Non-linear dynamics and alternating ‘flip’ solutions in Ferrofluidic Taylor-Couette flow
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This study treats with the influence of a symmetry-breaking transversal magnetic field on the nonlinear dy-
namics of ferrofluidic Taylor-Couette flow - flow confined between two concentric independently rotating cylin-
ders. We detected alternating ‘flip’ solutions which are flow states featuring typical characteristics of slow-fast-
dynamics in dynamical systems. The flip corresponds to a temporal change in the axial wavenumber and we
find them to appear either as pure 2-fold axisymmetric (due to the symmetry-breaking nature of the applied
transversal magnetic field) or involving non-axisymmetric, helical modes in its interim solution. The latter ones
show features of typical ribbon solutions. In any case the flip solutions have a preferential first axial wavenum-
ber which corresponds to the more stable state (slow dynamics) and second axial wavenumber, corresponding to
the short appearing more unstable state (fast dynamics). However, in both cases the flip time grows exponential
with increasing the magnetic field strength before the flip solutions, living on 2-tori invariant manifolds, cease to
exist, with lifetime going to infinity. Further we show that ferrofluidic flow turbulence differ from the classical,
ordinary (usually at high Reynolds number) turbulence. The applied magnetic field hinders the free motion of
ferrofluid partials and therefore smoothen typical turbulent quantities and features so that speaking of mildly

chaotic dynamics seems to be a more appropriate expression for the observed motion.

I. INTRODUCTION

The flow confined between two concentric cylinders ro-
tating with different velocity — Taylor-Couette flow — has
been a paradigm to investigate fundamental non-linear dy-
namics, various hydrodynamic stabilities and pattern forma-
tion in fluid flows [1, 2]. Although, classical fluids in this sys-
tem setup (Taylor-Couette system, TCS) [2, 4-7] have been
studied for about hundred years the dynamics of complex flu-
ids (e.g., ferrofluids [3]) have attracted attention mainly in re-
cent years/modern era [8-21]. A representative types of such
complex fluids are ferrofluids [3], which are manufactured flu-
ids consisting of dispersion of magnetized nanoparticles in a
liquid carrier. A ferrofluid can be stabilized against agglomer-
ation through the addition of a surfactant monolayer onto the
particles. In the absence of any magnetic field, the nanoparti-
cles are randomly orientated so that the fluid has zero net mag-
netization. In this case, the nanoparticles alter little the vis-
cosity and the density of the fluid. Thus, in the absence of any
external field a ferrofluid behaves as an ordinary (classical)
fluid. However, when a magnetic field of sufficient strength
is applied, the hydrodynamical properties of the fluid, such
as the viscosity, can be changed dramatically [8, 15, 22, 23]
and the dynamics can be vary altered. For instance, the mag-
netoviscous effect in ferrofluids is highly dependent on the
orientation of the magnetic field with respect to the fluid flow
[24]. Studies indicated that, under a symmetry-breaking trans-
verse magnetic field, all flow states in the TCS become intrin-
sically three-dimensional [15, 17, 19], even increase the al-
ready huge number of flow states, known to exist in the TCS
(being steady, time-independent or unsteady, time-dependent
and its multiplicities) [1, 2, 4-7]. Moreover, the Reynolds
number for first appearing of turbulence in ferrofluidic flows
[20] can be significant smaller than in classical fluids.

The present work study flow states in the ferrofluidic TCS
consider axial periodic, counter-rotating cylinders with wide
gap at low Reynolds number in symmetry-breaking transver-
sal magnetic field configuration. We detected ‘flip’ solutions,
in particular two types, which offer a periodic switch in its
axial wavenumber,the number of vortices in the bulk, respec-
tively. We found this to happen with either only axisym-
metric modes (except the intrinsic 2-fold symmetry in pres-
ence of a finite transverse magnetic field) or including non-
axisymmetric, helical flow contributions. The flip solutions
live on 2-tori invariant manifolds and cease to exist with in-
creasing magnetic field strength when the flip period expo-
nentially growth to infinity. Further investigating turbulence
for similar shear flow Reynolds numbers and magnetic field
strength we show turbulence in ferrofluids seems to differ
from classical (ordinary high Reynolds number) turbulence.
Any applied field re-orientate the ferrofluid particles, change
the density and hinders their ‘free’ motion. This together with
further ferrofluid properties, as particle-particle interaction or
chain formation results in ‘smoothen’ of the flow dynamics.
The result is more a middle chaotic motion than typical high
Reynolds number turbulence.

The paper is subdivided into four parts. Following the in-
troduction, Sec. II describes the system and our methods of
investigation. There we present the field equations for the
magnetization and the velocity field and we describe implica-
tions of the presence of the magnetic terms in the generalized
Navier-Stokes equations. This is followed by Sec. III pre-
senting our main results. We first discuss different bifurcation
sequences with increasing transversal magnetic field strength
and describe the different appearing flow states with main fo-
cus on the new detected flip solutions. Therefore we illus-
trate various quantities, e.g. (axial) wavenumber dependence,
vorticity and the time dependence/evolution of flip solutions.



FIG. 1. (Color online) Schematis TCS. Schematic sketch of the
Taylor-Couette system in a homogeneous magnetic field H = H,e,.

Moreover we look into turbulent dynamics of ferrofluids in
detail. Finally we summarize the main results with a discus-
sion in Sec. IV.

II. SYSTEM SETTING AND THE NAVIER-STOKES
EQUATION.

We consider a standard TCS consisting of two concentric,
independently rotating cylinders. Within the gap between the
two cylinders there is an incompressible, isothermal, homo-
geneous, mono-dispersed ferrofluid of kinematic viscosity v
and density p. The inner and outer cylinders have radius R;
and R, and they rotate with the angular velocity w; and ws,
respectively. The boundary conditions at the cylinder surfaces
are of the non-slip type, whereas periodic boundary condi-
tions are considered in axial direction with fixed height-to-
gap aspect ratio I' = 2. The system can be characterized
in the cylindrical coordinate system (r,6,z) by the veloc-
ity field u = (u,v,w) and the corresponding vorticity field
V x u = (&, n,(). The radius ratio of the cylinders is fixed:
R;/Ry = 0.5 and a homogeneous magnetic field is applied
in transverse H = H e, direction, with H, being the field
strength. The length and time scales of the system are set by
the gap width d = Ry — R; and the diffusion time d? /v, re-
spectively. The pressure in the fluid is normalized by pv?/d?,
and the magnetic field H and the magnetization M can be
conveniently normalized by the quantity \/p/pov/d, where
o 1s the permeability of free space. These considerations lead
to the following set of non-dimensionalized hydrodynamical
equations [11, 19]:

(O +u-Viu—-Vu+Vp = (M-V)H (1)
+%V>< (M x H),
V-u =0 2)

The boundary conditions are set as follows. On the cylin-
drical surfaces, the velocity fields are given by u(ry,0,z) =
(0, Re;,0) and u(rs, 0, z) = (0, Re,, 0), where the inner and
outer Reynolds numbers are Re; = wird/v and Re, =

warad/v (fixed at -100 in the present study), respectively,
where r = Rl/(RQ — Rl) and Tro = RQ/(RQ — Rl) are the
non-dimensionalized inner and outer cylinder radii, respec-
tively.

