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Abstract

Most entropy notions H(.) like Shannon or min-entropy satisfy a chain rule
stating that for random variables X,Z and A we have H(X|Z,A) ≥ H(X|Z) −
|A|. That is, by conditioning on A the entropy of X can decrease by at most the
bitlength |A| of A. Such chain rules are known to hold for some computational
entropy notions like Yao’s and unpredictability-entropy. For HILL entropy, the
computational analogue of min-entropy, the chain rule is of special interest and has
found many applications, including leakage-resilient cryptography, deterministic
encryption and memory delegation. These applications rely on restricted special
cases of the chain rule. Whether the chain rule for conditional HILL entropy holds
in general was an open problem for which we give a strong negative answer: We
construct joint distributions (X,Z,A), where A is a distribution over a single bit,
such that the HILL entropy HHILL(X|Z) is large but HHILL(X|Z,A) is basically
zero.

Our counterexample just makes the minimal assumption that NP * P/poly.
Under the stronger assumption that injective one-way function exist, we can make
all the distributions efficiently samplable.

Finally, we show that some more sophisticated cryptographic objects like lossy
functions can be used to sample a distribution constituting a counterexample to
the chain rule making only a single invocation to the underlying object.

∗This is the full version of [KPW13] that appeared in TCC 2013.
†This work was partly funded by the European Research Council under ERC Starting Grant 259668-

PSPC and ERC Advanced Grant 321310-PERCY.
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1 Introduction

Various information theoretic entropy notions are used to quantify the amount of ran-
domness of a probability distribution. The most common is Shannon entropy, which
bounds how well a distribution can be compressed.

Definition 1. The Shannon entropy of random variable X with support X is H1(X) =
−
∑

x∈X Pr [X = x] · log2 Pr [X = x].

Another important notion, especially in cryptographic and other computational set-
tings, is min-entropy:

Definition 2. The min-entropy of a random variable X with support X is H∞(X) =
− log2 maxx∈X Pr [X = x].

H∞(X) upper bounds the probability ofX taking any particular value (or equivalently,
the advantage of any algorithm A in guessing X) as

max
x

Pr [X = x] = max
A

Pr[A = x] = 2−H∞(X) (1)

For any x, Pr [X = x] ≤ 2−H∞(X). Shannon and min-entropy correspond to Rényi entropy
for the limiting values of α→ 1 and α→∞, respectively.

Definition 3. The Rényi entropy of order α, where α ≥ 0 and α 6= 1 , is defined as
Hα(X) = 1

1−α log (
∑n

i=1 p
α
i ).

1.1 Chain Rules

One of the most useful tools for manipulating and arguing about entropies are chain rules,
which come in many different flavors for different entropy notions. For Shannon entropy,
we have the following simple chain rule for possibly dependent random variables X,A:

H1(X|A) = H1(X,A)−H1(A) . (2)

Using H1(X,A) ≥ H1(X) and H1(A) ≤ |A| (where |A| denotes the bitlength of A) this
implies (with H = H1)

H(X|A) ≥ H(X)− |A| . (3)

Although this is a weaker statement than (2), it already captures the fact that the entropy
of X decreases by at most the bitlength |A| of A if we condition on A. As we will discuss
below, such a chain rule not only holds for Shannon entropy, but many other information
theoretic and computational entropy notions.

More generally, for many notions one can give chain rules for conditional entropies
by considering the case where X has some entropy conditioned on Z, and bound by how
much the entropy drops when additionally given A:

H(X|Z,A) ≥ H(X|Z)− |A| . (4)

[DORS08] define conditional min-entropy as follows:
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Definition 4. For a pair (X,Z) of random variables, the average min-entropy of X
conditioned on Z is

H̃∞(X|Z) = − log E
z←Z

max
x

Pr [X = x|Z = z]

= − log E
z←Z

2−H∞(X|Z=z) ,

They show that this notion satisfies a chain rule like in (4):

H̃∞(X|Z,A) ≥ H̃∞(X|Z)−H0(A) ≥ H̃∞(X|Z)− |A| , (5)

where H0(A) ≤ |A| denotes the logarithm of the support-size of A. They also show that
this notion naturally extends the property (1) of min-entropy as an upper bound on the
guessing probability to the conditional case:

max
A

Pr(x,z)←(X,Z)[A(z) = x] ≤ 2−H̃∞(X|Z) . (6)

1.2 Computational Entropy

The standard information theoretic entropy notions refer to computationally unbounded
parties, e.g., no algorithm can compress a distribution X (given Z) below its Shannon
entropy H(X|Z) and no algorithm can guess X (given Z) better than with probability

2−H̃∞(X|Z). Under computational assumptions, in particular in cryptographic settings,
one often has to deal with distribution that appear to have high entropy only for com-
putationally bounded parties. The classical example is a pseudorandom distribution
[BM84, Yao82], where X ∈ {0, 1}n is said to be pseudorandom if it cannot be distin-
guished from the uniform distribution over {0, 1}n by polynomial size distinguishers. In
this case X appears to have n bits of Shannon and n bits of min-entropy.

Pseudorandomness is an elegant and tremendously useful notion, and very convenient
to work with. Sometimes we do not have the luxury of dealing with a distribution that
appears uniformly random, but only seems to have some kind of high entropy. Such
distributions are referred to as having pseudoentropy. Stated informally, some prominent
pseudoentropy notions are defined as:

HILL: X has k bits of HILL-pseudoentropy (conditioned on Z), if it cannot be distin-
guished from some variable Y with k bits of min-entropy (given Z) [HILL99, HLR07]
We’ll define this notion precisely in Definition 7 below.

Computational Shannon: Defined like HILL-entropy, but with Shannon instead of
min-entropy [HILL99, VZ12].

Unpredictability: X has k bits of unpredictability entropy conditioned on Z if no
efficient adversary can guess X better than with probability 2−k given Z [HLR07].1

We’ll define this notion precisely in Definition 14.

Yao: X has k bits of Yao entropy (conditioned on Z) if it cannot be efficiently com-
pressed/decompressed below k bits (given Z) [Yao82, BSW03, HLR07]. We’ll define
this notion precisely in Definition 13.

1Unpredictability entropy is only interesting if the conditional part Z is not empty, otherwise it
coincides with min-entropy.
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Note that HILL and computational Shannon entropy require “indistinguishability” from
the corresponding information theoretic objects (i.e., distributions of certain min and
Shannon entropy), whereas Unpredictability and Yao entropy only capture the “func-
tional” unpredictability and incompressibility properties of the information theoretic no-
tions.

When defining the computational entropy of a variable X, not only the quantity k
is of interest, but also the quality, which specifies which class of distinguishers X fools
and with which advantage. Below we formally define HILL entropy, as well as the more
general conditional HILL entropy, but first need one more basic definition.

Definition 5 (Indistinguishability). For two probability distributions X and Y and a
Boolean circuit D, the advantage of D in distinguishing X and Y is defined as:

advD(X, Y ) = |Prx←X [D(x) = 1]− Pry←Y [D(y) = 1]| .

We say X and Y are (ε, s)-indistinguishable, denoted by X ∼ε,s Y , if for every Boolean
circuit D of size at most s it holds that

advD(X, Y ) ≤ ε .

Two ensembles of distributions X = {Xn}n∈N and Y = {Yn}n∈N are indistinguishable,
denoted by X ∼c Y , if for every polynomial p = p(n) it holds that Xn ∼1/p,p Yn for all
sufficiently large n.

With X ∼δ Y we denote that the statistical distance of X and Y is at most δ, i.e.,
X ∼δ,∞ Y . X ∼ Y denotes that X and Y have the same distribution, i.e., X ∼0 Y .

Definition 6 ([HILL99]). A random variable X has HILL entropy k, denoted by
HHILL
ε,s (X) ≥ k, if there exists a distribution Y satisfying H∞(Y ) ≥ k and X ∼ε,s Y .

Definition 7 ([HLR07]). Let (X,Z) be a joint distribution of random variables. Then
X has conditional HILL entropy k conditioned on Z, denoted by HHILL

ε,s (X|Z) ≥ k, if

there exists a a joint distribution (Y, Z) such that H̃∞(Y |Z) ≥ k, and (X,Z) ∼ε,s (Y, Z).2

1.3 Model of Computation

In this paper we stick to a non-uniform model of computation when considering adver-
saries. In particular, note that in Definition 5 we defined indistinguishability in terms of
circuits. On the other hand, when considering efficient cryptographic objects like one-
way functions, we always assume that they are computable in a uniform model, i.e., by
a single Turing machine running in time polynomial in its input length. We also define
“efficient samplability” in a uniform sense

Definition 8. An ensemble of distributions {Xn}n∈N is efficiently samplable if there
exists a probabilistic polynomial time Turing machine M such that M(1n) ∼ Xn for all
n ∈ N, i.e., the output distribution of M(1n) is Xn.

These choices are not crucial, and all the result can be adapted considering uniform
adversaries and/or non-uniform cryptographic objects. We chose this particular model
to get the strongest conclusion (i.e., a counterexample to the chain rule by an efficiently
and uniformly samplable distribution), at the cost of a stronger, but still widely believed
assumption, i.e., existence of one-way functions secure against non-uniform adversaries.

2Let us stress that using the same letter Z for the 2nd term in (X,Z) and (Y,Z) means that we
require that the marginal distribution Z of (X,Z) and (Y, Z) is the same.
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1.4 Chain Rules for Computational Entropy

Chain rules for conditional entropy as in (4) (and thus also for the special non-conditional
case (3)) are easily seen to hold for some computational entropy notions. We give the
chain rules for (conditional) Yao and unpredictability entropy in Appendix B. For HILL
entropy a chain rule has been found independently by [RTTV08] and [DP08]. It is
captured by the following

Lemma 1 (Chain Rule for HILL Entropy). For any joint distribution (X,A) where
A ∈ {0, 1}` we have that

HHILL
ε′,s′ (X|A) ≥ HHILL

ε,s (X)− ` ,

where ε′ ≈ ε and s′ ≈ sε2/23`.3

Note that in Lemma 1, conditioning on A ∈ {0, 1}` not only decreases the quantity
of entropy by `, but also the quality goes down polynomially in ε−1 and 2`, and this is
unavoidable.4 Another important point is that the lemma is only stated for the non-
conditional case, i.e., it is of the form (3), not the more general (4). Whether or not
a chain rule for conditional HILL entropy holds “remains an interesting open problem”
[FOR12].5 Concretely, we would like a statement of the form

HHILL
ε′,s′ (X|Z,A) ≥ HHILL

ε,s (X|Z)− ` (7)

where ε′ = ε ·p(2`, ε−1) and s′ = s/q(2`, ε−1), for some polynomial functions p(.) and q(.).

