
or EGFP reporter lines. PV+ interneurons showed the char-
acteristic fast-spiking AP phenotype during sustained current
injection, whereas both SST+ and CCK+ interneurons generated
APs with lower frequency, corroborating the reliability of the
genetic labeling (Supplementary Figure 1).

To probe synaptic connectivity, we stimulated presynaptic
neurons under current-clamp conditions, and recorded excitatory
postsynaptic currents (EPSCs) or inhibitory postsynaptic currents
(IPSCs) in postsynaptic neurons in the voltage-clamp

configuration (Fig. 1c–e, Fig. 2). In total, we tested 9098 possible
connections in 50 octuples, 72 septuples, 68 sextuples, 48
quintuples, 17 quadruples, 10 triples, and 5 pairs in 270 slices.
Interestingly, PV+ interneurons showed a much higher con-
nectivity than both SST+ and CCK+ interneurons. For GC–PV+

interneuron pairs with intersomatic distance ≤ 100 µm, the mean
connection probability was 11.0% for excitatory GC–PV+

interneuron and 28.8% for inhibitory PV+ interneuron–GC
connectivity (Fig. 2g). In contrast, for both SST+ interneurons
and CCK+ interneurons, the mean connection probability was
substantially lower (1.4 and 2.8% for SST+ interneurons, 1.2 and
12.1% for CCK+ interneurons; Fig. 2g). Excitatory interactions
between GCs were completely absent, and disynaptic inhibitory
interactions between GCs28,29 were extremely sparse (0.124%).
These results indicate that in the dentate gyrus PV+ interneurons
show a markedly higher connectivity than SST+ and CCK+

interneurons, extending previous observations in the neocortex30.

Connectivity rules for excitatory input of PV+ interneurons.
As PV+ interneurons showed the highest input and output
connectivity, we focused our functional connectivity analysis on
this interneuron subtype. We first examined the rules of excita-
tory synaptic connectivity between GCs and PV+ interneurons by
measuring EPSCs (Fig. 3a–c). We found that PV+ interneurons
were highly and locally connected to GCs. The connection
probability showed a peak of 11.3%, and steeply declined as a
function of intersomatic distance, with a space constant of 144
µm (Fig. 3b). In contrast, the EPSC peak amplitude showed no
significant distance dependence (Fig. 3c). To determine the effi-
cacy of unitary GC–PV+ interneuron connections, we measured
unitary excitatory postsynaptic potentials (EPSPs). Unitary EPSPs
had a mean peak amplitude of 1.79 ± 0.36 mV (range: 0.30–7.16
mV; Supplementary Figure 2a, b)28,31,32. To assess the efficacy of
these events in triggering spikes in the presence of ongoing
synaptic activity from multiple sources, we performed in vivo
whole-cell recordings from fast-spiking interneurons in the
dentate gyrus in awake mice running on a linear treadmill
(Supplementary Figure 2c–g). Under in vivo conditions, the dif-
ference between baseline membrane potential and threshold was
10.3 ± 1.8 mV (three in vivo recordings from fast-spiking inter-
neurons in dentate gyrus). Thus, although the largest unitary
EPSPs were close to the threshold of AP initiation, they were
insufficient to trigger a spike. However, the high focal GC–PV+

interneuron connectivity (Fig. 3b) may enable activation of PV+

interneurons by spatial summation.

Connectivity rules for inhibitory output of PV+ interneurons.
Next, we examined the rules of inhibitory synaptic connectivity
between GCs and PV+ interneurons by measuring IPSCs
(Fig. 3d–f). Similar to excitatory GC–PV+ interneuron con-
nectivity, inhibitory PV+ interneuron–GC connectivity was
distance-dependent (Fig. 3e). However, maximal connection
probability was higher (28.9%) and the range of connectivity was
wider (215 µm) than that of excitation. Bootstrap analysis
revealed that both maximal connectivity and space constant were
significantly shorter for excitatory GC–PV+ interneuron synapses
than for inhibitory PV+ interneuron–GC synapses (P < 0.0001
and P= 0.0042, respectively; Fig. 3g). Thus, different connectivity
rules apply for excitatory and inhibitory GC –PV+ interneuron
connections (focal excitation versus broad inhibition).