A. Ferrohydrodynamical equation

Equation (2) is to be solved together with an equation that
describes the magnetization of the ferrofluid. Using the equi-
librium magnetization of an unperturbed state in which the
homogeneously magnetized ferrofluid is at rest and the mean
magnetic moment is orientated in the direction of the mag-
netic field, we have M®? = yH. The magnetic susceptibility
x of the ferrofluid can be approximated by the Langevin’s for-
mula [25], where we set the initial value of x to be 0.9 and use
a linear magnetization law. The ferrofluid studied corresponds
to APG933 [26]. We consider the near equilibrium approxi-
mations of Niklas [8, 27] with a small value of ||M — M*®||
and small magnetic relaxation time 7: |V x u|r <« 1. Us-
ing these approximations, one can obtain [19] the following
magnetization equation:

1
M—Meq:C?\[(?vquH‘F)@SH)a (3)

where

& =71/ (1/x + TpoH? /61®) 4)

is the Niklas coefficient [8], i is the dynamic viscosity, P is
the volume fraction of the magnetic material, S is the sym-
metric component of the velocity gradient tensor [11, 19], and
Ao is the material-dependent transport coefficient [11] that can
be conveniently chosen to be [11, 15, 28] Ay = 4/5. Using
Eq. (3), we eliminate the magnetization from Eq. (2) to arrive
at the following ferrohydrodynamical equations [11, 19]:

(8t+u-V)u—V2U+VpM )
52 4 4
S {Hv <F+5SH>+H><V>< (F+5SH>},

where F = (V xu/2) x H, pj is the dynamic pressure incor-
porating all magnetic terms that can be expressed as gradients,
and sy is the Niklas parameter [Eq. (7)]. To the leading or-
der, the internal magnetic field in the ferrofluid can be approx-
imated by the externally imposed field [29], which is reason-
able for obtaining the dynamical solutions of the magnetically
driven fluid motion. Equation (5) can then be simplified as

(0 +u-V)u— Viu+ Vpy = s% {V2u - % [V - (SH)]

(6)
—H x %Vx(quxH)—Hx(VQu) +§V><(SH)H.



This way, the effect of the magnetic field and the magnetic
properties of the ferrofluid on the velocity field can be charac-
terized by a single parameter, the magnetic field or the Niklas
parameter [8]

2(2 + X)Ha:cN
(2+x)% = x*n*
As we only consider transversal field configuration in the

present study we will use s, (instead of sy ) for the magnetic
field strength in order to highlight the transversal orientation.

2
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B. Numerical methods

The ferrohydrodynamical equations of motion Eq. (5) can
be solved [15, 19, 29] by combining a standard, second-order
finite-difference scheme in (7, z) with a Fourier spectral de-
composition in ¢ and (explicit) time splitting. The variables
can be expressed as

Mmax

> fmlrz )™, ®)

M=—Mmax

f(r,0,z,t) =

where f denotes one of the variables {u,v,w,p}. For the
parameter regimes considered, the choice my,,x = 10 pro-
vides adequate accuracy. We use a uniform grid with spacing
dr = 6z = 0.02 and time steps 6t < 1/3800. For diagnos-
tic purposes, we also evaluate the complex mode amplitudes
fm,n(r,t) obtained from a Fourier decomposition in the axial
direction:

fm (’I", 2, t) = Z fm,n (Ta t)einkz7 )

where k = 27d/ ) is the axial wavenumber.

Note that for a ferrofluid under a transverse magnetic field
(sz # 0), the symmetry present in classical TCS (arbitrary
rotations about the axis) is broken and the flow is inherently
three-dimensional for any non-zero values of the parameters
Re;, Re, and s, [17, 19, 29, 30].

C. Nomenclature.

We focus on the flow states in a (relative) short periodic do-
main with the small aspect-ratio I' = 2. A common feature
shared by most flow states is that the axisymmetric Fourier
mode associated with the azimuthal wavenumber m = 0
(see IIB) is dominant so that the flow states correspond to
toroidally closed solutions. Note that ferrofluidic flows dom-
inated by an azimuthally modulated m = 0 mode differ from
the classical wavy vortex flow solutions in the absence of
any magnetic field [7, 31-34], which are time-periodic, ro-
tating states that do not propagate axially. In the presence of a
transverse magnetic field, all the flow states are fundamentally
three dimensional with a stimulated m = 2 mode, leading to

l flow state \ k1 ‘kg \stim. modes m\ spec. & dynamics ‘

TVF, 2m| — 0 S
LI1-[R1]-SPL; | 7 | — 1[—1] u, rot., left- [right-]winding
1-wSPI; |- 121,42 u, rot. left-right equal
11-wSPI; - 1>—-1,42 u, rot. left-dominant
rl-wSPI; |7 |—-| 1<—-1,%2 u, rot. right-dominant

2-AVF - |- 0,+2 s
1-wTVF3, (27| +1,+£2 u, flip
2-wTVF3_. 27| 7 0,+2 u, flip
1-WTVFa, o 27| - | 12 —1,42 s
1-WTVFa, o (27| - | 12 —1,42 u, pulsing/oscillating

TABLE I. Flow state nomenclature and abbreviations. From left to
right; flow state M—state’,jf (M 1identify the dominant contribution);
incorporating axial wave numbers k1, k2; stimulated modes m; spec-
ification & dynamics as s steady (stationary) and u unsteady (time-
dependent) and L,1 [R,r] left-[right]-winding; The stimulated modes
refer to the dominated ones; m = 0 is present in all solutions. Note
that m = =42 is intrinsic due to s, # 0. The relations £, >, < indi-
cate that the corresponding (stimulated) mode amplitudes are equal,
larger or smaller. The — for k2 indicates non-existence.

steady (non-rotating) wavy vortex flows [15, 17, 19]. Rotat-
ing flows with non-axisymmetric, helical Fourier modes (here
finite m = 1 mode) can also arise, so do (wavy) spiral flow
states and unsteady (oscillatory, for s, # 0) wavy flow solu-
tions.

A key indicator differentiating and indicating the “flip’ solu-
tion is the axial number of vortex cells present in the annulus,
the axial wavenumber, respectively. To take into account all
characteristics of flow states, we use the notation M -stateﬁf
defined in Tab. I to distinguish the different flow patterns. For
instance, the notion 1-wTVF7__ stands for a flip solution, being
a wavy vortex flow switching between the axial wavenumbers
[wavelength] k1 = 27 [A\; = 1] and k2 = 27 [A2 = 2] with
a finite stimulated m = 1 mode within the process (see also
Fig. 5).

