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Abstract. We describe an algorithm for segmenting three-dimensioraical
imaging data modeled as a continuous function Ganaanifold. It is related to
watershed algorithms developed in image processing bubseicto its mathe-
matical roots, which are Morse theory and homological algel allows for the
implicit treatment of an underlying mesh, thus combining structural integrity
of its mathematical foundations with the computationalcégficy of image pro-
cessing.

1 Introduction

The extraction of shape information from density functi@ms&n important topic in
medical imaging. We formalize this problem as the consimacand simplification of
the Morse complex of the function. Before discussing thisnfalization and our algo-
rithm, we discuss our motivation and briefly survey the esi@nrelated literature.

Motivation and prior work. Medicine uses a variety of technologies to non-invasively
obtain images of the anatomy of a subject. Examples are niagasonance imaging,
X-ray and other types of computed tomography, ultrasoumd Yaray projectional ra-
diography. They provide information about the anatomy egped in terms of intensity
or density. To make sense of the data, we need image segierigorithms that ex-
tract shapes by delineating their boundaries. This is assace first step for a multitude
of medical tasks, including the quantification of tissue, diagnosis, and the study of
anatomic structure.

The segmentation of a three-dimensional image can be agiprdan a variety of
ways. Today, many different algorithms are in use, each wétlown strengths and
weaknesses. We refer to Clar&eal. [4] and Pham, Xu and Prince [19] for surveys of
segmentation algorithms in medical image analysis. In tamgdt to organize the body
of prior work, we distinguish betweeatirect andindirect approaches to segmentation.
In the direct approach, an algorithm generates shapes lagiagconsiderations based
on the density function. An exampletisresholding in which a small number of real
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thresholds is used to partition space into the preimageg@fials between contiguous
thresholds [21]. Another example lisgion growing in which seed points are grown
into regions using local expansion criteria [10]. A thirchexple works byspitting and
mergingregions [12]; see [14] for an extension to three-dimendiomagnetic reso-
nance images. The recently most successful of the indipgrbaches ardeformable
modeld16] or level set method23], in which boundary surfaces are computed through
numerical solutions to differential equations. Shapesataa be ‘learned’ usingrti-

ficial neural networkg11] or other adaptive structures developed within artfién-
telligence. Sometimes, atlasrepresenting an idealized or expected segmentation is
available, and the problem reducesegisteringthe atlas with the image [13].

The prior work most similar to ours is on theatershed methqgadvhich is another
direct approach to segmentation. It is easiest explaineth&yanalogous process of
flooding a landscape in which water seeps in from every lo¢aimum. As the water
rises, it fills up a basin around each minimum and when twonisasieet, it erects a
dam that follows the line along which the water meets. Aldnonis in image processing
that construct the dams defining the segmentation can belfolyB, 25]. The concept
itself is however older within image processing [2, 9]. Awy of watershed algorithms
can be found in [20]. The algorithm of Vincent and Soilles][B&s been extended to
three-dimensional magnetic resonance images by Sigtes[22]. The authors of the
latter paper cope with over-segmentation by applying ausiié filter [26] eliminating
many spurious local minima before running the watershedrdlgn. They also merge
regions in a postprocessing phase, using a statisticabtgstide the process.

Results. The main contribution of this paper is a new segmentatioaréatym. It takes

the direct approach and falls into the class of watershegtiitigns, constructing regions
by following the gradient of the density function. The aliglom has a short list of
distinguishing characteristics based on old and new wodkifferential and algebraic

topology:

1. The basic segmentation of space is achieved by constgugtiat we call the Morse
complex of the density function [7, 24].

2. We coarsen the complex without altering its mathemagiogperties using homo-
logical persistence to guide the process [8].

3. We find a compromise between structural integrity, nuca¢@ccuracy, and com-
putational efficiency in which none of the three measuresasakibstantial sacri-
fices.

The two-dimensional version of our algorithm has been imgleted and used to de-
compose-manifolds describing mechanical shapes [6]. The sucdassbalgorithm,
even for rather complicated shapes, motivates us to extendlgorithm to three di-
mensions. Similar to its two-dimensional counterpart, algorithm works for general
3-manifolds and not just foR?. It is most efficient when the data permits an implicit
representation of the triangulation representing3tmeanifold.