To compare the connectivity rules in the dentate gyrus with
those in other brain regions, we quantified the ratio of excitatory
to inhibitory connection probability. We found that inhibition
was much more abundant than excitation, with a connection
probability ratio of 3.83, substantially higher than in other brain
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areas (Supplementary Table 1). Furthermore, we quantified the
abundance of lateral and recurrent motifs in pairs of neurons. In
our total sample of 1301 GC–PV+ interneuron pairs, we found
296 unidirectional inhibitory connections, but only 32 bidirec-
tional connections (Fig. 3h). Thus, the ratio of lateral inhibition to
recurrent inhibition was 9.25, substantially higher than in other
circuits (Supplementary Table 1). These results indicate that
connectivity rules of PV+ interneurons in the dentate gyrus are
unique in comparison to other previously examined circuits.

Connectivity rules for mutual inhibition of PV+ interneurons.
Finally, we analyzed the functional connectivity rules for synapses
between interneurons (Fig. 4). Chemical inhibitory synapses
between PV+ interneurons showed a connectivity pattern that was
more focal than that of inhibitory PV+ interneuron–GC synapses
(Fig. 4a, b). Likewise, electrical synapses between PV+ inter-
neurons33–35 showed a focal connectivity pattern (Fig. 4c, d).
Bootstrap analysis revealed that the maximal connectivity was sig-
nificantly higher, while the space constant was significantly shorter

for inhibitory PV+–PV+ interneuron synapses than for PV+

interneuron–GC synapses (P= 0.0001 and P= 0.0036, respec-
tively). Furthermore, recordings from GCs and multiple PV+

interneurons provided direct evidence for the suggestion33 that
EPSPs propagate through gap junctions, although the peak ampli-
tude is markedly attenuated (Supplementary Figure 3). Taken
together, these results indicate that connectivity rules in PN–IN
microcircuits are synapse-specific. Different connectivity rules apply
to excitatory and inhibitory synapses between PNs and INs
(GC–PV+ versus PV+–GC), and to inhibitory synapses terminating
on different postsynaptic target cells (PV+–GC versus PV+–PV+

synapses).

Disynaptic connectivity motifs. Previous studies demonstrated
that recurrent PN–PV+ interneuron connectivity motifs are
enriched above the chance level expected for a random network
in several cortical microcircuits3–7,36. To test this hypothesis, we
analyzed the abundance of all 25 possible disynaptic connectivity
motifs in our sample (Fig. 5)37. To probe whether connectivity
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Fig. 1 Octuple recording from GCs and PV+ interneurons in the dentate gyrus. a Octuple recording from five GCs and two PV+ interneurons (seven cells
successfully recorded). Infrared differential interference contrast video micrograph of the dentate gyrus in a 300-µm slice preparation, with eight recording
pipettes. Shaded areas represent the 2D projections of cell bodies (blue, GCs; red and yellow, PV+ interneurons). Blue dashed lines, boundaries of GC layer.
b Partial reconstruction of one GC and two PV+ interneurons in the same recording as shown in (a). Cells were filled with biocytin during recording and
visualized using 3,3′-diaminobenzidine as chromogen. For clarity, only the somatodendritic domains were drawn for the PV+ interneurons. Insets, biocytin-
labeled putative synaptic contacts, corresponding to boxes in main figure. c Connectivity matrix of an octuple recording (all eight cells successfully
recorded). Subpanels on the diagonal (AP traces) represent the presynaptic cells, subpanels outside the diagonal (EPSC or IPSC traces) indicate
postsynaptic cells. In this example, 56 connections were tested; 7 excitatory GC–PV+ interneuron connections, 7 inhibitory PV+ interneuron–GC
connections, and 42 connections between GCs. Brief transients in a subset of traces represent capacitive coupling artifacts, as shown in previous
publications5, 14. d Expanded view of presynaptic APs and postsynaptic currents, corresponding to the boxed areas in (c). In this octuple recording, an
inhibitory synaptic connection was identified between the PV+ interneuron (red) and GC 5 (blue) and an excitatory synaptic connection was found
between GC 1 (blue) and the PV+ interneuron (red). The presence of a unidirectional excitatory GC–PV+ interneuron connection and a unidirectional
inhibitory PV+ interneuron–GC connection documents the existence of lateral inhibition in this recording. e Coexistence of different synapses in an octuple
recording. In this recording, an excitatory GC–PV+ interneuron connection, an inhibitory PV+ interneuron–GC connection, a chemical inhibitory connection
between the PV+ interneurons, and an electrical connection between the PV+ interneurons were found (from left to right). Same recording as in (a) and
(b)
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Fig. 2 Differential connectivity of PV+, CCK+, and SST+ interneurons in the dentate gyrus. a Light micrograph of a SST+ interneuron filled with biocytin
during recording, and visualized using 3,3′-diaminobenzidine as chromogen. Cells were identified by genetic labeling in SST-Cre mice. Axon branches in the
molecular layer (red arrows) suggest that the cell was a HIPP or TML interneuron68, 69. GCL, granule cell layer. b Light micrograph of a CCK+ interneuron
filled with biocytin. Cells were identified by genetic labeling in CCK-Cre;DLX 5/6-Flp mice. Axon branches in the inner molecular layer (red arrows) suggest
that the cell was a HICAP interneuron68–70. c, d Excitatory and inhibitory connectivity of SST+ interneurons. GC–SST+ interneuron unitary EPSCs are
shown in (c), SST+ interneuron–GC IPSCs are illustrated in (d). Individual synaptic responses (gray) and average trace (magenta or blue, 15 traces) are
shown overlaid. Note the facilitation of EPSCs during train stimulation in (c). e, f Excitatory and inhibitory connectivity of CCK+ interneurons. GC–CCK+

