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First cycle games (FCG) are played on a finite graph by two players who push a token along the
edges until a vertex is repeated, and a simple cycle is formed. The winner is determined by some
fixed propertyY of the sequence of labels of the edges (or nodes) forming thiscycle. These games
are traditionally of interest because of their connection with infinite-duration games such as parity
and mean-payoff games.

We study the memory requirements for winning strategies of FCGs and certain associated infi-
nite duration games. We exhibit a simple FCG that is not memoryless determined (this corrects a
mistake inMemoryless determinacy of parity and mean payoff games: a simple proofby Björklund,
Sandberg, Vorobyov (2004) that claims that FCGs for whichY is closed under cyclic permutations
are memoryless determined). We show thatΘ(n)! memory (wheren is the number of nodes in the
graph), which is always sufficient, may be necessary to win some FCGs. On the other hand, we
identify easy to check conditions onY (i.e.,Y is closed under cyclic permutations, and bothY and
its complement are closed under concatenation) that are sufficient to ensure that the corresponding
FCGs and their associated infinite duration games are memoryless determined. We demonstrate that
many games considered in the literature, such as mean-payoff, parity, energy, etc., satisfy these con-
ditions. On the complexity side, we show (for efficiently computableY) that while solving FCGs is
in PSPACE, solving some families of FCGs is PSPACE-hard.

1 Introduction

First cycle games (FCGs) are played on a finite graph by two players who push a token along the edges
of the graph until a simple cycle is formed. Player 0 wins the play if the sequence of labels of the
edges (or nodes) of the cycle satisfies some fixed cycle property Y, and otherwise Player 1 wins. For
instance, if every vertex has an integer priority, the cyclepropertyY = cyc-Parity states that the largest
priority occurring on the cycle should be even. For a fixed cycle propertyY, we write FCG(Y) for the
family of games over all possible arenas with this winning condition. We are motivated by two questions:
Under what conditions onY is every game in FCG(Y) memoryless determined? What is the connection
between FCGs and infinite-duration games?
First cycle games. First, we give a simple example showing that first cycle games(FCGs) are not
necessarily memoryless determined, even ifY is closed under cyclic permutations (i.e., even if winning
depends on the cycle but not on how it was traversed), contrary to the claim in [2][Page 370]. We then
show that, for a graph withnnodes, whereas no winning strategy needs more than(n−1)! memory (since
this is enough to remember the whole history of the game), some FCGs require at leastΩ(n!) memory. To
complete the picture, we analyse the complexity of solving FCGs and show that it is PSPACE-complete.
More specifically, we show that if one can decide in PSPACE whether a given cycle satisfies the property
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84 First Cycle Games

Y, then solving the games in FCG(Y) is in PSPACE; and that even for a trivially computable cycle
propertyY (namely, that the cycle ends with the label 0), solving the games in FCG(Y) is PSPACE-hard.
First Cycle Games and Infinite-Duration Games.The main object used to connect FCGs and infinite-
duration games (such as parity games) is thecycles-decompositionof a path. Informally, a path is de-
composed by pushing the edges of the path onto a stack; as soonas a cycle is detected in the stack it is
popped and output, and the algorithm continues. We then say that a winning conditionW (such as the
parity or energy winning condition) isY-greedy onA if in the game on arenaA and winning condition
W, Player 0 is guaranteed to win if he ensures that every cycle in the cycles-decomposition of the play
satisfiesY, and Player 1 is guaranteed to win if she ensures that every cycle in the cycles-decomposition
does not satisfyY. We prove aTransfer Theorem:if W is Y-greedy onA , then the winning regions
in the following two games on arenaA coincide, and memoryless winning strategies transfer between
them: the infinite duration game with winning conditionW, and the FCG with winning conditionY.

To illustrate the usefulness of the concept of beingY-greedy, we instantiate the definition to well-
studied infinite-duration games: i) the parity winning condition (the largest priority occurring infinitely
often is even) isY-greedy on every arenaA whereY = cyc-Parity, ii) the mean-payoff condition (the
mean payoff is at leastν) is cyc-MeanPayoffν -greedy on every arenaA (wherecyc-MeanPayoffν =
average payoff is at leastν), and iii) for every arenaA with vertex setV, and largest weightW, the
energy condition stating that the energy level is always non-negative starting with initial creditW(|V|−1)
is cyc-Energy-greedy onA (wherecyc-Energy = the energy level is non-negative).