Outline. Section 2 presents background from differential topolagy ftom combina-
torial topology. Section 3 explains the segmentation dtlgor. Section 4 discusses the
simplification of the segmentation. Section 5 presentsglanthe future.



2 Background

In this section, we review the mathematical background eédar our algorithm. We
discuss Morse functions, piecewise linear maps, and pensisomology.

Morse functions. Letting f : M — R be a smooth function on &manifold, we get
the derivative at a point € M as a linear map from the tangent space to the reals,
df, : TM, — R. The pointz is critical if d f, is the zero map, otherwise, itisgular.

A critical valueis the imagef () of a critical pointz. Assuming local coordinates af
theHessianis the matrixH (x) of second-order partial derivatives. It distinguishes-
degenerateritical points, for which the Hessian is invertible, frathegeneratenes,

for which det H(x) = 0. In this paper, we are interested in using critical poinbtiye

for smooth functions merely as a guiding intuition, so weuf@on the generic case of
Morse functionslefined by the following two requirements:

I. All critical points are non-degenerate.
[1. All critical points have unique function values.

The Morse Lemma asserts that a non-degenerate critical pgarmits local coordi-
nates such that(xq, 2, 23) = f(x) + 22 + 23 + 2% in a neighborhood of [15, 17].
This implies that non-degenerate critical points are tsaland, ifM is compact, any
Morse function oM has only finitely many critical points. The number of minuys
in the above expression is independent of the chosen locatlitmtes and equals the
number of negative eigenvalues of the Hessian. It is redeioeas thendexof x and
distinguishesninima(index 0),1-saddleqindex 1),2-saddlegindex 2), andnaxima
(index 3) from each other. We get a local picture by drawingnalssphere around a
critical (or regular) pointr, and intersecting it with the level set to separate the regio
below z (the set of pointg with f(y) < f(x)) from the region above (pointsy
with f(y) > f(x)). Non-degenerate critical points have the charactelistial pictures
shown in Figure 1.

=l 1

regular minimum 1-saddle 2-saddle maximum

Fig. 1: Local pictures of regular and critical points of a ierfunction on &-manifold. The level
set separates the shaded region betdwom the white region above.

Critical points are often used to study the topology of thenifedd, by sweeping
M in the direction of increasing function value and monitgrihesub-level setlefined
asM, = {# € M | f(z) < a}, wherea € R is the value of the current level.



As a increases, we observe topology changes whenepasses a critical value. The
changes depend on the indices of the corresponding crg@ats and accumulate to
give x = #min — #sad; + #sad, — #max = 0 for the Euler characteristicof M.

Morse complexesAssuming a Riemannian metric &, we can use local coordinates
to define thegradientas the vectoR f(z) of first-order partial derivatives at. If we
follow the flow defined by the gradient, we trace outiategral curvey : R — M that
begins at a critical point, therigin, orgy = lim;_, _, y(¢), and ends at another critical
point, thedestination desty = lim;_.~ y(t), without containing either. Two regular
points either belong to the same or to two disjoint integredd, which implies that the
integral lines together with the critical points partitihe manifold. We can now form
a coarser partition by merging all integral lines with thensadestination. Specifically,
thedescending manifoldf a critical pointz is

D(z) ={z} U{y € im~ | desty = z}.

A minimum cannot be the destination of any integral line;déscending manifold is
therefore just a point, the minimum itself. The descendirgifold of al-saddle con-
sists of two integral lines approaching theaddle from opposite sides in the direction
of the eigenvector with negative eigenvalue. Together thigh -saddle, these two inte-
gral lines form an opem-manifold whose endpoints are the origins of the two curves,
which may or may not be the same. Similarly, the descendingjfid of a 2-saddle

is an open disk and that of a maximum is an open ball. Symnadiirieve define the
ascending manifoldf a critical point as the point itself union all integral lines with
origin atz. A Morse function isMorse-Smaléf

I11. the descending and ascending manifolds intersecttrensally.