III. RESULTS

As a global measure to characterize the flow, we use the
modal kinetic energy defined as

1 2 pI'/2 To
Eyin = ;E = 5/0 / /T u,,u rdrdzdd, (10)

—-T/2

where u,,, (u},) is the m-th (complex conjugate) Fourier mode
of the velocity field, Ey;, is constant (non-constant) for a
steady (unsteady) solution. For a diagnostic purpose, we con-
sider the time-averaged (over one period) quantity, Ey;, =
fOT FEindt. In addition to the global measures and the differ-
ent mode amplitudes |u,, ,,| (cf. Eq. (9)), we also use the az-
imuthal vorticity on the inner cylinder at two different points,
N-+] = (r4,0,I'/4[T'/2],t), as a local measure to character-
ize the flow states. Finally to study turbulent characteristics
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FIG. 2. (Color online) Bifurcation with the strength of mag-

netic field s,. Bifurcation with the strength of magnetic field s,
at three different inner cylinder rotation speeds: (a) Re; = 120, (b)
Re; = 130 and (¢) Re; = 150. Shown are (1) time-averaged modal
kinetic energy Fyi, and (2) dominant (averaged) amplitudes [T, n |,
of the radial velocity field at mid-gap contributed from the modes
(m,n) as indicated. Solid [dashed] lines with full [empty] symbols
represent the unsteady, time-dependent [steady, time-independent]
flows. Different flow structures are labeled (Tab. I). See text for fur-
ther explanations. Vertical arrows indicate the transition when one
solution loses its stability.

we further consider the cross-flow energy [35],
1D

averaged over the surfaces A of a concentric cylinder of radius
.

Eepr(r,t) = (u? +u?) o,

A. Bifurcation sequences and appearing flow states

Bifurcation scenarios with changing the magnetic field
strength s, at three different Re; = 120, 130 and 150 are
shown for the modal kinetic energy Fy;, (Eq. (10)) and for
the radial velocity |y, | [due to the most energetic, domi-
nant (averaged) mode amplitudes (m, n) at mid-gap and mid-
height (Eq. (9))] in Fig. 2. Visualizations of selected flow
states appearing in the different bifurcation sequences are pre-
sented in Fig. 3

4

Re; = 120: For s, = 0 (Fig. 2(a)) the only stable so-
lution is the symmetry degenerated (left- (m = 1) or right-
winding (m = —1)) helical m = 1 spiral solution (see also
R1-SPL, in Fig. 3(1)) which disappears for any finite value,
Sz # 0, due to the symmetry-breaking nature of the trans-
verse field [15, 20] with the favor of wavy modulated flow 1-
wSPIL,; (Fig. 3(2)). Here shown is the solution with dominant
right-winding mode (1, —1); the symmetry degenerated left-
winding solution with dominating mode (1, 1) exists simulta-
neously. Increasing s,, this helical solution loses it’s stabil-
ity and the system change to toroidally closed flow structures.
First appears the time dependent 1-wTVF, flow state, here
shown 11-wTVF, with dominant (1,1) and minor (1,—1)
mode contribution (Fig. 3(3)). Note that the symmetry re-
lated solution r1-wTVF, with switch of (1,1) and (1,—1)
mode amplitudes exist simultaneously. [Applying the axial
reflection K, and rotation R, to the flow state 11-wTVF; as
presented in Fig. 3(3) and using this as initial state we could
follow the identical bifurcation branch for r1-wTVF.]

Increasing s, the 11-wTVF,; solution loses its time depen-
dence and equilibrate the left and right winding mode contri-
butions (1,1) £ (1,—1) (Fig. 2(b2)) to the steady solution
1-wTVE,; (Fig. 3(4)). Strictly speaking one could also iden-
tify this flow as a kind of ribbon (RIB) solution, but due to the
fact that the axisymmetric mode, m = 0, i.e. (0,2) remains
the dominant one (in RIB this is not the case) we favor the
expression with wTVFE. Note, that it is this 1-wTVF,. (1-RIB
like) solution which also appears as unstable solution within
the ‘flip’ solution 1-wTVF}_ (see Fig. 4(5,6)). For even
larger s, the flow loses it’s axial dependence as the bifurcation
threshold is moved upwards with s, and the result is a pure an-
nular vortex flow (2-AVF, Fig. 3(5)) with only field induced
2-fold symmetry. 2-AVF is the basic state in case of finite,
axisymmetry-breaking transversal magnetic field (s, # 0).
Note for Re; = 120 all supercritical flow states have the same
axial wavenumber [wavelength] & = 7 [\ = 2], independent
of the field strength s,. Moreover there is no flip solution
present at these parameter values, as we will see for larger
values of Re;. Continuous increasing s, the flow finally turns
turbulent, directly out of 2-AVFE.

Note that the flow we here refer to as 2-AVF is in principle
a circular Couette flow with discrete 2-fold symmetry. As for
CCF the axisymmetric symmetry corresponding to m = 0
is inherently we prefer to use 2-AVF instead of using any
acronym regarding CCF to avoid any confusion. The fact that
for Re; = 120 no flip solution appears, most likely results
from the ‘low’ Re; value and corresponding investigated s,

Re; = 130: In absence of any magnetic field (s, = 0)
one finds the classical steady stable TVFs, solution (Fig.
2(b)), with two pair of toroidally closed vortices. This flow
state loses its stability for any s, # 0 and thus for small
magnetic field strength s, we detect the 2-fold symmetric,
also steady 2-wTVFa, solution (Fig. 3(6)). Increasing s,
this solution becomes unsteady and the 2-wTVF3__ (Fig. 8)
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FIG. 3. (Color online) Visualization of the different flow states.
Shown are (a) the radial velocity (6, z) on an unrolled cylin-
drical surface in the annulus at mid-gap [red (yellow) color in-
dicates in (out) flow], (b) isosurfaces of rv [red (dark gray) and
yellow (light gray) colors correspond to positive and negative val-
ues, respectively, with zero specified as white], (c¢) vector plot
[u(r, 2),w(r, z)] of the radial and axial velocity components (in-
cluding the azimuthal vorticity (left: n(r, 0=0); right: n(r,0=r/2))
and (d) the azimuthal velocity component v in (r, §) plane at mid-
height (viewed from the bottom) [red (yellow) color indicates pos-
itive (negative) velocity]. (1) RI-SPL: at Re;=120, s,=0.0 with
rv=1£60, (2) R1-wSPIL; at Re;=120, s,=0.45 with rv=+60, (3)
11-wTVF, at Re;=120, s,=0.5 with rv=£40, (4) 1-wTVF; at
Re;=120, 5,=0.7 with rv=£12, (5) 2-AVF at Re;=120, s,=1.0
with rv=£10"%, (6) 1-wTVFa, at Re;=130, s,=0.0 with rv==+5,
(7) 1-wTVF2, at Re;=130, s,=1.1 with rv=%15, (8) 1-wTVF2, at
Re;=150, s,=1.35 with rv=£100. Note that (4) 1-wTVF;, is a flow
state which also appears as interim/transient solution during the flip
process of 1-wTVF3,. (see Fig. 6(6)). The same legends for flow
visualization are used for all subsequent flow visualizations.

flip solution appears. Increasing s, the discrete 2-fold char-
acteristics of 2-wTVF7_ becomes destroyed when the non-
axisymmetric, helical, here m = 41 modes become finite.
This results in the second discovered, 1-wTVF3__ (Fig. 5) flip
solution. [Note that here in both modes (1,1) and (1,—1)
have identical amplitudes which means the interim solution

can be interpretated as a m = 1 ribben solution (1-RIB)
[2] (cf. Fig. 5(5,6)). [In the following we will only talk
about the helical m = 1 mode, in case of 1-wTVF, and 1-
wTVFs,, meaning the negative counterpart m = —1 mode
to be stimulated with equal mode amplitude.] The latter, for
larger s, vanishes and we find again the steady (stationary)
2-wTVFs, flow state (Fig. 3(7)) when the non-axisymmetric
modes become zero. Due to much larger values s, the forced
2-fold characteristic (symmetry) is much more pronounced
compared to the flow 2-wTVF,, at smaller s, (Fig. 3(6,7)).
Finally the 2-wTVFs, solution disappears with further in-
creasing s,. The flow becomes subcriticle and changes to the
2-fold basic state 2-AVF (Fig. 3(5)) (analog to the scenario
with increasing s, at Re; = 120) before it finally turns into
turbulence.