interneuron EPSCs are shown in (e), CCK+ interneuron–GC IPSCs are illustrated in (f). Note the asynchronous release during and after train stimulation in
(f), which is highly characteristic of CCK+ interneuron output synapses70. g Comparison of average connection probability for pairs with an intersomatic
distance of≤ 100 µm. Whereas PV+ interneurons were highly connected, SST+ and CCK+ interneurons showed a markedly lower excitatory and inhibitory
connectivity (number of tested connections 767, 71, and 165). Error bars represent 95%-confidence intervals estimated from a binomial distribution
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was random38 or nonrandom14,39–42, we compared motif num-
bers in our experimental data to a simulated data set assuming
random connectivity with experimentally determined distance-
dependent connection probabilities (Fig. 5a, b).

Among the 25 possible disynaptic motifs, four types of motifs
were significantly enriched above the chance level: (1) Gap
junction connections between PV+ interneurons, (2) mutual
inhibition motifs (PV+ interneuron–PV+ interneuron connec-
tions) combined with gap junction connections43, (3) conver-
gence motifs (connections of multiple GCs on a single PV+

interneuron), and (4) divergence motifs (connections of one PV+

interneuron onto multiple GCs; Fig. 5b; P < 0.05 after correction
for multiple comparisons). Surprisingly, reciprocal GC–PV+

interneuron motifs were not significantly enriched.
Previous studies further demonstrated that the amplitude of

unitary IPSCs is higher in bidirectionally than in unidirectionally
connected PN–IN pairs4,6. In contrast, in the dentate gyrus
neither the amplitude of EPSCs nor that of IPSCs was
significantly different between bidirectionally and unidirectionally
connected GC–PV+ interneuron pairs (Fig. 5c). However, the
amplitude of IPSCs was significantly larger in PV+

interneuron–PV+ interneuron pairs coupled by reciprocal
inhibitory synapses (Fig. 5d). Taken together, these results
indicate that in the dentate gyrus, like in other cortical areas,
synaptic connectivity of PV+ interneurons is nonrandom.
However, both the types of enriched motifs and the rules setting
synaptic strength differ from those in other circuits3,4.