2 Our Contribution

2.1 The Counterexamples

In this paper we give a strong negative answer to the open problem outlined above,
showing that (7) does not hold in general. Condition (ii) in the Theorem 1 below follows
from condition (iii) by Lemma 3. We state this (redundant) condition (ii) explicitly
because from (iii) it’s not obviously clear how the chain rule is contradicted.

Theorem 1 (Main). a. If injective one-way functions secure against non-uniform ad-
versaries exist, then there exists an ensemble of efficiently samplable (cf. Defini-
tion 8) joint distributions {(Xn, Zn, An)}n∈N, where An is a single bit, that satisfy
the following conditions

(i) Xn has a lot of high quality HILL entropy conditioned on Zn: For any polyno-
mial p(.), there exists an n0 s.t. for all n ≥ n0

HHILL
1/p(n),p(n)(Xn|Zn) ≥ n

3The quantitative bounds for ε′, s′ in the statement of this lemma are from [JP14]. The result from
[VZ13] can be used to get a better s′ ≈ sε2/2` bound (and the same ε′ ≈ ε), whenever s is large enough
as a function of 1/ε and 2`, concretely, this bound holds if s = Ω(2`/ε4).

4Concretely, we know that a loss of max{2`, ε−1} in either the distinguishing advantage or the circuit
size is unavoidable [TTV09].

5We will discuss some other restricted settings in which the chain rule for HILL entropy holds in Sec-
tion 3.
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(ii) The HILL entropy drops to basically 0 if we additionally condition on the single
bit An, even if we simultaneously allow for massive degradation in the quality:
For some fixed polynomial s(.) it holds that

HHILL
1/2,s(n)(Xn|Zn, An) ≤ 1 .

(iii) There exists a polynomial time Turing machine M that perfectly recognizes Xn

given (Zn, An), i.e., for all n ∈ N and (x, z, a) ∈ supp[(Xn, Zn, An)] and every
x′

(M(x′, z, a) = 1) ⇐⇒ (x′ = x) .

b. Under the weaker assumption that NP 6⊆ P/poly, such an ensemble exists but is
not necessarily efficiently samplable and condition (i) only holds for infinitely many
(not all sufficiently large) n ∈ N.

In condition (ii) of Theorem 1, when conditioning on An, we “only” get the HILL
entropy down to 1, not all the way down to 0. For the large distinguishing advantage
ε = 1/2 we consider this is optimal, as no variable can get below one bit of HILL entropy
by Lemma 2 below.

Lemma 2. For any joint distribution (V,C) over V × C (where |V| ≥ 2) and any s ∈ N

HHILL
1/2,s(V |C) ≥ HHILL

1/2,∞(V |C) ≥ 1

The proof of Lemma 2 is in Section 7.4. Lemma 2 can be generalized to show that
for any real-valued τ ≥ 0 where |V| ≥ 2τ it holds that HHILL

1−2−τ ,∞(V |C) ≥ τ , but in
order to keep the number of parameters low, we’ll only use the τ = 1 case in this paper.
The lemma below states that the lower bound in Lemma 2 is tight whenever V can be
efficiently recognized given C.

Lemma 3. For any joint distribution (V,C), if there exists a circuit D of size s that
perfectly recognizes V given C, i.e.,

∀(v, c) ∈ supp[(V,C)] : (D(v′, c) = 1) ⇐⇒ (v′ = v)

then HHILL
1/2,s(V |C) ≤ 1.

The proof of Lemma 3 is in Section 7.5.

2.2 On the Necessity of the Assumptions Used in Theorem 1

Assuming one-way functions in Theorem 1.a and NP 6⊆ P/poly in Theorem b is neces-
sary, as stated in the propositions below, whose proofs can be found in Appendix 7.1.

Proposition 1. If there exists an ensemble of distributions as in the conclusions of
Theorem 1.a, then there exist (not necessarily injective) one-way functions.

This holds even when just assuming condition (i) of Theorem 1.a and H∞(Xn|Zn, An) = 0,
which, by Lemma 4 below, is implied by condition (ii) of Theorem 1.a.

Lemma 4. For any joint distribution (V,C) over V × C where |V| > 2, and any s

HHILL
1/2,s(V |C) ≤ 1 ⇒ HHILL

1/2,∞(V |C) ≤ 1 ⇒ H∞(V |C) = 0 .
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The proof of Lemma 4 is in Section 7.4.

Proposition 2. If there exists an ensemble of distributions as in the conclusion of The-
orem b, then NP 6⊆ P/poly.6

2.3 Proof Outline

The proof of Theorem 1 is given in Section 5, below we give a short outline.
For the rest of this section we fix some n (used to index the distributions {(Xn, Zn, An)}n∈N)

and will omit the subscripts n. We construct distributions as in Theorem 1.a from any
perfectly binding (bit) commitment scheme com : {0, 1}×{0, 1}n → {0, 1}m as in Defini-
tion 9 and note that such a scheme exists iff injective one-way functions exist. Concretely,
the distribution (X,Z,A) constituting a counterexample to the chain rule is sampled us-
ing com as follows:

• Sample the bit A← {0, 1} at random.

• Compute commitments Ci ← com(Bi, Ri) for i = 1, . . . , 3n, where the first 2n are
commitments to A (i.e., Bi = A for i = 1 . . . 2n) and the last n are commitments
to 1− A.

• Let Si = (Ci, Ri, Bi) and output the sorted list of the Ci’s as Z and the sorted list
of the n last Si’s as X, that is

X = sort(S2n+1, . . . , S3n) Z = sort(C1, . . . , C3n)

So, X is the “opening information” for the n commitments to 1−A which are “hidden”
amongst the 3n commitments in Z. As required by Theorem 1.a.iii one can efficiently
distinguish X from any X ′ 6= X given (Z,A). To see this, note that X is a list of n sorted
tuples (C,R, 1− A) where each such tuple satisfies C = com(1− A,R) for some C ∈ Z.
As com is perfectly binding, X is sorted and Z contains exactly n commitments to 1−A,
it follows that there is exactly one list (namely X) satisfying all these conditions, and
these conditions can all be efficiently checked given (Z,A).

On the other hand we claim that, as required Theorem 1.a.i , X has at least n bits of
HILL entropy given only Z but not A. To prove this we consider a random variable Y
which is defined by picking a random n element subset of (S1, . . . , S2n) and outputting

it in lexicographic order. This Y has min-entropy H̃∞(Y |Z) ≥ n since it is uniform
over exponentially

(
2n
n

)
≥ 2n many possible subsets. Moreover (Y, Z) is computationally

indistinguishable from (X,Z). We will prove this by showing how a distinguisher for
these distributions can be used to break the hiding property of com. By Definition 7 the
existence of such a (Y, Z) means that X has n bits of HILL entropy conditioned on Z as
claimed.

The construction of a distribution (X,Z,A) as claimed in Theorem b assuming only
NP 6⊆ P/poly is very similar. The only difference is that instead of using a perfectly
binding commitment scheme to construct a distribution (C,R,B) as above, we only
assume that there exists a distribution that has some, but not all, of the properties of

6Unlike in Proposition 1, here we need to assume condition (iii). We can relax condition (iii) to the
non-uniform setting, asking for a family of poly size circuits (instead the Turing machine M) to recognize
Xn given Zn, An, and this would still imply NP/poly 6= P/poly.
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(C,R,B). In particular, we don’t require the distribution to be efficiently samplable, and
we need B to be pseudorandom given C only for infinitely many (not all sufficiently large)
n ∈ N. We’ll call an ensemble of such distributions “committing” (cf. Definition 10). We
show that such an ensemble exists assuming NP 6⊆ P/poly in Section 5.3.

2.4 Efficient Counterexample from Lossy Functions and Deni-
able Encryption

To sample a distribution that constitutes a counterexample to the chain rule using injec-
tive one-way functions as in Theorem 1.a requires a linear (in the entropy gap n) number
of invocations to the OWF.

In Section 6 we show how that using more sophisticated cryptographic objects, one can
sample such distributions much more efficiently. In particular, we construct an ensemble
of efficiently samplable distributions {(Xn, Zn, An)}n∈N (where An ∈ {0, 1}) making just
two invocations to an `-lossy function, where for any polynomial p = p(n) and some fixed
polynomial s = s(n), for all sufficiently large n it holds that

HHILL
1/p,p(Xn|Zn) ≥ ` but HHILL

1/2,s(Xn|Zn, An) ≤ 1 . (8)

In Appendix A we construct an ensemble {(Xn, Zn, An)}n∈N from any deniable encryption
scheme where

HHILL
1/p,p(Xn|Zn)−HHILL

1/2,s(Xn|Zn, An) ∈ ω(log n) . (9)

Note that the counterexample to the chain rule in (9) is weaker than the distributions
constructed in Theorem 1.a or from lossy functions (8), because in (9) we do not neces-
sarily get the HILL entropy all the way down to 1 after conditioning on An, we just get a
super-logarithmic decrease in HILL entropy. Concretely, if ε(n) denotes the (negligible)
correctness error of the encryption scheme, the entropy gap is log(1/ε(n))−2 = ω(log n).

This indicates that cryptographic objects achieving some kind of deniability or lossi-
ness must embed an efficient counterexample to the chain rule for HILL entropy. Thus,
distributions which constitute such a counterexample seem to be a useful cryptographic
resource.7

3 Related Work

HILL entropy was introduced by [HILL99], and the conditional variant was suggested by
[HLR07]. Other notions of computational entropy include Yao entropy [Yao82, BSW03],
unpredictability entropy [HLR07], and metric entropy [BSW03].

Chain rules for many of these entropy notions are known. Although in this work we
show that the chain rule for conditional HILL entropy does not hold in general, it does
hold in some interesting and useful restricted cases. We already discussed that a chain
rule for non-conditional HILL entropy holds as stated in Lemma 1. This rule has appli-
cations in leakage-resilient cryptography [DP08] and deterministic encryption [FOR12].

