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Abstract. Shape analysis is a promising technique to prove program properties
about recursive data structures. The challenge is to automatically determine the
data-structure type, and to supply the shape analysis with the necessary infor-
mation about the data structure. We present a stepwise approach to the selection
of instrumentation predicates for a TVLA-based shape analysis, which takes us
a step closer towards the fully automatic verification of data structures. The ap-
proach uses two techniques to guide the refinement of shape abstractions: (1) dur-
ing program exploration, an explicit heap analysis collects sample instances of
the heap structures, which are used to identify the data structures that are manip-
ulated by the program; and (2) during abstraction refinement along an infeasible
error path, we consider different possible heap abstractions and choose the coars-
est one that eliminates the infeasible path. We have implemented this combined
approach for automatic shape refinement as an extension of the software model
checker BLAST. Example programs from a data-structure library that manipulate
doubly-linked lists and trees were successfully verified by our tool.

1 Introduction

Proving the safety of programs that use dynamically-allocated data structures on the
heap is a major challenge due to the difficulty of finding appropriate abstractions. For
cases where the correctness property intimately depends on the shape of the data struc-
ture, researchers have over the last decade designed abstractions that are collectively
known as shape analysis. One approach that has been particularly successful is based
on the representation of heaps by three-valued logical structures [17]. The abstraction
is specified by a set of predicates over nodes (unary and binary) representing core facts
(e.g., points-to and field predicates) and derived facts (e.g., reachability). The latter
category of predicates is called instrumentation predicates. Instrumentation predicates
are crucial to control the precision of the analysis. First, they can keep track of rele-
vant properties; second, they allow for more precise successor computations; and third,
when used as abstraction predicates, they can control node summarization.
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In our previous work, we combined shape analysis with an automatic abstraction-
refinement loop [4]. If a chosen abstraction is too coarse to prove the desired correctness
property, a spurious counterexample path is identified, i.e., a path of the abstract pro-
gram which witnesses a violation of the property but has no concrete counterpart. We
analyzed such counterexample paths in order to determine a set of additional pointers
and field predicates which, when tracked by the abstraction, remove the spurious coun-
terexample. These core predicates are then added to the analysis, and a new attempt is
made at proving the property. A main shortcoming of that work is that the refinement
loop never automatically discovers the shape class (e.g., doubly-linked list, binary tree)
that is suitable for proving the desired property, and it never adds new instrumentation
predicates to the analysis. Consequently, programs can only be verified if all necessary
shape classes and instrumentation predicates are “guessed” by the verification engineer
when an abstraction is seeded. In the absence of such a correct guess, the method will
iteratively track more and more core predicates, until either timing out or giving up
because no more relevant predicates can be found.

In this work, we focus on the stepwise refinement of a TVLA-based shape analysis by
automatically increasing the precision of the shape classes via instrumentation predi-
cates. Suppose that counterexample analysis (e.g., following [4]) indicates that we need
to track the heap structure to which a pointer p points, in order to verify the program.
We can encounter two situations: (1) we do not yet track p and we do not know to which
kind of data structure p points; or (2) we already track the shape of the heap structure to
which p points but the tracked shape class is too coarse and may lack some necessary
instrumentation predicates. We address situation (1) by running an explicit heap analy-
sis in order to identify the shape of the data structure from samples, and situation (2) by
selecting the coarsest refinement from a lattice of plausible shape classes. Our imple-
mentation provides such plausible shape classes by default for standard data structures
like lists and trees, but also supports a flexible way to extend the existing shape classes.

Example. We illustrate our method on a simple program that manipulates doubly-linked
lists (cf. Fig. 1(a)). First, two (acyclic) doubly-linked lists of arbitrary length are gen-
erated (alloc list); then the two lists are concatenated; finally, the program checks
if the result is a valid doubly-linked list (assert dll). Our algorithm automatically
verifies that no assertion in this program is violated. The algorithm starts with a trivial
abstraction, where no predicates are tracked, and the reachability analysis using this ab-
straction finds an abstract error path. The algorithm checks whether this abstract error
path corresponds to a concrete error path of the program by building a path formula (i.e.,
a formula which is satisfiable iff the path is a concrete error path). The path formula of
the first abstract error path is unsatisfiable; therefore, this is an infeasible error path (also
called spurious counterexample), and the abstraction is refined using an interpolation-
guided refinement process. The following atoms occur in interpolants for the first path
formula: pointer equalities among l1, l2, and p; l1->succ = p; and l2->pred
= p. Since the interpolants mention pointers of a recursive data structure, we need to
observe them via a shape analysis tracking l1, l2, and p (and their aliases).

