
ar
X

iv
:1

00
1.

28
11

v2
 [

cs
.L

O
]

 1
 F

eb
 2

01
0

Synthesis of AMBA AHB from Formal Specification

Yashdeep Godhal Krishnendu Chatterjee Thomas A. Henzinger

IST Austria (Institute of Science and Technology Austria)

Abstract

The standard procedure for hardware design consists of describing circuit in a hardware description
language at logic level followed by extensive verification and logic-synthesis. However, this process
consumes significant time and needs a lot of effort. An alternative is to use formal specification language
as a high-level hardware description language and synthesize hardware from formal specification. In [1]
formal specifications for AMBA AHB Arbiter were presented and synthesized. Our contributions are as
follows: (1) We present more complete and compact formal specifications for the AMBA AHB Arbiter,
and obtain significant (order of magnitude) improvement in synthesis results (both with respect to time
and the number of gates of the synthesize circuit); (2) we present formal specification and synthesize to
generate compact circuits for the remaining two components of the AMBA AHB protocol, namely, the
AMBA AHB Master and AMBA AHB Slave; and (3) from the lessons learnt we present few principles for
writing formal specifications for efficient hardware synthesis. Thus with systematically written complete
formal specifications we are able to automatically synthesize an important and widely used industrial
protocol.

1 Introduction

Hardware design flow. The first step in traditional standard industrial procedure of hardware design is
the decription of a circuit in hardware description language. This step is followed by extensive verification
and subsequently by logical synthesis. The outcome of logical syntehsis is gate level implementation of
circuit. Among the above steps of design, verification and logical synthesis, the verification step is most time
consuming process and requires a lot of effort. An alternative approach is to automatically synthesize the
circuit from formal specification.

Synthesis from formal specification. Historically, automatic synthesis of digital designs from logical
temporal specifications has been considered as one of the most challenging problems in circuit design. The
problem was first presented by Church [4] and several methods have been proposed as solutions such as [3]
and in [12]. The problem was considered again in [10] in the context of synthesizing reactive modules from a
specification given in Linear Temporal Logic (LTL). The method proposed in [10] for a given LTL specification
ϕ starts by constructing a Büchi automaton which is converted into a deterministic Rabin automaton. This
translation may require a doubly exponential complexity in the size of ϕ. The high complexity established
in [10] caused synthesis to be deemed hopelessly intractable and discouraged practitioners from attempting
to use it for system development. Yet, there exist several interesting cases where, if the specification of the
design to be synthesized is restricted to simpler automata or partial fragments of LTL, it has been shown
that the synthesis problem can be solved in polynomial time. Major progress has been achieved in [9], which
shows that designs can be automatically synthesized from LTL formulas belonging to the class of generalized
reactivity of rank 1 (GR(1)), in time N3 where N is the size of the state space of the design. The class
GR(1) covers the vast majority of properties that appear in specifications of circuits. The approach of [9]
was implemented by [1] in a tool called Anzu [6]. Anzu produces not only a BDD representing a set of
possible implementations, but also an actual circuit.

AMBA AHB Protocol. In this work we study the automatic synthesis of an important and widely
used industrial protocol, namely, AMBA AHB protocol. ARM’s Advanced Microcontroller Bus Architecture

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268225698?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1001.2811v2

(AMBA) [8] specification defines an on chip communications standard for designing high-performance em-
bedded microcontrollers. AMBA is today the de-facto standard for embedded processors because it is well
documented and can be used without royalties. It is widely used in network interconnect chips, RAM and
Flash memory controllers, DMA controllers, level2 cache controllers and SoCs including application proces-
sors used in portable mobile devices like smartphones, and a few industrial examples of its use are IXP42X
Product Line of Intel Network Processors, Infineon gateway controller ADM5120. The most important bus
defined within the AMBA specification is Advanced High-performance Bus AHB. The AHB acts as the high-
performance system backbone bus. AHB supports the efficient connection of processors, on-chip memories,
DMA controllers and off-chip external memory interfaces. The AMBA AHB design consists of the following
main components: (a) AHB Arbiter; (b) AHB Master and (c) AHB Slave. In this work we synthesize the
above three components of the AMBA AHB protocol.

Our contributions. The contributions of this work are as follows:

1. In [1] and [2] the synthesis of only AMBA AHB Arbiter was studied. We present more complete and
compact formal specifications for the AMBA AHB Arbiter, and obtain significant (order of magnitude)
improvement in synthesis results (both with respect to time and the number of gates of the synthesized
circuit).

2. We present, for the first time, the formal specifications for the AMBA AHB Master and AMBA AHB
Slave (the remaining two components of the protocol). We are able to synthesize very compact circuits
from our formal specifications. Thus we are able to completely synthesize an important and widely
used industrial protocol by systematically writing the formal specifications.

3. From the lessons that we have learnt in the process of rewriting specifications to obtain efficient syn-
thesis result, we present few principles for writing formal specifications for efficient hardware synthesis.

2 Preliminaries

In this section we present preliminaries related to specification language and synthesis.

2.1 Property Specification Language

We will use Property Specification Language (PSL) to express specifications (a detailed description of PSL
can be found in [5]). The specifications presented in this paper are easy to follow for readers familiar with
LTL. In particular, always, eventually, and next correspond to G, F , andX , respectively. The until operator
requires the first operand to hold either forever or up to and including the time that the second operand
holds. The construct (Φ before Ψ) is equivalent to (¬Ψ until Φ). We also use one operator that is not in
PSL: (Φ until [i] Ψ) means that Φ holds either forever or up to and including the ith time that Ψ holds.

2.2 Synthesis of GR(1) Properties

We briefly review the results presented in [9] on synthesizing GR(1) properties. We are interested in the
question of realizability of PSL specifications (cf [11]). Assume two sets of Boolean variables X and Y .
Intuitively X is the set of input variables controlled by the environment and Y is the set of system variables.
Realizability amounts to checking whether there exists an open controller that satisfies the specification.
Such a controller can be represented as an automaton which, at any step, reads values of the X variables
and outputs values for the Y variables.

Here we concentrate on a subset of PSL for which realizability and synthesis can be solved efficiently.
The specifications we consider are of the form φ = φe → φs. We require that φα for α ∈ {e, s} can be
rewritten as a conjunction of the following parts.