7This is analogous to the fact that distributions having high HILL entropy can be constructed from
one-way functions, but only via inefficient constructions. Thus, despite being “equivalent”, there’s a
significant quantitative difference between one-wayness and HILL entropy. In the same vain, we can
construct a distribution constituting a counterexample to the chain rule for HILL entropy from any
distribution with high HILL entropy (and thus even from OWF), but the reduction seems to require a
substantial number of samples from the underlying distribution.
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[CKLR11] prove a chain rule for conditional samplable HILL entropy, a variant of con-
ditional HILL entropy one gets when changing Definition 7 by additionally requiring Y
to be efficiently samplable given Z. They use this rule to construct “memory delega-
tion” schemes. [FOR12] give a chain rule for decomposable HILL entropy,8 where one
requires X to have high HILL entropy conditioned on any particular conditional part
Z = z. [Sko13] introduces modular entropy, and gives a unified treatment of the chain
rules for decomposable and samplable HILL entropy in terms of this new notion. [Rey11,
Theorem 2 and thereafter] gives a chain rule for conditional relaxed HILL entropy. Here
“relaxed” does not refer to the notion of HILL entropy, but rather to the type of the
chain rule: We get the notion of relaxed HILL entropy by replacing (Y, Z) in Definition 7
with (Y, Z ′), i.e., one does not require the marginal distribution of the conditional part
Z ′ to be the same as in the original distribution (X,Z). Such a rule is already implicit
in the work of [GW11], who use it to prove a black-box separation.

4 Notation and Basic Definitions

We use the standard “big O” notation: f(n) ∈ O(g(n)) if there exists a c > 0 and n0 ∈ N
s.t. f(n) ≤ c · g(n) for all n ≥ n0. f(n) ∈ ω(g(n)) if for every c > 0 there exists n0 ∈ N
s.t. f(n) > c · g(n) for all n ≥ n0. All logarithms are to base 2. For as set S, we denote
by |S| its cardinality. For a bitstring x, |x| denotes its length and for a circuit A, |A|
denotes its size. The support of a distribution X is supp[X] = {x | Pr [X = x] > 0}. By
x← X we denote that x is assigned a value according to the distribution X. For a set X ,
by x ← X we denote that x is drawn uniformly at random from X . For a probabilistic
algorithm A, we denote with x← A that x is assigned the output of A using fresh random
coins. For an integer m, we define [m] = {1, . . . ,m}.

5 Proof of Theorem 1

In Section 5.1, we construct distributions {(Xn, Zn, An)}n∈N as claimed in Theorem 1.a
using 3n invocations of a commitment scheme as defined in Definition 9 below. Such
a commitment scheme can be based on any injective one-way function as we’ll discuss
in Remark 1.

In Definition 10 we define “committing distributions”, which can be seen as a relax-
ation of commitment schemes, where we drop efficient samplability and only require the
hiding property to hold for infinitely many (not all sufficiently large) n ∈ N. In Section 5.2
we construct distributions as claimed in Theorem b using committing distributions, and
in Section 5.3 we show that committing distributions exist if NP 6⊆ P/poly.

Definition 9. An efficiently computable function com : {0, 1} × {0, 1}n → {0, 1}m(n) is
a perfectly binding bit-commitment scheme if

perfect binding: for all b ∈ {0, 1}, r ∈ {0, 1}∗

com(b, r) = com(b′, r′) ⇒ (b, r) = (b′, r′)

8Actually, they state their result in terms of metric entropy, a notion weaker than HILL. It implies
HILL entropy, but the reduction going from metric to HILL losses quite a bit in terms of quality as
shown by [BSW03].
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computational hiding: for the uniform distribution Rn ← {0, 1}n

{com(0, Rn)}n∈N ∼c {com(1, Rn)}n∈N

equivalently, for random Bn ← {0, 1} and Cn = com(Bn, Rn)

{(Bn, Cn)}n∈N ∼c {(1−Bn, Cn)}n∈N

Remark 1 (Constructing com from (injective) OWF). The binding property we require
in Definition 9 is stronger than the standard definition of perfect binding, where one
only requires com(b, r) = com(b′, r′) to imply b = b′ (and not (b, r) = (b′, r′)). The
standard construction9 of commitment schemes from injective one-way functions satisfies
this stronger notion [Gol00, Section 4.4.1.2].

[Nao91] shows how to construct a perfectly binding bit-commitment scheme from any
(not necessarily injective) OWF,10 unfortunately his construction only can be shown to
achieve the standard definition of perfect binding, not the stronger we require.

Definition 10. An ensemble of joint distributions {(Cn, Rn, Bn)}n∈N is committing if

1. For every polynomial p(.), the following holds for infinitely many n ∈ N:

(Bn, Cn) ∼1/p(n),p(n) (1−Bn, Cn)

2. There exists an efficiently uniformly computable predicate φ such that for all n ∈ N
and any (c, r, b) ∈ supp[(Cn, Rn, Bn)]

(φ(c, r′, b′) = 1) ⇐⇒ ((r′, b′) = (r, b))

A committing distribution (C,R,B) as in Definition 10 can be constructed from a
commitment scheme as in Definition 9 by simply defining (C,R,B) = (com(B,R), R,B)
and (φ(C,R,B) = 1) ⇐⇒ (com(B,R) = C).

5.1 Counterexample from Commitment Scheme

We now define distributions {(Xn, Zn, An)}n∈N for which we’ll prove they satisfy the
conditions claimed in Theorem 1.a. For any n ∈ N, the last element An of the tuple
(Xn, Zn, An) is a uniformly random bit. For i = 1, . . . , 3n define

Bi =

{
An for 1 ≤ i ≤ 2n

1− An for 2n+ 1 ≤ i ≤ 3n
(10)

Let R1, . . . , R3n be uniform over {0, 1}n and

Ci = com(Bi, Ri) and Si = (Ci, Ri, Bi) .

The remaining two elements Xn and Zn are now defined as

Xn = sort(S2n+1, . . . , S3n) and Zn = sort(C1, . . . , C3n)

9Using an injective OWF f , the commitment com(b, r = (s, x)) is defined as (s, f(x), b⊕〈x, s〉), where
〈x, s〉 is the inner product.

10Technically, his scheme is only perfectly binding with overwhelming probability over the choice of
some string used to specify the construction, this would not be an issue for us.
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where sort outputs the given input sequence in lexicographic order. Finally, we define
a distribution (X̃n, Zn) (to be used only in the proof) where Zn is as above, and X̃n

is sampled by choosing an n element subset {i1, . . . , in} of {1, . . . , 2n} at random and
setting

X̃n = sort(Si1 , . . . , Sin) (11)

By the following lemma, these distributions satisfy the conditions of Theorem 1.a.

Lemma 5. If com used to define {(Xn, Zn, An)}n∈N above is a commitment scheme as in
Definition 9, then this ensemble is efficiently samplable and the following two conditions
hold:

1. For any polynomial p = p(n)

HHILL
1/p,p(Xn|Zn) ≥ n for all sufficiently large n ∈ N .

2. There exists a polynomial time Turing machine M such that for all (x, z, a) ∈
supp[(Xn, Zn, An)] we have

(M(x′, z, a) = 1) ⇐⇒ (x′ = x)

Proof. Efficient samplability of (Xn, Zn, An) follows since com can be efficiently computed.
We’ll omit the subscript n for the rest of the proof.

Condition 2 holds as for any (x, z, a) ∈ supp[(X,Z,A)], given (z, a) and some x′ =
(s1, . . . , sn) where si = (ci, ri, bi), one can efficiently check if x′ = x by verifying that

• the s1, . . . , sn are in lexicographic order.

• x′ contains openings to n commitments from z to the bit 1−a, i.e., for every i ∈ [n]
it holds that ci is contained in z and ci = com(1− a, ri).

As com(., .) is injective and z contains exactly n commitments to 1− a, there’s only one
sequence, namely x′ = x, that satisfies the above conditions. To prove condition 1 we’ll
need the following

Claim 1. (X,Z) ∼c (X̃, Z) with (X̃, Z) as in (11).

of Claim. Consider hybrid distributions

H〈0〉 = (X,Z〈0〉), . . . , H〈n〉 = (X,Z〈n〉)

where
Z〈0〉 = Z = sort(C1, . . . , C3n)

and for 0 < i ≤ n
Z〈i〉 = sort(C̄1, . . . , C̄i, Ci+1, . . . , C3n) (12)

where
C̄j = com(1− A,R) for a random R← {0, 1}n . (13)

So, Z〈j〉 is derived from Z〈j−1〉 by replacing the commitment Cj (to the bit A) with a new
commitment C̄j (to the opposite bit 1− A). To prove the claim we show that

(X,Z〈0〉) ∼c (X,Z〈n〉) ∼ (X̃, Z〈0〉) (14)

11



To see (X,Z〈n〉) ∼ (X̃, Z〈0〉), we first observe it holds for the marginal distribution Z〈n〉 ∼
Z〈0〉: Both consist of 3n random commitments in lexicographic order, of which exactly

2n open to the same random bit. Moreover (X,Z〈n〉) ∼ (X̃, Z〈0〉) since X (resp. X̃)
are openings of a random n element subset of the 2n commitments contained in Z〈n〉
(resp. Z〈0〉) that open to the same bit.

By a standard hybrid argument, to show H〈0〉 ∼c H〈n〉 (equivalently (X,Z〈0〉) ∼c
(X,Z〈n〉)), it is sufficient to prove that H〈i−1〉 ∼c H〈i〉 for all 0 < i ≤ n, which we’ll now
do.

Assume for contradiction that for some i there exists an efficient distinguisher D for
H〈i−1〉 and H〈i〉 with non-negligible advantage δ = δ(n), i.e.,

Pr
[
D(H〈i〉) = 1

]
− Pr

[
D(H〈i−1〉) = 1

]
= δ .

Below, we show how to construct an adversary D′ from D which given a commitment
C = com(B,R) (for random B,R) predicts B with probability

Pr [D′(C) = B] = 1/2 + δ/2 (15)

thus breaking the hiding property of com. This contradicts the presumed security of com.
The adversary D′(C) first samples (X,Z,A) and then derives Z ′ = sort(C̄1, . . . , C̄i−1, C, Ci+1, . . . , C3n)
from Z by replacing C1, . . . , Ci in the same vain as Z〈i〉 (cf. (12) and (13)) was derived
from Z, except that we use the challenge C instead of C̄i for the ith slot. Note that
depending on which bit B the commitment C commits to, the tuple (X,Z ′) has either
the distribution H〈i−1〉 (if B = A) or H〈i〉 (if B = 1 − A). Finally, D′(C) invokes D and
outputs D(X,Z ′) ⊕ A, now (15) follows by a straightforward and standard calculation,
cf. [Gol00, Claim 3.3.7.2].

For (X̃, Z) as defined in (11), for all sufficiently large n

H̃∞(X̃|Z) ≥ log

(
2n

n

)
≥ n (16)

To see this, we note that X̃ is uniform over a set of size
(
2n
n

)
and thus H̃∞(X̃|Z) =

log
(
2n
n

)
.11 By Definition 7, (16) together with Claim 1, which states that (X,Z) ∼1/p,p

(X̃, Z) for any polynomial p = p(n) and all sufficiently large n, implies HHILL
1/p,p(X|Z) ≥ n,

and thus proves condition (1) of Lemma 5.