But it is not enough to know which pointers to analyze; we also need to know their
data structures, in order to determine the shape abstraction (so-called shape class), be-
cause different data structures require different instrumentation predicates. Since it is
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1 typedef struct node {
2 int data;
3 struct node *succ, *prev;
4 } *List;
5 List alloc_list() {
6 List r = (List) malloc(...);
7 List p = r;
8 if (r == 0) exit(1);
9 while (*) {

10 List t = (List) malloc(...);
11 if (t == 0) exit(1);
12 p->succ = t; t->pred = p;
13 p = p->succ;
14 }
15 return r;
16 }
17 void assert_dll(List p) {
18 while ((p != 0) && (p->succ != 0)) {
19 assert(p->succ->pred == p);
20 p = p->succ;
21 }
22 }
23 void main() {
24 List l1 = alloc_list();
25 List l2 = alloc_list();
26

27 List p = l1;
28 while (p->succ != 0) p = p->succ;
29 p->succ = l2; l2->pred = p;
30

31 assert_dll(l1);
32 }

(a) Example C program
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Fig. 1. Example program, two list abstractions, and hierarchy of data structures

the first time we encounter this data structure, our algorithm uses an explicit heap anal-
ysis to collect explicit heap samples that would occur during program execution. We
graphically illustrate an explicit heap that is collected by the explicit heap analysis in
Fig. 1(b). A node (rectangle with three boxes) represents one structure element; the first
box represents the integer value for the field data; the second and third box represent
the pointer values of the fields succ and prev, respectively. An arrow represents a
pointer valuation. A symbol � in a box represents an unknown value. When a threshold
is hit (e.g., once we have collected explicit heaps with at least 5 nodes each), we stop
the explicit heap analysis, and extract the shape class from the explicit heap samples
by checking which data structure invariants they satisfy. In the example heap, all nodes
satisfy the invariant for acyclic singly-linked lists for each field individually, and the
invariant for doubly-linked lists (for every node n, the predecessor of the successor of n
is n itself), but not the invariant for binary trees (acyclic graph formed by the two field
pointers). Knowing that the data structure is not a tree, and because both fields pred
and succ occur in interpolants, we restrict the search for a shape abstraction to those
suitable for doubly-linked lists. We refine the shape abstraction by choosing the coarsest
shape class for doubly-linked lists, i.e., in addition to points-to predicates, we track two
binary predicates for the fields pred and succ, and no instrumentation predicates.

The refined abstraction is still not fine enough to prove the program safe, because we
find a new abstract error path. Its path formula is unsatisfiable, but the interpolant-based
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analysis of the abstract error path does not yield any new predicates. Therefore, we have
to search for a finer shape class that contains instrumentation predicates as well. From
the previous analysis we know that we have a doubly-linked list. We use a binary search
to find, in the given lattice, the coarsest abstraction specification that eliminates the ab-
stract error path. In our example, the tool discovers the necessity to track the unary in-
strumentation predicates cancel [succ,pred] and cancel [pred,succ] in addition to
previously tracked predicates. For a node v, the predicate cancel [f1, f2](v) holds if the
following condition is fulfilled: if the field f1 of an element represented by v points to an
element represented by some node v′, then the field f2 of the element represented by v′

points back to the element represented by v. After this last refinement step, the abstract
reachability analysis proves that no assertion is violated. Figure 1(c) shows a shape
graph that is reachable at the entry point of function assert dll. A node represents a
single structure element, and a summary node (drawn as a double circle) represents one
or more structure elements. Unary predicate valuations are represented by arrows (or
the absence of arrows) from predicates to nodes; binary predicate valuations are repre-
sented by arrows between nodes, labeled with the predicate. We can observe that the
instrumentation predicates cancel [succ,pred] and cancel [pred,succ] have a val-
uation of 1 for all nodes in the data structure. Due to the information carried by those
instrumentation predicates, we are able to prove the program safe.

Related Work. Counterexample-guided abstraction refinement (CEGAR) [7] is used in
several predicate-abstraction based verifiers [6,1,3]. Attempts to apply CEGAR to other
abstract domains exist. For instance, Gulavani and Rajamani proposed CEGAR-based
widening operators in the general context of abstract interpretation [9]. Refinement of
shape analysis in particular has also been studied: Loginov et al. proposed a technique
to learn new instrumentation predicates from imprecise verification results [13]. In our
previous work [4], we studied how to combine nullary predicate abstraction and shape
analysis, and how to refine shape analysis by discovering new core predicates.

Our current work is also in the tradition of combining symbolic and explicit analy-
ses for program verification. In particular, combinations of symbolic abstraction meth-
ods with concrete program execution (testing) to build safety proofs have received
much attention recently. Such techniques have been applied in the context of predi-
cate abstraction-based model checkers to accelerate the state construction and guide the
refinement [8,2,12,18], and in the context of constraint-based invariant generation [10].
We explored in previous work the use of precision adjustment to switch between explicit
and symbolic steps during a reachability analysis [5]. To the best of our knowledge, no
existing technique uses explicit heaps to guide the refinement of a shape abstraction.

2 Preliminaries

2.1 Programs

In this exposition, we consider flat programs (i.e., programs with a single function).
Our tool implementation supports interprocedural analysis [15, 11, 16]. We formalize
programs using control-flow automata. A control-flow automaton (CFA) is a directed,
labeled graph (L, E), where the set L of nodes represents the control locations of the
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program (program-counter values), and the set E ⊆ L × Ops × L of edges represents
the program transfers. Each edge is labeled with a program operation that can be either
an assignment or an assume predicate. The program operations are based on a set X
of identifiers to identify program variables, and a set F of identifiers to identify fields.
Variable identifiers and field identifiers can be either of type integer (denoted by int)
or of type pointer to a (possibly recursive) structure (denoted by a C struct type). A
structure is a set of field identifiers. We use a C-like syntax to denote program opera-
tions; in particular, p->field denotes the content of the field field in the structure pointed
to by variable p. A program (G, l0 ) consists of a CFA G = (L, E) and an initial control
location l0 ∈ L. A program path t of length n is a sequence (op1 : l1); . . . ; (opn : ln)
of operations, such that (li−1, opi, li) ∈ E for all 1 ≤ i ≤ n. A program path is feasible
if there exists a concrete program execution with matching locations. The verification
problem (G, l0 , lerr ) is constituted by a program (G, l0 ) and an error location lerr . The
answer to the verification problem is SAFE if there exists no feasible path t that ends
in location lerr , and UNSAFE otherwise. In the following two subsections we present
the two abstract domains that our model-checking algorithm uses to compute an over-
approximation of reachable states: explicit-heap abstraction and shape abstraction.