Being Morse-Smale is a generic property of smooth functiBngperty Il implies that
the descending manifolds are tbelsof a complex, in the sense that the cells partition
M and the boundary of each cell is a union of lower-dimensioalis in the complex.
We call this theMorse complexf the function.

Homology. Thep-th homology groujs an algebraic representation of the collection of
p-dimensional holes of a topological space. Formally, itis ¢roup ofp-dimensional
cycles divided by the group gf-dimensional boundarie${, = 7, /B, [18]. Thep-

th Betti numbeis the rank of this group3, = rank H,, and can be interpreted as the
number ofp-dimensional holes. The only possibly non-zero Betti nurabag8-manifold
can have are for the dimensions- 0, 1, 2, 3. The Euler-Poincaré formula asserts that

X = By — B1+ B2 — B, 1)

which should be compared with (3). As suggested by the twatsapns, we can make
index+ critical points responsible for thedimensional holes counted by theh Betti
number. It is convenient to use reduced homology groupsGh8pter 1] to rationalize
the classification of critical vertices. The ranks of thesmigs are the same as their non-
reduced counterparts, except fay = 3, — 1 if the space is non-empty antl ; = 1



type inde>H[§71 Bo Br B

regular 0 0 0O
minimum 0O 1 0 0 O
1-saddle 1110 1 0 O
2-saddle 2110 0 1 O
maximum 3 || 0 0O 0 1
Table 1: For simple vertex types, the dimension of the nan-meduced Betti number of the lower

link, if any, is one less than the index of the vertex.

if the space is empty. Table 1 gives the relation betweenythe of a vertex and the
reduced Betti number of its lower link.

Piecewise linear manifoldsFrom now on, we consider the case in whichthmanifold,
M, is the underlying space of a simplicial compl&xand thatf : M — R is obtained
by piecewise linear extension of function values specifiedevertices of<. Thinking

of f as the approximation of a smooth function, we introduceesponding concepts.
First we need some definitions. Tsr of a vertexu is the set of simplices that contain
the vertexSt u = {0 € K | u < o}. Thelink of u is the set of faces of simplices in the
star that do not contain, Lku = {7 < ¢ € Stu | 7 € Stu}. SinceK triangulates a
3-manifold, every vertex star has the topology of an opendyadlevery vertex link has
the topology of a sphere. Thewer starandlower link are the subcomplexes induced
by the vertices below:

St_cu={oceStulu#v<o= f(v) < f(u)};
Lk_u={reLlku|v<7= f(v) < f(u)}.

Assuming the vertices ik have pairwise different function values, the level set that
passes through intersects the link in a (not necessarily connected) curaedvoids
all vertices and decomposes the link into two (not necdgsashnected) regions, one
below and the other abowe The region below: contains the lower link and has the
same homotopy type, which can be proved by establishing @rmetion retraction
from the region to the lower link. Guided by the smooth case,oall u a regular
vertex a minimum a 1-saddle a 2-saddle and amaximumif its lower link has the
homotopy type of the corresponding shaded region in Figufe\kertex that does not
fit this classification has, + 31 > 2, with 3, + 1 the number of components in the
lower link and3; + 1 the number of components in the symmetrically defined upper
link. We thus think of it as the simultaneous embodiment ¢f €old 1-saddle and a
3, -fold 2-saddle.

Our assumption of vertices with pairwise different funoti@lues implies that every
simplex of K belongs to a unique lower star. In other words, the lowesgtartition
K. Indexing the vertices in the order of increasing functiafue, f(u;) < f(uz) <
... < f(um), we may form a nested sequence of subcomplexes,

0=KycK i CKyC...CK,,=K, 2



called afiltration of K, whereK; = |J/_, St_u;. The complexK; has the same
homotopy type as the sub-level 3dt, for every f(u;) < a < f(u;+1), which can be
proved by establishing a deformation retraction fiielinto £ ;. The difference between
two contiguous complexes is the extra lower skar, | — K; = St_u;11. By definition,
the Euler characteristic df; is the alternating sum of simplex numbers. We claim it is
also the alternating sum of critical point numbers,

X = #vert — #edg + F#tri — #tet
= #min — #sad; + #sad, — #max, )

where a multiple critical point is counteg, — 3, times. Indeed, the equation holds
initially, for j = 0, and it is maintained when we add the lower stanpf; to K ;.