• φα
i - a Boolean formula which characterizes the initial states of the implementation.

2

• φα
t - a formula of the form ∧i(always Bi) where each Bi is a Boolean combination of variables from

X ∪ Y and expressions of the form (next v) where v ∈ X if α = e, and v ∈ X ∪ Y otherwise.

• φα
g - has the form ∧i∈I (always eventually Bi) where each Bi is a Boolean formula.

In order to allow formulas of other forms (e.g. always(p → (q until r)) where p, q, and r are Boolean), we
augment the set of variables by adding deterministic monitors. Deterministic monitors are variables whose
behavior is deterministic according to the choice of the inputs and the outputs. These monitors follow the
truth value of the expression nested inside the always operator. We rewrite these types of formulas to the
form (always eventually b) where b is a Boolean formula using the variables of the monitor. It should be noted
that even with these restrictions, all possible (finite state) designs can be expressed as a set of properties.

We reduce the realizability problem of a PSL formula to the decision of the winner in a two-player game
played between system and environment. The goal of the system is to satisfy the specification regardless of
the actions of the environment. A game structure is a multigraph whose nodes are all the truth assignments
to X and Y . A node v1 is connected by edges to all the nodes v2 such that the truth assignments to X

and Y satisfy φe
t ∧ φs

t , where v1 supplies the assignments to the current values and v2 to the next values.
We then group all the edges that agree on the assignment of X in v2 to one multi-edge. A play starts by
the environment choosing an assignment to X and the system choosing a state in φe

i ∧ φs
i that agrees with

this assignment. A play proceeds by the environment choosing a multi-edge and the system choosing one of
the nodes connected to this multi-edge. The system wins if this interaction produces an infinite play that
satisfies φe

g → φs
g.

We solve the game to decide whether the game is winning for the environment or the system. If the
environment wins, then the specification is unrealizable. If the system wins, then we synthesize a winning
strategy. This strategy, a BDD, is a nondeterministic representation of a working implementation. The
following theorem summarizes the result of synthesis of PSL specifications.

Theorem 1 [9] Given sets of variables X and Y and a PSL formula φ of the form presented above with m

and n conjuncts, we can determine using a symbolic algorithm whether φ is realizable in time proportional
to O(mn2d+|X|+|Y |), where d is the number of variables added by the monitors for φ.

2.3 Generating circuits from BDDs

We briefly review the results presented in [2] on generating circuits from BDDs. The strategy is a BDD
over the variables X , Y , X

′

and Y
′

, where X are input variables, Y are output variables and the primed
versions represent next state variables. The corresponding circuit contains |X | + |Y | flipflops to store the
values of the inputs and outputs in the last clock tick. In every step, the circuit reads the next input values
X

′

and determines the next output values using combinational logic with inputs I = X∪Y ∪X
′

and outputs
O = Y

′

. The strategy does not prescribe a unique combinational output for every combinational input. In
most cases, multiple outputs are possible, in states that are not reachable (assuming that the system adheres
to the strategy), no outputs may be allowed.

We write o ∈ O for a combinational output and i ∈ I for a combinational input. The strategy is denoted
by S and O \ o is the set of combinational outputs excluding output o. For every combinational output o we
construct a function f in terms of I that is compatible with the given strategy BDD. The algorithm proceeds
through the combinational outputs o one by one: First, we build S

′

to get a BDD that restricts only o in
terms of I. Then we build the positive and negative cofactors (p, n) of S

′

with respect to o, that is, we find
the sets of inputs for which o can be 1 (0, respectively). For the inputs that occur in the positive and in the
negative cofactor, both values are allowed. The combinational inputs that are neither in the positive nor in
the negative cofactor are outside of the winning region and thus represent situations that cannot occur (as
long as the environment satisfies the assumptions). Thus, f has to be 1 in p ∧ ¬n and 0 in ¬p ∧ n, which
give us the set of care states. We minimize the positive cofactors with the care set to obtain the function f .
Finally, we substitute variable o in S by f , and proceed with the next variable. The substitution is necessary
since a combinational outputs may be related.

3

The resulting circuit is constructed by writing the BDDs for the functions using CUDDs DumpBlif
command [13]. We then optimize the result using ABC [14] and map it to a library of standard cells. We
also use ABC to estimate the number of gates needed.

3 AMBA AHB Protocol

In this section we describe the details of the main components of the AMBA AHB protocol. ARM’s Advanced
Microcontroller Bus Architecture (AMBA) [8] specification defines an on chip communications standard for
designing high-performance embedded microcontrollers. The most important bus defined within the AMBA
specification is Advanced High-performance Bus. The AHB acts as the high-performance system backbone
bus. AHB supports the efficient connection of processors, on-chip memories, DMA controllers and off-chip
external memory interfaces. The AMBA AHB design contains the following components:

AHB master: A bus master is able to initiate read and write operations by providing an address and
control information. Only one bus master is allowed to actively use the bus at any one time.

AHB slave: A bus slave responds to a read or write operation within a given address-space range. The bus
slave signals back to the active master the success, failure or waiting of the data transfer.

AHB arbiter: The bus arbiter ensures that only one bus master at a time is allowed to initiate data
transfers. Even though the arbitration protocol is fixed, any arbitration algorithm, such as highest priority
or fair access can be implemented depending on the application requirements.

AHB decoder: The AHB decoder is used to decode the address of each transfer and provide a select signal
for the slave that is involved in the transfer.

Consider an AHB system with arbiter, masters and slaves. Every slave shall have some address range.
AHB decoder receives address as input, checks in which range that address lies and provides select signal
for slave that corresponds to this address. In essence, it works as a de-multiplexer. For a system with single
slave, the select signal shall always be high, if valid address is put on bus. Hence we consider the synthesis
of the main components of AHB design i.e. AHB Master, AHB Slave and AHB Arbiter.

3.1 AHB Arbiter

The role of the arbiter in an AMBA system is to control which master has access to the bus. Every bus
master has a REQUEST/GRANT interface to the arbiter and the arbiter uses a prioritization scheme to
decide which bus master is currently the highest priority master requesting the bus. Each master also
generates an HLOCKx signal which is used to indicate that the master requires exclusive access to the bus.
The arbitration protocol is not specified and can be defined for each application.