Re; = 150: Here, the scenario with increasing s, (Fig.
2(c)) starts as for Re; = 130 with the classical steady sta-
ble TVF,, solution, which loses it’s stability against the 2-
wTVF3__ flip solution. However, here the 2-fold characteristic
(symmetry) remain untouched and no 1-wTVF7__ solution ex-
ists. At larger s, one finds again the steady 1-wTVF5_ flow
structure (Fig. 3(8)), before with increasing s, this flow be-
comes unsteady (time-dependant) in 1-wTVFa, ,, (Fig. 4) be-
fore it turns turbulent.

The fact that for increasing s, at Re; = 120 and Re; = 130
the flow returns to the modulated basic state 2-AVF highlights
the general (well known) stabilizing effect of an external ap-
plied magnetic field [15, 17] (shift of bifurcation thresholds
to larger values of Re;). This upwards move of the bifurca-
tion threshold manifest itself in the decrease of either mode
amplitudes |, | and in particular the kinetic energy Fyi,
(Fig. 2(a,b)). The slightly increase of Ey;, for 2-AVF with
increasing s, indicate the strengthen of the 2-fold symmetry
with larger values s,. Hereafter unstructured low-dimensional
turbulence (see SEC III C) appears direct out of 2-AVF for
sufficient large values of s,,. However for Re; = 150 we do
not observed the basic state 2-AVF and turbulence appears di-
rectly out of the oscillating/pulsing 1-wTVFa, solution (Figs.
2(c) and 4). Note that such scenario has already been reported
(for other parameters) before [20]. Aside there is no such sig-
nificant decrease in E;,, and [T n| as seen for lower Re;.

The 1-wTVF3, solution (Fig. 2(c)) is the (stationary)
steady small ‘brother’ of the oscillating/pulsing solution 2-
WTVFar ,, (cf. Fig. 4). Obvious 2-AVF is an axial infinite
extended solution and therefore does not contain any axial
wavenumber. The different axial wavenumbers are clearly
visible in the § — z,n,r — z plots in Fig. (3). For Re; = 120
all flow states have an axial wavenumber [wavelength] &, [2]
where as for Re; = 130 and 150 they have mainly an axial
wavenumber [wavelength] & = 27 [1] (except as the appear-
ing of transient solutions in the both flip states 1-wTVF3__ and
2-wTVFZ ). Aside all flow states in Fig. 3 are m = 1 but
3(5 — 7). This m = 2 characteristic is clearly visible in the
v(r, 0) plane.
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FIG. 4. (Color online) Visualization of the pulsing/oscillating state
1-wTVF3 .. As Fig. 3 but isosurfaces of rv = +120 at Re; = 150
and s, = 1.38. Indicated times are (1) t = 0, (2) t = 7,/4, (3)
t = 1/2, (4) t = 371,/4 with period time 7, = 1.106. See also
movie file movieA3.avi in SMs. Note, that the symmetry related
state 1-wTVF5, (K, axial reflection at mid-height) coexists. Note
that the solution has S™ symmetry.

1. Pulsing/Oscillating flow state 1-wTVF2r

Regarding Fig. 2(c) one sees the (stationary) steady
solution 1-wTVF§_ (Fig. 3(7)) for Re; = 150 to be-
come an unsteady, time dependant one, 1-wTVF, , with
increasing s,. The time dependence becomes visible in a
pulsation/oscillation of the flow state 1-wTVFsy, ,. Com-
pared to former discussed steady (time-independent) and az-
imuthal pinned solutions in transverse magnetic fields [20]
1-wTVFy, ,, has a more pulsing characteristic. Figure 4
presents snapshots over one period 7, for 1-wTVFy, ,,. The
vortices pulse, they grow and shrink in size without many
variation of their location (see movie movieA3.avi in SMs.)
1-wTVF5 and 1-wTVF3,_ have a dominant helical m = 1
contribution as visible in v(r, 8) (Fig. 4(e)); the latter coin-
cide with a growth in the mode (1, 2). We mainly present this
flow state for completeness, but will not further discuss this
solution as it is not in our main focus and similar ones have
already been discussed in previous work [20].

Note, that the period of 1-wTVFs, is significant smaller
than for the former discussed flip solutions, but in typical
range for such wavy (oscillating) solutions

B. Flip solutions

In the following we will have a detailed view into both flip
solutions 1-wTVF3_ and 2-wTVF7_, their constitution and
spatio-temporal dynamics.

1. 1-wTVF3,
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FIG. 5. (Color online) Visualization of the flip solution (slow-
fast dynamics) 1-wTVF3,.. Shown are (a) dynamics with time of
modes |um, | [inset shows Ep;,] as indicated over a quarter pe-
riod 7, /4 due to symmetries (see text for further explanations) for
Re; = 130, s, = 0.7 and times ¢ as indicated. Visualizations
(b) — (e) as in Fig. 3 with isolevel shown at rv = £25. (1) t=0, (2)
t=3, (3) t=4, (4) t=4.3, (5) t=4.49, (6) t=4.56, (7) t=4.8, (8) t=5,
and (9) t=7.253=7,/4; period time 7,=29.012. See also movie file
movieAl.avi in Supplementary Materials (SMs). The same legends
for flow visualization are used for all subsequent unsteady flows.
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FIG. 6. (Color online) Time series of 1-wTVF3,.. Time series of
(a) Ekin, (b) corresponding PSD (inset shows a long time series of
Ein), (c) time series of |um,»|, (d) 7+ [red (gray)], and n— (black),
and (e) phase portraits on (74, 7—) and poincaré section (Eyin, 7+ )
with n— = —20 for flip states 1-wTVF3,. at Re; = 130, s, = 0.7.
Period time is 7, = 29.012.

