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Abstract. We describe an algorithm for segmenting three-dimensionalmedical
imaging data modeled as a continuous function on a3-manifold. It is related to
watershed algorithms developed in image processing but is closer to its mathe-
matical roots, which are Morse theory and homological algebra. It allows for the
implicit treatment of an underlying mesh, thus combining the structural integrity
of its mathematical foundations with the computational efficiency of image pro-
cessing.

1 Introduction

The extraction of shape information from density functionsis an important topic in
medical imaging. We formalize this problem as the construction and simplification of
the Morse complex of the function. Before discussing this formalization and our algo-
rithm, we discuss our motivation and briefly survey the extensive related literature.

Motivation and prior work. Medicine uses a variety of technologies to non-invasively
obtain images of the anatomy of a subject. Examples are magnetic resonance imaging,
X-ray and other types of computed tomography, ultrasound, and X-ray projectional ra-
diography. They provide information about the anatomy expressed in terms of intensity
or density. To make sense of the data, we need image segmentation algorithms that ex-
tract shapes by delineating their boundaries. This is a necessary first step for a multitude
of medical tasks, including the quantification of tissue, the diagnosis, and the study of
anatomic structure.

The segmentation of a three-dimensional image can be approached in a variety of
ways. Today, many different algorithms are in use, each withits own strengths and
weaknesses. We refer to Clarkeet al. [4] and Pham, Xu and Prince [19] for surveys of
segmentation algorithms in medical image analysis. In an attempt to organize the body
of prior work, we distinguish betweendirect andindirect approaches to segmentation.
In the direct approach, an algorithm generates shapes usinglocal considerations based
on the density function. An example isthresholding, in which a small number of real
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thresholds is used to partition space into the preimages of intervals between contiguous
thresholds [21]. Another example isregion growing, in which seed points are grown
into regions using local expansion criteria [10]. A third example works byspitting and
mergingregions [12]; see [14] for an extension to three-dimensional magnetic reso-
nance images. The recently most successful of the indirect approaches aredeformable
models[16] or level set methods[23], in which boundary surfaces are computed through
numerical solutions to differential equations. Shapes canalso be ‘learned’ usingarti-
ficial neural networks[11] or other adaptive structures developed within artificial in-
telligence. Sometimes, anatlas representing an idealized or expected segmentation is
available, and the problem reduces toregisteringthe atlas with the image [13].

The prior work most similar to ours is on thewatershed method, which is another
direct approach to segmentation. It is easiest explained bythe analogous process of
flooding a landscape in which water seeps in from every local minimum. As the water
rises, it fills up a basin around each minimum and when two basins meet, it erects a
dam that follows the line along which the water meets. Algorithms in image processing
that construct the dams defining the segmentation can be found in [3, 25]. The concept
itself is however older within image processing [2, 9]. A survey of watershed algorithms
can be found in [20]. The algorithm of Vincent and Soilles [25] has been extended to
three-dimensional magnetic resonance images by Sijberset al. [22]. The authors of the
latter paper cope with over-segmentation by applying a diffusion filter [26] eliminating
many spurious local minima before running the watershed algorithm. They also merge
regions in a postprocessing phase, using a statistical testto guide the process.

Results.The main contribution of this paper is a new segmentation algorithm. It takes
the direct approach and falls into the class of watershed algorithms, constructing regions
by following the gradient of the density function. The algorithm has a short list of
distinguishing characteristics based on old and new work indifferential and algebraic
topology:

1. The basic segmentation of space is achieved by constructing what we call the Morse
complex of the density function [7, 24].

2. We coarsen the complex without altering its mathematicalproperties using homo-
logical persistence to guide the process [8].

3. We find a compromise between structural integrity, numerical accuracy, and com-
putational efficiency in which none of the three measures makes substantial sacri-
fices.

The two-dimensional version of our algorithm has been implemented and used to de-
compose2-manifolds describing mechanical shapes [6]. The success of that algorithm,
even for rather complicated shapes, motivates us to extend the algorithm to three di-
mensions. Similar to its two-dimensional counterpart, ouralgorithm works for general
3-manifolds and not just forR3. It is most efficient when the data permits an implicit
representation of the triangulation representing the3-manifold.