Discussion
Our results demonstrate that the rules of functional connectivity
in the PN–IN network of the dentate gyrus fundamentally differ
from those in other cortical circuits. In the dentate gyrus, uni-
directionally inhibitory connections are ~10-times more frequent
than reciprocal connections, demonstrating a massive prevalence
of lateral inhibition in this circuit (Supplementary Table 1). In
contrast, in neocortex, entorhinal cortex, and presubiculum,
reciprocal connections are equally or more abundant than uni-
directional connections, implying powerful recurrent inhibition3–
7 (Supplementary Table 1). Furthermore, in the dentate gyrus
mutual inhibition motifs, convergence motifs, and divergence
motifs are statistically overrepresented. In contrast, in the
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neocortex, interneuron connectivity has been suggested to be
largely random2. Collectively, these results suggest that the den-
tate gyrus network obeys unique connectivity rules.

The specific connectivity rules of the dentate circuit raise the
intriguing possibility that these rules represent an adaptation to
specific network functions implemented in this brain region. A
major function of the dentate gyrus is pattern separation8–12,
thought to be generated by a “winner-takes-all” mechanism15–19.
In an ideal pattern separation circuit, a small population of
activated “winner cells” must be able to efficiently and rapidly
inhibit a large population of “non-winner cells”. The dentate
gyrus connectivity rules are well suited for these functions. First,
powerful lateral inhibition efficiently suppresses non-winners,

whereas winners remain unaffected. Second, the combination of
local connectivity and rapid axonal signaling mechanisms of PV+

interneurons1,44 implements a high-speed suppression mechan-
ism, as required for efficient pattern separation. Previous mod-
eling work suggested that scale-free network organization and the
presence of hub neurons may enhance the robustness of network
computations45,46. Our results may support this view, since the
high abundance convergence and divergence motifs are con-
sistent with scale-free architectural properties.

Furthermore, the connectivity rules of the PN–IN network may
be important for the generation of network oscillations in dentate
gyrus47. In particular, the high chemical and electrical IN–IN
connectivity establishes an efficient gamma oscillator circuit. The
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Fig. 5 Overabundance of disynaptic connectivity motifs in GC–PV+ interneuron networks and different functional properties of synapses embedded in
motifs. a Graph analysis of disynaptic connectivity motifs. In total, there are five possible disynaptic connectivity motifs with two cells and 20 disynaptic
motifs involving three cells. Arrows with open triangles indicate excitatory synapses, arrows with filled circles represent inhibitory synapses, and arrows
with zigzag lines indicate gap junctions. Number indicates motif index. b Analysis of the number of motifs in 10,000 simulated data sets. Connection
probability for the simulated data set was specified according to the experimentally determined spatial rules. Left, absolute motif number in experimental
(black) and simulated data set (red, median; gray, 90%-confidence interval). Center, bar plot of relative abundance of various motifs (number of motifs in
experimental data set over mean number in simulated data set). Error bars were taken from bootstrap analysis. Right, bar plot of z score of the different
motifs. Light red area indicates z score in the interval [−1, 1]. Motifs 2, 3, 7, and 9 were significantly enriched above the chance level (P= 0.03145, 0.0085,
0.0272, and 0.0068 after multiple comparison correction). In contrast, motifs 6, 8, 10, 12, and 16 were slightly, but not significantly underrepresented (P=
0.15 for motif 6). Note that motifs 5, 17, 19–21, and 23–25 were not encountered in the present data set, because of the lack of connectivity between GCs. c
Comparison of EPSC peak amplitude (left) and IPSC peak amplitude (right) in bidirectionally versus unidirectionally coupled GC–PV+ interneuron pairs.
Peak amplitudes were not significantly different (P= 0.33 and 0.58, respectively). d Comparison of IPSC peak amplitude in PV+ interneuron–PV+

interneuron pairs connected by different chemical or electrical synapse motifs. IPSC peak amplitude was significantly larger in pairs with bidirectional
inhibitory connections than with unidirectional connections (P= 0.016) and slightly higher in connections with than without gap junctions (P= 0.057).
Asterisk indicates P < 0.05
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dense and focal electrical–chemical connectivity may explain the
high power and frequency of gamma oscillations in the dentate
gyrus47–49. Previous modeling work suggested that the small-
world interneuron network architecture will support the emer-
gence of coherent gamma oscillations50,51. Our results support
this notion, since the high abundance of electrical–chemical
IN–IN motifs would be consistent with small-world architectural
properties52. The establishment of a robust gamma oscillation
circuit may, conversely, be important for the pattern separation
process. Proposed models of pattern separation imply that the
separation of patterns takes place in the time period during the
recovery from a preceding gamma cycle17. Whether and how the
pattern separation computation and the generation of gamma
oscillations can coexist in the same circuit remains to be
determined.