2.2 Explicit-Heap Abstraction

Explicit heap analysis stores concrete instances of data structures in its abstract states.
Each abstract state represents an explicit, finite part of the memory. An abstract state
H = (v, h) of explicit heap analysis consists of the following two components: (1) the
variable assignment v : X → Z� is a total function that maps each variable identifier
(integer or pointer variable) to an integer (representing an integer value or a structure
address) or the special value � (representing the value ’unknown’); and (2) the heap
assignment h : Z ⇀ (F → Z�) is a partial function that maps every valid structure ad-
dress to a field assignment, also called structure cell (memory content). A field assign-
ment is a total function that maps each field identifier of the structure to an integer, or the
special value �. We call H an explicit heap. The initial explicit heap H0 = (v0, ∅), with
v0(x) = � for every program variable x, represents all program states. Given an explicit
heap H and a structure address a, the depth of H from a, denoted by depth(H, a), is
defined as the maximum length of an acyclic path whose nodes are addresses and where
an edge from a1 to a2 exists if h(a1)(f) = a2 for some field f , starting from v(a). The
depth of H , denoted by depth(H), is defined as maxa∈X depth(H, a).

The explicit-heap abstraction is a mapping Θ : L → 2X , which assigns to each
program location a subset of variables from X . Only the variables in the subset are
tracked by the explicit heap analysis, i.e., the variable assignment of an abstract heap at
location l maps every variable not in Θ(l) to �. The abstract post operator reflects the
effect of applying an operation on the explicit heap, provided it affects a data structure
pointed to by a variable in the explicit-heap abstraction. Figure 1(b) graphically depicts
an explicit heap (v, h) with v = {l1 �→ 1} and h = {1 �→ {data �→ �, prev �→ 0, succ �→
2}, 2 �→ {data �→ �, succ �→ 3, prev �→ 1}, 3 �→ {data �→ �, succ �→ 4, prev �→ 2}, 4 �→
{data �→ �, succ �→ 5, prev �→ 3}, 5 �→ {data �→ �, prev �→ 4, succ �→ 0}}.
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2.3 Shape Abstraction

Shape abstraction symbolically represents instances of data structures in its abstract
states. We use a shape abstraction that is based on three-valued logic [17]. The notions
of shape class, tracking definition, and shape-class generator are taken from lazy shape
analysis [4]. We model the memory content by a set V of heap nodes. Each heap node
represents one or more structure cells. Properties of the heap are encoded by predicates
over nodes. The number of nodes that a predicate constrains is called the arity of the
predicate, e.g., a predicate over one heap node is called unary predicate and a predicate
over two heap nodes is called binary predicate. A shape class S = (Pcore , Pinstr , Pabs)
consists of three sets of predicates over heap nodes: (1) a set Pcore of core predicates,
(2) a set Pinstr of instrumentation predicates with Pcore ∩ Pinstr = ∅, where each
instrumentation predicate p ∈ Pinstr has an associated defining formula ϕp over pred-
icates, and (3) a set Pabs ⊆ Pcore ∪ Pinstr of abstraction predicates [17]. We denote
the set of shape classes by S. A shape class S refines a shape class S

′, written S � S
′,

if (1) P ′
core ⊆ Pcore , (2) P ′

instr ⊆ Pinstr , and (3) P ′
abs ⊆ Pabs . The partial order �

induces a lattice of shape classes. We require the set Pcore of core predicates to con-
tain the (special) unary predicate sm. For a heap node v, the predicate sm(v) has the
value false if v represents exactly one structure cell, and the value 1/2 if v represents
one or more structure cells. In the latter case, the heap node is called summary node. In
the following, we make use of the following two families of core predicates. A points-
to predicate ptx (v) is a unary predicate that is true if pointer variable x points to a
structure cell that is represented by v, and false otherwise. A field predicate fdφ(v) is a
unary predicate that is true if field assertion φ holds for all structure cells that are rep-
resented by heap node v, and false otherwise. A field assertion is a predicate over the
field identifiers of a structure. Therefore, field predicates represent the data content of a
structure, rather than the shape of the structure. A shape graph s = (V, val ) for a shape
class S = (Pcore , Pinstr , Pabs) consists of a set V of heap nodes and a valuation val in
three-valued logic of the predicates of S: for a predicate p ∈ Pcore ∪ Pinstr of arity n,
val(p) : V n → {0, 1, 1/2}.

The shape abstraction is a function Ψ : L → 2S that maps each control location to a
set of shape classes (different shape classes can be used to simultaneously track different
data structures). The Ψ -abstraction, i.e., the result of applying a shape abstraction Ψ , is
an abstract state, called shape region. A shape region G = {(S1, S1), ..., (Sn, Sn)}
consists of a set of pairs (Si, Si) where Si is a shape class and Si is a set of shape
graphs for Si. The abstract post operator for shape graphs is defined as in TVLA [17].