Outline. Section 2 presents background from differential topology and from combina-
torial topology. Section 3 explains the segmentation algorithm. Section 4 discusses the
simplification of the segmentation. Section 5 presents plans for the future.



2 Background

In this section, we review the mathematical background needed for our algorithm. We
discuss Morse functions, piecewise linear maps, and persistent homology.

Morse functions. Letting f : M → R be a smooth function on a3-manifold, we get
the derivative at a pointx ∈ M as a linear map from the tangent space to the reals,
dfx : TMx → R. The pointx is critical if dfx is the zero map, otherwise, it isregular.
A critical valueis the imagef(x) of a critical pointx. Assuming local coordinates atx,
theHessianis the matrixH(x) of second-order partial derivatives. It distinguishesnon-
degeneratecritical points, for which the Hessian is invertible, fromdegenerateones,
for which detH(x) = 0. In this paper, we are interested in using critical point theory
for smooth functions merely as a guiding intuition, so we focus on the generic case of
Morse functionsdefined by the following two requirements:

I. All critical points are non-degenerate.
II. All critical points have unique function values.

The Morse Lemma asserts that a non-degenerate critical point x permits local coordi-
nates such thatf(x1, x2, x3) = f(x) ± x2

1 ± x2
2 ± x2

3 in a neighborhood ofx [15, 17].
This implies that non-degenerate critical points are isolated and, ifM is compact, any
Morse function onM has only finitely many critical points. The number of minus signs
in the above expression is independent of the chosen local coordinates and equals the
number of negative eigenvalues of the Hessian. It is referred to as theindexof x and
distinguishesminima(index 0),1-saddles(index 1),2-saddles(index 2), andmaxima
(index 3) from each other. We get a local picture by drawing a small sphere around a
critical (or regular) pointx, and intersecting it with the level set to separate the region
below x (the set of pointsy with f(y) < f(x)) from the region abovex (pointsy
with f(y) > f(x)). Non-degenerate critical points have the characteristiclocal pictures
shown in Figure 1.

1−saddleminimumregular 2−saddle maximum

Fig. 1: Local pictures of regular and critical points of a Morse function on a3-manifold. The level
set separates the shaded region belowx from the white region abovex.

Critical points are often used to study the topology of the manifold, by sweeping
M in the direction of increasing function value and monitoring thesub-level setdefined
as Ma = {x ∈ M | f(x) ≤ a}, wherea ∈ R is the value of the current level.



As a increases, we observe topology changes whenevera passes a critical value. The
changes depend on the indices of the corresponding criticalpoints and accumulate to
giveχ = #min − #sad1 + #sad2 − #max = 0 for theEuler characteristicof M.

Morse complexes.Assuming a Riemannian metric onM, we can use local coordinates
to define thegradientas the vector∇f(x) of first-order partial derivatives atx. If we
follow the flow defined by the gradient, we trace out anintegral curveγ : R → M that
begins at a critical point, theorigin, org γ = limt→−∞ γ(t), and ends at another critical
point, thedestination, dest γ = limt→∞ γ(t), without containing either. Two regular
points either belong to the same or to two disjoint integral lines, which implies that the
integral lines together with the critical points partitionthe manifold. We can now form
a coarser partition by merging all integral lines with the same destination. Specifically,
thedescending manifoldof a critical pointx is

D(x) = {x} ∪ {y ∈ im γ | dest γ = x}.

A minimum cannot be the destination of any integral line; itsdescending manifold is
therefore just a point, the minimum itself. The descending manifold of a1-saddle con-
sists of two integral lines approaching the1-saddle from opposite sides in the direction
of the eigenvector with negative eigenvalue. Together withthe1-saddle, these two inte-
gral lines form an open1-manifold whose endpoints are the origins of the two curves,
which may or may not be the same. Similarly, the descending manifold of a 2-saddle
is an open disk and that of a maximum is an open ball. Symmetrically, we define the
ascending manifoldof a critical point as the pointx itself union all integral lines with
origin atx. A Morse function isMorse-Smaleif

III. the descending and ascending manifolds intersect transversally.

Being Morse-Smale is a generic property of smooth functions. Property III implies that
the descending manifolds are thecellsof a complex, in the sense that the cells partition
M and the boundary of each cell is a union of lower-dimensionalcells in the complex.
We call this theMorse complexof the function.