In order to prove memoryless determinacy of certain FCGs (and related infinite-duration games) we
generalise techniques used to prove that mean-payoff gamesare memoryless determined (Ehrenfeucht
and Mycielski [4]). Given a cycle propertyY, we first consider the infinite duration games ACG(Y) (all
cycles), and SCG(Y) (suffix all-cycles). A game in the family ACG(Y) requires Player 0 to ensure that
every cycle in the cycles-decomposition of the play (starting from the beginning) satisfiesY. A game
in the family SCG(Y) requires Player 0 to ensure that every cycle in the cycles-decomposition ofsome
suffixof the play satisfiesY. As was done in [4], reasoning about infinite and finite duration games is
intertwined – in our case, we simultaneously reason about games in FCG(Y) and SCG(Y). We define
a property of arenas, which we callY-unambiguous, and prove aMemoryless Determinacy Theorem: a
game from FCG(Y) whose arenaA isY-unambiguous is memoryless determined. Combining this with
the Transfer Theorem above, we also get that ifA is Y-unambiguous, then any game with a winning
conditionW that isY-greedy onA , is memoryless determined1.

Although checking if an arena isY-unambiguous may not be hard, it has two disadvantages: it
involves reasoning about infinite paths and it involves reasoning about the arena whereas, in many cases,
memoryless determinacy is guaranteed by the cycle propertyY regardless of the arena (this is the case for
example withY = cyc-Parity). Therefore, we also provide easy to check ‘finitary’ sufficient conditions
on Y (namely thatY is closed under cyclic permutations, and bothY and its complement are closed
under concatenation) that ensureY-unambiguity of every arena, and thus memoryless determinacy for
all games in FCG(Y). We demonstrate the usefulness of these conditions by observing that typical cycle
properties are easily seen to satisfy them, e.g.,cyc-Parity,cyc-MeanPayoffν ,cyc-Energy.

We conclude by noting that, in particular, ifY is closed under cyclic permutations, and bothY and
its complement are closed under concatenation, then games with winning conditionW are memoryless
determined on every arenaA for which W is Y-greedy onA . As noted above, for many winning

1TakingY to becyc-GoodForEnergy (defined to be that either the energy level is positive, or it is zero and the largest priority
occurring is even) and noting that for every arenaA we have: i)A is Y-unambiguous and, ii) the game in ACG(Y) overA is
Y-greedy onA ; we obtain a proof of [3][Lemma 4] that no longer relies on theincorrect result from [2].
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conditionsW (such as mean-payoff, parity, and energy winning conditions) it is easy to find a cycle
propertyY satisfying the mentioned closure conditions, and for whichW is Y-greedy on the arena of
interest. This provides an easy way to deduce memoryless determinacy of these classic games.
Related work. As just discussed, this work extends [4], finds a counter-example to a claim in [2],
and supplies a proof of a lemma in [3]. Conditions that ensure(or characterise) which games have
memoryless strategies appear for example in [1, 5, 6]. However, all of these deal with infinite duration
games and do not exploit the connection to finite duration games.

Due to space limitations, proofs appear in the full version of the article.

2 Definitions

In this paper all games are two-player turn-based games of perfect information played on finite graphs.
The players are called Player 0 and Player 1.
Arena An arenais a labeled directed graphA = (V0,V1,E,U,λ ) where

1. V0 andV1 are disjoint sets of vertices of Player 0 and Player 1, respectively; the set of vertices of
the arenaV :=V0∪V1 is non-empty.

2. E ⊆V ×V is a set of edges with no dead-ends (i.e., for everyv∈V there is some edge(v,w) ∈ E);

3. U is a set of possible labels.

4. λ : E → U is a labeling function, used by the winning condition.