3.2 AHB Master

Function of AHB master is to do read and write operations. Before initiating any transfer, it sends a request
to arbiter for accessing bus. Once arbiter grants the bus, master initiates read/write operation by providing
address and control information. Master 0 is the default master and is selected whenever there are no
requests for the bus.

3.3 AHB Slave

An AHB bus slave responds to transfers initiated by bus masters within the system. The slave uses a select
signal HSELx from the decoder to determine when it should respond to a bus transfer. All other signals
required for the transfer, such as the address and control information, will be generated by the bus master.

The AHB is a pipelined bus. This means that different masters can be in different stages of commu-
nication. At one instant, multiple masters can request the bus, while another master transfers address
information, and a yet another master transfers data. A bus access can be a single transfer or a burst, which
consists of a specified or unspecified number of transfers. Access to the bus is controlled by the arbiter. All

4

devices that are connected to the bus are Moore machines, that is, the reaction of a device to an action at
time t can only be seen by the other devices at time t+ 1.

4 AMBA AHB Arbiter Synthesis

In this section we present our results related to synthesis of AHB arbiter. We first present the arbiter signals,
then present the formal specifications and our result for synthesis.

4.1 AHB Arbiter Signals

Arbiter
requests
and locks

HSPLITx[15:0]

HRESP[1:0]

HLOCKx3

AHB
arbiter

HRESETn

HCLK

Reset

HGRANTx1

Arbiter
grants

HREADY

HBUSREQx3

HGRANTx2

HGRANTx3

Clock

HMASTER[3:0]

HMASTLOCKHTRANS[1:0]

HBURST[2:0]

HADDR[31:0]

Address
and control

HLOCKx2

HBUSREQx2

HLOCKx1

HBUSREQx1

Figure 1: AHB Arbiter [8]

Figure 1 shows AHB arbiter signals. The description of these signals are as follows (the notation S[n:0]
denotes an (n+1)-bit signal):

• HBUSREQi - A signal from bus master i to the bus arbiter which indicates that the bus master requires
access to the bus.

• HLOCKi - Indicates that the master requires locked access to the bus. No other master should be
granted the bus until this signal is lowered.

• HREADY- This signal is driven by the bus slave. It indicates that a transfer has finished on the bus.
This signal may be lowered to extend a transfer.

• HGRANTi - This signal indicates that if HREADY is high, then HMASTER= i will hold in the next
tick.

• HMASTLOCK - Indicates that the current master is performing a locked sequence of transfers.
• HMASTER[3:0] - These signals from the arbiter indicate which bus master is currently performing a
transfer.

The following signals are multiplexed using HMASTER as the control signal. For example, although every
master has an address bus, only the address provided by the currently active master is visible on HADDR.

• HADDR[31:0] - These signals indicate the address where read or write transaction will take place.

5

• HBURST[1:0] - One of SINGLE (a single transfer), INCR (unspecified length burst) or INCR4 (burst
of four transfers). Though the standard allows for burst of eight and sixteen transfers too but we have
not taken them into account. That would lengthen the specification.

• HTRANS[1:0] - Indicates the type of the current transfer, which can be NONSEQ, SEQ or IDLE. The
standard allows for BUSY transfers also. HTRANS = BUSY indicates that master wants to introduce
some delay during ongoing transfer. This is an optional feature. For simplicity we have left this feature
out.

Furthermore, as an optional feature of the AHB, a slave is allowed to split a burst access and request that
it be continued later (signals HRESP and HSPLIT shown in Figure 1 serve that purpose). We have left this
feature out for simplicity.

Both optional features i.e. SPLIT and BUSY transfers are also not considered in [1] while writing
specifications for AHB Arbiter. Though they can be handled by this approach but that would lengthen the
specification.

4.2 Formal Specifications

The first formal specification for AMBA AHB arbiter was given in [1]. We have systematically re-written the
specifications to make it more complete. The two important changes are as follows: (a) the HTRANS[1:0]
signal, which plays an important role in AHB transfers, was not used in earlier specifications, whereas with
the use of HTRANS signal, we make the formal specifications more complete; and (b) the other important
change from the specifications of [1] is related to de-assertion of HLOCK signal: according to ARM [7], the
AHB Master should deassert the HLOCK signal when the address phase of the last transfer in the locked
sequence has started.

Along with the signals described above, we use two auxilary signals DECIDE and BUSREQ, that were
introduced in [2]. The signal DECIDE indicates the time slot in which the arbiter decides who the next
master will be and whether its access will be locked. The decision is based on HBUSREQi and HLOCKi. The
signal BUSREQ points to the HBUSREQi signal of the master that currently owns the bus. Two auxilary
variables START and LOCKED, that were introduced in [1], are not used in our specification. It is because
with the inclusion of HTRANS signal and change of nature in de-assertion of HLOCK signal, START and
LOCKED have become redundant. We introduce a new auxilary variable GRANTED which is driven by
the arbiter. The signal GRANTED is used for deciding start of new access. When both GRANTED and
HREADY signals are high simultaneously, new access shall start in next cycle. Thus a decision can be
executed at the earliest two time steps after the HBUSREQi and HLOCKi signals are read.

We follow the convention used in [1]: guarantees are properties that the arbiter must fulfill, and assump-
tions are properties that the arbiters environment must fulfill. Our specification for the arbiter consists of 9
assumtions and 12 guarantees whereas the specification from paper [1] had 4 assumptions and 11 guarantees.
Figure 2 shows timing diagram for AHB arbiter signals. Table 1 contains formal specification of arbiter in
PSL. The bold faced A and G signify new/re-written property whereas non-bold faced indicate existing
property from [2]. The assumptions(A) and guarantees(G) for the arbiter are described below.

Assumptions The assumptions are as follows.

A1 During a locked unspecified length burst, leaving HBUSREQi high locks the bus. This is forbidden by
the standard.