Our results suggest the possibility that the uniquely high
abundance of lateral inhibition in dentate gyrus may contribute to
pattern separation (Supplementary Table 1). What then is the
function of recurrent inhibition in all other brain areas, such as
the neocortical circuits? In the neocortex, PN activity is high,
which requires a mechanism to establish excitation–inhibition
balance; reciprocal PN–IN connectivity seems well suited for this
purpose7,20. In contrast, in the dentate gyrus PN activity is low,
and such a balancing function may not be required53–57. Addi-
tionally, reciprocal PN–IN connectivity could contribute to the
generation of slower network oscillations in these brain regions,
for example in the lower gamma or beta frequency range, which
are characteristic for the neocortex.

Our results are consistent with the idea that local connectivity
rules can shape diverse network computations across multiple
circuits. In the dentate gyrus, the unique PN–IN connectivity
rules may determine the properties of pattern separation, grid-to-
place code conversion, or processing of context information17,58.
In the neocortex, PN–IN connectivity may determine network
stability and excitation–inhibition balance7,20. In the hippo-
campal CA3 network, functional PN–PN connectivity rules shape
pattern completion14, whereas in the neocortex functional
PN–PN connectivity may shape response properties such as
orientation selectivity41. Thus, the present results contribute to
the emerging view that local connectivity rules are major deter-
minants of higher computations in neuronal networks. Future
work will be needed to test this hypothesis in both network
models and behavioral experiments.

Methods
Hippocampal slice preparation. Experiments on genetically modified mice were
performed in strict accordance with institutional, national, and European guide-
lines for animal experimentation and were approved by the Bundesministerium für
Wissenschaft, Forschung und Wirtschaft of Austria (A. Haslinger, Vienna;
BMWFW-66.018/0007-WF/II/3b/2014; BMWF-66.018/0010-WF/V/3b/2015;
BMWFW-66.018/0020-WF/V/3b/2016).

To genetically label PV+ interneurons, C57BL/6 J PV-Cre knockin mice (http://
jaxmice.jax.org/strain/008069) crossed with Ai14 loxP-flanked red fluorescent
protein tdTomato reporter mice (https://www.jax.org/strain/007914) were used. To
identify SST+ interneurons, somatostatin-ires-Cre mice (C-SSTtm1Npa, kindly
provided by H. van der Putten; Novartis Pharma; MTD37295, Basel, Switzerland)
were crossed with Ai14 tdTomato reporter mice. Finally, to label CCK+

interneurons, CCK-ires-Cre;DLX 5/6-Flp mice (https://www.jax.org/strain/012706
and https://www.jax.org/strain/010815) were crossed with dual reporter mice
expressing either EGFP or tdTomato (RCE= R26R CAG boosted EGFP mice,
https://www.jax.org/strain/010812; Ai65, https://www.jax.org/strain/021875)59.
Mice (20- to 44-days-old; mostly postnatal day 20–25) of either sex were lightly
anesthetized with isoflurane (Forane, AbbVie, Vienna). For animals up to postnatal
day 30, mice were sacrificed by decapitation. For animals older than 30 days,
transcardial perfusion was performed with ice-cold sucrose-artificial cerebrospinal
fluid (sucrose-ACSF) solution. Animals were deeply anesthetized with isoflurane
followed by the intraperitoneal injection of a mixture of xylazine (0.5 ml, 2%),
ketamine (1 ml, 10%), acepromazine (0.3 ml, 1.4%), and physiological NaCl
solution (1.5 ml, 0.9%). Anesthetics were applied at a dose of 0.033 ml/10 g body

weight. The depth of the anesthesia was verified by the absence of toe pinch
reflexes.