Homology.Thep-th homology groupis an algebraic representation of the collection of
p-dimensional holes of a topological space. Formally, it is the group ofp-dimensional
cycles divided by the group ofp-dimensional boundaries,Hp = Zp/Bp [18]. Thep-
th Betti numberis the rank of this group,βp = rankHp, and can be interpreted as the
number ofp-dimensional holes. The only possibly non-zero Betti numbers a3-manifold
can have are for the dimensionsp = 0, 1, 2, 3. The Euler-Poincaré formula asserts that

χ = β0 − β1 + β2 − β3, (1)

which should be compared with (3). As suggested by the two equations, we can make
index-p critical points responsible for thep-dimensional holes counted by thep-th Betti
number. It is convenient to use reduced homology groups [18,Chapter 1] to rationalize
the classification of critical vertices. The ranks of these groups are the same as their non-
reduced counterparts, except forβ̃0 = β0 − 1 if the space is non-empty and̃β−1 = 1



type index β̃
−1 β̃0 β̃1 β̃2

regular 0 0 0 0
minimum 0 1 0 0 0
1-saddle 1 0 1 0 0
2-saddle 2 0 0 1 0
maximum 3 0 0 0 1

Table 1: For simple vertex types, the dimension of the non-zero reduced Betti number of the lower
link, if any, is one less than the index of the vertex.

if the space is empty. Table 1 gives the relation between the type of a vertex and the
reduced Betti number of its lower link.

Piecewise linear manifolds.From now on, we consider the case in which the3-manifold,
M, is the underlying space of a simplicial complexK and thatf : M → R is obtained
by piecewise linear extension of function values specified at the vertices ofK. Thinking
of f as the approximation of a smooth function, we introduce corresponding concepts.
First we need some definitions. Thestarof a vertexu is the set of simplices that contain
the vertex,St u = {σ ∈ K | u ≤ σ}. Thelink of u is the set of faces of simplices in the
star that do not containu, Lku = {τ ≤ σ ∈ Stu | τ 6∈ St u}. SinceK triangulates a
3-manifold, every vertex star has the topology of an open balland every vertex link has
the topology of a sphere. Thelower starandlower link are the subcomplexes induced
by the vertices belowu:

St−u = {σ ∈ St u | u 6= v ≤ σ ⇒ f(v) < f(u)};

Lk−u = {τ ∈ Lku | v ≤ τ ⇒ f(v) < f(u)}.

Assuming the vertices inK have pairwise different function values, the level set that
passes throughu intersects the link in a (not necessarily connected) curve that avoids
all vertices and decomposes the link into two (not necessarily connected) regions, one
below and the other aboveu. The region belowu contains the lower link and has the
same homotopy type, which can be proved by establishing a deformation retraction
from the region to the lower link. Guided by the smooth case, we call u a regular
vertex, a minimum, a 1-saddle, a 2-saddle, and amaximumif its lower link has the
homotopy type of the corresponding shaded region in Figure 1. A vertex that does not
fit this classification has̃β0 + β̃1 ≥ 2, with β̃0 + 1 the number of components in the
lower link andβ̃1 + 1 the number of components in the symmetrically defined upper
link. We thus think of it as the simultaneous embodiment of aβ̃0-fold 1-saddle and a
β̃1-fold 2-saddle.

Our assumption of vertices with pairwise different function values implies that every
simplex ofK belongs to a unique lower star. In other words, the lower stars partition
K. Indexing the vertices in the order of increasing function value,f(u1) < f(u2) <
. . . < f(um), we may form a nested sequence of subcomplexes,

∅ = K0 ⊂ K1 ⊂ K2 ⊂ . . . ⊂ Km = K, (2)



called afiltration of K, whereKj =
⋃j

i=1 St−ui. The complexKj has the same
homotopy type as the sub-level setMa for everyf(uj) ≤ a < f(uj+1), which can be
proved by establishing a deformation retraction fromMa to Kj. The difference between
two contiguous complexes is the extra lower star,Kj+1−Kj = St−uj+1. By definition,
the Euler characteristic ofKj is the alternating sum of simplex numbers. We claim it is
also the alternating sum of critical point numbers,

χ = #vert − #edg + #tri − #tet

= #min − #sad1 + #sad2 − #max, (3)

where a multiple critical point is counted̃β1 − β̃0 times. Indeed, the equation holds
initially, for j = 0, and it is maintained when we add the lower star ofuj+1 to Kj .