PersistenceWe use homology groups to count the holes in the compl&kesrdered

by inclusion as in (2). Fixing the dimension towe write F; = H,(K;) for the p-th
homology group of thé-th complex. The chain of inclusions among the complexes
implies a chain of maps among the homology groups induceddysion,

Fo—F —F,—...— F,.

Let fij : F; — I} be the composition of — ¢ of the maps along the chain. The
correspondingersistent homology groug the image of this mad?ij = im ff and
the correspondingersistent Betti numbeis 3/ = rank F/. We use these numbers
to define the life-time of individual homology classes. Tlesctiption of this idea is
made complicated by multiple critical points, which may sitaneously create several
classes and destroy several other classes. Defining

pl = (B =Bl = (BT - By,

we say thatu{ homology classebve from f(u;) to f(u;), being bornat time f(u;)
anddyingat time f(u;). Indeed, the first difference can be interpreted as the numbe
of classes born at or before tinfé¢u;) that die after timef (u,_1) but at or before time
f(u;). With a similar interpretation of the second differenegis the number of classes
born some time irf f (w;—1), f(u;)] that die some time iQf (v;_1), f(u;)]. Since there

is no activity in the open interval between contiguous caitivalues, we can attribute
the births and deaths as stated. Presistencef a class counted by is f(u;)— f(u;).

An algorithm that pairs up births with deaths and computegtrsistence of homology
classes can be found in [8]. Using the integers modulo 2 asdbéicient group for
homology, it takes timeéD(N3) in the worst case for a filtration of a complex with
N simplices. The experimentally observed running time is Imless than cubic and
seems to be close to linear . The persistence of the maxima and the minima can be
computed faster, in worst case time close to lineaKin

3 Algorithm

In this section, we present the segmentation algorithnerAgxplaining its global struc-
ture, we describe its actions in the simple cases. The gerasa can be interpreted as
an accumulation of simple cases, as given in the appendix.



Problem specification.As input to the algorithm, we assume a triangulatiorof the
3-manifoldM and a function value for each vertex. Writing to «,, for the vertices,
we assume pairwise different function valug¢$wu;) # f(u;) wheneveri # j, and
we justify the assumption by the use of a simulated pertiohdb, Chapter 1.4]. As
explained earlier, the function values can be extendediip@ver all simplices to give
a continuous PL functiorf : | K| — R. The output is a marking of some simplices
and a labeling of all unmarked simplices. Specifically, itherkingis a mapy : K —
{0, 1} and the subset afnmarkedsimplices isK° = p~1(0). Thelabelingis a map

A : K° — [1,m] whose image is the set of subscripts of the maxima. The irgt{on

of u and) is as follows. The subset afiarkedsimplices,K = x~1(1), corresponds to
the union of descending, 1-, and2-manifolds in the smooth category. It decomposes
the rest into componenfs® = A\~1(¢), which correspond to theé{dimensional) cells
of the Morse complex. The simplices of each component aedddlwith the subscript
of the generating maximum.

Sweep from the top.Before running the algorithm proper, we sort the verticethef
triangulation and re-name them such thigt,) < f(u2) < ... < f(um). The algo-
rithm sweeps the triangulation from top to bottom, in theesrdf decreasing function
value. Recall thafs; is the union of lower stars of the verticas to u;. Because of
the chosen ordering, the algorithm explores the complenignt K — K, before it
exploresk;. We call a vertex in; stainedif it belongs to a marked simplex ih;. The
action taken at a vertex depends on whether it is regularitizatr

for i=mdownto 1ldo
case u; is a maximum:
label all simplices in the star of; with ¢
case u; is regular:
construct a spanning tree of the stained vertices in therltmleof u;;
mark the simplices in the lower star incident to the spantieg;
3 label the other simplices in the lower star by copying frorighbors
case u; is al-saddle:
do St eps 1 to 3 for each component of the lower link
case u; is a2-saddle:
construct a spanning cactus whose cycle separates the poles
do St eps 2 and3 substituting the cactus for the tree
case u; a minimum:
markw;
endf or.