Tracking definitions and shape-class generators. Instead of directly considering
shape classes, we separate two aspects of shape classes. First, a tracking definition pro-
vides information about which pointers and which field predicates need to be tracked on
a syntactic level. Second, given a tracking definition, a shape-class generator determines
which predicates are actually added to the shape class.

A tracking definition D = (T, Ts, Φ) consists of (1) a set T of tracked pointers,
which is the set of variable identifiers that may be pointing to some node in a shape
graph; (2) a set Ts ⊆ T of separating pointers, which is the set of variable iden-
tifiers for which we want the corresponding predicates (e.g., points-to, reachability)
to be abstraction predicates (i.e., precisely tracked, no value 1/2 allowed); and (3) a
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set Φ of field assertions. A tracking definition D = (T, Ts, Φ) refines a tracking def-
inition D′ = (T ′, T ′

s, Φ
′), if T ′ ⊆ T , T ′

s ⊆ Ts and Φ′ ⊆ Φ. We denote the set of all
tracking definitions by D. The coarsest tracking definition (∅, ∅, ∅) is denoted by D0.

A shape-class generator (SCG) is a function m : D → S that takes as input a track-
ing definition and returns a shape class, which consists of core predicates, instrumen-
tation predicates, and abstraction predicates. While useful SCGs contain points-to and
field predicates for pointers and field assertions from the tracking definition, and the
predicate sm, other predicates need to be added by appropriate SCGs. An SCG m refines
an SCG m′ (denoted by m 
 m′) if m(D) � m′(D) for every tracking definition D.
We require that the set of SCGs contains at least the coarsest element m0, which is a
constant function that generates for each tracking definition the shape class (∅, ∅, ∅).
Furthermore, we require each SCG to be monotonic: given an SCG m and two tracking
definitions D and D′, if D � D′, then m(D) � m(D′).

A shape type T = (σ, m, D) consists of a structure type σ, an SCG m, and a
tracking definition D. For example, consider the type struct node {int data;
struct node *succ;}; and the tracking definition D = ({l1, l2}, {l1}, {data =
0}). To form a shape type for a singly-linked list, we can choose an SCG that takes a
tracking definition D = (T, Ts, Φ) and produces a shape class S = (Pcore , Pinstr , Pabs)
with the following components: the set Pcore of core predicates contains the default
unary predicate sm for distinguishing summary nodes, a binary predicate succ for rep-
resenting links between nodes in the list, a unary points-to predicate for each variable
identifier in T , and a unary field predicate for each assertion in Φ. The set Pinstr of
instrumentation predicates contains for each variable identifier in T a reachability pred-
icate. The set Pabs of abstraction predicates contains all core and instrumentation pred-
icates about separating pointers from Ts. More precise shape types for singly-linked
lists can be defined by providing an SCG that adds more instrumentation predicates
(e.g., cyclicity).

A shape-abstraction specification is a function ̂Ψ that assigns to each control location
a set of shape types. The specification ̂Ψ defines a shape abstraction Ψ in the following
way: a pair (l, {T1, . . . , Tk}) ∈ ̂Ψ yields a pair (l, {S1, . . . , Sk}) ∈ Ψ with Si =
Ti.m(Ti.D) for all 1 ≤ i ≤ k. (We use the notation X.y to denote the component y

of a structure X .) Given a program P , the initial shape-abstraction specification ̂Ψ0 is
defined as the set {(σ, m0, D0) | σ is a structure type occurring in P}; the initial shape
region G0 consists of one pair (∅, ∅) for every shape type in ̂Ψ0. Region G0 does not
constrain the state space; it represents all program states.

3 Shape Analysis with Abstraction and Refinement

We introduce a new verification algorithm that is based on abstraction and refinement.
Shape types can be refined in two different ways: either we refine the shape type’s
tracking definition, or we refine the shape type’s SCG. In both cases, the resulting shape
class is guaranteed to be finer, because SCGs are monotonic. Previous work has shown
how tracking definitions can be refined, by extracting information from infeasible error
paths using interpolation [4]. Our approach is based on this algorithm, and proposes a
novel technique to refine SCGs, by combining information from two sources. The first
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source of information is explicit heaps and is used to restrict the refinement to SCGs that
are designed to support the kind of data structure (e.g., doubly-linked list, binary tree)
that the program manipulates. When we discover pointers to data structures for the first
time, we run an explicit heap analysis of the program until we encounter explicit heaps
with a depth that exceeds a given threshold. The explicit heaps that have been computed
are queried for data structure invariants, and are then abstracted to shape graphs. The
second source of information is infeasible error paths. We simulate shape analysis with
different SCGs along the path to determine the coarsest SCG that is able to eliminate
the infeasible path. A library of SCGs that supports standard data structures like lists
and trees is available in BLAST.