5.2 Counterexample from Committing Distribution

We now show how to construct an ensemble {(Xn, Zn, An)}n∈N as in Theorem b from
an ensemble {(Cn, Rn, Bn)}n∈N of committing distributions as in Definition 10. The
construction is basically the same as in the previous section, except for how the Si are
sampled, details follow. Let An ← {0, 1} be random and define the Bi as in (10). For
each i = 1, . . . , 3n, let Si be a sample of (Cn, Rn, Bn), sampled conditioned on Bn = Bi.

11There’s a minor technicality we ignored so far in order to keep things simple: X̃ is only uniform
over a set of size

(
2n
n

)
if for i = 1, . . . , 2n the Ri’s (and thus also the Si’s) are all distinct. We note

that the randomly sampled Ri’s will be all distinct with overwhelming probability, so this omission only
adds an additive negligible error. We can avoid even this negligible error by initially sampling a random
permutation π over {1, . . . , 3n}, and then replacing the Ci with a tuple (Ci, π(i)) throughout. This
way, we enforce the Si = ((Ci, π(i)), Ri, Bi) to be all distinct, while the extra π(i) does not reveal any
information about i, which is necessary for the proof.
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Lemma 6. If {(Cn, Rn, Bn)}n∈N is committing (cf. Definition 10), then the ensemble
{(Xn, Zn, An)}n∈N defined above satisfies

1. For any polynomial p = p(n)

HHILL
1/p,p(Xn|Zn) ≥ n for infinitely many n ∈ N .

2. There exists a polynomial time Turing machine M such that for all (x, y, a) ∈
supp[(Xn, Zn, An)] we have

(M(x′, z, a) = 1) ⇐⇒ (x′ = x) .

The proof of Lemma 6 is analogous to the proof of Lemma 5, with two differences.
First, the distributions (Xn, Zn, An) are no longer efficiently samplable, as unlike in
Lemma 5, the distributions (Cn, Rn, Bn) used to define it are not efficiently samplable.
Second, Claim 1 must be relaxed to (Xn, Zn) ∼1/p(n),p(n) (X̃n, Zn) for any polynomial
p(.) and infinitely many n ∈ N (as opposed to all sufficiency large n). Consequently,
also condition (1) in Lemma 6 only holds for infinitely many (not all sufficiently large)
n ∈ N. The reason this relaxation is necessary is due to the fact that the hiding property
for commitment schemes as in Definition 9 holds for all sufficiently large n, whereas in
Definition 10 the analogous condition (i) for committing distributions is only required to
hold for infinitely many n.

5.3 Committing Distribution from NP 6⊆ P/poly

In this section we show that committing distributions exist if NP 6⊆ P/poly. Unique-
SAT (uSAT) is a promise problem, which asks for distinguishing unsatisfiable Boolean
formulas from those with exactly one satisfying assignment. We first state an assumption
(Assumption 1) on the hardness of uSAT, and in Lemma 7 construct a committing dis-
tribution under this assumption. We then show in Lemma 8 that the assumption holds
if NP 6⊆ P/poly.

Assumption 1 (nonuniform hardness of uSAT).
Let ΠY ES,ΠNO ⊆ {0, 1}∗ denote the sets of Boolean formulas that have exactly one and
zero satisfying assignments, respectively. Then, there exist ensembles

{Tn}n∈N with supp[Tn] ⊆ ΠY ES ∩ {0, 1}n

{Fn}n∈N with supp[Fn] ⊆ ΠNO ∩ {0, 1}n

of distributions over true and false instances, such that for any polynomial p(.) and any
family of circuits {An}n∈N where An is of size p(n), for infinitely many n we have

Pr [An(Tn) = 1]− Pr [An(Fn) = 1] ≤ 1/p(n) .

Lemma 7 (Committing Distribution from NP 6⊆ P/poly). If Appendix 1 holds, then the
ensemble {(Cn, Rn, Bn)}n∈N defined below is a committing distribution as in Definition 10.

Let {Tn}n∈N, {Fn}n∈N be as in Appendix 1. Sample

Bn ← {0, 1} , IBn ← Tn , I1−Bn ← Fn

set Cn = (I0, I1) and let Rn be the (unique) satisfying assignment of IBn.

13



Proof. Condition (i) in Definition 10 directly follows from Appendix 1, as any circuit
predicting Bn with non-negligible advantage can be used to distinguish Tn from Fn with
non-negligible advantage.12 A predicate as required for condition (ii) in Definition 10 can
be defined as φ((I0, I1), R,B) = 1 iff R is a satisfying assignment for IB. Note that IB has
a unique satisfying assignment, namely R, whereas I1−B has no such assignment. Thus,
φ((I0, I1), R

′, B′) = 1 iff (R,B) = (R′, B′) as required by Definition 10.

Lemma 8. Appendix 1 holds if NP 6⊆ P/poly.

In the proof of Lemma 8, we will use Impagliazzo’s hardcore lemma [Imp95]. The
lemma below follows from a variant of this lemma due to [Hol05, Lemma 2.1].13

Lemma 9. For some constant c, for every n ∈ N the following holds. Let Rn ⊆ {0, 1}n
be a set with |Rn| ≥ 2n/2 and f : Rn → {0, 1} be any predicate. For any constants
γ, δ ∈ [0, 1] and any p ≤ 2n/2 δ

2

32
, if for all circuits A of size p

Prx←Rn [A(x) = f(x)] ≤ 1− δ

2
,

then there exists a set S ⊆ Rn such that for all circuits A′ of size p′ = γ2

32n
p− c

Prx←S [A′(x) = f(x)] ≤ 1 + γ

2
.

of Lemma 8. It was shown by [VV86] that unique-SAT is hard (i.e., not in BPP) if
NP 6= RP (see also [Gol08, Section 6.2.3] for a different, more general exposition). They
consider a uniform model of computation. We work in a non-uniform model, and thus
need unique-SAT to be hard against circuits. A randomized reduction implies a non-
uniform one (by using nondeterminism to fix some good coins), thus their reduction also
shows that unique-SAT is hard in a non-uniform setting if NP 6⊆ P/poly.

Let Π∗Y ES and Π∗NO denote any encodings of Boolean formulas with exactly one and
zero satisfying assignments, respectively. We define redundant encodings ΠY ES and ΠNO,
where the last 5/6th of the bits can be ignored:

ΠY ES =
⋃
n∈N

{x‖r : x ∈ Π∗Y ES ∩ {0, 1}n, r ∈ {0, 1}5n} (17)

ΠNO is defined analogously using Π∗NO. Looking forward, considering such padded in-
stances will allow us to boost the error probability of any family of poly size circuits in
deciding unique-SAT for the infinitely many n′ on which it errs on instances of length n′

12 Assume An(Cn) predicts Bn with non-negligible advantage. Equivalently, for any polynomial p(n),
for infinitely many n and IF ← Fn, IT ← Tn, An distinguishes (IF , IT ) from (IT , IF ) with advantage
> 1/p(n). Then, using the triangle inequality, An distinguishes either (IF , IF ) from (IF , IT ), or (IF , IT )
from (IT , IT ) with advantage> 1/2p(n). Assume the latter is the case, then A′ defined as A′(I) = A(I, IT )
distinguishes IF from IT . A′ is not efficient, as IT is not necessarily efficiently samplable, but we can
simply fix some optimal value for the second argument IT .

13The main goal of Holenstein’s lemma (compared to the original lemma due to Impagliazzo) was to
get a tight lower bound on the size of the set S. For us, the size of S will be irrelevant, and so we don’t
even mention it in the statement of the Lemma. [Hol05, Lemma 2.1] assumes |Rn| ≥ 2n−1, whereas
we need a smaller |Rn| ≥ 2n/2. By inspection of his proof, assuming a smaller Rn (as we do) doesn’t
make much of a difference, except that we get a smaller (but still exponential) upper bound on p (any
superpolynomial upper bound would be enough for us).
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from 2−n
′

as in (18) to 2−n/6 (where n = 6n′) on instances of length n as in (19), and this
larger error (in terms of instance length) is required to apply Lemma 9. Let

R∗n = (Π∗Y ES ∪ Π∗NO) ∩ {0, 1}n , Rn = (ΠY ES ∪ ΠNO) ∩ {0, 1}n

and define the predicates

(f ∗(x) = 1) ⇐⇒ (x ∈ Π∗Y ES) and (f(x) = 1) ⇐⇒ (x ∈ ΠY ES)

As by assumption unique-SAT is not in P/poly, for any polynomial p∗(.) and any circuit
family {A∗n}n∈N of size |A∗n| ≤ p∗(n), for infinitely many n the circuit A∗n must err on at
least one instance of R∗n. In particular, for the family {A∗n}n∈N with the best advantage
in predicting f ∗(n)

Prx←R∗
n′

[A∗n′(x) = f ∗(x)] ≤ 1− |R∗n′|−1 ≤ 1− 2−n
′
. (18)

holds for infinitely many n′. If we define the polynomial p(6n) = p∗(n), then (18) implies
that for the ensemble {An}n∈N of size |An| ≤ p(n) with the best advantage in predicting
f(x), for infinitely many n (namely, all n = 6n′ where (18) holds for n′) we have with
δ(n) = 2−n/6+1

Prx‖r←Rn [An(x‖r) = f(x‖r) = f ∗(x))] ≤ 1− 2−n/6 = 1− δ(n)/2 . (19)

To see this, we first observe that we can assume that An ignores the last 5/6n bits of the
input.14 Thus, if An(x‖r) errs on some input x‖r, it will err on 25n/6 inputs, namely on
x‖r′ for all r′ ∈ {0, 1}5n/6.

Note that 2n/2δ(n)2/32 = 2n/6/8 is exponential, and thus it upper bounds the poly-
nomial p(n) for all sufficiently large n. For any such sufficiently large n for which (19)
holds, we can apply Lemma 9 to conclude there exists a set Sn ⊆ Rn for which15

Prx←Sn [A′n(x) = f(x)] ≤ 1 + γ(n)

2
(20)

for all circuits A′n of size p′(n) = γ(n)2p(n)/32n− c. Setting γ(n) =
√

32n/ 3
√
p(n) we get

p′(n) = 3
√
p(n)− c ≥ 1/2γ(n) .