Persistence.We use homology groups to count the holes in the complexesKi ordered
by inclusion as in (2). Fixing the dimension top, we writeFi = Hp(Ki) for thep-th
homology group of thei-th complex. The chain of inclusions among the complexes
implies a chain of maps among the homology groups induced by inclusion,

F0 → F1 → F2 → . . . → Fm.

Let f j
i : Fi → Fj be the composition ofj − i of the maps along the chain. The

correspondingpersistent homology groupis the image of this map,F j
i = im f j

i , and
the correspondingpersistent Betti numberis βj

i = rankF j
i . We use these numbers

to define the life-time of individual homology classes. The description of this idea is
made complicated by multiple critical points, which may simultaneously create several
classes and destroy several other classes. Defining

µj
i = (βj−1

i − βj
i ) − (βj−1

i−1 − βj
i−1),

we say thatµj
i homology classeslive from f(ui) to f(uj), being bornat timef(ui)

anddyingat timef(uj). Indeed, the first difference can be interpreted as the number
of classes born at or before timef(ui) that die after timef(uj−1) but at or before time
f(uj). With a similar interpretation of the second difference,µj

i is the number of classes
born some time in(f(ui−1), f(ui)] that die some time in(f(uj−1), f(uj)]. Since there
is no activity in the open interval between contiguous critical values, we can attribute
the births and deaths as stated. Thepersistenceof a class counted byµj

i isf(uj)−f(ui).
An algorithm that pairs up births with deaths and computes the persistence of homology
classes can be found in [8]. Using the integers modulo 2 as thecoefficient group for
homology, it takes timeO(N3) in the worst case for a filtration of a complex with
N simplices. The experimentally observed running time is much less than cubic and
seems to be close to linear inN . The persistence of the maxima and the minima can be
computed faster, in worst case time close to linear inN .

3 Algorithm

In this section, we present the segmentation algorithm. After explaining its global struc-
ture, we describe its actions in the simple cases. The general case can be interpreted as
an accumulation of simple cases, as given in the appendix.



Problem specification.As input to the algorithm, we assume a triangulationK of the
3-manifoldM and a function value for each vertex. Writingu1 to um for the vertices,
we assume pairwise different function values,f(ui) 6= f(uj) wheneveri 6= j, and
we justify the assumption by the use of a simulated perturbation [5, Chapter 1.4]. As
explained earlier, the function values can be extended linearly over all simplices to give
a continuous PL functionf : ||K || → R. The output is a marking of some simplices
and a labeling of all unmarked simplices. Specifically, themarkingis a mapµ : K →
{0, 1} and the subset ofunmarkedsimplices isK◦ = µ−1(0). The labeling is a map
λ : K◦ → [1, m] whose image is the set of subscripts of the maxima. The interpretation
of µ andλ is as follows. The subset ofmarkedsimplices,K̄ = µ−1(1), corresponds to
the union of descending0-, 1-, and2-manifolds in the smooth category. It decomposes
the rest into componentsKℓ = λ−1(ℓ), which correspond to the (3-dimensional) cells
of the Morse complex. The simplices of each component are labeled with the subscript
of the generating maximum.

Sweep from the top.Before running the algorithm proper, we sort the vertices ofthe
triangulation and re-name them such thatf(u1) < f(u2) < . . . < f(um). The algo-
rithm sweeps the triangulation from top to bottom, in the order of decreasing function
value. Recall thatKi is the union of lower stars of the verticesu1 to ui. Because of
the chosen ordering, the algorithm explores the complement, Li = K − Ki, before it
exploresKi. We call a vertex inKi stainedif it belongs to a marked simplex inLi. The
action taken at a vertex depends on whether it is regular or critical.

for i = m downto 1 do
case ui is a maximum:

label all simplices in the star ofui with i
case ui is regular:

1 construct a spanning tree of the stained vertices in the lower link of ui;
2 mark the simplices in the lower star incident to the spanningtree;
3 label the other simplices in the lower star by copying from neighbors

case ui is a1-saddle:
doSteps 1 to 3 for each component of the lower link

case ui is a2-saddle:
construct a spanning cactus whose cycle separates the poles;
doSteps 2 and3 substituting the cactus for the tree

case ui a minimum:
markui

endfor.