N -

A cactusis a tree plus a single extra edge, which thus defines a unigue. do con-
struct a cactus as needed in theaddle case, we first construct a spanning tree of all
vertices in the lower link, we add an edge to form a cycle, aaghmine the cactus while
retaining the cycle and the stained vertices.

Invariants. Before discussing the cases in more detail, we make genasatations
and formulate properties that hold throughout the algoritNote first that a simplex is
marked or labeled when it is first encountered, which is wiheralgorithm processes



its highest vertex. Sinc&’; consists of all simplices that have no vertex with subscript
higher thani, the set of marked or labeled simplices right before prangss; is its
complement]; = K — K;. While L; is generally not closed, it ilatively closedn

the sense that every face of a simplexinis either inL; or in K;. This is of course
trivially true asL; and K; partition the entire complex. A more interesting obseprati

is that the set of marked simplices shares the same propleatyis, every face of a
marked simplex irl; is either also marked or belongskg. We now state this and two
other claims as invariants of the algorithm.

INVARIANTS. The following relations hold for all subscripts of verti;é and all sub-
scripts of maximal.
(i) The setL; = L; N K is relatively closed.
(i) ThesetL? = L; — L; = |J, L! is open.
(iii) The setL! = L; N K*is empty or an open ball.

Since the algorithm works without back-trackirg,is the set of simplices marked right
before processing;. To explain (ii), we call a sebpenif the inclusion of a simplex
implies the inclusion of its entire star. It is then not difficto see that (ii) holds. With

a little bit more effort, we can also see that each label defameopen ball, as claimed
in (iii). To see what this means, we note thaf is the subset of already processed
simplices in the sefik* = \~'(¢), which represents a cell in the Morse complex. We
call LY anopen ballif the union of interiors of its simplices is homeomorphicRd.

To know that the cells are open balls is not important to ustded the algorithm, but
it is important to understand the result of the algorithnr. &ample, it implies that a
marked vertex can be isolated only if the entire Morse compbmsists of a single cell
and the vertex forms the boundary of that cell. In this c&Sérjangulates th&-sphere
and the functiory has only two critical vertices, a minimum and a maximum.

Regular caseRecall that, = u; is regular iff the level set defined by f~1(f(u)), in-
tersects the link in a single closed curve decomposing titkérito two open disks. The
lower link is a deformation retract of one of these disks antherefore contractible.
When we process, we mark and label the simplices in its lower star. It is corigat to
represent each such simplex by its face in the lower linkctviias one lower dimen-
sion; see Figure 2. We now describe the three steps takerelalgbrithm.

Step 1. Construct a spanning tree within the lower link that toucdlegs vertices.
Extract a subtre&, that touches all stained vertices.

Step 2. Mark the triangles and edges in the lower star whose facémilotver link
are the edges and verticesyf.

The treeT,, decomposes the lower link into regions we dallys each adjacent to the
complement of the lower link along edges we callfitmtier. A triangle on the other
side of the frontier corresponds to a tetrahedron in thetbttrdoes not belong to the
lower star and is therefore already labeled. The labels veedanoss the frontier of a
bay are all the same.

Step 3. Traverse each bay of the lower link, from the frontier inwgrdnd copy
the label found outside the frontier to the corresponditigkedra, triangles, and
edges in the lower star.



Fig. 2: Left: the star and link of the vertex = u;. The (solid) marked vertices lie in the upper
hemi-sphere and the (shaded) stained vertices lie in therlbemi-sphere. Right: the lower link
of u drawn as a disk in the plane. The (solid black) spanning tfebeostained vertices is a
subtree of the (solid black and shaded) spanning tree obtherllink.

An additional layer of detail about the three steps will beegiin our description of the
general case in the appendix, which subsumes the regulargma special case.

2-saddle caseRecall that the vertex = u; is a2-saddle iff f = (f(u)) intersects the
link in two closed curves decomposing it into two open diskd an open annulus, as
illustrated in Figure 3, where the lower link is a deformatietract of the annulus. The

Fig. 3: Left: the star and link of the vertex = u;. The (solid) marked vertices lie on the polar
caps and the (shaded) stained vertices lie on the equatetidhat separates the caps. Right: the
lower link of w drawn as an annulus in the plane. The (solid black) spanmiotys of the stained
vertices is a sub-cactus of the (solid black and shadedngpgeactus of the lower link.

three steps processingare similar to those in the regular case, except that we begin
with a cactus rather than a tree. We describe the first stefhiohwvthis difference is
most important.