For preparing slices, the brain was rapidly removed and immersed in ice-cold
sucrose-ACSF solution during dissection. A block of tissue containing the
hippocampus was transferred to a vibratome (VT 1200, Leica) and transverse slices
of 300-µm thickness were cut with blade oscillation amplitude of 1.25 mm and
blade forward movement velocity of 0.03 mm s−160. Finally, slices were incubated
at ~35 °C in standard artificial cerebrospinal fluid (ACSF) for 30 minutes and
subsequently maintained at ~22 °C for maximally 5 h before transfer into the
recording chamber.

Solutions and chemicals. The ACSF used for in vitro recordings contained 125
mM NaCl, 25 mM NaHCO3, 25 mM glucose, 2.5 mM KCl, 1.25 mM NaH2PO4, 2
mM CaCl2, and 1 mM MgCl2. The sucrose-ACSF used for dissection contained 64
mM NaCl, 25 mM NaHCO3, 10 mM glucose, 120 mM sucrose, 2.5 mM KCl, 1.25
mM NaH2PO4, 0.5 mM CaCl2, and 7 mM MgCl2. The osmolarity of the solutions
was 290–315 mOsm and the pH was maintained at ~7.3 when equilibrated with a
95% O2/5% CO2 gas mixture. The intracelluar solution for in vitro recordings
contained 120 mM K-gluconate, 40 mM KCl, 2 mM MgCl2, 2 mM Na2ATP, 10
mM HEPES, 0.1 mM EGTA, and 0.3% biocytin, pH adjusted to 7.28 with
KOH. Chemicals were purchased from Merck or Sigma-Aldrich.

Multi-cell recordings. Glass micropipettes were fabricated from thick-walled
borosilicate tubing (2 mm outer diameter, 1 mm inner diameter) and had open-tip
resistances of 3–8 MΩ. They were manually positioned with eight LN mini 25
micromanipulators (Luigs and Neumann) under visual control14 provided by a
modified Olympus BX51 microscope equipped with a 60x water-immersion
objective (LUMPlan FI/IR, NA= 0.90, Olympus, 2.05 mm working distance) and
infrared differential interference contrast video microscopy and epifluorescence. To
preserve connectivity, cell bodies ~30–120 μm below the surface of the slice were
targeted for recording. Interneurons were identified on the basis of tdTomato or
EGFP fluorescence in epifluorescence illumination and the AP phenotype upon 1-s
current pulses (>50 Hz in a series of pulses of 100–1,200 pA for PV+ interneurons).
Mature GCs were identified on the basis of morphological appearance in the
infrared image and on the basis of passive and active membrane properties. Cells
with input resistance > 500MΩ, potentially representing newborn GCs61, were not
included in the analysis. Cells with resting potentials more positive than −55 mV
were immediately discarded. In total, the number of successfully recorded cells per
recording varied between eight and two. Recording temperature was ~22 °C (range:
20–24 °C, room temperature).

Electrical signals were acquired with four two-channel Multiclamp 700B
amplifiers (Molecular Devices), low-pass filtered at 6–10 kHz, and digitized at 20
kHz with a Cambridge Electronic Design 1401 mkII AD/DA converter using
custom-made stimulation-acquisition scripts running under Signal 6.0 software
(CED). For current-clamp recordings, pipette capacitance was ~80% compensated
and series resistance was balanced by the bridge circuit of the amplifier; settings
were readjusted throughout the experiment when necessary. For voltage-clamp
recordings, series resistance was not compensated, but repeatedly monitored using
2-mV hyperpolarizing pulses.

To test for synaptic connections, a presynaptic neuron was stimulated with a
train of five or ten current pulses (2 ms, 1–2 nA) at frequencies of 20 or 50 Hz,
while all other neurons were voltage-clamped at −70 mV (Fig. 1c). A connection
was defined as monosynaptic if synaptic currents had latencies ≤ 4.0 ms and peak
amplitudes were larger than 2.5 times the standard deviation of the baseline of the
average trace (computed from 15–30 individual traces). Events with latencies > 4.0
ms were considered polysynaptic. For distal SST+–GC synapses, connectivity may
be underestimated, because of substantial attenuation of synaptic signals by cable
filtering.