A cactusis a tree plus a single extra edge, which thus defines a unique cycle. To con-
struct a cactus as needed in the2-saddle case, we first construct a spanning tree of all
vertices in the lower link, we add an edge to form a cycle, and we prune the cactus while
retaining the cycle and the stained vertices.

Invariants. Before discussing the cases in more detail, we make general observations
and formulate properties that hold throughout the algorithm. Note first that a simplex is
marked or labeled when it is first encountered, which is when the algorithm processes



its highest vertex. SinceKi consists of all simplices that have no vertex with subscript
higher thani, the set of marked or labeled simplices right before processing ui is its
complement,Li = K − Ki. While Li is generally not closed, it isrelatively closedin
the sense that every face of a simplex inLi is either inLi or in Ki. This is of course
trivially true asLi andKi partition the entire complex. A more interesting observation
is that the set of marked simplices shares the same property,that is, every face of a
marked simplex inLi is either also marked or belongs toKi. We now state this and two
other claims as invariants of the algorithm.

INVARIANTS . The following relations hold for all subscripts of vertices,i, and all sub-
scripts of maxima,ℓ.
(i) The setL̄i = Li ∩ K̄ is relatively closed.
(ii) The setL◦

i = Li − L̄i =
⋃

ℓ Lℓ
i is open.

(iii) The setLℓ
i = Li ∩ Kℓ is empty or an open ball.

Since the algorithm works without back-tracking,L̄i is the set of simplices marked right
before processingui. To explain (ii), we call a setopenif the inclusion of a simplex
implies the inclusion of its entire star. It is then not difficult to see that (ii) holds. With
a little bit more effort, we can also see that each label defines an open ball, as claimed
in (iii). To see what this means, we note thatLℓ

i is the subset of already processed
simplices in the setKℓ = λ−1(ℓ), which represents a cell in the Morse complex. We
call Lℓ

i an open ballif the union of interiors of its simplices is homeomorphic toR
3.

To know that the cells are open balls is not important to understand the algorithm, but
it is important to understand the result of the algorithm. For example, it implies that a
marked vertex can be isolated only if the entire Morse complex consists of a single cell
and the vertex forms the boundary of that cell. In this case,K triangulates the3-sphere
and the functionf has only two critical vertices, a minimum and a maximum.

Regular case.Recall thatu = ui is regular iff the level set defined byu, f−1(f(u)), in-
tersects the link in a single closed curve decomposing the link into two open disks. The
lower link is a deformation retract of one of these disks and is therefore contractible.
When we processu, we mark and label the simplices in its lower star. It is convenient to
represent each such simplex by its face in the lower link, which has one lower dimen-
sion; see Figure 2. We now describe the three steps taken by the algorithm.

Step 1. Construct a spanning tree within the lower link that touchesall its vertices.
Extract a subtreeTu that touches all stained vertices.

Step 2. Mark the triangles and edges in the lower star whose faces in the lower link
are the edges and vertices ofTu.

The treeTu decomposes the lower link into regions we callbays, each adjacent to the
complement of the lower link along edges we call itsfrontier. A triangle on the other
side of the frontier corresponds to a tetrahedron in the starthat does not belong to the
lower star and is therefore already labeled. The labels we find across the frontier of a
bay are all the same.

Step 3. Traverse each bay of the lower link, from the frontier inwards, and copy
the label found outside the frontier to the corresponding tetrahedra, triangles, and
edges in the lower star.



u

Fig. 2: Left: the star and link of the vertexu = ui. The (solid) marked vertices lie in the upper
hemi-sphere and the (shaded) stained vertices lie in the lower hemi-sphere. Right: the lower link
of u drawn as a disk in the plane. The (solid black) spanning tree of the stained vertices is a
subtree of the (solid black and shaded) spanning tree of the lower link.

An additional layer of detail about the three steps will be given in our description of the
general case in the appendix, which subsumes the regular point as a special case.