A2 Leaving HREADY low locks the bus, the standard forbids it.
A3 Signals HLOCKi and HBUSREQi are asserted by AHB Master at the same time.
A4 When HREADY signal is low, all control signals should hold their values.
A5 If no transfer is taking place, HTRANS signal can not become SEQ in the next cycle.
A6 In burst sequence (i.e. HBURST = INCR4), if HREADY is high, NONSEQ transfer shall always be

followed by SEQ transfer.
A7 First transfer of any AHB sequence is NONSEQ in nature.
A8 When none of the AHB Masters is making a request for bus, no transfer will take place.
A9 All input signals are low initially.

6

clk

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12

hbusreq1

hlock1

hbusreq2

hlock2

hready

htrans IDLE NSEQ SEQ IDLE NSEQ SEQ IDLE

hburst SIN INC SIN INC4 SIN

hgrant1

hgrant2

hmaster 0 1 0 2 0

hmastlock

haddr A00 A10 A11 A00 A20 A21 A22 A23 A00

busreq

decide

granted

Figure 2: Signals for the AHB Arbiter and timing diagram

7

Table 1: PSL Specifications for AHB Arbiter.

A1 ∀i : always ((HMASTLOCK ∧ HBURST = INCR) → (next eventually ¬BUSREQ))

A2 always eventually HREADY

A3 ∀i : always ((¬HBUSREQi ∧ ¬HLOCKi ∧ (next HLOCKi)) → (next HBUSREQi))

A4
always (¬HREADY → (HTRANS = j ↔ next HTRANS = j))
always (¬HREADY → (HBURST = j ↔ next HBURST = j))

A5 always ((HTRANS = IDLE) → (next (HTRANS 6= SEQ)))

A6 always (((HTRANS = NONSEQ) ∧ (HBURST = INCR4) ∧ HREADY) → (next (HTRANS = SEQ)))

A7 always ((GRANTED ∧ HREADY) → (next (HTRANS = NONSEQ)))

A8 always ((∧n-1

i=0¬HBUSREQi) → (HTRANS = IDLE))

A9 ∀i : (¬HBUSREQi ∧¬HLOCKi ∧¬HREADY ∧ (HTRANS = IDLE) ∧ (HBURST = SINGLE))

G1 ∀i : always ((HMASTER = i) → (BUSREQ ↔ HBUSREQi))

G2
∀i : always ((HMASTLOCK ∧ (HBURST = INCR) ∧ HREADY ∧ (HTRANS = NONSEQ)) →
next ((HTRANS = SEQ) until ¬BUSREQ))

G3
∀i : always ((HMASTLOCK ∧ (HBURST = INCR4) ∧ HREADY ∧ (HTRANS = NONSEQ)) →
next ((HTRANS = SEQ) until [3] HREADY))

G4 always ((DECIDE ∧(∨n-1

i=0 HBUSREQi)) → (next GRANTED))

G5
always ((GRANTED ∧¬HREADY) → (next GRANTED))
always ((GRANTED ∧ HREADY) → (next ¬GRANTED))

G6 ∀i : always (HREADY → (HGRANTi ↔ next (HMASTER = i)))

G7 always ((HREADY ∧(∨n-1

i=0 (HLOCKi ∧ HGRANTi)) → next (HMASTLOCK)))

G8
∀i : always ((¬HREADY∨ ¬GRANTED) → (HMASTER= i↔ next HMASTER= i))
∀i : always ((¬HREADY∨ ¬GRANTED) → (HMASTLOCK↔ next HMASTLOCK))

G9 ∀i : always (¬DECIDE → (HGRANTi ↔ next HGRANTi))

G10
∀i 6= 0 : always (¬HGRANTi → (HBUSREQi before HGRANTi))
always (DECIDE ∧∀i : ¬HBUSREQi → next HGRANT0)

G11 ∀i : always (HBUSREQi → eventually (¬HBUSREQi ∨ (HMASTER = i)))

G12 DECIDE ∧ HGRANT0 ∧ (HMASTER = 0) ∧ ¬GRANTED ∧¬HMASTLOCK ∧∀i 6= 0 : ¬HGRANTi

Guarantees The guarantees are as follows.

G1 Variable BUSREQ points to HBUSREQi of the master that is currently granted access to the bus.
G2 When a locked unspecified length burst starts, a new access does not start until the currentmaster (i)

releases the bus by lowering HBUSREQi.
G3 When a length-four locked burst starts, no other accesses start until the end of the burst. We can only

transfer data when HREADY is high, so the current burst ends at the fourth occurrence of HREADY.
G4 Whenever, there is at least one bus request present and signal DECIDE is high, GRANTED gets asserted

in the next cycle.
G5 If HREADY is low, then GRANTED signal holds its value. Whereas, if HREADY and GRANTED

signals are simultaneously high, then GRANTED gets deasserted in next cycle.
G6 The HMASTER signal follows the grants: When HREADY is high, HMASTER is set to the master that

is currently granted. It implies that no two grants may be high simultaneously and the arbiter cannot
change HMASTER without giving a grant.

G7 Whenever signal HREADY, HLOCKi and HGRANTi are simultaneously high, HMASTLOCK gets
asserted in the following cycle.

G8 When any of GRANTED or HREADY signals is low, the HMASTER and HMASTLOCK signals do
not change.

8

G9 Whenever DECIDE is low, HGRANTi signal do not change.
G10 We do not grant the bus without a request, except to Master 0. If there are no requests, the bus is

granted to Master 0.
G11 We have a fair bus i.e. every master that has made a request shall be serviced eventually.
G12 The signals DECIDE and HGRANT0 are high at first clock tick and all others are low.

Assumptions A1, A2, A3, A9 and Guarantees G1, G2, G3, G6, G8, G9, G10, G11, G12 mentioned above
are taken directly from [1]. Remaining guarantees in [1] were related to auxilary signals which have become
redundant in our case with inclusion of HTRANS signal. Out of the above, G2, G3 and G8 have been
re-written with the original meaning kept intact. Thus all assumptions and guarantees from [1] are taken
care in our specification, and along with it we have more assumptions and guarantees.