Typical choices forU areR andN. Games in which vertices are labeled instead of edges can be
modeled by ensuringλ (v,w) = λ (v,w′) for all v,w,w′ ∈V. Similarly, games in which vertices are labeled
by elements ofU′ and edges are labeled by elements ofU

′′ can be modeled by labeling edges by elements
of U′×U

′′. As usual, ifu= e1e2 · · · is a (finite or infinite) sequence of edges in the arena, we write λ (u)
for the string of labelsλ (e1)λ (e2) · · · .
Plays and strategiesA playπ = π0,π1, . . . in an arena is an infinite2 sequence overV such that(π j ,π j+1)∈
E for all j ∈ N. The nodeπ0 is called thestartingnode of the play. We denote the set of all plays in the
arenaA by plays(A ). A strategyfor Playeri is a functionS: V∗Vi →V such that ifu∈V∗ andv∈Vi

then(v,S(uv)) ∈ E. A strategyS for Playeri is memorylessif S(uv) = S(u′v) for all u,u′ ∈V∗,v ∈ Vi .
A play π is consistentwith S, whereS is a strategy for Playeri, if for every j ∈ N such thatπ j ∈Vi , it
is the case thatπ j+1 = S(π0 · · ·π j). A strategyS for Playeri is generated by a Moore machineif there
exists a finite setM of memory states, aninitial state mI ∈ M, amemory updatefunctionδ : V×M → M,
and anext-move functionρ : V ×M → V such that ifu = u0u1 · · ·ul is a prefix of a play withul ∈ Vi

thenS(u) = ρ(ul ,ml ) whereml is defined inductively bym0 = mI andmi+1 = δ (ui ,mi). A strategyS
is finite-memoryif it is generated by some Moore machine. A strategyS uses memory at most kif it is
generated by some Moore machine with|M| ≤ k. A strategyS uses memory at least kif every Moore
machine generatingShas|M| ≥ k.
Games, Winning Conditions, and Memoryless DeterminacyA gameis a pair(A ,O) whereA =
(V0,V1,E,U,λ ) is an arena andO⊆ plays(A ) is anobjective(usually induced by the labeling). If either
V0 or V1 is empty, then the game(A,O) is called asolitaire game. A play π in a game(A ,O) is won by
Player0 if π ∈ O, andwon by Player1 otherwise. A strategyS for Playeri is winning starting from a
node v∈V if every playπ that starts fromv and is consistent withS is won by Playeri.

2For simplicity, we consider plays of both finite and infinite duration games to be infinite. However, in a finite duration game
(and thus in any FCG) the winner is determined by a finite prefixof the play, and the moves after this prefix are immaterial.
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A winning conditionis a setW ⊆ U
ω . If W is a winning condition andA is an arena, the objective

OW(A ) induced byW is defined as follows:OW(A ) = {v0v1v2 · · · ∈ plays(A ) | λ (v0,v1)λ (v1,v2) · · · ∈
W}. Here are some standard winning conditions:

• Theparity conditionPARITY consists of those infinite sequencesc1c2 · · · ∈N
ω such that the largest

label occurring infinitely often is even.

• Forν ∈ R, theν-mean-payoff conditionconsists of those infinite sequencesc1c2 · · · ∈ R such that
limsupk→∞

1
k ∑k

i=1ci is at leastν .

• Theenergy conditionfor a giveninitial credit r ∈N, written ENERGY(r), consists of those infinite
sequencesc1c2 · · · ∈ Z

ω such thatr +c1+ · · ·+ck ≥ 0 for all k≥ 1.

• Theenergy-parity conditionENERGY-PARITY (r) is defined as consisting of(c1,d1)(c2,d2) · · · ∈
N×Z such thatc1c2 · · · is in PARITY andd1d2 · · · is in ENERGY(r).

The (memoryless) winning regionof Player i is the set of verticesv ∈ V such that Playeri has a
(memoryless) winning strategy starting fromv. A game ispointwise memoryless for Player iif the
memoryless winning region for Playeri coincides with the winning region for Playeri. A game is
uniform memoryless for Player iif there is a memoryless strategy for Playeri that is winning starting
from every vertex in that player’s winning region.

A game isdeterminedif the winning regions partitionV. A game ispointwise memoryless determined
if it is determined and it is pointwise memoryless for both players. A game isuniform memoryless
determinedif it is determined and uniform memoryless for both players.
Cycles-decompositionA cyclein an arenaA is a sequence of edges(v1,v2)(v2,v3) · · · (vk−1,vk)(vk,v1).