2-saddle case.Recall that the vertexu = ui is a2-saddle ifff−1(f(u)) intersects the
link in two closed curves decomposing it into two open disks and an open annulus, as
illustrated in Figure 3, where the lower link is a deformation retract of the annulus. The

u

Fig. 3: Left: the star and link of the vertexu = ui. The (solid) marked vertices lie on the polar
caps and the (shaded) stained vertices lie on the equatorialbelt that separates the caps. Right: the
lower link of u drawn as an annulus in the plane. The (solid black) spanning cactus of the stained
vertices is a sub-cactus of the (solid black and shaded) spanning cactus of the lower link.

three steps processingu are similar to those in the regular case, except that we begin
with a cactus rather than a tree. We describe the first step in which this difference is
most important.

Step 1. Construct a spanning tree within the lower link that touchesall its vertices.
Add a single edge creating a cycle that goes around the annulus, separating the two
disks. Extract a cactusT +

u that touches all stained vertices.



By virtue of being a cactus,T +
u contains the cycle created by the edge added to the

spanning tree. Steps 2 and 3 are the same as in the regular case.

Implementation and running time. The segmentation algorithm allows for a variety
of short-cuts that make the implementation both easier and more efficient. The biggest
gain can be expected from avoiding any explicit construction of the three-dimensional
triangulation, the complexK. This is possible in the common case in which the data
points form a regular grid inR3. However, the short-cuts do not affect the asymptotic
running time of the algorithm, which we now address.

Let m, n andt be the number of vertices, edges, and triangles inK and writeni

andti for the number of edges and triangles in the link of the vertexui. The asymptotic
running time of the algorithm depends on the implementationof Step 1 and, in par-
ticular, on the construction of the spanning trees and spanning cacti. An attractive way
to resolve ambiguities prefers short edges over long edges,thus constructing minimum
spanning trees and cacti by always adding the shortest edge available. Every step of the
construction forui takes time at most some constant timesni log2 ni, the time it takes
to sort the edges by length. To take the sum over all vertices,we observe that the total
number of triangles ist = 1

2

∑
i ti, because each triangle belong to two vertex links.

Since every link is a triangulated sphere, we haveni = 3
2
ti for eachi and therefore∑

i ni = 3t. Furthermore,t ≤ n because every triangle has three edges and every edge
belongs to at least three triangles. The total running time is therefore some constant
times

∑
i ni log2 ni ≤ 3n log2(maxi ni). For the common case in which each vertex

has only a constant size star, the algorithm thus runs in timeproportional to the data
size.

4 Coarsening

Over-segmentation is a consequence of the algorithm creating a cell for each and every
local maximum. In this section, we discuss a greedy approachto progressively coars-
ening the initial, fine segmentation until a desired level ofresolution is reached.

Turning off maxima. A coarsening of the segmentation is achieved by turning off a
subset of the maxima and treating them as regular points. Thecell of an off maximum
is merged into another cell, which is accomplished by turning off a 2-saddle whose
descending2-manifold would otherwise separate the cells. As a first approximation,
we can understand the result by running the segmentation algorithm with some modi-
fications in how it treats2-saddles. Assuming an arbitrary but fixed assignment of the
maxima to on and off, the algorithm takes different actions at a 2-saddle,u, depending
on the status of the cells that meet atu. Let i andj be the labels of their tetrahedra (the
subscripts of the maxima that generate the two cells).

Case A. If i = j or i 6= j andui anduj are both on, then we treatu the same way as
in the original algorithm, starting a locally separating descending2-manifold atu.

Case B. If i 6= j and uj is off, then we merge the cell ofuj into that ofui by
changing the label of its simplices fromj to i and suppressing the creation of a
separating descending2-manifold atu.



In summary, the algorithm determines the status of a2-saddle (on inCase A and off
in Case B) based on the status of the maxima generating the cells that meet at the
2-saddle. A drawback of this algorithm is that it fails to makethe same distinction for
1-saddles and minima, and it is indeed impossible to make the appropriate assignment
based on the local information available when we sweep the function from top to bot-
tom.