3.1 Model-Checking Algorithm (ModelCheck)

Our analysis algorithm operates on an abstract reachability tree (ART), whose nodes
contain two abstract states: one abstract state models the heap memory explicitly (us-
ing explicit heaps), and the other abstract state models the heap memory symbolically
(using shape graphs). Formally, an abstract reachability tree (ART) [3] is a tree that
fulfills the following properties. Every node n is a tuple n = (l, H, G) which con-
sists of a control-flow location l, an explicit heap H , and a shape region G. The root
node n0 = (l0, H0, G0) consists of the initial control-flow location l0, the initial ex-
plicit heap H0, and the initial shape region G0. An edge (n, n′) in the ART means that
node n′ is the abstract successor of node n, i.e., the edge ((l, H, G), (l′, H ′, G′)) exists
in the ART if l′ is a successor location of l in the CFA, H ′ is the abstract explicit-heap
successor of explicit heap H , and G′ is the abstract shape successor of shape region G.
A node n is covered if there exists another node n′ in the ART for the same location
and all concrete states represented by n are represented by n′.

Algorithm ModelCheck (Alg. 1) takes as input a program P , an error location lerr
of P , and a lattice M of SCGs. The algorithm tries to prove (or disprove) that lerr is
not reachable in any concrete program execution. It keeps track of the current abstrac-
tion, i.e., an explicit-heap abstraction and shape-abstraction specification. In addition, it
maintains a mapping from program types to sets of enabled SCGs (subsets of M ). Only
enabled SCGs are considered during refinement. In a first step, the algorithm initializes
the abstractions for each control location of the input program P with trivial abstrac-
tions. All SCGs are initially enabled, and the ART A is initialized as a tree with a single
node representing the initial program states. Then a check-refine loop is executed until
either the program is declared safe or a feasible path to the error location is found.

In each iteration, we first call procedure BuildART to extend the given ART A for
the given program P and the current abstractions Θ and ̂Ψ , towards a resulting ART
that is closed under abstract successors. Procedure BuildART (not shown in pseudo-
code) takes as input a program P , an error location lerr , an ART A, an explicit-heap
abstraction Θ, and a shape abstraction specification ̂Ψ . If the procedure stops, it returns
a pair (A, n) consisting of the ART and its last processed (leaf) node. It operates on the
ART nodes and performs a waitlist-based reachability analysis to explore the abstract
state space that Θ and ̂Ψ define. Children of nodes are computed until every leaf of the
ART is covered, i.e., the ART is complete. The procedure stops if one of the following
conditions is fulfilled: (a) The reachability analysis encounters a node n whose location
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Algorithm 1. ModelCheck (P, lerr , M)
Input: a program P , an error location lerr of P ,

a lattice M of SCGs with finite height
Output: either an ART to witness safety,

or an error path to witness the existence of a feasible error path
Variables: an explicit-heap abstraction Θ, a shape-abstraction specification ̂Ψ , an ART A,

a mapping E from types to sets of enabled SCGs
for each location l of P do

̂Ψ(l) := ̂Ψ0; Θ(l) := ∅;
for each pointer type σ in P do

E(σ) := M
A = {(l0, H0, G0)};
while true do

(A, n) := BuildART (P, lerr , A, Θ, ̂Ψ);
if n is not an error node then // ART A is safe, i.e., A contains no error node

if A is complete then
print “Yes. The program is safe. Certificate:” A; stop;

else // threshold exceeded, switch off explicit tracking
(A,Θ, ̂Ψ, E) := Abstract (A,n, Θ, ̂Ψ, M, E);

else // n is an error node, i.e., n = (lerr , ·, ·)
let t be the path in A from the root to n
if PathFormula(t) is satisfiable then // t is feasible; the error is really reachable

print “No. The program is unsafe. Counterexample path:” t; stop;
else // t is infeasible due to a too coarse abstraction

(A,Θ, ̂Ψ, E) := Refine(A, n, Θ, ̂Ψ, M, E);

is the error location. Then the last computed node contains the error location. (b) The
reachability analysis completes the ART, i.e., all leaf nodes of the ART are covered
and the ART does not contain any node with the error location — the ART is safe,
and complete. (c) The depth of the last explicit heap that the procedure has computed
exceeds a given threshold. The last computed node contains an explicit heap suitable
for abstraction.

Algorithm ModelCheck distinguishes the different outcomes of BuildART based on
the ART properties safe and complete. (1) If the ART is safe and complete, the over-
all algorithm can stop and report that the program is safe. (2) If the ART is safe but
not complete, then the threshold for the explicit heap analysis was reached at node n,
in other words, the explicit heap analysis has collected enough information to guide
the refinement of the shape-abstraction specification. Procedure Abstract is called to
analyze explicit heaps to restrict enabled SCGs, refine SCGs in the shape-abstraction
specification, and replace explicit heaps in the ART by shape graphs. (3) If n represents
an error location and the path from the root of A to n is feasible, then the overall al-
gorithm can stop and report an error. (4) If n represents an error location but the path
from the root of A to n is infeasible, then the path was encountered due to a too coarse
abstraction, and procedure Refine will try to find a more suitable abstraction. Procedure
Refine may fail due to the absence of a suitable, fine-enough SCG in the lattice of SCGs.
Note that Algorithm ModelCheck may not terminate, in case it produces finer and finer
abstractions to rule out longer and longer infeasible error paths.
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Algorithm 2. Abstract(A, n, Θ, ̂Ψ, M, E)

Input: an ART A, an ART node n, an abstraction consisting of Θ and ̂Ψ ,
a set M of SCGs, and a type-to-SCGs mapping E