Define an algorithm that processes a playπ ∈ plays(A ) and outputs a sequence of cycles: at step
0 start with empty stack; at stepj push the edge(π j ,π j+1), and if for somek, the topk edges on the
stack form a cycle, this cycle is popped and output, and the algorithm continues to stepj + 1. The
sequence of cycles output by this algorithm is called thecycles-decomposition ofπ, and is denoted
by cycles(π). The first cycle ofπ is the first cycle incycles(π). For example, ifπ = vwxwvs(xyz)ω ,
thencycles(π) = (w,x)(x,w),(v,w)(w,v),(x,y)(y,z)(z,x),(x,y)(y,z)(z,x), . . ., and the first cycle ofπ is
(w,x)(x,w).Note thatcycles(π) is such that at most|V|−1 edges ofπ do not appear in it (i.e, they are
pushed but never popped – like the edge(v,s) in the example above). As we show in the full version, this
allows one to reason, for instance, about the initial creditproblem for energy games (cf. [3]).
Cycle propertiesA cycle propertyis a setY ⊆U

∗, used later on to define winning conditions for games.
Here are some cycle properties that we refer to in the rest of the article:

1. Letcyc-EvenLen be those sequencesc1c2 · · ·ck ∈U
∗ such thatk is even.

2. Letcyc-Parity be those sequencesc1 · · ·ck ∈ N
∗ such that max1≤i≤k ci is even.

3. Letcyc-Energy be those sequencesc1 · · ·ck ∈ Z
∗ such that∑k

i=1 ci ≥ 0.

4. Letcyc-GoodForEnergy be those sequences(c1,d1) · · · (ck,dk)∈ (N×Z)∗ such that either∑k
i=1 di >

0, or both∑k
i=1 di = 0 andc1 · · ·ck ∈ cyc-Parity.

5. Letcyc-MeanPayoffν be those sequencesc1 · · ·ck ∈ R
∗ such that1k ∑k

i=1 ci ≤ ν , for someν ∈R.

6. Letcyc-MaxFirst be those sequencesc1 · · ·ck ∈ N
∗ such thatc1 ≥ ci for all 1≤ i ≤ k.

7. Letcyc-EndsZero be those sequencesc1 · · ·ck ∈ N
∗ such thatck = 0.

If Y ⊆ U
∗ is a cycle property, write¬Y for the cycle propertyU∗ \Y. We isolate two important classes

of cycle properties (the first is inspired by [2]):
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1. Say thatY is closed under cyclic permutationsif ab∈Y impliesba∈Y, for all a∈ U,b∈ U
∗.

2. Say thatY is closed under concatenationif a∈Y andb∈Y imply thatab∈Y, for all a,b∈ U
∗.

Note that the cycle properties 1-5 above are closed under cyclic permutations and concatenation; and
that¬cyc-EvenLen is closed under cyclic permutations but not under concatenation.
First Cycle Games (FCGs)Given a cycle propertyY ⊆ U

∗, and an arenaA = (V0,V1,E,U,λ ), let the
objectiveOFCG(Y)(A )⊆ plays(A ) be such thatπ ∈ OFCG(Y)(A ) iff λ (u) ∈Y whereu is thefirst cycle
in the cycles-decomposition ofπ. The family FCG(Y) of first cycle games of Yconsists of all games of
the form(A,OFCG(Y)(A )) whereA is an arena with labels inU. For instance, FCG(cyc-Parity) consists
of those games such that Player 0 wins iff the largest label occurring on the first cycle is even.3

3 Finite Duration Cycle Games (on being first)

In this section we analyse the memory required for winning strategies in first cycle games, and the
complexity of solving these games. We begin by correcting a mistake in [2].

Proposition 1. There exists a cycle property Y closed under cyclic permutations and a game inFCG(Y)
that is not pointwise memoryless determined.

To see this, consider a game where Player 1 chooses from{a,b} and Player 0 must match the choice.
This clearly requires Player 0 to have memory. The claim follows by simply encoding this game as
a FCG. For example, let the cycle-propertyY be cyc-EvenLen, let the vertex set be{v1,v2,v3,v4}, let
V0 = {v1}, and let the edges be{(v1,v2),(v2,v1),(v1,v3),(v3,v2),(v2,v4),(v4,v1)}.

We now consider the difference between pointwise and uniform memoryless determinacy of FCGs.

Theorem 1. 1. Solitaire FCGs are pointwise memoryless determined.