Step 1. Construct a spanning tree within the lower link that toucilegs vertices.
Add a single edge creating a cycle that goes around the asyregparating the two
disks. Extract a cactug; that touches all stained vertices.



By virtue of being a cactus/’F contains the cycle created by the edge added to the
spanning tree. Steps 2 and 3 are the same as in the regular case

Implementation and running time. The segmentation algorithm allows for a variety
of short-cuts that make the implementation both easier ao@ ®fficient. The biggest
gain can be expected from avoiding any explicit construnctibthe three-dimensional
triangulation, the compleX’. This is possible in the common case in which the data
points form a regular grid ifR*. However, the short-cuts do not affect the asymptotic
running time of the algorithm, which we now address.

Let m, n andt¢ be the number of vertices, edges, and triangle& iand writen;
andt; for the number of edges and triangles in the link of the veniteX he asymptotic
running time of the algorithm depends on the implementatiost ep 1 and, in par-
ticular, on the construction of the spanning trees and spgroacti. An attractive way
to resolve ambiguities prefers short edges over long ediges constructing minimum
spanning trees and cacti by always adding the shortest @ddatde. Every step of the
construction for,; takes time at most some constant timgog, n;, the time it takes
to sort the edges by length. To take the sum over all vertimesggbserve that the total
number of triangles is = 1 3", ¢;, because each triangle belong to two vertex links.
Since every link is a triangulated sphere, we haye= %ti for eachi and therefore
>, ni = 3t. Furthermoret < n because every triangle has three edges and every edge
belongs to at least three triangles. The total running tisnthérefore some constant
times) ", n;logy n; < 3nlog,(max; n;). For the common case in which each vertex
has only a constant size star, the algorithm thus runs in firoportional to the data
size.

4 Coarsening

Over-segmentation is a consequence of the algorithm ogeatcell for each and every
local maximum. In this section, we discuss a greedy apprtaphogressively coars-
ening the initial, fine segmentation until a desired levelesblution is reached.

Turning off maxima. A coarsening of the segmentation is achieved by turning off a
subset of the maxima and treating them as regular pointscé@lhef an off maximum

is merged into another cell, which is accomplished by tugroff a 2-saddle whose
descendin@-manifold would otherwise separate the cells. As a first apipnation,

we can understand the result by running the segmentatianigdgn with some modi-
fications in how it treat2-saddles. Assuming an arbitrary but fixed assignment of the
maxima to on and off, the algorithm takes different actions Zxsaddleu, depending

on the status of the cells that meetat et andj be the labels of their tetrahedra (the
subscripts of the maxima that generate the two cells).

Case A. Ifi=jori# jandu; andu; are both on, then we treatthe same way as
in the original algorithm, starting a locally separatingdending2-manifold atu.

Case B. If i # j andu; is off, then we merge the cell af; into that ofu; by
changing the label of its simplices frognto ¢« and suppressing the creation of a
separating descendirrgmanifold atu.



In summary, the algorithm determines the status ®fsaddle (on inCase A and off
in Case B) based on the status of the maxima generating the cells that at the
2-saddle. A drawback of this algorithm is that it fails to mdke same distinction for
1-saddles and minima, and it is indeed impossible to makeppeoariate assignment
based on the local information available when we sweep thetiion from top to bot-
tom.

Collapsing. We remedy this deficiency by making the assignment in an didsgris
independent of the sweep direction. To describe this, werobghat whenever we turn
off amaximum, we also turn offa-saddle, effectively cancelling the two critical points.
We implement this operation byallapse in the largewhich unmarks the descending
2-manifold of the2-saddle and re-labels the cell of the maximum. A collapskerdrge
translates into a sequence of collapses in the small, efedtiaf a pair of simplices in
the triangulation. For example, to remove the cell, we gtetprocess by initializing
an open ball to a tetrahedron in the star of the maximum. ThHéslthen expanded by
collapsing its complement until the cell is exhausted. Rer2tmanifold, we start the
process by initializing an open disk to a marked trianglehim $tar ofu that does not
belong to any other descendiggnanifold. By construction, the triangle connecting
to the bridge completing the cycle in its link is such a trieng his disk is expanded by
collapsing its marked complement. The process either esthdlie entire descending
2-manifold or comes to a halt where tBemanifold merges with other descendig
manifolds.