Output: an ART, an abstraction consisting of Θ and ̂Ψ , and a type-to-SCGs mapping E
let n = (l ,H,G)
let pointer p ∈ Θ(l) s.t. depth(H,p) > k

let σ = type(p); choose (σ, m, D) ∈ ̂Ψ(l)
// evaluate invariants on explicit heap, and update abstractions
E(σ) := E(σ) ∩ SCGsFromExplicit(H,p)
let m′ be the coarsest SCG in E(σ)

replace (σ, m, D) by (σ, m′, D) in ̂Ψ(l)
remove all x from Θ(l) s.t. type(x) = type(p)
// remove explicit heap info and update shape graphs in ART
for each node n = (l ,H,G) in A do

n′ = (l , H0, G
′) with G′ = HeapToShape(H, ̂Ψ(l))

replace n by n′ in A
return (A, Θ, ̂Ψ, E)

3.2 Algorithm for Abstraction from Explicit Heaps (Abstract)

When the explicit heap analysis has generated sufficiently large explicit heaps, Algo-
rithm Abstract (Alg. 2) is called to extract information from explicit heaps in order to
choose a suitable SCG, and explicit heaps are abstracted to shape graphs. The algorithm
takes as input an ART A, a leaf node n of the ART, the current abstraction specified
by an explicit-heap abstraction Θ and a shape-abstraction specification ̂Ψ , a lattice of
SCGs, and a mapping E from types to sets of enabled SCGs. Upon termination, the
algorithm returns the updated ART, abstraction, and mapping.

The algorithm first determines a pointer to the data structure whose depth exceeds
the threshold k. Function SCGsFromExplicit analyzes an explicit heap and returns all
relevant SCGs: Every SCG is annotated with a set of invariants that must be fulfilled
by explicit heaps for the SCG to be relevant (e.g., all SCGs generating instrumenta-
tion predicates for trees are annotated with the tree-ness invariant). For each SCG m,
function SCGsFromExplicit evaluates the invariants of m on explicit heap H , and if
all those invariants are fulfilled, the function enables m for its structure type. Then the
abstraction is updated: pointer p and all other pointers of the same type are removed
from the explicit-heap abstraction, and we refine the SCG of the chosen shape type to
be the coarsest enabled SCG for the structure type. After the refinement of the SCG, we
erase the explicit heap in the ART node, and replace the corresponding shape region by
the result of abstracting the explicit heap to shape graphs (function HeapToShape). The
result of HeapToShape has a single shape graph for each shape class that results from
applying the newly refined SCG to the current tracking definitions. For example, the
shape graph represented in Fig. 1(c) is a possible abstraction of the explicit heap rep-
resented in Fig. 1(b). In the next iteration of reachability, the construction of the ART
continues from the newly computed shape graphs. Note that converting an explicit heap
to a shape graph is significantly less expensive than obtaining the shape graph via ab-
stract post computations, and is similar to dynamic precision adjustment [5].
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Algorithm 3. Refine(A, n, Θ, ̂Ψ, M, E)

Input: an ART A, an ART node n, an abstraction consisting of Θ and ̂Ψ ,
a set M of SCGs, and a type-to-SCGs mapping E

Output: an ART, an abstraction consisting of Θ and ̂Ψ , and a type-to-SCGs mapping E
Variables: an interpolant map Π

let t = (op1 : l1); . . . ; (opk : lk) be the program path from n to the root of A;
Π := ExtractInterpolants (t);
for i := 1 to k do

choose (σ, m, D) from ̂Ψ(li), with D = (T, Ts, P )
// Step 1: Refine the tracking definitions
for each atom φ ∈ Π(li) do

if some pointer p occurs in φ, and type(p) matches σ then
add p and all elements of alias(p) to D.T
add p to D.Ts

if pointer p is dereferenced in φ then
add to D.P the field assertion corresponding to φ

// Step 2: Start explicit heap analysis or refine the SCG
for each pointer p in D.T do

if p �∈ Θ(li) and m = m0 then
// p was not analyzed before, switch to explicit heap analysis mode
add p to Θ(li)

if p �∈ Θ(li) and m �= m0 then
// in shape analysis mode: binary-search refinement
m′ := FineTune(t,m, E(σ))
if m = m′ then // the binary search cannot refine; extend the search

add to E(σ) every m′′ ∈ M s.t. m �	 m′′

m′ := FineTune(t, m, E(σ))

replace (σ, m, D) by (σ, m′, D) in ̂Ψ(li)

if Θ(li) or ̂Ψ(li) was changed then
remove from A all nodes with location li and their children

if ̂Ψ and Θ did not change then
print “Refinement failed on path:” t; stop;

return (A, Θ, ̂Ψ, E)

3.3 Algorithm for Shape Refinement (Refine)

When an infeasible error path is found in the ART, it is due to a shape abstraction that
is not fine enough. Algorithm Refine tries to produce a finer shape abstraction such that
the infeasible error path does not occur in the ART built using the refined abstraction.
Algorithm Refine (Alg. 3) takes as input an ART A, a leaf node n of the ART, the
current abstraction specified by an explicit heap abstraction Θ and a shape-abstraction
specification ̂Ψ , a lattice of SCGs, and a mapping from types to set of enabled SCGs.
The algorithm assumes that the location of n is the error location and that the path from
the root of A to n is infeasible. Upon termination, a refined ART, a refined abstraction,
and a (possibly updated) mapping from types to set of enabled SCGs is returned.