4.3 Synthesis Results

Num of
Masters

Synthesis time
(sec) from Fig 8
in [2]

Synthesis time
(sec) for specifi-
cations [2] in our
experiments

Minimum syn-
thesis time (sec)
of the last two
columns

Synthesis
time(sec) for
our specifications

2 2 2 2 1
3 20 22 20 5
4 100 103 100 9
5 200 203 200 53
6 800 677 677 86
7 2400 2696 2400 206
8 12000 7931 7931 146
9 2000 2533 2000 550
10 19000 18789 18789 630
11 577
12 992
13 1610
14 2100
15 3486
16 3630

Table 2: Synthesis time comparison

Anzu [6] is used to synthesize the circuit from specifications. Table 2 shows comparison of time taken
by Anzu tool to synthesize AHB arbiter for different specifications. First column shows number of masters
for which arbiter was synthesized. Second column shows data taken from Figure 8 of [2] and third column
shows time taken in synthesizing specification from [2] on our machine (2GB RAM). In fourth column, we
have taken the minimum of these two columns to have the best possible estimate of synthesis time for arbiter
specifications in [2]. Fifth column shows the time in seconds for the arbiter synthesized using our formal
specifications.

The results (Table 2) show that using the earlier specifications from [2], the synthesis procedure fails for
more than 10 masters. With our improved specifications we can synthesize arbiter serving upto 16 masters
nearly in an hour. The AHB standard allows for maximum 16 masters, and arbiter synthesized using
our specifications can serve upto 16 masters. Thus we are able to syntesize arbiter serving the maximum
number of masters as required by the protocol. Moreover, our improved specifications show significant (order
of magnitude) improvement over the earlier specification: for example, for arbiter serving 10 masters the
synthesis of earlier specifications takes nearly 5 hours, whereas our specification is synthesized in less than
11 minutes.

In Table 3, NA corresponds to not available and NM refers to not mappable by ABC.

9

Num of
Masters

Gate count from
Fig 9 in [2]

Gate count for
specifications [2] in
our experiments

Minimum gate
count of the last
two columns

Gate count for
our specifications

2 1000 982 982 182
3 3500 2626 2626 409
4 8500 6801 6801 776
5 11000 9033 9033 920
6 18000 12448 12448 1443
7 15000 19777 15000 2015
8 36000 NM 36000 2431
9 NA 50012 50012 3047
10 50000 45912 45912 2825
11 2994
12 5178
13 3712
14 4112
15 4199
16 6056

Table 3: Gate count comparison

Anzu [6] tool generates a file in .blif format. This file is mapped by using ABC [14] to standard library.
ABC tool is also useful for counting number of gates required to realize the circuit. Table 3 shows comparison
of number of gates mapped by ABC for realizing different specifications for arbiter. First column shows the
number of masters for which the arbiter is synthesized. Second column shows data taken from Figure 8 in [2]
and third column shows number of gates mapped by ABC tool on our machine (2GB RAM) for existing
specification in [2]. In fourth column, we have taken the minimum of second and third columns to have a best
estimate of number of gates for existing specifications. In fifth column, gate count for our circuit synthesized
from our specification. Table 3 shows that arbiter synthesized using specifications from [2] serving 10 masters
has nearly forty-six thousand gates, whereas, the AHB arbiter synthesized with our specifications serving 10
masters has only three thousand gates, and even arbiter serving 16 masters needs only six thousand gates.
Thus our specifications not only improve the time taken for synthesizing, but also improve the gate count of
synthesized circuit by an order of magnitude.

Graphical comparison for arbiters serving different number of masters is shown in Figure 3 and Figure 4.
Figure 3 shows comparison for synthesis time whereas Figure 4 depicts comparison for gate count.

5 AMBA AHB Master

In this section we present the synthesis results for AHB Master: we first present the signals, then the
specification, and then the synthesis results.

5.1 AHB Master Signals

We first introduce the signals for AHB Master that have not been introduced.

• HWRITE - This signal from bus master indicates nature of transfer. When HWRITE is low, it indicates
read transfer. If high, it indicates write transfer.

• HADDR[31:0] - These signals from the master provide information about location where write or read
transfer shall take place.

• HWDATA[31:0] - These signals from the master provide information about data to be written in case
of write transaction.

10

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 2 4 6 8 10 12 14 16

S
y
n
th

e
s
is

 T
im

e
(S

e
c
)

Number of Masters

Synthesis time(Existing Paper-Min)
Synthesis time (Our Work)

Figure 3: Synthesis Time Comparison.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 2 4 6 8 10 12 14 16

N
u
m

b
e
r

o
f

G
a
te

s

Number of Masters

GateCount(Existing Paper-Min)
GateCount (Our Work)

Figure 4: Gate Comparison.

• HRDATA[31:0] - These signals from bus slave to bus master provide information about data read in
case of read transaction.

• HSIZE[2:0] - This signal from bus master to bus slave provides information about bus width. It can
be one of byte(8-bit), half-word(16-bit), word(32-bit) and up to 1024 bits. We have fixed it to word
i.e. data bus shall be 32-bit wide.

• HRESP[1:0] - This signal from bus slave to bus master provides transfer response. It can be one of
OKAY, ERROR, SPLIT and RETRY. SPLIT and RETRY are optional feature allowed in standard.
For simplicity, we have fixed it to OKAY otherwise it would lengthen the specification.

The AMBA AHB specification also allows protection controls but for simplicity, we have left that feature
out. Few auxilary signals are also used. They are as follows:

• REQ VLD - This signal is input to bus master. It is used by bus master for deciding HBUSREQ.
HBUSREQ signal is asserted whenever REQ VLD is asserted.

• WR - This signal is input to bus master. It indicates that write transaction shall take place. HWRITE
shall be HIGH if WR is high.

• RD - This signal is input to bus master. If high, it indicates that read transaction shall take place and
hence HWRITE shall be set LOW.

• LEN1 - This signal is input to bus master. It indicates that single transfer shall take place.
• LEN4 - This signal is input to bus master. It informs that the transfer should be a burst sequence of
four transfers.

• LENX - This signal is input to bus master. It informs that the transfer should be a burst sequence of
unspecified length.

• IN ADDR[31:0] - These signals are input to the master providing information about address. These
signals are used to decide HADDR.

• IN DATA[31:0] - These signals are input to the master providing information about write data. These
signals are used to decide HWDATA.

• LAST - This signal is input to bus master. It indicates the last transfer in a sequence of transfers.
• OUT DATA[31:0] - These signals from the master provide information about read data.
• REQ ADDR - This signal from the master is request for address. If this signal is high, in the next
clock cycle, master shall receive IN ADDR.