Collapsing. We remedy this deficiency by making the assignment in an orderthat is
independent of the sweep direction. To describe this, we observe that whenever we turn
off a maximum, we also turn off a2-saddle, effectively cancelling the two critical points.
We implement this operation by acollapse in the large, which unmarks the descending
2-manifold of the2-saddle and re-labels the cell of the maximum. A collapse in the large
translates into a sequence of collapses in the small, each affecting a pair of simplices in
the triangulation. For example, to remove the cell, we startthe process by initializing
an open ball to a tetrahedron in the star of the maximum. The ball is then expanded by
collapsing its complement until the cell is exhausted. For the2-manifold, we start the
process by initializing an open disk to a marked triangle in the star ofu that does not
belong to any other descending2-manifold. By construction, the triangle connectingu
to the bridge completing the cycle in its link is such a triangle. This disk is expanded by
collapsing its marked complement. The process either exhausts the entire descending
2-manifold or comes to a halt where the2-manifold merges with other descending2-
manifolds.

In the process of collapsing2-manifold/cell pairs, we may deteriorate the surround-
ing of a descending1-manifold until it belongs to only one descending2-manifold.
At this moment, we collapse the1-/2-manifold pair. Similarly, when a descending0-
manifold (a minimum) finds itself part of only one descending1-manifold, we collapse
the0-/1-manifold pair. As before, each collapse in the large translates into a sequence of
collapses in the small. The process continues until no further collapses can be applied.
The result of this algorithm may depend on the sequence of collapses, for example if
a 2-manifold can be collapsed from two different1-manifolds in its boundary. We get
a unique result by prioritizing the collapses. Most naturally, we would use the func-
tion value of the lower-index critical point of the defining pair as priority and perform
collapses with higher priority before collapses with lowerpriority.

Greedily following persistence.The above procedure defines2#max−1 different seg-
mentations, one for each non-empty subset of the maxima. To rationalize the choice, we
suggest to turn off maxima greedily, following the persistence measure as introduced
in [8]. This is the time-lag between when a cell is initialized and when it first meets
another, older cell. We consider the union of these two cellsas the continuation of the
older cell. The measure of a maximum,v, is thereforeπ(v) = f(v)− f(w), wherew is
the highest2-saddle that separates the cell ofv from the cell of a maximum higher than
v. This measure can be computed in time proportional tonα(n) using a union-find data
structure that keeps track of the components ofLi during a top to bottom sweep. Given
the initial segmentation (with all maxima turned on) and themeasureπ at every max-
imum, the greedy algorithm turns off maxima in the sequence of increasing measure.
After re-naming the maxima such thatπ(v1) < π(v2) < . . . < π(v#max) and letting



w1, w2, . . . , w#max be the corresponding sequence of2-saddles, we can now state the
greedy algorithm more formally.

for i = 1 to #max − 1 do
collapse2-manifold/cell pair ofwi andvi;
repeat

collapse1-/2- and0-/1-manifold pairs
until no further collapses are possible

endfor.

Of course, we can halt the algorithm before arriving at a single cell, and the appropriate
resolution may be chosen by the user or determined by other means.

5 Discussion

We have described a version of the watershed algorithm for segmenting a density func-
tion on a3-manifold that uses persistence to counteract the over-segmentation, a com-
mon problem with the watershed paradigm. Many steps needed to turn this into a useful
piece of software for medical data have been left unanswered. Should the algorithm
be used on the raw data or will it be necessary to first apply a transformation of the
data, such as a denoising, a smoothing, or a subsampling procedure? Three-dimensional
medical images are usually given over a subset ofR

3, most often a cube sampled at an
integer lattice of points (the centers of the voxels decomposing the cube). How severe
are the artifact caused by the regular arrangement of the data points? Is it worth adding
the voxel centers and use the Delaunay triangulation of the resulting body centered cu-
bic lattice for the segmentation? It has better shaped tetrahedra than those triangulating
the integer lattice and can still be treated implicitly, running the algorithm one vertex
star at a time. The segmentation is defined by the two-dimensional triangulation con-
sisting of the marked simplices. Will it be necessary to simplify this triangulation, eg.
using edge-contractions running in parallel with the segmentation as described in [1]?
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Appendix

We now describe the actions taken in the general case, subsuming all types of vertices
other than minima and maxima. Lettingu be such a vertex, the level setf−1(f(u))
intersects its link inj + 1 ≥ 1 closed curves decomposing the link intoj + 2 open



regions. Using the reduced Betti numbers of the lower link, we countβ̃0 + 1 regions
belowu andβ̃1 + 1 regions aboveu so thatj = β̃0 + β̃1. Each region belowu retracts
to a component of the lower link, and each region aboveu corresponds to a hole of
a region belowu or to the outside. Instead of one tree or cactus, we constructβ̃0 + 1
multi-cacti with a total ofβ̃1 cycles. Without counting components and holes, the right
number of cacti and cycles arises as a side-effect of the process that adapts the family
of cacti to the topology of the lower link.