In the process of collapsiriiymanifold/cell pairs, we may deteriorate the surround-
ing of a descending-manifold until it belongs to only one descendifgmanifold.
At this moment, we collapse thie/2-manifold pair. Similarly, when a descending
manifold (a minimum) finds itself part of only one descendinganifold, we collapse
the0-/1-manifold pair. As before, each collapse in the large tr@eslinto a sequence of
collapses in the small. The process continues until no éurtbllapses can be applied.
The result of this algorithm may depend on the sequence tips#s, for example if
a 2-manifold can be collapsed from two differeivmanifolds in its boundary. We get
a unique result by prioritizing the collapses. Most natlyrale would use the func-
tion value of the lower-index critical point of the definingipas priority and perform
collapses with higher priority before collapses with loygeiority.

Greedily following persistence The above procedure defirgé™>x — 1 different seg-
mentations, one for each non-empty subset of the maximaatitonalize the choice, we
suggest to turn off maxima greedily, following the persiste measure as introduced
in [8]. This is the time-lag between when a cell is initializand when it first meets
another, older cell. We consider the union of these two @slthe continuation of the
older cell. The measure of a maximumjs thereforer(v) = f(v) — f(w), wherew is
the highesp-saddle that separates the celbdfom the cell of a maximum higher than
v. This measure can be computed in time proportionakitn) using a union-find data
structure that keeps track of the components odluring a top to bottom sweep. Given
the initial segmentation (with all maxima turned on) and tirasurer at every max-
imum, the greedy algorithm turns off maxima in the sequeridaaeasing measure.
After re-naming the maxima such thatv,) < m(v2) < ... < 7(v#max) and letting



wi, Wa, - . ., Wgmax DE the corresponding sequenceedaddles, we can now state the
greedy algorithm more formally.

fori=1to#max—1do
collapse2-manifold/cell pair ofw; andwv;;
repeat
collapsel-/2- and0-/1-manifold pairs
unt i | no further collapses are possible
endf or.

Of course, we can halt the algorithm before arriving at alsiogll, and the appropriate
resolution may be chosen by the user or determined by othansne

5 Discussion

We have described a version of the watershed algorithm gpmeating a density func-
tion on a3-manifold that uses persistence to counteract the ovensetation, a com-
mon problem with the watershed paradigm. Many steps neededt this into a useful
piece of software for medical data have been left unansw&eduld the algorithm
be used on the raw data or will it be necessary to first apphamsformation of the
data, such as a denoising, a smoothing, or a subsamplinggue? Three-dimensional
medical images are usually given over a subs@Hfmost often a cube sampled at an
integer lattice of points (the centers of the voxels decasiqapthe cube). How severe
are the artifact caused by the regular arrangement of tleepdants? Is it worth adding
the voxel centers and use the Delaunay triangulation ofdlelting body centered cu-
bic lattice for the segmentation? It has better shapedietita than those triangulating
the integer lattice and can still be treated implicitly, nimg the algorithm one vertex
star at a time. The segmentation is defined by the two-diroaastriangulation con-
sisting of the marked simplices. Will it be necessary to difyphis triangulation, eg.
using edge-contractions running in parallel with the segaigon as described in [1]?
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Appendix

We now describe the actions taken in the general case, sutgathtypes of vertices
other than minima and maxima. Lettingbe such a vertex, the level sgt!(f(u))
intersects its link inj + 1 > 1 closed curves decomposing the link inte+- 2 open



regions. Using the reduced Betti numbers of the lower link,count3, + 1 regions
beloww and/3; + 1 regions above so thatj = (3, + 3. Each region below retracts

to a component of the lower link, and each region aboew®rresponds to a hole of

a region below or to the outside. Instead of one tree or cactus, we consfuet 1
multi-cacti with a total of3; cycles. Without counting components and holes, the right
number of cacti and cycles arises as a side-effect of theepsoihat adapts the family
of cacti to the topology of the lower link.