• REQ WR DATA - This signal from the master is request for data. If this signal is high, in the next
clock cycle, master shall receive IN DATA.

11

Figure 5: AHB Master

• REC RD DATA - This signal from the master provides acts as valid signal for read data. If it is high,
HRDATA shall be copied to OUT DATA.

Figure 5 shows signals for AHB Master and Figure 6 shows timing diagram for those signals.

5.2 Formal Specifications

In the formal specification of AMBA AHB Master, we have 10 assumptions and 15 guarantees.

Assumptions The assumptions are as follows.

A1 Length of transfer will be specified with REQ VLD signal i.e. whenever REQ VLD is high, one of LEN1,
LEN4 and LENX signal shall be high.

A2 Nature of transfer will be specified with REQ VLD signal i.e. whenever REQ VLD signal is high, one
of RD and WR signal shall be high.

A3 If REQ VLDsignal is low, RD, WR, LEN1, LEN4 and LENX shall hold their values.
A4 There can not be conflict between signals indicating nature of transfer thus RD and WR signal can not

be high simultaneously.
A5 There can not be conflict between signals indicating length of transfer thus LEN1, LEN4 and LENX

signals can not be high simultaneously.
A6 Input HRESP signal shall be OKAY throughout.
A7 The bus is fair one, hence every HBUSREQ shall eventually be answered.
A8 During a locked unspecified length burst, leaving HBUSREQ high locks the bus. This is forbidden by

the standard.
A9 Eventually HREADY will be high.
A10 We are not considering it as default bus master for the sake of generality. Hence eventually REQ VLD

and HGRANT signals will be low.

12

clk

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12

req vld

lenx

len4

rd

wr

hbusreq

hlock

hready

hgrant

hwrite

htrans IDLE NSEQ SEQ IDLE NSEQ SEQ IDLE

hburst SIN INCR SIN INCR4 SIN

last

req addr

in addr A00 A10 A11 A20 A21 A22 A23

haddr A00 A10 A11 A20 A21 A22 A23

hrdata D00 D10 D11

out data D00 D10 D11

rec rd data

req wr data

in data I00 I10 I11 I12 I13

hwdata I00 I10 I11 I12 I13

Figure 6: Signals for the AHB Master

We are assuming that data bus is 32-bit wide, hence HSIZE will be fixed to WORD. To make this bus
master more general, another assumption is that this bus master requests for only locked transfers.

Guarantees The guarantees are as follows.

G1 Data bus is 32-bit wide. Thus HSIZE shall be fixed to WORD throughout.
G2 HBUSREQ signal gets asserted and de-asserted with REQ VLD.
G3 Bus master requests only for locked transfer.
G4 If the ongoing transfer is last transfer of an ahb sequence, HLOCK shall be lowered.
G5 Length four burst (HBURST = INCR4) shall end at fourth occurence of HREADY.
G6 HBURST shall be set according to length of the transfer indicated by LEN1, LEN4 and LENX.
G7 First transfer of an AHB sequence is always NONSEQ in nature. All following transfers in sequence

shall be SEQ in nature.

13

G8 Nature of transfer shall be set according to WR and RD signals.
G9 If HREADY is low, all control signals shall hold their values.
G10 When HREADY and HGRANT are simultaneously high, REQ ADDR signal shall be high. It ensures

that in next cycle, master can put address on address bus.
G11 When both REQ ADDR and WR signals are high, REQ WR DATA signal shall also be high. It

ensures that data shall be put on data bus one cycle after address is put on address bus.
G12 When a read transfer is taking place and HREADY is high, REC RD DATA signal shall also be high.
G13 When REQ ADDR is high, in the next cycle, incoming IN ADDR shall be copied to address bus.
G14 When REQ WR DATA is high, in the next cycle, incoming IN DATA shall be copied to data bus.
G15 When read transaction is in progress and HREADY is high, OUT DATA shall copy the value of

HRDATA.

5.3 Synthesis Results

The synthesis time for the AHB Master is 8.3 seconds. The generated circuit is mapped using ABC tool.
It has 157 gates with area 210 square units. It is a very small circuit even with respect to manual imple-
mentations. Thus we are not only able to synthesize the AHB Master from its formal specifications, but the
synthesized circuit is also very compact.

6 AMBA AHB Slave

In this section we present the synthesis results for AHB Slave.

6.1 AHB Slave Signals

Figure 7: AHBSlave

The signals that are useful for AHB slave are already described in previous sections. We have introduced
an interface between slave and a memory so that read and write transactions can be implemented. We are

14

Table 4: PSL Specifications for AHB Master

A1 always (REQ VLD → (LENX ∨ LEN1 ∨ LEN4))

A2 always (REQ VLD → (WR ∨ RD))

A3

always ((next ¬REQ VLD) → (¬LEN1 ↔ (next ¬LEN1)))
always ((next ¬REQ VLD) → (¬LENX ↔ (next ¬LENX)))
always ((next ¬REQ VLD) → (¬LEN4 ↔ (next ¬LEN4)))
always ((next ¬REQ VLD) → (¬WR ↔ (next ¬WR)))
always ((next ¬REQ VLD) → (¬RD ↔ (next ¬RD)))

A4
always (WR → ¬ RD)
always (RD → ¬ WR)

A5
always (LENX → (¬LEN1 ∨ ¬LEN4))
always (LEN1 → (¬LENX ∨ ¬LEN4))
always (LEN4 → (¬LENX ∨ ¬LEN1))

A6 always (HRESP = OKAY)

A7 always (REQ VLD → eventually HGRANT)

A8 always ((HLOCK ∧ (HBURST = INCR)) → next eventually ¬REQ VLD)

A9 always (eventually HREADY)

A10 always (eventually (¬REQ VLD ∧ ¬HGRANT))

G1 always (HSIZE = WORD)

G2 always (REQ VLD → HBUSREQ)

G3 always ((¬HBUSREQ ∧ next HBUSREQ ∧ ¬HLOCK) → next HLOCK)

G4 always (LAST → ¬HLOCK)

G5
always ((HLOCK ∧ (HBURST = INCR4) ∧ HREADY ∧ (HTRANS = NONSEQ)) →
next ((HTRANS = SEQ) until [3] HREADY))