Using (20), we will construct distributions Tn and Fn over yes and no instances such that
for all all circuits A′n as above

Prx←Tn [A′n(x) = 1]− Prx←Fn [A′n(x) = 1] ≤ 3γ(n) (21)

As we can choose 1/3γ(n) to be an arbitrary large polynomial by choosing p∗(n) large
enough, this proves Lemma 8 (with the arbitrary polynomial p(n) in Appendix 1 being
1/3γ(n)).16

14As, using (17), for any circuit An there exists an r′ such that the circuit A′n(x‖r) = An(x‖r′) (where
A′n ignores r) errs with at most the same probability as An(x‖r).

15We note that the size requirement |Rn| ≥ 2n/2 of Lemma 9 is satisfied as the definition (17) of our
padding implies |Rn| = 25n/6 · |(Π∗Y ES ∪Π∗NO) ∩ {0, 1}n/6|.

16Technically, here we have assumed that Appendix 1 holds for ΠY ES and ΠNO instances as in (17),
where the last 5/6th of the bits are just random paddings. We observe that the assumption for such
“padded” instances trivially implies the assumption for any encoding of instances.
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It remains to show that (20) implies (21). For this, let Tn = Sn ∩ ΠY ES and Fn =
Sn∩ΠNO. We note that Sn must contain roughly the same number of yes and no instances:

|Prx←Sn [x ∈ Tn]− 1/2| ≤ γ(n)/2 .

To see this, assume for contradiction that this does not hold, i.e., Prx←Sn [x ∈ Tn] is either

> 1+γ(n)
2

or < 1−γ(n)
2

. In the first case, the constant function A′n(x) = 1 contradicts (20),
in the second case we get a contradiction using A′n(x) = 0.

With this observation we can define a distribution S which has statistical distance at
most γ(n) to the uniform distribution over Sn = Tn ∪ Fn, where the support of S lies in
Sn and which is perfectly balanced in the sense that17

Prx←S[x ∈ Tn] = Prx←S[x ∈ Fn] = 1/2 (22)

Let Tn (Fn) denote the distribution S conditioned on x ∈ Tn (x ∈ Fn), this definition is
used in the third equality below. In the fourth equality we use (22). The fifth equality uses
the fact that S is γ(n) close to the uniform distribution over Sn and the last inequality
follows by (20).

Prx←Tn [A′n(x) = 1]− Prx←Fn [A′n(x) = 1]

= (Prx←Tn [A′n(x) = 1] + Prx←Fn [A′n(x) = 0])− 1

= (Prx←Tn [A′n(x) = f(x)] + Prx←Fn [A′n(x) = f(x)])− 1

= (Prx←S[A′n(x) = f(x)|x ∈ Tn] + Prx←S[A′n(x) = f(x)|x ∈ Fn])− 1

= 2Prx←S[A′n(x) = f(x)]− 1

= 2Prx←Sn [A′n(x) = f(x)]− 1± 2γ(n)

≤ 3γ(n)

Note that the above proves (21).

6 Counterexample from Lossy Functions

In this section we give a particularly simple counterexample to the chain rule for condi-
tional HILL entropy, which is based on lossy functions. We stress that we only need lossy
functions not lossy trapdoor functions. Below we define `-lossy functions [PW08], where
for simplicity we only define the particular setting where the key-space, input and output
domain are all bitstrings of length n (but everything goes through unchanged for the
general definition, where these domains can be described by strings of length polynomial
in n).

Definition 11 (Lossy Function). An ` = `(n) lossy function consists of two efficient
algorithms

KG : 1∗ × {lossy, injective} → {0, 1}∗

F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗

17Concretely, we let S be the uniform distribution over Sn conditioned on an event that holds with
probability at least 1 − γ. Assume that Prx←Sn [x ∈ Tn] = 1/2 + γ/2 for some γ > 0, then this event
is defined as follows: The event always holds if x ∈ Fn, and fails with with probability δ = 1 − (1/2 −
γ/2)/(1/2 + γ/2) if x ∈ T (this δ satisfies (1/2− γ/2) = (1/2 + γ/2)(1− δ) as required to satisfy (22)).
The probability that the event fails is Prx←Sn [x ∈ Tn]Prx←Sn [event fails|x ∈ Tn] = (1/2 + γ/2)δ = γ.
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The probabilistic key-generation KG takes as input a security parameter 1n in unary and
mode ∈ {lossy, injective} and outputs a key K ∈ {0, 1}n. For every K ∈ {0, 1}n it holds
that F(K, .) = FK(.) is a function {0, 1}n → {0, 1}n such that for every

Klos ∈ supp[KG(1n, lossy)] and Kinj ∈ supp[KG(1n, injective)]

and every x ∈ {0, 1}n we have

• |F−1Kinj(FKinj(x))| = 1; i.e., FKinj(·) is injective.

• |F−1Klos(FKlos(x))| = 2`; i.e., each value in the output range of FKlos has 2` pre-images.

Moreover, lossy and injective keys are indistinguishable

{KG(1n, lossy)}n∈N ∼c {KG(1n, injective)}n∈N

Theorem 2. Given an ` = `(n) lossy function, we can sample an ensemble of joint dis-
tributions {(Xn, Zn, An)}n∈N, where sampling a distribution requires only two invocations
of KG and of F, such that for some fixed polynomial s = s(n), any polynomial p = p(n)
and all sufficiently large n

HHILL
1/p,p(Xn|Zn) ≥ `(n) but HHILL

1/2,s(Xn|Zn, An) ≤ 1 .

Proof. We will omit the subscripts n in this proof. First, sample an injective and lossy
key

K0 ← KG(1n, injective) and K1 ← KG(1n, lossy) .

Then sample inputs X0, X1 ← {0, 1}n and compute

Z0 = FK0(X0) and Z1 = FK1(X1).

Next, choose a random bit A ← {0, 1} and define Z = (KA, ZA, K1−A, Z1−A). Looking
forward, the tuple (X0, Z, A) will correspond to (Xn, Zn, An) in the statement of the
theorem. It is instructive to observe that the min-entropy of X0 and X1 conditioned on
Z is

H∞(X0|Z) = 0 and H∞(X1|Z) = ` .

The left equation holds as X0 can be computed (in exponential time) given Z. Concretely,
we can perfectly distinguish lossy from injective keys, and thus determine A which tells
us which tuple in Z is (K0, Z0). Now X0 = F−1K0(Z

0) is well defined as K0 is injective.
To see the equation H∞(X1|Z) = ` on the right side note that X1 is uniform over a the
set F−1K1(Z

1) which is of size 2` since K1 is lossy.
As we’ll show below, for HILL entropy the picture is different, because given Z the

value of A is computationally hidden and thus we don’t know which of the two keys is
the lossy one.

We first show that HHILL
1/2,s(X

0|Z,A) ≤ 1, where s is roughly the size of a circuit that

computes F. Note that given (Z,A), we know which of the tuples in Z is (K0, Z0), and
there is a single X ′ (namely X0) such that FK0(X ′) = Z0. Thus given (Z,A), we can
efficiently check if some value X ′ is equal to X0 using a circuit of size s ≈ |F|. This
implies HHILL

1/2,s(X
0|Z,A) ≤ 1 by Lemma 3.

We’ll now show that HHILL
p,1/p(X

0|Z) ≥ `. For this, we must show there exists a random
variable Y such that given Z, the distribution Y has min-entropy ` and Y is indistin-
guishable from X0. We claim this holds for Y that is uniform on F−1K1(Z1). As this set
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has size 2`, H∞(Y |Z) = `. Moreover (Y, Z) is indistinguishable from (X0, Z) as we could
use a distinguisher for these distributions to distinguish lossy from injective keys.18

7 Proofs from Section 2

7.1 Predictability Implies Lack of HILL

We start with the following claim, showing that if a distribution is “conditionally pre-
dictable” than it cannot have much HILL entropy. This will be useful in the proofs of
Proposition 1 and Proposition 2 in this section.

Claim 2. There is a fixed polynomial peq(·) such that the following holds. Let (X,Z) be
any distribution such that X is of bit-length m. If there exists a circuit C of size |C| ≤ s
such that

Pr(x,z)←(X,Z)[C(z) = x] > ε

then, for every ` > 0,
HHILL
ε−2−`,s+peq(m)(X|Z) ≤ `.

In particular, for ` = log(2/ε) we get

HHILL
ε/2,s+peq(m)(X|Z) ≤ log(2/ε).

Proof. Let C, s and ε be as in the hypothesis of the claim and let peq(m) be the size of the
circuit that takes as input two m-bit strings and outputs 1 if they are equal. Define the
distinguisher D which outputs D(z, x) = 1 iff C(z) = x, which is of size |D| = s+ peq(m).
Let (Y, Z) be any distribution such that H∞(Y |Z) > `. Then

Pr[C(Z) = Y ] ≤ E
z←Z

Pr[Y = C(z)|Z = z]

≤ E
z←Z

max
x

Pr [Y = x|Z = z] ≤ 2H∞(Y |Z) < 2−`.

Therefore we have

Pr[D(X,Z) = 1]− Pr[D(Y, Z) = 1]

= Pr[C(Z) = X]− Pr[C(Z) = Y ] > ε− 2−`

We just proved that (Y, Z) 6∼(ε+2−`,s+peq(m)) (X,Z) for any H∞(Y |Z) > `, which means
HHILL
ε−2−`,s+peq(m)

(X|Z) ≤ `.

7.2 Proof of Proposition 1

Let {(Xn, Zn, An)}n∈N, where An ∈ {0, 1}, be an efficiently samplable ensemble where for
every polynomial p(n) and for all sufficiently large n it holds that

HHILL
1/p(n),p(n)(Xn|Zn) ≥ n and H∞(Xn|Zn, An) = 0 (23)

To prove Proposition 1, we must use this to construct a OWF. Recall that the lhs of (23) is
condition (i) from Theorem 1.a and the rhs is implied by condition (ii) from Theorem 1.a
(as explained in the statement of Proposition 1).

18Given a pair of keys K,K ′, one of which is lossy, we can sample random X,X ′, then set Z =
(K,FK(X),K ′,FK′(X ′)). Now, depending on whether K or K ′ is lossy, (X,Y ) is distributed like (X0, Z)
(if K is injective) or (Y, Z) (if K is the lossy key).
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of Proposition 1. Let f ′(·) denote the efficient sampling algorithm, which on input ran-
domness Rn outputs a sample (Xn, Zn, An). Let f(·) denote f ′(·), but where we drop the
Xn part from the output: i.e., f(Rn) = (Zn, An). We claim that f is a one-way function.