Fig. 5 presents the variation with time ¢ (fop panel) and
visualizations of flow structures (bottom panels) during one
flip for 1-wTVF3 . solution. Note that due to repetitions (four
flips in one period) only a quarter of period 7,/4 = 7.253 is
shown (see also Fig. 6). In fact the unsteady, time-dependent
solution 1-wTVF3__ has a complex spatio-temporal symmetry,
a half-period-flip-rotation symmetry .S;. The action of S on
the velocity field is

Sx(u,v,w)(r,0,z,t) = (u,v, —w)(r,0 + 7, —z,t + 7,/2)(12)

The rotation results from the pinning effect of the applied
transverse magnetic field onto the structure in azimuthal di-
rection resulting in a discrete rotation invariance R, about the
axis by the angle 7. The actions of this discrete rotation and
the second spatio symmetry, the axial reflection K, on the
velocity are

Rﬂ(uv v, ’LU)(T, 0, Z, t) = (uv v, w)(rv 0+ T, 2, t))a (13)
K, (u,v,w)(r,0,z,t) = (u,v, —w)(r,0, —z,t). (14)

With respect to the general time translation

(Pto(u,’l),U})(T,97Z7t) = (’LL,’U7’U))(’I’79,Z7t+t0), (15)

one can formally write the spatio-temporal half-period-flip-
rotation symmetry S, = K, R, ®, />

The time series of the different dominant mode amplitudes
|t n| in Fig. 5(a) shows a significant decrease in the dom-
inant axisymmetric (0,2) mode while at the same time the
helical modes (1,1) & (1, —1) equally significant increases.
[The labels (1) to (9) mark such time points for which the
bottom panels present corresponding snapshots.] This indi-
cates the fact that this flip coincide with non-axisymmetric,
helical azimuthal m = +1 mode stimulation together with a
change in axial wavenumber [wavelength] 27 — 7 — 27
[2 = 1 — 2] (compare Fig. 5(b,d)(1,5,9)). The signif-
icant increase in the azimuthal m = 1 mode (including it’s
higher harmonics) is also the responsible for the dramatic in-
crease (almost about one magnitude) in the total kinetic en-
ergy Epin (inset in Fig. 5(a)) around the ‘flip’. The whole
“flip’ process starts with a slightly modulation and reorienta-
tion/deformation of the initially symmetric two vortex pairs in
the annulus (Fig. 5(1,2)). This modulation strengthens with
time and parts of two neighboring vortex pairs move closer
together and get compressed (Fig. 5(3,4), here in the mid-
dle) until the flow structure reaches it’s m = =1 dominance
(Fig. 5(5,6); here the 1-RIB characteristic is clearly visible)
before in a re-organization process the (0,2) mode becomes
reenforced regaining the initially m = 0 dominance of the
flow (Fig. 5(8,9)). Note that the initial (Fig. 5(1)) and final
(Fig. 5(9)) configuration are almost the same but shifted by
r/4.

However, there is a further interesting fact. The flip also
coincide with a short time rotation of the whole flow structure
in azimuthal direction. Interestingly this rotation of the tem-
poral m = 1 dominated pattern (Fig. 5(4 — 7)) follows the
rotation direction of the outer cylinder and not as to expect
for given set of parameters (Re; = 130 and Re, = —100)
the inner cylinder rotation direction. The movieAl.avi in the
SMs clearly show this rotation opposite to the one of the inner
cylinder rotation (indicated by arrows in the movie).

Interestingly, the axisymmetric (0, 1) mode does not play
any role (for sure it is always finite, but significant smaller
than all other in the flip process involved modes) in the flip
scenario for 1-wTVF7_, in contrast to the flip scenario for 2-
wTVF3_, in which it is crucial and dominating. Further sig-
nificant characteristic for the flip solution 1-wTVF3__ is that
the changes coincide with a strong oscillation in all modes
and energy (see also movie in SMs: movieA2.avi). The 2-
wTVF3, do not show any kind of such periodic fluctuations,
as it do not involve higher azimuthal modes m > 0. The dom-
inance of the helical m = 1 mode during the flip can be clearly
seen in Fig. 5(3—7), either in the radial velocity u(6, z) on an
unrolled cylindrical surface in the annulus at mid-gap and the
azimuthal velocity component v in (r, §) plane at mid-height.
At the same time the vector plots [u(r, z), w(r, z)] of the ra-
dial and axial velocity components (including the azimuthal
vorticity n(r, =0) and n(r, 6=m/2)) clearly show the tempo-
ral modified axial wavenumber k = 7.
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FIG. 7. (Color online) Variation of the axial wave number and
space-time evolution of 1-wTVF7,.. (a) Snapshots of axial velocity
profiles w for & = 0 (solid lines) and & = 7/2 (dashed lines) in
the annulus at the mid-gap location for times ¢ as indicated in Fig.
5(a)(1 — 9). Note the significant change in scale of the ordinate
axis in (a) around the ‘flip> point (v, vi). Space-time plot of n for
1-wTVF3,. at (b) the inner cylinder and (c) the mid-gap. Red (dark
gray) and yellow (light gray) correspond to positive and negative val-
ues, with (b) n[—175,175] and (c) n[—125, 125]. Same quarter pe-
riod is shown as presented in Fig. 5(a) for 1-wTVF3, at Re; = 130
and s, = 0.7.

In principle almost all dynamics takes place in a relative
short time of approximately 1.1 (Fig. 5(3 — 8)) within a
quarter period 7,/4 = 7.253. Note that such a flip with all
the dynamics happens four times to complete one full period
Tp = 29.012. As 2-wTVF3_ do not involve any other helical
modes than the ones stimulated due to s, # 0 there is also no
rotation present within the flip (see movieA2.avi in SMs).

Figure 6 shows quantities for longer time series. Both, the
global kinetic energy Ey;,, and the dominant mode amplitudes
(m, n) suggest a period which is only a quarter of the real pe-
riod. Only the local measure of the azimuthal vorticity 7 [at
the inner cylinder and mid-gap] highlights the four flip sce-
nario within one period which remains hidden in the first both
quantities. However, there is obviously no perfect recurrence
after one flip. All quantities, energy, modes and azimuthal
vorticity show significant variations in their maximal/extreme
values over several periods (see also inset showing long time
series of Fy;p).
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FIG. 8. (Color online) Visualization of the flip solution (slow-fast
dynamics) 2-wTVF3 .. As Fig. 5 but for 2-wTVF3,. with isosur-
faces of rv = +£25 at Re; = 150, Re, = —100, s, = 0.72.
Indicated times are; (1) t=0, (2) ¢=3.5, (3) t=4.25, (4) t=4.5, (5)
t=4.63, (6) t=4.68, (7) t=4.75, (8) t=4.85, (9) t=6.246=7,/4; pe-
riod time 7, = 24.982. See also movie file movieA2.avi in SMs.

The solution 1-wTVF7__ (as well as 2-wTVF3_) lives on a
2-torus invariant manifold consisting of two incommensurate
frequencies. The first corresponds to the (slow) flip-time 7;;,,
between two consecutive flips (Note this is just a quarter of a
period 47y, = 7p) and the second one is given by the (fast)



modulation/oscillation underlying the flip (¢ 1, ~ 0.14221).
These frequencies can be clearly seen in the PSD of Fy;,,
with w; =~ 0.034468 (slow period) and wy ~ 7.031854 (fast
period) and all their nonlinear interactions. This very long-
time imperfect variation (see inset in Fig. 6(b)) results in a
complex shadowing phase portrait (17—, 7+ ) and and Poincaré
section (Ejin,n+). The latter, in principle should give a
closed curve, manifest the 2-tori nature; However, an agglom-
eration around a ‘circle like’ region is visible although the
phase space representation do not show an obvious simple
structure; Mainly a central axis and here from long-time dis-
appearing and returning is visible. One might speculate that
this somehow ‘messy’ structure (modulation/variation in the
different quantities) results from a very low frequency (VLF)
underlying the dynamics due to a forced oscillation/pulsing
by the transversal magnetic field. Due to the transversal mag-
netic field, the classical unsteady (time-dependent) and rotat-
ing structures becomes pinned in azimuthal direction (2-fold
symmetry). However, instead the rotating flow states, oscil-
lating and pulsing flow structures appears in transversal fields.
Depending on various parameters the field pinning effect on
the usually rotating structure can result in a very long oscil-
lating period which can explain the appearing of the observed
VLE.