G6
always (HBUSREQ ∧ HGRANT ∧ (HTRANS = IDLE) ∧ HREADY ∧ LEN1 → next (HBURST = SINGLE))
always (HBUSREQ ∧ HGRANT ∧ (HTRANS = IDLE) ∧ HREADY ∧ LENX → next (HBURST = INCR))
always (HBUSREQ ∧ HGRANT ∧ (HTRANS = IDLE) ∧ HREADY ∧ LEN4 → next (HBURST = INCR4))

G7
always (HBUSREQ ∧ HGRANT ∧ (HTRANS = IDLE) ∧ HREADY → next (HTRANS = NONSEQ))
always (¬LAST ∧ (HTRANS = NONSEQ) ∧ HREADY → next (HTRANS = SEQ))
always ((HTRANS = IDLE) → (HBURST = SINGLE))

G8
always (HGRANT ∧ (HTRANS = NONSEQ) ∧ HREADY ∧ WR → HWRITE)
always (HGRANT ∧ (HTRANS = NONSEQ) ∧ HREADY ∧ RD → ¬HWRITE)

G9
always (¬HREADY → ((HTRANS = j) ↔ next (HTRANS = j)))
always (¬HREADY → ((HBURST = j) ↔ next (HBURST = j)))

G10 always ((HREADY ∧ HGRANT) → REQ ADDR)

G11 always ((REQ ADDR ∧ HWRITE) → REQ WR DATA)

G12 always ((HREADY ∧ ((HTRANS = NONSEQ) ∨ (HTRANS = SEQ)) ∧¬HWRITE) → REC RD DATA)

G13 ∀i : always (REQ ADDR → ((next (IN ADDRi = j)) ↔ (next (HADDRi = j))))

G14 ∀i : always (REQ WR DATA → ((next (IN DATAi = j)) ↔ (next (HWDATAi = j))))

G15 ∀i : always (HREADY ∧¬HWRITE ∧ ((HTRANS = SEQ)
∨ (HTRANS = NONSEQ)) → ((next (HRDATAi = j)) ↔ (next (OUT DATAi = j))))

15

considering memory with two status signals EMPTY and FULL.
Two auxilary signals have also been added named START and LAST. START signal indicates start of

an AHB transfer or sequence whereas LAST signal is used to indicate last transfer of an AHB sequence.
The signals used in this interface are shown in Figure 7. Figure 8 shows the timing diagram from AHB

slave signals. The description of signals used in interface between slave and memory is given below:

clk

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12

hsel

hwrite

htrans IDLE NSEQ SEQ IDLE NSEQ SEQ IDLE

hburst SIN INCR SIN INCR4 SIN

hready

start

last

haddr A00 A10 A11 A20 A21 A22 A23

hwdata I00 I10 I11 I12 I13

addr A00 A10 A11 A20 A21 A22 A23

di I00 I10 I11 I12 I13

rd

wr

do D00 D10 D11

hrdata D00 D10 D11

Figure 8: Signals for the AHB Slave

• FULL - This signal is input to bus slave indicating memory is full. No more data can be written into
it without first being read.

• EMPTY - This signal is input to bus slave indicating memory is empty. No more data can be read
from it without first being written.

• ADDR[31:0] - These signals are output from slave providing address information.
• DI[31:0] - These signals are output from slave and input to memory providing information about data
that should be written into memory.

• DO[31:0] - These signals are output from memory and input to slave providing information about data
that has been read from memory.

• RD - This signal is input to memory from slave. It indicates that the read operation is being executed.
• WR - This signal is input to memory from slave. It indicates that the write operation is being executed.

6.2 Formal Specifications

In the formal specification of AMBA AHB Slave, we have 7 assumptions and 9 guarantees. They are as
follows.

Assumptions The assumptions are as follows.

A1 When the slave is not selected by the decoder, all control signals shall be low.

16

Table 5: PSL Specifications for AHB Slave

A1 always (¬HSEL → ((HTRANS = IDLE) ∧ (HBURST = SINGLE) ∧ ¬HWRITE ∧ ¬START ∧ ¬LAST))

A2 always ((HTRANS = IDLE) → ((HBURST = SINGLE) ∧ ¬HWRITE ∧ ¬START ∧ ¬LAST))

A3 always (START → (HTRANS = NONSEQ))

A4 always (¬LAST ∧ (HTRANS = NONSEQ) ∧ HREADY → next (HTRANS = SEQ))

A5 always ((HLOCK ∧ (HBURST = INCR4) ∧ HREADY ∧ (HTRANS = NONSEQ)) → next((HTRANS = SEQ)
until [3] HREADY))

A6 always ((LAST ∧ next ¬START) → next (HTRANS = IDLE))

A7

always (¬HREADY →((HTRANS = j) ↔ next (HTRANS = j)))
always (¬HREADY →((HBURST = j) ↔ next (HBURST = j)))
always (¬HREADY →((HADDR = j) ↔ next (HADDR = j)))
always (¬HREADY →((HWDATA = j) ↔ next (HWDATA = j)))
always (¬HREADY →((DO = j) ↔ next (DO = j)))

G1 always (¬HSEL → HREADY)

G2 always (¬HSEL → (HRESP = OKAY))

G3 always ((HTRANS = IDLE) → (HRESP = OKAY))

G4
always ((WR ∧ HSEL) → ¬RD)
always ((RD ∧ HSEL) → ¬WR)

G5
always ((HSEL ∧ FULL ∧ WR) → (HRESP = ERROR))
always ((HSEL ∧ EMPTY ∧ RD) → (HRESP = ERROR))

G6
always ((HSEL ∧ ((HTRANS = NONSEQ) ∨ (HTRANS = SEQ)) ∧ HWRITE) → WR)
always ((HSEL ∧ ((HTRANS = NONSEQ) ∨ (HTRANS = SEQ)) ∧¬HWRITE) → RD)

G7 always ((HSEL ∧ ((HTRANS = NONSEQ) ∨ (HTRANS = SEQ)) → ((HADDR = j) ↔ (ADDR = j)))

G8 always ((HSEL ∧ ((HTRANS = NONSEQ) ∨ (HTRANS = SEQ)) ∧ HWRITE) → ((HWDATA = j) ↔ (DI = j)))

G9 always ((HSEL ∧ ((HTRANS = NONSEQ) ∨ (HTRANS = SEQ)) ∧¬HWRITE) → ((DO = j) ↔ (HRDATA = j)))

A2 When HTRANS is IDLE, all control signals shall be low.
A3 First transfer of any sequence is NONSEQ in nature.
A4 Non-first transfer of an AHB sequence will always be SEQ in nature.
A5 Burst sequence of length four shall end at fourth occurence of HREADY.
A6 If this is last transaction of a sequence and next cycle is not start of another sequence, HTRANS shall

be IDLE in next cycle.
A7 If HREADY is low, all control signals, address and data buses shall hold their values.