The first step of the algorithm analyzes the infeasible error path. We compute the
(inductive) interpolants of the (unsatisfiable) path formula corresponding to the path
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from the root to node n, for every location on the path (ExtractInterpolants). We use
the interpolants to check whether we can find new pointers or field assertions to track
by analyzing all atoms occurring in interpolants. If we find a pointer that we have to
track, we add it to the set of tracked separating pointers, and add all its aliases to the set
of tracked pointers. If it is the first time we encounter a pointer, we need to know which
kind of data structure it is pointing to in order to enable only a subset of SCGs. To
discover this information, we cannot rely exclusively on syntactical type information.
For example, the types for doubly-linked lists and binary trees (without parent pointers)
have the same syntactical structure. We enable an explicit heap analysis of the data
structure by adding the pointer to the abstraction of the explicit heap analysis, and
the SCG is the trivial SCG m0. If we considered the pointer before, then the explicit
analysis was switched on, and we refined the SCG to a non-trivial SCG. In this case, the
explicit heap analysis need not be run again because it will not provide new information.
Instead, we decide to fine-tune the SCG by using a binary-search-like exploration of the
lattice of enabled SCGs. If the fine-tuning fails to yield a finer SCG, it may still be the
case that there exists a fine-enough SCG in the lattice of all SCGs that is prevented to
be found because the explicit heap analysis over-restricted the set of enabled SCGs. In
this case, we extend the set of enabled SCGs to include all SCGs from the set M of
SCGs that are not coarser than the current SCG.

Procedure FineTune takes as input an infeasible program path t, the current SCG m
and a lattice M of SCGs. The procedure searches for the coarsest SCG m′ such that m′

rules out path t, i.e., the abstract strongest postcondition of the program path represents
no states when SCG m is replaced by m′ in the shape-abstraction specification. Note
that we only compute shape regions along the given path t at this point, not along any
other program path. To make the search more efficient, we try to prune in each iteration
approximately half of the candidate SCGs. Because of the monotonicity of SCGs, if
a given SCG cannot rule out t, then no coarser SCG can. The algorithm maintains a
set C of candidates. The set C is initialized with all SCGs in M that are finer than m.
We repeat the following steps until no more SCGs can be removed from C. We select
a subset S of SCGs as small as possible such that the set of SCGs coarser than some
SCG in S contains as many elements as the set of SCGs finer than some SCG in S. If
no SCG in S rules out t, we remove from C all SCGs coarser or equal to a SCG in S;
otherwise, we keep in C only those SCGs that are coarser or equal to some SCG in S
that rules out t. When the loop terminates, if C = ∅, then the fine-tuning failed and we
return m; otherwise, we choose one SCG m′ in C that generates the fewest predicates
when applied to the current tracking definition, and return m′.

4 Experimental Evaluation

Implementation. Our new algorithm is implemented as an extension of BLAST 3.0,
which integrates TVLA for shape transformations and the FOCI library [14] for formula
interpolation. In addition to the algorithm discussed in this paper, our implementation
supports nullary-predicate abstraction and refinement based on interpolants.

The SCG library provided with BLAST supports singly-linked lists, doubly-linked
lists, and trees with and without parent pointers. The library is based on well-known
instrumentation predicates from the literature [17]: for singly-linked lists, reachability
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(unary) and cyclicity (unary); for doubly-linked lists, reachability (unary and binary),
cyclicity (unary), and cancellation (unary, holds for a given node when the node pointed
to by the forward pointer has its backward pointer pointing to the given node); for trees
(with and without parent pointers), down pointer and its transitive closure (binary),
downward reachability (unary), downward acyclicity (binary), and in addition, for trees
with a parent pointer, cancellation for left and right (unary, holds for a given node when
the node pointed to by the left, respectively right, pointer has its parent pointer pointing
to the given node).

The library of SCGs is implemented in BLAST using a domain-specific language
(DSL), in order to decouple the specification of SCGs from the verification and refine-
ment engine. Should the verification engineer need to verify a program that uses a data
structure that is not yet supported in BLAST’s default SCG lib, the DSL makes it easy
to add support for different data structures and other instrumentation predicates. Each
DSL entry corresponds to a data structure. Instead of specifying all SCGs in the lattice,
the DSL entry specifies the most refined SCG, and coarser SCGs are derived by con-
sidering subsets of predicates. Moreover, a refinement relation between different data
structures is specified separately.

Example Programs. We evaluate our technique on the open-source C library for data-
structures GDSL 1.4 1. We consider non-trivial low-level functions operating on doubly-
linked lists and trees. Each function is inserted in client code, non-deterministically
simulating valid uses of the function. The client code inputs arbitrary valid data struc-
tures to the function, and on return, checks that a given property is preserved. The
benchmarks cancel * and acyclic * operate on doubly-linked lists, and check,
respectively, for the preservation of the structure of a doubly-linked list (i.e., the back-
ward pointer of the node pointed to by a given node’s forward pointer points back to the
given node, and vice versa), and for acyclicity following forward pointers. The bench-
marks bintree * and treep * operate on binary trees, and check, respectively, for
the preservation of acyclicity following left and right pointers, and for the validity of
parent pointers with respect to left and right pointers.