To show this, we assume for contradiction there exists a (non-uniform) polynomial-
size inversion algorithm D = {Dn}n∈N that breaks one-wayness. In more detail, there is
some polynomial q(n) such that, for infinitely many n ∈ N,

Pr(x,z,a)←(Xn,Zn,An)[f(Dn(z, a)) = (z, a)] ≥ 1/q(n). (24)

As H∞(Xn|Zn, An) = 0, x is completely determined by (z, a), which implies that (24) is
equivalent to

Pr(x,z,a)←(Xn,Zn,An)[f
′(Dn(z, a)) = (x, z, a)] ≥ 1/q(n). (25)

Let f ′′(·) be the same as f ′(·), but where we only output the Xn part: i.e., f ′′(Rn) =
Xn. Then (note that in the last inequality below we replace a with a random bit b, as
2Pr [a = b] = 21

2
= 1, we can “compensate” for this by multiplying with a factor 2)

1/q(n) ≤ Pr(x,z,a)←(Xn,Zn,An)[f
′(Dn(z, a)) = (x, z, a)]

≤ Pr(x,z,a)←(Xn,Zn,An)[f
′′(Dn(z, a)) = x]

≤ 2 · Prb←{0,1},(x,z)←(Xn,Zn)[f
′′(Dn(z, b)) = x] (26)

Define the polynomial-size circuit family C = {Cn}n∈N via Cn(z) = f ′′(Dn(z, b)) where
the bit b← {0, 1} is sampled uniformly at random. Now (26) can be stated as

Pr(x,z)←(Xn,Zn)[Cn(z) = x] ≥ 1/(2q(n))

Then, by applying Claim 2 with ε = 1/(2q(n)) and ` = log(4q(n)) there is some polyno-
mial p(n) = |Cn|+ peq(|Xn|) such that, for infinitely many n:

HHILL
1/(4q(n)),p(n)(Xn|Zn) ≤ log(4q(n)) = O(log n).

This contradicts (23). Therefore, the function f must be one-way, which proves the
proposition.

7.3 Proof of Proposition 2

Let {(Xn, Zn, An)}n∈N be an ensemble of distributions as in Theorem b. That is, for every
polynomial p(n) and for infinitely many n it holds that

HHILL
1/p(n),p(n)(Xn|Zn) ≥ n (27)

and moreover there exist a polynomial time Turing machine M such that for any n ∈ N
and any (x, z, a) ∈ supp[(Xn, Zn, An)]

(M(x′, z, a) = 1) ⇐⇒ (x′ = x) . (28)

We do not assume that (Xn, Zn, An) is efficiently samplable, but require that Xn, Zn are
of polynomial length and An ∈ {0, 1}. To prove Proposition 2 we must show that this
implies NP 6⊆ P/poly.
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of Proposition 2. Define the NP language

L = {(z, a) : ∃x such that M(x, z, a) = 1}

Assume, by contradiction, that NP ⊆ P/poly. Since we can reduce the problem of find-
ing a witness to the problem of deciding membership, there exists a family of polynomial-
size circuits {C′n}n∈N such that C′n(z, a) outputs a witness x that satisfies M(x, z, a) = 1
for any (z, a) ∈ L. Moreover, by (28), for any (x, z, a) ∈ supp[(Xn, Zn, An)] we must have
C′n(z, a) = x since this value x is the unique witness for which M(x, z, a) = 1. Therefore

1 = Pr(x,z,a)←(Xn,Zn,An)[C
′
n(z, a) = x]

≤
∑

b∈{0,1}

Pr(x,z)←(Xn,Zn)[C
′
n(z, b) = x]

= 2 · Prb←{0,1},(x,z)←(Xn,Zn)[C
′
n(z, b) = x]

Define the circuit Cn(z) = C′n(z, b) where the bit b ← {0, 1} is sampled uniformly at
random. Then, by applying Claim 2 with ε = 1/2 and ` = 2 there is some polynomial
p(n) = |Cn|+ peq(|Xn|) such that, for every n:

HHILL
1/4,p(n)(Xn|Zn) ≤ 2.

This contradicts (27) and therefore proves the proposition.

7.4 Proof of Lemma 2 and Lemma 4

We begin with the following claim that will allow us to prove both lemmas.

Claim 3. For any joint distribution (V,C) over V × C with |V| ≥ 2 we have:

HHILL
1/2,∞(V |C) ≥ 1.

Furthermore, if |V| > 2 and H̃∞(V |C) > 0 then we have:

HHILL
1/2,∞(V |C) > 1.

Proof. To show the first part of the claim, we must show that there exists a distribution
(Y,C) satisfying:

H̃∞(Y |C) ≥ 1 and (V,C) ∼1/2 (Y,C) (29)

For each c ∈ C define the probabilities pc(v) := Pr[V = v|C = c]. Our goal is to
define a valid probability distribution p′c(v) so as to minimize maxv(pc(v) + p′c(v)). Let
pmax,c := maxv∈V pc(v) and define the values p′c(v) via

p′c(v) := pmax,c−pc(v)
|V|pmax,c−1 if pmax,c ≥ 2/|V|

p′c(v) := (2/|V| − pc(v)) otherwise

Notice that the values p′c(v) form a valid probability distribution over V and

pc(v) + p′c(v) ≤ max{ pmax,c , 2/|V|}. (30)
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Define a random variable V ′c over V with Pr[V ′c = v] := p′c(v). Define a distribution (Y,C)
by sampling (y, c) ← (Y,C) via the following process: Sample (v, c) ← (V,C), v′ ← V ′c
and a random bit b← B. If b = 0, output (y = v, c) and otherwise output (y = v′, c).

This distribution satisfies the rhs of (29) since, conditioned on b = 0, which holds
with probability 1/2, the distributions (V,C) and (Y,C) are identical.

Moreover for any (v, c)

Pr[Y = v|C = c]

= Pr[B = 0]Pr[V = v|C = c] + Pr[B = 1]Pr[V ′c = v]

= (1/2)(pc(v) + p′c(v))

≤ max{ pmax,c/2 , 1/|V|}

Recalling that pmax,c = maxv Pr[V = v | C = c], the above implies that for each c ∈ C

H∞(Y |C = c) ≥ min{H∞(V |C = c) + 1, log(|V|)} (31)

≥ 1.

This in turn implies that H̃∞(Y |C) ≥ 1. Therefore, (Y,C) satisfies the lhs of (29), which
proves the first part of the claim.

For the second part of the claim, notice that when H̃∞(V |C) > 0 then there must be

some c∗ ∈ C such that H̃∞(V |C = c∗) > 0. Moreover, since |V| > 2, (31) tells us that
for this c∗ we have H∞(Y |C = c∗) > 1. Since H∞(Y |C = c) ≥ 1 for all other c ∈ C, this

shows that H̃∞(V |C) > 1. This proves the second part of the claim.

Proof of Lemma 2. Lemma 2 states that for any joint distribution (V,C) over V × C
(where |V| ≥ 2) and any s ∈ N

HHILL
1/2,s(V |C) ≥ HHILL

1/2,∞(V |C) ≥ 1

The first inequality follows directly from Definition 7.19 The second inequality follows
from the first part of Claim 3.

Proof of Lemma 4. Lemma 4 states that for any joint distribution (V,C) over V × C
where |V| > 2, and any s

HHILL
1/2,s(V |C) ≤ 1 ⇒ HHILL

1/2,∞(V |C) ≤ 1 ⇒ H∞(V |C) = 0

The first implication follows by Definition 7. For the second implication we notice that
the contrapositive

H∞(V |C) > 0⇒ HHILL
1/2,∞(V |C) > 1

follows directly from the second part of Claim 3.

19To see this, we note that for any s ∈ N, (X,Z) ∼ε,∞ (Y,Z) implies (X,Z) ∼ε,s (Y,Z) as the set of
circuits of size s is a subset of all circuits.
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7.5 Proof of Lemma 3

Lemma 3 states that if there exists a circuit D of size s where

∀(v, c) ∈ supp[(V,C)] : (D(v′, c) = 1) ⇐⇒ (v′ = v)

then HHILL
1/2,s(V |C) ≤ 1.

of Lemma 3. Assume for contradiction that a circuit D as in the statement of the lemma
exists, but HHILL

1/2,s(V |C) > 1. By Definition 7 this means that there exists a distribution

(Y,C) with

H̃∞(Y |C) > 1 and (V,C) ∼1/2,s (Y,C) . (32)

By the hypothesis of the lemma, for every c ∈ supp[C], the circuit D(., c) outputs 1 on
exactly one possible value, which we’ll denote by vc. Now

Pr(y,c)←(Y,C)[D(y, c) = 1] = Pr(y,c)←(Y,C)[y = vc]

= E
c←C

Pr[Y = vc|C = c]

≤ E
c←C

max
v

Pr[Y = v|C = c]

Taking the logarithm and using Definition 4

− log(Pr(y,c)←(Y,C)[D(y, c) = 1]) ≥ H̃∞(Y |C)

Using the left equation of (32)

log(Pr(y,c)←(Y,C)[D(y, c) = 1]) < −1

or equivalently
Pr(y,c)←(Y,C)[D(y, c) = 1] < 1/2

Now
|Pr(v,c)←(V,C)[D(v, c) = 1]︸ ︷︷ ︸

=1

−Pr(y,c)←(Y,C)[D(y, c) = 1︸ ︷︷ ︸
<1/2

]| > 1/2

which contradicts the right side of (32).

8 Conclusion

Computational entropy, most notably pseudorandomness, is a extremely useful concept
in cryptography. The general idea is to exploit the fact that to computationally bounded
parties, random variables can look and behave as if they had much more entropy than
they actually do.

In this paper we showed that one of the most fundamental properties of entropy
notions, the chain rule, does not hold for HILL entropy, arguably the most important
computational entropy notion.

We gave counterexamples to the chain rule from a variety of cryptographic primitives:
injective one-way functions, lossy functions and (in the conference version of this paper)
also from deniable encryption. As discussed in Section 2.4, the latter two are very efficient
counterexamples, using just one or two invocations of the underlying primitive. This
shows that schemes achieving sophisticated cryptographic properties like deniability or
lossiness inherently embed strong counterexamples to the chain rule, and we believe it
might be fruitful to investigate some cryptographic objects from this perspective.
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A Counterexample from Deniable Encryption

In this section we will state and prove Theorem 3 which shows that any deniable en-
cryption scheme gives an efficient counterexample to the chain rule for conditional HILL
entropy.