Figure 7 provides another perspective of the half-period-
flip-rotation symmetry of 1-wTVF3_; e.g. axial profiles. The
behavior of the wavenumber & during one flip is shown in (a)
either along the field direction (# = 0) and perpendicular to it
(0 = 7/2). The differences in these both directions is based
on the symmetry-breaking magnetic field [29]. The spatio-
temporal symmetry S is can be seen in the axial profiles w
shown in (¢) and (iz). As the flip coincide with strong pe-
riodic variations/modulations due to m = =1 the snapshots
(#91) — (viig) can be just seen as an illustration highlighting
the change in the axial wavenumber; but (vi) clearly illus-
trates k = w[A = 2] while for (¢) and (iz) k = 27[A = 1].
Note the significant change in the magnitude/amplitude of w
(scaling on abscissa) during the flip. Corresponding space-
time diagrams of the azimuthal vorticity on the inner cylinder
wall [at mid-gap] 7(r;, 0, 2,t) [1(0.5d,0, z, t)] are presented
in Fig. 7(b). The zero contour level is in black and clearly
indicates the slowly growing oscillation and large oscillation
within the flip and changing the axial wavenumber from 27 to
« and back to 27.

2. 2-wTVF3,

Although, regarding the main characteristics, the flip solu-
tion 2-wTVF] _ is very similar to 1-wTVF7_, there are a few
significant differences in its structure and dynamics. As be-
fore, Fig. 8 presents the variation with time ¢ (fop panel) and
visualizations of flow structures (bottom panels) during one
flip for 2-wTVF3,.. Crucial and analog to 1-wTVF3__ is that
one period also contains four flips. Both solutions 1-wTVF7

and 2-wTVF7__ share the same spatio-temporal symmetry S.

The time series in Fig. 8(a) (about a quarter period 7,,/4 =
6.246) already indicate differences. For a given set of param-
eters the period time is quite similar with 7, = 24.984 but
also depends strongly on the parameters (see Fig. 11). Al-
though there is again a significant decrease in the predominant
(0,2) mode together with the (2,2) mode there is no helical
mode (in contrast to (1,=£1) in the 1-wTVF]_ scenario) in-
volved in the flip process. Instead there is a drastic increase in
the axisymmetric mode (0, 1). This indicates the fact that 2-
wTVF7_ remains axisymmetric with restriction to the discrete
rotation 7 due to the symmetry breaking transversal magnetic
field. In parallel the total kinetic energy E};, drastic decrease
(inset in Fig. 8(a)) during the flip highlighting a ‘simplifica-
tion’ of the flow structure; this is in contrast due to the increase
of E};y, during the flip process for 1-wTVF3__ with finite and
growing helical m = £1 modes. Furthermore there is no os-
cillation or modulation in any mode or the energy within the
flip process.

As 2-wTVFZ__ do not contain any oscillation or modulation
the dynamics is simpler during the flip. The main dynamics
can be described as an annihilation and regeneration of vortex
pairs (in axial direction). First the two vortex pairs relocate in
its axial position (direction), while they move closer together
which results in stretch and compressions in the annulus (Fig.
8(2-4)). Note, for the scenario shown in Fig. 8 the gap opens
at about mid-height. With increasing time the compression
of the two vortex pairs results in an annihilation of the two
neighboring inner vortices between the two pairs (Fig. 8)(5),
just leaving a single vortex pair in the annulus (Fig. 8(6))
with k& = 7 (see also Fig. 10(a)). Hereafter two new vor-
tices start to form in the center region about mid-plane (Fig.
8(7)), which keep growing to establish again a temporal stable
two vortex pair solution (Fig. 8(8,9)). Hereafter this process
first repeats once identical with annihilation and generation of
vortices in the same matter, in particular the same axial posi-
tion (for shrinking and expanding). However, in the follow-
ing (third flip) the general dynamic repeats again, but now the
vortices, which annihilate and re-generate change. Regarding
Fig. 8 this means the two pair of vortices become compressed
at the mid-height, before both inner vortices vanish and new
ones become re-generated in the wide range of annulus with-
out any main vortex structure, to re-generate the two vortex-
pair flow. This process exactly repeats again and thus after all
together four flips (two plus two) perform one full period 7,
to come back to the initial state again. The footprints/marks in
one period are best visible in 7+ (Fig. 9(d)) highlighting the
four flips with two different couple of flips (2+2). Thereby
the » — 6 plots of v in (Fig. 8(e)) clearly show the perma-
nent existing 2-fold symmetry due to the transversal magnetic
field in contrast to the m = 1 interim solution appearing in
1-wTVF3 solution (Fig. 5).

Other flow structures with similar generation and annihi-
lation of vortices have been described in former works [36]
for classical fluid. However there are some crucial differences



to the present study. First of all the work [36] considered fi-
nite system setup with minimum size I' = 4, for which the
generation and annihilation has been found due to global cir-
culation as driving mechanism. In our case the latter do not
exist due to axial periodic boundary conditions. Moreover the
process is ‘one-way’ directed as vortices are formed near the
axial walls, in the Ekman boundary layer region, move to-
wards mid-height where they become annihilated. Never less,
as far as we know this is the only process which is closest to
the here found flip solutions.

Mainly both transient appearing solutions during the flip
with £ = 7 and filling the whole bulk, differ for 1-wTVF7
(Fig. 5) and 2-wTVF7__ (Fig. 8) due to the azimuthal modes
m = =1 to be finite in the first scenario. The r—z plots in Figs
5(6) and 8(6) clearly show the change in axial wavenumber
[wavelength] £ = 7 [\ = 2] with a solution of only two
counter-rotating vortices filling the annulus. However, while
for 1-wTVF7Z__ (Fig. 5) the vortex pair fills the whole bulk in
the case of Fig. 8 the two vortices of the single vortex pair are
arranged very close to each other leaving a large part of the
annulus without any significant flow structure.

The flip solutions are typical examples for slow-fast-
dynamics in dynamical systems [37]. Here it is based on the
coexisting of at least two unstable (one more and one less sta-
ble) solutions. It would be interesting to see a similar flip so-
lution, regarding the axial wavenumber, for helical flow states
with m > 0. So far we don’t have any evidence if such so-
lutions might exist or not. If so, they might most likely share
their structural properties and involving dynamics with mixed-
cross-spiral solutions (MCS) [38, 39], which is reasonable to
speculate as 1-wTVFZ__ clearly shows 1-RIP characteristics.