2. There is a solitaire FCG that is not uniform memoryless determined.

3. If cycle property Y is closed under cyclic permutations, and a game fromFCG(Y) is pointwise
memoryless for Player i, then that game is uniform memoryless for Player i.

Proposition 2. 1. For a FCG on an arena with n vertices, if Player i wins from v,then every winning
strategy for Player i starting from v uses memory at most(n−1)!.

2. For every n there exists a FCG on an arena with3n+1 vertices, and a vertex v, such that every
winning strategy for Player0 starting from v uses memory at least n!.

The first item is immediate since(n−1)! is enough to remember the whole history of the game up
to the point a cycle is formed. The proof of the second item is by showing a game where Player 1 can
“weave” any possible permutation ofn nodes, whereas in order to win Player 0 must remember this
permutation. The construction is in the full version of the paper.

Finally, we analyse the complexity of solving FCGs with efficiently computable cycle properties.

Theorem 2. 1. If Y is a cycle property for which solving membership is in PSPACE, then the problem
of solving games inFCG(Y) is in PSPACE.

2. The problem of solving games inFCG(cyc-EndsZero) is PSPACE-complete.

3Formally, then, first cycle games are of infinite duration, although the winner is determined after the first cycle appearson
the play.
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Sketch.For the first item, observe that solving the game amounts to evaluating the finite AND-OR tree
obtained by unwinding the arena into all possible plays, up to the point on each play where a cycle is
formed; nodes belonging to Player 0 are ’or’ nodes, nodes belonging to Player 1 are ’and’ nodes, and a
leaf is marked by ’true’ iff the cycle formed on the way to it isin Y. Since this tree has depth at mostn
(the size of the arena), and since we assumed membership inY is in PSPACE, marking the leaves can be
done in PSPACE. So evaluating the tree can be done in PSPACE.

For the second item, note that Generalised Geography can be thought of as a first cycle game in
which Playeri nodes are labeled byi, andY = cyc-EndsZero. Note that computingY is computationally
trivial, but solving Generalised Geography is PSPACE-hard(see for instance [7][Theorem 8.11]).

4 Infinite Duration Cycle Games

4.1 On being greedy

We start by defining two types of infinite duration games called theAll-Cyclesand theSuffix All-Cycles
games, whose winning condition is derived fromY. Informally, All-Cycles games are games in which
Player 0 wins iff all cycles in the cycles-decomposition of the play are inY, and Suffix All-Cycles Games
are games in which Player 0 wins iff all cycles in the cycles-decomposition ofsome suffixof the play
are inY. Formally, for arenaA = (V0,V1,E,U,λ ) and cycle propertyY ⊆ U

∗, we define two objectives
O⊆ plays(A ) and corresponding families of games as follows:

1. π ∈ OACG(Y)(A ) :if λ (u) ∈Y for all cycles uin cycles(π).

2. π ∈ OSCG(Y)(A ) :if somesuffixπ ′ of π satisfies thatλ (u) ∈Y for all cyclesu in cycles(π ′). 4

Define the corresponding families of games:

1. The family ACG(Y) of all-cycles games of Yconsists of all games of the form(A ,OACG(Y)(A )).

2. The family SCG(Y) of suffix all-cycles games of Yconsists of all games of the form(A ,OSCG(Y)(A )).

Definition 1. Say that agame(A ,O) isY-greedyif OACG(Y)(A )⊆O and OACG(¬Y)(A )⊆Vω \O. Say
that awinning conditionW isY-greedy on arenaA if the game(A ,OW) is Y-greedy.

Intuitively, W beingY-greedy onA means that Player 0 can win the game on arenaA with winning
conditionW if he ensures that every cycle in the cycles-decomposition of the play is inY, and Player 1
can win if she ensures that every cycle in the cycles-decomposition of the play is not inY.

For instance, the winning condition PARITY (the largest priority occurring infinitely often is even)
is cyc-Parity-greedy on every arenaA , theν-mean-payoff condition (the limsup average is at leastν)
is cyc-MeanPayoffν -greedy on every arenaA , and the energy condition (stating that the energy level is
always non-negative starting with initial creditW(|V|−1), whereW is the largest weight andV are the
vertices of the arenaA ) is cyc-Energy-greedy onA .

Theorem 3(Transfer). Let (A ,O) be a Y-greedy game, and let i∈ {0,1}.