The existence of a sender deniable encryption scheme was a long standing open prob-
lem, and the original motivation for this work came from the observation that any deniable
encryption scheme would constitute a counterexample to the chain rule for conditional
HILL entropy. Thus, proving such a chain rule would have implied that sender deniable
encryption does not exist. However, it turned out that the chain rule does not hold. In
fact, the first counterexample we found was based on a construction of a deniable encryp-
tion scheme due to [DF11]. Although their construction is known to have a subtle but
fatal flaw, this didn’t affect its usefulness for constructing the counterexample.20 Very re-
cently [SW13] constructed a sender deniable encryption scheme from indistinguishability
obfuscation. A candidate for such obfuscation schemes has been proposed by [GGH+13]
based on multilinear maps. The only negative result concerning the existence of deni-
able encryption is due to [BNNO11], who show that non-interactive receiver deniable
encryption does not exist.

A.1 Sender Deniable PKE

Deniable encryption, first introduced by [CDNO97], offers protection against coercion.
Suppose Alice wants to secretly send a message to Bob over a public authentic channel.

20Informally, the reason for this is that for our counterexample we don’t require the faking procedure
to be efficient.
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They can do this using a public-key encryption (PKE) scheme where Bob sends his public-
key to Alice, Alice encrypts the message using this key and sends Bob the ciphertext.
Now suppose an adversary coerces one of the parties, say the sender Alice, into revealing
all the secret information, i.e., the message and the random coins used to encrypt. If we
use a standard PKE scheme, the adversary can verify the consistency of this information
with the transcript observed on the public channel. In particular, the adversary can check
that the message provided by Alice was indeed the one sent.

A deniable encryption scheme tackles this problem by providing a faking algorithm.
The faking algorithm allows a coerced party to come up with a fake random tape that is
consistent with the public transcript for any given message. Deniable encryption schemes
are classified as sender deniable, receiver deniable or bi-deniable, depending on whether
the sender, the receiver or both simultaneously can withstand coercion.

Normally PKE is a two round protocol: Bob sends a public-key, Alice answers with a
ciphertext. However, for the sake of generality, we will consider protocols that can have
any polynomial number of rounds. We will only consider sender deniable encryption
schemes, which is without loss of generality, since a k-round receiver deniable encryption
scheme implies a k + 1 round sender deniable encryption scheme.21

We model deniable encryption as a two-party protocol between a sender S and a
receiver R. Both get as input a security parameter 1n in unary and S gets a message bit
b ∈ {0, 1} as input (without loss of generality, we’ll only consider bit-encryption). At the
end of the protocol, R outputs a message b′. As usual, S and R can be probabilistic. For
a deniable encryption scheme ψ, we denote by trnψ(b, rS, rR) the transcript (i.e., all the
messages exchanged over the public channel) between the sender S(1n, b) and a receiver
R(1n) which have random tapes rS and rR, respectively. If we replace any of b, rS, rR with
?, this means we consider the random variable where those values are chosen uniformly
at random from their respective domain, e.g., trnψ(0, ?, ?) is the distribution of transcripts
for message bit 0 using security parameter 1n. A sender deniable encryption scheme is
then defined as follows [CDNO97]:

Definition 12 (Sender Deniable PKE). A protocol ψ between a sender S and a receiver R
is a (ε, δ, t)-sender-deniable (bit) encryption scheme (where ε = ε(n), δ = δ(n), t =
t(n) are functions of the security parameter n) if the following three properties are satis-
fied:

Correctness: For any b ∈ {0, 1}, the probability that R(1n) after interacting with S(1n, b)
outputs b is exactly 1− ε.22

Security: trnψ(0, ?, ?) ∼δ,t trnψ(1, ?, ?), that is, the transcript computationally hides the
encrypted bit.

21 This is done as follows: The receiver first uses the k-round scheme to send a random key K to the
sender. The sender then uses K as the key of a one-time pad to encrypt B as C = B ⊕K, and sends
C to the receiver. This scheme is sender deniable, because for any message B′, the sender can use the
receiver deniability of the k round scheme to come up with a transcript that is consistent with having
received the key K ′ = C ⊕B′ in the first phase, and thus also consistent with having send the message
B′.

22 The standard definition only requires that the correct bit is output with probability at least (not
exactly) 1 − ε, in particular, the decryption error can be different depending on whether the bit 0 or
1 was encrypted. Requiring the error to be independent of the encrypted bit will be convenient in the
proof and is without loss of generality as one always can make the error symmetric by having the receiver
sometimes flip the received bit.
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Deniability: There exists an efficient faking algorithm φ having the following property:
For a random message bit b ← {0, 1}, random rS, rR, let c = trnψ(b, rS, rR), and
r′S ← φ(b, rS, c). Then

(b, rS, c) ∼δ,t (1− b, r′S, c)

The standard asymptotic security notion requires (ε(n), δ(n), t(n))-security where for
any polynomial t(n) the correctness error ε(n) and soundness error δ(n) are negligible .
Note that a deniable encryption scheme cannot have perfect correctness ε(n) = 0, because
the deniability property requires that for a given transcript c there must exist sender
random tapes which are consistent with encrypting the bit 0 and 1 to c, respectively. To
get a small correctness error, the set of “bad” random tapes for which decryption will
fail must be much smaller than the set of “good” random tapes. It is exactly this ratio
of good vs bad tapes that we will use for our counterexample.

Throughout, we will non-crucially assume that a transcript c ∈ supp[trnψ(., ., .)] uniquely
determines the bit to which the receiver will decrypt, and we’ll denote this bit by bc.

23

For any c as above, we denote with Rc (R′c) the set of sender random tapes which encrypt
bc (1− bc) to c.

Rc = {rS | c ∈ supp[trnψ(bc, rS, ·)]}, (33)

R′c = {rS | c ∈ supp[trnψ(1− bc, rS, ·)]} .

Let C̃ ∼ trnψ(?, ?, ?) be the distribution over random transcripts. Given c← C̃, we know
that the sender random tape is uniform over Rc ∪R′c,24 and decryption will fail if it’s in
R′c. We can thus express the decryption error ε as

E
c←C̃

[|R′c|/(|R′c|+ |Rc|)] = ε (34)

Taking the inverse of the above equation we get

ε−1 = E
c←C̃

[(|R′c|+ |Rc|)/|R′c|] = 1 + E
c←C̃

[|Rc|/|R′c|] . (35)

A.2 The Counterexample from Deniable Encryption

In Theorem 3 below we assume that the deniable encryption scheme is balanced in the
sense that the number of random tapes |R′c| is the same for all c ∈ supp[C]. The only step
in the proof of Theorem 3 where we’ll use this fact is (43). The restriction to balanced
schemes is not completely without loss of generality. The proof for the general case seem
more complicated and is omitted, let us just mention that it requires to understand which
distributions (Z,C,B) satisfy (42) while maximising Pr(z,c,b)←(Z,C,B)[D(z, c, b) = 1], which
boils down to a simple optimisation problem. Unlike in the balanced case, where in (44)
we upper bound this probability by 1/2, for the general case we can only prove an upper
bound of 1/ log |R|, where R is the domain of the sender random tape. As a consequence,
we also get a slightly weaker conclusion. When dropping the balanced requirement in the
theorem below, in (36) we must replace HHILL

1/2,s with HHILL
1/ log |R|,s.

23In general, c together with the receiver random tape rR that was used to generate c = trnψ(b, rS , rR)
does determine the bit bc,rR to which the receiver will decrypt. To adapt our proof to this general case,
one would have to consider the variable bc,RR

(where RR is random, conditioned on being consistent
with c) instead the constant bc throughout. This doesn’t add any technical difficulties, just requires
some more bookkeeping.

24Technically, one has to take union with multiplicity here as Rc ∩R′c must not be empty.
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Theorem 3. From a balanced (as explained in the paragraph above) (ε(n), δ(n), t(n))-
secure sender deniable (bit) encryption scheme one can construct an ensemble {(Xn, Zn, An)}n∈N
of distributions where An is a single bit, sampling a distribution requires two executions
of the protocol and two invocation of the faking algorithm in expectation,25 and where for
some fixed polynomial t(n) it holds26

HHILL
δ+ε,t(Xn|Zn)−HHILL

1/2,s(Xn|Zn, An) ≥ log ε−1 − 2 (36)

In particular, if ε(n), δ(n) are negligible for any polynomial t(n), then by additionally
conditioning on the single message bit An, the HILL entropy of the variable Xn decreases
by a super-logarithmic ω(log n) bits in quantity, even if we simultaneously allow for
massive degradation in quality: from cryptographic strength (δ(n) + ε(n), t(n)), where
δ(n) + ε(n) is negligible for any polynomial t(n), to (1/2, s(n)) for a fixed polynomial
s(n).

Before we prove the theorem, let us give the high level intuition. We sample a random
bit B and sender and receiver random tapes RS, RR. We then compute the transcript
C = trnψ(B,RS, RR) and fake randomness R′S ← φ(B,RS, C). If bC 6= B (i.e., there’s a
decryption error), we resample until bC = B holds.

Using the notation introduced in (33), we now have RS ∈ RC and R′S ∈ R′C . We show
that the HILL entropy HHILL(R′S|C) decreases significantly in quantity (but also quality)
when additionally given B as outlined below.

Although given C we know that R′S ∈ R′C , the deniability property implies that
computationally we can’t distinguish this R′S from the uniform distribution over the
larger set RC , and thus R′S has HILL entropy log |RC |. When additionally given the
bit B, this is no longer true, as we can distinguish R′S from any r 6∈ R′C by checking if
r is consistent with the transcript C and message bit 1 − B. Thus, the HILL entropy
HHILL
ε,s (R′S|C,B) cannot be much larger than log |R′C | (concretely, it’s at most log |R′C |+1

even if we allow a large distinguishing advantage of ε = 1/2). Summing up, revealing B
decreases the HILL entropy by log |RC | − log |R′C | − 1 = log(|RC |/|R′C |) − 1, which by
(35) is at least ≥ log ε−1 − 2.

of Theorem 3. Consider a balanced (ε(n), δ(n), t(n))-secure sender-deniable bit encryp-
tion scheme. Let B̃ ← {0, 1} be a random bit, R̃S be a random sender tape, C̃ ←
trnψ(B̃, R̃S, ?) a transcript and R̃′S ← φ(B̃, R̃S, C̃) a fake sender random tape.