Step 1.1. Construct a forestTu that contains a spanning tree within each compo-
nent of the lower link, thus touching all vertices in the lower link.

Step 1.2. ThickenTu to a subcomplexSu of the lower link by iteratively adding
triangles that already have two edges inSu, until there are no more such triangles.

We may think of the thickening operation as a sequence of anti-collapses, each adding a
triangle and its third edge. An anti-collapse does not change the homotopy type, which
implies that the final complexSu generated inStep 1.2 consists ofβ̃0 + 1 con-
tractible components. We further expand these components until they cover the entire
lower link. We do this by adding edges that changeTu from a family of trees to a family
of cacti.

Step 1.3. Initialize Cu = Tu and iterate untilSu is the lower link:
Step 1.3.1. Add an edge of the lower link toSu and also toCu.
Step 1.3.2. ThickenSu by anti-collapsing triangles on both sides of the new

edge until no further anti-collapses are possible.

We call the edges added inStep 1.3.1 bridgesbecause they form cycles, turning
trees into cacti. Note that the thickening process guarantees that every new cycle goes
around a new hole in the lower link. To continue, we shrinkCu, retaining only a minimal
set of edges needed to touch all stained vertices and preserve the topological type. Call
a vertexfree if it belongs to exactly one edge inCu.

Step 1.4. Extract a family of cacti by iterating the following steps:
Step 1.4.1. Find an unstained free vertex inCu.
Step 1.4.2. Collapse the incident edge by removing the vertex and the edge

from Cu.

Steps 1.1 to1.4 are illustrated in Figure 4. Given the inputCu for Step 1.4, the
result of the sequence of collapses is unique, unless there is a component without cycles
and without stained vertices. The edge collapses reduce this component to a single but
arbitrary vertex in this component. The remaining two stepsuse the simplices inCu to
mark and the simplices inSu − Cu to label the simplices in the lower star.

Step 2. Mark the triangles and edges in the lower star whose faces in the lower link
are the edges and vertices ofCu.

The family of cacti together with the marked edges connecting stained vertices to the
outside decompose the subset of points in the link that are below u into bays. Each
bay touches the curves in whichf−1(f(u)) intersects the link and thus neighbors the
complementary subset of points aboveu. In the last step, we visit the bays and label
corresponding simplices in the lower star. Call an edgefree if it belongs to exactly one
triangle inSu.



Fig. 4: Left: the level set ofu intersects the link in three curves forming a double-annulus with
two holes and the outside region. We see a spanning tree that touches every vertex in the double-
annulus. Middle: the tree is thickened by incrementally adding the shaded triangles. When this
process halts, we add a (thick black) bridge, turning the tree into a cactus, and repeat until the
entire lower link is covered. Right: the cactus that spans all stained vertices extracted from the
thickened complex. It contains both bridges and is a deformation retract of the double-annulus.

Step 3. ShrinkSu back toCu by iteratively collapsing free edges and vertices (the
edge collapses undo the earlier anti-collapses and the vertex collapses repeat the
collapses used to shrink the cacti):
Step 3.1. Find a free edge or vertex,υ in Su − Cu. In either case,υ belongs

to a triangle in the link that does not belong toSu. Let ℓ be the label of the
corresponding tetrahedron in the star.

Step 3.2. Let τ be the unique triangle or edge inSu that containsυ. Label the
simplices in the star that correspond toυ andτ with ℓ.

Step 3.3. Removeυ andτ from Su.

As mentioned earlier, it is possible that a component ofCu consists of a single unstained
vertex,v. In this case,Step 3 labels all simplices in the corresponding component of
the lower star, except for the edge connectingu to v, which it marks. A special case
arises if there are no other components inCu, which is the regular case. Thenu itself is
free and we collapse the edge by unmarkingu anduv and labeling both consistent with
the tetrahedra in their stars. As a side-effect,v is no longer stained.