Guarantees The guarantees are as follows.

G1 When the slave is not selected by the decoder, HREADY signal shall be high.
G2 When the slave is not selected by the decoder, HRESP shall be OKAY.
G3 When no AHB transaction is taking place, HRESP shall be OKAY.
G4 RD and WR signal can not be high simultaneously.
G5 If memory is full and write tranfer is attempted, slave shall send ERROR response. Similarly, if memory

is empty and read transfer is attempted, slave shall send ERROR response.
G6 When slave is involved in a transfer, HWRITE is used to decide values of WR and RD.
G7 When slave is involved in any transfer, signal HADDR is used to decide ADDR.
G8 When slave is involved in write transfer, signal HWDATA is used to decide DI.
G9 When slave is involved in read transfer, signal DO is used to decide HRDATA.

17

6.3 Synthesis Results

The synthesis time for the AHB Slave is 21.5 seconds. The circuit generated, when mapped using ABC, has
214 gates with area 429 unit squared. It is a very small circuit even with respect to manual implementations.
Thus we are not only able to synthesize the AHB Slave from its formal specifications, but the synthesized
circuit is also very compact.

7 Lessons Learned

In the process of systematically re-writing the formal specifications for efficient synthesis, we learnt a few
lessons about writing formal specifications for synthesis. We present these lessons with examples below.

• In the process of writing specifications, we should first simplify the design (if possible), write realizable
specification for that can be synthesized efficiently for the simple design, and finally add necessary
complexities to have the complete specification. For example, while writing AHB Master specifications,
we first fixed all data and address signals width to one bit, synthesized the simpler design successfully
and efficiently. This was followed by increasing data and address signal widths to 32-bit and adding
necessary changes to AHB Master specifications to make it complete and synthesizable.

• While writing specifications, proceeding with the execution order of events is helpful. For example,
while writing AHB Arbiter specifications, we proceeded with writing properties related to requesting
access, granting access followed by properties related to AHB transfers.

• The use of auxilary signals is helpful in scenarios that cannot be emulated using only input output
signals. For example, in AHB Slave specifications, we have introduced auxilary signals to emulate
slave-memory interactions.

• The eventual specifications were the most time-consuming and difficult ones for synthesis and they
need special attention.

In general, most data intensive applications are not reacive designs of degree one, and the above approach
may not be ideal for those applications, but we believe that the above synthesis approach should work well
for many control specific applications.

Acknowledgment. We thank Barbara Jobstmann for explaining the changes made in the specifications
from [1] to [2].

References

[1] Roderick Bloem, Stefan Galler, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Martin Weiglhofer. Inter-
active presentation: Automatic hardware synthesis from specifications: a case study. In DATE, pages 1188–1193,
2007.

[2] Roderick Bloem, Stefan Galler, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Martin Weiglhofer. Specify,
compile, run: Hardware from psl. Electr. Notes Theor. Comput. Sci., 190(4):3–16, 2007.

[3] J. Richard Buchi and Lawrence H. Landweber. Solving sequential conditions by finite-state strategies. Transac-
tions of the American Mathematical Society, 138:295–311, 1969.

[4] Alonzo Church. Logic, arithmetic, and automata. In Proc. Internat. Congr. Math (Stockholm), pages 23–35,
1963.

[5] Cindy Eisner and Dana Fisman. A Practical Introduction to PSL (Series on Integrated Circuits and Systems).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[6] Barbara Jobstmann, Stefan Galler, Martin Weiglhofer, and Roderick Bloem. Anzu: A tool for property synthesis.
In CAV, pages 258–262, 2007.

[7] ARM Ltd. Arm information center. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/588.html.

[8] ARM Ltd. Amba specification (rev. 2), 1999. http://www.arm.com/products/solutions/AMBA_Spec.html.

18

http://infocenter.arm.com/help/ index.jsp?topic=/com.arm.doc.faqs/588.html
http://www.arm.com/products/ solutions/AMBA_Spec.html

[9] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) designs. In VMCAI, pages 364–380, 2006.

[10] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL ’89: Proceedings of the 16th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 179–190, New York, NY, USA,
1989. ACM.

[11] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In POPL, pages 179–190, 1989.

[12] Michael Oser Rabin. Automata on Infinite Objects and Church’s Problem. American Mathematical Society,
Boston, MA, USA, 1972.

[13] F. Somenzi. Cudd: Cu decision diagram package. University of Colorado at Boulder,
ftp://vlsi.colorado.edu/pub/.

[14] Berkeley Logic Synthesis and Verification Group. Abc: A system for sequential synthesis and verification, release
61225. http://www.eecs.berkeley.edu/~alanmi/abc/.

19

ftp://vlsi.colorado.edu/pub/
http://www.eecs.berkeley.edu/~alanmi/abc/

	1 Introduction
	2 Preliminaries
	2.1 Property Specification Language
	2.2 Synthesis of GR(1) Properties
	2.3 Generating circuits from BDDs

	3 AMBA AHB Protocol
	3.1 AHB Arbiter
	3.2 AHB Master
	3.3 AHB Slave

	4 AMBA AHB Arbiter Synthesis
	4.1 AHB Arbiter Signals
	4.2 Formal Specifications
	4.3 Synthesis Results

	5 AMBA AHB Master
	5.1 AHB Master Signals
	5.2 Formal Specifications
	5.3 Synthesis Results

	6 AMBA AHB Slave
	6.1 AHB Slave Signals
	6.2 Formal Specifications
	6.3 Synthesis Results

	7 Lessons Learned