Define the distribution (B,C,RS, R
′
S) as (B̃, C̃, R̃S, R̃

′
S) conditioned on bC̃ = B̃, i.e.,

there’s no decryption error. Note that the probability that this conditions fails to hold
is exactly the decryption error ε, and thus those distributions are ε close

(B,C,RS, R
′
S) ∼ε (B̃, C̃, R̃S, R̃

′
S) . (37)

We’ll show that
HHILL
δ+ε,t(R

′
S|C)−HHILL

1/2,s(R
′
S|C,B) ≥ log ε−1 − 2 (38)

This proves the theorem by identifying (Xn, Zn, An) in the statement of the theorem
with (R′S, C,B). Note that, as stated in the theorem, one can sample (B,C,RS, R

′
S) by

25 The exact number of expected executions/invocations is
∑∞
i=0 ε

i = 1 + ε + ε2 . . . ≤ 1 + 2ε ≤ 2.
Alternatively, we can make this number exactly one (also in the worst case) at the prize of slightly
decreasing the entropy gap by multiplying the right hand side of (36) with (1− ε).

26More generally, we can replace the distinguishing advantage 1/2 with 1 − 2−τ for any real-valued
τ > 0, but then must replace the −1 on the right-hand side with −τ .
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resampling (B̃, C̃, R̃S, R̃
′
S) until the bC̃ = B̃ conditions is met, which requires an expected∑∞

i=0 ε
i = 1 + ε + ε2 . . . ≤ 2 number tries, each requiring one execution of the protocol

and one invocation of the faking algorithm.
We now prove (38). The deniability property states (B̃, R̃S, C̃) ∼δ,t (1 − B̃, R̃′S, C̃),

and with with (37) we further get (B,RS, C) ∼δ+ε,t (1−B,R′S, C). The latter also holds
if we just consider the marginal distributions we get by ignoring the first term

(RS, C) ∼δ+ε,t (R′S, C) .

As given C, the random tape RS is uniform over RC

H̃∞(RS|C) = − log E
c←C

max
r

Pr [RS = r|C = c]

= − log E
c←C

1/|Rc|

= log E
c←C
|Rc| .

By Definition 7 the two equations above imply

HHILL
δ+ε,t(R

′
S|C) ≥ log E

c←C
|Rc| (39)

Below, we prove
HHILL

1/2,s(R
′
S|C,B) ≤ log E

c←C
|R′c|+ 1 (40)

But first observe that using (39) and (40) in the first, and (35) in the third step below
(we discuss this step in more detail later), (38) follows as

HHILL
δ+ε,t(R

′
S|C)−HHILL

1/2,s(R
′
S|C,B) ≥ log E

c←C
|Rc| − log E

c←C
|R′c| − 1

= log E
c←C

|Rc|
|R′c|

− 1

≥ log(ε−1 − 1)− 1 ≥ log ε−1 − 2 ,

Eq. (35) used in the third step above requires that c is sampled according to C̃, not C as
above, but this doesn’t matter as C ∼ C̃.27

It remains to prove (40). As φ(B, ., C) maps RC to R′C and RS ∈ RC , the fake
trancript R′S ← φ(B,RS, C) must be in R′C .

Using (33), when given (C,B = bC), one can check if some sender random tape r is
in R′C by verifying that C ∈ supp[trnψ(1 − B, r, ·)], and this can be done in polynomial
time.28 Let D be a boolean circuit of polynomial size s(n) which does that test:

∀c ∈ supp[trnψ(·, ·, ·)] : (D(r, c, bc) = 1) ⇐⇒ (r ∈ R′c) (41)

Consider any distribution (Y,C,B) where the marginal distribution (C,B) is the same
as in (RS, C,B) (in particular B = bC) and where Y has min-entropy

H̃∞(Y |C,B) = H̃∞(Y |C) > log E
c←C
|R′c|+ 1 (42)

27 Note that C ∼ε C̃ follows directly by (37). The stronger C ∼ C̃ statement we use follows as we
assume that the encryption scheme is balanced (cf. Footnote 22). This implies that when sampling C
(recall this is done by resampling C̃ until bC̃ = B̃), the probability that we resample is independent of

the actual value of C̃, and thus C and C̃ have the same distribution.
28For this one only has to check that the messages computed by the sender using randomness r are

consistent with the transcript C.
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The first equality above holds as B = bC is determined by C. We can upper bound
the probability that D outputs 1 on this distribution as (in step (43) below we use our
assumption that the scheme is balanced in the sense that |R′c| is a constant independent
of c)

Pr(y,c,b)←(Y,C,B)[D(y, c, b) = 1]
(41)
= Pr(y,c,b)←(Y,C,B)[y ∈ R′c]
= E

c←C
Pr[Y ∈ R′c|C = c]

≤ E
c←C

[
|R′c|max

v
Pr[Y = v|C = c]

]
≤ E

c←C
|R′c| E

c←C

[
max
v

Pr[Y = v|C = c]
]

(43)

If we take the logarithm of the equation above

− logPr(y,c,b)←(Z,C,B)[D(y, c, b) = 1]

≥ − log E
c←C
|R′c| − log E

c←C

[
max
v

Pr[Y = v|C = c]
]

≥ − log E
c←C
|R′c|+ H̃∞(Y |C)

(42)
> 1

Exponentianting the above we get

Pr(y,c,b)←(Y,C,B)[D(y, c, b) = 1] < 1/2 (44)

Using this we can lower bound D’s advantage as

Pr(r,c,b)←(R′S ,C,B)[D(r, c, b) = 1]︸ ︷︷ ︸
=1 by (41)

−Pr(y,c,b)←(Y,C,B)[D(y, c, b) = 1]︸ ︷︷ ︸
<1/2 by (44)

> 1/2

Which means
(Y,C,B) 6∼1/2,s (R′S, C,B) (45)

Now (40) follows by (42) and (45).

B Chain Rule for Unpredictability and Yao

In this section we prove chain rules of the form (4) for conditional Yao and Unpredictabil-
ity entropy. Although it seems that the chain rules for these notions are folklore and the
proofs are straightforward, we could not find a written account of this in the literature
and thus provide it here. Below we define Yao and unpredictability entropy, which we
already informally defined in Section 1.2.

Definition 13 ([Yao82, BSW03, HLR07]). Let (X,Z) be a joint distribution of ran-
dom variables. Then X has conditional Yao entropy k conditioned on Z, denoted by
HYAO
ε,s (X|Z) ≥ k, if for every m, and any pair of circuits C,D of total size s where C has

output length m, it holds that

Pr(x,z)←(X,Z)[D(C(x, z), z) = x] ≤ 2m−k + ε
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So, C compresses X to a string of length m, and D tries to recover X from this
string. Both circuits also get the conditional part Z as input, and the probability that
D recovers X correctly is exponentially small in the gap k −m between the Yao entropy
and the length of the compressed X. The definition considers an additional “smoothness
parameter” ε, which is simply added to D’s success probability, and will be useful when
comparing Yao-entropy with other pseudentropy notions.

Definition 14 ([HLR07]). Let (X,Z) be a joint distribution of random variables. Then
X has unpredictability entropy k conditioned on Z, denoted by Hunp

ε,s (X|Z) ≥ k, if
there exists a joint distribution (Y, Z) such that (X,Z) ∼ε,s (Y, Z) and for all circuits C
of size s

Pr(y,z)←(Y,Z)[C(z) = y] ≤ 2−k

[HLR07] prove the following simple relations amongst HILL, Yao and unpredictability
entropy

HYAO
ε,s (X|Z) ≥ Hunp

ε,s (X|Z) ≥ HHILL
ε,s (X|Z)

We first prove the chain rule for Yao entropy.

Lemma 10 (Chain Rule for conditional Yao Entropy). For any joint distribution (X,Z,A)
where |A| = `

HYAO
ε,s2`+O(2`|X|)(X|Z) ≥ k ⇒ HYAO

ε,s (X|Z,A) ≥ k − `

Proof. We’ll prove the contraposition

HYAO
ε,s (X|Z,A) < k − ` ⇒ HYAO

ε,s2`+O(2`|X|)(X|Z) < k . (46)

The left-hand of (46) means that for some m ∈ N, there exist circuits C,D of total size s
where C has output length m and

Pr(x,z,a)←(X,Z,A)[D(C(x, z, a), a, z) = x] > 2m−(k−`) + ε . (47)

We define a circuit C′ with output length m′ = m + ` as C′(x, z) = (C(x, z, a), a) where
a ∈ {0, 1}` is chosen so that D(C(x, z, a), z, a) = x holds, and a = 0` if no such a exists.
Now D(C(x, z, a), z, a) = x implies D(C′(x, z), z) = x for any (x, z, a), using this we see
that (47) implies

Pr(x,z)←(X,Z)[D(C′(x, z), z) = x] > 2m−(k−`) + ε = 2m
′−k + ε .

As C′,D can be realized with total size at most s2` +O(2`|X|),29 the above is equivalent
to the right-hand side of (46).

Below we state the chain rule for unpredictability entropy. Note that unlike in the
chain rule for HILL or Yao entropy, here there’s basically no loss in circuit size.

Lemma 11 (Chain Rule for Unpredictability Entropy). For any joint distribution (X,Z,A)
where |A| = `

Hunp
ε,s (X|Z) ≥ k ⇒ Hunp

ε,s−O(`)(X|Z,A) ≥ k − `

29C′(x, z) computes xa = D(C(x, z, a), a, z) for all a ∈ {0, 1}` \ 0` and outputs (C(x, z, a), a) if xa = x
for some a, and (C(x, z, 0`), 0`) otherwise. This can be done by a circuit of size 2`|C| + (2` − 1)|D|
plus O(2`|X|) extra gates required to check if x = xa for all a ∈ {0, 1}`. As |C| + |D| ≤ s we get
|C′|+ |D| ≤ 2`s+O(2`|X|).
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Proof. We’ll prove the contraposition

Hunp
ε,s (X|Z,A) < k − ` ⇒ Hunp

ε,s+O(`)(X|Z) < k (48)

The left-hand side of (48) means that for every distribution (Y, Z,A) where (X,Z,A) ∼ε,s
(Y, Z,A) there exists a circuit C of size at most s such that

Pr(y,z,a)←(Y,Z,A)[C(z, a) = y] > 2−k+` (49)

Define the circuit C′ as follows: C′(z) picks a random a′ ← {0, 1}` and outputs C(z, a′).
Below all probabilities are over sampling (y, z, a) ← (Y, Z,A) and a′ ← {0, 1}`, in the
last step we use (49)

Pr[C′(z) = y] ≥ Pr[C′(z) = y|a = a′]Pr[a = a′]

= Pr[C(z, a) = y]2−`

> 2−k

This, together with the fact that (X,Z,A) ∼ε,s (Y, Z,A) implies (X,Z) ∼ε,s (Y, Z) (as
ignoring part of a distribution cannot make distinguishing easier) and |C′| = |C| + O(`),
implies the right-hand side of (48).
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