Step 1.1. Construct a foresT, that contains a spanning tree within each compo-
nent of the lower link, thus touching all vertices in the loiek.

Step 1.2. ThickenT, to a subcomplex,, of the lower link by iteratively adding
triangles that already have two edgesSin until there are no more such triangles.

We may think of the thickening operation as a sequence ofcatiipses, each adding a
triangle and its third edge. An anti-collapse does not ckdahg homotopy type, which
implies that the final comple$,, generated irSt ep 1. 2 consists of3, + 1 con-
tractible components. We further expand these componaeaititshey cover the entire
lower link. We do this by adding edges that chafigjdrom a family of trees to a family
of cacti.

Step 1. 3. Initialize C,, = T, and iterate untilS,, is the lower link:
Step 1.3.1. Addan edge of the lower link t§,, and also ta’,,.
Step 1.3.2. ThickensS, by anti-collapsing triangles on both sides of the new
edge until no further anti-collapses are possible.

We call the edges added 8t ep 1. 3. 1 bridgesbecause they form cycles, turning
trees into cacti. Note that the thickening process guaeartteat every new cycle goes
around a new hole in the lower link. To continue, we shidhk retaining only a minimal
set of edges needed to touch all stained vertices and pestbertopological type. Call
a vertexfreeif it belongs to exactly one edge @,,.

Step 1. 4. Extracta family of cacti by iterating the following steps:
Step 1.4.1. Findan unstained free vertexd,.
Step 1.4.2. Collapse the incident edge by removing the vertex and the edg
fromC,.

Steps 1. 1tol. 4 areillustrated in Figure 4. Given the inpdf, for St ep 1. 4, the
result of the sequence of collapses is unique, unless tharedmponent without cycles
and without stained vertices. The edge collapses redusedmponent to a single but
arbitrary vertex in this component. The remaining two stegsthe simplices in', to
mark and the simplices i, — C,, to label the simplices in the lower star.

St ep 2. Markthe triangles and edges in the lower star whose facémitotver link
are the edges and vertices©f.

The family of cacti together with the marked edges conngctiained vertices to the
outside decompose the subset of points in the link that adl@vbe into bays. Each
bay touches the curves in whigh!(f(u)) intersects the link and thus neighbors the
complementary subset of points abaweln the last step, we visit the bays and label
corresponding simplices in the lower star. Call an eflgeif it belongs to exactly one
triangle inS,,.



Fig. 4: Left: the level set of; intersects the link in three curves forming a double-ansulith
two holes and the outside region. We see a spanning treeticdtas every vertex in the double-
annulus. Middle: the tree is thickened by incrementallyiagidhe shaded triangles. When this
process halts, we add a (thick black) bridge, turning the inéo a cactus, and repeat until the
entire lower link is covered. Right: the cactus that spahstalned vertices extracted from the
thickened complex. It contains both bridges and is a defoamaetract of the double-annulus.

Step 3. Shrink S, back toC,, by iteratively collapsing free edges and vertices (the
edge collapses undo the earlier anti-collapses and thexvedllapses repeat the
collapses used to shrink the cacti):

Step 3. 1. Find a free edge or vertex,in S,, — C,,. In either casey belongs
to a triangle in the link that does not belong$g. Let ¢ be the label of the
corresponding tetrahedron in the star.

Step 3.2. Letr bethe unique triangle or edge i that containg. Label the
simplices in the star that correspond.t@andr with 2.

Step 3. 3. Removev andr from S,,.

As mentioned earlier, it is possible that a componeidt p€onsists of a single unstained
vertex,v. In this caseSt ep 3 labels all simplices in the corresponding component of
the lower star, except for the edge connectintp v, which it marks. A special case
arises if there are no other component€iin which is the regular case. Theritself is
free and we collapse the edge by unmarkiranduv and labeling both consistent with
the tetrahedra in their stars. As a side-effeds no longer stained.