Results. All examples could be proved safe by BLAST after a few refinement steps.
Table 1 reports the execution time of BLAST on a GNU/Linux machine with an Intel
Core Duo 2 6700 and 4 GB of memory. The first part of the table reports the results
with the most refined (maximal) SCGs used for all pointers in the program, and there-
fore no refinement is needed. The first column reports the kind of data structure and
the number of instrumentation predicate families used by the SCG. The second column
reports the verification time. The second part of the table reports the results when re-
finement is used. The first column of this part of the table reports the SCG and number
of enabled instrumentation predicates families (compared to maximum). The second
column reports the number of each kind of refinements: the first kind (td) corresponds
to the refinement of a tracking definition (i.e., a new pointer or a new field predicate
is discovered), and the second kind (scg) corresponds to the refinement of SCGs (i.e.,
new instrumentation predicates are introduced). The information in the first and second
columns is identical for both configurations with refinement. To evaluate the impact of

1 Available at http://home.gna.org/gdsl/
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Table 1. Runtime of BLAST on functions from the GDSL library, using (a) maximal SCG, or
shape refinement with (b) program annotations or (c) explicit heap analysis to determine the SCG

Maximal SCG SCG / #instr. pred. With refinement
Program SCG Time families/max #refines Annotation Explicit
cancel list link dll/3 10.04 s dll / 1/3 1 td, 1 scg 12.65 s 13.76 s
cancel list insert after dll/3 23.62 s dll / 1/3 1 td, 1 scg 24.41 s 26.82 s
cancel list insert before dll/3 30.90 s dll / 3/3 2 td, 2 scg 69.01 s 77.22 s
cancel list remove dll/3 4.42 s dll / 2/3 1 td, 1 scg 28.49 s 29.05 s
acyclic list link dll/3 11.57 s sll / 2/2 1 td, 1 scg 6.32 s 6.49 s
acyclic list insert after dll/3 24.21 s sll / 2/2 1 td, 1 scg 23.57 s 26.06 s
acyclic list insert before dll/3 34.53 s dll / 3/3 2 td, 2 scg 80.81 s 88.21 s
acyclic list remove dll/3 4.23 s sll / 2/2 1 td, 2 scg 96.77 s 99.75 s
bintree rotate left tree+p/5 >9000 s tree / 2/4 3 td, 2 scg 414.28 s 521.31 s
bintree rotate right tree+p/5 >9000 s tree / 2/4 3 td, 1 scg 419.24 s 437.30 s
bintree rotate left right tree+p/5 >9000 s tree / 2/4 2 td, 2 scg 7023.41 s 7401.74 s
treep rotate left tree+p/5 >9000 s tree+p / 2/5 4 td, 2 scg 180.58 s 66.63 s
treep rotate right tree+p/5 >9000 s tree+p / 2/5 4 td, 2 scg 402.70 s 384.19 s
treep rotate left right tree+p/5 >9000 s tree+p / 2/5 4 td, 2 scg 1175.14 s 1189.42 s

the explicit heap analysis on performance, we replace in one experimental setting the
procedure Abstract by a procedure that enables the suitable set of SCGs based on our
knowledge of the data structures, encoded as annotations for BLAST in the code. There-
fore, the third column reports verification times for the experiments when using anno-
tations to determine the type of data structures (explicit heap analysis disabled), and
the fourth column, when using the explicit heap analysis to infer the type of data struc-
tures. We run the explicit heap analysis until five different samples of data structures
containing (at least) four structure nodes are collected. In all examples, both tracking
definitions and SCGs are refined. In most examples, the finest SCG is not needed (only
a subset of available predicates is used). Note that for three out of four acyclic *
benchmarks, a shape class for singly-linked lists (considering only the forward pointer)
is sufficient to prove safety.

The explicit heap analysis correctly identifies the data-structure in every example.
The run time for explicit-heap based refinement is comparable to annotation-guided
refinement. The variations between the two result from two sources: (1) the overhead
of performing the explicit heap analysis, and (2) the abstraction from explicit heaps to
shape graphs and the subsequent ART extension. On all examples, the explicit heap
analysis accounts for a negligible fraction of the execution time. Most of the runtime
is consumed by (symbolic) shape operations in TVLA. On the one hand, some shape-
graph computations are saved. But on the other hand, depending on how large the ART
is when Abstract is executed, many explicit heaps may abstract to the same shape graph,
subsequently causing an overhead. Infeasible error paths may also have different lengths
resulting in different interpolation and refinement timings. On small examples, the re-
finement contributes most of the total execution time (up to nearly 50%): most of the
time is spent in the path simulations of FineTune. On larger examples, most of the time
is spent in the final iteration of the reachability analysis, in particular, while comput-
ing abstract shape successors using TVLA. Overall, we conclude that the explicit heap
analysis provides reliable information for the refinement, for a reasonable overhead.
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Our refinement strategy outperforms the direct use of the most refined SCG on large
examples (involving trees), because the refinement allows for the use of significantly
less instrumentation predicates, compared to the most refined SCGs. On smaller ex-
amples, though, the run time can be larger if refinement is used, due to the high por-
tion of time spent on refinement and the high number of instrumentation predicates
we need, compared to the most refined case. The final reachability analysis sometimes
takes significantly less time if the most refined SCG is used; one particular case is the
two list remove examples. The reason is that the SCG discovered by our refine-
ment strategy (which only tracks the forward pointer) happens to generate more differ-
ent shape graphs than the most refined SCG (which tracks both pointers), although the
former generates less predicates than the latter.
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