Figure 9 shows further quantities of 2-wTVF3__ for long
time series. As seen for 1-wTVF7_, neither the global en-
ergy kinetic energy FEy;, or the dominant mode amplitudes
(m,n) give the real periodicity 7,, they almost repeat with a
quarter of it. Only the local measure of the azimuthal vortic-
ity 4+ clearly shows the period 7, (consisting of four flips).
Compared to 1-wTVF7_ the long time modulation (inset in
Fig. 9(b)) is much clearer resulting in the VLF. As a result
also phase portrait (17—, 7 ) and Poincaré section (1), Fx;)
show a better visualization of the 2-torus manifold, although
the VLF (due to oscillation during the flip for s,,) makes them
a little fuzzy.

As seen for 1-wTVF7 _ (Fig. 7(a)) the variation of profiles
w for 2-wTVF]__ (Fig. 10(a)) clearly indicate the changes in
axial wavenumber & during the flip from 27 to 7 and back to
2m. But in contrast to the scenario for 1-wTVF3_ the magni-
tude/amplitude of the velocity is almost negligible (scaling on
abscissa) over one flip .

As the flip for 2-wTVF3_ does not contain any peri-
odic oscillation, the corresponding space-time diagrams of
the azimuthal vorticity on the inner cylinder wall [at mid-
gap] n(r;,0,2,t) [n(0.5d,0, z,t)] (Fig. 10(b)) look much
smoother.

Figure 11 shows the variation with s, of the flip-time (a

10

4
t frequency

—(02)
= (01)
a2

20 40

. -.TC !

FIG. 9. (Color online) Time series of 2-wTVF3_. As Fig. 9 but
for flip state 2-wTVF3, at Re; = 150, s, = 0.72. Period time
Tp = 24.982.

quarter of the period 7,,) for both solutions 1-wTVF3_ and 2-
wTVF7 . For both solutions the flip-time increases with s,
before they cease to exist and the variation follows an expo-
nential law of the form 7y, = ag + a1 exp(as - s5) (see red
curves in Fig. 11 presenting corresponding fits). Topological
speaking 1-wTVF] _ and 2-wTVF3,_ are 2-tori (see also phase
space and Poincaré sections in Figs. 6 and 9) which collapse
leaving a simple steady fixed point solution behind (either 1-
wTVF;_ or 2-wTVF;_). Obvious, there is a clearly visible
bend in Fig. 11(a), where 1-wTVF]__ bifurcates/appears out
of 2-wTVF3,.. Although it looks like that the (short) curve
for 2-wTVF7_ follows a similar exponential law (dashed line
fit), the section is to short to really prove this. As both solu-
tions follow similar exponential law in its flip time variation,
the non-axisymmetric role do not seem to play any significant
role and are negligible.

C. Shear Reynolds number, Momentum Flux and Cross-Flow
Energy

In the following we will have a closer look into the turbu-
lent dynamics of ferrofluids which appears for larger values
sz (see Fig. 2).

In order to have a better comparison, we will consider the
shear Reynolds number as another combined parameter to
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FIG. 10. (Color online) Space-time evolution of 2-wTVF5,.. As
Fig. 10 but for 2-wTVF3, at Re; = 150 and s, = 0.72. Red
(dark gray) and yellow (light gray) correspond to positive and neg-
ative values, with (b) n[—150,150] and (c) n[—100, 100]. Same
quarter a period is shown as presented in Fig. 8(a). Note that here
the amplitudes of w in (a) do not significant change around the flip
point.
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FIG. 11. (Color online) Variation of flip-time with the strength
of magnetic field s, for (a) Re; = 130 and (b) Re; = 150. Red
[orange] solid [dashed] curves are fits of the form 77;;, = ao +
a1 exp(az - sz ) (c.f. Fig. 2(1)(b, ¢)). Note, that 7, is just a quarter
of the period 7, of the solutions.

characterize the system Regpeqr = 2|nRe, — Re;|/(1 + 1)
[35]. Moreover the conserved transported quantity between
two cylinders can be expressed in terms of the angular veloc-
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FIG. 12. (Color online) Variation in angular momentum and an-
gular flux. (a) Angular momentum L(r) = r(v(r))s,/Re;i and
(b) angular flux J,, (in total (solid lines) and its components Jqqd.
(dashed lines) and Jg; 55 (dotted lines)) versus the radius r for turbu-
lent flows at Respeqr and s, as indicated.

ity flux [40]

(16)
7)

Jo, = r3(<uv/r>A(r) —v0-(V/T) A(r))
= Jconu + Jadv,
where A(r) stands for the averaging over the surface of a con-

centric cylinder at radius r. The both contributions, J.on, =
r3({uv/r) a(r) stands for the averaged convective and J, 4, =
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FIG. 13. (Color online) Variation with energies Variation with en-
ergies for flows at three parameters sets as presented in Fig. 12. (a)
A: Re; = 120, s, = 1.5. (b) B: Re; = 130, s, = 1.55. (c)
C: Re; = 150, s = 1.45. Shown are fop panel: Time series of
kinetic energy E;, and cross-flow energy E.; and bottom panel:
Space-time plots of the radial component of the cross-flow energy,
Eopr(r,t) = (u? + u2) (), averaged over the surfaces A of a con-
centric cylinder of radius r. Red (dark gray) [yellow (light gray)]
color indicates high (low) energy value

r3((uv/r) a(r) —v0,{v/r) 4(r)) for the advective, also called
molecular transport [35]. Finally, Jy = J,,/Jo, describes the
non-dimensionalized momentum flux, normalized by the an-
gular velocity flux for laminar (circular Couette flow) flow,
with Jo = (vr?r20,.((v(r;) /ri) — (v(10)/70)))-

We are going to consider three different parameter sets: A:
Re; = 120, Regpear = 226,67, s, = 1.5; B: Re; = 130,
Respear = 240, s, = 1.55; C: Re; = 150, Reshear =

12

266,67, s, = 1.45. Figure 12 shows the angular momen-
tum L(r) and the angular flux J(r)/.Jy for these three cases.
The turbulent dynamics seems to be quite similar, in particu-
lar L(r) only show small increase towards the outer cylinder
in the profiles for larger values Regpeqr. While J,q, 1s almost
identical for the three different parameter sets, Jg;y shows
the largest variations; .J,,, in particular its maximum, moves
outward for largest value Regpeqr. Compared toward classical
turbulent dynamics at usually significant larger Re [35, 41] the
profiles of the typical quantities .J,, for ferrofluidic turbulent
flows look different, in principle simpler (in the sense of less
disordered). They do not feature the typical large variations
and steepness close to the wall region. In fact they are much
‘smoother’. This suggest that ferrofluid turbulence is different
to the classical turbulence, e.g. similar to elasto-inertial tur-
bulence differ from the classical one. However, in the present
case with the very smooth profiles and relative low variation it
might be even better to talk from ‘mildly’ chaotic behavior in
ferrofluidic flows instead of using the very generic expression
ferrofluid turbulence. Moreover, it is important to mention,
that we are absolutely aware that here only three different sets
of parameters are considered. Further, future studies are nec-
essary and planed to verify these first results. However, these
three parameter sets already give a fairly good impression on
the turbulent/chaotic dynamics.