Data analysis. Recordings were analyzed using Stimfit and Python-based scripts62.
Synaptic latency was measured from the peak of the presynaptic AP to the onset of
the postsynaptic potential or current. Kinetic analysis of EPSCs or IPSCs was
performed in pairs with series resistance of < 15 MΩ. Distance was measured from
soma center to soma center. Analysis of the axonal arbor of PV+ interneurons and
GCs revealed that the axonal length was 2.21 ± 0.20 and 1.59 ± 0.07 times larger
than the corresponding intersomatic distance (Supplementary Figure 4). Connec-
tion probability was calculated as number of connected pairs over total number of
tested pairs in each 50-µm distance interval. 95%-confidence intervals were
obtained according to binomial distributions. Distance dependence of connectivity
was fit with a sigmoidal function f(x)= A [1+ Exp[(x – B)/C]−1, where x is
absolute distance, and A, B, and C are fitted parameters. Throughout the text, the
maximal connection probability (cmax) was determined as f(0), and the space
constant (dhalf) was determined as the x’ value that specified the condition f(x’)/f(0)
= 0.5. To test whether connectivity differed between synapses, 10,000 bootstrap
replications of the inhibitory PV+ interneuron–GC data set were obtained, and the
mean values of the GC–PV+ interneuron and PV+ interneuron–PV+ interneuron
experimental data sets were compared against the simulated distribution63. Values
are given as mean ± standard error of the mean (S.E.M.). Box plots show lower
quartile (Q1), median (horizontal line), and upper quartile (Q3). The interquartile
range (IQR=Q3–Q1) is represented as the height of the box. Whiskers extend to

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06899-3

8 NATURE COMMUNICATIONS |          (2018) 9:4605 | DOI: 10.1038/s41467-018-06899-3 | www.nature.com/naturecommunications

http://jaxmice.jax.org/strain/008069
http://jaxmice.jax.org/strain/008069
https://www.jax.org/strain/007914
https://www.jax.org/strain/012706
https://www.jax.org/strain/010815
https://www.jax.org/strain/010812
https://www.jax.org/strain/021875
www.nature.com/naturecommunications


the most extreme data point that is no more than 1.5 x IQR from the edge of the
box (Tukey style). Statistical comparisons were done either with a non-parametric
Mann–Whitney U two-sided test or by linear regression, testing whether the slope
was significantly different from 0.

To test whether disynaptic motifs64 occurred significantly more frequently
than expected by chance, we simulated the entire set of recording configurations
including PV+ interneurons (41 octuples, 62 septuples, 54 sextuples, 37
quintuples, 14 quadruples, 7 triples, and 3 pairs in 218 slices) 10,000 times,
assuming random connectivity14,38,64. The connection probabilities were set to
the experimentally determined distance-dependent values. For each simulated
data set, we counted the number of all 25 possible disynaptic motifs (Fig. 5a).
From the 10,000 bootstrap replications, mean, median, and confidence intervals
for these counts were determined. P values were calculated as the number of
replications in which the motif number was equal to or larger than the empirical
number, divided by the number of replications. If a motif was never encountered
in the 10,000 replications, P was assumed as < 0.0001. For assessing statistical
significance, correction for multiple testing was performed using a
Benjamini–Hochberg method that controls the false discovery rate65. P values for
m comparisons were sorted in increasing order (P1 ≤ P2 ≤… ≤ Pm), the first Pi
value that satisfied the condition Pi ≤ i / m 0.05 was identified (starting with Pm),
and the motifs corresponding to Pj values with 1 ≤ j ≤ i were considered
significant. For illustration purposes, P values were converted into z scores, using
the quantiles of a standard normal distribution.