1. The winning regions for Player i in the games(A ,O) and(A ,OFCG(Y)(A )) coincide.

2. For every memoryless strategy S for Player i starting fromv in arenaA : S is winning in the game
(A ,O) if and only if S is winning in the game(A ,OFCG(Y)(A )).

4Note that this isnot the same as saying thatλ (u)∈Y for all but finitely many cyclesu in cycles(π). For instance, letY be the
property that the cycle has odd length, and takeπ := (v1v2v1v3v2v4)

ω . Note that i) decomposing the suffixπ ′ starting with the
second vertex results in all cycles having odd length, and ii) it is not the case that almost all cycles in the cycles-decomposition
of π have odd length (in fact, they all have even length).
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Corollary 1. Let W be Y-greedy on arenaA . Then the game(A ,OW) is determined, and is point-
wise (uniform) memoryless determined if and only if the game(A ,OFCG(Y)(A )) is pointwise (uniform)
memoryless determined.

4.2 On being unambiguous

Definition 2. An arenaA is Y-unambiguousif OSCG(Y)(A )∩OSCG(¬Y)(A ) = /0.

Lemma 1. If A is Y-unambiguous then the game(A ,OSCG(Y)(A )) is Y -greedy.

Theorem 4(Memoryless Determinacy). If arenaA is Y -unambiguous, then the game(A ,OFCG(Y)(A ))
is pointwise memoryless determined. If Y is also closed under cyclic permutations, then this game is
uniform memoryless determined.

It is of interest to note that the proof of this theorem is a generalisation of the proof used in [4] for
showing memoryless determinacy of mean-payoff games. As in[4], our proof reasons about infinite
plays. More specifically, we obtain from Theorem 3 and Lemma 1that the winning regions of each
player in the games(A ,OSCG(Y)(A )) and(A ,OFCG(Y)(A )) coincide, and then go on and use this fact
to derive memoryless strategies for the game(A ,OFCG(Y)(A )).

Corollary 2. Suppose arenaA is Y-unambiguous.

1. If (A ,O) is Y -greedy, then the game(A ,O) is pointwise memoryless determined.

2. The games(A ,OSCG(Y)(A )) and(A ,OACG(Y)(A )) are pointwise memoryless determined.

If in addition Y is closed under cyclic permutations, then these game are uniform memoryless determined.

Proof. For the first item combine Theorems 3 and 4. For the second, useLemma 1 and the fact that
(A ,OACG(Y)(A )) is alwaysY-greedy. For the final statement apply Theorem 1 item 3.

We now provide a simple sufficient condition onY — that does not involve reasoning about cycles-
decompositions of infinite paths — that ensures that every arenaA is Y-unambiguous:

Theorem 5. Let Y⊆ U
∗ be a cycle property. If Y is closed under cyclic permutations5, and both Y and

¬Y are closed under concatenation, then every arenaA is Y-unambiguous.

It is easy to check that the following cycle properties satisfy the hypothesis of Theorem 5:cyc-Parity,
cyc-Energy, cyc-MeanPayoffν , andcyc-GoodForEnergy. On the other hand,¬cyc-EvenLen is not closed
under concatenation, whereascyc-MaxFirst is not closed under cyclic permutations.

We conclude with the main result of this section:

Corollary 3. Suppose Y is closed under cyclic permutations, and both Y andits complement are closed
under concatenation. Then the following games are uniform memoryless determined for every arenaA :
(A ,OW) if W is Y -greedy onA , (A ,OSCG(Y)(A )), and(A ,OACG(Y)(A )).

We believe that Corollary 3 provides a practical and easy wayof deducing that many infinite dura-
tion games are uniform memoryless determined, as follows: exhibit a cycle propertyY that is closed
under cyclic permutations and bothY and¬Y are closed under concatenation, such that the winning
conditionW is Y-greedy on the arenaA of interest. Finding such aY is usually easy since it is sim-
ply a ‘finitary’ version of the winning conditionW. For example, uniform memoryless determinacy of
parity games, mean-payoff games, and energy-games, can easily be deduced by considering the cycle
propertiescyc-Parity, cyc-MeanPayoffν , andcyc-Energy.

5It may be worth noting thatY is closed under cyclic permutations iff so is¬Y.
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