Finally regarding turbulent dynamics, we look at the cross-
flow energy, which usually has an important say on this mat-
ter, regarding turbulent motion. Figure 13 shows the variation
with time for the total kinetic energy Ey;, as the cross flow
energy E.; (Eq. (11)) together with the space-time plots of
E s ,(r,t) for three the parameter sets: A,B, and C. In gen-
eral the fluctuations and variations of either Ey;, and E.; are
in a similar range for all three parameter sets. Furthermore
E.; is about 30-40% smaller than Ey;, and mainly follows
the fluctuations of the last one.

Space-time plots of the cross-flow energy exhibit various
smaller localized strong peaks (indicated by the red (dark
gray) spots/bursts) regions, more or less homogeneously ar-
ranged over radius and time. However from time to time also
larger spots (a, ¢) appear indicating a more pronounced turbu-
lent characteristic. For classical turbulent dynamics the num-
ber of such spots is significant larger and in particular a larger
change is visible close to the cylinder walls. Thus, this and
the all in all the relatively smoothness of the space-time plots
also suggest that turbulence in ferrofluids differ from the clas-
sical one. The interaction of the applied magnetic field with
the ferrofluid particles hinders their free motion and therefore
smoothen the chaotic dynamics.

IV. SUMMARY AND CONCLUSION

We have analyzed numerically the ferrofluidic flow under
symmetry-breaking transversal magnetic field in an axial pe-
riodic short aspect ratio (I' = 2) and wide gap Taylor-Couette



system. For our numerical calculations, we used an approach
analogous to the model of Niklas et al. [8, 27] and studied
the variation of magnetic field strength s,. For any s, # 0
all flow states are inherent three dimensional and wavy-like
modulated (2-fold symmetry) due to the symmetry-breaking
nature of the transversal magnetic field [15, 17, 29]. We de-
tected several either steady and unsteady (time dependant)
flow structures with either one or two pair of vortices in the an-
nulus (in axial direction), corresponding to an axial wavenum-
berk =2mork =m.

In addition to these different types we found unsteady flip
solutions switching for a short time between these two char-
acteristic wavenumbers k = 27 — 7w — 2m. Such be-
havior presents a typical slow-fast dynamics in time depen-
dant systems. In the present study a permanent switch be-
tween two unstable solutions. The flip solutions itself are
found to be either 2-fold axisymmetric (natural/intrinsic due
to the symmetry-breaking effect of the transversal magnetic
field), 2-wTVF7_, toroidally structure, or incorporating heli-
cal m = %1 contributions, 1-wTVF3_, respectively. In both
scenarios the flip means a (short) temporal change in the ax-
ial wavenumber [wavelength] from 27 to 7 and back to 2,
which happens in a relative short time (about 1 diffusion time)
compared to the periodicity of the solutions. In fact four flips
describe one period of the solutions, respectively.

Furthermore, either 1-wTVF]_ and 2-wTVF7_ describe
complex solutions, living on 2-tori invariant manifolds. How-
ever the presents of an additional VLF makes their observa-
tion ‘squeeze’, e.g. phase portrait. In fact 1-wTVF3__ bifur-
cates out of 2-wTVF7_, when the helical +1 modes become
finite. Independent, which of the solutions, with increasing
field strength s, they both show an exponential increase in
its period time. When the 2-tori cease to exist both leave the
steady fixed point solution 2-wTVFs, behind.

Finally we investigated turbulent dynamics of such ferroflu-
idic flows, using three exemplary parameter sets with com-
parable shear Reynolds number Regpeq» and magnetic field
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strength s,. We find turbulence to appears either out of the
2-fold (due to s, # 0) basic state 2-AVF (subcriticle) or out
of an already former bifurcated solution (supercritical). Con-
sider characteristic quantities as cross flow energy E.s (about
30-40% smaller than E};,,), angular momentum L(r) and the
angular flux J(r) we showed that this low Reynolds number
turbulence in ferrofluidic flows differ from the classical, usu-
ally high Reynolds number turbulence. In particular the angu-
lar flux is much smoother and less steep close to the walls, and
the cross-flow energy also shows a quite homogeneous and
low (not many extreme bursts/outputs) over either time and ra-
dial expansion. Thus, this all let us speculate, that turbulence
in ferrofluids differ from the classical one. The origin is the in-
teraction of the applied magnetic field with the ferrofluid par-
ticles hinders their free motion and therefore smoothen typ-
ical chaotic dynamics. Aside this direct effect due to finite
applied field also the agglomeration of particles, chain for-
mation (elongational flow effects) and significant the material
properties of the used ferrofluid play a significant role.

Aside the her discussed mainly dominant axisymmetric
vortices, the existence of similar flip solution within heli-
cal flow states is questionable. However, their interaction
between non-axisymmetric itself and axisymmetric vs non-
axisymmetric would be very interesting and might give rise to
further complex dynamics in the ferrofluidic Taylor-Couette
flow.

SUPPLEMENTARY MATERIALS

See supplemententary materials for the complete spatio-
temporal evolution of either both flip solutions 1-wTVF3_,
1-wTVF7 and oscillating wavy solution 1-wTVFa ,,.
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Supplementary Materials to
“Non-linear dynamics and alterating ‘flip’ solutions in Ferrofluidic Taylor-Couette flow”
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Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria and
Department of Fisica Aplicada, Universitat Politecnica de Catalunya, 08034 Barcelona, Spain

Legends for videos in SM

e MovieAl:
MovieAl demonstrates the ‘flip” solution 1-wTVF7_ at Re; = 130, Re, = —100 and s, = 0.7. Top left: Radial velocity
u(0, z) on an unrolled cylindrical surface in the annulus at mid-gap [red (yellow) color indicates in (out) flow]. Top right:
Isosurfaces of the azimuthal vorticity n = 425 [red (yellow) color indicates positive (negative) vorticity]. Bottom right:
Contours of azimuthal velocity component v in the (r,6) plane at mid-height (viewed from the bottom). Thick black
arrows are highlighting the rotation direction of the inner cylinder.

e MovieA2:
MovieA2 demonstrates the ‘flip’ solution 2-wTVF5__ at Re; = 150, Re, = —100 and s, = 0.72. Top left: Radial velocity
u(6, z) on an unrolled cylindrical surface in the annulus at mid-gap [red (yellow) color indicates in (out) flow]. Top right:
Isosurfaces of the azimuthal vorticity n = 25 [red (yellow) color indicates positive (negative) vorticity]. Bottom right:
Contours of azimuthal velocity component v in the (r,6) plane at mid-height (viewed from the bottom). Thick black
arrows are highlighting the rotation direction of the inner cylinder.

e MovieA3:
MovieA3 demonstrates the ‘pulsing’ solution 1-wTVF%  at Re; = 150, Re, = —100 and s, = 1.38. Top left: Radial
velocity u(6, z) on an unrolled cylindrical surface in the annulus at mid-gap [red (yellow) color indicates in (out) flow].
Top right: Isosurfaces of the azimuthal vorticity = £120 [red (yellow) color indicates positive (negative) vorticity].
Bottom right: Contours of azimuthal velocity component v in the (r,8) plane at mid-height (viewed from the bottom).
Thick black arrows are highlighting the rotation direction of the inner cylinder.

*Electronic address: sebastian.altmeyer@ist.ac.at