Morphological analysis. Neurons that were filled with biocytin (0.3%) for >1 h
were processed for morphological analysis. After withdrawal of the pipettes,
resulting in the formation of outside-out patches at the pipette tips, slices were
fixed for 12–24 h at 4 °C in a 0.1 M phosphate buffer (PB) solution containing 2.5%
paraformaldehyde, 1.25% glutaraldehyde, and 15% (v/v) saturated picric acid
solution. After fixation, slices were treated with hydrogen peroxide (1%, 10 min) to
block endogenous peroxidases, and rinsed in PB several times. Membranes were
permeabilized with 1% Triton X100 in PB for 1 h. Slices were then transferred to a
PB solution containing 1% avidin-biotinylated horseradish peroxidase complex
(ABC, Vector Laboratories) and 1% Triton X100 for ~ 12 h. Excess ABC was
removed by several rinses in PB and the slices were developed with 0.05% 3,3′-
diaminobenzidine tetrahydrochloride (DAB) and subsequently hydrogen peroxide.
Finally, slices were embedded in Mowiol (Sigma-Aldrich).

In vivo recordings from dentate gyrus PV+ interneurons. Whole-cell patch-
clamp recordings in vivo were performed in male 35- to 63-day-old mice as
described previously53. Animals were in the head-fixed, fully awake configuration,
and were running on a linear belt treadmill66,67. The head-bar implantation and
craniotomy were performed under anesthesia by intraperitoneal injection of 80 mg/
kg ketamine (Intervet) and 8 mg/kg xylazine (Graeub), followed by local anesthesia
with lidocaine. A custom-made steel head-bar was attached to the skull using
superglue and dental cement. The day before recording, two small (~0.5 mm in
diameter) craniotomies, one for the patch electrode and one for a local field
potential (LFP) electrode, were drilled at the following coordinates: 2.0 mm caudal,
1.2 mm lateral for whole-cell recording; 2.5 mm caudal, 1.2 mm lateral for the LFP
recording. The dura was left intact, and craniotomies were covered with silicone
elastomer (Kwik-Cast, World Precision Instruments). Pipettes were fabricated from
borosilicate glass capillaries (1.75 mm outer diameter, 1.25 mm inner diameter).
Long-taper whole-cell patch electrodes (9–12 MΩ) were filled with a solution
containing: 130 mM K-gluconate, 2 mM KCl, 2 mM MgCl2, 2 mM Na2ATP, 0.3
mM NaGTP, 10 mM HEPES, 18 mM sucrose, 10 or 0.1 mM EGTA, and 0.3%
biocytin, pH adjusted to 7.28 with KOH. Whole-cell patch electrodes were
advanced through the cortex with 500–600 mbar of pressure to prevent the elec-
trode tip from clogging. After passing the hippocampus CA1 subfield, the pressure
was reduced to 20 mbar. After the blind whole-cell recording was obtained, series
resistance was calculated by applying a test pulse (+ 50 mV and −10 mV) under
voltage-clamp conditions. Recordings were immediately discarded if series resis-
tance exceeded 100MΩ. After the bridge balance was compensated, step currents
from −100 pA to 400 pA were injected to calculate input resistance and maximal
firing frequency of the recorded cells. All the recordings were done in current-
clamp experiment configuration without holding current injection using a Heka
EPC double amplifier. Signals were low-pass filtered at 10 kHz (Bessel) and sam-
pled at 25 kHz with Heka Patchmaster acquisition software. After recording, the
patch pipettes were slowly withdrawn to form an outside-out patch, verifying the
integrity of the seal. Data included were obtained from three fast-spiking cells in
the dentate gyrus, which generated APs during sustained current injection at a
frequency of >100 Hz. To determine the relative AP threshold, spontaneous action
potentials (sAPs) were detected, using either a single sAP or the first AP in a burst.
The membrane potential preceding the sAP was measured in a 10–20 ms time
window before the sAP. sAP absolute threshold was determined from a dV/dt–V
phase plot; the rising phase was fit with an exponential function including a shift
factor, and the intersection of the fit curve with the baseline was defined as
threshold.

Data availability
Original data, analysis programs, and computer code will be provided by the
corresponding author (P.J.) upon request.
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